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ABSTRACT 
 
 

Automatic control of a fluidized-bed drying process depends on the availability of 

an in- line sensor to provide accurate measurements of product moisture content. Near-

infrared (NIR) spectroscopy technology provides a potentially non- invasive and non-

destructive analytical method that could serve as a sensor option for a wide range of 

applications.  The purpose of this research was to investigate the use of NIR spectroscopy 

for accurate in- line moisture measurements during fluidized-bed drying process and to 

integrate the NIR set-up as part of drying automation. Five  powder mixtures consisting of 

lactose anhydrous, lactose monohydrate, povidone, blue color additive, and distilled 

water were dried in a bench-scale fluidized-bed dryer (FBD). Samples were withdrawn 

from the FBD for the calibration phase. A NIR moisture calibration and validation using 

partial least squares (PLS) was developed by analyzing statically these samples in 

conjunction with Karl Fisher Titration. Three probe axial positions were designed and 

installed in the FBD to take in- line NIR measurements. Due to fluidization effects 

(segregation and sample density distribution along the bed), a mixed- level factorial 

experimental design was performed to determine the significance of factors such as mass 

load, air flow and fiber optic probe axial position in the NIR prediction. The response 

variable to be analyzed was the residual between in- line measurements and static samples 

taken immediately after. Data analysis indicated that all factors were significant with 

residuals ranging from 0.04–2.32. A mathematical correlation was determined to predict 

future residuals as a function of the operating conditions.  
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RESUMEN 
 

El control automático de los procesos de secado en lechos fluidizados depende de 

la disponibilidad de un sensor adecuado que provea medidas precisas sobre el contenido 

de humedad del producto. La espectroscopía de infrarrojo cercano provee un método 

potencial, ya que este no es invasivo ni destructivo, y podría emplearse como sensor para 

una gran variedad de usos. El propósito de este estudio fue investigar el uso de la 

espectroscopía de infrarrojo cercano para realizar mediciones precisas en tiempo real 

durante el secado en lecho fluidizado e integrarlo como parte de la automatización. Cinco 

mezclas de polvos fueron procesados en un secador de lecho fluidizado a escala de 

laboratorio para extraer muestras estándares y construir un modelo de calibración. Estas 

mezclas consistían de lactosa anhidra, lactosa monohidratada, povidón, aditivo color azul, 

y agua destilada. Se desarrolló una calibración y validación de humedad en infrarrojo 

cercano utilizando el algoritmo de cuadrados mínimos parciales en donde se analizaron 

estáticamente los estándares conjunto a su valor de titulación en Karl Fisher. Tres 

posiciones axiales para la sonda de fibra óptica se diseñaron en el secador para hacer 

mediciones de infrarrojo cercano en tiempo real. Debido a los efectos de fluidización 

(segregación y distribución de densidad de muestra a lo largo de la camada) fue necesario 

desarrollar un diseño factorial de niveles mixtos para determinar la importancia de tres 

factores: grueso de masa, flujo de aire, y posición axial de la sonda de fibra óptica. La 

variable de respuesta en el diseño factorial fué el residual entre el valor de humedad 

medido en tiempo real y el valor predicho estáticamente por medio de infrarrojo cercano. 

El análisis de los datos indicó que todos los factores afectaban significativamente la 
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predicción con residuales que variaban entre 0.04 hasta 2.32. Una correlación matemática 

se determinó para poder predecir futuros residuales como función de las condiciones de 

operación del secador.  
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CHAPTER I:  INTRODUCTION 

 

1.1 Justification 

 One important issue of pharmaceutical products, especially in solid dosage forms, 

is the moisture content of the product. The final granule or powder moisture content in a 

tablet is an essential parameter to describe the properties of a tablet. Moisture influences 

the intermolecular forces between solid particles in several ways; it may absorb on the 

surface and influence the surface energy, it may alter the surface conductivity and the 

electrostatic charging of particles, or it may condense in the capillary regions contiguous 

to the true areas of contact (Cook and Dumont, 1991). The moisture content in granules 

affects the stickiness of the tablet surface to the punch and, consequently, alters the tablet 

surface properties with regard to film coating. The water remaining within the granules 

affects also the microbiological stability of the tablet produced. 

 The production of coated tablets, which are among the most usual pharmaceutical 

delivery forms, typically includes several steps such as blending, milling, granulation, 

drying, pressing, etc. The process involves physical transformations from the initial 

powder (or variable granularity) to cores and may also include coating of tablets. Usually, 

samples are taken from drug substances or drug product batches and analyzed in remote 

laboratories. The sample goes through stages of documentation, sample preparation, data 

analysis and documentation once more, prior to reporting the analytical results. For 

example, the state of water in solid materials may be characterized thermal analysis, Karl 

Fisher titration and loss-on-drying (LOD), among others.  These techniques are not only 

time consuming but may be subject to errors induced by sampling methods. 
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 Quality control in pharmaceutical industry involves analyses of raw material, 

intermediate products, and end products. Analyses for intermediate products allow the 

production process to be monitored and potential malfunctions to be corrected before the 

end-product is reached. Because quality controls of intermediate manufacturing products 

and end-products are important on an industrial level, there is a growing interest in 

developing methods for analysis involving minimal sample preparation.  

 Typically, fluid-bed dryers are used in the pharmaceutical industry for the drying 

step of granules. Drying is controlled by using empirical models with easily measurable 

parameters, such as temperature of the exhaust air, that give an indication of the moisture 

content of the powder. These methods are susceptible to external influences such as 

ambient temperature which could distort the relationship significantly. For example, in 

the summer, when ambient temperatures are higher, the relative humidity of the process 

air will naturally be higher than in the winter, when the air is cooler. Hence, the product 

moisture level may vary between batches even though the drying has been stopped at the 

same temperature, and additional sample testing in the lab is required to ensure product is 

within specification.    

 Real-time moisture measurement has become one of the main concerns for 

industrial processes in which a product is dried or moisturized. Automatic process control 

of a dryer depends on the availability of an in- line sensor to provide a continuous 

measurement of product moisture content. Near- infrared (NIR) spectroscopy technology 

has been developed over the last twenty years for a wide range of industrial applications 

and is now recognized as an extremely powerful measurement technique for automation 

and control. 
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 NIR analysis has steadily grown in popularity because of its ability to quickly 

provide qualitative and quantitative information of many products (Wetzel, 1983). The 

non- invasive and non-destructive features of vibrational spectroscopy techniques, such as 

NIR, make them novel tools for in- line quality assurance.  

 The process control and end-point detection of pharmaceutical dried granulation 

has traditionally been based on direct, off- line measurements. The aim of this study was 

to investigate the use of NIR spectroscopy for in- line moisture measurements during 

fluidized-bed drying process, and further, to integrate the NIR set-up as part of drying 

automation. Moreover, this study extended to an optimization problem by finding a 

correlation for the NIR sensor axial positioning with respect to the bulk mass of 

granulation inside the fluid-bed dryer and fluidization airflow.  

To determine if NIR spectroscopy is an alternative for fluid-bed dryer automation, 

many factors were considered. Sample composition, particle size, homogeneity and 

temperature variations were some of the so called internal factors. All these factors 

belong to the substance being analyzed and can be controlled and fixed in the calibration 

phase of the NIR instrument. Other factors, such as the fluid-bed dryer air- flow, NIR 

fiber optic probe positioning inside the vessel, and bulk mass inside dryer are external 

factors related to the medium where the sample is being analyzed. These factors were 

studied in this investigation. 
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1.2 Objectives 

The goal of this study was to investigate the feasibility of using NIR spectroscopy for  

in- line moisture measurement and process control during fluidized-bed drying of 

pharmaceutical powders. The specific targets were: 

• To implement the use of a NIR calibration model developed with static samples, 

to predict in- line moisture samples inside a dryer vessel. 

• To build-up a statistical analysis for the probe axial position as a function of 

fluidization velocity and bulk mass height. 

• To understand the effect of physical factors on the in- line moisture measurements 

with NIR spectroscopy. 
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CHAPTER II:  LITERATURE REVIEW 

 

2.1 Near-Infrared Spectroscopy Fundamentals 

2.1.1 Historical Issues 

The history of near- infrared (NIR) spectroscopy started with the studies by 

Herschel (1800). In 1890, Herschel was credited for his discovery and the region from 

700 to 1100 nm is often referred as the “Herschel’s region”. Years later, the American 

Society of Testing Materials (ASTM) defined the region of NIR spectrum from 780 to 

2526 nm, Fig. 1. However, it was not until the 2nd World War that the development of 

NIR instruments enabled the practical applications of this region of the electromagnetic 

spectrum (EMS).   

 

 
Figure 1. Electromagnetic spectrum 

 

The NIR spectrum is just above the visible region of the EMS. This portion of the 

EMS has for the past 30 years been studied and investigated in great detail as an 

analytical procedure for the analysis of many natural and man-made materials  

(McDonald and Prebble, 1993, Siesler et al., 2002, Sinsheimer and Poswalk, 1968, 

Wetzel, 1983, Workman, 1999a). The actual NIR analysis was developed in the 1950’s 

by a work of a group at USDA (United States Department of Agriculture), headed by 

X-RAYS UV VISIBLE NIR IR FAR-IR MICROWAVES  
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cm-1         50000    25000     12500     4800     400         10 
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Osborne et al.  (1993). They discovered that the non-destructive NIR spectra of biological 

samples could be obtained with no sample preparation and in less than a minute. This 

gave rise to a wide range of uses of NIR in the agricultural industry. 

Many types of industries have also used NIR for several applications. The 

petrochemical, pulp and paper, and pharmaceutical industries have taken advantage over 

characteristics of NIR (Workman, 1999a). Today, more papers are being written about 

the application of the NIR spectral region to all types of analyses than ever before. 

 

2.1.2 Physicochemical Background 

Next to the mid- infrared, the NIR region covers the interva l between 4000 -

12,500 cm-1 (0.8 – 2.5 µm). Molecules that absorb NIR energy vibrate in two 

fundamental modes: stretching and bending. Stretching is a continuous change in the 

inter-atomic distance along the axis between two atoms and it occurs at lower 

wavelengths than bending vibrations.  A bending vibration is a change in the bond angle 

between diatomic molecules.  

The NIR bands are mainly overtones and combinations of fundamental vibrations  

in the mid-infrared. The most often observed bands in the NIR include combination 

bands, second and third overtones all attributed to information from the mid-IR.  

Table 1 compiles some of the most observed absorptions in this region (Osborne 

et al., 1993, Reeves, 1994). In connection with O-H absorptions, one of the major 

applications of NIR spectroscopy is the determination of moisture in food analysis. 

