
A GRID PORTAL FOR ENVIRONMENTAL MONITORING
APPLICATIONS

By

Mariana Mendoza-Botero

A project report submitted in partial fulfillment of the requirements for the degree
of

MASTER OF ENGINEERING

in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2007

Approved by:

Domingo Rodŕıguez, Ph.D Date
Member, Graduate Committee

Nayda Santiago, Ph.D Date
Member, Graduate Committee

Wilson Rivera, Ph.D Date
President, Graduate Committee

Silvestre Colón, Ph.D Date
Representative of Graduate Studies

Isidoro Couvertier, Ph.D Date
Chairperson of the Department

Abstract of Project Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Engineering

A GRID PORTAL FOR ENVIRONMENTAL MONITORING
APPLICATIONS

By

Mariana Mendoza-Botero

2007

Chair: Wilson Rivera
Major Department: Electrical and Computer Engineering

Grid portals hide cyber-infrastructure complexity via easy-to-use interfaces, cre-

ating gateways to computing resources and data. This project report describes the

development of a grid portal for a image processing application. In particular, this

portal provides services to access environmental data, and apply signal processing

operators on signals.

ii

Resumen de Proyecto Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Maestŕıa en Ingenieŕıa

UN PORTAL GRID PARA APLICACIONES DE MONITOREO
AMBIENTAL

Por

Mariana Mendoza-Botero

2007

Consejero: Wilson Rivera
Departamento: Ingenieŕıa Eléctrica y Computadoras

Los portales grid ocultan la complejidad de ciber-infraestructuras por medio

de interfaces de fácil uso, brindando acceso a recursos y datos de cómputo. Este

reporte de proyecto describe el desarrollo de un portal grid para una aplicación de

procesamiento de señales. En particular, éste portal provee servicios para acceder

a datos ambientales, y ejecución de operadores de procesamiento de señales en un

ambiente de trabajo distribúıdo.

iii

Copyright c© 2007

by

Mariana Mendoza-Botero

iv

Dedicated to

my mother Maŕıa Beatŕız,

my father Carlos Arturo,

my sister Beatŕız Helena,

my grandmother Rubiela.

v

ACKNOWLEDGMENTS

I would like to thank to my advisor Wilson Rivera for giving me the opportunity

to study my master. Also, I would like to thank to my graduate committee, Dr.

Nayda Santiago and Domingo Rodŕıguez for their valuable help and advice. Thanks

to WALSAIP which allowed the development of this project.

Thanks to my expanding family for always give me support. Thanks to Sandra

Montalvo (Sandy) an angel for the graduate students. Thanks to Andres, Arianna,

David, Edith, Isabel, John, Juan, Juddy, Kennie, Nadia, Omar, Pablo, and all my

special friends and coworkers for their company and advices. Thanks to God, Your

hands always were on me.

This material is based upon work supported by the National Science Foundation

under Grant No. 0424546.

vi

TABLE OF CONTENTS
page

ABSTRACT ENGLISH . ii

ABSTRACT SPANISH . iii

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

1 INTRODUCTION . 1

2 CONCEPTS AND TOOLS . 2

2.1 The WALSAIP Project Framework 2
2.1.1 Digital Image Processing Operators 3

2.2 Grid Computing . 8
2.2.1 Grid Computing Architecture 9

2.2.1.1 Grid Architecture Model 9
2.2.1.2 Service Oriented Architecture (SOA Model) 10
2.2.1.3 Open Grid Services Architecture (OGSA) 10
2.2.1.4 WS-Resource Framework (WSRF) 12

2.2.2 Globus Toolkit . 13
2.3 Grid Portals . 14

2.3.1 Grid Portal Requirements 14
2.3.2 Grid Portal Standards . 15

2.3.2.1 Java Portlet Specification (JSR 168) 15
2.3.2.2 Web Services for Remote Portlets (WSRP) 16

2.3.3 Grid Portal Development Frameworks 16
2.3.3.1 Commodity Grid (CoG) Kits 16
2.3.3.2 GridSphere Portal Framework 16
2.3.3.3 GridPort Toolkit . 17

2.3.4 Grid Portal Applications 17

3 GRID PORTAL IMPLEMENTATION 20

3.1 Software Interfaces . 21
3.2 Communication Interfaces . 23
3.3 Grid Services Implementation and Deployment 23
3.4 Portlets and Services Integration 25

vii

3.5 User Interfaces . 26
3.6 About the Appendices . 27

4 CONCLUSION AND FUTURE WORK 28

APPENDICES . 29

A CREATING AND DEPLOYING A GRID SERVICE 30

B PORTLET INTEGRATION . 38

C USER’S GUIDE . 43

D PROGRAMMING THE PORTLET . 47

BIOGRAPHICAL SKETCH . 69

viii

LIST OF FIGURES
Figure page

2.1 CIP Environment . 3

2.2 Digital Image Processing Operator Representation 5

2.3 Discrete Image Processing Operator Representation 6

2.4 WS-Resource . 12

3.1 Grid Portal Application Architecture 21

3.2 Grid Portal Software Infrastructure 22

3.3 Five Steps to Create and Deploy a Grid Service 23

3.4 Portlet Architecture . 26

3.5 Grid Portal Main Page . 27

A.1 New Java Project Wizard . 31

A.2 New Grid Service Wizard . 33

A.3 Invert Operator Service Deployed in Globus Container 37

C.1 Portlet Web Application . 43

C.2 Invert Portlet . 44

C.3 Operator Grid Service Performed . 46

ix

LIST OF ABBREVIATIONS

CIP Computational and Information Processing.
GoC Commodity Grid.
DTS Data Replication Service.
FTP File Transfer Protocol.
GGF Global Grid Forum.
GRAM Grid Resource Allocation and Management.
GridFTP Grid File Transfer Protocol.
GSI Grid Security Infrastructure.
JSR Java Specification Request.
MDS Monitoring and Discovery System.
OGSA Open Grid Services Architecture.
OGSA-DAI Globus Data Access and Integration.
RFT Reliable File Transfer.
RLS Replica Location Service.
SAS Sensor Array System.
SOA Service Oriented Architecture.
VO Virtual Organizations.
WALSAIP Wide Area Large Scale Automated Information Processing.
WSDL Web Services Description Language.

x

CHAPTER 1

INTRODUCTION

The availability of powerful computers and high speed network technologies, as

low cost commodity components has changed the way we approach large scale prob-

lems. These technology opportunities have led to the possibility of using geograph-

ically distributed resources as a single unified computing resource, while increasing

the possibilities for collaborative developments. Grid portals hide the complexity

of these systems by providing easy to use interfaces to computing resources and data.

The Wide-Area Large-Scale Automated Information Processing (WALSAIP)

project is developing an infrastructure for the automated processing of information

arriving from physical sensors focused on environmental applications. The specific

objective of the project presented in this report is to provide transparent access to a

set of signal processing operators related to environmental applications that may be

available on distributed resources. To achieve this objective we leverage on existing

grid technologies including the Globus toolkit and Gridsphere. The contribution of

this project is a prototype of the WALSAIP grid portal, which provides access via

portlets to diverse signal processing operators in a distributed framework.

This project report is organized as follows: Chapter 2 introduces the concepts

and tools related to signal processing operators and grid computing. Chapter 3

discusses the architecture and implementation issues of the WALSAIP Grid Portal.

Finally, Chapter 4 presents conclusions and future work.

1

CHAPTER 2

CONCEPTS AND TOOLS

2.1 The WALSAIP Project Framework

The Wide Area Large Scale Automated Information Processing (WALSAIP)1

project is developing a new conceptual framework for the automated processing of

information arriving from physical sensors in a generalized wide-area, large-scale

distributed network infrastructure. The WALSAIP project is focusing on water-

related ecological and environmental applications, and it is addressing issues such as

scalability, modularity, signal representation, data coherence, data integration, dis-

tributed query processing, scheduling, computer performance, network performance,

and usability. This new framework treats signals as elements in prescribed sets and

their associated structures. The project is constructing a Computational and In-

formation Processing (CIP) environment to deal with the algorithmic treatment of

signal-based large scale content in order to extract information relevant and impor-

tant to a user (see Figure 2.1). New theories and algorithms for computational signal

processing to gather, process, and represent data obtained from physical sensors are

also under development. Further, it is also developing new concepts in middle-

ware integration, distributed query optimization, distributed query processing, and

distributed scheduling algorithms to adapt to an ever changing network infrastruc-

ture and to provide a pathway between a physical world sensory reality, with its

1 http://walsaip.uprm.edu/

2

3

associated physical sensors, and a user, with network and database infrastructure

applications.

Figure 2.1: CIP Environment

As illustrated in Fugure 2.1, the core of the processing stage is the computa-

tional signal processing system, which includes a set of generalized signal processing

operators.

2.1.1 Digital Image Processing Operators

The concept of the digital image processing operators is very useful when deal-

ing with the algorithmic treatment of two-dimensional arrays of data of finite order

[1]. The algorithmic treatment of two-dimensional array of data finite order has as

a main objective to extract relevant information important to users. The algorith-

mic treatment is a well defined procedure to accomplish a task in a finite number

of step. This section describes the concept of a digital image processing operator

and presents a formulation of the linear operator mostly used in image processing,

namely, the linear convolution operator. This section also presents the other lin-

ear operator commonly used in image processing, the Fourier transform operator.

4

In fact, these two linear operators and its parametric variants represent the main

bulk of all operators used in scientific and engineering applications. To introduce

the concept of digital image processing operator, we first present some preliminary

concepts dealing with array data indexing sets and how they define the structure of

the associate data.

Let ZN = a[0], a[1], a[2], ..., a[N − 1] be the standard indexing set of order N .

This set is useful to index a set of one dimension of data of N elements, say, A =

{a[0], a[1], a[2], ..., a[N − 1]}.

Let ZM × ZN ={(0, 0), (0, 1), (0, 2), ..., (0, N − 1),

(1, 0), (1, 1), (1, 2), ..., (1, N − 1),

...

(M − 1, 0), (M − 1, 1), (M − 2, 2), ..., (M − 1, N − 1)}

(2.1)

be the two-dimensional standard indexing set of order MxN . A two-dimensional

standard indexing set determines the structure of the data array to be indexed.

A two-dimensional array data set of order MxN is defined as a set of MN real

numbers or values which are indexed by the standard indexing set ZMxZN . We then

say that this array data set has M rows and N columns. We call this array data set

a real image of M rows by N columns if all the MN real numbers are non-negative.

