
IMPLEMENTATION OF A PHASED ARRAY
ANTENNA USING DIGITAL BEAMFORMING

by

Juan A. Torres-Rosario

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCES.
in

ELECTRICAL ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2005
Approved by:

Jose G. Colom-Ustáriz, Ph. D.
Member, Graduate Committee

Date

Rafael A. Rodríguez-Solís, Ph. D.
Member, Graduate Committee

Date

Shawn Hunt, Ph. D.
President, Graduate Committee

Date

Pedro Vazquez, Ph. D.
Representative of Graduate Studies

Date

Isidoro Couvertier, Ph. D.
Chairperson of the Department

Date

 ii

ABSTRACT

This work presents the design of a transmitter/receiver Digital Beamformer (DBF)

based on the mathematical model of a far-field plane wave incident on a sensor array.

Simulations of a DBF transmitter and receiver are performed to control the power pattern

of a 4-element linear array, a 16-element linear array and a 16-element rectangular array.

For each sensor array, two spatial filters were constructed with different pattern

requirements to demonstrate the operation of the DBF. An implementation of a DBF

transmitter was performed using a digital processing board containing a Virtex-II

XC2V6000 FPGA to control the radiation pattern of a Phased Array Antenna transmitter.

A 16-element patch antenna array and the RF front end were fabricated and its radiation

pattern was measured in an anechoic chamber to test the performance of the DBF

transmitter giving an error of less than 5 degrees in each angular direction of the main

beam’s angle-of-transmission.

 iii

RESUMEN

Este trabajo presenta el diseño de un “digital beamformer" (DBF) transmisor y

receptor basados en el modelo matemático de una onda plana que incide en un arreglo de

sensores. Simulaciones del DBF transmisor y receptor fueron realizadas para controlar el

patrón de radiación de tres arreglos con geometrías diferentes. Para cada arreglo de

sensores, dos filtros espaciales fueron construidos con requisitos específicos con el

propósito de demostrar el funcionamiento del DBF y comparar sus resultados con los

resultados obtenidos al calcular el patrón teóricamente. Una implementación del DBF

tipo transmisor fue realizada utilizando una tarjeta de procesamiento de datos con un

Virtex-II XC2V6000 FPGA para controlar el patrón de radiación de un arreglo de antenas

transmisor. Para implementar los componentes RF del arreglo de antenas se diseñaron y

construyeron un arreglo de parches con 16 elementos, una etapa de distribución para la

señal del oscilador local, y una etapa de mezclado y amplificación de potencia.

Finalmente, el patrón de radiación del arreglo de antenas fue medido utilizando una

cámara anecoica con el fin de mostrar el funcionamiento del DBF transmisor donde se

obtuvo patrones con menos de 5 grados de error en el ángulo de transmisión de su lóbulo

principal.

 iv

ACKNOWLEDGEMENTS

This section is written to recognize those who have helped me during my life to work

hard, and finish my work. To my God, my utmost thanks for giving me the courage and

strength to follow my dreams and achieve my goals. To my Family and Friends, thanks

for your unconditional love and support through all these years. Thanks to my advisor

Prof. Shawn Hunt and my research professor Prof. Rafael Rodriguez for giving me the

opportunity to research under your supervision and give me guidance through these years

as a graduate student. Also, a special thanks to other Prof. Jose Colom, Prof. Manuel

Jimenez and Prof. Domingo Rodriguez for your help during the course of my

investigation.

NSF CASA ERC, 0313747 and NSF ECS-0093650 provided the funding and the

resources for the development of this research.

“El principio de la sabiduría es el temor de Jehová…”, Proverbios 1:7

 v

Table of Contents

ABSTRACT ...II

RESUMEN ... III

ACKNOWLEDGEMENTS ... IV

TABLE OF CONTENTS...V

TABLE LIST ...VII

FIGURE LIST .. IX

1 INTRODUCTION ...14

2 THEORETICAL BACKGROUND ..20

2.1 ARRAY PROCESSING THEORY...20
2.1.1 Frequency-wavenumber Response and Beam Patterns...20
2.1.2 Delay-and-Sum Beamformer ...25
2.1.3 Narrowband Beamformer..26
2.1.4 Spatial Filter Design ...28

2.2 PHASED ARRAY ANTENNA IMPLEMENTATIONS ..33
2.3 DBF RECEIVER...35

2.3.1 Mathematical Model of DBF Receiver ..35
2.3.2 DBF Receiver Design ..43

2.4 DBF TRANSMITTER ..53
2.4.1 Mathematical Model of DBF Transmitter ...53
2.4.2 DBF Transmitter Design ...58

3 SIMULATION AND IMPLEMENTATION RESULTS ..64

3.1 4-ELEMENT LINEAR PAA RECEIVER PROTOTYPE ...65
3.1.1 First Spatial Filter Example: Beam pattern with Uniform Amplitude Weight Function
pointing to θMRA = 45º..70
3.1.2 Second Spatial Filter Example: Synthesized Beam pattern using Schlkunoff polynomial null-
placement method ..77
3.1.3 Beam pattern Granularity for 4-element linear PAA ..84

3.2 16-ELEMENT LINEAR PAA TRANSMITTER PROTOTYPE ..87
3.2.1 First Spatial Filter Example: Beam pattern with Taylor Amplitude Weight Function pointing
to θMRA = 60º..92
3.2.2 Second Spatial Filter Example: Beam pattern with Blackman-Harris Amplitude Weight
Function pointing to θMRA = 82º ..100
3.2.3 Beam pattern Granularity for 16-element linear PAA ..107

3.3 16-ELEMENT RECTANGULAR PAA TRANSMITTER PROTOTYPE..110

 vi

3.3.1 First Spatial Filter Example: Beam pattern with Uniform Amplitude Weight Function
pointing to φMRA = 0º and θMRA = 30º ..111
3.3.2 Second Spatial Filter Example: Beam pattern with Dolph-Chebyshev Amplitude Weight
Function pointing to φMRA = 122º and θMRA = 16º ...120
3.3.3 Beam pattern Granularity for 16-element rectangular PAA ...130

3.4 16-ELEMENT RECTANGULAR PAA TRANSMITTER ..132
3.4.1 DBF Transmitter ...134
3.4.2 RF Up-Conversion Stage...140
3.4.3 Rectangular Patch Antenna Array...155
3.4.4 PAA Measurement Results...161

4 CONCLUSIONS AND FUTURE WORK ..169

4.1 CONCLUSIONS ...169
4.2 FUTURE WORK...171

APPENDIX A. MATLAB CODE FILES..178

 vii

Table List

Tables Page

TABLE 3.1 4-element linear PAA parameters ... 65
TABLE 3.2 Parameters of the DBF receiver’s components... 69
TABLE 3.3 First Spatial Filter Weight Coefficients – Theoretical Weights.................... 73
TABLE 3.4 First Spatial Filter Weight Coefficients – FPGA Weights............................ 74
TABLE 3.5 First Spatial Filter Beam pattern Characteristics for a 4-element linear PAA

... 76
TABLE 3.6 Second Spatial Filter Weight Coefficients – Theoretical Weights 79
TABLE 3.7 Second Spatial Filter Weight Coefficients – FPGA Weights 80
TABLE 3.8 Second Spatial Filter Beam pattern Characteristics for a 4-element linear

PAA... 82
TABLE 3.9 16-element linear PAA parameters ... 87
TABLE 3.10 Parameters of the DBF transmitter’s components 90
TABLE 3.11 First Spatial Filter Weight Coefficients – Theoretical Weights.................. 93
TABLE 3.12 First Spatial Filter Weight Coefficients – FPGA Weights.......................... 96
TABLE 3.13 First Spatial Filter Beam pattern Characteristics for a 16-element linear

PAA... 99
TABLE 3.14 Second Spatial Filter Weight Coefficients – Theoretical Weights 101
TABLE 3.15 Second Spatial Filter Weight Coefficients – FPGA Weights 104
TABLE 3.16 Second Spatial Filter Beam pattern Characteristics for a 16-element linear

PAA... 106
TABLE 3.17 16-element rectangular PAA parameters .. 110
TABLE 3.18 First Spatial Filter Weight Coefficients for 16-element rectangular PAA –

Theoretical Weights .. 113
TABLE 3.19 First Spatial Filter Weight Coefficients for 16-element rectangular PAA –

FPGA Weights .. 116
TABLE 3.20 First Spatial Filter Beam pattern Characteristics for a 16-element

rectangular PAA.. 118
TABLE 3.21 Second Spatial Filter Weight Coefficients for 16-element rectangular PAA

– Theoretical Weights ... 123
TABLE 3.22 Second Spatial Filter Weight Coefficients for 16-element rectangular PAA

– FPGA Weights... 126
TABLE 3.23 Second Spatial Filter Beam pattern Characteristics for a 16-element

rectangular PAA.. 130
TABLE 3.24 Ideal System Requirements for PAA transmitter...................................... 133
TABLE 3.25 Relationship between bit structure of custom register and DBF transmitter

weight parameters ... 139

 viii

TABLE 3.26 Parameters of the Power Divider circuit ... 148
TABLE 3.27 S-Parameters for Constructed Power Divider Network Circuits at 5.85 GHz

... 152
TABLE 3.28 Power Gain of each PAA channel in the second circuit 155
TABLE 3.29 Parameters of the Rectangular Patch Array .. 155

 ix

Figure List

Figures Page

Figure 2.1 Diagram of an N-element sensor array receiving a plane wave signal f(t,p)
coming from the far-field.. 21

Figure 2.2 Diagram of a Delay-and-Sum Beamformer .. 25
Figure 2.3 Diagram of Narrowband Beamformer... 28
Figure 2.4 Diagram of PAA using an RF Beamformer .. 34
Figure 2.5 Diagram of a PAA using a Digital Beamformer ... 35
Figure 2.6 Block diagram (including equations) of RF Modulator and DDC.................. 40
Figure 2.7 Block diagram of CWM phase.. 42
Figure 2.8 Architecture of CIC Decimation Filter.. 48
Figure 2.9 Power Response of a CIC Filter with the following parameters: N = 8, M = 1,

R = 10.. 49
Figure 2.10 Design of a DDC for a DBF Receiver... 51
Figure 2.11 Design of CWM for a DBF Receiver .. 52
Figure 2.12 Block Diagram (with equations) of CWM and DUC for a DBF Transmitter56
Figure 2.13 Design of CWM for a DBF Transmitter.. 59
Figure 2.14 Architecture of CIC Interpolation Filter.. 61
Figure 2.15 Design of DUC for a DBF Transmitter ... 62
Figure 3.1 Diagram of a simulated 4-element DBF receiver.. 67
Figure 3.2 Diagram of simulated DDC (3.2a) and CWM (3.2b) stage in DBF receiver.. 68
Figure 3.3 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF pointing at

θMRA = 45º.. 71
Figure 3.4 Rectangular plot of Beam pattern Magnitude of a 4-element linear DBF

pointing at θMRA = 45º ... 72
Figure 3.5 Time plots for plane wave signals with the angle of arrival changing from 90º

to 0º for first spatial filter on 4-element linear DBF... 74
Figure 3.6 Time plots for plane wave signals with the angle of arrival changing from 90º

to 180º for first spatial filter on 4-element linear DBF... 75
Figure 3.7 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF Simulation

pointing at θMRA = 45º ... 76
Figure 3.8 Rectangular plot of Beam pattern Magnitude of a 4-element linear DBF

pointing at θMRA = 45º ... 77
Figure 3.9 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF with beam

pattern nulls placed at 30º, 60º, and 100º.. 79
Figure 3.10 Rectangular Plot of Beam pattern Magnitude of a 4-element linear DBF with

beam pattern nulls placed at 30º, 60º, and 100º .. 79

 x

Figure 3.11 Time plots for plane wave signals with the angle of arrival changing from 90º
to 0º for second spatial filter on 4-element linear DBF .. 80

Figure 3.12 Time plots for plane wave signals with the angle of arrival changing from 90º
to 180º for second spatial filter on 4-element linear DBF .. 81

Figure 3.13 Polar Plot of Beam pattern Magnitude of a simulated 4-element linear DBF
with beam pattern nulls placed at 30º, 60º, and 100º .. 82

Figure 3.14 Rectangular Plot of Beam pattern Magnitude of a simulated 4-element linear
DBF with beam pattern nulls placed at 30º, 60º, and 100º 83

Figure 3.15 Beam pattern Granularity Plot for a 4-element linear DBF with 8 bits of
resolution on the weight coefficient’s phase... 85

Figure 3.16 Beam pattern Granularity Plot for a 4-element linear DBF with 4 bits of
resolution on the weight coefficient’s phase... 86

Figure 3.17 Beam pattern Granularity Plot for a 4-element linear DBF with 16 bits of
resolution on the weight coefficient’s phase... 86

Figure 3.18 Diagram of the simulated 16-element linear DBF transmitter 88
Figure 3.19 Diagram of the DUC (3.19a) and CWM (3.19b) of the simulated DBF

transmitter ... 90
Figure 3.20 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF with Taylor

Amplitude Distribution pointing at θMRA = 60º. .. 94
Figure 3.21 Rectangular Plot of Beam pattern Magnitude of a 4-element linear DBF with

Taylor Amplitude Distribution pointing at θMRA = 60º ...95
Figure 3.22 Signal Plots of 4 of the 16-elements in the linear DBF transmitter for first

spatial filter simulation ... 97
Figure 3.23 Polar Plot of Beam pattern Magnitude of a simulated 4-element linear DBF

with Taylor Amplitude Distribution pointing at θMRA = 60º 98
Figure 3.24 Rectangular Plot of Beam pattern Magnitude of a simulated 4-element linear

DBF with Taylor Amplitude Distribution pointing at θMRA = 60º 99
Figure 3.25 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF with

Blackmann-Harris Amplitude Distribution pointing at θMRA = 82º 102
Figure 3.26 Rectangular Plot of Beam pattern Magnitude of a 4-element linear DBF with

Blackmann-Harris Amplitude Distribution pointing at θMRA = 82º 103
Figure 3.27 Signal Plots of 4 of the 16-elements in the linear DBF transmitter for second

spatial filter simulation ... 104
Figure 3.28 Polar Plot of Beam pattern Magnitude of simulated 4-element linear DBF

with Blackmann-Harris Amplitude Distribution pointing at θMRA = 82º 106
Figure 3.29 Rectangular Plot of Beam pattern Magnitude of simulated 4-element linear

DBF with Blackmann-Harris Amplitude Distribution pointing at θMRA = 82º 107
Figure 3.30 Beam pattern Granularity Plot for a 16-element linear DBF with 8 bits of

resolution on the weight coefficient’s phase... 108
Figure 3.31 Beam pattern Granularity Plot for a 16-element linear DBF with 4 bits of

resolution on the weight coefficient’s phase... 109

 xi

Figure 3.32 Beam pattern Granularity Plot for a 16-element linear DBF with 16 bits of
resolution on the weight coefficient’s phase... 109

Figure 3.33 Top View Polar Plot of Beam pattern Magnitude of 16-element rectangular
DBF with Uniform Amplitude Distribution pointing at φMRA = 0º and θMRA = 30º 114

Figure 3.34 Rectangular Plots of Beam pattern Magnitude of 16-element rectangular DBF
with Uniform Amplitude Distribution pointing at φMRA = 82º and θMRA = 0º for Plane
cut on φ = 0º and φ = 45º .. 114

Figure 3.35 Surf Plot of Beam pattern Magnitude of 16-element rectangular DBF with
Uniform Amplitude Distribution pointing at φMRA = 0º and θMRA = 30º 115

Figure 3.36 Signal Plots of 4 of the 16-elements in the rectangular DBF transmitter for
first spatial filter simulation.. 117

Figure 3.37 Top View Polar Plot of Beam pattern Magnitude of simulated 16-element
rectangular DBF with Uniform Amplitude Distribution pointing at φMRA = 0º and
θMRA = 30º.. 119

Figure 3.38 Rectangular Plots of Beam pattern Magnitude of simulated 16-element
rectangular DBF with Uniform Amplitude Distribution pointing at φMRA = 0º and
θMRA = 30º for Plane cut on φ = 0º and φ = 45º... 119

Figure 3.39 Surf Plot of Beam pattern Magnitude of simulated 16-element rectangular
DBF with Uniform Amplitude Distribution pointing at φMRA = 0º and θMRA = 30º 120

Figure 3.40 Top View Polar Plot of Beam pattern Magnitude of 16-element rectangular
DBF with Dolph-Chebyshev Amplitude Distribution pointing at φMRA = 122º and
θMRA = 16º.. 124

Figure 3.41 Rectangular Plots of Beam pattern Magnitude of 16-element rectangular DBF
with Dolph-Chebyshev Amplitude Distribution pointing at φMRA = 122º and θMRA =
16º for Plane cut on φ = 122º and φ = 302º .. 125

Figure 3.42 Surf Plot of Beam pattern Magnitude of 16-element rectangular DBF with
Dolph-Chebyshev Amplitude Distribution pointing at φMRA = 122º and θMRA = 16º
... 125

Figure 3.43 Signal Plots of 4 of the 16-elements in the rectangular DBF transmitter for
second spatial filter simulation ... 127

Figure 3.44 Top View Polar Plot of Beam pattern Magnitude of simulated 16-element
rectangular DBF with Dolph-Chebyshev Amplitude Distribution pointing at φMRA =
122º and θMRA = 16º... 128

Figure 3.45 Rectangular Plots of Beam pattern Magnitude of simulated 16-element
rectangular DBF with Dolph-Chebyshev Amplitude Distribution pointing at φMRA =
122º and θMRA = 16º for Plane cut on φ = 122º and φ = 302º.................................. 129

Figure 3.46 Surf Plot of Beam pattern Magnitude of simulated 16-element rectangular
DBF with Dolph-Chebyshev Amplitude Distribution pointing at φMRA = 122º and
θMRA = 16º.. 129

Figure 3.47 Beam pattern Granularity Surf Plot for a 16-element rectangular DBF with 8
bits of resolution on the weight coefficient’s phase.. 131

 xii

Figure 3.48 Beam pattern Granularity Rectangular Plots for a 16-element rectangular
DBF with 8 bits of resolution on the weight coefficient’s phase for Plane cut on φ =
38º and φ = 208º.. 132

Figure 3.49 Picture of VHS-DAC High-Speed Multichannel Development Platform... 135
Figure 3.50 Simulink Diagram of CIM... 137
Figure 3.51 Diagram of input ports and one of the 16 channels in the CIM 138
Figure 3.52 Diagram of Power Divider Network Circuit ... 142
Figure 3.53 Layout of RF-Choke Circuit.. 143
Figure 3.54 Magnitude of S-Parameters S(1,1) and S(2,1) for Simulated Bias-T Circuit

... 144
Figure 3.55 Magnitude of S-Parameters for Simulated Power Divider Network........... 145
Figure 3.56 Phase of S-Parameters S(2,1), S(3,1), S(4,1), and S(5,1) for Simulated

Wilkinson Power Divider ... 146
Figure 3.57 Layout of Power Divider circuit.. 147
Figure 3.58 Picture of the Power Divider circuit.. 148
Figure 3.59 Magnitude of S(1,1) for all constructed Power Divider circuits 150
Figure 3.60 Magnitude of S(2,1), S(3,1), S(4,1), and S(5,1) for all constructed Power

Divider circuits.. 151
Figure 3.61 Phase of S(2,1), S(3,1), S(4,1), and S(5,1) for all constructed Power Divider

circuits... 151
Figure 3.62 Layout of Mixer and Power Amplifier Circuit.. 154
Figure 3.63 Picture of Mixer and Power Amplifier Circuit.. 154
Figure 3.64 Magnitude of S(1,1) for antennas in Rectangular Patch Array 157
Figure 3.65 Magnitude of E-Field for antennas in Rectangular Patch Array on Plane Cut

of φ = 0º and φ = 90º... 158
Figure 3.66 Magnitude of E-Field Components Ex and Ey... 158
Figure 3.67 Layout of Rectangular Patch Antenna Array .. 159
Figure 3.68 Picture of Rectangular Patch Antenna Array .. 160
Figure 3.69 Magnitude of S(1,1) for antennas in constructed Rectangular Patch Antenna

Array ... 161
Figure 3.70 Simulated Top-View Polar Beam pattern Plot of the 16-element patch

rectangular array with the LO Feed Network ... 162
Figure 3.71 Measured Top-View Polar Beam pattern Plot of the 16-element patch

rectangular array with the LO Feed Network ... 163
Figure 3.72 Picture of the PAA Transmitter... 164
Figure 3.73 Simulated Top-View Polar Beam pattern Plot of Constructed PAA

Transmitter.. 164
Figure 3.74 Measured Top-View Beam pattern Plot of Constructed PAA Transmitter. 165
Figure 3.75 Simulated Top-View Beam pattern Plot of PAA Transmitter with Uniform

Amplitude Distribution pointing at φMRA = 0º and θMRA = 30º............................... 166
Figure 3.76 Measured Top-View Beam pattern Plot of PAA Transmitter with Uniform

Amplitude Distribution pointing at φMRA = 0º and θMRA = 30º............................... 167

 xiii

Figure 3.77 Simulated Surf Plot of Beam pattern Magnitude for a PAA Transmitter with
Uniform Amplitude Distribution pointing at φMRA = 0º and θMRA = 30º................ 167

Figure 3.78 Measured Surf Plot of Beam pattern Magnitude for a PAA Transmitter with
Uniform Amplitude Distribution pointing at φMRA = 0º and θMRA = 30º................ 168

Figure 4.1 Diagram of PAA with single MRA beam and steering capability 173

 xiv

1 INTRODUCTION

Phased array antennas are known for their capability to steer the beam pattern

electronically with high effectiveness, managing to get minimal side-lobe levels and

narrow beamwidths. Implementations beginning during the 1950s depended largely on

microwave circuitry components such as phase shifters, and variable amplifiers. To

achieve performance specifications such as narrow beamwidth or considerable scanning

range with high angle resolution, a large number of antenna elements were needed to

construct the array. The use of these microwave components in large quantities pose

numerous obstacles to good performance and complicate the maintenance process of the

phased array antenna.

 Phase shifters, which are used in great quantities in a phased array antenna, have

high power consumption. This might be perceived as a decrease in the gain of the phased

antenna array. Another problem with phase shifters and their intrinsic tolerance of a

phase shift value. The progressive phase shift between each phase shifter needs to be

equal for all phase shifters in order to achieve a defined beam to fulfill antenna

specifications. In order to achieve constant phase progression between phase shifters,

every phase shifter in a phased array antenna needs to be calibrated. The calibration

process is done after the array has been fabricated to ensure the correction of all the

effects of phase and amplitude errors in the excitation. This calibration process tends to

 15

complicate the integration process of a communication system using a large phased array

antenna. Also, since the phase shifter has inherent variations in its operation due to

temperature, time, mechanical vibrations, etc., repetition of this calibration process may

be needed over time.

An alternative approach in the design of a phased array antenna is to use digital

beamforming. Digital beamforming consists of the spatial filtering of a signal where the

phase shifting, amplitude scaling, and adding are implemented digitally. The idea is to

use a computational and programmable environment which processes a signal in the

digital domain to control the progressive phase shift between each antenna element in the

array. Digital beamforming has many of the advantages a digital computational

environment has over its analog counterpart. In most cases, less power is needed to

perform the beam steering of the phased array antenna. Another advantage is the

reduction of variations associated with time, temperature, and other environmental

changes found in analog devices. The phased array antenna will still contain analog

components such as Low Noise Amplifiers (LNAs) and Power Amplifiers (PA) found in

the RF stages, but the number of analog components in general can be greatly reduced for

large antenna arrays. Finally, an important reason which favors the use of a digital

beamformer on a phased array antenna is its versatility. Digital beamformers can

accomplish minimization of side-lobe levels, interference canceling and multiple beam

operation without changing the physical architecture of the phased array antenna. Every

 16

mode of operation of the digital beamformer is created and controlled by means of code

written on a programmable device of the digital beamformer.

In the beginning of the 1980s, advancement in digital circuitry technology made

possible and feasible the idea of implementing the beamforming networks through digital

signal processing. Digital Beamforming (DBF) offers advantages in terms of power

consumption, flexibility, and accuracy. In general, digital systems tend to consume less

power in computation operations and have programmable interface adding versatility to

the system. Steyskal stated advantages in DBF implementation such as improved

adaptive pattern nulling, superresolution, array element pattern correction, self calibration,

and radar power and time management [Steyskal, 1988]. Experimental DBF systems have

been built since then to improve the antenna performance for system-level environments.

In the 1998, Simonangeli developed a testbed of a C band 32-element dipole DBF array

[Simonangeli, 1988]. At the same time, the study of efficient beamforming algorithms

paved the way for flexible and versatility in DBF designs [Mucci, 1984].

Phased array antenna designs based on DBF implementation are currently being

devised for radar applications. Currently, the Netherlands Foundation for Research in

Astronomy (NFRA) is working on the creation of a radio telescope based on the phased

array antenna principle [Hiemstra, 2000]. The project is called the Square Kilometer

Array (SKA). The radio telescope will consist of 32 array antennas stations. It will cover

 17

an area of a square kilometer with a frequency range from 200 MHz to 2 GHz. A series

of four feasibility stages of four different array antennas are been developed for research

and development purposes. In the two final array antennas, DBF will be implemented

with a multi-processor computational environment. The DBF will consist of a processing

board containing FPGAs and a DSP. For the third array antenna called Thousand Element

Array (THEA), a group of six FPGAs will be used to process the signal. The DSP will be

used to implement an adaptive algorithm based on Minimum Variance (MV) to calculate

the beamformer’s weigth coefficients [Alliot, 2000]. The signal will have a bandwidth of

20 MHz.

Finally, phased array antennas have been used largely in communication systems.

Their capability to change radiation pattern electronically, multi-beam capacity and high

spatial resolution has made them attractive for mobile communication applications.

Miura [Miura, 1997] worked with a DBF Multibeam Antenna for mobile satellite

communication. The DBF consisted on a 4 x 4 ring patch array which received a signal

with a carrier frequency of 1542.5 MHz and a bandwidth of 11 kHz. The spatial filtering

was performed using a DSP board of ten FPGAs. An adaptive beamforming algorithm

called constant modulus algorithm (CMA) was used to perform the satellite tracking. To

achieve multibeam operation, an FFT beamformer was implemented in conjunction with

Multibeam selector, which decides the beam with the strongest receiving power to

receive the arriving signal. Dreher [Dreher, 1999, 2003] worked with a planar DBF for

 18

satellite navigation. The antenna array, a 5 x 5 aperture coupled patch array, was

designed to receive a signal with a carrier frequency of 5.15 GHz and a bandwidth of 16

MHz. The RF-signal is processed through an Intermediate Frequency (IF) network,

digitized using a sub-sampling mechanism with a 40 Msps 10-bit ADC converters,

modulated to baseband with DDC, and the actual beamforming is performed by a PC.