 Some other absorption bands for water in NIR can occur at 760 nm, 970 nm and 

1450 nm  (Buijs and Choppin, 1963,  Curcio and Petty, 1951).   A  band observed at 1940  
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Table 1. Most Often Observed Adsorption Bands in NIR 
 

Bond Wavelength (nm) Description 
2000-2400 
1000-1200 aliphatic hydrocarbons 

1620-2100 olefinic C-H 

1650-2207 epoxides 

1500-2000 epoxy -amines 
N-H 

1446-1492 aromatic amines 
1000-1400 alcohols  

O-H 
1440-1940 water 

 
 
nm is known to be caused by O-H stretching and bending vibrations, and is the most used 

for analytical applications (Choppin and Buijs, 1963, Osborne et al., 1993). These bands 

have also been applied for high moisture systems (Reeves, 1994). It has recently been 

reported, from measurements on silica gel layers, that water content has an effect on NIR 

absorption at all wavelengths, even where water absorbed minimally (Fong and Hieftje, 

1995). 

Usually, for a solid sample, the reflected light is the parameter measured in NIR 

spectroscopy known as diffuse reflectance. The incident beam of light can be divided into 

two forms as shown on Fig. 2; namely the absorbed light and the reflected light. The 

reflected light consists of two components: specular and diffuse.   

The specular (mirror like) component in the boundary between two media occurs 

at the sample surface and it contains little information about the chemical composition of 

the substance. The NIR spectroscopy is particularly based on the diffused component of 

the reflected light and it can be affected by particle size and shape distributions, bulk 

density, surface characteristics and temperature (Siesler et al., 2002, Wetzel, 1983).  
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Figure 2. Interaction of a light beam on the interface of two media (Modified from Wetzel, 1983) 
 

Norris et al. (1983) evaluated the particle size effect with wheat. Berntsson et al. 

(1999) evaluated practical ways to determine effectively the sample mass per unit area. 

Sample sets studied by Blanco et. al. (2000) revealed different spectral features on 

batches of blended, core and coated tablets.  

The diffuse reflected light is emerged by random reflections, refractions and 

scatter inside the sample. The exact path of the propagation of light is extremely difficult 

to model. In practical applications, the apparent absorbance A may be applied: 

R
A

1
log=                         (1) 

where R is the reflectance of the sample. Equation 1 is expected to be related to the 

concentration of the absorbent.  

NIR Light Source 
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Diffuse reflectance spectra do not perfectly obeys Beer’s law and it can often be 

linearized by using the Kubelka-Munk function: 

R
R

S
K

2
)1( 2−=             (2) 

where R is the diffuse reflectance of the sample, while  K and S are absorption and 

scattering coefficients, respectively. Equation 2 suggests that R decreases as K increases 

for a constant S, and for a constant coefficient K, the reflectance R increases as scattering 

S increases (Pasikatan et al., 2001). 

 The chemical information in the diffusely reflected light is expressed in K, 

whereas the particle size information is expressed in S. The scattering coefficient is a 

function of particle size d, that increases in proportion to Eq. 3. This coefficient is also 

inversely proportional to the mean path length, l. 

ld
S 11 αα                                                         (3) 

From Eqs. 2 and 3, as d increases S decreases and radiation penetrates deeper into the 

powder, thus increasing absorbance while reducing the diffuse reflectance. As d 

decreases, light encounters more scattering boundaries and a reduction in the penetration 

(S increases). The probability of absorption reduces and the reflected component becomes 

higher.  

 

2.1.3 Spectral Data Acquisition and Analysis 

The bands in the NIR region require that the calibration equation must be 

constructed using multivariate calibrations, being partial least squares (PLS) the most 

used one. Multivariate techniques for quantitative work have been covered intensely by 
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several books and papers (Callis et al., 1987, Forina et al., 1998, Hassel and Bowman, 

1998, Siesler et al., 2002). Only an abbreviated description is presented in this part. A 

more in-depth discussion can be found elsewhere. 

Nomikos and McGregor (1995) reported a pioneering work on multivariate 

statistical procedures for monitoring the progress of batch processes. They used PLS to 

extract information from processes measurement in which time series of nine process 

parameters were used to model the resulting product properties. This kind of 

methodology was extended by Wold et al. (1998) using local process time instead of 

product properties. 

For spectral data, all wavelengths which are correlated to the parameter of interest 

are selected for the PLS method. Equation 4 shows the general calibration equation: 

EAaC +=             (4) 

where C is the concentration matrix, A is the matrix of spectral data, a is a matrix of 

coefficients, and E is the matrix of residual error related to the model ability to predict 

the calibration absorbances. When performing a PLS calibration, the spectral data is 

reduced to a set of eigenvectors and scores (weighting values for all the calibration 

spectra) which are related to the parameter of interest. The matrix A is reduced to only a 

few factors as explained by Forina et al. (1998). In this way, the spectral noise and 

random instrument errors are reduced with the discarded part of the information. This 

approach is used on Eq. 4 instead of the absorbance.  

 The main advantage of this method is that PLS is more robust than any other 

multivariate calibration method, and allows the detection of spectral outliers. A PLS 
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regression is useful with small populations of samples that contain some experimental 

noise in the NIR spectra. 

The number of PLS vectors used is defined in the spectroscopic analysis program 

by the size of the “rank” or number of factors considered in the regression model. The 

first factor explains the most drastic changes of the spectrum. 

The residual (Res) is the difference between the true (yi) and the fitted value (yf). 

Thus, the sum of squared errors (SSE) is the quadratic summation of these values. 

22 )(Re fi yysSSE ∑∑ −==          (5) 

The root mean square error of estimation RMSEE is calculated from this sum,  

with M being the number of standards and P is the rank: 








−−
= SSE

PM
RMSEE *

1
1                         (6)  

The correlation coefficient (R²) gives the percentage of variance present in the 

true component values, which is reproduced in the regression. R² approaches 100% as the 

fitted values approach the true values: 

100*
)(

12









−

−=
∑ mi yy

SSER          (7) 

where ym is an average of the moisture values. The R² can be negative. This is true for 

low ranks, when the residuals are larger than the variance in the true values. The sum of 

residuals (SSE) decreases with increasing rank, so R² approaches a limiting value of 

100%. 

A cross-validation process is automatically done by the chemometric software in 

which the program leaves one standard out of the calibration model and predicts it using 
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the model created by the remaining standard. In case of a cross-validation the root mean 

square error of cross-validation (RMSECV) can be taken as a criterion to judge the quality 

of the method: 






= SSE

M
RMSECV *

1              (8) 

The calibration is done with the original set of calibration spectra and the test 

spectra are predicted. In case of a test set validation, Eq. 8 is called the root mean square 

error of prediction (RMSEP). 

PLS simply builds upon the inherent correlation that exists between the spectral 

data and the constituent concentrations or time based mass loss as applied by Harris and 

Walker (2000). In effect, this generates two sets of vectors and two sets of corresponding 

scores; one set for the spectral data, and the other for the constituent concentrations. 

Presumably, the two sets of scores are related to each other through some type of 

regression, and a calibration model is constructed as in Fig. 3. 

 

 
Figure 3. Schematic representation of the PLS  regression algorithm (Taken from Duckworth and 

Springsteen, 1998) 

A =  Spectral Data Matrix   n = number of spectra 
C = Concentration Matrix   p = number of data points 
S, U = Coefficients Matrix (scores)  m = number of constituents 
Fa, Fc = Eigenvector Matrix for                    f = number of principal components 
              spectra and concentration 
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2.1.4 Applications of NIR Spectroscopy: Previous Works 

A proliferation of work involving near- infrared spectroscopy in process and 

image analysis has occurred over the past decade (Wetzel, 1983, Workman, 1999a, 

Workman et al., 1999b). This review includes the aspects of NIR spectroscopy for the 

analysis of materials specifically related to pharmaceutical industry. 

 The limit between process analytical chemistry and the traditional laboratory 

analysis is quite ambiguous. The terms in- line, on- line, at- line, off- line are often used and 

referred to in literature. Definitions of these words are given (Callis et al., 1987, Hassel 

and Bowman, 1998): in-line, the sample interface is directly located in the process 

stream; on-line, analysis require automated sampling and sample transfer to an automated 

analyzer; at-line, sampling is completely manual and transported to ana lyzer located near 

the manufacturing area; and off-line, requires manual sampling and transportation to 

remote or centralized laboratories for further studies. 

 Since 1968, the measurement of water was one of the first pharmaceutical 

applications of NIR (Sinsheimer and Poswalk, 1968). Recently, Derksen and 

collaborators (1998) improved the efficiency in the search for a suitable specification for 

the residual moisture content in freeze-dried products in glass vials. They observed 

offsets in the reflectance spectra caused by variations in particle size, compaction of the 

sample, and optical aberrations in the glass vials.  It was also found that for freeze dried 

samples some bands shift to a higher wavelength at increasing moisture content, making 

a PLS regression preferred over single or dual wavelength calibration methods. 

Moreover, Bertnsson et al. (1997) applied NIR in an at-line process to determine 

moisture content in bulk hard gelatin capsules and compared multiple linear regression 
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(MLR) to PLS, being the latter the more robust and able to detect outliers. On the other 

hand, Miwa and co-workers (2000) developed a method to find suitable amounts of water 

in granulations. For this study, saturation absorption capacity was characterized by 

inflection points in plots of NIR output value (at a fixed wavelength of 1.94 µm) against 

the amount of water added for each excipient. 

There are so far a limited number of reports on in- line analysis by NIR in 

fluidized-bed processes. Frake et al. (1997) demonstrated the use of NIR for in- line 

analysis of the moisture content in 0.05-0.07 mm pellets during spray granulation in a 

fluid-bed. Rantanen et al. (2000) described a similar approach for moisture content 

measurement using a rationing of 3-4 selected wavelengths. In 1998, he and his co-

workers reported that the critical part of in- line process was the sight glass for probe 

positioning that was continuously blown with heated supplied air. They also reported 

spectra baselines caused by particle size and refractive properties of the in- line samples; 

they recurred to analyze several data pre-treatments to eliminate these effects on their 

fixed wavelength set-up.  

Solvents other than water have also been evaluated for real-time quantification. 

Harris and Walker (2000) monitored the vacuum line of a dryer using fiber optic-coupled 

acoustic-optic tunable filter near- infrared (AOTF-NIR) spectrometer. In this application, 

a balance was used in the dryer to detect the mass loss of solvent, which was correlated to 

the spectra collected.   

 Quantitative studies to investigate the potential of NIR spectroscopy for at- line 

processes of film coating applied to tablet cores have been reported. Kirsch and Drennen 

(1996) reported that sample positioning in NIR was a critical concern causing shifting of 
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spectral baselines which interfered with the calibration development. A novel approach 

was made by Buchanan et al. (1996) for film coating process to study the amount of the 

active drug contained in a coated tablet. It was determined to ±4% of the target value 

using both PLS and MLR, and showed that PLS have more accuracy and reliability with 

HPLC methods.  