In the same manner, we may call this array of M rows by N columns a digital image

if all of the MN real numbers, in addition of being non-negative, are also integer

values. The set of integer values 0, 1, ..., 255 is commonly used to represent the MN

values of a digital image, where ’0’ represents zero intensity and ’255’ represents

5

maximum intensity.

A digital image processing operator, say Og (general operator), is a mathemati-

cal function which has as input a digital image, say (di), and it has as output another

digital image, say (do). The following block diagram representation is normally used

to describe a given digital image processing operator (Og)

Figure 2.2: Digital Image Processing Operator Representation

Where ZP = 0, 1, 23, ..., P − 1 and ZQ = 0, 1, 23, ..., Q− 1.

and ZP × ZQ ={(0, 0), (0, 1), (0, 2), ..., (0, Q− 1),

(1, 0), (1, 1), (1, 2), ..., (1, Q− 1),

...

(P − 1, 0), (P − 1, 1),

(P − 1, Q− 1).

(2.2)

Even though in practice we implement digital image processing operators on

computational structures, it is more natural to deal with discrete image processing

operators to obtain a better generalization of algorithms results from the mathe-

matical point of view:

The input to the discrete image processing operator (Og) in this case is a discrete

image instead of a digital image. A discrete image is able to admit any non-negative

real numeric value. This is in contrast to the digital image which only admit a finite

6

Figure 2.3: Discrete Image Processing Operator Representation

number of integer values.

This work present two examples of discrete image processing operators, namely,

the discrete two dimensional linear convolution operator and the discrete two-dimensional

Fourier transform.

The discrete two-dimensional linear convolution of and input image, say di[m,n],

m,nεZP ×ZQ, with respect to a filtering function hi[m, n]m,nεZM ×ZN , produces

an output image, say dO[m, n]εZR × ZS, whose individual values are given by the

following expression.

dO[m,n] =
M−1∑
k=0

N−1∑
l=0

hi[k, l] · di[m− k, n− l], mεZR, nεZS.

where R = P + M − 1, and S = Q + N − 1.

The two-dimensional discrete Fourier transform of a discrete image, say X[m, n],

m, nεZP × ZQ, is defined as a complex image, say K[k, l], through the following

expression:

X[k, l] =
P−1∑
m=0

Q−1∑
n=0

X[m, n] · e(−J2πmk)/P · e(−J2πnl)/Q, J =
√
−1, k, lεZQ × ZP .

The complex X[k, lm, lεZP × ZQ] is composed of two real images XR[k, l] and

XI [k, l] defined by the following expression:

7

X[k, l] = XR[k, l] + j ·XI [k, l], k, lεZP × ZQ

where R = P + M − 1, and S = Q + N − 1.

Several computational environments for image processing have been developed.

Bautista [2] implements a Java-based environment for the treatment of remote sens-

ing imaging information which implements a set of image processing operators along

with a mechanisms to compose subset of operators.

Del Fabbro [3] presents a framework for the distributed manipulation of large

georeferenced images. He developed a visual programming language (VPL) that

allows users to create programs to be executed in a distributed environment. He

used the Java Advanced Imaging (JAI), also considered in our project to process

the images.

Tsou et. al. [4] introduce a web-based remote sensing application that can

provide advanced image comparison and processing functions for natural habitat

conservation and environmental monitoring. This project adopted Java program-

ming tools to create a series of Java applets that can perform multiple image analysis

and change detection functions. These Java applets were organized into an image

analysis toolbox, where users can select different buttons to launch different applets

(image processing functions) in separate windows.

Smith [5] presents the Nano-Toolbox project that is a data and image analy-

sis package, specifically developed to be integrated into nano-ystems. It provides

methods to import and export data as well as direct intercommunication with a

8

nano-systems e-learning environment.

Our project follows a different approach as it leverages existing grid comput-

ing technologies to provide access to distributed signal processing operators in a

transparent way to end users. In the next section we introduce these technologies.

2.2 Grid Computing

Grid computing deals with the computing power that is supplied by a set of re-

sources in a distributed environment. More formally the Open Grid Forum [6] defines

a grid as a system concerned with the integration, virtualization, and management

of services and resources in a distributed, heterogeneous environment that supports

collections of users and resources (virtual organizations) across administrative and

organizational domains (real organizations). A grid system can be characterized by

three important aspects [7]:

1. A system that coordinates resources that are not subject to centralized control: Shar-

ing implies direct access on behalf of virtual organizations (VOs)[8] to computers,

software, data, and other resources for collaborative problem-solving. VOs asso-

ciate users, their requests, and the set of interacting resources. Sharing resources in

a VO should be highly controlled, with resource providers and consumers defining

clearly and carefully what is shared, who is allowed to share, and the conditions

under which sharing occurs.

2. A system using standard, open, general-purpose protocols and interfaces: To achieve

desirable communication among those heterogeneous VOs, it is very important for

both users and resources, to offer authentication, authorization, resource discovery,

and resource access through standard protocols. The Open Grid Forum contributes

to this grid computing aspect by developing such protocols. A standard protocol

allows resource-sharing arrangements to be established with any interested party

9

and thus creating a compatible and interoperable distributed system. A general-

purpose protocol enables the implementation of general-purpose services and tools

by means of this standardization.

3. A system to deliver nontrivial qualities of service: To supply the application’s

requirements the system must be able to coordinate the allocation of resources

according to nontrivial quality of service criteria.

2.2.1 Grid Computing Architecture

The Open Grid Services Architecture (OGSA) is commonly used as an open-

standard architecture, aligning the best aspects of both the Grid Architecture model

and the Service Oriented Architecture (SOA) model. In this section we discuss

briefly the architectural models, the services capabilities defined in OGSA as well as

the implementation specifications given by the Web-Services Resource Framework

(WS-RF).

2.2.1.1 Grid Architecture Model

The Grid Architecture Model defines the layers to provide interoperability. In-

teroperability allows the grid system to offer a sharing environment between re-

sources providers and consumers via a set of common protocols. This model has five

layers briefly described as follows [9].

• Fabric layer: Defines the interfaces to access local resources to be shared.

• Connectivity layer: Defines the communication and authentication protocols of

network transactions among resources.

• Resource layer: Uses the communication and authentication protocols of the con-

nectivity layer to manage the sharing of individual resources. This management

controls secure negotiations, instantiation, monitoring, accounting, and payment.

It also uses the fabric layer function to access and control local resources.

10

• Collective layer: Manages the interactions among collections of resources. It uses

protocols from both connectivity and resource layers. It also implements informa-

tion protocols to access the structure and state of resources, as well as manages

protocols to negotiate access to resources.

• Application layer: Includes all different user applications, portals and development

toolkits supporting the applications. Applications rely on all layers below to run

on the grid.

2.2.1.2 Service Oriented Architecture (SOA Model)

SOA [10] is a paradigm for organizing distributed capabilities that may be

under the control of different ownership domains. A service in SOA is a mechanism

to enable access to one or more capabilities. Services in SOA have three fundamental

properties:

• Access is provided using a prescribed interface consistent with the constraints and

policies specified by the service description. This property is used to describe and

publish services.

• Localization and invocation can be dynamic. This property is used to discovery

services.

• Maintain its own state. This property permits services be stateful to consumption

or interaction.

2.2.1.3 Open Grid Services Architecture (OGSA)

The Global Grid Forum (GGF) has embraced OGSA as the industry blueprint

for standards-based grid computing. In OGSA, a grid service [11] is a web service

that provides a set of well defined interfaces and follows specific conventions. The

services implemented under OGSA fall into seven areas defined in terms of capabil-

ities that are frequently required in grid scenarios:

• Infrastructure Services: Refers to a set of common functionalities typically re-

quired by higher level services. As OGSA builds on Web services technologies,

11

service interfaces are defined by the Web Services Description Languages (WSDL).

Infrastructure includes emerging standards such as the Web Services Resource

Framework (WSRF), WS-Notification (WSN), Web Services Distributed Manage-

ment (WSDM), and Naming (RNS and WS-Naming).

• Execution Management Services: Concern with issues such as starting and man-

aging tasks, including placement, provisioning, and lifecycle management. Tasks

may range from simple jobs to complex workflows or composite services.

• Data Services: Provide functionality to move data, manage replicated copies, run

queries and updates, and transform data into new formats. Data consistency,

persistence and integrity are key requirements satisfied by these services.

• Resource Management Services: Provide management capabilities for grid re-

sources such as: management of the resources themselves, management of the

resources as grid components, and management of the OGSA infrastructure. For

example, resources can be monitored, reserved, deployed, and configured as needed

to meet application quality-of-service requirements.

• Security Services: Facilitate the enforcement of security-related policy within a

(virtual) organization, and supports safe resource-sharing. Authentication, au-

thorization and integrity-assurance are essential functionalities provided by these

services.

• Self-Management Services: Support service-level attainment for a set of services

(or resources), to reduce the costs and complexity of managing the system. These

services are essential in addressing the increasing complexity of owning and oper-

ating an information technology infrastructure.

• Information Services:Provide efficient production of, and access to, information

about the Grid and its constituent resources. The term information refers to

dynamic data or events used for status monitoring. Troubleshooting is just one of

the possible uses for information provided by these services.

12

2.2.1.4 WS-Resource Framework (WSRF)

Grid service is a web service that is able to mantain state. WS-Resource Frame-

work provides state to stateless web services. WSRF describes the specifications on

which the OGSA architecture is built. In order to minimize the complex problem

of adding state to web services [12], it has been proposed that a web service and its

state information be kept completely separate. The entity that stores this informa-

tion state is called the resource, identified by a unique key. Pairing of a Web service

with a resource is called a WS-Resource. The address of a particular WS-Resource

is called an endpoint reference (this is WS-Addressing) (see Figure 2.4).

Figure 2.4: WS-Resource

WSRF integrates the following collection of specifications in order to manage

the WS-Resources:

• WS-ResourceProperties : Specifies how resource properties are defined and ac-

cessed. A resource is composed of zero or more resource properties.

• WS-ResourceLifetime: Supplies some basic mechanisms to manage the lifecycle of

the resources. Resources can be created and destroyed at any time.

13

• WS-ServiceGroup: Specifies exactly how grouping services or WS-Resources to-

gether.

• WS-BaseFaults : Provides a standard way of reporting faults when something goes

wrong during a WS-Service invocation.

• WS-Notification: It is not a part of WSRF, but is closely related to it. It allows

a Web service to be configured as a notification producer, and certain clients to

be notification consumers (or subscribers). This means that if a change occurs in

the Web service (or, more specifically, in one of the WS-Resources), that change is

notified to all the subscribers.