The data transfer between the IF networks and the PC was done via the IEEE 488

standard bus. The calculation of the weights of the spatial filter was made using

Schelkunnoff’s method, where the radiation patterns’ nulls are located at detected

interfering signals.

In the next chapter of this thesis, a theoretical background of array signal processing

is presented. The chapter describes the mathematical model of the DBF receiver and

transmitter based on the behavior of a far-field plane wave traveling along a

homogeneous medium and incident on an array of sensor. Detailed designs of the DBF

receiver and transmitter are then derived, based on their mathematical model, with the

goal of reducing the mathematical operational complexity of each DBF stage. In chapter

3, different spatial filters are designed as examples to satisfy certain requirements in the

beam pattern of three different antenna arrays. A digital computational environment was

programmed to corroborate the simplified DBF transmitter design presented in this thesis.

Also, the rectangular patch antenna and two microwave circuits were simulated and

tested to verify their performance on a 16-element rectangular PAA. Finally, the last

 19

chapter presents concluding remarks about the results obtained in each stage of the PAA

and recommendations are suggested to improve the performance and decrease the

complexity of a PAA.

 20

2 THEORETICAL BACKGROUND

2.1 Array Processing Theory

2.1.1 Frequency-wavenumber Response and Beam Patterns

An array of sensors can be organized in any form in space, where the position of each

sensor can be described by a coordinate p = (px, py, pz). If a plane wave signal f(t,p) is

arriving at a particular point in space, and the position each sensor in space is different,

the signal received by each sensor will be the same original signal with a time-delay,

depending on the position of the sensor. The following vector can be used to describe the

signal received by each sensor:

 ()

0

1

1

0

1

1

() ()

() ()
, ,

()()
N

p

p

Np

f t f t

f t f t
f t

f tf t

τ
τ

τ
− −

 −
 − = =
 −

��
p 2.1

where N is the number of elements in the array and τi is a time-delay associated with the

position of the element. Figure 1 shows an arbitrary N-element sensor array.

 21

Figure 2.1 Diagram of an N-element sensor array receiving a plane wave

signal f(t,p) coming from the far-field

If the signal f(t,p) generated in space is a far-field planar wave, the equation to describe

each signal in the sensor array reduces to:

()

()

()

()

0

1

1

()

(), ,

()

T

T

T
N

j wt k p

j wt k p

n

j wt k p

f t e

f t ef t p

f t e
−

−

−

−

 =

� 2.2

 22

where k represents the wavenumber, w is the frequency of the plane wave, t is a variable

representing the time, and j is 1− . The wavenumber k and the position of each sensor

p can be represented in the following form:

sin cos
2 sin sin , ,

cos

x

y

z

p

k p p

p

θ φ
π θ φλ

θ

 = =

 2.3

where λ represents the wavelength, and θ and φ represent the angle of arrival of the

incoming wave. If the Fourier Transform is applied to the incoming signal in each sensor,

the signal in the spectral domain can be represented as:

() ()

() ()

() ()

() ()

() ()

0

0

1 1

1
1

, , ().

T

T

T T

T
NT

N

j wt k p jwt
jk p

j wt k p jk pjwt
jwt

n n

jk p
j wt k p jwt

f t e e dt
e

ef t e e dtF w p f t p e dt F w F w v k

e
f t e e dt

−
−

− −
−

− −−
−

−
− −

 = = = =

∫

∫∫

∫

��

 2.4

The resulting vector v(k) is usually described in literature as the array manifold vector

[Van Trees, 2002] and it gives a representation of the position of each sensor with respect

to the incidence angle of an incoming plane wave. The incoming signal can be acquired if

each sensor is considered a discrete sample in space. The resulting signal can be

considered a superposition of all the sensor signals:

() ()
1

0

.
N

l
l

B k v k
−

=

=∑ 2.5

 23

If a series of weights are applied to the output of each sensor and superposition is applied

to acquire the incoming plane wave coming from the far-field, the equation for B(k) then

reduces to:

() ()

()
()

()

()
0 1 1

0

1
1* * * *

0

1

.
l N

N
H

l
l

N

v k

v k
B k w v k w w w w v k

v k

−

−

=

−

 = = =

∑ �
�

 2.6

B(k) is the value of the beam pattern at a particular position in space. Frequently, in

Antenna Theory, it is easier to visualize the pattern in terms of angle of incidence

between the source of the signal and a point in space. Thus, the following change of

variables can be made to show B(k) in terms of the angle of incidence:

 () () []2 sin cos sin sin cos
, .T

k
B B k π θ φ θ φ θλ

θ φ
=

= 2.7

 If the geometry of the sensors can be described using a mathematical equation for

the variables of the position, the array manifold vector equation can be simplified. In this

thesis, two antenna array geometries will be presented: a uniform linear antenna array and

a uniform rectangular antenna array. For a uniform linear array, which is a linear array

were the space between elements of the array is the same throughout the array, the

position of each sensor can be described in the following form:

 24

0 0

0 0 ,

1

2

n

zn

p

p N
n z

 = = − − ∆

 2.8

where ∆z is the spacing between the sensors in the z axis. For a uniform rectangular array,

the position of each sensor can be described in the following form:

1

2

1
,

2
0

0

xn

n yn

L
l x

p
M

p p m y

 − − ∆

 − = = − ∆

 2.9

where L and M are the number of elements in the x and y axis respectively and ∆x and ∆y

are the spacing between the sensors in the x and y axis respectively. The number of

elements N in a rectangular array is given by L*M. The mathematical description of the

position of each sensor in the previous arrays has been developed to satisfy center of

gravity at the origin:

1

0

0.
N

n
n

p
−

=

=∑ 2.10

The inter-element spacing in each axis of any array is adjusted to avoid a

phenomenon known in antenna literature as grating lobe, which is the aliasing of a

wavenumber occurring from the under sampling in space of a time-space signal. All the

 25

arrays described in this work will have inter-element spacing of 0.5λ in each axis, where

λ is the wavelength of the carrier wave received by the array.

2.1.2 Delay-and-Sum Beamformer

If each sensor in the array receives a signal f(t) with a particular time-delay τ,

recovery of the signal can be performed by means of linear processing. In this case, the

filter for each channel n would be a time-delay τn associated with the channel. After all

the space samples are aligned in time, they can be added to recover f(t). It is important to

consider that a scaling by 1/N has to be applied to the resulting signal since adding the

output of each processed channel would give a result of N*f(t). Figure 2 shows a system

illustration of the Delay-and-Sum Beamformer.

Figure 2.2 Diagram of a Delay-and-Sum Beamformer

 26

2.1.3 Narrowband Beamformer

A general characterization of the signal f(t,p), where a bandpass signal is used to

transmit information, can be described in the following form:

(){ }(,) 2 Re , , 0, , 1,cjw t
n nf t f t e n N= = −� …p p 2.11

where wc is the carrier frequency and (), nf t� p is the complex envelope [Van Trees]. If

the signal f(t,p) is a plane-wave, the equation (2.11) can be simplified to:

() (){ }(,) 2 Re , 0, , 1,c njw t
n nf t f t e n Nττ −= − = −� …p 2.12

where τn is given by:

.
T

n
n

c

k p

w
τ ⋅= 2.13

An important parameter in the design of an array ismaxT∆ , which is the maximum

travel time of a plane wave between any two elements of the array. If the mathematical

description of the position of the elements of the array satisfies (2.10) then:

, 0, , 1.n maxT n Nτ ≤ ∆ = −… 2.14

A signal f(t,p), which has a complex envelope (), nf t� p with a bandwidth Bs, received by

an array with a maxT∆ is defined as a narrowband signal if the following condition is

satisfied:

1.max sT B∆ ⋅ � 2.15

 27

When the signal f(t,p) is considered a narrowband signal, a suitable and convenient

approximation can be used on the complex envelope:

() () , 0, , 1.nf t f t n Nτ− = −� �� … 2.16

This approximation modifies the mathematical representation of f(t,p) into:

() (){ }
(){ }

(,) 2 Re , 0, , 1

2 Re .

c n

c c n

jw t
n

jw t jw

f t f t e n N

f t e e

τ

τ

−

−

= = −

=

� …

�

p
 2.17

From this simplification, it can be seen that the delay lines associated with τn can be

replaced with a phase shift c njwe τ−
. An array which uses phase shifts to approximate the

delay lines to process a narrowband space-time signal is known as a phased array. For a

uniform array, a progressive phase shift can be used to steer the main response axis

(MRA), which is the direction where the beam pattern has its maximum absolute value,

to any desired value. If additional requirements are imposed on the beam pattern of an

array, such as a particular sidelobe level, minimum half-power beamwidth, and null

placement, the amplitude of each sensor in the array needs to be adjusted. This leads to a

beamformer configuration where the resulting signal becomes a linear combination of the

received or transmitted signals and each sensor signal has a complex weight w*
n,

described in (2.6), which controls the MRA and the beam pattern characteristics of the

array. A diagram of the narrowband beamformer model is shown in Figure 2.3.

 28

Figure 2.3 Diagram of Narrowband Beamformer

2.1.4 Spatial Filter Design

The beam pattern response of a sensor array is the inner product of the array

manifold vector and the weights associated with each sensor. If the structure of the beam

pattern response calculation is analyzed, it can be seen that the beam pattern response is a

spatial filter. A spatial filter discriminates between planes waves coming from different

locations in space, where the angle of incidence of the plane wave is related to a spatial

frequency. Thus, for a particular sensor geometrical distribution, the weight vector

characterizes the radiation pattern response of the sensor array. Such characterization is

made by defining design constraints such as beamwidth of the MRA, sidelobe level

 29

behavior, null pattern placement, null-to-null beamwidth, etc. the same way a filter in the

time domain characterizes a frequency response. For example, the beamwidth of the

MRA defines the half-power angular difference near the maximum radiation intensity

point in the beam pattern, similar to the passband frequency difference found in time

series analysis. As for sidelobe level behavior, the sidelobe level defines the power level

of the sidelobes with respect to the main lobe, analogous to the passband to stopband

power difference found in the spectral representation of a time series. Although filter

design is important in the radation pattern response of an antenna array, array geometry

may impose limitations on some desirable beam pattern response characteristics.

Analogous to choosing an appropriate sampling frequency in the time domain, spatial

sampling selection, which is determined by the geometrical distribution and size of the

array, determines some beam pattern response characteristics.

The process of obtaining a geometrical distribution and the coefficients for the

weight vector for a beam pattern response is called beam pattern synthesis. In Antenna

Theory, the radiation pattern response is constructed based on a realization of an

analytical or desired model by an antenna model [Balanis, 1997]. The classification of

beam pattern synthesis techniques are based on three beam pattern design constraints:

null placement, beam shaping, and beamwidth-sidelobe behavior. Null placement

synthesis consists of determining the coefficients of the weight vector based on the

position of nulls in the radiation pattern response of the sensor array. A popular null

 30

placement synthesis technique is the Schelkunoff polynomial method. This method

derives the weight coefficients of the array based on the root placement of a complex

polynomial, which is derived form the beam pattern response equation (Eq. 2.6). In beam

shaping synthesis, the weight vector is calculated based on a specified beam pattern

response sampled at discrete wavenumber values. Classic antenna pattern synthesis

methods included in this category are the Woodward-Lawson method, the Fourier

Transform method and the z-transform method.

The last category of beam pattern synthesis based on spatial response design

constraints is the beamwidth-sidelobe behavior. In these techniques, the weight vector

coefficients are determined based on the desired behavior of the MRA’s beamwidth and

sidelobe level. A common synthesis technique used in the spectral analysis of time series

in signal processing is the Spectral Weighting technique [Van Trees, 2002]. This

technique defines a set of weights based on a windowing function, which simplifies the

weight calculation procedure. The Uniform window, Cosine window, Hamming window,

Hann window, etc. are just a few of the windowing functions available to control the

response of a sensor array. Each window function provides a constant weight vector

which defines a fixed beam pattern response. Through performance analysis of each

windowing function, a tradeoff can be found between minimizing the MRA’s beamwidth,

reducing the sidelobe level, and increasing the directivity of the radiation pattern

response. Other beamwidth-sidelobe behavior methods include Taylor distrimution

 31

method, Villanueava distribution and Dolph-Chevyshev method where the beamwidth of

the radiation pattern’s MRA is minimized for a particular sidelobe level value. Beam

pattern synthesis can also be obtained through adaptive array processing. By changing the

weights of each sensor adaptively, design goals such as minimizing the noise variance of

the signal, minimizing the square error between the beamformer output and a reference

signal, or maximize the signal-to-noise ratio of the receiver [Haynes] can be satisfied.

Antennas using adaptive beamforming are, often referred as, “Smart Antennas” in

communication literature.

Another method of synthesizing a beam pattern is beamspace processing. In this

approach, a set of beams created at an introductory step are processed instead of the

signals arriving at each sensor element [Van Trees, 2002]. The latter method of pattern

synthesis is known as “element-space processing.” Beamspace processing is typically

used in applications where the number of elements in the array is very large and the

received signals need to be reduced to simplify further processing. Three types of

beamspace processing methods are full-dimension beamspace, reduced-dimension

beamspace and multiple-beam beamspace. In full-dimension beamspace, the signals of

the N sensor in the array are processed to deliver an output of N orthogonal beams. In the

case of reduced-dimension beamspace, only a set of beams covering a particular

wavenumber region are calculated. As for multiple-beam beamspace, multiple beams are

created to span specific regions of the space. An example of a beamspace beamformer is

 32

the FFT beamformer (often called the conventional beamformer). In FFT beamforming,

the Discrete Fourier Transform is used to process samples separated in distance to

produce multiple beams separated in the space domain. All the generated beams in the

FFT beamformer are orthogonal, fixed and equally spaced. The FFT beamformer

depends largely on the spatial resolution of the array antenna. This beamformer performs

a “spatial FFT” [Haynes] where input samples are separated by space and outputs

samples are separated by direction-of-arrival. One disadvantage of FFT beamformers is

its fixed beam performance. Alliot [Alliot, 2000] comments on beamforming

interpolation techniques for FFT beamformers. Beamforming interpolation consists of the

creation of a beam by adding of various beams generated by the FFT beamformer

multiplied by real weights corresponding to a particular coordinate. The combination of

multiple beam radiation pattern and versatility in direction of observation are the main

advantages of beamforming interpolation.

In spatial filter design, alternative filter structures have been presented to solve the

problem of narrow bandwidth in phased array antennas (PAA), such as the use of a filter-

and-sum beamformer [Kajala, 1999, 2001]. The filter-and-sum beamforming operates on

the amplitude and the phase of the digitized antenna element current signal. Each antenna

element has its filter and the output of each filter is added in a summing network to

acquire the desired spatial beam pattern. Various methods have been proposed to

implement filter-and-sum beamformers. For example, Kajala implements spatial filtering

 33

through an optimized polynomial FIR filter. The polynomial FIR filters’s coefficients are

chosen to minimize the mean square error (MSE) between the desired and the actual

response of the beamformer.

2.2 Phased Array Antenna Implementations

The PAA is composed of a group of similar antennas, each with its power feed

network, phase shifter, variable amplifiers and a summing network which gives a

resulting signal representing a beam on an expected location. Figure 2.4 shows a diagram

of the transmitter and receiver stages of a phased array antenna. The complex weight w*
n

associated with each antenna element is implemented by means of a variable amplifier

and a phase shifter. Analog components such as Low Noise Amplifiers (LNAs) and

Power Amplifiers (PA) found in the RF stages are needed in order to condition the signal

to be transmitted or received by the antenna array.

 34

Figure 2.4 Diagram of PAA using an RF Beamformer

An alternative approach for implementing a beamformer is by means of

quadrature modulation theory. In this approach, a signal is decomposed into its

quadrature components which are processed separately in the baseband region using the

complex weights w*
n to achieve a desired beam pattern response. One way to implement

quadrature modulation/demodulation is through digital beamforming. Digital

beamforming (DBF) consists of the spatial filtering of a signal where the phase shifting,

amplitude scaling, and adding are implemented digitally. Analog-to-Digital Converters

(ADCs) and the Digital-to-Analog Converters (DACs) are required to make the necessary

transformations of the signal between the IF analog domain and the digital domain.

Figure 2.5 shows the architecture of a PAA using a DBF. A design example of a DBF

was shown by Chang [Chang, 1988]. Chang created a DBF for a circularly polarized

 35

phased array antenna with resonant frequency of 2.95 GHz. The amplitude and phase of

the current in the elements of the array were controlled by a weight vector applied to the

In-phase (IC) and Quadrature (QC) channel of the element. The amplitude scaling, phase

shifting and summing operation were performed digitally.

Figure 2.5 Diagram of a PAA using a Digital Beamformer

2.3 DBF Receiver

2.3.1 Mathematical Model of DBF Receiver

The incident plane wave on an antenna array’s receiver can be modeled by the

following equation:

 36

()()(,) () () cos , 0, , 1n n n RF nf t c t x t w t n Nτ τ= = − − = −…p

 ()()cos ,RF nx t w t θ≈ − 2.18

where θn is given by:

.n RF nwθ τ= 2.19

After the incident plane wave has been received by the antennas of the PAA, the

incoming signal arrives at the RF Modulation Stage. This stage is often required because

the incoming signal’s frequency components are high compared to the speed of the ADCs

and analog signal modulation is needed to shift the signal’s frequency components into a

lower frequency band. If the RF Modulation Stage has a Local Oscillator (LO) with a

frequency of wLO, then the signal modulation operation can be described in the following

form:

() ()' () () cos cos .
n RF n LOg t x t w t w tθ= − 2.20

Using trigonometric identities, the signal g’n(t) can be represented as a sum of two

cosines:

() ()' ()
() cos cos ,

2n IF n IM n

x t
g t w t w tθ θ = − + − 2.21

where:

, ,IF RF LO IM RF LOw w w w w w− +� � 2.22

 37

If a passband filter with gain G=2 is used centered at the signal’s component with wIF as

its center frequency, the output signal obtained is:

()() () cos .n IF ng t x t w t θ= − 2.23

The angular displacement, which represents the time delay of the incoming plane

wave between the antennas of the array, is left unchanged in a modulation operation.

After the incoming signal in an antenna channel has been modulated into an intermediate

frequency and the signal higher frequency is at least half as small as the sampling

frequency, the ADCs with a sampling rate TS can be used to transform the signal into a

digital representation:

[][] () []cos ,
sn n t mT s IF s ng m g t x mT w mT θ== = − 2.24

To simplify the mathematical representation of the signal gn[m] , the constant TS in the

signal x[mTs] will be omitted and the variable ωIF = wIFTS will be used to distinguish the

cosine component in the digital signal representation from its analog representation. After

making such simplifications, the digital signal observed in each DBF receiver channel n

of the PAA is:

[][] []cos .n IF ng m x m mω θ= − 2.25

It is important to observe that the digital representation of the DBF receiver signal

contains the phase delay θn associated with the time delay found in each n element of the

PAA.

 38

After the antenna signal has been successfully sampled into the digital domain,

the signal needs to be processed by the first stage of the DBF receiver, which is the

Digital Down-Converter (DDC). The Digital Down-Conversion is performed by

multiplying the digital signal with a sinusoidal signal and a 90º phase-shifted version of

the sinusoidal signal, both generated by digital local oscillator. Both mathematical

operations can be represented in the following form:

[] []' [] cos
n n DLOi m g m mω=

[] [][]cos cos ,IF n DLOx m m mω θ ω= − 2.26

[] []' [] sin
n n DLOq m g m mω=

 [] [][]cos sin .IF n DLOx m m mω θ ω= − 2.27

If the digital local oscillator frequency ωDLO = ωIF, the digital signals i’ n[m] and q’n[m]

for each DBF receiver channel can be represented in the following form:

[] [] []()' []
cos 2 cos ,

2n IF n

x m
i m mω θ= + 2.28

[] [] []()' []
sin 2 sin .

2n IF n

x m
q m mω θ= + 2.29

The final step in the DDC stage of the DBF receiver is the filtering of the

frequency component centered at the digital frequency 2ωIF for both digital signals

(image frequencies). If a lowpass filter with a gain G=2 is used to process the signals

in’[m] and qn’[m] , the output signals found in each filter are:

[] [][]cosn ni m x m θ= 2.30

[] [][]sinn nq m x m θ= 2.31

 39

It can be seen that the DDC stage of the DBF receiver transforms a digital bandpass

signal with the time-delay τn into two digital baseband signals where the phase

information of the bandpass signal is represented in the amplitude of both baseband

signals. The previous transformation of the signal into its quadrature components is

necessary in order to apply the next filtering phase as a double-input, double-output

lowpass filter operation, which is equivalent to a single-input, single-output bandpass

filter operation [Franks, 1969]. Figure 2.6 shows a block diagram of the RF modulator

and the DDC stage of each antenna channel in the PAA with the mathematical equations

derived previously.

 40

Figure 2.6 Block diagram (including equations) of RF Modulator and DDC

The second stage of the DBF receiver is the Complex Weight Multiplication

(CWM) stage. In this stage, the complex weight w*n associated with each antenna

channel in the PAA is multiplied by the digital baseband signals in[m] and qn[m] . To

represent this complex multiplication operation, a signal bn[m] will be defined which is

composed of the signals in[m] and qn[m] :

[] []
[] []()

[]

[] cos sin

n n n

n n

b m i m jq m

x m jθ θ

= −

= −

 [] .njx m e θ−= 2.32

 41

It can be seen that the defined signal bn[m] is basically the signal x[m] multiplied by a

complex constant with an associated phase θn. To recover x[m], the complex signal bn[m]

has to be multiplied by the complex conjugate of the complex constant. In other words, if

the complex weight * nj
nw e θ= , then the product of the complex signal bn[m] and the

complex weight is equal to the signal x[m]:

[] []

[]
*

n n

n n n

j j

y m w b m

e x m eθ θ−

=

=

 [].x m= 2.33

It is important to emphasize that the application of the previous w*n assures phase

coherency only with signals coming from space with a phase delay θn associated to its

carrier signal. If the incoming signal is coming from another direction in space, the

multiplication of the complex weight and the complex coefficient will not equal 1, thus

making yn[m] ≠ x[m].

The CWM stage of the DBF receiver (shown in Figure 3.7) is applied by means of

multiplication and addition of real-value variables. To make such operations possible, it

is necessary to express the complex weight w*n in rectangular form:

{ } { }* Re * Im * .n n nw w j w= + 2.34

Once w*n has been represented in rectangular form, the resulting signal yn[m] can be

obtained by applying the following mathematical operations:

 42

[] []
{ } { }() [] []()

*

Re * Im *

n n n

n n n n

y m w b m

w j w i m jq m

=

= + −

 [] [],n nr m js m= + 2.35

where:

[] [] { } []() { }()Re * Im * ,n n n n nr m i m w q m w= + − − 2.36

[] [] { } []() { }()Im * Re * .n n n n ns m i m w q m w= + − 2.37

Figure 2.7 Block diagram of CWM phase

The last stage of the DBF receiver involves the addition of all the resulting signals yn[m] :

[] [] [] []
1 1 1

0 0 0

1 1 1N N N

n n n
n n n

y m y m r m j s m
N N N

− − −

= = =

= = +∑ ∑ ∑

 [] []r m js m= + 2.38

 43

An amplitude scaling by a factor of N is needed to recover x[m] without gain. If desired,

the amplitude scaling factor can be included in the complex weight coefficient and

omitted in the last phase of the DBF receiver. The signals r[m] and s[m], which are the

output of the DBF receiver, are the quadrature components of the resulting signal y[m].

Post-processing of this quadrature signals, which is done by other components of the

system where the PAA is used, is needed for proper retrieval and analysis of the

information signal x[m].

2.3.2 DBF Receiver Design

The physical design of a DBF Receiver is based on the mathematical model

described in the previous section. The design of the DBF Receiver considers how the

mathematical model can be implemented using real components and takes into account

limitations found in the physical implementation of the PAA system. The design of the

DBF Receiver can be divided into four main components: RF Modulation Stage, Digital-

Down Conversion stage, Complex Weight Multiplication stage, and the Summation

stage. It is important to remember that the RF Modulation Stage is not implemented

digitally (technically, it is not part of the Digital Beamformer), but it is essential in the

implementation of the PAA and thus, its design will be also explained in this section.

The first stage in the implementation of an antenna channel in a PAA system is

the RF Modulation Stage (also called RF Translator [Haynes]). The RF Modulator is

 44

implemented using an RF Mixer. RF Mixers are available as Integrated Circuits (ICs)

component packages and can be bought in commercial microwave components stores. RF

Mixers need to receive sufficient signal power in its input ports in order to work properly.

In PAA systems, the power of the signal found at the output port of each antenna in the

array is very low. Since the first stage of a receiver has a major effect on the noise

performance of the system [Pozar, 1998], it is necessary to include Low Noise

Amplifiers at the RF Modulator Stage. The LNAs help to reduce the Noise Figure in a

microwave circuit and increase the Signal-to-Noise Ratio (SNR) of the PAA system.

Therefore, the RF Modulator Stage of each antenna channel has one LNA and one RF

mixer. Also, the lines that connect each component of this stage need to be designed to

work in a 50Ω system at the desired RF carrier frequency of the antenna array.

An intermediate stage found in the antenna receiver channel of a PAA

implemented using DBF is the ADC. The ADC transforms the analog signal found in the

output of the RF Translator into a digital representation for further processing by the

DBF. ADCs implement the operations of sampling, quantizing, and encoding of the

analog signal [Garret, 1981]. Different ADC techniques can be used to perform the

signal acquisition such as successive-approximation conversion technique, sigma-delta

conversion technique, dual-slope conversion technique, voltage-comparison tracking

conversion technique and charge balance conversion technique. Two important ADC

parameters are the bit resolution and the sampling frequency per channel. The bit

 45

resolution parameter determines the quantization error found in the analog-to-digital

transformation. This quantization error can be represented as noise power, which affects

the SNR of the antenna channel’s signal. The sampling rate parameter determines the

analog frequency band which can be represented in the digital domain, which extends

from DC to the folding frequency (one half of the sampling frequency). These two

parameters are set depending on the desired frequency of operation and SNR level of the

PAA design. ADCs are available as IC component packages. In the implementation of a

PAA, it is important to use a single clock to digitize all the channels in the antenna array

to assure proper synchronization.