On-line measurement has also been possible enabling monitoring of film coating 

on pharmaceutical pellets in an industrial manufacturing process. Andersson et al.  (2000) 

conducted measurements on solid coated tablets using a fiber-optic probe positioned 

inside a fluidized-bed process vessel.  In this case they secured a representative sampling 

during processing by using a sample collector that was emptied with compressed air 

inside the vessel. 

 Tablet hardness tests using NIR methods have been conducted to predict the 

effects of compression force by Morisseau and Rhodes (1997).  Different formulations 

using five to six levels of tablet hardness from 2 to 12 kg resulted in a prediction at least 

as precise as laboratory testers. They found that a harder tablet has a smoother surface, 

thus less diffuse reflectance and higher absorbance was the response regardless of the 

drug.  

 NIR spectroscopy was evaluated by Hailey et al. (1996) as an on- line technique to 

show results as meeting conformance rather than absolute quantitative values during 

blending process. An NIR probe was interfaced to V-blending vessel at the point of 

rotation while the blender was operated in a discrete stop-start fashion with the spectral 

acquisition being triggered when the blender was stationary. Furthermore, a model 

mixture was used by Sekulic and collaborators (1996, 1998) to evaluate the information 
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content of the data collected using qualitative approaches such as standard deviation, 

dissimilarity calculations and principal component analysis (PCA) as a mean to 

determine the blending end-points. 

 Popó et al. (2002) employed also a lab-scale V-blender to determine drug content 

in samples collected at various mixing times. In this case they developed a PLS model 

validated using UV spectrometry. 

 Finally, the principles of multivariate calibration for NIR diffuse-reflectance 

spectroscopy have been demonstrated for quantification of active compound and major 

excipients (Forina et al., 1998). Blanco et al. (2000) applied an at- line application using a 

fiber optical probe presented as an analytical tool for pharmaceutical preparations at 

different steps of production process. The active compound, otilonium bromide, was 

determined at three stages of production (blended product, cores, and coated tablets) to 

develop a single calibration model for the analyses of the three forms without the need to 

run an individual calibration for each step.  

 

2.2 Fluidized-Bed Dryers Fundamentals 

 Small batch fluid-bed dryers, Fig. 4, are commonly used for pharmaceutical 

powder drying processes (Botterill, 1975, Gelperin and Einstein, 1972, Wu and Baeyens, 

1998). According to the type of the material, appropriate fluidized-bed systems are 

chosen (Dittman, 1977, Mujumdar, 1987). Due to better air-solid contact, drying in fluid-

bed dryers is faster than in tray ovens and because of good mixing, product uniformity is 

much improved.   After drying  the  air is  filtered,  usually  in  multicyclones  and/or  bag  
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filters. The use of bag filters is, however, troublesome if the dryer is often used for 

different products as it requires careful cleaning. 

A fluidized bed is essentially non-homogeneous. This is specially the case of the 

dispersive phase in a gas. A bed may be well fluidized if all the particles are fully 

supported by the gas, but may still be segregated in the sense that particles with lower 

density will migrate to the surface whereas those with higher density will migrate to the 

distributor base. Many models have been proposed to predict the axial distribution of 

particles with different sizes in a fluidized-bed (Asif, 2002a, Asif and Ibrahim, 2002b, 

Barghi et al., 2003, Epstein and LeClair, 1985, Gibilaro et al., 1985, Keith, 1980). For 

example, the counteracting mechanism of convection and dispersion in FBD containing a 

mixture of solid particles was presented first by Kennedy and Bretton (1966): 

ip i
i

i CU
dz
dCD =−             (8) 

where Di is the dispersion coefficient of the ith particle species, Ci is its concentration and 

z is the axial distance. Minor variations in the definition of the particle velocity Upi still 

 

Figure 4. Schematic of a batch fludized-  

               bed dryer : (1) vessel or chamber,  

               (2) gas distributor, (3) plenum  

               chamber, (4) blower, (5) heater,     

              (6) filters, (7) dust collector.  

              (Taken from Mujumdar, 1987) 
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continues to be the most widely used approach to describe the mixing and segregation 

behavior of multisize mixture of solid particles. 

Tanfara and colleagues (2002) used electrical capacitance tomography (ECT) to 

generate contour plots of a fluidized bed cross-sectional area and the wide distribution of 

placebo granules revealed two different types of gas flow: annular and centralized. They 

concluded that as the gas velocity was increased a shift from a predominantly annular 

flow of gas to a centralized core gas flow is likely due to segregation of the large particles 

near the bottom of the bed. Moreover, their findings were corroborated using the studies 

of Wu and Baeyens (1998) for the calculation of optimal fluidization velocity for 

complete mixing of particles. Wu and Baeyens defined a diameter ratio dr, as the ratio of 

the mean diameter of the larger partic les to the smaller particles. For values of dr larger 

than 2, excess gas velocities of the minimum fluidization velocity were needed for 

complete or good mixing of particles during fluidization.   

Asif and Petersen (1993) made their contribution regarding dynamic behavior of 

particles in fluidized beds. Their study accounted for the presence of density gradients in 

the mass balance formulation to obtain the concentration profiles throughout the bed. A 

plot comparison showed that the total volume fraction of particles decreased with height. 

Figure 5 illustrates the relationship between the fluidization process inside the vessel and 

the effects on the drying powders. 

The gas fluidized bed is characterized by having good heat transfer properties 

between the fluidized layer and heating  or cooling surfaces and extensive work has been 

done in   order to   develop equations   for the estimation of   the heat transfer   (Botterill, 

1975,   Gelperin  and  Einstein,  1972,    Zabrodsky,  1966).    Heat   transfer   is   strongly 
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Figure 5. Segregation, sample density and particle size distribution in the FBD 

 

dependent on the heat transfer capacity of the particles and the degree of particle 

circulation at the heat transfer surfaces because of rising gas (Alvarez and Shene, 1996, 

Baker, 1999, Langrish and Harvey, 2000, Wang and Chen, 2000). The heat transfer 

coefficient for wall-to-bed heat transfer increases dramatically when the bed is 

transferred from a fixed-bed to a fluidized-bed with rapid particle mixing.  

 

2.3 Drying Fundamentals 

Drying curves are usually employed for drying test by plotting residual data 

against time. A typical drying curve is shown in Fig. 6, together with the associated 

product temperature curve measured during a batch fluid-bed drying test. Morris et al.  

(2000) summarized two stages (constant drying rate and falling drying rate) during the 

fluid-bed drying process using two simple relations. The dependence of moisture content 

M with time is linear for the constant drying rate: 
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kTMM o −=                (9) 

where k is a constant at a given temperature, gas density, bed height and heat of 

vaporization. The falling drying rate stage is exponential: 

      )'exp(.' TkkMM o −=          (10) 

where k and k’ are geometric constants summed over n terms in a infinite series. The 

constant drying rate is also influenced by the air rate, solids hold up and particle size and 

air temperature is the principal variable influencing the falling drying rate and the 

equilibrium  moisture content  (Srinivasa  et  al.,  1995).    However,  at   lower   moisture  

content, drying is controlled by the rate of diffusion of moisture inside the particles and 

the drying rate is decreased considerably (Wang and Chen, 2000).  

 

 
 

Figure 6. Typical drying and temperature curves for granulations (Taken from Mujumdar, 1987) 
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2.4 Automation and Process Control Fundamentals 

 Batch and semi-batch processes, those with discontinuous feed and product 

stream flows, are used in preference to continuous flow units when relatively small 

amounts of products are required (Seborg et al., 1989, Smith and Corripio, 1997). 

Dynamic models of chemical processes invariably consist of one or more 

differential equations often combined with one or more algebraic relations. For process 

control problems, a dynamic model can be obtained from the application of unsteady-

state conservation relations, usually material and energy balances. Algebraic equations in 

the process model can arise from thermodynamic and transport relations.  

Automatic process control can be achieved by using a control system. The design 

and implementation of a possible batch control system is shown on Fig. 7. This type of 

control strategy is known as feedback control. The three basic components of all control 

systems are: (1) Sensor/transmitter – for the special case example on Fig. 7, the sensor is 

the NIR spectrometer that serves as a moisture analyzer, (2) Controller – it is the brain of 

the control system and it is composed of the PC’s that receives the NIR signals, and (3) 

Final control element – on Fig. 7 this is represented with an on/off switch relay. 

These components perform three basic operations that must be present in every 

batch control system. These operations are: (1) Measurements – measuring the moisture 

variable done by the sensor and then it is sent to the PC, (2) Decision – based on the 

measurement, the PC control algorithm decides what to do to reach its desired value, and 

(3) Action – as a result of the controller’s decision, the system sends a signal to the 

switch relay and order it to continue or to interrupt the drying process. 
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In the special case of fluidized-bed dryers, automation is typically attained by 

controlling easily measurable parameters that give an indication of the moisture content 

of the powder. For example, Szenmarjay and collaborators (1996) used flow rates, 

temperature and relative humidity in conjunction with enthalpy and mass balances as 

input data to calculate the desired characteristics of the product. A similar approach has 

been given by Liptak (1998) but with the use of Shinskey’s model. In addition to these 

parameters, Siettos et al. (1999) incorporated the use of the fuel flow rate of the burner in 

an industrial system to develop a comparative analysis between a fuzzy logic system and 

a PID controller.   

 

 

                                     
 

Figure 7. Schematic of a batch control system for the FBD 
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CHAPTER III:  EXPERIMENTAL SET-UP AND PROCEDURES 

 

 The procedures performed on this work were divided into four main sections:  the 

manufacturing of pharmaceutical granulations, the near-infrared calibration and set-up, 

the automation of the fluidized-bed dryer, and the optimization of the on- line near-

infrared measurements. This chapter is divided according to these topics. 

 

3.1 Granules Manufacturing  

 The materials listed on Table 2 are the ingredients used in the preparation of the 

pharmaceutical granulations. The mixtures were composed of typical tablet excipients. 

The materials employed were lactose monohydrate (Mutchler™ tabletosse 80/meggle), 

lactose anhydrous (Sheffield™ product 5X59009), povidone (ISP™ product 1001), blue 

color additive (Warner-Jerkinson™ Blue No.1), and distilled water. The proportions of 

each component are shown on Table 2.  

 
Table 2. List of Ingredients for Pharmaceutical Formulations 

 

Ingredient Amount/batch (g) % (w/w) 

Lactose Anhydrous 2792.5 69.8 

Lactose Monohydrate 653.5 16.3 

Povidone 47.0 1.2 

Blue Color Additive 7.0 0.2 

Distilled Water 500.0 *12.5 

*Variable during NIR calibration phase 
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Granulations were performed on a mixer/granulator (LittleFord™ Model FM-

130-D).  The granulator consisted of a cylindrical chamber with capacity of 20 kg, upper 

and lower sealed doors, a main shaft with four paddles (two V-shaped in the center and 

two near the sidewalls to prevent dead volume), and two motors. One motor moves the 

main shaft and the other drives a cutting chopper, which maintains granule size in wet 

granulations. It also had a spray nozzle for the addition of water or any liquid solution.  