• WS-Addressing : Provides a mechanism to address Web services which is much

more versatile than plain URIs.

2.2.2 Globus Toolkit

The Globus Toolkit (GT) middleware is composed of a set of modules, each one

implementing a specific functionality. Those modules are conceptualized mainly as

services implemented on top of WSRF. The Globus modules include [13]:

• Task Execution Management: The Grid Resource Allocation and Management

(GRAM) service provides a Web services interface to initiate, monitor, and manage

the execution of arbitrary tasks on remote computers.

• Data Management: A set of services to manage data transport and management.

– Grid File Transfer Protocol (GridFTP) provides libraries and tools for re-

liable, secure, high-performance memory-to-memory and disk-to-disk data

movement.

– Reliable File Transfer (RFT) service provides reliable management of multiple

GridFTP transfers.

– Replica Location Service (RLS) provides information on the location of repli-

cated files and datasets.

14

– Data Replication Service combines RLS and GridFTP to allow for the man-

agement of data replication.

– Globus Data Access and Integration (OGSA-DAI) tools provide access to re-

lational and XML data.

• Resource Monitoring and Discovery: The Monitoring and Discovery Service (MDS)

facilitates monitoring and the discovering services and resources in a distributed

system.

Grid portals provide a solution to overcome the complexity of managing and ac-

cessing grid infrastructures. The next section describes the grid portal requirements,

standards, and development frameworks.

2.3 Grid Portals

According to the Portlet Specification, a grid portal is a Web application that

commonly provides personalization, single sign on, content aggregation from differ-

ent sources, and seamless access to grid heterogeneous resources and services.

2.3.1 Grid Portal Requirements

The requirements for a grid portal can be listed as follows [14][15]:

• Security Services: The user authentication process is one of the distinguishing

characteristics of grid portal. The Open Grid Forum, promotes secure access to

grid resources through GSI (Grid Security Infrastructure), in which each user needs

an authenticated key and certificate to access resources and grid services. GSI

supports delegation, meaning that a temporary user certificate (proxy) is created

with its private key to provide unique authentication. MyProxy [16] is a certificate

repository developed to support delegation.

• Remote File Management: Grid portals must provide access to files, collections,

and metadata for local and remote files, and also support third party file transfer.

15

In the Globus toolkit this source is provided by GridFTP with authentication based

on GSI.

• Remote Job Management: Grid portals must provide mechanisms for job execution

and monitoring. Such monitory tasks include capabilities to observe job queues

follow job execution, and consult logs when jobs fail. In the Globus toolkit this is

provided by GRAM.

• Access to Information Services: Grid portals must provide access to directories

and status tools, that indicate the state of executions and possible faults.

• Application Interfaces: Grid portals must hide grid details behind useful applica-

tion interfaces.

• Access to Collaboration: Grid portals must serve as gateways to virtual organiza-

tions (VO) to share resources.

2.3.2 Grid Portal Standards

Portlets standards guide the implementation of portable portlets to allow in-

teroperability and exchange among portlet containers. A portlet [17] is a piece of

code that runs on the portal server and allows content to be embedded into portal

pages. A portlet container [17] is the server-side run-time environment. It calls the

component and provides component-specific services (such as user information and

persistence).

2.3.2.1 Java Portlet Specification (JSR 168)

The JSR 168 [18] standard establishes a standard API for creating portlets.

Portlet specification is required to achieve interoperability between portlets and

Java-based portal servers or other web applications that implement the specification.

The goal is to allow portlets to be packaged into Web Application aRchive (WAR)

files and deployed in a standard way on any server implementing the specification.

16

2.3.2.2 Web Services for Remote Portlets (WSRP)

The Web Services for Remote Portlets (WSRP) [19] standard specifies the in-

terfaces to allow applications (typically a portal) to consume its portlets, regardless

of its technology.

2.3.3 Grid Portal Development Frameworks

Currently, a large variety of grid-enable portals technologies are available.

2.3.3.1 Commodity Grid (CoG) Kits

The CoG kit [20] allows grid users, grid application developers, and grid ad-

ministrators to use, program, and administer grids from a higher-level framework.

It is used with Globus Toolkit and provides Java-based GSI, GridFTP, MyProxy,

and GRAM client implementations. The Architecture of the Java CoG kit is based

on a layered module concept that allows easier maintenance and bridges the gap

between applications and the grid middleware. It allows the easy integration of

enhancements developed by the community.

2.3.3.2 GridSphere Portal Framework

The primary goal of GridSphere portal framework [21] project is to develop a

standards based portlet framework for building web portals, and a set of portlet

web applications that work seemlessly with the GridSphere framework to provide

a complete Grid portal development solution. The integration of the GridSphere

portal framework with the collection of gridportlets provided as an add-on module

forms a cohesive grid portal end-user environment for managing users, supporting

remote job execution, and providing access to information services. The GridSphere

portal framework provides an implementation of the JSR 168 portlet API standard.

It supports the development of re-usable portlets and portlet services. It includes a

set of core portlets and portlet services that provide the basic infrastructure required

for developing and administering Web portals. A key feature of their design is that

it builds upon the web application repository (WAR) deployment model to support

17

third-party portlet web applications. In this way, portlet developers can easily

distribute and share their work with other portal projects that use GridSphere to

support their portal development.

2.3.3.3 GridPort Toolkit

The GridPort Toolkit (GridPort) [22] enables the rapid development of highly

functional grid portals that simplify the use of underlying grid services for the end-

user. It is comprised of a set of portlet interfaces and services in the portal layer that

provide access to a wide range of backend grid and information services provided by

lower-level grid technologies including the Globus Toolkit, Grid Portal Information

Repository (GPIR), and Condor. Portlets expose the backend services via customiz-

able web interfaces in order to enable personalization of grid portal user interfaces.

Portal services support the portlets inside the portal layer by aumenting their capa-

bilities in an extensible and reusable way while tying the portlets together in order

to make them more cohesive.

In summary, CoG is a Java toolkit that provides a Globus toolkit-independent

abstraction layer to access Globus services programmatically. Both GridSphere and

GridPort are based on CoG, but while GridSphere does not require CoG program-

ming experience, GridPort does.

2.3.4 Grid Portal Applications

The Geosciences Network (GEON) [23] project is a collaboration among a dozen

institutions and a number of other partner projects, institutions, and agencies to

develop cyberinfrastructure in support of an environment for integrative geoscience

research. GEON’s purpose is to enable scientists to access, synthesize, and model

geoscience data from a wide variety of sources. GEON consists of digital libraries

containing freely available data from many geoscience disciplines, along with an

integrated set of software tools for access, analysis, visualization, and modeling.

18

Integrating, analyzing, and modeling geoscience data is a major challenge because

of the extreme heterogeneity of data formats, storage and computing systems, and

conventions, terminologies, and ontological frameworks that are found in the dis-

ciplines that comprise the earth sciences. GEON has adopted a service-oriented

approach and a portlet-based approach. The GEON architecture consists of a single

GEON Portal and a number of distributed GEON sites and GEON service providers.

The Portal (using GridSphere framework) provides a single point of entry into this

distributed environment. Remote sites and service providers operate in the service-

oriented architecture (SOA) environment of GEON.

The Linked Environments for Atmospheric Discovery (LEAD) [24] project was

created to develop an infrastructure for solving problems of mesoscale weather events

that deal with disparate, high volume data sets and streams, and the computational

demands and logistical complexity of its numerical models and data assimilation

systems. Currently, the portal is identifying, accessing, preparing, assimilating,

predicting, managing, analyzing, mining, and visualizing a broad array of meteoro-

logical data and model output, independent of format and physical location. The

LEAD Portal is, essentially, a set of Java portlets complying with the JSR 168 Java

Portlet 1.0 specification hosted within a GridSphere framework. For the user, the

LEAD Portal takes care of loading the user’s security credential and making it avail-

able to the LEAD portlets. The portlets in turn use the user’s security credentials

to interact with LEAD web services on the user’s behalf.

The Oceans and Climate Digital Library portal [25] offers an integrated web-

based user interface to a wide range of online oceanographic and climate data sets.

The portal provides a single point of entry to the data sets, and displays them in a

common and easy to navigate format. Moreover, it provides a means of searching

19

the meta-data and other characteristics of the data sets. A key component of the

portal design is the search crawler, which periodically checks specified locations (lo-

cal directories or external websites) for updated or modified data sets. The crawler

updates the portal with the most current state of every data set, and allows new

data sets to be discovered and automatically added to the system. The portal facil-

itates the sharing of earth systems science data sets, and enable scientists to more

efficiently manage their data holdings and data analysis work flows. The portal

front-end is build with Gridsphere framework and its portlets interact with the en-

vironmental data sets.

The SURA Coastal Ocean Observing and Prediction (SCOOP) portal [26] is en-

gaged in real time prediction of severe weather events, including tropical storms and

hurricanes, and provides operational information including wind, storm surge and

resulting inundation, important for emergency management. The SCOOP portal,

built with the GridSphere Framework, currently integrates customized Grid portlet

components for data access, job submission, resource management and notification.

CHAPTER 3

GRID PORTAL IMPLEMENTATION

This project focuses on the development of a set of grid services related to sig-

nal processing operators. Each operator may be implemented as a grid service on

a geographically distributed domain. Such grid services can be accessed through

portlets allocated into the grid portal.

The physical infrastructure supporting the portal is the PDCLab grid tesbed

deployed by the Parallel and Distributed Computing Laboratory at the University of

Puerto Rico. The PDCLab grid-testbed is an experimental grid designed to address

research issues, such as the effective integration of sensor networks to grid infras-

tructures. The PDClab grid test-bed components run CentOS 4.2 and the Globus

Toolkit 4.0.1. The computational resources available on the grid include:

• An IBM xSeries Linux cluster with 64 nodes, dualprocessor at 1.2GHz, 53GB of

memory and 1TB of storage.

• Eight (8) IA-64 Itanium servers, dual processor at 900 MHz, each with 8GB of

memory and 140GB of SCSI Ultra 320 storage.

• Two (2) IA-32 Pentium IV servers, dual processor at 3 GHz, each with 1GB of

memory and 120GB of ATA-100 storage.

• One (1) IA-32 Pentium III server, dual processor at 1.2 GHz with 2GB of memory

and 140Gb of SCSI Ultra 160 storage.

20

21

• One (1) IA-32 Xeon server, dual processor at 2.8 GHz, L2 Cache 1MB with 1GB

of memory and one 230 GB RAID of storage (STB Server).