The first stage of the DBF Receiver (the second stage in antenna channel) is the

Digital-Down Conversion Stage. The DDC receives an incoming digital IF signal

(usually from an ADC), and modulates the signal into baseband and produces an in-phase

signal and a quadrature signal as outputs. The design of the DDC can be implemented

using FPGAs or dedicated ICs. The quadrature modulation is performed by the

multiplication of the IF signal with a digital oscillator, as mentioned in the previous

section. The implementation of the digital oscillator is accomplished using a direct digital

synthesizer (DDS). Direct digital synthesis is a technique by which a sinusoidal signal is

created by the generation of digital numbers which controls the input of a sinusoidal

look-up table [Manassewitsch, 1980]. The digital numbers are generated by a phase

accumulator, which receives a binary instruction representing a specific frequency of

 46

oscillation. The frequency of this digital oscillator is proportional to the phase increment

created in the phase accumulator. Since the signal is produced by a look-up table, phase

synchronization between the digital local oscillator and its 90º phase-shifted version can

be achieved easier than an equivalent analog implementation counterpart. A single DDS

must be used for all the channels in the DBF receiver in order to assure proper

synchronization between the signals of each antenna channel. After the in-phase and

quadrature signals have been produced, a lowpass filter is used to remove image

frequency components located on both signals.

Some DDC designs may also include a multirate filter component. The multirate

filter is a filter that alters the data rates [Harris, 1987]. In PAA applications, the received

RF signals are centered at a high carrier frequency, which imposes the need for fast

ADCs and DDCs with high sample rate frequencies. On the other hand, cost limitations

and simplicity may motivate the need to use Digital Signal Processors (DSPs) working at

low sample rate frequencies in the final stages of the DBF. The multirate filter, thus,

allows the interconnection between fast DDCs and DSPs operating at different sample

rate frequencies. In the case of a DBF receiver, a decimation filter is used to down-

sample the output signal of the DDC. A typical decimation filter implementation is

composed of a lowpass filtering stage and a subsampling stage. The design of both stages

is related to the decrease ratio between the high input sample rate frequency and the low

output sample rate frequency. An interesting approach to simplifying the DBF receiver

 47

design is the use of one single lowpass filter per antenna channel in the implementation

of a DDC. The lowpass filter would accomplish two important tasks: removing image

frequencies after modulation (DDC standard stage) and removing higher frequency

components before subsampling (multirate filter stage).

If a multirate filter system is needed in the DBF Receiver, such a filter can be

implemented using a Cascaded Integrator-Comb (CIC) filter. The CIC is a linear phase

FIR filter implemented without the use of multiplication operations operating as a

multirate filter to connect two signal processing system components operating at different

sampling frequencies. Its name is derived from its structure, which consists of an

integrator section operating at a high sampling rate combined with a comb section

operating at a low sampling rate [Hogenauer, 1981]. CIC filters can be used to implement

decimation and interpolation filters. Figure 2.8 shows the architecture of a CIC

decimation filter. The CIC filter design parameters are the rate change factor of the

multirate filter (R), the number of tap delays in each comb stage (M), and the number of

stages in the integrator and comb section of the filter (N). The transfer function of the

CIC filter referenced to the high sampling rate is a result of the multiplication of the

transfer function of the integrator section and transfer function of the comb section:

() () () ()
()1

1

1

NRM

N N
I C N

z
H z H z H z

z

−

−

−
= =

−

 48

1

0

,
NRM

k

k

z
−

−

=

 =

∑ 2.39

where:

() () 1

1
1 , , .

1
RM

C IH z z H z z
z

−
−= − = ∈

−
� 2.40

Figure 2.8 Architecture of CIC Decimation Filter

The power frequency response (shown graphically in Figure 2.9) of the CIC filter relative

to the low sampling rate is given by the following equation:

() ()
2

sin
.

sin

N

Mf
P f

f

R

π
π

 =

 2.41

 49

The power response of the CIC filter (decimator and interpolator) contains nulls at

multiples of f = 1/M (relative to the low sampling rate frequency). Since the

imaging/aliasing bands in multirate filters appear at multiples of the rate change factor,

the CIC filter can be designed to suppress these bands. Information about passband

attenuation, stopband attenuation, aliasing attenuation (for CIC decimators), and imaging

attenuation (for CIC interpolators) as a function of the CIC filter parameters can be found

in Hogenauer’s journal paper [Hogenauer, 1981] on CIC filters.

Figure 2.9 Power Response of a CIC Filter with the following parameters: N

= 8, M = 1, R = 10

 50

Each comb stage of the CIC filter is a subtraction operation of the current sample

by a sample with an M delay. In the case of the integrator stage, each integrator has a

unity feedback coefficient. When CIC decimation filters are employed, register overflow

occurs in all integrator stages. To avoid consequences in the output of the filter, two

requirements must be fulfilled: 1) the implementation of filter arithmetic must be based

on a number system which allows “wrap-around” between the most positive and most

negative number (like the two’s complement arithmetic) and 2) the range of the number

system must be greater than or equal to the maximum magnitude expected at the output

of the filter [Hogenauer, 1981]. Figure 2.10 shows the design of the DDC with the

multirate filter (CIC implementation). An additional scale block is included at the output

of the CIC filter to increase the gain of the signal by a factor of 2. Since digital circuits

are implemented using binary arithmetic, the scale block by a factor of 2 can be easily

implemented using a “shift right” operation on the sample’s binary point.

 51

Figure 2.10 Design of a DDC for a DBF Receiver

The second stage in the DBF receiver (third stage in antenna channel) is the

CWM stage. The CWM receives the in-phase baseband signal, the quadrature baseband

signal, the magnitude of the complex weight and the phase of the complex weight as

inputs. Figure 2.11 shows the design of the CWM phase. The CWM phase can be

implemented using 7 multiplication operations and 2 addition operations per channel. The

first 3 multiplication operations are the product of the complex weight’s amplitude with

the sine, the negative sine, and the cosine of the complex weight’s phase which gives the

real, imaginary, and negative imaginary part of the complex weight respectively. The

other 4 multiplication operations are the product of the real and imaginary parts of the

complex weight with the in-phase and quadrature baseband signals. Finally, the 2

addition operations add the resulting in-phase baseband result and the resulting

 52

quadrature baseband result in each channel. Also, 2 negation operators are needed to

calculate the negative value of the quadrature baseband signal and the negative sine

function and a sine look-up table is necessary to evaluate the sine and cosine function of

the complex weight’s phase.

Figure 2.11 Design of CWM for a DBF Receiver

The CWM stage can be implemented using an FPGA or a DSP. The advantage of

implementing the CWM in one of the previous devices mentioned strives in the tradeoff

between speed of algorithm and cost of implementation. If a DSP is used, a single

Multiply-accumulate (MAC) unit can be used to perform the addition and multiplication

operations and a single look-up table can be used to evaluate the sine, negative sine and

 53

cosine of the complex weight’s phase for all the antenna channels. If an FPGA is used, a

parallel approach can be pursue, where each DBF channel has its 7 multipliers, 2 adders,

and 2 sine look-up tables to process each in-phase and quadrature baseband signal. Also,

multiple DSPs can be used to pursue a parallel approach implementation.

The final stage in the DBF Receiver is the Summation Stage. In this stage, the in-

phase baseband signals and the quadrature baseband signals of all the antenna channels

are added to give a final in-phase baseband signal and quadrature baseband signal as

ouputs of the DBF receiver. The number of addition operations in this stage depends on

the number of antenna channels in the PAA. The two resulting signals can be used in

subsequent stages to process and analyze the data received in the information signal by

the PAA.

2.4 DBF Transmitter

2.4.1 Mathematical Model of DBF Transmitter

An information signal x[m] represents data which needs to be transmitted into a

particular region in space using a PAA. To achieve a specific MRA, the phase delay θn

between each antenna n in the array (which contains N antenna elements) must be

precisely controlled. The relationship between a complex weight w*n and the phase delay

θn of each antenna are presented by the following equation:

 54

() ()* cos sin , 0,1,..., 1.nj
n n nw e j n Nθ θ θ= = + = − 2.42

The complex weight’s magnitude An for each antenna channel can have a particular value

(different from one) if different beam pattern characteristics (change sidelobe level

behavior, increase beamwidth, null placement, etc.) are required. The first stage of the

DBF transmitter is the CWM stage, which consists in the multiplication of the

information signal with the real part and the imaginary part of the complex weight. Two

resulting signals in[m] and qn[m] are obtained for each antenna channel:

[] { }[]Re * ,n ni m x m w= 2.43

[] { }[] Im * ,n nq m x m w= 2.44

where:

{ } [] { } []Re * cos , Im * sin .n n n n n nw A w Aθ θ= = 2.45

The second stage of the DBF transmitter is the Digital-Up Conversion stage. In

this stage, the signals in[m] and qn[m] are multiplied by a sinusoidal signal and its 90º

phase-shifted version generated by a digital local oscillator with a sinosiodal frequency

ωIF. The output of the product the signals in[m] and qn[m] and the digital local oscillator

are:

[] [] [] [][] cos []cos cos ,n n IF n n IFfi m i m m A x m mω θ ω= = ⋅ 2.46

[] [] [] [] []sin []sin sin .n n IF n n IFfq m i m m A x m mω θ ω= = ⋅ 2.47

Using trigonometric identities, the signals fin[m] and fqn[m] can be represented in the

following form:

 55

[] []()[]
[] cos cos ,

2
n

n IF n IF n

A x m
fi m m mω θ ω θ⋅= + + − 2.48

[] [] []()[]
cos cos .

2
n

n IF n IF n

A x m
fq m m mω θ ω θ⋅= − − + 2.49

Then, the signals fin[m] and fqn[m] are added in order to generate a bandpass signal f[m]

with the desired phase delay θn:

[] [][] [] []cos .n n n n IF nf m fi m fq m A x m mω θ= + = ⋅ − 2.50

The last stage in the DBF transmitter consists of the transformation of the digital

signal into the analog domain. If a Digital-to-Analog Converter (DAC) with a sampling

frequency of fs is used to transform the digital signal, the output of the DAC can be

represented in the following form:

() [] () ()cos .
sn m tf n s IF s nf t f m A x tf f tω θ== = ⋅ − 2.51

To simplify the mathematical representation of the signal fn(t), the constant fS in the

signal x(tfs) will be omitted and the variable wIF = ωIFfS will be used to distinguish the

cosine component in the analog domain from its digital representation. After making such

simplifications, the analog signal observed at the output of each DBF transmitter n of the

PAA is:

() () ()cos .n n IF nf t A x t w t θ= ⋅ − 2.52

From the previous equation, it can be seen that the output of the DBF transmitter contains

the phase delay θn and the magnitude An, necessary to construct the desired beam pattern

 56

for the PAA. Figure 2.12 shows a block diagram of the DBF transmitter’s mathematical

model (CWM and Digital-Up Conversion stages).

Figure 2.12 Block Diagram (with equations) of CWM and DUC for a DBF

Transmitter

Often, engineering applications may emerge where the speed of DACs and cost

reduction in DBF transmitter’s design may limit the operating frequency of the carrier

wave at the output of the DBF transmitter. If fn(t) needs to be transmitted at a higher

frequency carrier, it is necessary to use an RF Modulator in the output of the DBF

transmitter of the antenna channel. The RF Modulator Stage translates the output signal

of the DBF transmitter into a higher frequency region, making the signal suitable for an

antenna transmitting in the microwave frequency range. This operation can be

represented by the product of the microwave local oscillator with frequency wLO and the

output of the DBF transmitter in each antenna channel:

() ()' () () cos cos .
n n IF n LOc t A x t w t w tθ= ⋅ − 2.53

 57

Using trigonometric identities, the signal c’n(t) can be represented as a sum of two

cosines:

() ()' ()
() cos cos ,

2n

n
RF n IM n

A x t
c t w t w tθ θ⋅

 = − + − 2.54

where:

, .RF LO IF IM LO IFw w w w w w− +� � 2.55

If a passband filter with gain G=2 is centered at the signal’s component with wRF as its

center frequency, the output signal obtained is:

()() () cos .n n RF nc t A x t w t θ= ⋅ − 2.56

The signal cn(t) has a higher frequency carrier than the output signal of the DBF

transmitter and the phase delay θn and the magnitude An for each antenna channel has

been left unchanged during the mixing operation. If the bandwidth of the signal is small

compared to the carrier’s frequency (see Eq. 2.15), then cn(t) is considered a narrowband

signal (in array processing theory context) and the following approximation is satisfied:

()
()()

() () cos

() cos

n n RF n

n RF n

c t A x t w t

A x t w t

θ

τ

= ⋅ −

= ⋅ −

 ()()() cos (,),n n RF n nA x t w t f tτ τ≈ ⋅ − − = p 2.57

where τn is the necessary time-delay experienced between each antenna’s irradiated plane

wave in the PAA. Finally, the signal cn(t) satisfies the necessary conditions in order to

direct the MRA of the beam pattern into a particular region in space and fulfill specific

beam pattern requirements.

 58

2.4.2 DBF Transmitter Design

The physical design of a DBF transmitter is based on the mathematical model

described in the previous section. The design of the DBF transmitter can be divided into

three main stages: the CWM stage, the Digital-Up Converter (DUC) stage, and the RF

Modulation Stage. As it was explained in section 2.3.2, the RF Modulation is not part of

the Digital Beamformer, but it is important in the implementation of the PAA, and thus,

its role will be discussed in the DBF transmitter.

The first stage in the DBF transmitter is the CWM stage. Its function in the DBF

transmitter is quite similar to its equivalent in the DBF receiver; it controls the amplitude

of the in-phase and quadrature signals prior to the Digital-Up Conversion. The CWM

stage receives the information signal as input, multiplies the signal by the real part and

imaginary part of the complex weight assign to the channel, and outputs an in-phase

signal and a quadrature signal. A simple CWM architecture consists of 4 multiplication

operations per channel. The first 2 multiplication operations are used to evaluate the

product of the complex weight’s amplitude with the sine, and the cosine of the complex

weight’s phase which gives the real, and imaginary part of the complex weight

respectively. The other 2 multiplication operations are used to evaluate the product of the

real and imaginary parts of the complex weight with the information signal. In addition,

as in the CWM for the DBF receiver, a sine look-up table is necessary to evaluate the sine

 59

and cosine function of the complex weight’s phase. Figure 2.13 shows the design of the

CWM stage for the DBF transmitter.

Figure 2.13 Design of CWM for a DBF Transmitter

As in the DBF receiver, the CWM stage in the DBF transmitter can be implemented

using an FPGA or a DSP, depending on the importance given to the speed performance

and/or the design cost. If the CWM is implemented using a DSP, a single Multiply-

accumulate (MAC) unit can be used to execute the multiplication operations and a single

look-up table can be used to evaluate the sine, and cosine of the complex weight’s phase

for all the antenna channels. On the other hand, an FPGA implementation gives the

designer the flexibility for a parallel processing strategy where each multiplication

 60

operation and sine/cosine table in each antenna channel has separate dedicated hardware

to process the information signal.

When the implementation of the DBF transmitter includes functions (software) or

components (hardware) operating at different sampling frequencies, a multirate filter

must be employed prior the DUC. For the DBF transmitter, a CIC interpolation filter

should be used since it provides excellent results with low computational load. A

standard interpolation filter implementation is composed of a zero-insertion phase and a

lowpass filter phase. The design of both stages is related to the increase ratio between the

input (low sample rate frequency) and the output (high sample rate frequency) of the

filter. The CIC interpolation filter implements both phases using a unique design

approach (shown in Figure 2.14). The low sampling comb stage followed by the high

sampling integrator stage employs a lowpass linear phase FIR filter. The zero-insertion

substage is performed between the two CIC interpolation filter stages. The nulls found at

multiples of the frequency 1/M (where M is the differential delay) relative to the low

sampling rate are able to suppress the imaging bands found in the spectrum after the

multirate filter’s zero-insertion substage. As mentioned in Section 2.3.2, the frequency

response characteristics of the filter (passband and stopband attenuation, number of nulls,

etc.) are determined entirely by the CIC filter parameters (number of tap delays, CIC

filter stages, and rate change factor).

 61

Figure 2.14 Architecture of CIC Interpolation Filter

The second stage in the DBF transmitter is the Digital-Up Conversion stage. The

DUC receives two baseband signals (in-phase and quadrature lowpass signals) and

modulates these signals into a single real bandpass signal. The design of the DUC can be

implemented using FPGAs or dedicated ICs. The quadrature demodulation is performed

by the multiplication of the in-phase and quadrature signal with the digital local oscillator

and its 90º phase-shifted version respectively. The addition of these two resulting signals

gives a real bandpass signal centered on the digital local oscilator’s frequency with an

amplitude and phase offset associated with the complex weight assigned to that specific

channel. As in the DBF receiver, a DDS is used to implement the digital local oscillator.

The use of a single DDS in all the DBF transmitters of the antenna array is crucial in

 62

guaranteeing proper synchronization between the signals of each antenna channel. Figure

2.15 shows the design of the DUC with the multirate filter (CIC implementation).

Figure 2.15 Design of DUC for a DBF Transmitter

The gateway between the output of the DBF, which is a digital signal, and the

input of the RF Translator (which is an analog signal) is the DAC. The DAC transforms a

digital signal into an analog representation. A DAC can be considered a digitally

controlled potentiometer that provides an output current or voltage normalized to its full-

scale [Garret, 1981]. The DAC has the same parameters as the ADC, which is its

equivalent in a DBF receiver. In the implementation of a PAA, it is important to use a

single clock for all the DACs to assure proper synchronization between each channel in

the DBF transmitter.

 63

The last stage in the antenna channel is the RF Translator. The RF Translator in

the antenna’s transmitter modulates an input signal, found in an intermediate frequency

band, to a higher frequency band where it can be use as input to the PAA’s antennas.

Analogous to the DBF receiver’s RF Translator, the RF Translator in the DBF transmitter

is implemented using an RF Mixer per antenna channel. Typically, the level of signal

power found at the output of the RF Mixer might not be high enough to excite the

antenna ports of the PAA. In a typical microwave communication system, a power

amplifier (PA) is used after the RF Mixer to amplify the microwave signal, which is then

radiated by each antenna of the array [Pozar, 1998]. Finally, the lines that connect each

component in this stage need to be designed to work on a 50Ω system at the desired RF

carrier frequency of the PAA.

 64

3 SIMULATION AND IMPLEMENTATION

RESULTS

In this chapter, one DBF receiver and two DBF transmitter design prototypes will be

presented. The difference between each design prototype consists in the number of

elements and the geometrical distribution of the PAA where the DBF is used. The DBF

receiver model shown in this chapter is designed for a 4-element linear PAA. As for DBF

transmitters, models shown in this chapter are designed for a 16-element linear PAA and

a 16-element 4x4 rectangular PAA. Two spatial filters will be applied to each design

prototype and the resulting beam pattern on the simulations will be compared with the

ideal beam pattern calculated using array processing theory. The computation of the ideal

beam pattern is performed on MATLAB using the beam pattern equation (Eq. 2.6). All

beam pattern plots shown in this chapter have been normalize with reference to the beam

pattern’s maximum value. Each DBF prototype has been designed in order to be

implemented on an FPGA device using fixed-point two’s complement arithmetic. The

simulation of each DBF receiver and transmitter is performed on MATLAB’s Simulink

environment using the FPGA functional blocks provided by the Xilinx’s System

Generator Blockset. Finally, a 16-element 4x4 rectangular PAA will be constructed and a

DBF transmitter, implemented on a commercial digital signal processing system, will be

used to control the beam pattern of the PAA.

 65

3.1 4-element linear PAA Receiver Prototype

 The 4-element linear PAA Receiver Prototype consists of 4 isotropic radiating

antennas arranged in a linear distribution and uniformly spaced by half-wavelength. The

operating carrier frequency of the PAA is 5.85 GHz. The intermediate carrier frequency

(where the ADCs sample the incoming signal) of the DBF is 3 MHz. The incoming

signal’s bandwidth specification is 2 MHz. Since the Narrowband Factor (BS· ∆Tmax) is

extremely small compared to one, a narrowband beamformer can be used to control the

beam pattern of the array. Table 3.1 summarizes the specifications of this linear PAA

Receiver Prototype.

TABLE 3.1 4-element linear PAA parameters

Parameter Value

RF Carrier Frequency fRF = 5.85 GHz

IF Frequency fIF = 3 MHz

Signal Bandwidth BS = 2 MHz

Number of Elements N = 4

Inter-element Spacing ∆z = λc/2

Maximum Travel Time ∆Tmax = 3/2fRF

Narrowband Factor BS· ∆Tmax = 0.000513

 The implementation of the DBF receiver for this PAA is based on the design

described in Section 2.3.2. Figure 3.1 shows a diagram of the DBF receiver

implementation for a 4-element linear PAA using MATLAB’s Simulink and Xilinx’s

 66

System Generator Blockset. The blue blocks on the diagram are the components of the

DBF receiver, where each block represents FPGA code which implements the

mathematical or logical operator/operation performed by the block. The bit resolution of

all the multipliers in the DBF receiver is 18 bits with 16 bits of decimal precision and a

latency of 3 clock cycles. As for the addition operators, each operation has no latency

giving an output sample with a resolution of 14 bits with 12 bits of decimal precision.

The two big white blocks in the figure are two stages of the DBF receiver: the DDC and

the CWM stage. The blue blocks at the left side of the CWM are the amplitude and phase

of the weight coefficient of that DBF receiver channel. The addition blocks at the right

side of the CWM stage implement the summation stage of the DBF receiver. A single

DDS Block has been used as the local digital oscillator for the 4 DBF channels. The DDS

outputs a sinusoidal signal and its 90º phase-shifted version at a frequency of 3 MHz,

where each sample has a sample frequency of 200 MHz. The yellow blocks at the left

side of the figure represent the ADCs of the DBF, which sample the incoming signal at

200 MHz per channel at a resolution of 14 bits with 12 bits of decimal precision. The

yellow blocks at the right side of the figure represent the interface between the DBF

Receiver output and the input of the data processing stage of the communication system

where the PAA is used. The other white blocks in the diagram are Simulink blocks

representing the incoming signal in each channel (left side of figure), and the post-

processing stage receiving the data processed by the DBF receiver (right side of figure).

 67

Figure 3.1 Diagram of a simulated 4-element DBF receiver

 Figure 3.2 shows diagrams of the DDC and the CWM stage (components inside

each stage). The DDC (Figure 3.2a) operates at the sampling frequency of the ADC,

which is 200 MHz. Each DDC contains two CIC filters (one for each quadrature channel)

with 8 stages (N = 8), a differential delay of 2 samples (M = 2), a rate change factor of 4

(R = 4) and a latency of 8 clock cycles. The two other blue blocks at the right of the CIC

filter (“force” block and “cast” block) quantizes the output of the filter to samples with a

bit resolution of 18 bits with 16 bits of decimal precision. The CWM (Figure 3.2b)

operates at a sampling frequency of 50 MHz, which is the sampling frequency at the

output of the CIC decimation filter. The resolution of the weight coefficient’s amplitude

is 16 bits with 14 bits of decimal precision and the weight coefficient’s phase is 8 bits

 68

with no decimal precision. The output of the sine/cosine table in the CWM gives a bit

resolution of 8 bits with 7 bits of decimal precision. As for the output of DBF receiver,

each output quadrature channel has a bit resolution of 14 bits with 12 bits of decimal

precision at a sampling frequency of 50 MHz. The measurement SNR of a typical

anechoic chamber (used to measure the beam pattern of an antenna array) ranges around

40 dB, thus a resolution of more than 6 bits would satisfy the bit resolution requirement

for each signal processing operation. Table 3.2 summarizes the parameters of the DBF

receiver’s components.

a)

b)

Figure 3.2 Diagram of simulated DDC (3.2a) and CWM (3.2b) stage in DBF
receiver

 69

TABLE 3.2 Parameters of the DBF receiver’s components

Parameter Value

Multiplier’s bit resolution 18 bits -16 bit decimal
precision

Adder’s bit resolution 14 bits – 12 bit
decimal precision

DDS Operating Frequency fDDS = 3 MHz

ADC Sample Frequency fADC = 200 MHz

ADC bit resolution 14 bits – 12 bit
decimal precision

DDC Sample Frequency fDDC = 200 MHz

CIC Filter Stages NCIC = 8

CIC Differential Filter M = 2

CIC Rate Change Factor R = 4

CIC bit resolution 18 bits – 16 bit
decimal precision

CWM Sample Frequency fCWM = 50 MHz

Weight Coefficient – Amplitude bit
resolution

16 bits – 14 bit
decimal precision

Weight Coefficient – Phase bit resolution 8 bits with no decimal
precision

Sine/Cosine Look-Up Table input bit
resolution

8 bits – 7 bit decimal
precision

DBF Output Signal bit resolution 14 bits – 12 bit
decimal precision

 The DBF receiver simulations consist in applying sinusoidal signals with the

same intermediate carrier frequency and a variable phase shift between each signal. The

initial phase shift between each element gives an equivalent space signal coming from

 70

endfire (direction parallel to the array’s axis) at the left side of the array. As the

simulation iterates, the relative phase difference between each element changes until it

reaches to a phase shift equivalent to a signal coming from endfire at the right side of the

array. Since the weight coefficients of each DBF channel is held constant, the output in-

phase and quadrature channel of the DBF receiver will experience changes on each

signal’s amplitude as the simulation time progresses. In the post-processing phase of the

PAA, the two quadrature output signals are use to calculate the resulting beam pattern’s

amplitude and phase. The resulting beam pattern of each DBF receiver simulation shown

in this chapter will be compared with the theorical beam pattern calculated using Eq. 2.6.

3.1.1 First Spatial Filter Example: Beam pattern with Uniform Amplitude
Weight Function pointing to θMRA = 45º

 The first spatial filter example used in the DBF receiver for a 4-element linear

PAA produces a beam pattern with an MRA pointing at an angular position of 45º with

respect to endfire on the right side of the array. If the desired beam pattern of a PAA has

only one MRA, the weigh coefficients for each channel can be derived using the

Narrowband Beamformer model discussed in Section 2.1.3:

(),1
* ,

T
MRA MRA nj k p

nw e
N

θ φ ⋅= 3.1

where the wavenumber k and the position vector p are:

 71

(),

sin cos
2 sin sin , .

cos

MRA MRA x

MRA MRA MRA MRA y

MRA z

p

k p p

p

θ φ
πθ ϕ θ φλ

θ

 = =

 3.2

For a linear array, the position vector’s px and py value is equal to zero reducing the

calculation of the weight coefficient for each channel n into:

() ()2 cos1
* .z MRAj p

nw e
N

π θλ= 3.3

Table 3.3 shows the resulting weight coefficients for a uniform 4-element linear PAA

with an inter-element spacing of λ/2. It can be seen that the amplitude of each weight

coefficient has a value of 1/N, which is equivalent to applying a uniform spectral window

Figure 3.3 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF
pointing at θMRA = 45º

 72

into the weight coefficients. A MATLAB program named “linear_steering_array.m”

(which is shown in Appendix A) was prepared in order to calculate the theoretical beam

pattern, the directivity and the beamwidth of the PAA for a one-MRA spatial filter design

for a linear PAA. Figure 3.3 shows a polar graph of the theoretical beam pattern’s

amplitude with the weight coefficients shown in Table 3.3. Figure 3.4 shows a

rectangular plot of the beam pattern’s amplitude in dB units. These plots show the

maximum value of the beam pattern’s amplitude at a signal’s angle-of-arrival of 45º with

a directivity of 6.02 dB. The beamwidth of the MRA beam for the theoretical beam

pattern is 40.5º.