 After granulation,  the mixtures were placed on a motorized sieve tray assembly. 

The sieve trays for particle size distribution consisted of Tyler’s 12 to 70 mesh US 

Standard testing sieves 20.32 cm of diameter. The sieving was made using a motor shaker 

(Tyler® RX-24).  

  The drying phase of the granulations was done on a bench-scale fluidized-bed 

dryer (Aeromatic AG™ model STREA-1). Its components include a fan, an electrical 

heater, and other electrical components all mounted in a solid chassis. The granulations 

were placed in a near conical stainless steel vessel of 0.017 m3 (16.5 L) capacity with 

three ports for NIR fiber optic probe mounting as illustrated in Fig. 8. The fan operated 

with airflows from 40 to approximately 115 m3/hr and operating temperatures up to 

373.15 K (100ºC). Type J thermocouples with insulated wires were installed in the dryer 

at the entrance and exit of the air. Additional accessories used were a 200 wire mesh to 

hold the product in place, an air distributor plate with bypass tube, and exhaust air filters 

(Nylon T695). Also, the fluidized-bed dryer was instrumented with additional control 

accessories that are tabulated in Appendix C. The process monitoring system used a 

Windows-based program, running in a personal computer (PC).   
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Figure 8. Schematic of fiber optic probe mounting in the fluidized-bed dryer vessel 
 

3.2 Near-Infrared Instrumentation and Calibration 

 Full NIR spectra were measured using a Fourier Transform (FT)-NIR 

spectrometer (Bruker Optics™ model Vector 22/N) with a fiber optic probe, Fig. 9. This 

spectrometer uses HeNe-laser light, a 429 InGaAs diode detector, a quartz beamsplitter 

and a frequency range of 5,300 to 12,500 cm-1. The probe tip is a flat surface with an area 

of 78.5 mm2 or an equivalent diameter of 1 cm.  

NIR spectra were obtained with a nominal resolution of 16 cm-1 with 32 scans per 

sampling. The working spectral region is 4196.6 and 9002.7 cm-1, and consisted of 500 

data points. A ceramic reference was taken before each set of samples. The collection and 

 

 
 

Figure 9. FT-NIR (Vector 22/N) spectrometer external view  

 Name 

A Fiber Optic Compartment 

B Interferometer Compartment 

C Source/ Electronics Compartment 

D Power Supply Compartment 

E Detector Electronics Compartment 

Vessel 

Fiber Optic Probe 
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transformation of spectral data were performed using spectroscopic analysis software. 

Data acquisition was made through a communication cable connected to an acquisition 

processor board (AQP), already installed in a second personal computer (PC).   

 The residual moisture content of granule samples was determined by means of a 

Karl Fisher (KF) Titration (Methrom™ model 784). First, the equilibration of the 

Hydranal®-Composite 5 reagent was done using a mixture of 20 cm3 methanol 

anhydrous with 10 cm3 of formamide at ambient temperature. The mixture was intended 

for use and dissolution of the lactose components in the pharmaceutical formulation, 

Table 2. Approximately 0.1 to 0.2 g of granules samples were dissolved in the 

conditioned methanol/formamide mixture, and then it was stirred magnetically for 3 

minutes at ambient temperature to ensure complete dissolution of the components before 

titration. The analysis was done in triplicate and its average was taken as the constituent 

value of moisture for the sample.  

 For quantitative analysis of moisture content of powders inside the dryer, NIR 

spectroscopy needed a multivariate calibration model. The calibration procedure involved 

collecting a number of samples, obtaining both reference and NIR data on each sample 

and developing a calibration model from these data by using chemometrics. The 

reference method for moisture content was the KF method discussed above. The 

calibration model developed was used to predict moisture in future samples. Internal 

factors like particle size, sample composition, temperature and homogeneity of samples 

were covered during the calibration phase. 

 Four granulation batches were used to withdraw samples at 3-5 minute intervals 

with different moistures. Due to the large particle size distribution and temperature 
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effects on NIR measurements, granulation batches were only chosen from 20-45 mesh 

size (˜  0.4-0.8 mm). They were placed in the dryer with an inlet fluidized air temperature 

of 343.15 K (70ºC) and 80 m3 /hr of airflow. At each time interval, the process was 

stopped and three samples were withdrawn from different points inside the dryer. 

Immediately after extraction, six NIR spectra were recorded at different angles on each 

sample. At the same time, their moisture value was determined with KF titration. The 

average of these six spectra per sample was entered in the spectroscopic analysis software 

as the spectral data-set for the constituent moisture value determined by KF. The drying 

process was re- initialized for another 3-5 minute interval and the procedure was repeated 

for three more intervals. In general, twelve sample moistures and NIR spectral data-set 

(absorbances) were obtained from each of the four  different batches. This made a total of 

48 calibration samples. 

 The 48 sample moistures and their respective NIR spectral data-set were then 

used to develop the mathematical expression that relates these two parameters, known as 

the calibration model. Partial least square (PLS) was used as the calibration tool, in 

conjunction with spectral pre-treatments, such as first and second derivatives. Validation 

of the model was performed by applying it to a set of validation samples to test the 

model’s predictive ability. These predicted values were statistically compared to KF 

reference moisture values measured for the same samples. 

 

3.3 Automation and Control Instrumentation Set-up 

 Once the NIR calibration was performed, the NIR calibration model was 

integrated as a part of drying automation used for moisture monitoring. In- line 
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measurements for a real-time drying process were accomplished by using two Windows-

based automation and control softwares. The softwares were installed on different PC’s 

and they communicated through a CIO-DAC02 12-bit analog output board. The 

integration of the apparatus in the automation of the FBD is represented in Fig. 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Schematic of the NIR integration in the FBD automation 

  

 The control program worked in conjunction with the spectroscopic software to 

provide an easy-to-use interface for real- time data acquisition and analysis using NIR 

spectrometers. Analytical results were displayed, logged, and communicated to a remote 

computer via the analog output board port as a 4-20 mA signal representing the predicted 

moisture percentage. 

 Moreover, LabVIEW® software, a graphical programming language that has been 

adopted for data acquisition and instrument control, received the analog signal results. 

This information was entered and executed by the control block diagram already built in 
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the LabVIEW® program called virtual instrument (VI). The  VI was intended for 

acquiring the value received via the 4-20 mA signals and to compare it with a set-point 

value of moisture. Once the drying process had reached the desired moisture value, the 

LabVIEW® program or VI indicates the on/off switch relay to stop. This communication 

was done via a data acquisition board (DAQ) installed in the second PC to the relay.  

 

3.4 Mathematical  Correlation and Optimization of NIR Measurements 

The final objective of the study was to find which external factors can affect, 

during a FBD drying process, the NIR measurements and thus its moisture predictions. 

Three heights for probe positioning in conjunction with two levels of bulk mass inside the 

dryer (0.5, and 1.0 kg), and three fluidization air flows (70, 100, and 115 m3/hr) were 

studied. Figure 11 depicts the experimental design used. This was a mixed- level factorial 

design with 18 treatment combinations with one replicate. Constant variables were 

temperature of air (same as in the calibration step), powder formulation, Table 2, and 

initial moisture content (approx. 12.5% w/w water), as well as the particle size 

distribution (20-45 mesh size).  

The air flows were selected based on the diameter ratio, dr (Wu and Baeyens, 

1998). The smaller particle size used was 0.4 mm and the larger size was about 0.8 mm 

giving a dr of approximately 2. The minimum fluidization air flow determined by test 

trials was 40 m3/hr (˜  0.2 m/s). According to the studies of Wu and Baeyens, an air flow 

of 70 m3/hr (̃  0.4 m/s) or more must be sufficient to presume a good mixing of 

particulates while flowing and a minimum effect of segregation.  

  



 30 

 
 

Figure 11. FBD and experimental design schematic  
 

Spectra were recorded from each set of experiments (height, bulk mass and air 

flow) approximately after 10 minutes of drying without stopping the process. Each 

spectrum was used to predict the moisture content of the powder at that time using the 

NIR calibration model developed previously. Immediately after taking the spectra, the 

process was stopped to withdraw one sample  from the vessel and to analyze it with the 

NIR spectrometer and with the KF titration to monitor the equilibrium moisture.  

The response variable was based on the difference between the NIR moisture 

predicted in- line versus the NIR value predicted statically. Mathematical and statistical 

analysis was applied to determine which factors were significant for the prediction error. 

A statistical equation was developed in which one can maximize the NIR performance 

(minimize the prediction error) as a function of probe positioning, fluidization air-flow 

and bulk mass inside the dryer. Therefore, an empirical correlation was established for 

the prediction of the optimum probe position that minimizes the errors in the NIR 

Aeromatic AG STREA-1 
Fluid Bed Dryer 

Dryer Accessories 

•  22% free cross   
    sectional area air  
    distribution plate  
    with bypass cylinder 

•  200 wire mesh bottom  
    screen 

•  cornidum bottom 

•  Nylon T 795 fine-   
    porous filter-cloth /   
    exhaust air filter 
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measurement given a set of conditions such as the initial bulk mass and fluidization 

velocity.  
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CHAPTER IV:  RESULTS AND DISCUSSION 

 

4.1 NIR Calibration Model for Moisture Prediction 

 The first step in the development of an automated FBD process using the NIR 

technology was to build-up a proper calibration model. Table 3 summarizes the data 

obtained using four different batches of granulations made with the excipients and 

proportions already discussed on Chap. 3. 

 Figure 12 depicts the expected behavior for a formulation that is almost 86% 

lactose (Popó et al., 2002). This image presents the variation in absorbances due to 

moisture differences between samples. A noticeable band near 5176 cm-1 (˜ 1490 nm) is 

observed, which is characteristic of the O-H vibrations recognized in the literature 

(Choppin and Buijs, 1963, Osborne et al., 1993).  There was an increase in NIR 

absorption with an increase in water content.  

The NIR spectra presented on Fig. 12 in conjunction with its constituent moisture 

value were analyzed using the spectroscopic software. The chemometric algorithm 

applied was partial least squares (PLS). Four criteria values were used to determine the 

optimal calibration model: the correlation coefficient (R2), the root mean square error of 

estimation (RMSEE), the root mean square error of cross validation (RMSECV), and the 

root mean squared error of prediction (RMSEP). These criterion values are presented in 

the tables and figures below to illustrate the development of the calibration model. 

The cross-validation process was automatically done by the software in which the 

program leaves one standard out of the regression and tests it using the remaining data. 