• Two (2) PowerVault storage with 8TB.

As general idea, a portlet invokes the corresponding grid service; the grid service

processes the request; it returns the response to the portlet, and finally it renders it

into the user interface. Figure 3.1 illustrates the main components of our application

architecture. Each grid service is implemented to offer an image processing operator

functionality. There are twelve grid services distributed in two host environment

nodes. There is a grid portal containing a component interface (portlet) for each

grid service. The grid portal is running on an independent node from the host

environment nodes. The data image transference is made through GridFTP. Portlet

grid service communication is established through SOAP messages.

Figure 3.1: Grid Portal Application Architecture

3.1 Software Interfaces

The application infrastructure is described as follows (see Figure 3.2):

22

• Grid portal : GridSphere portal framework version 2.2.7 is used to implement the

grid portal interface. Apache Tomcat server version 5.5.20 is the Web server and

supports the GridSphere portlet container.

• Middleware: Globus Toolkit version 4.0.1 is the middleware used to support grid

service transactions. It is installed only on the portal node.

• Grid services : Eclipse 3.2 is used as integrated development environment. Java

language version 1.5 is used to implement the logic of grid services. Java Service

Pages (JSP) language and GridSphere Tag Library User’s are used to implement

the user interface to portlets. Grid Development Tools (GDT-MAGE) plug-in on

Eclipse is used to facilitate the grid services creation.

• API’s : The Java Advanced Image (JAI) library version 1.1.3 is used to execute the

image operations. JFreeChart library version 1.0.4 is used to generate the plots.

Document Object Model (JDOM) version 1.1 is used to manage XML files.

• The system runs on Linux. End-users can access the application with Linux or

Windows system operative through Firefox and Opera web browsers.

Figure 3.2: Grid Portal Software Infrastructure

23

3.2 Communication Interfaces

The communications interfaces to accomplish the grid portal functionality are

described as follows:

• The end-user through a web browser accesses the grid portal via HTTP (Hypertext

Transfer Protocol).

• Communication between portlet and grid service is made through SOAP (Simple

Access Object Protocol) messages.

• The data image transference is managed via GridFTP (Grid File Transfer Proto-

col), the client FTP of Globus.

3.3 Grid Services Implementation and Deployment

There are five steps to create and put in operation a grid service (see Figure

3.3).

Figure 3.3: Five Steps to Create and Deploy a Grid Service

• Define the Service Interface: The service interface specifies what the service does.

This service specification is built using the Web Service Description Language

(WSDL), and XML-based language. This WSDL file contains a list of grid at-

tributes and methods that would characterize a grid service. Specifically a WSDL

file must have four elements: definitions, port-types, messages and types.

24

– Definitions : Provide the name of the service and the target name-space, which

is a URI (Uniform Resource Identifier) that groups similar service function-

alities.

– Port-types : Embraces the specification of attributes and operations that the

service will provide. Each operation specification has its name as well as the

input and output messages, indicating the messages to pass at invocation and

returning, respectively.

– Messages : Once the port-types have been defined the operations messages

must be defined as well.

– Types : The messages are defined by elements that represent parameters of

the operations. The types of these parameters must be also defined. The

input and output parameters of the operations, are wrapped into complex

type elements that define the sequence of types corresponding to each one of

them.

• Implement the Service: The service implementation specifies how the service does,

what it says it does. The operation functionalities are implemented in programming

language, such as Java or C++.

• Define the Deployment Parameters : To set the grid service deployment parameters

in the host environment server, two files are used: the Web Service Deployment

Descriptor (WSDD) and Java Naming and Directory Interface (JDNI).

• Compile and Generate the GAR File: Grid Archive (GAR) is a packed file that

contains all the structure needed in order to deploy the service into the service

container. This structure contains the previously mentioned files: service interface

(in WSDL), service implementation (in Java), deployment descriptors (in WSDD

and JDNI), and other complementary files. These complementary files can be

automatically generated using Ant and involves the following steps.

– Processing the WSDL file to add missing pieces (such as bindings).

25

– Creating the stubs classes from the WSDL.

– Compiling the stubs classes.

– Compiling the service implementation.

– Organizing all the files into a very specific directory structure.

• Deploy the Service: Deploying the service into the service container enables its

remote invocation. For this case, during the deployment process is used Globus

toolkit and Ant. With these tools the GAR file is unpacked and the WSDL,

stubs, compiled implementation and descriptors are copied into the Globus direc-

tory structure.

3.4 Portlets and Services Integration

Deployed grid services can be executed by end-users through its URI. A com-

mand line approach implies previous knowledge about the service localization and

its nontrivial invocation. The GridSphere portal framework offers a transparent way

for the execution of our grid services. For each grid service we have implemented

one portlet, which can be seen as the client application that invokes that service.

Through this portlet the user interacts submitting their request (for example an

image to operate), and once the service processes it, the response is rendered on the

portlet interface.

In Figure 3.4 shows the portlet architecture that help us clarify the portlet func-

tionality within a portlet web application and its user interaction. In our project a

set of image processing portlets belong together to a portlet web application. The

portlets configuration is determined by a set of important files: group.xml, that in-

dicates the grouping of portlets that would be part of a portlet web application;

portlet.xml, that indicates how each portlet would be deployed in the portlet con-

tainer, giving its portlet class name and class localization; layout.xml, indicates the

portlet organization in the portlet web application visual interface. A portlet imple-

ments the model-view-controller (MVC) pattern design, which separates the source

26

Figure 3.4: Portlet Architecture

code among functionality (model), interface (view) and its connection (controller),

in order to make it modular and facilitating its reuse. The portlet functionality was

implemented in Java and the visual interface in JSP.

3.5 User Interfaces

Either grid portal administrators or end-user may access the grid portal to the

interface illustrated in Figure 3.5. There are a set of steps that an end-user must

follow to execute an image processing operator from a portlet:

• From a web browser enter the URL of the grid portal.

• The user must enter their username and password to be authorized.

• Once the user has entered to their session, she/he will be able to choose the im-

age processing operators web portlet application. A list of operators portles is

displayed.

• The user chooses the portlet required, upload their image from local host through

a file browser button provided in the portlet.

27

Figure 3.5: Grid Portal Main Page

• The user triggers the action to apply the operator. The data image is transferred

from grid portal host to grid service host via GridFTP. This is made by the URI

service invocation. The grid service takes the original data image and executes its

operator function, resulting an operated data image. The operated data image is

transferred from grid service host to grid portal host via GridFTP.

• The resulting operated data image is rendered in the portlet visual interface.

• The operated data image can be downloaded to the local host through a download

button in the portlet.

3.6 About the Appendices

To clarify the issues related to configuration and implementation we have in-

cluded four appendices in this report. Appendix A provides guidelines to create and

deploy a grid service. Appendix B describes the portlets integration step by step.

Appendix C provides a user’s guide for the portal interface. Finally, Appendix D

provides the source code for the implementation of the portles.

CHAPTER 4

CONCLUSION AND FUTURE WORK

In this project report, we have presented the development issues of a grid portal

that provides access to a framework of distributed signal processing operators. The

current grid portal prototype provides services to access environmental data and

perform signal processing operators over these data sets.

Future work include:

1. Fully automation of the system where developers may register their version of

signal processing operators and make then available to end users in a transparent

way.

2. A methodology to compose signal processing operators efficiently according to

resource constraints and the metadata associated to operators.

3. A fault tolerance mechanism to make available a service in the case that the host

environment crashed. A solution can create replicas in several nodes having a index

services system. Another solution could be send and deploy the GAR service file

when a fail is detected.

4. A performance evaluation mechanism to assess the possible transfered rate to the

host environment in order to decide if the data image must have packed to its size

reduction. Similary, a mechanism to evaluate the resource availability of the host

environment and transfer the data image to a optimal host is needed.

28

APPENDICES

APPENDIX A

CREATING AND DEPLOYING A GRID

SERVICE

This appendix gives the guidelines to create and deploy a grid service. The

image processing operator that we use as example is the invert operator. The grid

service creation will be implemented with the help of the MAGE plug-in for Eclipse.

This plug-in generates all its support files from a Java service definition. The fol-

lowing steps must be carried out into the Eclipse environment.

1. Configure MAGE plug-in for Eclipse

• Go to Help—Software Updates—Find and Install—Search for New Features

to Install.

• New Remote Site. Set Name: GDT-MAGE and URL: http://mage.unimarburg.

• Once the $SERVICES PROJECT has been created: right-click over the project

directory structure and go to Properties menu following: Java Build Path—

Libraries— Add library—User Library—User Libraries...—New.... de/eclipse/.

• Set the name of the library and add the jars.

2. Define Methods and Attributes

Define methods and attributes.

• private String inImage → Image path to operate.

• public String getDescription () → Get the description of the operator.

• public void setInImage (String inImage) → Set the image to operate.

• public void applyOp () → Apply the operator to the image.

30

31

• public String getOutImage () → Get the path of the operated image.

3. Java Project Creation

• Go to File menu and follow New Project—Java Project, a wizard window will

be deployed (see Figure A.1).

Figure A.1: New Java Project Wizard

32

• As Project name: OperatorServicesProject ($SERVICES PROJECT), that

will be the directory container for our grid services (this name will not affect

any settings about the services).

• Set Java compiler compliance to 5.0.

• Set Project layout to Create separate source and output folders.

4. Grid Service Creation

• Into the $SERVICES PROJECT structure, go to File menu and follow New—

Other— MAGE-GDT Grid Service. A wizard window will be deployed.

• Set Select platform to GT4 (Figure A.2).

5. Grid Service Programming

Now we must program the code for our grid service, according to the attributes

and methods previously defined (step 1). A distinction between grid methods and

nongrid methods must be specified. Similarly for grid attributes. A grid method

will have the @GridMethod prefix and a grid attribute the @GridAttribute.