Figure 3.4 Rectangular plot of Beam pattern Magnitude of a 4-element linear
DBF pointing at θMRA = 45º

 73

TABLE 3.3 First Spatial Filter Weight Coefficients – Theoretical Weights

Element Weight

1 w1 = 0.25 ∟169.0812º

2 w2 = 0.25 ∟-63.6396º

3 w3 = 0.25 ∟63.6396º

4 w1 = 0.25 ∟-169.0812º

 After the weight coefficients have been calculated, the next step in the simulation

preparation is the transformation of these coefficients into a form suitable for the DBF

receiver to use. A MATLAB program named “linear_DBFreceiver_parameters.m”

(included in the Appendix A) was prepared to quantize and transform the weight

coefficients for each channel and set all the necessary DBF receiver parameters (shown in

Table 3.2) needed to perform the DBF receiver simulation. The total simulation time used

for this DBF receiver was 2 x 10-5 seconds, which is equivalent to 60 periods of the

intermediate carrier frequency. The weight coefficients obtained after quantization of the

weight values into the fixed-point representation used in the DBF receiver simulation are

shown in Table 3.4. The results of the DBF receiver for the first spatial filter showing the

behavior of the in-phase output signal, quadrature output signal and the amplitude and

phase signals obtained in the post-processing phase of the PAA are shown in Figure 3.5

and Figure 3.6. Figure 3.5 and Figure 3.6 shows the time plots for plane wave signals

with the angle of arrival changing from 90º to 0º and 90º to 180º, respectively, with

respect to right-side endfire. The change in amplitude experienced in the in-phase and

quadrature output signals as time progresses illustrates the spatial filter’s response

 74

characteristics with respect to signals with different angle-of-arrival directions. These

characteristics can be seen clearer in the amplitude and phase plots shown at the bottom

of each figure, which where generated in the post-processing phase (not part of the DBF

receiver) using the in-phase and quadrature output signals.

TABLE 3.4 First Spatial Filter Weight Coefficients – FPGA Weights

Element Weight

1 w1 = 0.25 ∟168.75º

2 w2 = 0.25 ∟-63.2813º

3 w3 = 0.25 ∟63.2813º

4 w1 = 0.25 ∟-168.75º

Figure 3.5 Time plots for plane wave signals with the angle of arrival
changing from 90º to 0º for first spatial filter on 4-element linear DBF

 75

Figure 3.6 Time plots for plane wave signals with the angle of arrival
changing from 90º to 180º for first spatial filter on 4-element linear DBF

 To analyze the data results obtained in the DBF receiver simulation, each output

signal generated was stored in a .mat files. A MATLAB program named

“linear_DBFreceiver_results.m” was created to retrieve the simulation results stored in

the .mat files and condition this output data in order to achieve proper viewing of the

results. Figure 3.7 shows a polar graph of the simulation beam pattern’s amplitude with

the weight coefficients and Figure 3.8 shows a rectangular plot of the simulation beam

pattern’s amplitude in dB units. These plots show the maximum value of the beam

pattern’s amplitude at a signal’s angle-of-arrival of 44.9º with a directivity of 6.03 dB.

The beamwidth of the MRA beam for the simulated beam pattern is 40.49º. Table 3.5

 76

shows the results obtained from the DBF receiver simulation with the results obtained in

the theoretical beam pattern calculation.

Figure 3.7 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF
Simulation pointing at θMRA = 45º

TABLE 3.5 First Spatial Filter Beam pattern Characteristics for a 4-element

linear PAA

Beam pattern Characteristic Theoretical Result Simulation Result

MRA angle-of-arrival ΘMRA = 45º ΘMRA = 45.09º

Half-power Beamwidth ΘBW = 40.47º ΘBW = 40.28º

Directivity DdB = 6.02 dB DdB = 6.03 dB

Sidelobe level SLLdB = -11.30 dB SLLdB = -11.43 dB

 77

Figure 3.8 Rectangular plot of Beam pattern Magnitude of a 4-element linear
DBF pointing at θMRA = 45º

3.1.2 Second Spatial Filter Example: Synthesized Beam pattern using
Schlkunoff polynomial null-placement method

 The second spatial filter example used in the DBF receiver for a 4-element linear

PAA produces a beam pattern with 3 nulls positioned at different angular positions: 30º,

60º, and 100º from right-side endfire. The calculation of the weight coefficients was

performed using the Schelkunoff polynomial null-placement method, which can position

a maximum of N-1 nulls for an N-element PAA. A MATLAB file named

“linear_DBFreceiver_nullplacer.m” (shown in the Appendix A) was created to calculate

the weight coefficients for a linear PAA with null-placement specifications on its beam

 78

pattern. The calculation of the weight coefficients involves the solution of a linear system

which contains information of the position of the nulls and null depth (which can be

controlled by means of null multiplicity). Table 3.6 shows the resulting weight

coefficients for the specified beam pattern parameters. In this case, the amplitude of each

weight coefficient is different from one implying the necessity for amplitude weight

control on a DBF receiver where null-placement characteristics are required. Figure 3.9

shows a polar graph of the theoretical beam pattern’s amplitude with the weight

coefficients shown in Table 3.6. Figure 3.10 shows a rectangular plot of the beam

pattern’s amplitude in dB units, which shows nulls placed at angles-of-arrival 30.06º,

59.94º, and 100.08º from right-side endfire with a null depth of -60.22 dB, -56.64 dB,

and -47.73 dB respectively.

 79

Figure 3.9 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF
with beam pattern nulls placed at 30º, 60º, and 100º

TABLE 3.6 Second Spatial Filter Weight Coefficients – Theoretical Weights

Element Weight

1 W1 = 0.8787 ∟-17.3140º

2 W2 = 0.7835 ∟-103.5923º

3 W3 = 0.7835 ∟103.5923º

4 W1 = 0.8787 ∟-17.3140º

Figure 3.10 Rectangular Plot of Beam pattern Magnitude of a 4-element
linear DBF with beam pattern nulls placed at 30º, 60º, and 100º

 The MATLAB file “linear_DBFreceiver_parameters.m” was also used in the

second filter example to transform the weight coefficient values obtained and set the DBF

 80

receiver parameters. The resulting weight coefficients, which are used in the simulation

of the DBF receiver, are shown in Table 3.7. The simulation parameters used for this

spatial filter example are the same parameters used for the first spatial filter example.

Figure 3.11 and Figure 3.12 shows the time plots for plane wave signals with the angle of

arrival changing from 90º to 0º and 90º to 180º, respectively, with respect to right-side

endfire using the weight coefficients derived in the second spatial filter example.

Figure 3.11 Time plots for plane wave signals with the angle of arrival
changing from 90º to 0º for second spatial filter on 4-element linear DBF

TABLE 3.7 Second Spatial Filter Weight Coefficients – FPGA Weights

Element Weight

 81

1 w1 = 0.878723 ∟-16.875º

2 w2 = 0.783447 ∟-104.0625º

3 w3 = 0.783447 ∟104.0625º

4 w1 = 0.878723 ∟-17.3140º

Figure 3.12 Time plots for plane wave signals with the angle of arrival changing

from 90º to 180º for second spatial filter on 4-element linear DBF

 The MATLAB program “linear_DBFreceiver_results.m” was also used to retrieve

and analyze the data results for the second spatial filter example. Figure 3.13 shows a

polar graph of the simulation beam pattern’s amplitude with the second spatial filter’s

weight coefficients and Figure 3.14 shows a rectangular plot of the simulation beam

 82

pattern’s amplitude in dB units. These plots show the beam pattern nulls placed at angles-

of-arrival 29.77º, 60.26º, and 99.91º from right-side endfire with a null depth of -55.56

dB, -56.43 dB, and -55.3 dB respectively. Table 3.8 shows the beam pattern

characteristics of the theoretical results and the simulation results for the second spatial

filter example.

Figure 3.13 Polar Plot of Beam pattern Magnitude of a simulated 4-element
linear DBF with beam pattern nulls placed at 30º, 60º, and 100º

TABLE 3.8 Second Spatial Filter Beam pattern Characteristics for a 4-
element linear PAA

Beam pattern Characteristic Theoretical Result Simulation Result

Null #1: Angle of Arrival = 30º ΘN1 = 30.06º ΘN1 = 29.77º

Null-depth of Null #1 | B(ΘN1)|dB = -60.22 dB | B(ΘN1)|dB = -55.56 dB

 83

Null #2: Angle of Arrival = 60º ΘN2 = 59.94º ΘN2 = 60.26º

Null-depth of Null #2 | B(ΘN1)|dB = -56.64 dB | B(ΘN1)|dB = -56.43 dB

Null #3: Angle of Arrival = 100º ΘN3 = 100.08º ΘN3 = 99.91º

Null-depth of Null #3 | B(ΘN1)|dB = -47.73 dB | B(ΘN1)|dB = -55.3 dB

MRA angle-of-arrival ΘMRA = 128.7º ΘMRA = 128.6º

Half-power Beamwidth ΘBW = 33.82º ΘBW = 33.86º

Directivity DdB = 5.73 dB DdB = 5.74 dB

Sidelobe level SLLdB = -5.95 dB SLLdB = -6.12 dB

Figure 3.14 Rectangular Plot of Beam pattern Magnitude of a simulated 4-
element linear DBF with beam pattern nulls placed at 30º, 60º, and 100º

 84

3.1.3 Beam pattern Granularity for 4-element linear PAA

 Granularity is defined as “the finest realizable increment between adjacent beam

positions. [Hatcher, 1968]” The beam pattern granularity is controlled by the bit

resolution of the weight coefficient’s phase parameter since the MRA’s angle-of-arrival

of a beam pattern is controlled by the relative phase found between the signals of the

elements in the PAA. For a linear array, the beam pattern granularity can be described by

the following mathematical equation:

() () ()2 1
1 2 max () max ()
, | |

MRA MRA
MRA MRA B B

BG θ θθ θ θ θ= − 3.4

Ideally, ()2max ()

|
MRAB θθ would be equal to θMRA2 and ()1max ()

|
MRAB θθ would be equal to θMRA1

making BG(θMRA1,θMRA2) = θMRA2 - θMRA1. For DBF receivers with low bit resolution on

the weight coefficient’s phase parameter, one may find that the MRA’s angle-of-arrival is

not exactly θMRA, but an angular value close to θMRA. The relationship between the MRA’s

angle-of-arrival and the weight coefficient’s phase parameter includes sine and cosine

functions (not linear), making the beam pattern granularity dependent on the MRAs’

angular values, not just its angular difference. Figure 3.15 shows a plot of the beam

pattern granularity as a function of the MRA’s angle-of-arrival when the weight

coefficient’s phase parameter has a bit resolution of 8 bits with no decimal precision for

the 4-element linear PAA. The beam pattern granularity plot has been constructed using a

constant MRA angle difference (θMRA2 - θMRA1) of one degree along each angle-of-arrival

value. It can be seen how the granularity value is larger on beam patterns with MRAs

 85

pointing towards endfire of the array (leftside and rightside) with a value of

approximately 5 degrees from beam patterns with MRAs pointing near broadside where

the beam pattern granularity has a value close to one degree, which is the desired MRA

angle difference. Figure 3.16 and Figure 3.17 shows beam pattern granularity for weight

coefficient’s phase parameters with bit resolutions of 4 bits with no decimal precision and

16 bits with no decimal precision, respectively. In these figures, it can be seen how low

bit resolution results into poor beam pattern granularity restricting the MRA’s

permissible angular value whereas high bit resolution results into good beam pattern

graunularity where the resulting MRA’s angle difference is very close the proposed

angular difference.

Figure 3.15 Beam pattern Granularity Plot for a 4-element linear DBF with 8
bits of resolution on the weight coefficient’s phase

 86

Figure 3.16 Beam pattern Granularity Plot for a 4-element linear DBF with 4
bits of resolution on the weight coefficient’s phase

Figure 3.17 Beam pattern Granularity Plot for a 4-element linear DBF with
16 bits of resolution on the weight coefficient’s phase

 87

3.2 16-element linear PAA Transmitter Prototype

The 16-element linear PAA Transmitter Prototype consists of 16 isotropic radiating

antennas arranged in a linear distribution and uniformly spaced by half-wavelength.

Some PAA parameters, such as signal bandwidth, RF carrier frequency, IF frequency and

inter-element spacing, are the same parameters used in the 4-element linear PAA receiver

prototype. Since this PAA has a different number of elements, the Narrowband Factor

needs to be recalculated to assure proper array performance based on narrowband

beamformer model implementation. Table 3.9 shows the PAA parameters for this 16-

element linear array. In this case, the Narrowband Factor (BS· ∆Tmax) is extremely small

compared to one thus, the narrowband beamformer can be used to control the beam

pattern of this 16-element PAA.

TABLE 3.9 16-element linear PAA parameters

Parameter Value

RF Carrier Frequency fRF = 5.85 GHz

IF Frequency fIF = 3 MHz

Signal Bandwidth BS = 2 MHz

Number of Elements N = 16

Inter-element Spacing ∆z = λc/2

Maximum Travel Time ∆Tmax = 15/2fRF

Narrowband Factor BS· ∆Tmax = 0.0026

 88

The implementation of this DBF transmitter is based on the design described in Section

2.4.2. Figure 3.18 shows a diagram of the DBF transmitter implementation for a 16-

element linear PAA using MATLAB’s Simulink and Xilinx’s System Generator Blockset.

Each of the sixteen white blocks in the middle of the figure arranged in 4 x 4 matrix

represent a DBF transmitter channel. The blue blocks at the left side of each DBF

transmitter channel are the amplitude and phase of the weight coefficient of that

particular channel. A single DDS Block has been used as the local digital oscillator for

the 16 DBF channels. The DDS outputs a sinusoidal signal and its 90º phase-shifted

version at a frequency of 3 MHz, where each sample has a sample frequency of 100 MHz.

The yellow blocks at the right side of the each DBF transmitter channel represent the

DACs of the DBF, which transform the digital signal into the analog domain at a sample

Figure 3.18 Diagram of the simulated 16-element linear DBF transmitter

 89

rate of 100 MHz per channel at a resolution of 14 bits with 12 bits of decimal precision.

At the left side of the figure, the white figures and black figures are Simulink blocks used

to display and store as a .mat file the 16 generated IF signals.

 Figure 3.19 shows diagrams of the DUC and the CWM phase components, which

are inside of each DBF transmitter channel. The CWM (Figure 3.19a) operates at a

sampling frequency of 10 MHz, which is the sampling frequency at the input of the CIC

interpolation filter. The resolution of the weight coefficient’s amplitude is 16 bits with 14

bits of decimal precision and the weight coefficient’s phase is 8 bits with no decimal

precision. The output of the sine/cosine table in the CWM gives a bit resolution of 8 bits

with 7 bits of decimal precision. The mathematical operations in the DBF transmitter

channel (addition and multiplication) have the same bit resolution used in the 4-element

linear PAA receiver. The DUC (right side of Figure 3.19b) operates at the sampling

frequency of the DAC, which is 100 MHz. Each DUC contains two CIC filters (one for

each quadrature channel) with 2 stages (N = 2), a differential delay of 1 samples (M = 1),

a rate change factor of 10 (R = 10) and a latency of 2 clock cycles. The two other blue

blocks at the right of the CIC filter (“force” block and “cast” block) quantizes the output

of the filter to samples with a bit resolution of 18 bits with 16 bits of decimal precision.

The two scale blocks located at the output of the register, which are part of the CIC filter

implementation, are used to condition the output of the CIC filter and prevent overflow in

the multiplication stages. As for the output of DBF transmitter, each output channel has a

 90

bit resolution of a resolution of 14 bits at a sampling frequency of 100 MHz. Table 3.10

summarizes the parameters of the DBF receiver’s components.

a)

b)

Figure 3.19 Diagram of the DUC (3.19a) and CWM (3.19b) of the simulated
DBF transmitter

TABLE 3.10 Parameters of the DBF transmitter’s components

Parameter Value

Multiplier’s bit resolution 18 bits -16 bit decimal
precision

Adder’s bit resolution 14 bits – 12 bit
decimal precision

 91

DDS Operating Frequency fDDS = 3 MHz

DAC Sample Frequency fDAC = 100 MHz

DAC bit resolution 14 bits – 12 bit
decimal precision

DUC Sample Frequency fDUC = 100 MHz

CIC Filter Stages NCIC = 2

CIC Differential Filter M = 1

CIC Rate Change Factor R = 10

CIC bit resolution 18 bits – 16 bit
decimal precision

CWM Sample Frequency fCWM = 10 MHz

Weight Coefficient – Amplitude bit
resolution

16 bits – 14 bit
decimal precision

Weight Coefficient – Phase bit resolution 8 bits with no decimal
precision

Sine/Cosine Look-Up Table input bit
resolution

8 bits – 7 bit decimal
precision

DBF Output Signal bit resolution 14 bits – 12 bit
decimal precision

 The DBF transmitter simulations consist in generating a single data signal in the

FPGA code for all the 16 DBF transmitter channels. At the output of the DBF transmitter

simulation, 16 IF signals are generated, each with a relative phase shit associated with the

channel’s weight coefficients. Four signal scopes are placed at the right side of each row

channel to display the output of each DBF channel and make a visual comparison of the

amplitude and relative phase difference between each signal. As for a post-processing

phase for the PAA transmitter, the 16 IF signals are stored on a .mat file as a matrix

variable where, later, they will be analyzed to observe the beam pattern formed based on

the spatial combination of all the output signals.

 92

3.2.1 First Spatial Filter Example: Beam pattern with Taylor Amplitude
Weight Function pointing to θMRA = 60º

 The first spatial filter example used in the DBF transmitter for a 16-element linear

PAA produces a beam pattern with an MRA pointing at an angular position of 60º

(respect to right-side endfire) with a Taylor distribution amplitude-weighting function. As

mentioned in Section 2.1.4, the Taylor distribution method generates the amplitude of

weight coefficients to minimize the MRA’s beamwidth based on sidelobe level

specifications. This beam pattern synthesis technique gives constant inner sidelobe levels

by moving the inner zeros of the beam pattern into new locations in the unit circle and

decaying outer sidelobes by leaving the outer zeros in the same location as the uniform

weight distribution [Van Trees, 2002]. The method requires two design parameters:

maximum sidelobe height and number of inner zeros in the beam pattern. The position of

the nulls in ψ-space for Taylor weight distribution can be described in the following

mathematical form:

1
2 2

2

2
2

1
2 2

1
2

n

A n
n

N
A n

πψ

 + − =
 + −

 3.5

where n is the number of inner zeros in the beam pattern and A is related to the maximum

sidelobe height R by the following equation:

 93

()cosh A Rπ = 3.6

A MATLAB file named “linear_DBFtransmitter_taylor.m” (shown in the Appendix A)

was created to compute the weight coefficients for the first spatial filter example of the

linear 16-element PAA. The code uses the Schelkunoff polynomial null-placement

method, where the null positions are given by Eq. 3.5, to calculate amplitude of the

weight and Eq. 3.1 to calculate the phase of the weight coefficient. The Taylor

distribution specification for this filter is a maximum sidelobe level of -30 dB with a

number of inner zeros equal to 6. Table 3.11 shows the resulting weight coefficients for

the specified beam pattern parameters. Figure 3.20 shows a polar graph of the theoretical

beam pattern’s amplitude with the weight coefficients shown in Table 3.11. Figure 3.21

shows a rectangular plot of the beam pattern’s amplitude in dB units. These plots show

the maximum value of the beam pattern’s amplitude at a signal’s angle-of-transmission of

59.94º with a directivity of 11.34 dB. The beamwidth of the MRA beam for the

theoretical beam pattern is 9.34º with a maximum sidelobe level of -30.11 dB.

TABLE 3.11 First Spatial Filter Weight Coefficients – Theoretical Weights

Element Weight

1 w1 = 0.0076 ∟45º

2 w2 = 0.0102 ∟135º

3 w3 = 0.0134 ∟-135º

4 w4 = 0.0185 ∟-45º

5 w5 = 0.0226 ∟45º

6 w6 = 0.0266 ∟135º

 94

7 w7 = 0.0293 ∟-135º

8 w8 = 0.0309 ∟-45º

9 w9 = 0.0309 ∟45º

10 w10 = 0.0293 ∟135º

11 w11 = 0.0266 ∟-135º

12 w12 = 0.0226 ∟-45º

13 w13 = 0.0185 ∟45º

14 w14 = 0.0134 ∟135º

15 w15 = 0.0102 ∟-135º

16 w16 = 0.0076 ∟-45º

Figure 3.20 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF
with Taylor Amplitude Distribution pointing at θMRA = 60º.

 95

Figure 3.21 Rectangular Plot of Beam pattern Magnitude of a 4-element
linear DBF with Taylor Amplitude Distribution point ing at θMRA = 60º

 The next step before proceeding with the simulations of the DBF transmitter

consist in the transformation of the weight coefficients into constant encoded in the

FPGA code simulator. A MATLAB program named

“linear_DBFtrasnmitter_parameters.m” (included in the Appendix A) was prepared to

change the weight coefficients into its fixed-point format values and set all the necessary

DBF transmitter parameters (shown in Table 3.10) needed to perform the DBF

transmitter simulation. The total simulation time used for this DBF transmitter was 2 x

10-5 seconds. The weight coefficients obtained after quantization of the weight values

into the fixed-point representation used in the DBF receiver simulation are shown in

 96

Table 3.12. Figure 3.22 shows 4 time plots of the first 4 elements in the 16-element DBF

transmitter (elements 1 through 4). This figure shows the amplitude and phase difference

found in the output IF signals, which is necessary in order to acquire proper spatial

combination of the signals and achieve a desirable beam pattern.

TABLE 3.12 First Spatial Filter Weight Coefficients – FPGA Weights

Element Weight

1 w1 = 0.00757 ∟45º

2 w2 = 0.01025 ∟135º

3 w3 = 0.01337 ∟-135º

4 w4 = 0.01849 ∟-45º

5 w5 = 0.02258 ∟45º

6 w6 = 0.02661 ∟135º

7 w7 = 0.02936 ∟-135º

8 w8 = 0.03088 ∟-45º

9 w9 = 0.03088 ∟45º

10 w10 = 0.02936 ∟135º

11 w11 = 0.02661 ∟-135º

12 w12 = 0.02258 ∟-45º

13 w13 = 0.01849 ∟45º

14 W14 = 0.01337 ∟135º

15 w15 = 0.01025 ∟-135º

16 W16 = 0.00757 ∟-45º

 97

Figure 3.22 Signal Plots of 4 of the 16-elements in the linear DBF transmitter
for first spatial filter simulation

 To analyze the data results obtained in the DBF transmitter simulation, each

output signal generated was stored in a .mat files. A MATLAB program named

“linear_DBFtransmitter_results.m” was created to retrieve the simulation results stored in

the .mat files and calculate the beam pattern from the spatial combination of the IF output

signals. The code calculates the Discrete Fourier Transform (DFT) of each of the 16

output signals, retrieves the amplitude and phase difference value for the IF carrier

frequency (in these case fIF = 3MHz), and computes the beam pattern based on the weight

coefficients derived from the each signal’s amplitude and phase difference. Figure 3.23

shows a polar graph of the simulation beam pattern’s amplitude with the weight

 98

coefficients derived from DFT analysis and Figure 3.24 shows a rectangular plot of the

simulation beam pattern’s amplitude in dB units. These plots show the maximum value of

the beam pattern’s amplitude at a signal’s angle-of-transmission of 59.94º with a

directivity of 11.34 dB. The beamwidth of the MRA beam for the theoretical beam

pattern is 9.34º with a maximum sidelobe level of -30.08 dB. Table 3.13 shows the results

obtained from the DBF transmitter simulation with the results obtained in the theoretical

beam pattern calculation. The results of each DBF (theoretical and simulated DBF) are

similar in terms of beam pattern characteristics which makes the simulated DBF a good

implementation of its theoretical counterpart.

Figure 3.23 Polar Plot of Beam pattern Magnitude of a simulated 4-element
linear DBF with Taylor Amplitude Distribution point ing at θMRA = 60º

 99

Figure 3.24 Rectangular Plot of Beam pattern Magnitude of a simulated 4-
element linear DBF with Taylor Amplitude Distributi on pointing at θMRA =

60º

TABLE 3.13 First Spatial Filter Beam pattern Characteristics for a 16-
element linear PAA

Beam pattern Characteristic Theoretical Result Simulation Result

MRA angle-of-arrival ΘMRA = 59.94º ΘMRA = 59.94º

Half-power Beamwidth ΘBW = 9.34º ΘBW = 9.34º

Directivity DdB = 11.34 dB DdB = 11.34 dB

Sidelobe level SLLdB = -30.11 dB SLLdB = -30.08 dB

 100

3.2.2 Second Spatial Filter Example: Beam pattern with Blackman-Harris
Amplitude Weight Function pointing to θMRA = 82º

 The second spatial filter example used in the DBF transmitter for a 16-element

linear PAA produces a beam pattern with an MRA pointing at an angular position of 82º

(respect to right-side endfire) with a Blackman-Harris window amplitude-weighting

function. The Blackman-Harris window is one of the Spectral Windows used to control

the beam pattern behavior of a PAA, as mentioned in Section 2.1.4. It contains all the

characterisitics associated with a Spectral Window where the beam pattern characteristics

such as beamwidth, sidelobe behavior and directivity are fixed by the number of elements

in the PAA. The amplitude weight coefficients for each DBF element can be obtained

using the mathematical equation [Van Trees, 2001] associated with this Spectral Window:

() 2 4 1 1
0.42 0.5cos 0.08cos , .