The  RMSEP  was  used  when  test-set  spectra  not  used  to  build  the  regression  were  
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Table 3.  Data of Sample ’s Moisture Content for NIR Calibration Model  
 Sample name* Moisture %  (determined by KF Titration) 

1.0.a 13.21 
1.0.b 13.42 
1.0.c 12.97 
1.5.a 10.05 
1.5.b 9.79 
1.5.c 10.44 
1.15.a 5.41 
1.15.b 5.35 
1.15.c 5.72 
1.25.a 5.09 
1.25.b 5.15 

Calibration Lot #1 

1.25.c 5.03 
2.0.a 13.59 
2.0.b 13.75 
2.0.c 14.13 
2.7.a 10.17 
2.7.b 10.13 
2.7.c 10.30 
2.14.a 5.88 
2.14.b 6.26 
2.14.c 6.06 
2.21.a 5.48 
2.21.b 5.55 

Calibration Lot #2 

2.21.c 5.38 
3.0.a 13.54 
3.0.b 12.85 
3.0.c 12.80 
3.3.a 10.61 
3.3.b 10.56 
3.3.c 10.46 
3.8.a 7.36 
3.8.b 6.74 
3.8.c 6.65 
3.13.a 5.26 
3.13.b 6.32 

Calibration Lot #3 

3.13.c 5.90 
4.0.a 13.40 
4.0.b 13.10 
4.0.c 13.15 
4.5.a 7.32 
4.5.b 8.21 
4.5.c 7.35 
4.10.a 5.79 
4.10.b 5.78 
4.10.c 5.77 
4.20.a 6.63 
4.20.b 5.61 

Calibration Lot #4 

4.20.c 5.71 
5.0.a 13.12 
5.4.a 8.29 
5.8.a 6.00 

Test-set Lot #5 

5.16.a 5.40 
          * The sample names are coded with the following sequence: the first number indicates the lot number, the 
             second number indicates the drying time elapsed when the sample was taken, and the letter indicates that  
             three samples were withdraw at this same time. The shaded line indicates an outlier. 
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Figure 12. NIR absorbance spectra for moisture calibration model 
 
 

predicted to challenge the NIR model. All the root mean squares values were expected to 

give the minimum possible number in order to accomplish the best fitting. 

Several pre-treatments were executed to ensure a regressional fitting that could 

predict future samples with minimal error. A summary of the different criteria values 

obtained using some pre-treatments in the calibration model are provided on Table 4. 

Noticed that the RMSEE and RMSECV were related to the self- testing and cross-

validation of the model using the same 48 standard samples listed on Table 3.  On the 

other hand, RMSEP was directly related to test-set samples, and moreover, to future 

unknown samples.  

 Table 4 compares the different R2 values obtained with some of the most used 

pre-treatments  in  the  literature.  Vector  normalization  has the best fitting for validation  
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Table 4. Comparison of Pre-Treatments Effects in the NIR Calibration Model 
 

Pre -Treatment Type  
Optimum 

Rank 

R2 
(for cross- 
validation) 

RMSECV 
R2  

(for self-testing) RMSEE 
Test-Set Prediction  
Residual Average* 

No Pre -treatment 5 97.63 0.49 98.43 0.43 0.21 
Min-max 

normalization 
4 98.24 0.42 98.96 0.34 0.44 

Vector 
normalization 

4 98.44 0.40 98.90 0.35 0.33 

First derivative 4 97.98 0.46 98.74 0.38 0.32 
MSC 4 98.38 0.41 98.87 0.36 0.35 

*Test-set spectra values are shown on Fig. 14. These spectra were evaluated using regression models executed with the pre-treatments 
listed on this table. The difference between the true and the fitted NIR values were evaluated and the average of the four samples was 
taken as the residual average for each pre-treatment. 

 

and calibration but, unfortunately, its  correlation  did  not  have  the best prediction in the 

test-set samples. The difference in the correlation coefficient for these pre-treatments was 

minimum compared to no-pretreatment at all. Thus, the final decision was primarily 

based on the test-set residual ave rage. In this case, the application of PLS with no spectral 

pre-treatment seems to predict test-set samples with higher precision.   

The final calibration model included 47 of the 48 data points listed on Table 3. 

Experiment 4.20.a was classified as an outlier giving a calibration correlation coefficient  

of  98.43  compared  to  the 98.68  of  the  coefficient  calculated  without  the outlier. 

Even though the difference was minimal, this improvement in the coefficient produced 

better predictions in the test-set samples. Figure 13 shows the graphs of NIR prediction 

versus true moisture values with and without outliers. These graphs reached 45° angles as 

the model approached better fitting. The circled point is the outlier. 

The test-set spectra consisted of four different samples that were not used to 

perform the regression, Table 3. The samples were taken and analyzed in the same way 

as all the samples used for calibration. As discussed above, a simple change in the 

regression coefficient produced a small improvement in the NIR prediction of the test-set 
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spectra. As can be seen from Fig. 14, the exclusion of the outlier value from the PLS 

regression model had caused a better fit on future unknown samples. 

The chemometric software determined the best rank value for the regression 

automatically. For both model regressions (with and without outlier), a rank of 5 was 

determined as the optimum number of factors that can fit or predict moisture values with 

minimal error.   The  addition of  more  factors  does  not  contribute  significantly  to  the  

 

 

 
   

 
 

Figure 13. NIR prediction vs. true value of moisture content 
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Figure 14. Comparison of NIR prediction vs. true value for test-set spectra  
 
 

improvement of the predicted NIR values.  The addition of unnecessary factors could 

affect negatively future unknown samples (Siesler et al., 2002, Wetzel, 1983).   

Table  5 shows the calculated regression coefficients and root mean squares for the 

cross-validation and self-testing process done on the final regression model without 

outliers. Slight favorable changes can be seen on the self-testing process but not on the 

cross-validation for ranks higher than 5. In cases like this, the cross-validation has more 

weight on the final selection of the rank because this process involves to “leave-one-out” 

Sample 
Name 

True Moisture  
Value (%) 

NIR Model  
Value (%) 

Residual 

5.0.a 13.12 13.49 0.37 
5.4.a 8.29 8.56 0.27 
5.8.a 6.00 6.27 0.27 

5.16.a 5.40 5.55 0.15 

Sample 
Name 

True Moisture  
Value (%) 

NIR Model  
Value (%) 

Residual 

5.0.a 13.12 13.49 0.37 
5.4.a 8.29 8.54 0.25 
5.8.a 6.00 6.20 0.20 

5.16.a 5.40 5.42 0.02 
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and test with the remaining data. Practically, each standard is considered as a test-set 

spectrum.  

 
Table 5. Rank’s Effect on the Statistical of the Final Regression Model with No Outliers 

 
Rank R² (for cross-validation) RMSECV R² (for model self-testing) RMSEE 

1 60.92 2.01 63.55 1.99 
2 88.84 1.08 90.44 1.03 
3 97.86 0.47 98.23 0.45 
4 97.80 0.48 98.54 0.41 
5 98.05 0.45 98.68 0.40 
6 98.15 0.44 98.77 0.39 
7 98.06 0.45 98.87 0.38 
8 97.80 0.48 99.32 0.30 
9 98.25 0.43 99.45 0.27 
10 98.04 0.45 99.54 0.25 

 
 

4.2 Factors Analysis and NIR Optimization Results 

Figure 15 shows the differences between spectra taken at-line and in- line while 

varying the experimental conditions.  NIR spectra taken from axial probe position #3 

were concentrated  at  the top  of  the  graph showing high baseline shifts,  especially  

those  taken at  lower  air flows.   The absence of defined bands demonstrated that there 

was no representative amount of sample reaching the NIR probe tip, and the resulted 

absorbances were mostly noised signals.  

At- line and axial position #2 spectra concentrated mostly at the middle of the 

graph.  In this situation, the observed bands and absorbances permit a satisfactory NIR 

moisture prediction for almost all the operating conditions used. Most of the NIR 

predictions at that position were similar to the static samples. Thus, it can be considered 

that the NIR prediction in axial position #2 is almost independent of the operating 

conditions used in this experiment.  



 39 

 

 
 

Figure 15. In-line and static samples NIR spectra for both experiment sets  
 

       In-Line and Static Samples NIR Spectra (Set #1) 

       In-Line and Static Samples NIR Spectra (Set #2) 
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NIR bands observed using axial position #1 had lower baselines than static 

samples.  Similar results were encountered by Andersson et al. (2000). They found that 

spectra collected while running the coating process were observed to have baseline levels 

irregularly spaced caused by differences in the packing of pellets, or by differences in 

particle size within the batch. 

Figures 16 to 18 depict the interaction effects of bulk mass and probe axial 

position on the residual (static minus in- line NIR moisture prediction).  These graphs 

illustrate that air flow has opposite effect on axial positions 1 and 3. The prediction 

residual   increased  with   air- flow  for  axial   position  #1,    while  decreased  for   axial  

 

 

 
 

Figure 16. Mass vs. axial position interaction effect for the lowest level of airflow 
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Figure 17. Mass vs. axial position interaction effect for the medium level of airflow 
 
 

 
 

Figure 18. Mass vs. axial position interaction effect for the highest level of airflow 
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position #3.  A similar behavior is also encountered with variations of the bulk mass. On 

the other hand, the residuals for axial position #2 had no significant variations with any of 

the factors. NIR measurements using this position provided residuals less than one. 

Statistically, axial position #2 was the best choice for in- line measurements. 

 The behavior observed in NIR prediction while varying the operating conditions 

could be due to the particle size distribution and the sample density distribution inside the 

dryer vessel. Even though particle size variation was carefully limited for the  

experimentation, the fluidization might promote apportion inside the vessel. Additional 

NIR testings were performed on two different static samples of a sieved batch. Figure 19 

revealed that there were no appreciable differences between spectra of samples of 

different particle size. This can be expected in lieu that the particle variations used in the 

batches were small. According to the work of Wu and Baeyens (1998), the air flows used 

in the experimentation should prevent the segregation of the fluidizing particles by 

promoting a good mixing along the bed.   

The small absorbance offset in Fig. 19 is in agreement with that discussed by 

MacDonald and Prebble (1993), which they attributed to the particle size differences.   

The absorbance increase as particle size increase (see Eqs. 2 and 3). The NIR model 

predictions for both particle sizes were similar and their residuals were small indicating 

that the slight difference in the absorbance did not affect significantly the NIR prediction. 

Therefore, particle size distribution was not the specific responsible of the NIR prediction 

errors.  
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Figure 19. NIR spectra for 20-30 and 40-45 mesh size samples 
 
 

Sample density distribution along the bed is the more probable explanation for the 

behavior encountered with the residuals variations for the in- line NIR predictions. 

Sample presentation or how to present a sample to a NIR instrument is one of the 

important factors affecting NIR measurements (Siesler et al., 2002). The cells used for 

powder samples had to ensure constant and reproducible packing density; because 

packing density affects scattering conditions.  

According to Popó and collaborators (2002), NIR irradiation in a mixture of 

ibuprofen and lactose could reach a depth up to 2 mm. The crystal cells used for static 

NIR measurements in the calibration phase had approximately 4 mm of diameter.  