• Edit the Java class

$SERVICES PROJECT/edu/uprm/grid/operators/invertop/InvertOp.java,

according to step one.

package edu.uprm.grid.operators.invertop;

import java.io.File;

import javax.media.jai.JAI;

import javax.media.jai.PlanarImage;

import de.fb12.gdt.GridService;

import de.fb12.gdt.GridAttribute;

import de.fb12.gdt.GridMethod;

@GridService (name = "InvertOp",

namespace = "http://uprm.edu/ns/grid/operators/invertop",

targetPackage = "edu.uprm.grid.operators.invertop",

serviceStyle = "SSTYLE_FACTORY",

resourceStyle = "RSTYLE_MAGE",

33

Figure A.2: New Grid Service Wizard

34

operationProvider = "GetRPProvider",

loadOnStartup = false,

hotLoadable = false,

securityDesc = "[]")

public class InvertOp {

@GridAttribute private String inImage;

private String outImage;

private String desc;

private String nameImage;

private static final String TEMP_DIR = "/tmp/";

private static final String PREFIX = "invert_";

public void setDescription(){

desc = "\n Operator Invert"

+"\n ********************"

+"\n Description : This operator allow invert an image"

+"\n "

+"\n\n Structure:"

+"\n operatorImage(\"Op_Invert\", \" \");"

+"\n\n where:"

+"\n InvertOp : is the name of the class.";

}//end setDescription

@GridMethod public String getDescription(){

this.setDescription();

return desc;

}//end method

public String getInImage() {

return inImage;

}//end getDescription

@GridMethod public void setInImage(String inImage) {

this.inImage = inImage;

}//end setInImage

@GridMethod public String getOutImage() {

return outImage;

}//end getOutImage

35

public void setOutImage(String outImage) {

this.outImage = outImage;

}//end tImage

@GridMethod public void applyOp(){

//get the name of image

File imageFile = new File(this.getInImage());

nameImage = imageFile.getName();

//Read the image.

String inImage = this.getInImage();

PlanarImage input = JAI.create("fileload", inImage);

//Invert the image.

PlanarImage output = JAI.create("invert", input);

//Saves the image to the given path and filename as a JPEG image

String filepath = TEMP_DIR + PREFIX + nameImage;

saveImage(output, filepath, "JPEG");

}//end applyOp

/**

*Saves the image to the given path and filename using the given codec

*

*@param filepath the path and filename to save the image to.

*@param type The JAI-defined codec type to save as.

*/

public void saveImage(PlanarImage output, String filepath, String type) {

//Saves the image to the given path and filename

JAI.create("filestore", output, filepath, type, null);

this.setOutImage(filepath);

}//end saveImage

}//end class

We can see within the structure of $SERVICES PROJECT that several directories

and files have been automatically generated. Such files include the service client

into the client directory, and the classes to manage several instances into the impl

directory.

6. Stubs and GAR File Generation

Stubs are the classes that represent the service in the client side, and GAR is

the packed file that contains all the files that compose a grid service. In our

36

$SERVICES PROJECT we see that some errors are reported. This is due to

missing services files. To solve this problem.

• Go to task bar and press the Generate Stubs button.

• Go to task bar and press the Package Services to generate the GAR file.

Our generated GAR would be edu uprm grid operators invertop InvertOp.gar

located at $SERVICES PROJECT/InvertOp/.

7. Deploy the Service

Now the Gar file is ready to be deployed in the service container of Globus. This

deployment allow to copy and configure a set of files into strategic directories of

Globus. There are two ways to deploying:

• From Eclipse: right-click and go to Deploy GAR over gar file located in the

$SERVICES PROJECT structure.

• From a shell console: cd $SERVICES PROJECT/InvertOp/ and execute the

command: globus-deploy-gar edu uprm grid operators invertop InvertOp.gar.

8. Make a Grid Service Client

The client class invokes the grid service functionality. This class contains the stubs,

the URI’s of the service, and the remote invocation service methods. This class is

automatically generated by the MAGE-GDT plug-in, and is located at

$SERVICES PROJECT/InvertOp/src/edu/uprm/grid/operators/invertop/client/

InvertOpClient.java.

9. Test the Grid Service

• Before running the service client class,copy

$GLOBUS LOCATION/clientconfig.wsdd to our $SERVICES PROJECT root.

• Next, start the Globus services container from shell console: globus-start-

container -nosec (see Figure A.3).

37

• From Eclipse into the client class: (right-click)—Run As...—Run...—Java

Application—(double-click). A wizard window is deployed.

• Go to Classpath—User Entries—Advanced—Add External Folder—(browse

$GLOBUS LOCATION)—OK—Apply—Run.

Figure A.3: Invert Operator Service Deployed in Globus Container

APPENDIX B

PORTLET INTEGRATION

This Appendix describes the steps required to integrate grid services and portlets

once the service has been implemented.

1. Create the Portlet Project in Gridsphere

• From a shell console into the $GRIDSPHERE HOME execute the command

line ant new-project. A set of steps configuration will be deployed.

• Set Project Title to Operators Portlets.

• Set Project Name to operatorsportlets.

• Indicate that the project follows the jsr standard.

• Finally, into the $GRIDSPHERE HOME/projects, an operatorsportlets di-

rectory, which will contain the portlet structure will be created. We will

denominate operatorsportlets as $PORTLET DIRECTORY.

2. Integrate the Portlet Project to Eclipse

• Go to File—New—Project—Java Project, choose Create project from existing

source pointing to $GRIDSPHERE HOME/projects/$PORTLET DIRECTORY.

3. Programming the Portlet

• Copy

$SERVICES PROJECT/InvertOp/src/edu/uprm/grid/operators/invertop/client/

InvertOpClient

38

39

to

$PORTLET DIRECTORY/src/ edu/uprm/operatorsportlets/portlets/

• In $PORTLET DIRECTORY/src/edu/uprm/operatorsportlets/portlets/

create the class InvertOpPortlet.java (see Appendix D).

• In $PORTLET DIRECTORY/webapp/jsp/ create the JSP file: index.jsp (see

Appendix D)

4. Edit the Portlet Web Application Files

• Go to $PORTLET DIRECTORY, and edit the files: portlet.xml, layout.xml

and group.xml located in $PORTLET DIRECTORY/webapp/WEB-INF di-

rectory.

• portlet.xml:

<portlet>

<!-- place portlet description here -->

<description xml:lang="en">Invert Portlet</description>

<!-- place unique portlet name here -->

<portlet-name>InvertOpPortlet</portlet-name>

<display-name xml:lang="en">A Invert Portlet</display-name>

<!-- place your portlet class name here -->

<portlet-class>edu.uprm.operatorsportlets.portlets.InvertOpPortlet</portlet-class>

<expiration-cache>1</expiration-cache>

<!-- place supported modes here -->

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>config</portlet-mode>

<portlet-mode>edit</portlet-mode>

<portlet-mode>help</portlet-mode>

</supports>

<supports>

<mime-type>text/wml</mime-type>

<portlet-mode>edit</portlet-mode>

<portlet-mode>help</portlet-mode>

</supports>

<supported-locale>en</supported-locale>

<portlet-info>

40

<title>A Invert Portlet</title>

<short-title>Invert</short-title>

<keywords>invert</keywords>

</portlet-info>

<!-- place portlet preferences here -->

<portlet-preferences>

<preference>

<name>myPref</name>

<value>avalue</value>

<read-only>true</read-only>

</preference>

</portlet-preferences>

</portlet>

• layout.xml:

<portlet-tab label="inverttab">

<title lang="en">::Invert::</title>

<table-layout>

<row-layout>

<column-layout>

<portlet-frame label="invert">

<portlet-class>edu.uprm.operatorsportlets.portlets.InvertOpPortlet</portlet-class>

</portlet-frame>

</column-layout>

</row-layout>

</table-layout>

</portlet-tab>

• group.xml:

<portlet-role-info>

<portlet-class>edu.uprm.operatorsportlets.portlets.InvertOpPortlet</portlet-class>

<required-role>USER</required-role>

</portlet-role-info>

5. Create the Portlet Structure

• In $PORTLET DIRECTORY/src/ create the package: edu.uprm.operatorsportlets.portlets.

• In this package create the class: InvertOpPortlet.java.

41

6. Set the Grid Service Libraries

• Copy

$GLOBUS LOCATION/lib/edu uprm grid operators invertop InvertOp* to

$GRIDSPHERE HOME/projects/operatorsportlets/lib/.

• Copy $GLOBUS LOCATION/lib/*.jar to $PORTLET DIRECTORY/lib/.

7. Deploy the Portlet

• In a shell console go to: $PORTLET DIRECTORY/.

• Execute the command line: ant deploy.

8. Deploy Globus in Tomcat Server

This step is needed for posterior portlets deployment.

• From a shell console execute the command:

ant -f $GLOBUS LOCATION/share/globus wsrf common/tomcat/tomcat

-Dtomcat.dir=$CATALINA HOME/ deployTomcat

9. Set the Portlet to Work with Globus

• Copy

$CATALINA HOME/webapps/wsrf/WEB INF/lib/ to $PORTLET DIRECTORY/lib/.

• Copy

$GLOBUS LOCATION/client-config.wsdd to

$CATALINA HOME/webapps/operatorportlets/lib/WEB INF/classes/.

10. Set the Externals Libraries

• In $JAVA HOME/jre/ext/lib/ put the other externals libraries required for

the portlet functionality. In our example these are the JDOM jars, JFreeChart

jars, and JAI jars.

42

11. Test the Portlet

• In a shell console execute the command: $CATALINA HOME/bin/startup.sh.

• From a web browser go to: $SERVER NAME:port/gridsphere/.

APPENDIX C

USER’S GUIDE

This section presents a user’s guide for the grid portal.

• From a web browser go to: http://proc.ece.uprm.edu:8080/gridsphere/, or the

$GRIDPORTAL HOST where the grid portal has been installed. The grid portal

main page is deployed.

• To be identified enter the username and password from the grid portal main page.

The user session is activated and the grid portal environment is deployed.

• The portlet web application of the set of image processing operators are deployed.

Choose among these operators portlets to apply a required operator (see Figure

C.1).

Figure C.1: Portlet Web Application

• Once a operator portlet has been selected (see Figure C.2) a data image from local

host can be uploaded following the steps:

– Browse button, a browse file window is shown, select the data image.

– Upload Image button to upload the data image to grid portal server.

• Apply the operator over the data image through Apply Operator button. The

apply operator process is activated. Then it is rendered (see Figure C.3). There

are other services associated to the service invocation. These services are:

43

44

Figure C.2: Invert Portlet

45

– The Image Properties that shows the original and operated data image prop-

erties which are its name, dimension and size.

– The Image Histogram that presents the original and operated data image

histograms. This indicates the number of image intensity values by each

intensity values range.

– The Image Result that displays the original and operated images. It is possible

to save the operated image through Save Image button.

• Choose other data image to new operator application through Choose Another

Image button.