2 2

n n N N
w n n

N N

π π − − = + + − ≤ ≤

 3.7

The beam pattern characteristics of an N-element PAA with a Blackman-harris spectral

window can be calculated using the following mathematical equations:

2
1.65 ,BW N

Θ = 3.8

56.6 ,dBSLL dB= − 3.9

()1010 log 0.577 .dBD N= ⋅ ⋅ 3.10

A MATLAB file named “linear_DBFtransmitter_blackmannharris.m” (shown in the

Appendix A) was created to compute the weight coefficients for the second spatial filter

example of the linear 16-element PAA. The code uses the Blackman-Harris amplitude

 101

function (Eq. 3.7) to generate the amplitude of the weights and Eq. 3.1 to calculate the

phase of the weight coefficients. Table 3.14 shows the resulting weight coefficients for

the specified beam pattern parameters. Figure 3.25 shows a polar graph of the theoretical

beam pattern’s amplitude with the weight coefficients shown in Table 3.14. Figure 3.26

shows a rectangular plot of the beam pattern’s amplitude in dB units. These plots show

the maximum value of the beam pattern’s amplitude at a signal’s angle-of-transmission of

82.08º with a directivity of 9.67 dB. The beamwidth of the MRA beam for the theoretical

beam pattern is 11.89º with a maximum sidelobe level of -57.79 dB.

TABLE 3.14 Second Spatial Filter Weight Coefficients – Theoretical Weights

Element Weight

1 w1 = 0.0035 ∟172.12º

2 w2 = 0.0349 ∟-162.83º

3 w3 = 0.1116 ∟-137.78º

4 w4 = 0.2485 ∟-112.73º

5 w5 = 0.4436 ∟-87.68º

6 w6 = 0.6672 ∟-62.63º

7 w7 = 0.8663 ∟-37.58º

8 w8 = 0.9843 ∟-12.53º

9 w9 = 0.9843 ∟12.53º

10 w10 = 0.8663 ∟37.58º

11 w11 = 0.6672 ∟62.63º

12 w12 = 0.4436 ∟87.68º

13 w13 = 0.2485 ∟112.73º

 102

14 w14 = 0.1116 ∟137.78º

15 w15 = 0.0349 ∟162.83º

16 w16 = 0.0035 ∟-172.12º

Figure 3.25 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF
with Blackmann-Harris Amplitude Distribution pointi ng at θMRA = 82º

 103

Figure 3.26 Rectangular Plot of Beam pattern Magnitude of a 4-element
linear DBF with Blackmann-Harris Amplitude Distribu tion pointing at θMRA

= 82º

 The MATLAB file “linear_DBFtransmitter_parameters.m” was also used in the

second filter example to transform the weight coefficient values obtained and set the DBF

transmitter parameters. The resulting weight coefficients, which are used in the

simulation of the DBF transmitter, are shown in Table 3.15. The simulation parameters

used for this spatial filter example are the same parameters used for the first spatial filter

example for the 16-element DBF. Figure 3.27 shows 4 time plots of the first 4 elements

in the 16-element DBF transmitter (elements 1 through 4). Each signal shown in Figure

3.27 exhibits a distinct amplitude and phase difference where the contribution of each

signal forms the specified beam pattern.

 104

Figure 3.27 Signal Plots of 4 of the 16-elements in the linear DBF transmitter
for second spatial filter simulation

TABLE 3.15 Second Spatial Filter Weight Coefficients – FPGA Weights

Element Weight

1 w1 = 0.0035 ∟171.56º

2 w2 = 0.0349 ∟-163.13º

3 w3 = 0.1116 ∟-137.81º

4 w4 = 0.2485 ∟-112.50º

5 w5 = 0.4437 ∟-87.19º

6 w6 = 0.6672 ∟-63.28º

7 w7 = 0.8663 ∟-37.97º

8 w8 = 0.9843 ∟-12.66º

 105

9 w9 = 0.9843 ∟12.53º

10 w10 = 0.8663 ∟37.97º

11 w11 = 0.6672 ∟63.28º

12 w12 = 0.4436 ∟87.19º

13 w13 = 0.2485 ∟112.50º

14 w14 = 0.1116 ∟137.81º

15 w15 = 0.0349 ∟162.13º

16 w16 = 0.0035 ∟-171.56º

 The analysis of the results obtained in the simulation of the second spatial filter

for the 16-element linear DBF is performed using the MATLAB program

“linear_DBFtransmitter_results.m” also. Figure 3.28 shows a polar graph of the

simulation beam pattern’s amplitude with the weight coefficients derived from DFT

analysis and Figure 3.29 shows a rectangular plot of the simulation beam pattern’s

amplitude in dB units. The maximum value of the beam pattern’s amplitude is found at a

signal’s angle-of-transmission of 82.08º with a directivity of 9.68 dB. Its beamwidth is

11.89º with a maximum sidelobe level of -44.60 dB. Table 3.16 shows the results

obtained from the DBF transmitter simulation with the results obtained in the theoretical

beam pattern calculation. The beam pattern characteristics of the simulated DBF are

similar to the results obtained from the theoretical DBF with a notable difference in the

sidelobe level of the beam pattern. This difference of more than 10 dB may be found do

to the low sidelobe level specification, which has nearly the same beam pattern

magnitude as a first order null for a typical DBF system.

 106

Figure 3.28 Polar Plot of Beam pattern Magnitude of simulated 4-element
linear DBF with Blackmann-Harris Amplitude Distribu tion pointing at θMRA

= 82º

TABLE 3.16 Second Spatial Filter Beam pattern Characteristics for a 16-
element linear PAA

Beam pattern Characteristic Theoretical Result Simulation Result

MRA angle-of-arrival ΘMRA = 82.08º ΘMRA = 82.08º

Half-power Beamwidth ΘBW = 11.89º ΘBW = 11.89º

Directivity DdB = 9.67 dB DdB = 9.68 dB

Sidelobe level SLLdB = -57.79 dB SLLdB = -44.60 dB

 107

Figure 3.29 Rectangular Plot of Beam pattern Magnitude of simulated 4-

element linear DBF with Blackmann-Harris Amplitude Distribution pointing
at θMRA = 82º

3.2.3 Beam pattern Granularity for 16-element linear PAA

 The beam pattern granularity, which was introduced as an important parameter in

Section 3.1.3, is also affected by the number of elements in the PAA. Figure 3.30 shows a

plot of the beam pattern granularity as a function of the MRA’s angle-of-arrival when the

weight coefficient’s phase parameter has a bit resolution of 8 bits with no decimal

precision for the 16-element linear PAA. Eq. 3.4 was also used to calculate the beam

pattern granularity of this linear array. As in the case of the 4-element linear PAA, the

 108

granularity value is larger on beam patterns with MRAs pointing towards endfire of the

array (leftside and rightside) with a value of approximately 5 degrees from beam patterns

with MRAs pointing near broadside where the beam pattern granularity has a value close

to one degree, which is the desired MRA angle difference. Figure 3.31 and Figure 3.33

shows beam pattern granularity for weight coefficient’s phase parameters with bit

resolutions of 4 bits with no decimal precision and 16 bits with no decimal precision for

the 16-element linear PAA, respectively. If these beam pattern granularity plots are

compared with the ones shown in Section 3.1.3, it can be seen that for the same bit

resolution a linear array with more elements exhibits a better beam pattern granularity in

terms of an obtained degree difference closer to the real degree difference found between

the two MRAs.

Figure 3.30 Beam pattern Granularity Plot for a 16-element linear DBF with
8 bits of resolution on the weight coefficient’s phase

 109

Figure 3.31 Beam pattern Granularity Plot for a 16-element linear DBF with
4 bits of resolution on the weight coefficient’s phase

Figure 3.32 Beam pattern Granularity Plot for a 16-element linear DBF with
16 bits of resolution on the weight coefficient’s phase

 110

3.3 16-element rectangular PAA Transmitter Prototype

The 16-element rectangular PAA Transmitter Prototype consists of 16 isotropic

radiating antennas arranged in a rectangular distribution and uniformly spaced in each

axis by half-wavelength. Most of the parameters of this PAA, such as signal bandwidth,

RF carrier frequency, IF frequency and inter-element spacing, are the same parameters

used in the 16-element linear PAA transmitter prototype. Table 3.17 shows the PAA

parameters for this 16-element rectangular array. The 16-element rectangular PAA has

the same number of elements as the PAA studied in Section 3.2 but since its geometrical

distribution is different, a recalculation of the Narrowband Factor is necessary. In this

case, the Maximum Travel Time (∆Tmax) is the time taken for a planar wave to travel in

endfire direction from the first element in the first row to the last element in the last row

of the planar array. The Narrowband Factor for this PAA (BS· ∆Tmax) is extremely small

compared to one thus, the narrowband beamformer can be used to control this PAA’s

beam pattern.

TABLE 3.17 16-element rectangular PAA parameters

Parameter Value

RF Carrier Frequency fRF = 5.85 GHz

IF Frequency fIF = 3 MHz

Signal Bandwidth BS = 2 MHz

Number of Elements N = 16

Inter-element Spacing ∆x = λc/2, ∆y = λc/2

 111

Maximum Travel Time ∆Tmax = 2 *3/2fRF

Narrowband Factor BS· ∆Tmax = 0.000725

The implementation of this DBF transmitter is based on the design described in Section

2.4.2. The DBF architecture provides design flexibility where a DBF with a particular

number of channels can be used with any PAA with the same amount of antennas, not

taking into account the geometrical distribution of the array. Since the 16-element

rectangular PAA has the same amount of channels as its linear counterpart studied in

Section 3.2, the architecture, design parameters, and simulation process of the DBF are

the same as the one explained in Section 3.2. The architecture design of the DBF

transmitter for this PAA can be reviewed in Figures 3.18 and 3.19 and its DBF design

parameters are shown in Table 3.10.

3.3.1 First Spatial Filter Example: Beam pattern with Uniform Amplitude
Weight Function pointing to φMRA = 0º and θMRA = 30º

 The first spatial filter example used in the DBF transmitter for a 16-element

rectangular PAA produces a beam pattern with an MRA pointing at angular positions of

φ = 0º (angle formed in the planar axis) and θ = 30º (angle formed in the axis

perpendicular to the planar array) with a uniform distribution amplitude-weighting

function. In Section 3.1, Eq. 1 showed the calculation of the weight coefficients for a

general PAA with one MRA beam specification. For a rectangular array, the position

 112

vector’s pz value is equal to zero reducing the calculation of the weight coefficient for

each channel n into:

() () () ()2 sin cos sin1
* .MRA x MRA y MRAj p p

nw e
N

π θ φ φλ + = 3.11

The phase value found in each weight coefficient can be viewed as the sum of the phase

differences between neighboring elements in the same x axis value and phase difference

between neighboring elements in the same y axis of the rectangular array. This

relationship can be seen by restructuring Eq. 3.11 into the following mathematical form:

()1
* ,x yj

nw e
N

ψ ψ∆ +∆= 3.12

where:

() () ()2 sin cos ,x x MRA MRApπψ θ φλ∆ = 3.13

() () ()2 sin sin .y y MRA MRApπψ θ φλ∆ = 3.14

Table 3.18 shows the resulting weight coefficients for a uniform 16-element rectangular

PAA with an inter-element spacing of λ/2 in x and y axis, which are the axis parallel to

the planar array. A MATLAB program named “rectangular_DBFtransmitter_steering.m”

(which is shown in Appendix A) was prepared in order to calculate the theoretical beam

pattern, the directivity and the beamwidth of the PAA for a one-MRA spatial filter design

for a rectangular PAA. Figure 3.33 shows a top view polar graph of the theoretical beam

pattern’s amplitude with the weight coefficients shown in Table 3.18. The top view polar

graph was generated using MATLAB function polar3D() provided by Dr. Sébastien

 113

Rondineau, Research Professor at the University of Colorado at Boulder. Figure 3.34

shows rectangular plots of the beam pattern’s amplitude in dB units for beam pattern cuts

of φ = 0º and φ = 45º. These plots show the maximum value of the beam pattern’s

amplitude at a signal’s angle-of-transmission of φ = 0º and θ = 30º with a directivity of

12.80 dB. The beamwidth of the MRA beam (shown in Figure 3.34a) for the theoretical

beam pattern is 30.68º with a sidelobe of -7.40 dB (shown in Figure 3.34b). Figure 3.35

shows a 3D surf plot of the beam pattern’s amplitude for this spatial filter design.

TABLE 3.18 First Spatial Filter Weight Coefficients for 16-element
rectangular PAA – Theoretical Weights

Element Weight

1, 1 w1,1 = 0.0625 ∟-135º

1, 2 w1,2 = 0.0625 ∟-135º

1, 3 w1,3 = 0.0625 ∟-135º

1, 4 w1,4 = 0.0625 ∟-135º

2, 1 w2,1 = 0.0625 ∟-45º

2, 2 w2,2 = 0.0625 ∟-45º

2, 3 w2,3 = 0.0625 ∟-45º

2, 4 w2,4 = 0.0625 ∟-45º

3, 1 w3,1 = 0.0625 ∟45º

3, 2 w3,2 = 0.0625 ∟45º

3, 3 w3,3 = 0.0625 ∟45º

3, 4 w3,4 = 0.0625 ∟45º

4, 1 w4,1 = 0.0625 ∟135º

4, 2 w4,2 = 0.0625 ∟135º

 114

4, 3 w4,3 = 0.0625 ∟135º

4, 4 w4,4 = 0.0625 ∟135º

Figure 3.33 Top View Polar Plot of Beam pattern Magnitude of 16-element
rectangular DBF with Uniform Amplitude Distribution pointing at φMRA = 0º

and θMRA = 30º

Figure 3.34 Rectangular Plots of Beam pattern Magnitude of 16-element
rectangular DBF with Uniform Amplitude Distribution pointing at φMRA =

82º and θMRA = 0º for Plane cut on φ = 0º and φ = 45º

 115

Figure 3.35 Surf Plot of Beam pattern Magnitude of 16-element rectangular
DBF with Uniform Amplitude Distribution pointing at φMRA = 0º and θMRA =

30º

 Before a simulation of the rectangular PAA is performed, transformation of the

weight coefficients into constant encoded in the FPGA code simulator is required. A

MATLAB program named “rectangular_DBFtransmitter_parameters.m” (included in the

Appendix A) was prepared to change the weight coefficients into its fixed-point format

values and set all the necessary DBF transmitter parameters. This MATLAB file is

similar to the file created to set DBF parameters and condition weight coefficients values

for a 16-element linear PAA. The difference strives in the way the file reads the weight

coefficient; weights in a linear array are stored in vector form whereas weights in a

rectangular array are stored in matrix form. The total simulation time used for this DBF

 116

transmitter was 2 x 10-5 seconds. Table 3.19 shows the weight coefficients used by the

DBF to perform the spatial signal processing. Figure 3.36 shows 4 time plots of the 4

elements of the first row associated with the 16-element rectangular PAA. Since each

weigh coefficient has the same weight amplitude, the signals shown in Figure 3.36 show

only a difference in their relative phase.

TABLE 3.19 First Spatial Filter Weight Coefficients for 16-element
rectangular PAA – FPGA Weights

Element Weight

1, 1 w1,1 = 0.0625 ∟-135º

1, 2 w1,2 = 0.0625 ∟-45º

1, 3 w1,3 = 0.0625 ∟45º

1, 4 w1,4 = 0.0625 ∟135º

2, 1 w2,1 = 0.0625 ∟-135º

2, 2 w2,2 = 0.0625 ∟-45º

2, 3 w2,3 = 0.0625 ∟45º

2, 4 w2,4 = 0.0625 ∟135º

3, 1 w3,1 = 0.0625 ∟-135º

3, 2 w3,2 = 0.0625 ∟-45º

3, 3 w3,3 = 0.0625 ∟45º

3, 4 w3,4 = 0.0625 ∟135º

4, 1 w4,1 = 0.0625 ∟-135º

4, 2 w4,2 = 0.0625 ∟-45º

4, 3 w4,3 = 0.0625 ∟45º

4, 4 w4,4 = 0.0625 ∟135º

 117

Figure 3.36 Signal Plots of 4 of the 16-elements in the rectangular DBF
transmitter for first spatial filter simulation

 The next step in the simulation process involves analyzing the data obtained in the

DBF transmitter simulation results which were stored in a .mat files. A MATLAB

program named “rectangular_DBFtransmitter_results.m” was created to retrieve the

simulation results stored in the .mat files and calculate the beam pattern from the spatial

combination of the IF output signals for a planar array. The code uses the Discrete

Fourier Transform (DFT) to retrieves the amplitude and phase difference value for the IF

carrier frequency (in these case fIF = 3MHz) like the file used in Section 3.2 to retrieve

beam pattern results from a linear transmitter array. The difference, in this case, is that

 118

the weight coefficient’s phase value for each element is calculated using Eq. 3.12, where

the relative phase difference considers phase difference between neighboring elements in

x and phase difference between neighboring elements in the y axis. Figure 3.37 shows a

top view polar graph of the simulation beam pattern’s amplitude with the weight

coefficients derived from DFT analysis. Figure 3.38 shows rectangular plots of the

simulation beam pattern’s amplitude in dB units for beam pattern cuts of φ = 0º and φ =

45º. These plots show the maximum value of the beam pattern’s amplitude at a signal’s

angle-of-transmission of φ = 0º and θ = 30º with a directivity of 12.80 dB. The

beamwidth of the MRA beam (shown in Figure 3.38a) for the theoretical beam pattern is

30.81º with a sidelobe of -7.37 dB (shown in Figure 3.38b). Figure 3.39 shows a 3D surf

plot of the beam pattern’s amplitude for this spatial filter design. Table 3.20 shows the

results obtained from the DBF transmitter simulation with the results obtained in the

theoretical beam pattern calculation.

TABLE 3.20 First Spatial Filter Beam pattern Characteristics for a 16-
element rectangular PAA

Beam pattern Characteristic Theoretical Result Simulation Result

MRA angle-of-arrival φMRA = 0º,
ΘMRA = 30º

φMRA = 0º,
ΘMRA = 30º

Half-power Beamwidth ΘBW = 30.68º @
φMRA = 0º

ΘBW = 30.80º @
φMRA = 0º

Directivity DdB = 12.80 dB DdB = 12.80 dB

Sidelobe level SLLdB = -7.40 dB @
φMRA = 45º

SLLdB = -7.37 dB @
φMRA = 45º

 119

Figure 3.37 Top View Polar Plot of Beam pattern Magnitude of simulated 16-
element rectangular DBF with Uniform Amplitude Distribution pointing at

φMRA = 0º and θMRA = 30º

Figure 3.38 Rectangular Plots of Beam pattern Magnitude of simulated 16-
element rectangular DBF with Uniform Amplitude Distribution pointing at

φMRA = 0º and θMRA = 30º for Plane cut on φ = 0º and φ = 45º

 120

Figure 3.39 Surf Plot of Beam pattern Magnitude of simulated 16-element
rectangular DBF with Uniform Amplitude Distribution pointing at φMRA = 0º

and θMRA = 30º

3.3.2 Second Spatial Filter Example: Beam pattern with Dolph-Chebyshev

Amplitude Weight Function pointing to φMRA = 122º and θMRA = 16º

 The second spatial filter example used in the DBF transmitter for a 16-element

rectangular PAA produces a beam pattern with an MRA pointing at angular positions of

φ = 122º (angle formed in the planar axis) and θ = 16º (angle formed in the axis

perpendicular to the planar array) with a Dolph-Chebyshev distribution amplitude-

weighting function. As mentioned in Section 2.1.4, the Dolph-Chebyshev distribution

method generates the amplitude of weight coefficients to minimize the MRA’s

 121

beamwidth based on constant sidelobe level specifications. In this method, the properties

of the Chebyshev polynomials are used to control the ratio RDCV of the MRA’s magnitude

to the sidelobe level where the value of the magnitude of the MRA lobe corresponds to

the value of the m-th degree Chebyshev polynomial Tm(x0) and the magnitude of the

sidelobe is unity [Van Trees, 2002]. The relationship between the value x0 and the ratio

RDCV is shown in the following equation:

()1

0

cosh
cosh ,

1
DCVR

x
L

−
= −

 3.15

where L is the number of elements along one of the axis of the rectangular array. After

the parameter RDCV has been specified, the amplitude of the weight coefficients can be

calculated using the beam pattern sampling in the wavenumber space. The beam pattern

of a rectangular array with L elements in the x-axis and M elements in the y-axis using

Dolph-Chebyshev weight distribution can be expressed in the following form:

() 1 0, cos cos ,
2 2

yx
x y LB T xψ

ψψψ ψ −

 =
 3.16

where ψx and ψy are:

()2
sin cos ,x

x

dπψ θ ϕ
λ

= 3.17

()2
sin sin .y

y

dπ
ψ θ ϕ

λ
= 3.18

The m-th degree Chebyshev polynomial Tm(x) is defined:

 122

()
()()

()()
() ()()

1

1

1

cos cos , 1,

cosh cosh , 1,

1 cosh cosh , 1.

m

m

m x x

T x m x x

m x x

−

−

−

 ≤

= >

− < −

 3.19

In many beam pattern synthesis applications, the Inverse Discrete Fourier Transform

(IDFT) algorithm is used to obtain the weights of a pattern sampled in the wavenumber

space. In this algorithm, a function B(k1, k2) is calculated using the beam pattern function

Bψ(ψx, ψy):

() 1 2 1 2

1 1
12 2

1 2 1 0, cos cos ,
2 2

xk yk
L M

j
xk yk

LB k k e T x R
ψ ψ ψ ψ− − − + −

−

=

 3.20

where ψxk1 and ψyk2 are:

1 1 1

1 2
, 0,1, , 1,

2xk

L
k k L

L

πψ − = − = −

… 3.21

2 2 2

1 2
, 0,1, , 1.

2yk

M
k k M

M

πψ − = − = −

… 3.22

Applying the 2-D IDFT on the function B(k1,k2) gives a function b(l,m), which is related

to the weight distribution function w(l,m). The final step in the algorithm involves the

calculation of the weight coefficient of each antenna in the array using the following

equation:

() ()
1 1

, , ,
L M

j l m
L Mw l m b l m e

π π − − − +
 = 3.23

where the variables l and m represent the index position of the antenna in the array along

the x-axis and y-axis respectively. A MATLAB file named

 123

“rectangular_DBFtransmitter_dolphchebyshev.m” (shown in the Appendix A) was

created to compute the weight coefficients for the second spatial filter example of the

rectangular 16-element PAA. The code uses the Dolph-Chebyshev polynomials to

calculate the amplitude of the weight coefficients and Eq. 3.11 to calculate the phase of

the weight coefficients. Table 3.21 shows the resulting weight coefficients for the

specified beam pattern parameters. Figure 3.40 shows a top view polar graph of the

theoretical beam pattern’s amplitude with the weight coefficients shown in Table 3.21.

Figure 3.41 shows rectangular plots of the beam pattern’s amplitude in dB units for beam

pattern cuts of φ = 122º and φ = 302º. These plots show the maximum value of the beam

pattern’s amplitude at a signal’s angle-of-transmission of φ = 122º and θ = 16º with a

directivity of 12.58 dB. The beamwidth of the MRA beam (shown in Figure 3.41a) for

the theoretical beam pattern is 33.1º with a sidelobe of -25.00 dB (shown in Figure 3.41b).

Figure 3.42 shows a 3D surf plot of the beam pattern’s amplitude for this spatial filter

design.

TABLE 3.21 Second Spatial Filter Weight Coefficients for 16-element
rectangular PAA – Theoretical Weights

Element Weight

1, 1 w1,1 = 0.0204 ∟-23.68º

1, 2 w1,2 = 0.0611 ∟-49.97º

1, 3 w1,3 = 0.0611 ∟-76.26º

1, 4 w1,4 = 0.0204 ∟-102.55º

2, 1 w2,1 = 0.0611 ∟18.40º

2, 2 w2,2 = 0.1075 ∟-7.89º

 124

2, 3 w2,3 = 0.1075 ∟-34.18º

2, 4 w2,4 = 0.0611 ∟-60.48º

3, 1 w3,1 = 0.0611 ∟60.48º

3, 2 w3,2 = 0.1075 ∟34.18º

3, 3 w3,3 = 0.1075 ∟7.89º

3, 4 w3,4 = 0.0611 ∟-18.49º

4, 1 w4,1 = 0.0204 ∟102.55º

4, 2 w4,2 = 0.0611 ∟76.26º

4, 3 w4,3 = 0.0611 ∟49.97º

4, 4 w4,4 = 0.0204 ∟23.68º

Figure 3.40 Top View Polar Plot of Beam pattern Magnitude of 16-element
rectangular DBF with Dolph-Chebyshev Amplitude Distribution pointing at

φMRA = 122º and θMRA = 16º

 125

Figure 3.41 Rectangular Plots of Beam pattern Magnitude of 16-element
rectangular DBF with Dolph-Chebyshev Amplitude Distribution pointing at

φMRA = 122º and θMRA = 16º for Plane cut on φ = 122º and φ = 302º

Figure 3.42 Surf Plot of Beam pattern Magnitude of 16-element rectangular
DBF with Dolph-Chebyshev Amplitude Distribution pointing at φMRA = 122º

and θMRA = 16º

 126

The MATLAB file “rectangular_DBFtransmitter_parameters.m” was also used to set

DBF parameters and condition weight coefficients values for the second spatial filter

simulation for the 16-element rectangular PAA. Table 3.22 shows the weight coefficients

used by the DBF to perform the second spatial filter on the FPGA simulation. Figure 3.40

shows 4 time plots of the 4 elements of the first row associated with the 16-element

rectangular PAA. The difference in the amplitude of each signal shown in Figure 3.43 is

related to the Dolph-Chebyshev amplitude-distribution function, which assigns the

magnitude of the weights to each antenna element in the array.