Packing density distorts the depth of penetration and orientation of interfaces between 

light and sample (Pasikatan et al., 2001). Fluidization inside the dryer vessel has to 

Sample 
Name 

True Moisture  
Value (%) 

NIR Model  
Value (%) 

Residual 

20-30 
mesh 

5.9 5.67 0.23 

40-45 
mesh 

5.3 5.66 0.36 
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ensure an analogous distribution and packing to maintain the same conditions as those 

used in the calibration phase. 

The three spectra on Fig. 20 revealed noticeable variations for in- line spectra 

taken at different axial positions. In this figure was appreciated, that for a fixed air-flow 

and   mass load, the absorbance and appearance of the spectra changed significantly with 

respect to the axial probe position.  

High baselines and poor defined bands in axial position #3 are a representation of 

low sample density at that point (Siesler et al., 2002). As sample density decreases, 

radiation penetrates deeper into the powder, Fig. 2. The increase in the path length that 

the light travels decreases the scattering coefficient as shown on Eq. 3, thus reducing the 

diffuse reflection.   The emitted light was highly dispersed probably by turbulent air flow  

 

 

Figure 20. In-line NIR spectra for a fixed air flow of 70 m3/hr and a mass load of 1.0 kg 
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conditions (Mujumdar, 1987) on that zone and no substantial quantity of light can be 

reflected back to the detector.   

On the other hand, axial position #1 showed much defined bands but a slight 

lower absorbance; a possible indication of differences in packing density in that zone. 

Randomness in the orientation of the interfaces and amount of material are essential to 

bring complete diffusion of light (Wetzel, 1983). Compaction and agglomeration of the 

particles might destroy complete randomness causing a decrease in the path length that 

the light travels. Therefore, the scattering coefficient increases and more light are 

reflected back to the detector (Pasikatan et al., 2001). 

 

4.3 ANOVA Results and Regressional Fitting  

The next step was to demonstrate the feasibility of using NIR spectroscopy for the 

FBD automation by showing the ability of predicting effectively in- line samples without 

stopping or disturbing the drying process.   

In order to diminish discrepancies on in- line measurements and to guarantee 

minimal NIR testing errors, an experimental design was developed. The final inputs for 

the experimental design are in Table 6. The raw experimental data is in Table 18 on 

Appendix B. A total of 36 experiments were divided into two sets; making one full set 

and a replicate. The two sets were separated into blocks because each set was done using 

different granulation lots. The experiments were run with no particular order or sequence 

to fulfill the characteristics of a completely randomized experimental design.  

The fifth column on Table 6 is an average of static NIR values. The first nine 

experiments belong to a mass load of 0.5 kg. All these samples were taken using the same  
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Table 6.  Prediction Residual Data for Experimental Design Analysis  

 

mass batch in the dryer. The same applies to the following sets of nine experiments. The 

static samples from each set were taken from the same batch already dried to 

approximately 5-6% moisture. This reduces the NIR prediction errors on the static 

sample testing due to a slight variability on the moisture content at different points in the 

dryer. 

The information shown on Table 6 was entered in the statistical experimental 

design software. Appendix B presents a table with the equations to perform the analysis 

of variance of this study.  

 The ANOVA for the full mixed- level factorial design indicated that the mass 

load, air-flow and axial position affected the in- line NIR prediction; with an F Probability 

distribution of 0.05. Small F Probability values (less than 0.05) in the individual model 

terms have a significant effect on the response. The complete software output is presented 

on Appendix B. In Table 7 is observed the final ANOVA results excluding the non-

significant terms; the remaining terms were used to develop a predictive model.  

Appendix B presents also the full software output for Table 7 in which a 

predictive model was  calculated  using  the  significant  terms  resulted from the factorial  

Air Flow (m3/hr) (B) 
 

70 100 115 

Mass (kg) 
(A) 

Axial 
Position 1 

(C) 

Axial 
Position 2 

Axial 
Position 3 

Axial 
Position 1 

Axial 
Position 2 

Axial 
Position 3 

Axial 
Position 1 

Axial 
Position 2 

Axial 
Position 3 

0.5 
-0.80 
-0.90 

-1.09 
-0.99 

-2.71 
-1.87 

-0.39 
-0.33 

-0.64 
-0.72 

-1.78 
-0.57 

-1.30 
-1.16 

-0.39 
-0.13 

-0.99 
-0.59 

1.0 
-2.29 
-2.03 

-0.55 
-0.31 

-2.32 
-1.87 

-2.10 
-2.11 

-1.15 
-0.04 

-1.12 
-1.08 

-1.92 
-1.98 

-0.43 
-0.22 

-0.70 
-0.29 
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Table 7.  ANOVA Summary for the Mixed-Level Factorial Design 
 

Source Sum of  Squares Degrees of Freedom Mean Square F value Prob > F 

Block 0.83 1 0.83   

Model 16.29 11 1.48 16.35 <0.0001 

Mass Load (A) 0.74 1 0.74 8.17 0.0089 

Air Flow (B) 2.62 2 1.31 14.48 <0.0001 

Axial Position (C) 5.57 2 2.79 30.77 <0.0001 

AC 4.25 2 2.12 23.46 <0.0001 

BC 3.10 4 0.78 8.57 0.0002 

Error 2.08 23 0.091   

Total 19.20 35    

 

analysis. The final equation was in terms of coded factors (see Table 9):   

222112112

12121

19.019.011.031.025.0
49.055.034.010.037.014.011.1RePr

CBCBCBCBAC
ACCCBBAsed

−++++
−+−+−−−=

      (11)  

The predictive model had a coefficient correlation of 0.89, and a standard 

deviation of 0.30. This R2 is less than what is usually expected for a regression equation, 

but it gives an indication that the data can be adjusted to fit a model. Empirical 

correlations are based and supported with multiple replications of data. Technical and 

instrumental complications limited the analysis to only two sets of experiments.   

The diagnostic checking of this predictive model was supported by comparing the 

actual values from Table 6 and the values predicted by the model. Figure 21 depicts the 

normal probability plot of the residuals between actual and predicted values.  This graph 

indicated whether the residuals follow a normal distribution, in which case the points 

followed a straight line. 

Figure 22 is another diagnostic checking based upon a graph of actual residual 

values from Table 6 and those calculated using the predictive model on Eq. 11. The graph 

illustrates the difficulties presented  by Eq. 11  in  adjusting  the data  on  Table 6 to a 45°  
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Table 8. List of Coded Factors Used in the Predictive Model 
  

Factor  Levels Coded Symbol 

0.50 A = -1 

0.75 A = 0 M ass Load 

1.00 A = 1 

70 B1 = 1, B2 = 0 

85 B1 = 0.5, B2 = 0.5 

100 B1 = 0, B2 = 1 

108 B1 = -0.5, B2 = 0 

Air Flow 

115 B1 = -1, B2 = -1 

1 C1 = 1, C2 = 0 

2 C1 = 0, C2 = 1 Axial Position 

3 C1 = -1, C2 = -1 
*Shaded lines are levels not used in the experimental design 
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Figure 21. Normal probability plot for the predictive model 
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degree line. 

The actual vs. predicted residual values do not followed a straight 45° degree line, 

but the model reflects a good performance in trying to fit a regressive model.  

Presumably, more replications of experiments are needed to get a coefficient correlation 

higher than 0.89 (Montgomery, 2001).    

Additional NIR testings were made to account the validity and usefulness of Eq. 

11. In- line NIR prediction residual could be estimated using this equation and the coded 

factors presented on Table 8. As an example, the NIR prediction residual for a mass load 

of 0.75 kg, an air flow of 70 m3/hr, and measured in axial position #1 is: 

)0)(0(19.0)0)(1(19.0)1)(0(11.0)1)(1(31.0)0)(0(25.0
)1)(0(49.0)0(55.0)1(34.0)0(10.0)1(37.0)0(14.011.1RePr

−++++
−+−+−−−=sed

 

51.1RePr −=sed  

This value is not exact, but agreed with the calculated NIR prediction residual for an in-

line and a static testing made at the same conditions. Table 9 summarizes the same 

estimation for other conditions. The estimated residuals are not identical, but Eq. 11 can  

 
Table 9. Summary of NIR Prediction Residuals Using The Predictive Model of The Experimental Design 

 

Factors Levels 

In-line NIR 
moisture 

prediction 
(%) 

At-line NIR 
moisture 

prediction 
(%) 

1Prediction 
Residual A 

2Prediction 
Residual B 

3Difference 

Position 1 7.38 5.52 -1.86 -1.51 -0.71 

Position 2 6.60 5.53 -1.07 -0.74 -0.33 
Mass = 0.75 kg 

Air Flow = 70 m3/hr 
Position 3 9.80 5.54 -4.26 -2.19 -2.07 

Air flow 70 9.80 5.54 -4.26 -2.19 -2.07 

Air flow 100 6.38 5.41 -0.97 -1.14 0.17 
Mass = 0.75 kg 

Axial Position #3 
Air flow 115 6.19 5.53 -0.66 -0.63 -0.03 
1The residuals here are the difference between the third and the second columns. 

                                                                      2The residuals in this column correspond to those calculated using Eq. 11. 
                                                                      3These differences are based on the fourth and fifth columns. 
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Figure 22. Plot of predicted residuals from Eq . 11 vs. actual residuals values from Table 6 

 
 
be helpful in figuring out NIR prediction residuals prior to measuring. More experimental 

sets would help to refine this equation. 

 

4.4 Implementation of Control Algorithm  

 The programming capabilities of the LabVIEW® graphical language provided 

sufficient tools to implement a control strategy.  Figure 23 illustrates the implementation 

of the user interface and control algorithm written using this software.   

The control strategy could be applied from the start of the drying process, but 

subtle implications could not guarantee adequate moisture NIR readings. In the first few 
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minutes of the operation, the powders were too moist and this caused particulate 

agglomeration and stickiness in the tip of the fiber optic probe. Difficulties were 

contemplated back in the development of drying curves as shown on Fig. 24. These plots 

compared the moisture values obtained using three different sources in which the in- line 

NIR moisture predictions deviates significantly from the real KF moisture values at the 

beginning  of  the   drying  curve.   Therefore,   in- line   NIR  testings  were  done  at   the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 23. Graphical user interface and algorithm for the control strategy  
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equilibrium value that was between 5-6 % moisture. Future experimentation of this kind 

must consider the application of a mechanical or pneumatic artifact to clear the probe up 

before the acquisition of spectra. 
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Figure 24. Comparison of drying curves with moisture values from different analytical sources 
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CHAPTER V:  CONCLUSIONS AND RECOMMENDATIONS 

 

The PLS algorithm provided a good calibration model to predict static samples 

with residuals less than one. There was an increase in NIR absorption with an increase in 

water content. Several pre-treatment algorithms were applied to improve the model 

prediction, but none of them contributed significantly to this process, thus no pre-

treatments were needed. The calibration model with no pre-treatment predicted at- line 

samples with more precision than the other models.   