46

Figure C.3: Operator Grid Service Performed

APPENDIX D

PROGRAMMING THE PORTLET

• InvertOpPortlet.java

package edu.uprm.operatorsportlets.portlets;

import java.io.File;

import java.rmi.RemoteException;

import javax.portlet.ActionRequest;

import javax.portlet.PortletConfig;

import javax.portlet.PortletContext;

import javax.portlet.PortletException;

import javax.portlet.RenderRequest;

import javax.xml.rpc.ServiceException;

import org.apache.axis.types.URI.MalformedURIException;

import org.gridlab.gridsphere.provider.event.jsr.ActionFormEvent;

import org.gridlab.gridsphere.provider.event.jsr.FormEvent;

import org.gridlab.gridsphere.provider.event.jsr.RenderFormEvent;

import org.gridlab.gridsphere.provider.portlet.jsr.ActionPortlet;

import org.gridlab.gridsphere.provider.portletui.beans.ActionSubmitBean;

import org.gridlab.gridsphere.provider.portletui.beans.FileInputBean;

import org.gridlab.gridsphere.provider.portletui.beans.ImageBean;

import org.gridlab.gridsphere.provider.portletui.beans.MessageBoxBean;

import org.gridlab.gridsphere.provider.portletui.beans.MessageStyle;

import org.gridlab.gridsphere.provider.portletui.beans.TableCellBean;

import org.gridlab.gridsphere.provider.portletui.beans.TextAreaBean;

import org.gridlab.gridsphere.provider.portletui.beans.TextBean;

public class InvertOpPortlet extends ActionPortlet {

// for Invert operator service

private static final String OP_SERVICE_HOST = "devzero.ece.uprm.edu";

47

48

private static final String OP_INSTANCE_URI = "http://136.145.116.5:8080/wsrf/services/InvertOpService";

private static final String OP_FACTORY_URI = "http://136.145.116.5:8080/wsrf/services/InvertOpFactoryService";

//for ImageInfo service

private static final String IMGINFO_SERVICE_HOST = "pdcgrid-32-01.ece.uprm.edu";

private static final String IMGINFO_INSTANCE_URI = "http://136.145.116.6:8080/wsrf/services/ImageInfoService";

private static final String IMGINFO_FACTORY_URI =

"http://136.145.116.6:8080/wsrf/services/ImageInfoFactoryService";

// for portal host

private static final String PORTAL_HOST = "proc.ece.uprm.edu";

private static final String PUBLIC_IMG_DIR = "/home/mmendoza/opt/tomcat/webapps/images/";

private static final String WEB_IMG_DIR = "http://proc.ece.uprm.edu:8080/images/";

private static final String DISPLAY_PAGE = "index.jsp";

private static final String TEMP_DIR = "/tmp/";

private static final String PREFIX = "invert_";

private static final int MSG_ALERT = 0;

private static final int MSG_ERROR = 1;

private static final int MSG_INFO = 2;

private static final int MSG_SUCCESS = 3;

private boolean isAppliedOperator = false;

private boolean showPreview = false;

private boolean isUploadImage = false;

private ImageBean imgbPreview;

private ImageBean imgbOriginal;

private ImageBean imgbOperated;

private String nameImageOriginal;

private String nameImageOperated;

private InvertOpClient opClient;

private ImageInfoClient imgInfoClient;

public void init(PortletConfig config) throws javax.portlet.PortletException {

super.init(config);

PortletContext context = config.getPortletContext();

context.log("****In display portlet****");

DEFAULT_VIEW_PAGE = "prepare";

}//end init method

public void prepare(RenderFormEvent event) throws PortletException {

RenderRequest request = event.getRenderRequest();

System.err.println("context path = " + request.getContextPath());

//invoke the service

this.invokeServices();

49

//render the fields

this.renderFields(event);

// calls the jsp page

setNextState(request, DISPLAY_PAGE);

}//end prepare

public void invokeServices(){

try {

opClient = new InvertOpClient(OP_FACTORY_URI, OP_INSTANCE_URI, false);

//imgInfoClient = new ImageInfoClient(IMGINFO_FACTORY_URI, IMGINFO_INSTANCE_URI, false);

} catch (Exception e) {

e.printStackTrace();

}

}//end invokeService()

private void displayMessage(FormEvent event, String beanId, int style, String message){

MessageBoxBean msgbox = event.getMessageBoxBean(beanId);

switch(style){

case MSG_ALERT: msgbox.clearMessage();

msgbox.deleteCssStyle();

msgbox.setMessageType(MessageStyle.MSG_ALERT);

break;

case MSG_ERROR: msgbox.clearMessage();

msgbox.deleteCssStyle();

msgbox.setMessageType(MessageStyle.MSG_ERROR);

break;

case MSG_INFO: msgbox.clearMessage();

msgbox.deleteCssStyle();

msgbox.setMessageType(MessageStyle.MSG_INFO);

break;

case MSG_SUCCESS: msgbox.clearMessage();

msgbox.deleteCssStyle();

msgbox.setMessageType(MessageStyle.MSG_SUCCESS);

break;

}//end switch

msgbox.setValue(message);

}//end displayMessage

//******************** Render Methods *******************************

private void renderFields(FormEvent event){

50

this.renderDescription(event);

this.renderPreview(event);

this.renderProperties(event);

this.renderHistogram(event);

this.renderOriginalImage(event);

this.renderOperatedImage(event);

}//end renderFields

private void renderDescription(FormEvent event){

String descriptionOp = "";

TextAreaBean textarea = null;

try {

descriptionOp = opClient.getDescription();

} catch (RemoteException e) {

e.printStackTrace();

}

textarea = event.getTextAreaBean("textDescription");

textarea.setCols(50);

textarea.setRows(10);

textarea.setCssStyle("background:#FFFFFF;");

textarea.setValue(descriptionOp.trim());

textarea.setReadOnly(true);

}// end renderDescription

private void renderPreview(FormEvent event){

TextBean textPreview = event.getTextBean("textPreview");

if(showPreview==true){

if(isUploadImage==true){

textPreview.setVisible(true);

textPreview.setValue("Preview:");

imgbPreview = event.getImageBean("imagePreview");

imgbPreview.setVisible(true);

imgbPreview.setSrc(WEB_IMG_DIR + nameImageOriginal);

imgbPreview.setHeight("175");

imgbPreview.setWidth("350");

}//end if

else{

textPreview.setVisible(false);

imgbPreview = event.getImageBean("imagePreview");

imgbPreview.setVisible(false);

}//end else

51

}//end if

}//end renderPreview method

private void renderProperties(FormEvent event){

String image = "";

TableCellBean tcell;

TextAreaBean textarea;

String properties = "";

String message = "";

TextBean textOr = event.getTextBean("textPropertiesOr");

TextBean textOp = event.getTextBean("textPropertiesOp");

if(isAppliedOperator == true){

if(isUploadImage == true){

try{

// ---- Original image -----

image = PUBLIC_IMG_DIR+nameImageOriginal;

// invoke ImageInfo

imgInfoClient = new ImageInfoClient(IMGINFO_FACTORY_URI, IMGINFO_INSTANCE_URI, false);

imgInfoClient.setInImage(image);

textOr.setValue("Original Image:");

tcell = event.getTableCellBean("cellPropertiesOr");

textarea = new TextAreaBean();

textarea.setCols(50);

textarea.setRows(6);

textarea.setCssStyle("background:#FFFFFF;");

properties = "Name: "+nameImageOriginal+"\n"+

"Size: "+imgInfoClient.getSize()+"\n"+

"Width: "+imgInfoClient.getWidth()+"\n"+

"Height: "+imgInfoClient.getHeight()+"\n";

textarea.setValue(properties);

textarea.setReadOnly(true);

tcell.addBean(textarea);

properties = "";

// ---- Operated image ----

image = PUBLIC_IMG_DIR+nameImageOperated;

// invoke ImageInfo

imgInfoClient = new ImageInfoClient(IMGINFO_FACTORY_URI, IMGINFO_INSTANCE_URI, false);

imgInfoClient.setInImage(image);

textOp.setValue("Operated Image:");

tcell = event.getTableCellBean("cellPropertiesOp");

textarea = new TextAreaBean();

52

textarea.setCols(50);

textarea.setRows(6);

textarea.setCssStyle("background:#FFFFFF;");

properties = "Name: "+nameImageOperated+"\n"+

"Size: "+imgInfoClient.getSize()+"\n"+

"Width: "+imgInfoClient.getWidth()+"\n"+

"Height: "+imgInfoClient.getHeight()+"\n";

textarea.setValue(properties);

textarea.setReadOnly(true);

tcell.addBean(textarea);

properties = "";

} catch (RemoteException e) {

e.printStackTrace();

} catch (MalformedURIException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (ServiceException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}//end if

}//end if

else{

textOr.setVisible(false);

textOp.setVisible(false);

message = "The operator has not been applied";

this.displayMessage(event, "warningProperties", MSG_INFO, message);

}//end else

}//end renderProperties method

private void renderHistogram(FormEvent event){

ImageBean imgb;

String histogram = "";

String inImage = "";

String outImage;

String command;

String message = "";

TextBean textOr = event.getTextBean("textHistogramOr");

TextBean textOp = event.getTextBean("textHistogramOp");

if(isAppliedOperator == true){

if(isUploadImage == true){

53

try{

// ---- Original image -----

// image is yet in portal host in temp dir

inImage = TEMP_DIR+nameImageOriginal;

// transfer the original image form portal host to service host

command = "globus-url-copy "

+ "gsiftp://"+PORTAL_HOST+":2811/"+inImage+" "

+ "gsiftp://"+IMGINFO_SERVICE_HOST+":2811/"+inImage;

ExecuteProcess.exec(command, true);

// set the original image on the service host

imgInfoClient = new ImageInfoClient(IMGINFO_FACTORY_URI, IMGINFO_INSTANCE_URI, false);

imgInfoClient.setInImage(inImage);

// apply the operator on the service host

imgInfoClient.createHistogram();

// get the path operated image from service host

outImage = imgInfoClient.getOutImage();

// transfer the operated image from service host to portal host

command = "globus-url-copy "

+ "gsiftp://"+IMGINFO_SERVICE_HOST+":2811/"+outImage+" "

+ "gsiftp://"+PORTAL_HOST+":2811/"+outImage;

ExecuteProcess.exec(command, true);

//copy the operated image from temp to web dir

command = "cp "+outImage+" "+PUBLIC_IMG_DIR;

ExecuteProcess.exec(command, true);

// set the jsp

textOr.setValue("Original Image:");

imgb = event.getImageBean("imgHistogramOr");

imgb.setSrc(WEB_IMG_DIR+(new File(outImage)).getName().trim());

imgb.setWidth("600");

imgb.setHeight("400");

imgb.setVisible(true);