TABLE 3.22 Second Spatial Filter Weight Coefficients for 16-element
rectangular PAA – FPGA Weights

Element Weight

1, 1 w1,1 = 0.0204 ∟-23.91º

1, 2 w1,2 = 0.0611 ∟-50.63º

1, 3 w1,3 = 0.0611 ∟-75.94º

1, 4 w1,4 = 0.0204 ∟-102.66º

2, 1 w2,1 = 0.0611 ∟18.28º

2, 2 w2,2 = 0.1075 ∟-8.44º

2, 3 w2,3 = 0.1075 ∟-33.75º

2, 4 w2,4 = 0.0611 ∟-60.47º

3, 1 w3,1 = 0.0611 ∟60.47º

3, 2 w3,2 = 0.1075 ∟33.75º

3, 3 w3,3 = 0.1075 ∟8.44º

3, 4 w3,4 = 0.0611 ∟-18.28º

4, 1 w4,1 = 0.0204 ∟102.66º

 127

4, 2 w4,2 = 0.0611 ∟75.94º

4, 3 w4,3 = 0.0611 ∟50.63º

4, 4 w4,4 = 0.0204 ∟23.91º

Figure 3.43 Signal Plots of 4 of the 16-elements in the rectangular DBF
transmitter for second spatial filter simulation

 After storing the results obtained in the simulation of the second spatial filter, the

data is analyzed by means of the DFT, exactly like the first spatial filter example. The

MATLAB program “rectangular_DBFtransmitter_results.m” was used to retrieve the

results obtained in the simulation and analyze the data of each DBF channel. Figure 3.44

shows a top view polar graph of the simulation beam pattern’s amplitude with the weight

coefficients derived from DFT analysis. Figure 3.45 shows rectangular plots of the

 128

simulation beam pattern’s amplitude in dB units for beam pattern cuts of φ = 122º and φ

= 302º. These plots show the maximum value of the beam pattern’s amplitude at a

signal’s angle-of-transmission of φ = 122º and θ = 16º with a directivity of 12.60 dB. The

beamwidth of the MRA beam (shown in Figure 3.45a) for the theoretical beam pattern is

33.01º with a sidelobe of -25.00 dB (shown in Figure 3.45b). Figure 3.46 shows a 3D surf

plot of the beam pattern’s amplitude for this spatial filter design. Table 3.23 shows the

results obtained from the DBF transmitter simulation with the results obtained in the

theoretical beam pattern calculation.

Figure 3.44 Top View Polar Plot of Beam pattern Magnitude of simulated 16-
element rectangular DBF with Dolph-Chebyshev Amplitude Distribution

pointing at φMRA = 122º and θMRA = 16º

 129

Figure 3.45 Rectangular Plots of Beam pattern Magnitude of simulated 16-
element rectangular DBF with Dolph-Chebyshev Amplitude Distribution

pointing at φMRA = 122º and θMRA = 16º for Plane cut on φ = 122º and φ = 302º

Figure 3.46 Surf Plot of Beam pattern Magnitude of simulated 16-element
rectangular DBF with Dolph-Chebyshev Amplitude Distribution pointing at

φMRA = 122º and θMRA = 16º

 130

TABLE 3.23 Second Spatial Filter Beam pattern Characteristics for a 16-
element rectangular PAA

Beam pattern Characteristic Theoretical Result Simulation Result

MRA angle-of-arrival φMRA = 122º,
ΘMRA = 16º

φMRA = 122º,
ΘMRA = 16º

Half-power Beamwidth ΘBW = 33.1º @
φMRA = 122º

ΘBW = 33.01º @
φMRA = 122º

Directivity DdB = 12.58 dB DdB = 12.60 dB

Sidelobe level SLLdB = -25.00 dB @
φMRA = 302º

SLLdB = -23.39 dB @
φMRA = 302º

3.3.3 Beam pattern Granularity for 16-element rectangular PAA

As all beam pattern characteristics, the beam pattern granularity is affected by the

geometrical distribution of the antenna array. In the case of the rectangular array, the

beam pattern granularity can be expressed in the following form:

() () ()2 1
1 2 max (,) max (,)
, , | | .

MRA MRA MRA MRA
MRA MRA MRA B B

BG θ φ θ φθ θ φ θ θ= − 3.24

Eq. 3.24 is equivalent to applying Eq. 3.4 to a beam pattern cut in the φ-plane determined

by the angle φMRA. Figure 3.47 shows a surf plot of the beam pattern granularity as a

function of the MRA’s direction-of-arrival in terms of angle φ and angle θ when the

weight coefficient’s phase parameter has a bit resolution of 8 bits with no decimal

precision for the 16-element rectangular PAA. Similar to the beam pattern granularity

plots for the linear arrays, the beam pattern granularity surf plot has been constructed

using a constant MRA angle difference (θMRA2 - θMRA1) of one degree along each

direction-of-arrival value for each φ-plane beam pattern cut. The maximum beam pattern

 131

granularity value is shown at an angle-of-incidence φ = 38º, θ = 88º with a value of 3.6º,

which illustrates the increase in error in terms of MRA beam position for scan angles

near endfire of the array. Figure 3.48 illustrates this maximum beam pattern granularity

value in a beam pattern cut on φ = 38º and φ = 208º.

Figure 3.47 Beam pattern Granularity Surf Plot for a 16-element rectangular
DBF with 8 bits of resolution on the weight coefficient’s phase

 132

Figure 3.48 Beam pattern Granularity Rectangular Plots for a 16-element
rectangular DBF with 8 bits of resolution on the weight coefficient’s phase

for Plane cut on φ = 38º and φ = 208º

3.4 16-element rectangular PAA Transmitter

The 16-element rectangular PAA transmitter is the transmitter containing the DBF

transmitter discussed in Section 3.3. The antenna array consists of 16 patch antennas

arranged in a rectangular distribution and uniformly spaced in each axis by half-

wavelength. The array and signal parameters in the PAA transmitter are equal to

parameters of the DBF transmitter (shown in Table 3.17), thus satisfying the narrowband

characteristic requirement necessary for a narrowband beamformer implementation as a

means to control the beam pattern of the array. The PAA transmitter contains 3 stages:

the DBF transmitter, the RF up-conversion stage, and the patch antenna array. The DBF

transmitter receives the information signal, digitally modulates the signal into IF and

applies the appropriate weight to each channel. It uses the design proposed in Section 2.3

and it is implemented using the Lyrtech VHS-DAC High-Speed Multichannel

 133

Development Platform. The RF up-conversion stage distributes the Local Oscillator

signal into each antenna channel, mixes the IF information signal with the LO signal, and

amplifies the resulting signal prior transmission of the signal by means of power

amplification. The final stage of the microwave transmitter consists in the transmission of

the signal using a 16-element rectangular patch antenna array. The S-Parameter

simulations of all the RF circuits in the RF up-conversion stage and the Electromagnetic

simulations of the rectangular patch antenna array were performed using Ansoft Designer

V2. Table 3.24 shows the ideal system requirements for each stage of the PAA

transmitter.

TABLE 3.24 Ideal System Requirements for PAA transmitter

Requirement Value

Wilkinson Power Dividers (WPD)

VSWR at input port of each circuit Less than 2

Gain of each output port 5 dB

Relative amplitude difference between
output port

0 dB

Relative phase difference between output
port

0º

Mixer/Amplifier Stage

Relative amplitude difference between
output port

0 dB

Relative phase difference between output
port

0º

Rectangular Patch Array

 134

VSWR at input port of each antenna Less than 2

Polarization Type Linear Polarization

3.4.1 DBF Transmitter

 The Lyrtech VHS-DAC High-Speed Multichannel Development Platform is the

physical device which implements the DBF Transmitter. The VHS-DAC module contains

a Xilinx XC2V6000 FPGA, 16 DAC channels with a bit resolution 14-bits and a

sampling frequency of 125 mega-samples per second (MSPS) per channel, a

programmable clock up to 125 MHz with a resolution of 10 kHz, and SD-RAM of 128

MB. The data transmission module can interface with other digital devices by using the

Front Panel Data Port (FPDP), which can communicate with an external processing board

or a data acquisition module, additional input signal ports for external clock and manual

trigger, and a GPIO connector, which provides connection to certain pins of the FPGA

included inside the board. The VHS-DAC board also includes four read/write custom

registers accessible to the user through VHS Control Utility software, which provides a

real-time interface between the user and the computational equipment. The VHS-DAC is

installed in a Compact PCI Card Cage, which includes a computer board with a 1.7 GHz

Mobile Pentium 4 CPU, 512 MB of SDRAM and a 20 GB Hard Drive. A program named

SMCCE allows the computer to monitor the status of the VHS-DAC module. Lyrtech

Signal Processing, which is the company that manufactures the data transmission module,

 135

provides a software package which includes low-level drivers for programming the

board on a VHDL environment, and FPGALink, which is a blockset providing Lyrtech’s

hardware integration with Simulink. Figure 3.49 shows a picture of the VHS-DAC

module.

Figure 3.49 Picture of VHS-DAC High-Speed Multichannel Development

Platform

 Using Xilinx System Generator for DSP, the simulation code for the DBF

transmitter created on MATLAB’s Simulink discussed in Section 3.3 was translated into

VHDL code. This VHDL code was downloaded into the FPGA inside the VHS-DAC

module, which provides a physical realization of the simulation performed on Simulink.

Table 3.10 in Section 3.2 shows the parameters used in the implementation of the DBF

 136

transmitter for the PAA. An additional hardware module was designed to interface the

control unit with the DBF transmitter. This hardware module, which was programmed in

the FPGA through Simulink software, controls the assignation of amplitude and phase

weight coefficients for each of the DBF channels. Figure 3.50 shows the Simulink

diagram of the Control Interface Module (CIM). Figure 3.51 shows a diagram of the

input and one of the channels of the CIM. Initially, the CIM was constructed to interface

with the memory of the VHS-DAC, which is a typical communication topology in digital

control systems. This initial design provided the flexibility of separating the DBF

transmitter with the algorithm generating the weight coefficients, where the system

memory would be used the link to interchange data between the two system components.

Unfortunatly, a problem with the memory and its block module in the Simulink

environment prevented it from functioning properly under real-time operation. Inactivity

 137

Figure 3.50 Simulink Diagram of CIM

of the memory’s “request signal” and “ready signal” in the block module was the main

problem found in the system memory’s performance. During the debugging process,

Lyrtech Signal Processing was notified of the errors in the performance in the memory,

only to find out that its lack of performance under certain conditions is a known issue,

which is currently being attended.

 138

Figure 3.51 Diagram of input ports and one of the 16 channels in the CIM

 The memory’s task in the CIM was substituted with the use of the custom register

in the VHS-DAC as a means to input the weight coefficients of each DBF channel. Table

3.25 shows the information of the relationship between the bit structure of each custom

registers and the parameters of the CIM. The bit description of the registers is given

starting from the Least Significant Bit (LSB). Three of the four custom register were used

to store the weight coefficient information used in the DBF transmitter. The first register,

which is the control register, contains the vertical and horizontal position of the DBF

channel and gives the triggering signal to DBF transmitter communicating that the weight

coefficients are ready. The second register and third register store the amplitude and

phase coefficient of the DBF channel, respectively. The bit resolution of the amplitude

 139

and phase coefficients in the registers are determined by the MATLAB file *.m, which

was used earlier to program the DBF transmitter simulations. A MATLAB code named

*.m reads a MAT file containing the weight coefficient of each DBF channel in the PAA

and translates the information into 3 vectors representing the 3 custom registers where the

value of the control register is related to the value of the amplitude and phase register for

each index.

TABLE 3.25 Relationship between bit structure of custom register and DBF
transmitter weight parameters

Custom Register Bit Structure DBF Parameter

Control Register Unsigned 6-bit
value

1st – 2nd bit: Horizontal position of
DBF channel

3rd – 4th bit : Vertical position of DBF
channel

5th bit: Trigger application of weight to
current DBF channel

6th bit: Trigger application of weight to
all channels

Weight Amplitude
Register

Signed 2’s
complement value

Amplitude of weight coefficient

Weight Phase Register Signed 2’s
complement value

Phase of weight coefficient

 After the VHDL code has been generated and the values of the custom registers

for each DBF channel has been calculated, the next step involves downloading the

synthesized code in the FPGA and programming the real-time parameters of the VHS-

DAC. As mentioned earlier in the section, the VHS Control Utility provides the means to

program each VHS-DAC component. The process of programming the VHS-DAC

module involves programming the FPGA, the programmable on-board clock, the system

 140

memory, the channel gains, and the custom register’s content. The user is encouraged to

read the user manual of the VHS-DAC [Lyrtech, 2004] to find details on the procedure of

programming each device. The file generated by Xilinx System’s Generator and the

vectors generated in the MATLAB code *.m are used to program the FPGA and assign

the values of the custom registers, respectively.

3.4.2 RF Up-Conversion Stage

 The RF up-conversion stage of the microwave system contains three important

sub-stages: the power divider network of the LO, the mixer stage, and power

amplification of the RF carrier signal. The power divider network receives the signal of

the LO and distributes the LO signal into each element of the PAA. The output signals of

this stage must have the necessary power to assure proper operation of the mixer stage,

since a minimum power requirement is expected at the input port of the LO of the mixers.

The PAA controls the beam pattern of the array by means of progressive phase shift

between each antenna element, thus the relative phase difference between each output

signal in the power divider network must be very small. The mixer stage modulates the IF

signal into the RF signal with the use of the LO received from the power divider network.

The final stage of the RF up-conversion stage is the power amplification stage, where the

RF signal received from the mixer stage is amplified in order to be transmitted by the

antenna array. Two microwave circuits were designed to implement the RF up-

conversion stage of the microwave transmitter. The first designed circuit was a 1-to-4

 141

power divider circuit. The power divider network uses 5 of this circuits to distribute the

LO signal into the 16 antenna channels in the PAA. The second circuit contains four

transmitter channels, where the mixer stage and the amplification stage are combined.

The PAA uses 4 of this circuits to mix the LO signal with the IF signal and amplify the

modulated RF signal in order to be transmitted by the antenna array.

 A diagram of the first designed circuit is shown in Figure 3.52. The first stage of

the circuit is composed of 3 Wilkinson Power Dividers which splits the power of the

input equally into 4 output ports. Since the system impedance is 50 Ω, Each Wilkinson

Power Divider contains a 100 Ω necessary to provide impedance matching at its output

ports. The next stage of the circuit includes a linear amplifier in each output of the

Wilkinson Power Dividers, which increases the power of the each signal. The Hittite

HMC315 Darlington Amplifier is the RF amplifier component used to amplify the signals

prior the output ports. The amplifier provides a typical gain of 4 dB for a frequency range

of DC to 7 GHz with a single positive supply voltage of +5 V. The circuit also contains

other RF passive components necessary to assure proper operation of the amplifiers. The

amplifiers need a DC-bias resistance Rbias in order to receive the desired collector voltage

Vcc voltage at its output port. Using a power supply voltage Vs = 8 V and a Rbias = 100 Ω,

the transistors in the amplifier can received a required collector current Icc = 30 mA and

the Vcc = 5 V.

 142

Figure 3.52 Diagram of Power Divider Network Circuit

 An RF-choke circuit was designed at the output of the amplifier in order to protect

the DC power supply from the RF output signal. The requirements for the two-port

circuit included good impedance match at a frequency of 5.85 GHz, which is the

frequency of the LO, and low transmission losses. The layout diagram of the RF-shoke

circuit is shown in Figure 3.53. The circuit is based on the Bias-T model and contains the

100 Ω bias resistor and 2 chip capacitors with a capacitance of 220 pF. A simulation of

the RF-choke circuit was performed in order to calculate its S-Parameters. The Scattering

Parameters (S-Parameters) of a circuit relates the voltage waves incident on the ports to

those reflected from the ports [Pozar, 1998]. Figure 3.54 shows rectangular plots of the

 143

magnitude of the S-Parameters S(1,1) and S(2,1) for a frequency range of 4.5 GHz to 6.5

GHz. Since the structure exhibits symmetry, S(1,2) and S(2,2) parameters exhibit the

same behavior as S(2,1) and S(1,1) respectively. The magnitude of S(1,1) is -27.49 dB

and the magnitude of S(2,1) is -0.11 , which satisfies with the requirements of a good RF-

shoke network at 5.85 GHz. At the input port of the amplifier and at the output port of the

RF-shoke are 2 DC block capacitors with a capacitance of 0.1 µF with the purpose of

protecting the RF signal source and the RF output sink from DC power.

Figure 3.53 Layout of RF-Choke Circuit

 144

Figure 3.54 Magnitude of S-Parameters S(1,1) and S(2,1) for Simulated Bias-
T Circuit

 A simulation of the power divider network circuit with Bias-T was performed to

test the performance of the circuit and compare the results with the required system

parameters. Figure 3.55 shows 4 rectangular plots of the magnitude of the S-Parameters

for all the 5 ports of the circuit. The magnitude of S(1,1) is -10.27 dB for a frequency of

5.85 GHz, which satisfies the requirement of VSWR lower than 2. In the case of the

input-output port relationship, the magnitude of S(2,1), S(3,1), S(4,1), and S(5,1) shows a

circuit gain of 10 dB, which also fulfills the condition of at least 5 dB gain needed to

deliver a considerable amount of power signal into the LO input port of the mixers. The

magnitude of S(2,2), S(3,3), S(4,4) and S(5,5) is -16.12 dB but since the magnitudes of

S(1,2), S(1,3), S(1,4), and S(1,5) are very small (around -28 dB), the reflections at the

output ports have very little effect on the return loss of the circuit. Another important

circuit requirement is guaranteeing zero phase error between the output ports of the

circuit, since phase coherency is a very crucial characteristic in the implementation of a

PAA. Figure 3.56 shows a rectangular plot of the phase of S(2,1), S(3,1), S(4,1), and

S(5,1) as a function of frequency. The phase plot is equal for S(2,1), S(3,1), S(4,1), and

S(5,1) over all the frequency range of 4.5 GHz to 6.5 GHz, which assures phase

coherency between the output ports. The phase value for the transmission S-Parameters at

a frequency of 5.85 GHz is 172.15º.

 145

Figure 3.55 Magnitude of S-Parameters for Simulated Power Divider
Network

 146

Figure 3.56 Phase of S-Parameters S(2,1), S(3,1), S(4,1), and S(5,1) for
Simulated Wilkinson Power Divider

 After performing the simulations of the power divider network and confirming a

fulfillment of the system requirements, the next step in the development of the RF up-

conversion stage was the construction of the circuit. Figure 3.57 shows the circuit layout

of the power divider network. With the help of Ansoft Designer’s export utility, the *.dxf

layout file was generated containing all the information necessary to construct a physical

representation of the developed design. This *.dxf file is imported to Circuit CAM

Software, which calculates the trajectory path of the router’s drills in order to make the

construction of the microwave circuit possible and stores this information into a *.cam

file. The LPKF H-100 router was used to construct all the microwave circuits, including

the antenna array. A router is a machine used to construct a PCB based on a layout file

containing the PCB design. The BoardMaster software controls the operation of the

HP1000 router using the file generated by Circuit CAM software. Figure 3.58 shows a

 147

picture of the constructed power divider network circuit. The printed circuit board (PCB)

has rectangular dimensions of 116 mm x 90 mm. The distance between each output port

of the Power Divider circuits is 26.6 mm, which is the inter-element distance between

each antenna in the rectangular patch antenna array. Table 3.26 contains information of

the components and the physical dimensions of the transmission lines in the Power

Divider Network. An additional BNC connector was incorporated to provide the DC

power supply port for the amplifiers in the circuit.

Figure 3.57 Layout of Power Divider circuit

 148

Figure 3.58 Picture of the Power Divider circuit

TABLE 3.26 Parameters of the Power Divider circuit

Parameter Value

Wilkinson Power Dividers (WPD)

Width of 50 transmission lines 1.7316 mm

Width of 50*√2 transmission lines 0.9444 mm

Length of λ/4 lines 7.8711 mm

Length of transmission lines
interconnecting 1st WPD with 2nd WPD

42.5232 mm

Length of transmission lines
interconnecting 2nd WPD with amplifiers

19.291 mm

Resistance of WPD resistor 100 Ω

Amplifier Stage

Capacitance of DC Block Capacitors 0.1 µF

 149

Capacitance of Bypass Capacitors 220 pF

Width of λ/4 High Impendance
Transmission Lines in Bias-T

0.3171 mm

Length of λ/4 High Impedance
Transmission Lines in Bias-T

4.0865 mm

Width of Low Impendance Line Section of
Bias-T

3.03491 mm

Resistance of Bias Resistor 100 Ω

Power Supply Voltage 8 V

 After constructing the 5 Power Divider Network circuits, the S-Parameters for

each cricuit were measured to verify them with the results obtained in Ansoft Designer

V2. The S-Paremeters of the circuits were tested using the Agilent 8510C Network

Analyzer. The frequency range used to test the antennas was form 4.5 GHz to 6.5 GHz

with a resolution of 201 frequency points. The test results were stored in citifile format

files. A MATLAB file function named sp_read(datafile,matfile) (shown in Appendix A)

was created to read the datafile file, retrieve the S-Parameter data, and store the data in a

matfile.mat file. Figure 3.59 shows a rectangular plot of the S-Parameter S(1,1) for the 5

Power Divider Network circuits. The circuit with the highest S(1,1) magnitude at 5.85

GHz is Circuit 5 with -12.69 dB, which ensures that all the Power Divider Network

circuits satisfy the requirement of VSWR lower than 2. Figure 3.60 shows a rectangular

plot of the S-Parameters S(2,1), S(3,1), S(4,1) and S(5,1) for 5 Power Divider Network

circuits. The plot uses the same legend as the plot in Figure 3.53. The average value of

the gain of each output channel of the circuits is 4.78 dB for 5.85 GHz. Even though the

gain is not 5 dB for every channel, gain compensation can be performed by the DBF at

 150

the mixer stage. Finally, Figure 3.61 shows a rectangular plot of the phase of S-

Parameters S(2,1), S(3,1), S(4,1) and S(5,1) as a function of frequency. The average value

of the phase of each output channel of the circuits is -97.56 for 5.85 GHz. The larges

phase error between two output of any of the output channels is 80º. Still, this relative

phase error can be compensated by the DBF at the mixer stage of the RF up-converter.

Table 3.27 shows important S-Parameters values of Power Divider Circuit for 5.85 GHz.

Figure 3.59 Magnitude of S(1,1) for all constructed Power Divider circuits

 151

Figure 3.60 Magnitude of S(2,1), S(3,1), S(4,1), and S(5,1) for all constructed
Power Divider circuits

Figure 3.61 Phase of S(2,1), S(3,1), S(4,1), and S(5,1) for all constructed
Power Divider circuits

 152

TABLE 3.27 S-Parameters for Constructed Power Divider Network Circuits
at 5.85 GHz

S-Parameter Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5

Magnitude of S(1,1) -15.37 dB -18.75 dB -13.33 dB -13.83 dB -12.69 dB

Magnitude of S(2,1) 4.72 dB 4.61 dB 4.30 dB 5.33 dB 4.42 dB

Magnitude of S(3,1) 4.83 dB 4.86 dB 4.23 dB 5.36 dB 4.78 dB

Magnitude of S(4,1) 5.04 dB 5.09 dB 4.05 dB 4.96 dB 5.04 dB

Magnitude of S(5,1) 5.07 dB 5.17 dB 4.04 dB 4.86 dB 4.80 dB

Phase of S(2,1) -99.06º -63.02º -121.95º -91.18º -116.42º

Phase of S(3,1) -90.37º -53.64º -133.12º -88.26º -119.24º

Phase of S(4,1) -98.23º -55.30º -128.02º -89.55º -119.16º

Phase of S(5,1) -94.53º -53.35º -133.00º -88.26º -115.43º

 The second circuit designed for the RF up-conversion stage combines the mixer

stage and the power amplification stage into a single PCB. Each circuit contains 4

channels meaning that a total of 4 circuits are needed to implement the PAA with the 16-

element rectangular patch antenna array. The mixer stage was implemented the Hittite

HMC488MS8G Mixer. This IC mixer comes with an integrated amplifier to improve the

gain of the LO signal prior mixing the two incoming signals. The mixer operates with an

LO signal with a frequency range of 5.0 GHz to 6.0 GHz and an IF signal from DC to 2.5

GHz. The conversion loss of the mixer, which is the power ratio between the RF output

signal and the IF input, is typically 8 dB. The mixer requires an external 10 nF bypass

capacitor at the power supply terminal. The power amplification stage is implemented

 153

using the Hittite HMC407MS8G Power Amplifier. This power amplifier operates at a

frequency range of 5.0 GHz to 7.0 GHz, with a gain of 15 dB, and a saturated power of

+29 dBm. The power amplifier has an integrated power down capability pin, which can

be used to power down the amplifier when transmission is not required reducing the

consumption of the 230mA of supply current. The amplifier has a thermal paddle at the

bottom, which needs to be connected to the ground of the circuit in order to improve the

heat dissipation of the component. Three 220 pF bypass capacitors and a 2.2 µF Tantalum

capacitor are needed at the voltage supply terminals to assure proper operation.

 The mixer, which is the first stage in the second circuit, is a nonlinear device.

Thus, the S-Parameter simulation, which is a linear operation calculating voltage ratio

between circuit ports, cannot be performed. Still, the Ansoft Designer V2 software was

used to construct the layout diagram. Transmission lines between the mixers and the

power amplifiers were designed to satisfy the requirement of good 50Ω-impedance match

at 5.85 GHz. Figure 3.62 shows the layout diagram of the second circuit. The circuit was

constructed using the Circuit CAM software, the BoardMaster software and the H-100

router. Figure 3.63 shows the constructed circuit. Two signal generators and a spectrum

analyzer were used to test the performance of the 4 constructed circuits. An IF signal of 0

dBm at 3 MHz and a LO signal of 0 dBm at 5.85 GHz were used as input to the circuit.

Table 3.28 shows the power obtained at the output of each channel in the 4 circuits. Even

though the relative power difference between each circuit is not zero, the IF signal

 154

coming from the DBF stage can be used to compensate for gain differences between the

channels of the PAA.

Figure 3.62 Layout of Mixer and Power Amplifier Circuit

Figure 3.63 Picture of Mixer and Power Amplifier Circuit

 155

TABLE 3.28 Power Gain of each PAA channel in the second circuit

Channel Gain
Circuit 1

Gain
Circuit 2

Gain
Circuit 3

Gain
Circuit 4

Output Channel 1 1.33 dB 0 dB -0.5 dB 0.5 dB

Output Channel 2 0.83 dB 1.8 dB -1.5 dB -1.5 dB

Output Channel 3 0.83 dB -1.3 dB -0.4 dB -1.5 dB

Output Channel 4 0.5 dB 1 dB -1.5 dB -1.5 dB

3.4.3 Rectangular Patch Antenna Array

The rectangular patch antenna array used in the PAA transmitter consists of 4 x 4 array of

microstrip patch antennas spaced in each axis by half-wavelength. Each patch antenna

element has square dimensions of half-wavelength by half-wavelength. The antenna

resonates at a frequency of 5.85 GHz with linear polarization. The antennas are fed by a

coaxial probe feed connected through the PCB and attached to the ground plane of the

array. The position of the inner conductor of the coaxial cable was placed at with respect

to one of the edges to match the impedance of the antenna with the impedance of the

system, which is Z0 = 50 Ω. The antenna array was designed by Prof. Rafael Rodriguez-

Solis. The parameters of the antenna array are summarized in Table 3.29.