The experimental design showed that in- line measurements deviated significantly 

from static samples depending on the FBD operating conditions. The prediction residual 

increased with air flow for axial position #1, while decreased for axial position #3. A 

similar behavior was also encountered with variations of mass load. On the other hand, 

the residuals for axial position #2 had no significant variations with any of the other 

factors. NIR measurements using this posit ion provided residuals less than one. Axial 

position #2 resulted to be the choice for most accurate in- line measurements.  

A mathematical correlation was developed to predict residuals as a function of the 

operating conditions used. This correlation can also be used to find optimal operating 

conditions that could satisfy suitable prediction residuals. This statistical correlation can 

predict residuals with an R2 = 0.89 and a standard deviation of 0.30. This correlation took 

into account only two experimental sets.  

Measurements during the first few minutes can not be handled adequately because 

too much moisture variations were found at this stage. Moreover, the powders with 

moistures higher than 7% w/w had a tendency to stick to the tip of the fiber optic probe, 
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making it even more difficult to collect spectra from a representative portion of the bulk 

mass inside the dryer. Future experimentations must consider the application of some 

device to clean the tip of the probe before analysis. 

Recommendations for the implementation of NIR could be the application of two 

or more fiber optic probes in the dryer vessel to collect spectral data at strategic points. 

The average of the spectra data collected at the same time may improve the NIR 

prediction of the average moisture in the powders.  

Other applications could be the development of an in- line calibration model by 

choosing optimal points for NIR measurements according to the results obtained in this 

experimental design. Now that axial position can be considered the best measuring 

position for NIR, a calibration model can be designed using in- line testings.  
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APPENDICES 

 

Appendix A: Additional Information for NIR Calibration Model 
 
 

 

Table 10. Cross-Validation Report for the NIR Model Using 48 Samples 
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Continuation of Cross-Validation Report for the NIR Model Using 48 Samples 
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Continuation of Cross-Validation Report for the NIR Model Using 48 Samples 

                    

 

 

Table 11. Calibration Report for the NIR Model Using 48 Samples 
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Continuation of Calibration Report for the NIR Model Using 48 Samples 

 
 

 



 66 

Continuation of Calibration Report for the NIR Model Using 48 Samples 

 
 

 

 

Table 12. Cross-Validation Report for the NIR Model with No-Outliers 
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Continuation of Cross-Validation Report for the NIR Model with No-Outliers 
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Continuation of Cross-Validation Report for the NIR Model with No-Outliers 

 

 

 

 

Table 13. Calibration Report for the NIR Model with No-Outliers 
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Continuation of Calibration Report for the NIR Model with No-Outliers 
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Continuation of Calibration Report for the NIR Model with No-Outliers 

 
 

Table 14. Opus Software Specifications for NIR Acquisition of Spectra 

Acquisition Parameters 
Description Value 

Acquisition Mode Double Sided, Forward-Backward 
Correlation Test Mode No 

Delay Before Measurement 0 
Resolution 16 

Result Spectrum Absorbance 
Sample Scans 32 

Signal Gain, Background Automatic 
Signal Gain, Sample Automatic 
Stabilization Delay 0 

Wanted High Frequency Limit 15000 
Wanted Low Frequency Limit 0 

Fourier Transform Parameters 
Description Value 

Apodization Function Blackman-Harris 3-Term 
End Frequency Limit for File 4000 
Start Frequency Limit for File 12000 

Phase Resolution 128 
Phase Correction Mode Mertz 

Stored Phase Mode No 
Zero Filling Factor 2 

Optics Parameters 
Description Value 

Aperture Setting Open 
Measurement Channel Fiber 1 

Detector Setting 429 (InGaAs) 
Low Pass Filter 1 ; 10 KHz 

Preamplifier Gain 1 
Source Setting Tungsten (NIR) 

Scanner Velocity 6 ; 10.0 KHz 
Instrument Parameters 

Description Value 
High Folding Limit 15799.07 
Low Folding Limit 0 
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Continuation of  Opus Software Specifications for NIR Acquisition of Spectra 

Laser Wavenumber 15799.07 
Absolute Peak Pos in Laser*2 60718 

Sample Spacing Divisor 1 
Actual Signal Gain 8 

Switch Gain Position 763 
Gain Switch Window 250 

Scan time (sec) 13.25 
Peak Amplitude 3209 
Peak Location 1764 

Number of Good FW Scans 16 
Backward Peak Amplitude 3241 
Backward Peak Location 1790 

Number of Good BW Scans 16 
Instrument Type VECTOR22N 

Number of Sample Scans 32 
Number of Background Scans 32 

Running Sample Number 932 
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Appendix B: Additional Information for ANOVA Analysis 

 

Table 15. ANOVA Relations for Three Factor Factorial Design 

Source Sum of Squares Degrees of 
Freedom 

Mean Square F Value 
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Table 16. ANOVA Report for Full Mixed-Level Factorial Using All Factors 
 
 Response: Residual  
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares]  
  Sum of  Mean F  
 Source Squares DF Square Value Prob > F 
 Block 0.83 1 0.83 

Model 17.09 17 1.01 13.38 < 0.0001
 significant 

 A 0.74 1 0.74 9.84 0.0060 
 B 2.62 2 1.31 17.45 < 0.0001 
 C 5.57 2 2.79 37.07 < 0.0001 
 AB 0.26 2 0.13 1.75 0.2039 
 AC 4.25 2 2.12 28.26 < 0.0001 
 BC 3.10 4 0.78 10.32 0.0002 
 ABC 0.54 4 0.14 1.80 0.1749 

 Residual 1.28 17 0.075 
 Cor Total 19.20 35 
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Continuation of ANOVA Report for Full Mixed-Level Factorial Using All Factors  
 

    The Model F-value of 13.38 implies the model is significant.  There is only  
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, AC, BC are significant model terms.   
 Values greater than 0.1000 indicate the model terms are not significant.   
 If there are many insignificant model terms (not counting those required to support hierarchy),   
 model reduction may improve your model. 
 
 Std. Dev. 0.27  R-Squared 0.9304 
 Mean -1.11  Adj R-Squared 0.8609 
 C.V. -24.76  Pred R-Squared 0.6880 
 PRESS 5.73  Adeq Precision 11.720 
 
 The "Pred R-Squared" of 0.6880 is in reasonable agreement with the "Adj R-Squared" of 0.8609. 
 
 "Adeq Precision" measures the signal to noise ratio.  A ratio greater than 4 is desirable.  Your  
 ratio of 11.720 indicates an adequate signal.  This model can be used to navigate the design space. 
 
  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High
 VIF 
  Intercept -1.11 1 0.046 -1.20 -1.01 
  Lot 1 -0.15 1 
  Lot 2 0.15 

A-Mass Load -0.14 1 0.046 -0.24 -0.047
 1.00 

  B[1] -0.37 1 0.065 -0.51 -0.23 
  B[2] 0.10 1 0.065 -0.032 0.24 
  C[1] -0.34 1 0.065 -0.47 -0.20 
  C[2] 0.55 1 0.065 0.42 0.69 
  AB[1] 0.059 1 0.065 -0.077 0.20 
  AB[2] -0.12 1 0.065 -0.26 0.016 
  AC[1] -0.49 1 0.065 -0.62 -0.35 
  AC[2] 0.25 1 0.065 0.11 0.38 
  B[1]C[1] 0.31 1 0.091 0.11 0.50 
  B[2]C[1] 0.11 1 0.091 -0.088 0.30 
  B[1]C[2] 0.19 1 0.091 -2.542E-003 0.38 
  B[2]C[2] -0.19 1 0.091 -0.38 5.597E-003 
  AB[1]C[1] -0.085 1 0.091 -0.28 0.11 
  AB[2]C[1] -0.12 1 0.091 -0.32 0.070 
  AB[1]C[2] 0.14 1 0.091 -0.052 0.33 
  AB[2]C[2] 0.058 1 0.091 -0.13 0.25 

 
 

  Final Equation in Terms of Coded Factors: 
 

   Residual  = 
  -1.11 

  -0.14   * A 
  -0.37   * B[1] 
  +0.10   * B[2] 
  -0.34   * C[1] 
  +0.55   * C[2] 
  +0.059   * AB[1] 
  -0.12   * AB[2] 
  -0.49   * AC[1] 
  +0.25   * AC[2] 
  +0.31   * B[1]C[1] 
  +0.11   * B[2]C[1] 
  +0.19   * B[1]C[2] 
  -0.19   * B[2]C[2] 
  -0.085   * AB[1]C[1] 
  -0.12   * AB[2]C[1] 
  +0.14   * AB[1]C[2] 
  +0.058   * AB[2]C[2] 
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Continuation of ANOVA Report for Full Mixed-Level Factorial Using All Factors  
 

 Final Equation in Terms of Actual Factors:  
 
  Not available, because this model contains more than 12 categorical equations. 
 
   Diagnostics Case Statistics  
 Standard Actual Predicted         Outlier t Run  
 Order Value Value Residual    Leverage  Order 
 1 -0.80 -1.00 0.20 0.528  1.078  5 
 2 -0.90 -0.70 -0.20 0.528  -1.078 25 
 3 -2.29 -2.31 0.022 0.528  0.114 1 
 4 -2.03 -2.01 -0.022 0.528  -0.114 23 
 5 -0.39 -0.51 0.12 0.528  0.637 14 
 6 -0.33 -0.21 -0.12 0.528  -0.637 36 
 7 -2.10 -2.26 0.16 0.528  0.827 10 
 8 -2.11 -1.95 -0.16 0.528  -0.827 29 
 9 -1.30 -1.38 0.082 0.528  0.426 6 
 10 -1.16 -1.08 -0.082 0.528  -0.426 30 
 11 -1.92 -2.10 0.18 0.528  0.965 3 
 12 -1.98 -1.80 -0.18 0.528  -0.965 20 
 13 -1.09 -1.19 0.10 0.528  0.531 13 
 14 -0.99 -0.89 -0.10 0.528  -0.531 19 
 15 -0.55 -0.58 0.032 0.528  0.166 18 
 16 -0.31 -0.28 -0.032 0.528  -0.166 27 
 17 -0.64 -0.83 0.19 0.528  1.022 2 
 18 -0.72 -0.53 -0.19 0.528  -1.022 32 
 19 -1.15 -0.75 -0.40 0.528  -2.425 9 
 20 -0.040 -0.44 0.40 0.528  2.425 26 
 21 -0.39 -0.41 0.022 0.528  0.114 16 
 22 -0.13 -0.11 -0.022 0.528  -0.114 24 
 23 -0.43 -0.48 0.047 0.528  0.244 15 
 24 -0.22 -0.17 -0.047 0.528  -0.244 22 
 25 -2.71 -2.44 -0.27 0.528  -1.469 11 
 26 -1.87 -2.14 0.27 0.528  1.469 28 
 27 -2.32 -2.25 -0.073 0.528  -0.376 4 
 28 -1.87 -1.94 0.073 0.528  0.376 34 
 29 -1.78 -1.33 -0.45 0.528  -2.869 7 
 30 -0.57 -1.02 0.45 0.528  2.869 31 
 31 -1.12 -1.25 0.13 0.528  0.691 17 
 32 -1.08 -0.95 -0.13 0.528  -0.691 21 
 33 -0.99 -0.94 -0.048 0.528  -0.246 12 
 34 -0.59 -0.64 0.048 0.528  0.246 33 
 35 -0.70 -0.65 -0.053 0.528  -0.272 8 
 36 -0.29 -0.34 0.053 0.528  0.272 35 
  Note: Predicted values include block corrections. 