// ---- Operated image ----

// image is yet in portal host in temp dir

inImage = TEMP_DIR+nameImageOperated;

// transfer the original image form portal host to service host

command = "globus-url-copy "

+ "gsiftp://"+PORTAL_HOST+":2811/"+inImage+" "

+ "gsiftp://"+IMGINFO_SERVICE_HOST+":2811/"+inImage;

ExecuteProcess.exec(command, true);

// set the original image on the service host

imgInfoClient = new ImageInfoClient(IMGINFO_FACTORY_URI, IMGINFO_INSTANCE_URI, false);

54

imgInfoClient.setInImage(inImage);

// apply the operator on the service host

imgInfoClient.createHistogram();

// get the path operated image from service host

outImage = imgInfoClient.getOutImage();

// transfer the operated image from service host to portal host

command = "globus-url-copy "

+ "gsiftp://"+IMGINFO_SERVICE_HOST+":2811/"+outImage+" "

+ "gsiftp://"+PORTAL_HOST+":2811/"+outImage;

ExecuteProcess.exec(command, true);

//copy the operated image from temp to web dir

command = "cp "+outImage+" "+PUBLIC_IMG_DIR;

ExecuteProcess.exec(command, true);

// set the jsp

textOr.setValue("Operated Image:");

imgb = event.getImageBean("imgHistogramOp");

imgb.setSrc(WEB_IMG_DIR+(new File(outImage)).getName().trim());

imgb.setWidth("600");

imgb.setHeight("400");

imgb.setVisible(true);

//set the messagebox

message = "Each Bin stores the number of pixels samples of a image whose values lie within a given range.";

this.displayMessage(event, "infoHistogram", MSG_INFO, message);

} catch (RemoteException e) {

e.printStackTrace();

} catch (MalformedURIException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (ServiceException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}//end if

}//end if

else{

textOr.setVisible(false);

textOp.setVisible(false);

message = "The operator has not been applied";

this.displayMessage(event, "warningHistogram", MSG_INFO, message);

}//end else

}//end renderHistogram method

55

private void renderOriginalImage(FormEvent event){

TextBean text = event.getTextBean("textOriginalImg");

String message = "";

if(isAppliedOperator == true){

if(isUploadImage == true){

text.setVisible(true);

text.setValue("Original image:");

imgbOriginal = event.getImageBean("imageOriginal");

imgbOriginal.setVisible(true);

imgbOriginal.setSrc(WEB_IMG_DIR + nameImageOriginal);

imgbOriginal.setHeight("500");

imgbOriginal.setWidth("500");

}//end if

else{

text.setVisible(false);

imgbOriginal = event.getImageBean("imageOriginal");

imgbOriginal.setVisible(false);

}//end else

}//end if

else{

message = "The operator has not been applied";

this.displayMessage(event, "warningResult", MSG_INFO, message);

}//end else

}//end renderOriginalImage method

private void renderOperatedImage(FormEvent event){

TextBean text = event.getTextBean("textOperatedImg");

if(isAppliedOperator == true){

if(isUploadImage == true){

//set the download form

ActionSubmitBean submit = event.getActionSubmitBean("download");

submit.setAction("doActionDownloadImage");

submit.setValue("Download Image");

submit.setVisible(true);

text.setVisible(true);

text.setValue("Operated image:");

imgbOperated = event.getImageBean("imageOperated");

imgbOperated.setVisible(true);

imgbOperated.setSrc(WEB_IMG_DIR + nameImageOperated);

imgbOperated.setHeight("500");

56

imgbOperated.setWidth("500");

}//end if

else{

text.setVisible(false);

imgbOperated = event.getImageBean("imageOperated");

imgbOperated.setVisible(false);

}//end else

}//end if

}//end renderOperatedImage method

//******************** doAction Methods *******************************

public void doActionPreviewImage(ActionFormEvent event) throws PortletException{

ActionRequest request = event.getActionRequest();

showPreview = true;

isAppliedOperator = false;

ActionSubmitBean submit = event.getActionSubmitBean("download");

submit.setVisible(false);

this.renderFields(event);

setNextState(request, DISPLAY_PAGE);

}//end doActionPreviewImage method

public void doActionUploadImage(ActionFormEvent event){

ActionRequest request = event.getActionRequest();

boolean thereIsImage = false;

String message;

try{

//int fsize;

FileInputBean finput = event.getFileInputBean("fileImage");

String fname = finput.getFileName();

if (fname.trim() != ""){

thereIsImage = true;

String nameImgUpload = (new File (fname)).getName().trim();

nameImageOriginal = nameImgUpload;

fname = fname.substring(fname.lastIndexOf("/")+1);

fname = fname.substring(fname.lastIndexOf("\\")+1);

//save the image upload in the temp dir

finput.saveFile(TEMP_DIR + nameImageOriginal);

String path = TEMP_DIR + nameImageOriginal;

//copy the image upload from temp to web dir

57

String command = "cp "+path+" "+PUBLIC_IMG_DIR;

ExecuteProcess.exec(command, true);

}//end if

} catch (Exception e) {

e.printStackTrace();

}

if(thereIsImage==true){

isUploadImage = true;

showPreview = true;

isAppliedOperator = false;

}

else{

isUploadImage = false;

showPreview = false;

isAppliedOperator = false;

message = "Please upload an image";

this.displayMessage(event, "message", MSG_ERROR, message);

}//end else

this.renderFields(event);

setNextState(request, DISPLAY_PAGE);

}//end doActionUploadImage method

public void doActionDownloadImage(ActionFormEvent event){

ActionRequest request = event.getActionRequest();

ImageBean imgb = event.getImageBean("imageOperated");

String image = imgb.getSrc();

// pathImage: PUBLIC_IMG_DIR + nameImageOperated;

String path = PUBLIC_IMG_DIR;

//setFileDownloadEvent(request, image, path);

setFileDownloadEvent(request, nameImageOperated, path);

this.renderFields(event);

setNextState(request, DISPLAY_PAGE);

}//end doActionDownloadImage method

public void doActionAnotherImage(ActionFormEvent event){

ActionRequest request = event.getActionRequest();

String command = "";

command = "rm " + PUBLIC_IMG_DIR+nameImageOriginal + "";

ExecuteProcess.exec(command, true);

command = "rm " + PUBLIC_IMG_DIR+nameImageOperated + "";

58

ExecuteProcess.exec(command, true);

command = "rm "+TEMP_DIR+nameImageOriginal + "";

ExecuteProcess.exec(command, true);

command = "rm "+TEMP_DIR+nameImageOperated + "";

ExecuteProcess.exec(command, true);

imgbPreview.setSrc("");

if (isAppliedOperator==true){

imgbOriginal.setSrc("");

imgbOperated.setSrc("");

}

isAppliedOperator = false;

showPreview = false;

isUploadImage = false;

nameImageOriginal = "";

nameImageOperated = "";

ActionSubmitBean submit = event.getActionSubmitBean("download");

submit.setVisible(false);

this.renderFields(event);

setNextState(request, DISPLAY_PAGE);

}//end doActionAnotherImage method

public void doActionApplyOperator(ActionFormEvent event){

ActionRequest request = event.getActionRequest();

String inImage = TEMP_DIR+nameImageOriginal;

String outImage = "";

String command = "";

String message = "";

if(isUploadImage == true){

//transfer the original image form portal host to service host

command = "globus-url-copy "

+ "gsiftp://"+PORTAL_HOST+":2811/"+inImage+" "

+ "gsiftp://"+OP_SERVICE_HOST+":2811/"+inImage;

ExecuteProcess.exec(command, true);

try {

//set the original image on the service host

opClient.setInImage(inImage);

//apply the operator on the service host

opClient.applyOp();

//get the path operated image from service host

outImage = opClient.getOutImage();

59

//transfer the operated image from service host to portal host

command = "globus-url-copy "

+ "gsiftp://"+OP_SERVICE_HOST+":2811/"+outImage+" "

+ "gsiftp://"+PORTAL_HOST+":2811/"+outImage;

ExecuteProcess.exec(command, true);

//copy the operated image from temp to web dir

command = "cp "+outImage+" "+PUBLIC_IMG_DIR;

ExecuteProcess.exec(command, true);

nameImageOperated = (new File(outImage)).getName().trim();

} catch (RemoteException e) {

e.printStackTrace();

}

isUploadImage = true;

showPreview = true;

isAppliedOperator = true;

message = "The Operator was successful";

this.displayMessage(event, "message", MSG_SUCCESS, message);

}//end if

else{

isUploadImage = false;

showPreview = false;

isAppliedOperator = false;

message = "Please upload an image";

this.displayMessage(event, "message", MSG_ERROR, message);

}//end else

this.renderFields(event);

setNextState(request, DISPLAY_PAGE);

}//end doActionApplyOperator

}//end class

• index.jsp

<%@ taglib uri="/portletUI" prefix="ui" %>

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>

<%@ taglib uri="/portletAPI" prefix="portletAPI" %>

<portletAPI:init/>

<portlet:defineObjects/>

<ui:messagebox beanId="message"/>

60

<!-- ///////////////// Image Selection /////////////// -->

<ui:group label="Image Selection">

<table>

<tr>

<td>

<ui:group>

<ui:frame>

<ui:tablerow>

<ui:tablecell align="center">

<ui:text cssStyle="font-style:bold">Image:</ui:text>

<ui:fileform action="doActionUploadImage">

<ui:fileinput beanId="fileImage" size="50"/>

<ui:actionsubmit action="doActionUploadImage" key="Upload Image"/>

</ui:fileform>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow>

<ui:tablecell align="center">

<ui:form>

<ui:actionsubmit action="doActionApplyOperator" value="Apply Operator"/>

</ui:form>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow>

<ui:tablecell align="center">

<ui:text beanId="textPreview"/>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow >

<ui:tablecell align="center">

<ui:image beanId="imagePreview"/>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow>

<ui:tablecell align="center">

<ui:form>

<ui:actionsubmit action="doActionAnotherImage" value="Choose Another Image"/>

</ui:form>

</ui:tablecell>

</ui:tablerow>

</ui:frame>

61

</ui:group>

</td>

<td>

<ui:group>

<ui:frame>

<ui:tablerow>

<ui:tablecell>

<ui:text cssStyle="font-style:bold">Operator Description:</ui:text>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow>