TABLE 3.29 Parameters of the Rectangular Patch Array

Parameter Value

Length of Patch Antenna 16.5 mm

Width of Patch Antenna 16.5 mm

 156

Inter-element spacing in x-axis and y-axis 25.6 mm

Distance of probe feed in the x-axis 8.3 mm

Distance of probe feed in the y-axis 10.77 mm

 The simulation of the antenna array was performed using Ansoft Designer V2,

which calculates the S-Parameters and the current distribution of the antennas using the

method of moments. The S-Parameters for the antenna port, which for a one-port network

is S(1,1), determines the amount of power loss as a result of impedance mismatch

between the RF Up-conversion stage and the antenna. The current distribution in the

antenna determines the type of polarization exhibited in the waves radiated or received by

the antenna. Also, the Fourier Transform relates the current distribution along the antenna

to its far-field pattern. The simulation was performed in a frequency range of 4.5 GHz to

6.5 GHz. Figure 3.64 shows the magnitude of the S-Parameter S(1,1) for all the antenna’s

in the rectangular array. The magnitude of S(1,1) -32.19 dB for a frequency of 5.85 GHz,

thus satisfying the requirement for a S(1,1) magnitude lower than -10 dB, which is a

Voltage Standing Wave Ratio (VSWR) smaller than 2. The Electric Field (E-Field)

pattern of the array, shown in Figure 3.65, has a beamwidth of 24.5º with sidelobe levels

of -13.8dB. The E-Field magnitude in the x-direction (Ex) and the E-Field magnitude in

the y-direction (Ey) plots are show in Figure 3.66 for a field φ-plane cut of 0º. Since the

magnitude of Ey is *20 dB lower than the magnitude of Ex, the antenna array exhibits

 157

linear polarization in the direction of Ex. Figure 3.67 shows the layout of the patch

antenna array.

Figure 3.64 Magnitude of S(1,1) for antennas in Rectangular Patch Array

 158

Figure 3.65 Magnitude of E-Field for antennas in Rectangular Patch Array
on Plane Cut of φ = 0º and φ = 90º

Figure 3.66 Magnitude of E-Field Components Ex and Ey

 159

Figure 3.67 Layout of Rectangular Patch Antenna Array

 Since the antenna array simulations results satisfied the specified requirements in

terms of bandwidth and beam pattern characteristics, the next step in the process of

implementing the PAA was the construction of the rectangular patch antenna array.

Figure 3.68 shows a picture of the constructed rectangular patch array antenna. The S-

Parameters for each antenna port in the constructed array was measured to verify the

reflection coefficient of the antennas and compare them with the simulation results

obtained in Ansoft Designer V2. The S-Paremeters of the antennas were tested using the

Agilent 8510C Network Analyzer. The frequency range used to test the antennas was

form 4.5 GHz to 6.5 GHz with a resolution of 201 frequency points. The test results for

each antenna were stored in citifile format files. A MATLAB file function named

sp_read(datafile,matfile) (shown in Appendix A) was created to read the datafile file,

 160

retrieve the S-Parameter data, and store the data in a matfile.mat file. Figure 3.69 shows a

rectangular plot of the S-Parameter S(1,1) for all the antennas in the rectangular array.

The Return Loss for a frequency of 5.85 GHz, which is the RF carrier frequency used in

the microwave transmitter, is larger than 10 dB satisfying the system requirement of an

antenna array with a VSWR smaller than 2.

Figure 3.68 Picture of Rectangular Patch Antenna Array

 161

Figure 3.69 Magnitude of S(1,1) for antennas in constructed Rectangular
Patch Antenna Array

3.4.4 PAA Measurement Results

After each PAA component was tested and fulfilled the specified system

requirements, the last stage of this thesis project involved the measurement of the PAA

transmitter’s radiation pattern. The radiation pattern measurement was performed using

the NSI spherical near-field measurement system located in an anechoic chamber on the

Radiation Laboratory in Stefani Building Room 120. The measurement data was

extracted using the NSI 2000 Software and processed using MATLAB program called

pattern_read() (shown in Appendix A). The first measurement was performed on an

antenna array composed of the LO Feed Network connected to the 16-element patch

 162

antenna array. The simulated top-view radiation pattern plot of this antenna array is

shown in Figure 3.70. The beam pattern plot calculation considers changes in the

antenna’s current distribution produced by the relative gain and phase difference

experimented by the LO feed network circuits. Figure 3.80 shows the measured top-view

beam pattern plot, where the drift experimented in the main beam’s angular position is

approximately two degrees from broadside.

Figure 3.70 Simulated Top-View Polar Beam pattern Plot of the 16-element
patch rectangular array with the LO Feed Network

 163

Figure 3.71 Measured Top-View Polar Beam pattern Plot of the 16-element
patch rectangular array with the LO Feed Network

The second measurement was performed on the PAA transmitter, which is composed

of the DBF Transmitter, LO Feed Network, the Mixer/Power Amplification Stage, and

the 16-element rectangular patch array. A picture of the PAA transmitter (without DBF

Transmitter) is shown in Figure 3.72. Figures 3.73 and 3.74 show the simulated and

measured beam pattern plot of the PAA transmitter, respectively. The drift in the main

beam’s angular position is still approximately two degrees from broadside. An increase in

sidelobe power levels was found in the measured beam pattern plot. Since these increase

was not experienced in the first measurement, the gain and phase changes in the antenna

element’s current distribution is being significantly affected by the mixer/power

amplification stage. To correct this problem, each channel of the PAA transmitter must

be properly calibrated.

 164

Figure 3.72 Picture of the PAA Transmitter

Figure 3.73 Simulated Top-View Polar Beam pattern Plot of Constructed
PAA Transmitter

 165

Figure 3.74 Measured Top-View Beam pattern Plot of Constructed PAA
Transmitter

The last measurement was performed on the PAA Transmitter, where the DBF

Transmitter implements the spatial filter discussed in Section 3.3.1. The spatial filter was

constructed based on a uniform amplitude distribution with the MRA angle-of-

transmission of φ = 0º and θ = 30º. Figure 3.75 shows the simulated top-view beam

pattern plot of the PAA with the DBF Transmitter implementing the spatial filter.

Differences between this beam pattern plot and the beam pattern plot shown in the

simulation results on Figure 3.37 can be found, which result from using a non-isotropic

element (patch antenna) as the sensor array and gain/phase changes introduced by the

linear amplifiers in the LO feed network and the Mixer/Amplification Stage. The

measured beam pattern plot in the anechoic chamber is shown in Figure 3.76. The MRA

 166

angle-of-transmission of the resulting beam pattern points at φ = 5.4º and θ = 35.1º,

which represents an error of approximately 5 degrees in each angular direction. The

measured results still show an increase in sidelobe levels, which is produced from

gain/phase changes introduced by the rf components in the RF Conversion Stage. Figure

3.77 and Figure 3.78 show surf plots of the simulated and measured PAA Transmitter

beam pattern magnitude, respectively.

Figure 3.75 Simulated Top-View Beam pattern Plot of PAA Transmitter with
Uniform Amplitude Distribution pointing at φMRA = 0º and θMRA = 30º

 167

Figure 3.76 Measured Top-View Beam pattern Plot of PAA Transmitter with

Uniform Amplitude Distribution pointing at φMRA = 0º and θMRA = 30º

Figure 3.77 Simulated Surf Plot of Beam pattern Magnitude for a PAA

Transmitter with Uniform Amplitude Distribution poi nting at φMRA = 0º and
θMRA = 30º

 168

Figure 3.78 Measured Surf Plot of Beam pattern Magnitude for a PAA

Transmitter with Uniform Amplitude Distribution poi nting at φMRA = 0º and
θMRA = 30º

 169

4 CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

After comparing the beam pattern results obtained for the theoretical, simulated and

measured data, it can be seen that the Digital Beamformer has proven to be a versatile

option as a controller for a Phased Array Antenna. The PAA measured results obtained

showed an increase in sidelobe level due to the gain/phase changes in the linear

amplifiers, mixers, and power amplifiers. This can be corrected by calibrating each

channel of the PAA, where the error introduced by the RF components in the current

distribution on the antennas of the array is considered in the calculation of the complex

weight of each DBF channel. Thus, the digital implementation of the control architecture

in the PAA provides flexibility in the design of each stage, making it suitable for

applications where controlling special requirements in the beam pattern of a sensor array

is necessary. The DBF transmitter and receiver design model can be derived from the

mathematical model describing a far-field plane wave intersecting an array of sensors. If

the bandwidth of the signal is small compared to the maximum travel time of the plane

wave across the antenna array, the narrowband beamformer model can be employed in

the implementation of a PAA.

 170

Compared to the Delay-and-Sum Beamformer model, which uses time delays in each

channel as a means of creating the beam pattern, the Narrowband Beamformer model can

be expressed as a Finite Impulse Response (FIR) spatial filter with complex coefficients

operating on a space-time signal. In the case of the antenna array, the weight coefficients

control the amplitude and relative phase of the current in the antennas. Since the current

distribution is related to the beam pattern of an antenna by the Fourier Transform, a

synthesized beam pattern can be implemented by carefully choosing the coefficients of

each antenna channel in the array. The resulting spatial filter, thus, can be used in the

DBF receiver or transmitter to create a beam pattern based on the geometrical distribution

of the antennas in the array. The results obtained in each simulation prove the versatility

of the DBF in implementing the control of a PAA. Different spatial filters were tested,

where each one represented particular beam pattern characteristics. The simulations,

which were performed in MATLAB’s Simulink using software code representing FPGA

hardware based on Xilinx’s System Generator for DSP Blockset, gave results closely

matching the results obtained from a theoretical DBF. After obtaining successful

simulations results, the System Generator for DSP tool was used to transform the DBF

transmitter design into VHDL code. The resulting code was used to program the FPGA in

the digital processing board.

Another advantage offered by the DBF is its independence on the geometrical

distribution of the array. A DBF with an N-channel capacity is able to operate on a PAA

 171

with N-elements, not mattering if the N elements are distributed linearly, rectangularly,

cubically, etc. The calculation of the weight coefficients of the spatial filter is the

operation which considers the geometrical distribution of the array. As for the physical

implementation of the PAA, the RF up-conversion stage and the antenna array were

designed and constructed based on the system requirements of a microwave transmitter

operating in the C band frequency. The RF up-conversion stage was implemented using

two microwave circuits: a power divider circuit which distributed the LO signal into each

antenna channel and a mixer/power amplification signal which performed the RF

modulation and amplification of the RF signal before the antenna array stage. The

simulations and the testing results of both circuits satisfied most of the system

requirements of the PAA microwave transmitter. The relative amplitude and phase errors

found between antenna channels may be corrected in the DBF transmitter stage. The

rectangular antenna array also fulfilled the system requirements, providing a good return

loss at the RF carrier frequency for a system impedance of 50Ω.

4.2 Future Work

Even though the design of the DBF receiver and transmitter was greatly simplified,

future work should be addressed on improving the DBF design in terms of component

reduction. The presented DBF model is a scalable model, capable of being implemented

for any array size, as long as the spatial filter weight coefficient calculation has

 172

considered the number of elements and the geometrical distribution of the antenna array.

Still, a large PAA with very strict beam pattern requirements might prove to be costly and

complex in terms of system integration. Alternative PAA designs must be considered,

where reducing the complexity of the design should lie on how rigorous the system

requirements of the application containing the PAA are. For example, if the system

requires a beam pattern with a single MRA beam and MRA steering control, the

progressive phase shift nature found in the currents of the antenna array can be exploited

to reduce the complexity of the PAA system. Figure 4.1 shows a diagram of a simplified

PAA implementation for a single MRA-beam beam pattern known as row-column

phasing architecture [Corey, 1996]. The PAA uses a phase-shifted LO signal and a phase-

shifted IF signal to generate the progressive phase shift necessary to steer the beam into a

desired direction. If the LO signal is mixed twice, where one mixing stage adds the

relative phase shift in the x-axis and the second mixing stage adds the relative phase shift

in the y-axis (Eq. 3.12), theoretically an L*M antenna array can be controlled by

processing L+M IF signals in the DBF stage. Still, the condition of a fixed amplitude

value in the input of the mixers might limit the dynamic range of the weight coefficient’s

amplitude in the DBF transmitter.

 173

Figure 4.1 Diagram of PAA with single MRA beam and steering capability

 Also, future work should be concentrated on the scalability of the DBF receiver

and DBF transmitter. Although the FPGA provided flexibility in the creation of the DBF

design, a system topology where ICs are used in certain substages of the DBF might

reduce the cost of implementing a PAA. For example, semiconductor companies such as

TI and Analog Devices provide ICs such as GC5016 (TI) and AD6654 (Analog Devices)

which perform the Digital Down-conversion and Digital Up-conversion at high speeds.

Some ICs may even have an integrated ADC/DAC and provide the two conversion

modes into a single chip. Still, an FPGA would be very useful in performing the

 174

necessary “gluelogic” in order to interconnect the different digital devices in the DBF

receiver/transmitter. The FPGA’s use as an interconnection component versus a signal

processing component might increase its capacity in terms of number of DBF channels

interconnected by a single FPGA. If low sampling frequencies can be obtained on the

signal processing stage in the DBF, a DSP can be used to perform weight coefficient

calculation.

 Finally, the use of an analog pre-processor might improve the performance of a

PAA with strict system requirements. RF Discrete Lens Antenna Arrays (DLAA) might

be used to transform the signals from an element-space domain into a beamspace signal

domain, were each signal in the DBF receiver or transmitter represents beams that are

separated by space instead of being signals separated by distance. In this approach, a

spatial filter with real coefficients might satisfy the beam pattern characteristics of the

PAA. However, the use of a DLAA requires a change in the way signals are processed

inside the DBF [Torres, 2005]. Algorithms which only considers power incidence at the

antennas on the focal surface of the DLAA are suitable for this type of systems.

 175

REFERENCES

Alliot S., “THEA Adaptive Weight Estimation, implemented on a DSP”; Tech. Report,
ASTRON, Dwingeloo, March 2000.

Alliot S., Cazamier W., “Beamforming Interpolation for THEA ”; Research Report-
THEA-00024, Astron: October 2000.

Balanis C.A., Antenna Theory: Analysis and Design, Second Edition, John Wiley &
Sons, New York, 1997.

Chang, D.C.D.; Klimczak, W.N.; Busche, G.C. “An Experimental Digital
Beamforming Array” ; Antennas and Propagation Society International Symposium,
1988. AP-S. Digest, 6-10 June 1988; Pages: 1300 - 1303 vol.3.

Corey, L “A Survey of Russian Low Cost Phased-Array Technology” ; Antennas and
Propagation Society International Symposium, 1988. AP-S. Digest, 6-10 June 1988;
Pages: 1300 - 1303 vol.3.

Dreher, A.; Hekmat, T.; Niklasch, N.E.; Lieke, M.; Klefenz, F.; Schroth, A. “Planar
Digital-Beamforming Antenna for Satellite Navigation”; Microwave Symposium
Digest, 1999 IEEE MTT-S International , Volume: 2 , 13-19; June 1999 Pages:647 - 650
vol.2

Dreher, A.; Niklasch, N.; Klefenz, F.; Schroth, A. “Antenna and Receiver System with
Digital Beamforming for Satellite Navigation and Communication”; Microwave
Theory and Techniques, IEEE Transactions on , Volume: 51 , Issue: 7 , July 2003;
Pages:1815 - 1821

Franks L. E., Signal Theory, Prentice-Hall, Englewood Cliffs, N.J., 1969.

Garret P. H., Analog I/O Design: Acquisiton: Conversion: Recovery, Reston
Publishing Company, Reston, 1981

Harris F. J. “Multirate FIR Filters for Interpolating and Desampl ing” , Handbook of
Digital Signal Processing: Engineering Applications, Academic Press, San Diego, 1987

Hatcher, B. R. “Granularity of Beam Positions in Digital Phased Arrays”;
Proceedings of the IEEE, Volume: 56, Issue: 11, November 1968; Pages:1795 - 1800

Haynes T., “A Primer on Digital Beamforming”; Spectrum Signal Processing.

 176

Hiemstra L., “Real-Time Digital Signal Processing implemented on a Multi-
Processor System”; Tech. Report., NFRA, Dwingeloo, July 2000.

Hogenauer E., “An Economical Class of Digital Filters for Decimation and
Interpolation ”, Acoustics, Speech, and Signal Processing, IEEE Transactions on
Volume 29, Issue 2, Apr 1981, Pages:155-162.

Kajala, M.; Hamalainen, M. “Filter-and-Sum Beamformer with Adjustable Filter
Characteristics”; Acoustics, Speech, and Signal Processing, 2001. Proceedings.
(ICASSP '01). 2001 IEEE International Conference on, Volume: 5, 7-11; May 2001
Pages:2917 - 2920 vol.5.

Kajala, M.; Hamaldinen, M. “Broadband Beamforming Optimization for Speech
Enhancement in Noisy Environments”; Applications of Signal Processing to Audio and
Acoustics, 1999 IEEE Workshop on , 17-20; Oct. 1999 Pages:19 – 22.

Lyrtech Processing Company, SM-VHS-DAC User’s Manual, November 2004

Manassewitch V., Frequency Synthesizers: Theory and Design, Second Edition. John
Wiley & Sons, New York, 1980.

Miura, R.; Tanaka, T.; Chiba, I.; Horie, A.; Karasawa, Y. “Beamforming Experiment
with a DBF Multibeam Antenna in a Mobile Satellite Environment” ; Antennas and
Propagation, IEEE Transactions on , Volume: 45 , Issue: 4 , April 1997; Pages:707 – 714

Mucci R., “A Comparison of Efficient Beamforming Algorithms” , Acoustics, Speech,
and Signal Processing [see also IEEE Transactions on Signal Processing], IEEE
Transactions on Volume 32, Issue 3, Jun 1984 Page(s):548 - 558

Pozar D. M., Microwave Engineering, Second Edition. John Wiley & Sons, New York,
1998.

Simonangeli L. J., Agrawal A., “A C-Band Digital Beamforming Array” , Antennas and
Propagation Society International Symposium, 1988. AP-S. Digest 6-10 June 1988
Page(s):1385 - 1388 vol.3

Steyskal, H., “Digital Beamforming – An Emerging Approach”; Military
Communications Conference, 1988. MILCOM 88, Conference record. '21st Century
Military Communications - What's Possible?’ 1988 IEEE, 23-26 Oct. 1988; Pages: 399 -
403 vol.2.

 177

Torres-Rosario J. A., Rodríguez-Solís R., Hunt S., Popovic Z., “Adaptive Discrete Lens
Antenna Array for Direction of Arrival Detection ”, Antennas and Propagation Society
International Symposium, 2005. AP-S. Digest, 6-10 June 2005.

Van Trees, Harry L. Optimum Array Processing: Detection, Estimation, and
Modulation Theory, Part IV . Wiley Interscience, New York, 2002

 178

APPENDIX A. MATLAB CODE FILES

%% File: linear_steering_array.m

clear;
clc;

% Number of Elements
N = 4;

% Antenna Array Vector
n = 0:(N-1);

% MRA Angle Theta
theta_d = 45;
sai_d = pi*cos(theta_d*pi/180);

% Weight Coefficients
w = (1/N)*exp(j*(n.'-(N-1)/2)*sai_d);

% Parameters prior sampling of the Beampattern
sample = 1000;
theta = 0:(180/sample):180;
sai = pi*cos(theta*pi/180);

% Calculation of the Beampattern
SA = 0;
BSA_max = 0;
for k=1:length(theta)

 v = exp(j*(n - (N-1)/2)*sai(k));
 v_sai(:,k) = v.';

 B(k) = w'*v_sai(:,k);

 SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180);

 if(abs(B(k))>BSA_max)
 BSA_max = abs(B(k));
 end

end

% Calculation of Directivity
D = 10*log10(BSA_max.^2/SA);

B_max = max(B);
Bl_max = 20*log10(B_max);
B_min = min(B);
Bl_min = 20*log10(B_min);

 179

% Calculation of Beamwidth
B_3dB = B_max/2;
theta_beam = theta([abs(B)]>=B_3dB);
Beamwidth_theta = theta(610)-theta(1);

% Result Figures
figure(1)
polar(theta*pi/180,abs(B));

figure(2)
plot(theta,20*log10(abs(B)));

%% File: linear_DBFreceiver_parameters.m

% Information Signal
fis = 0;
sig_ts = 1e-9;
samp_period = 100;

% Carrier Signal
fif = 3e6;
i_phase = pi/2-2*pi*(fif)*(3/200e6);

% ADC Parameters
adc_ts = 1/200e6;
adc_bit_res = 14;
adc_point_res = 12;

% Operation Precision Parameters
% Adder Block Parameters
add_bit_width = 14;
add_point_width = 12;
% Multiply Block Parameters
mult_bit_width = 18;
mult_point_width = 16;
mult_latency = 3;
% Operator Parameters
prec_bit_width = 18;
prec_point_width = 16;

% Antenna Weights and Digital Beamformer
w_amp = abs(w);
phase_res = 8;
w_phase_d = angle(w)*180/pi;
w_phase_r = angle(w);
bit_phase = w_phase_r*2^phase_res/(2*pi);
db_ts = 1/50e6;
wamp_bit_res = 16;
wamp_point_res = 14;
wphase_bit_res = phase_res;
wphase_point_res = 0;

 180

% Max Time Delay
plane_wave_angle = 0;
ant_spacing = 0.5;
fant = 8.2e9;
maxt = ant_spacing/fif;
sim_t = 1e-5;
slope_t = maxt/sim_t;

% DDS Parameters
output_width = 32;
flo = fif;
ddc_ts = adc_ts;
npi = flo*ddc_ts;

% Scope Parameters
scope_ts = 1e-11;
scope_sig = 1e-11;

% Latency Repair
lat_n = 12;
lat_time = lat_n*100e-9;
total_time = lat_time+sim_t;

% CIC Specs
d_sample = db_ts/adc_ts;
n_stages = 8;
cic_lat = 8;
diff_delay = 2;
force_bit_width = 45;
scale_factor = 0;

% Butterworth Analog Filter for post-processing
[Nb,Wnb]=buttord(3e6*db_ts,4e6*db_ts,3,25);
[Bb,Ab]=butter(Nb,Wnb);

% Gain of IF Signal prior Time Delay
K2 = 0.99;
K1 = 1;

%% File: linear_DBFreceiver_results.m

clear all;
clear;

% load MAT Files
load signal_out_0;
load signal_out_1;
load signal_out_2;
load signal_out_3;
load signal_out_4;
load signal_out_5;

 181

% Simulation Parameters
total_time = 1e-5;
db_ts = 1/50e6;
delta_index = total_time/db_ts;
angle_low_index = 251;
angle_high_index = angle_low_index+delta_index;
mag_low_index = 310;
mag_high_index = mag_low_index+delta_index;
phase_low_index = 310;
phase_high_index = phase_low_index+delta_index;

% Retrieving Beampattern Results
angle = [fliplr(angle_0_90(2,angle_low_index:angle_high_index))
angle_90_180(2,(angle_low_index+1):angle_high_index)];
mag = [fliplr(mag_0_90(2,mag_low_index:mag_high_index))
mag_90_180(2,(mag_low_index+1):mag_high_index)];
mag = mag/max(mag);
phase = [fliplr(phase_0_90(2,phase_low_index:phase_high_index))
phase_90_180(2,(phase_low_index+1):phase_high_index)];

% Calculation of Directivity in Beampattern
SA = 0;
BSA_max = 0;
for k=1:(length(angle)-1)

 SA = SA + 0.5*mag(k).^2*sin(angle(k)*pi/180)*(angle(k+1)-angle(k))*(pi/180);

 if(mag(k)>BSA_max)
 BSA_max = mag(k);
 end

end
D = 10*log10(BSA_max.^2/SA);

% Result Figures
figure(1)
polar(angle*pi/180,mag);

figure(2)
plot(angle,20*log10(mag));

%% File: linear_DBFreceiver_nullplacer.m

clear;
clc;

% Number of Antennas
N = 4;

% Generation of Antenna Array Vector
n = 0:(N-1);

 182

% Calculation of Weight Coefficients based on Null Placement parameters
Bd = [1 zeros(1,N-1)];
MRA = 0;
Nulls = [30 60 100];
theta_d = [MRA Nulls];
sai_d = pi*cos(theta_d*pi/180);

for k=1:length(theta_d)

 v = exp(j*(n - (N-1)/2)*sai_d(k));
 v_sai_d(:,k) = v.';

end

w = (inv(v_sai_d))'*Bd';

% Parameters prior sampling of the Beampatter
sample = 1000;
theta = 0:(180/sample):180;
sai = pi*cos(theta*pi/180);

% Calculation of the Beampattern
SA = 0;
BSA_max = 0;
for k=1:length(theta)

 v = exp(j*(n - (N-1)/2)*sai(k));
 v_sai(:,k) = v.';

 B(k) = w'*v_sai(:,k);

 SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180);

 if(abs(B(k))>BSA_max)
 BSA_max = abs(B(k));
 end

end

% Calculation of the Directivity
D = 10*log10(BSA_max.^2/SA);

B = B/max(B);

B_max = abs(max(B));
Bl_max = 20*log10(B_max);
B_min = abs(min(B));
Bl_min = 20*log10(B_min);

 183

% Result Figures
figure(1);
plot(theta,20*log10(abs(B)));
axis([0 180 Bl_min-3 Bl_max+4]);

figure(2);
polar(theta*pi/180,abs(B));

%% File: linear_DBFtransmitter_taylor.m

clear;
clc;

% Number of Antennas
N = 16;

% Inter-element Spacing (in lambda terms)
d = 0.5;

% Generation of Array Vector
n = 0:(N-1);

% Parameters of Taylor Amplitude Function
R_l = 20;
R = 10^(R_l/20);

A = acosh(R)/pi;
n_l = 4;

% Calculation of Taylor Amplitude Function based on Null-placement Method
Nulls = [];
if (round(N/2)-N/2)==0.5

 for k=1:(N-1)/2

 Nulls(k)=2*pi/N*(n_l*sqrt((A^2+(k-0.5)^2)/(A^2+(n_l-0.5)^2)));

 end

 Nulls = [Nulls -1*Nulls];

 % MRA Broadside
 MRA = pi*cos(90*pi/180);

 sai_d = [MRA Nulls];

 Bd = [1 zeros(1,N-1)];

else

 theta_d = [89.9 90.1];

 184

 u_d = cos(theta_d*pi/180);

 Bd = sin(N*d*u_d)./(pi*N*d*u_d);

 for k=1:(N-1)/2

 Nulls(k)=2*pi/N*(n_l*sqrt((A^2+(k-0.5)^2)/(A^2+(n_l-0.5)^2)));

 end

 Nulls = [Nulls -1*Nulls];

 sai_d = [pi*u_d Nulls];