 

 

 

Table 17. ANOVA Report for Full Mixed-Level Factorial Using Only Significant Factors 
 
 Response: Residual  
         ANOVA for Selected Factorial Model 
 Analysis of variance table [Partial sum of squares]  
   Sum of  Mean F  
 Source  Squares DF Square Value Prob > F 
 Block 0.83 1 0.83 
 Model 16.29 11 1.48 16.35 < 0.0001
 significant 
 A 0.74 1 0.74 8.17 0.0089 
 B 2.62 2 1.31 14.48 < 0.0001 
 C 5.57 2 2.79 30.77 < 0.0001 
 AC 4.25 2 2.12 23.46 < 0.0001 
 BC 3.10 4 0.78 8.57 0.0002 
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Continuation of ANOVA Report for Full Mixed-Level Factorial Using Only Significant Factors 
 

    Residual 2.08 23 0.091 
  
    Cor Total 19.20 35 
 
 The Model F-value of 16.35 implies the model is significant.  There is only 
 a 0.01% chance that a "Model F-Value" this large could occur due to noise. 
 
 Values of "Prob > F" less than 0.0500 indicate model terms are significant.   
 In this case A, B, C, AC, BC are significant model terms.   
 Values greater than 0.1000 indicate the model terms are not significant.   
 If there are many insignificant model terms (not counting those required to support hierarchy),   
 model reduction may improve your model. 
 
 Std. Dev. 0.30  R-Squared 0.8866 
 Mean -1.11  Adj R-Squared 0.8324 
 C.V. -27.18  Pred R-Squared 0.7222 
 PRESS 5.10  Adeq Precision 13.292 
 
 The "Pred R-Squared" of 0.7222 is in reasonable agreement with the "Adj R-Squared" of 0.8324. 
 
 "Adeq Precision" measures the signal to noise ratio.  A ratio greater than 4 is desirable.  Your  
 ratio of 13.292 indicates an adequate signal.  This model can be used to navigate the design space. 
 
  Coefficient  Standard 95% CI 95% CI 
 Term Estimate DF Error Low High
 VIF 
  Intercept -1.11 1 0.050 -1.21 -1.00 
  Lot 1 -0.15 1 
  Lot 2 0.15 
  A-Mass Load -0.14 1 0.050 -0.25 -0.040
 1.00 
  B[1] -0.37 1 0.071 -0.52 -0.22 
  B[2] 0.10 1 0.071 -0.042 0.25 
  C[1] -0.34 1 0.071 -0.48 -0.19 
  C[2] 0.55 1 0.071 0.41 0.70 
  AC[1] -0.49 1 0.071 -0.63 -0.34 
  AC[2] 0.25 1 0.071 0.10 0.40 
  B[1]C[1] 0.31 1 0.10 0.10 0.52 
  B[2]C[1] 0.11 1 0.10 -0.10 0.31 
  B[1]C[2] 0.19 1 0.10 -0.017 0.40 
  B[2]C[2] -0.19 1 0.10 -0.39 0.020 
 
 
 
  Final Equation in Terms of Coded Factors: 
 
   Residual  = 
  -1.11 
  -0.14   * A 
  -0.37   * B[1] 
  +0.10   * B[2] 
  -0.34   * C[1] 
  +0.55   * C[2] 
  -0.49   * AC[1] 
  +0.25   * AC[2] 
  +0.31   * B[1]C[1] 
  +0.11   * B[2]C[1] 
  +0.19   * B[1]C[2] 
  -0.19   * B[2]C[2] 
 
  Final Equation in Terms of Actual Factors:  
 
  Not available, because this model contains more than 12 categorical equations. 
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Continuation of ANOVA Report for Full Mixed-Level Factorial Using Only Significant Factors 
 

 Diagnostics Case Statistics  
 Standard        Actual       Predicted                                        Outlier                   Run 
 Order             Value           Value                        Residual           Leverage               t       Order 
1 -0.80 -1.03 0.23 0.361  0.946 5 
2 -0.90 -0.72 -0.18 0.361  -0.726 25 
3 -2.29 -2.29 -3.611E-003 0.361  -0.015 1 
4 -2.03 -1.98 -0.048 0.361  -0.196 23 
5 -0.39 -0.76 0.37 0.361  1.567 14 
6 -0.33 -0.45 0.12 0.361  0.495 36 
7 -2.10 -2.01 -0.086 0.361  -0.351 10 
8 -2.11 -1.71 -0.40 0.361  -1.737 29 
9 -1.30 -1.11 -0.19 0.361  -0.770 6 
10 -1.16 -0.81 -0.35 0.361  -1.500 30 
11 -1.92 -2.37 0.45 0.361  1.994 3 
12 -1.98 -2.07 0.087 0.361  0.355 20 
13 -1.09 -0.99 -0.098 0.361  -0.399 13 
14 -0.99 -0.69 -0.30 0.361  -1.273 19 
15 -0.55 -0.78 0.23 0.361  0.964 18 
16 -0.31 -0.48 0.17 0.361  0.690 27 
17 -0.64 -0.89 0.25 0.361  1.062 2 
18 -0.72 -0.59 -0.13 0.361  -0.531 32 
19 -1.15 -0.68 -0.47 0.361  -2.068 9 
20 -0.040 -0.38 0.34 0.361  1.448 26 
21 -0.39 -0.55 0.16 0.361  0.656 16 
22 -0.13 -0.25 0.12 0.361  0.471 24 
23 -0.43 -0.34 -0.090 0.361  -0.368 15 
24 -0.22 -0.035 -0.18 0.361  -0.761 22 
25 -2.71 -2.44 -0.27 0.361  -1.134 11 
26 -1.87 -2.13 0.26 0.361  1.105 28 
27 -2.32 -2.25 -0.069 0.361  -0.283 4 
28 -1.87 -1.95 0.076 0.361  0.310 34 
29 -1.78 -1.38 -0.40 0.361  -1.715 7 
30 -0.57 -1.08 0.51 0.361  2.309 31 
31 -1.12 -1.20 0.076 0.361  0.308 17 
32 -1.08 -0.89 -0.19 0.361  -0.779 21 
33 -0.99 -0.89 -0.10 0.361  -0.413 12 
34 -0.59 -0.58 -5.556E-003 0.361  -0.023 33 
35 -0.70 -0.70 5.556E-004 0.361  0.002 8 
36 -0.29 -0.40 0.11 0.361  0.433 35 
  Note: Predicted values include block corrections. 
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Figure 25. Plot of the air flow vs. axial position interaction effect for the lowest level of mass load 
 
 

 
 

Figure 26. Plot of the air flow vs. axial position interaction effect for the highest level of mass load 
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Table 18. In-line and Static NIR Raw Moisture Data for Experimental Design 
 

Block or Lot 
Number 

1Treatment 
Combination 

In-line NIR 
Value (%) 

Static NIR 
Value (%) 

Static NIR 
Average 

(%) 

2Residual 

000 6.43 5.74 -0.80 
001 6.72 5.55 -1.09 
002 8.34 5.61 -2.71 
010 6.02 5.85 -0.39 
011 6.27 5.57 -0.64 
012 7.41 5.50 -1.78 
020 6.93 5.71 -1.30 
021 6.02 5.59 -0.39 
022 6.62 5.68 

5.63 

-0.99 
100 7.84 5.50 -2.29 
101 6.10 5.50 -0.55 
102 7.87 5.59 -2.32 
110 7.65 5.57 -2.10 
111 6.70 5.51 -1.15 
112 6.67 5.51 -1.12 
120 7.47 5.78 -1.92 
121 5.98 5.54 -0.43 

1 

122 6.25 5.49 

5.55 

-0.70 
000 6.73 5.88 -0.90 
001 6.82 6.01 -0.99 
002 7.70 5.72 -1.87 
010 6.16 5.80 -0.33 
011 6.55 5.74 -0.72 
012 6.40 5.84 -0.57 
020 6.99 5.95 -1.16 
021 5.96 6.02 -0.13 
022 6.42 5.70 

5.83 

-0.59 
100 7.83 5.68 -2.03 
101 6.11 5.76 -0.31 
102 7.67 5.95 -1.87 
110 7.91 5.75 -2.11 
111 5.84 5.77 -0.04 
112 6.88 5.84 -1.08 
120 7.78 5.84 -1.98 
121 6.02 5.74 -0.22 

 
 

2 

122 6.09 5.80 

5.80 

-0.29 
   1 The sample names are coded with the following sequence: the first number indicates the levels of mass load (0 = 0.5kg 
      and 1 = 1.5 kg). The same approached was taken for the second and third numbers that are the levels of air flow and  
      probe position, respectively. 
   2 The residuals shown here are the difference between the third and fifth columns.  The negative signs are due to the fact  
      that the static samples values were taken as the correct NIR prediction for the sample. 
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Appendix C: Additional Information for Application of Control 

 

 

Table 19. List of Equipments for the Instrumentation and Control Panel 

Softwares 

Equipment Manufacturer Quantity 

LabVIEW®  full version 6.0i National Instruments™ 1 

Process Pro® version 2.7 Bruker Optics™ 1 

Opus® version 4.0 Bruker Optics™ 1 

Hardware 

Equipment  Manufacturer Quantity 

Type J thermocouples transition probes  Omega™ Engineering Co. 3 

25 amp solid state relays model 
SSR240DC25 with heat sinks model FHS-2 

Omega™ Engineering Co. 2 

Pulse control module model PCM1 Omega™ Engineering Co. 1 

Multifuntion I/O board model PCI-6025E National Instruments™ 1 

16-channel backplane for signal conditioning 
series 5B model 776291-91 

National Instruments™ 1 

Thermocouple type J input module model 
5B47 

National Instruments™ 3 

Current input module model 5B32 National Instruments™ 1 

Current output module model 5B39 National Instruments™ 1 

Electromechanical relay block model CB-50 National Instruments™ 1 

Cable adapter model SC-2050 National Instruments™ 1 

Ribbon cable model NB1 National Instruments™ 1 

Ribbon cable model NB7 National Instruments™ 2 

Ribbon cable mo del NB8 National Instruments™ 1 

Dual channel 12-bit analog output board 
model CIO-DAC02 

Measurement Computing™ Co. 1 

25-pin D male type connector cable model 
DMCON-25 

Measurement Computing™ Co. 1 
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Figure 27. Process Pro graphical user interface 

 
  
 