<ui:tablecell>

<ui:textarea beanId="textDescription"/>

</ui:tablecell>

</ui:tablerow>

</ui:frame>

</ui:group>

</td>

</tr>

</table>

</ui:group>

<!-- ///////////////// Image Properties /////////////// -->

<ui:group label="Image Properties">

<ui:messagebox beanId="warningProperties"/>

<ui:panel cols="50%, 50%" align="center">

<ui:frame>

<ui:tablerow>

<ui:tablecell>

<ui:text beanId="textPropertiesOr" cssStyle="font-style:bold"/>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow>

<ui:tablecell beanId="cellPropertiesOr"/>

</ui:tablerow>

</ui:frame>

<ui:frame>

<ui:tablerow>

<ui:tablecell>

<ui:text beanId="textPropertiesOp" cssStyle="font-style:bold"/>

</ui:tablecell>

62

</ui:tablerow>

<ui:tablerow>

<ui:tablecell beanId="cellPropertiesOp"/>

</ui:tablerow>

</ui:frame>

</ui:panel>

</ui:group>

<!-- ///////////////// Image Histogram /////////////// -->

<ui:group label="Image Histogram">

<ui:messagebox beanId="warningHistogram"/>

<ui:panel cols="50%, 50%" align="center">

<ui:frame>

<ui:tablerow>

<ui:tablecell>

<ui:text beanId="textHistogramOr" cssStyle="font-style:bold"/>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow>

<ui:tablecell>

<ui:image beanId="imgHistogramOr"/>

</ui:tablecell>

</ui:tablerow>

</ui:frame>

<ui:frame>

<ui:tablerow>

<ui:tablecell>

<ui:text beanId="textHistogramOp" cssStyle="font-style:bold"/>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow>

<ui:tablecell>

<ui:image beanId="imgHistogramOp"/>

</ui:tablecell>

</ui:tablerow>

</ui:frame>

<ui:messagebox beanId="infoHistogram"/>

</ui:panel>

</ui:group>

63

<!-- ///////////////// Image Result /////////////// -->

<ui:group label="Image Result">

<ui:messagebox beanId="warningResult"/>

<ui:panel cols="50%, 50%" align="center">

<ui:frame>

<ui:tablerow>

<ui:tablecell>

<ui:text beanId="textOriginalImg" cssStyle="font-style:bold"/>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow>

<ui:tablecell>

<ui:image beanId="imageOriginal" />

</ui:tablecell>

</ui:tablerow>

</ui:frame>

<ui:frame>

<ui:tablerow>

<ui:tablecell>

<ui:text beanId="textOperatedImg" cssStyle="font-style:bold"/>

</ui:tablecell>

</ui:tablerow>

<ui:tablerow>

<ui:tablecell>

<ui:form>

<ui:image beanId="imageOperated"/>

<ui:actionsubmit beanId="download"/>

</ui:form>

</ui:tablecell>

</ui:tablerow>

</ui:frame>

</ui:panel>

</ui:group>

REFERENCE LIST

[1] J. Villamizar, M. Paredes, and D. Rodŕıguez. La estructura algebraica del es-

pacio de seales unidimensionales. Revista Integración. Escuela de Matemáticas

Universidad Industrial de Santander, 23(2):15–39, 2005.

[2] L. Bautista. Web-base data processing for environmental surveillance monitor-

ing applications. Master’s thesis, University of Puerto Rico, 2006.

[3] S. Del Fabbro. Developing a distributed image processing and management

framework. Technical report, University of Adelaide, 2000.

[4] D. Stow, M. Tsou, and L. Guo. Web-based remote sensing ap-

plications and java tools for environmental monitoring. Techni-

cal report, Online Journal of Space Communication, No. 3, 2003.

http://satjournal.tcom.ohiou.edu/Issue03/applications.html.

[5] A. Smith. A data and image processing toolbox for nano-world: The computer

supported cooperative learning environment on nanophysics. Technical report,

Department of Micro Engineering, University of Applied Sciences Biel, 2003.

[6] Open grid forum. http://www.ogf.org.

[7] I. Foster. What is the grid? a three point checklist. Grid Today, 1(6):22, 2002.

http://www.globus.org/alliance/publications/papers.php.

[8] J. Treadwell. Open grid services architecture – glossary of terms. Technical

report, Global Grid Forum, 2005.

[9] C. Fellenstein, J. Joseph, and M. Ernest. Evolution of grid computing archi-

tecture and grid adoption models. IBM Systems Journal, 43(4):624–645, 2004.

http://www.research.ibm.com/journal/sj/434/josepaut.html.

64

65

[10] C. MacKenzie, K. Laskey, F. McCabe, P. Brown, and R. Metz. Reference model

for service oriented architecture 1.0. Technical report, OASIS Standards, 2006.

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf.

[11] D. Talia. The open grid services architecture: Where the grid

meets the web. IEEE Internet Computing, 06(6):67–71, 2002.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1067739.

[12] B. Sotomayor. The globus toolkit 4 programmer’s tutorial, 2004.

http://gdp.globus.org/gt4-tutorial/.

[13] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In

IFIP International Conference on Network and Parallel Computing, volume

3779 of Lecture Notes in Computer Science, pages 2–13. Springer-Verlag, 2005.

[14] Y. Cai, J. Cao, M. Li, and L. Chen. Portlet-based portal design for grid sys-

tems. In International Workshop on Collaborative Virtual Research Environ-

ments (CVRE 2006), pages 571–575, 2006.

[15] M. Thomas, J. Burruss, L. Cinquini, G. Fox, D. Gannon, L. Gilbert,

G. von Laszewski, K. Jackson, D. Middleton, R. Moore, M. Pierce,

B. Plale, A. Rajasekar, R. Regno, E. Roberts, D. Schissel, A. Seth,

and W. Schroeder. Grid portal architectures for scientific appli-

cations. Journal of Physics: Conference Series, page 5, 2005.

http://grids.ucs.indiana.edu/ptliupages/publications/.

[16] Myproxy: Credential management service.

[17] C. Wege. Portal server technology. IEEE Internet Computing, 06(3):73–77,

2002.

[18] Jsr 168 portlet specification. http://jcp.org/en/jsr/detail?id=168.

[19] Oasis web services for remote portlets (wsrp).

[20] Commodity grid (cog) kits. http://wiki.cogkit.org.

[21] Gridsphere portal framework. http://www.gridsphere.org.

66

[22] Gridport toolkit. http://gridport.net.

[23] Geosciences network (geon). http://www.geongrid.org.

[24] Linked environments for atmospheric discovery (lead).

[25] Oceans and climate digital library portal.

[26] Sura coastal ocean observing and prediction (scoop).

[27] E. Kourpas. Grid computing: Past, present and future. Technical report, IBM

Corporation, 2006. http://www-03.ibm.com/grid/grid_literature.shtml.

[28] S. Hashimi. Service-oriented architecture explained, 2004.

[29] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,

F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwel, and J. Von Reich. The

open grid services architecture, version 1.5. Technical report, Open Grid Forum,

July 24 2006. http://www.ogf.org/gf/docs/?final.

[30] K. Amin, M. Hategan, G. Laszewski, and N. Zaluzec. Abstracting the grid.

In Proceedings of the 12th Euromicro Conference on Parallel, Distributed and

Network-Based Processing (PDP 2004), pages 250–257, A Coruña, Spain,

February 2004.

[31] D. Booth, H. Haas, F. Mccabe, E. Newcomer, M. Champion, C. Ferris, and

D. Orchard. Web services architecture, w3c working group note 11 february

2004. World Wide Web Consortium, 2004.

[32] I. Foster. A globus primer (draft v0.6). Technical report, Globus Alliance, 2006.

[33] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. AS-

SIST as a research framework for high-performance Grid programming environ-

ments. In O. Rana J. Cunha, editor, Grid Computing: Software environments

and Tools. Springer, January 2006. To appear.

[34] G. Laszewski, J. Gawor, S. Krishnan, and K. Jackson. Grid Computing: Making

the Global Infrastructure a Reality, chapter Commodity Grid Kits - Middleware

for Building Grid Computing Environments, pages 639–656. Communications

67

Networking and Distributed Systems. Wiley, 2003.

[35] S. Vickers. Portal standards: The answer to portal interoperability?, 2005.

http://java.sys-con.com/read/47686.htm.

[36] A. Akram, D. Chohan, X. Wang, X. Yang, and R. Allan. A service oriented

architecture for portals using portlets. In Uk e-Science All Hands Conference

2005, September 2005. http://pubs.doc.ic.ac.uk/portal-portlets-soa/.

[37] J. Novotny, M. Russell, and O. Wehrens. Gridsphere: An advanced portal

framework. In EUROMICRO ’04: Proceedings of the 30th EUROMICRO Con-

ference (EUROMICRO’04), pages 412–419. IEEE Computer Society, 2004.

[38] M. Pierce. Open grid computing environments (ogce) annual report. Technical

report, The OGCE Portal Toolkit, 2006.

[39] C. Zhang, I. Kelley, and G. Allen. Grid portal solutions: A comparison of

gridportlets and ogce. Workshop on Grid Computing Portals (GCE 2005) of

Concurrency and Computation: Practice and Experience, 19(12):1739 – 1748,

2006. www.cct.lsu.edu/~gallen/Preprints/CS_Zhang05a.pre.pdf.

[40] G. von Laszewski. Grid computing: Enabling a vision for col-

laborative research. In Conference on Applied Parallel Comput-

ing, 3rd CSC Scientific Meeting, Espoo, Finland, 2002. Springer.

citeseer.ist.psu.edu/vonlaszewski02grid.html.

[41] I. Foster. The anatomy of the grid: Enabling scalable virtual organizations.

In CCGRID ’01: Proceedings of the 1st International Symposium on Cluster

Computing and the Grid, page 6, Washington, DC, USA, 2001. IEEE Computer

Society.

[42] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman.

Grid service specification, 2002.

[43] F. Patin. An introduction to digital image processing, 2003.

68

[44] Hypermedia image processing reference (university of edinburgh).

http://www.cee.hw.ac.uk/hipr/html/hipr_top.html.

[45] Clarens grid-enabled web services framework.

[46] Apache ant. http://ant.apache.org/.

[47] Apache ant. http://ant.apache.org/.

BIOGRAPHICAL SKETCH

Mariana Mendoza-Botero was born in October 2, 1980, in Cali, Colombia. Mar-

iana is the daughter of Maŕıa Beatriz Botero-Duque and Carlos Arturo Mendoza-

Lenis. In May 2005 she received her Bachelor in Systems Engineering from Uni-

versity of Valley at Cali Campus, Colombia. Since August 2005 she is pursuing a

master degree in Computer Engineering at University of Puerto Rico at Mayagüez

Campus.

69