 Bd = [Bd zeros(1,N-2)];

end

for k=1:length(sai_d)

 v = exp(j*(n - (N-1)/2)*sai_d(k));
 v_sai_d(:,k) = v.';

end

w_t = (inv(v_sai_d))'*Bd';

% Calculation of MRA Beam Direction
theta_d = 82;
sai_d = pi*cos(theta_d*pi/180);

w = w_t.*exp(j*(n.'-(N-1)/2)*sai_d);

% Parameters prior sampling of the Beampattern
sample = 1000;
theta = 0:(180/sample):180;
sai = pi*cos(theta*pi/180);

% Calculation of Beampattern
SA = 0;
BSA_max = 0;
for k=1:length(theta)

 v = exp(j*(n - (N-1)/2)*sai(k));
 v_sai(:,k) = v.';

 B(k) = w'*v_sai(:,k);

 SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180);

 185

 if(abs(B(k))>BSA_max)
 BSA_max = abs(B(k));
 end

end

% Calculation of Directivity
D = 10*log10(BSA_max.^2/SA);

% Result Figures
figure(1)
polar(theta*pi/180,abs(B));

figure(2)
plot(theta,20*log10(abs(B)));

% File: linear_DBFtransmitter_parameters.m

% Information Signal
sig_ts = 1e-8;

% Information Signal
output_width = 16;
fis = 1e6;
db_ts = 1/10e6;
npi = fis*db_ts;

% Antenna Weights and Digital Beamformer
phase_res = 8;
w_amp = abs(w);
w_phase_d = angle(w)*180/pi;
w_phase_r = angle(w);
bit_phase = w_phase_r*2^phase_res/(2*pi);
wamp_bit_res = 16;
wamp_point_res = 14;
wphase_bit_res = 8;
wphase_point_res = 0;
w_phase_d_corr = round(bit_phase)*2*pi/(2^phase_res)*180/pi;

% DAC
dac_ts = 1/100e6;
dac_bit_res = 14;
dac_point_res = 12;

% System Frequencies
fc = 8.2e9;
fif = 3e6;
error_index = 0;
i_phase = pi/2-(2*pi*fif)*(1e-8)*error_index;

 186

% DDS Parameters
output_width = 16;
flo = fif;
duc_ts = dac_ts;
npd = flo*duc_ts;

% Max Time Delay
plane_wave_angle = 0;
ant_spacing = 0.5;
maxt = (fc/fif)*ant_spacing/fc;
sim_t = 1e-5;
slope_t = maxt/sim_t;

% DUC Filter Specs
filter_order = 30;
factor = 10;
u_sample = db_ts/dac_ts;
hp = u_sample*fir1(filter_order,1/(factor*u_sample));
filter_lat = 15;

% CIC Specs
n_stages = 2;
cic_lat = 2;
diff_delay = 2;
force_bit_width = 18;
scale_factor = -2;

% Scope Parameters
scope_ts = 1e-8;
scope_sig = 1e-8;

% Latency Repair
lat_duc_n = 3 + filter_lat;
lat_db_n = 8;
lat_time = (lat_duc_n+filter_order)*duc_ts+lat_db_n*db_ts;
total_time = lat_time+sim_t;

% Operation Precision
add_bit_width = 14;
add_point_width = 12;
mult_bit_width = 18;
mult_point_width = 16;
prec_bit_width = 16;
prec_point_width = 14;

% Transforming Weight Matrix into vector form
w_amp = reshape(w_amp,sqrt(N),sqrt(N)).';
bit_phase = reshape(bit_phase,sqrt(N),sqrt(N)).';

%% File: linear_DBFtransmitter_results.m

clear;

 187

clc;

% Load MAT FILE
load TRANSMITTER;

% Removing Transient State of Transmission Signal
total_time = 2e-5;
sim_time = 1e-5;
sim_period = 1e-8;
extra_samples = (total_time-sim_time)/sim_period;
[r_trans_signal,c_trans_signal] = size(trans_signal);
trans_signal = trans_signal(:,(c_trans_signal-extra_samples):c_trans_signal);
[r_trans_signal,c_trans_signal] = size(trans_signal);

% Calculate FFT of each antenna signal
fft_size = 2^16;

spectral_signal = [];

for k=1:r_trans_signal-1

 spectral_signal(k,:) = fft(trans_signal(k+1,:),fft_size);

end

f_range = 0:1/(fft_size*sim_period):1/sim_period-1/(fft_size*sim_period);
index_range = 1:length(f_range);

% Frequencies and index where information signal is present
center_f = 3e6;
delta_f = 1/(2*fft_size*sim_period);

center_f_index = [f_range>=center_f-delta_f & f_range<=center_f+delta_f]*index_range.';

% Rectangular Array Size
N = 1;
M = 16;
w_phase_x = [];
w_phase_x(:,1) = zeros(N,1);

% Calculation of Weight Coefficient's Phase
for k=2:M
 center_phase = -1*(angle(spectral_signal(k,center_f_index))-angle(spectral_signal(1,center_f_index)));
 if (center_phase>=180)
 center_phase = center_phase-360;
 end
 w_phase_x(k)=center_phase;
end

% Calculation of Weight Coefficient's Magnitude
for k=1:M

 188

 w_abs(k) = abs(spectral_signal(k,center_f_index))/2;

end

% Number of Antennas
N = 16;

% Generation of Array Vector
n = 0:(N-1);

% Calculation of Array Weight
w = (w_abs.*exp(j*w_phase_x)).';

save WEIGHT_INFO w;

% Parameters prior sampling of the Beampattern
sample = 1000;
theta = 0:(180/sample):180;
sai = pi*cos(theta*pi/180);

% Calculation of the Beampattern
SA = 0;
BSA_max = 0;
for k=1:length(theta)

 v = exp(j*(n - (N-1)/2)*sai(k));
 v_sai(:,k) = v.';

 B(k) = w'*v_sai(:,k);

 SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180);

 if(abs(B(k))>BSA_max)
 BSA_max = abs(B(k));
 end

end

% Calculation of the Directivity
D = 10*log10(BSA_max.^2/SA);

% Result Figures
figure(1)
polar(theta*pi/180,abs(B));

figure(2)
plot(theta,20*log10(abs(B)));

% File: linear_DBFtransmitter_blackmannharris.m

 189

clear;
clc;

% Number of Antennas
N = 16;

% Generation of Array Vector
n = 0:(N-1);

% Calculation of MRA Beam Direction
theta_d = 82;
sai_d = pi*cos(theta_d*pi/180);

% Calculation of Weight's Amplitude based on Blackmann-harris Spectral
% Window function
w_abs = (0.42+0.5*cos(2*pi*(n-(N-1)/2)/N)+0.08*cos(4*pi*(n-(N-1)/2)/N)).';

% Calculation of Weight Coefficients
w = w_abs.*exp(j*(n.'-(N-1)/2)*sai_d);

% Paramaters prior sampling of the Beampatter
sample = 1000;
theta = 0:(180/sample):180;
sai = pi*cos(theta*pi/180);

% Calculation of Beampattern
SA = 0;
BSA_max = 0;
for k=1:length(theta)

 v = exp(j*(n - (N-1)/2)*sai(k));
 v_sai(:,k) = v.';

 B(k) = w'*v_sai(:,k);

 SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180);

 if(abs(B(k))>BSA_max)
 BSA_max = abs(B(k));
 end

end

% Calculation of Directivity
D = 10*log10(BSA_max.^2/SA);

% Result Figures
figure(1)
polar(theta*pi/180,abs(B));

figure(2)

 190

plot(theta,20*log10(abs(B)));

%% File: rectangular_DBFtransmitter_steering.m

clear;
clc;

% Rectangular Array Size
N = 4;
M = 4;
[n,m] = meshgrid(-1*(N-1)/2:(N-1)/2,-1*(M-1)/2:(M-1)/2);

% Inter-element spacing in lambda terms
dx = 0.5;
dy = 0.5;

% Weight function
theta_d = 30;
phi_d = 0;

sai_x_d = 2*pi*dx*sin(theta_d*pi/180)*cos(phi_d*pi/180);
sai_y_d = 2*pi*dy*sin(theta_d*pi/180)*sin(phi_d*pi/180);

W = (1/(M*N))*exp(j*(n*sai_x_d + m*sai_y_d));
w = reshape(W,N*M,1);

save TRAINING -append W;

% Creating U and Sai Space
sample_u_x = 100;
sample_u_y = 100;
u_x = -1:1/(sample_u_x*2):1;
u_y = -1:1/(sample_u_y*2):1;
sai_x = 2*pi*dx*u_x;
sai_y = 2*pi*dy*u_y;

% 2-D Beampattern Calculation
for k=1:length(sai_x)

 for h=1:length(sai_y)

 V = exp(j*(n*sai_x(k) + m*sai_y(h)));
 v = reshape(V,N*M,1);

 B(k,h) = w'*v;

 end

 191

end

% 2-D Beampattern Calculation in Angle Space
phi_coor_real = 0:360;
theta_coor_real = 0:90;
theta_coor_extra = 0:180;
V = [];
v = [];
SA = 0;
for k=1:length(phi_coor_real)

 for h=1:length(theta_coor_extra)

 sai_x_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*cos(phi_coor_real(k)*pi/180);
 sai_y_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*sin(phi_coor_real(k)*pi/180);

 V = exp(j*(n*sai_x_now + m*sai_y_now));
 v = reshape(V,N*M,1);

 if theta_coor_extra(h) <= 90

 B_sph(k,h) = w'*v;

 phi_coor_real_sph(k,h) = phi_coor_real(k);
 theta_coor_real_sph(k,h) = theta_coor_real(h);

 if (phi_coor_real(k)~=360)

 SA = SA + (abs(B_sph(k,h)))^2*sin(theta_coor_real(h)*pi/180)*(pi/180)^2;

 end

 else

 B_SA = w'*v;

 if (phi_coor_real(k)~=360 && theta_coor_extra(h)~=180)

 SA = SA + (abs(B_SA))^2*sin(theta_coor_extra(h)*pi/180)*(pi/180)^2;

 end

 end

 end

end

SA = SA/(4*pi);

 192

% Calculation of Directivity

D = abs(B_sph(phi_d+1,theta_d+1))^2/SA;
D_dB = 10*log10(D);

B_max = max(max(abs(B_sph)));

B_sph = B_sph/max(max(abs(B_sph)));

[x_B,y_B,z_B] = sph2cart(phi_coor_real_sph*pi/180, (-(theta_coor_real_sph-90)*pi/180), abs(B_sph));

% Phi = 0 & Phi = MRA_phi Cut Beampattern Calculation
phi_1 = 0;
phi_2 = phi_d;
phi_3 = phi_d + 45;

theta = 0:1:90;
for k=1:length(theta)

 u_x_1 = sin(theta(k)*pi/180)*cos(phi_1*pi/180);
 u_y_1 = sin(theta(k)*pi/180)*sin(phi_1*pi/180);

 u_x_2 = sin(theta(k)*pi/180)*cos(phi_2*pi/180);
 u_y_2 = sin(theta(k)*pi/180)*sin(phi_2*pi/180);

 u_x_3 = sin(theta(k)*pi/180)*cos(phi_3*pi/180);
 u_y_3 = sin(theta(k)*pi/180)*sin(phi_3*pi/180);

 sai_x_1 = 2*pi*dx*u_x_1;
 sai_y_1 = 2*pi*dy*u_y_1;

 sai_x_2 = 2*pi*dx*u_x_2;
 sai_y_2 = 2*pi*dy*u_y_2;

 sai_x_3 = 2*pi*dx*u_x_3;
 sai_y_3 = 2*pi*dy*u_y_3;

 V_1 = exp(j*(n*sai_x_1 + m*sai_y_1));
 v_1 = reshape(V_1,N*M,1);

 Bt_1(k) = w'*v_1;

 V_2 = exp(j*(n*sai_x_2 + m*sai_y_2));
 v_2 = reshape(V_2,N*M,1);

 Bt_2(k) = w'*v_2;

 V_3 = exp(j*(n*sai_x_3 + m*sai_y_3));
 v_3 = reshape(V_3,N*M,1);

 Bt_3(k) = w'*v_3;

 193

end

if (phi_2<180)
 Bt_s = [fliplr(Bt_2) Bt_3];
else
 Bt_s = [fliplr(Bt_3) Bt_2];
end

% Calculation of Beamwidth in Phi Plane Cut
Bt_s = Bt_s([1:92 94:182]);
theta_m = 0:180;
Bt_s_max = max(abs(Bt_s));
Bt_s_3dB = Bt_s_max/2;
theta_beam = theta_m([abs(Bt_s)]>=Bt_s_3dB);
Beamwidth_theta = max(theta_beam)-min(theta_beam);

figure('Name','Beam Pattern of Standard Rectangular Array');
surf(x_B,y_B,z_B);
title('Magnitude in dB of Rectangular Array Beam Pattern');
xlabel('x');
ylabel('y');
zlabel('Magnitude (dB)');

polar3D(theta_coor_real,phi_coor_real,(20*log10(abs(B_sph)))',50,3,'Rectangular Array Beam Pattern
Polar Plot');

function hpol = polar3D(theta,phi,z,graph_dynamic,fig_nb,title_fig)
%POLAR3D 3D Polar coordinate plot.
% polar3D(THETA,PHI,Z,GRAPH_DYNAMIC,FIG_NB,TITLE_FIG) makes a plot using polar
coordinates of
% the angles THETA and PHI, in degrees, versus the 3rd dimension Z.
% GRAPH_DYNAMIC allows to display the dynamic range from the maximum value of Z.
% FIG_NB indicates the figure number in which the graph has to be displayed.
% TITLE_FIG is a string containing the figure's title.
%
% Copyright Sebastien and Marcelo, The Dream-Team, Nov. 21, 2003.

% get hold state
figure(fig_nb)
cax = newplot;
next = lower(get(cax,'NextPlot'));
hold_state = ishold;

% get x-axis text color so grid is in same color
tc = get(cax,'xcolor');
ls = get(cax,'gridlinestyle');

% Hold on to current Text defaults, reset them to the
% Axes' font attributes so tick marks use them.

 194

fAngle = get(cax, 'DefaultTextFontAngle');
fName = get(cax, 'DefaultTextFontName');
fSize = get(cax, 'DefaultTextFontSize');
fWeight = get(cax, 'DefaultTextFontWeight');
fUnits = get(cax, 'DefaultTextUnits');
set(cax, 'DefaultTextFontAngle', get(cax, 'FontAngle'), ...
 'DefaultTextFontName', get(cax, 'FontName'), ...
 'DefaultTextFontSize', get(cax, 'FontSize'), ...
 'DefaultTextFontWeight', get(cax, 'FontWeight'), ...
 'DefaultTextUnits','data')

% transform data to Cartesian coordinates.
xx=theta.'*cos(pi*phi/180);
yy=theta.'*sin(pi*phi/180);
pcolor(xx,yy,z), shading interp;
if (graph_dynamic~=0)
 caxis([(max(max(z))-graph_dynamic) max(max(z))]);
end
axis square;
colorbar;
title(title_fig)

% plot gird on top of data

% make a radial grid
 hold on;
 max_theta = max(max(abs(theta)));
 hhh=plot([-max_theta -max_theta max_theta max_theta],[-max_theta max_theta max_theta -max_theta]);
 set(gca,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto')
 v = [get(cax,'xlim') get(cax,'ylim')];
 ticks = 7;
 delete(hhh);
% check radial limits and ticks
 rmin = 0; rmax = 90; rticks = max(ticks-1,2);

% define a circle
 th = 0:pi/50:2*pi;
 xunit = cos(th);
 yunit = sin(th);
% now really force points on x/y axes to lie on them exactly
 inds = 1:(length(th)-1)/4:length(th);
 xunit(inds(2:2:4)) = zeros(2,1);
 yunit(inds(1:2:5)) = zeros(3,1);

% draw radial circles
 c82 = cos(82*pi/180);
 s82 = sin(82*pi/180);
 rinc = (rmax-rmin)/rticks;
 for i=(rmin+rinc):rinc:rmax
 hhh = plot(xunit*i,yunit*i,ls,'color',tc,'linewidth',1,...
 'handlevisibility','off');

 195

 text((i+rinc/20)*c82,(i+rinc/20)*s82, ...
 [' ' num2str(i) '^o'],'verticalalignment','bottom',...
 'handlevisibility','off')
 end
 set(hhh,'linestyle','-') % Make outer circle solid

% plot spokes
 th = (1:6)*2*pi/12;
 cst = cos(th); snt = sin(th);
 cs = [-cst; cst];
 sn = [-snt; snt];
 plot(rmax*cs,rmax*sn,ls,'color',tc,'linewidth',1,...
 'handlevisibility','off')

% annotate spokes in degrees
 rt = 1.1*rmax;
 for i = 1:length(th)
 text(rt*cst(i),rt*snt(i),[int2str(i*30) '^o'],...
 'horizontalalignment','center',...
 'handlevisibility','off');
 if i == length(th)
 loc = int2str(0);
 else
 loc = int2str(180+i*30);
 end
 text(-rt*cst(i),-rt*snt(i),[loc '^o'],'horizontalalignment','center',...
 'handlevisibility','off')
 end

% set view to 2-D
 view(2);
% set axis limits
 axis(rmax*[-1 1 -1.15 1.15]);

% Reset defaults.
set(cax, 'DefaultTextFontAngle', fAngle , ...
 'DefaultTextFontName', fName , ...
 'DefaultTextFontSize', fSize, ...
 'DefaultTextFontWeight', fWeight, ...
 'DefaultTextUnits',fUnits);

hold off;

if nargout > 0
 hpol = q;
end
if ~hold_state
 set(gca,'dataaspectratio',[1 1 1]), axis off; set(cax,'NextPlot',next);
end
set(get(gca,'xlabel'),'visible','on')
set(get(gca,'ylabel'),'visible','on')

 196

hold off;

% File: rectangular_DBFtransmitter_parameters.m

% Information Signal
sig_ts = 1e-8;

% Information Signal
output_width = 16;
fis = 1e6;
db_ts = 1/10e6;
npi = fis*db_ts;

% Antenna Weights and Digital Beamformer
phase_res = 8;
w_amp = abs(W)/sum(sum(abs(W)));
w_phase_d = angle(W)*180/pi;
w_phase_r = angle(W);
bit_phase = w_phase_r*2^phase_res/(2*pi);
wamp_bit_res = 16;
wamp_point_res = 14;
wphase_bit_res = phase_res;
wphase_point_res = 0;
w_phase_d_corr = round(bit_phase)*2*pi/(2^phase_res)*180/pi;

% DAC
dac_ts = 1/100e6;
dac_bit_res = 14;
dac_point_res = 12;

% System Frequencies
fc = 8.2e9;
fif = 3e6;
error_index = 0;
i_phase = pi/2-(2*pi*fif)*(1e-8)*error_index;

% DDS Parameters
output_width = 16;
flo = fif;
duc_ts = dac_ts;
npd = flo*duc_ts;

% Max Time Delay
plane_wave_angle = 0;
ant_spacing = 0.5;
maxt = (fc/fif)*ant_spacing/fc;
sim_t = 1e-5;
slope_t = maxt/sim_t;

% DUC Filter Specs
filter_order = 30;

 197

factor = 10;
u_sample = db_ts/dac_ts;
hp = u_sample*fir1(filter_order,1/(factor*u_sample));
filter_lat = 15;

% CIC Specs
n_stages = 2;
cic_lat = 2;
diff_delay = 2;
force_bit_width = 18;
scale_factor = -2;

% Scope Parameters
scope_ts = 1e-8;
scope_sig = 1e-8;

% Latency Repair
lat_duc_n = 3 + filter_lat;
lat_db_n = 8;
lat_time = (lat_duc_n+filter_order)*duc_ts+lat_db_n*db_ts;
total_time = lat_time+sim_t;

% Operation Precision
add_bit_width = 14;
add_point_width = 12;
mult_bit_width = 18;
mult_point_width = 16;
prec_bit_width = 16;
prec_point_width = 14;

load TRAINING;

save WEIGHT_INFO w_amp w_phase_r w_phase_d_corr;

%% File: rectangular_DBFtransmitter_results.m

clear;
clc;

% Load MAT FILE
load TRANSMITTER;

% Removing Transient State of Transmission Signal
total_time = 1.1e-5;
sim_time = 1e-5;
sim_period = 1e-8;
extra_samples = (total_time-sim_time)/sim_period;
[r_trans_signal,c_trans_signal] = size(trans_signal);
trans_signal = trans_signal(:,(c_trans_signal-extra_samples):c_trans_signal);
[r_trans_signal,c_trans_signal] = size(trans_signal);

 198

% Calculate FFT of each antenna signal
fft_size = 2^16;
spectral_signal = [];
for k=1:r_trans_signal-1

 spectral_signal(k,:) = fft(trans_signal(k+1,:),fft_size);

end

f_range = 0:1/(fft_size*sim_period):1/sim_period-1/(fft_size*sim_period);
index_range = 1:length(f_range);

% Frequencies and index where information signal is present
center_f = 3e6;
delta_f = 1/(2*fft_size*sim_period);

center_f_index = [f_range>=center_f-delta_f & f_range<=center_f+delta_f]*index_range.';

% Rectangular Array Size
N = 4;
M = 4;
w_phase_x = [];
w_phase_x(:,1) = zeros(N,1);

% Calculation of Weight Coefficients' Phase
for k=1:N

 for h=2:M
 center_phase = -1*(angle(spectral_signal(h+(k-1)*N,center_f_index))-angle(spectral_signal(1+(k-
1)*N,center_f_index)));
 if (center_phase>=180)
 center_phase = center_phase-360;
 end
 w_phase_x(k,h)=center_phase;
 end
end

w_phase_y = [];
w_phase_y(1,:) = zeros(1,M);

for k=2:N

 for h=1:M
 center_phase = -1*(angle(spectral_signal(h+(k-1)*N,center_f_index))-
angle(spectral_signal(h,center_f_index)));
 if (center_phase>=180)
 center_phase = center_phase-360;
 end
 w_phase_y(k,h)=center_phase;
 end
end

 199

% Calculation of Weight Coefficients' Magnitude
for k=1:N
 for h=1:M
 w_abs(k,h) = abs(spectral_signal(h+(k-1)*N,center_f_index))/2;
 end
end

% Rectangular Array Size
N = 4;
M = 4;
[n,m] = meshgrid(-1*(N-1)/2:(N-1)/2,-1*(M-1)/2:(M-1)/2);

% Inter-element spacing in lambda terms
dx = 0.5;
dy = 0.5;

% Weight function
theta_d = 16;
phi_d = 122;

sai_x_d = 2*pi*dx*sin(theta_d*pi/180)*cos(phi_d*pi/180);
sai_y_d = 2*pi*dy*sin(theta_d*pi/180)*sin(phi_d*pi/180);

W = w_abs.*exp(j*(w_phase_x + w_phase_y));
w = reshape(W,N*M,1);

save WEIGHT_INFO W -append;

% Creating U and Sai Space
sample_u_x = 100;
sample_u_y = 100;
u_x = -1:1/(sample_u_x*2):1;
u_y = -1:1/(sample_u_y*2):1;
sai_x = 2*pi*dx*u_x;
sai_y = 2*pi*dy*u_y;

% [u_x,u_y] = meshgrid(2*pi*dx*(-1:1/(sample_u_x*2):1),2*pi*dy*(-1:1/(sample_u_y*2):1));

% 2-D Beampattern Calculation
for k=1:length(sai_x)

 for h=1:length(sai_y)

 V = exp(j*(n*sai_x(k) + m*sai_y(h)));
 v = reshape(V,N*M,1);

 B(k,h) = w'*v;

 end

 200

end

% 2-D Beampattern Calculation in Angle Space
phi_coor_real = 0:360;
theta_coor_real = 0:90;
theta_coor_extra = 0:180;
V = [];
v = [];
SA = 0;
for k=1:length(phi_coor_real)

 for h=1:length(theta_coor_extra)

 sai_x_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*cos(phi_coor_real(k)*pi/180);
 sai_y_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*sin(phi_coor_real(k)*pi/180);

 V = exp(j*(n*sai_x_now + m*sai_y_now));
 v = reshape(V,N*M,1);

 if theta_coor_extra(h) <= 90

 B_sph(k,h) = w'*v;

 phi_coor_real_sph(k,h) = phi_coor_real(k);
 theta_coor_real_sph(k,h) = theta_coor_real(h);

 if (phi_coor_real(k)~=360)

 SA = SA + (abs(B_sph(k,h)))^2*sin(theta_coor_real(h)*pi/180)*(pi/180)^2;

 end

 else

 B_SA = w'*v;

 if (phi_coor_real(k)~=360 && theta_coor_extra(h)~=180)

 SA = SA + (abs(B_SA))^2*sin(theta_coor_extra(h)*pi/180)*(pi/180)^2;

 end

 end

 end

end

SA = SA/(4*pi);

 201

D = abs(B_sph(phi_d+1,theta_d+1))^2/SA;
D_dB = 10*log10(D);

B_max = max(max(abs(B_sph)));

[x_B,y_B,z_B] = sph2cart(phi_coor_real_sph*pi/180, (-(theta_coor_real_sph-90)*pi/180), abs(B_sph));

% Phi = 0 & Phi = MRA_phi Cut Beampattern Calculation

phi_1 = 0;
phi_2 = phi_d;
phi_3 = phi_d + 180;

theta = 0:1:90;
for k=1:length(theta)

 u_x_1 = sin(theta(k)*pi/180)*cos(phi_1*pi/180);
 u_y_1 = sin(theta(k)*pi/180)*sin(phi_1*pi/180);

 u_x_2 = sin(theta(k)*pi/180)*cos(phi_2*pi/180);
 u_y_2 = sin(theta(k)*pi/180)*sin(phi_2*pi/180);

 u_x_3 = sin(theta(k)*pi/180)*cos(phi_3*pi/180);
 u_y_3 = sin(theta(k)*pi/180)*sin(phi_3*pi/180);

 sai_x_1 = 2*pi*dx*u_x_1;
 sai_y_1 = 2*pi*dy*u_y_1;

 sai_x_2 = 2*pi*dx*u_x_2;
 sai_y_2 = 2*pi*dy*u_y_2;

 sai_x_3 = 2*pi*dx*u_x_3;
 sai_y_3 = 2*pi*dy*u_y_3;

 V_1 = exp(j*(n*sai_x_1 + m*sai_y_1));
 v_1 = reshape(V_1,N*M,1);

 Bt_1(k) = w'*v_1;

 V_2 = exp(j*(n*sai_x_2 + m*sai_y_2));
 v_2 = reshape(V_2,N*M,1);

 Bt_2(k) = w'*v_2;

 V_3 = exp(j*(n*sai_x_3 + m*sai_y_3));
 v_3 = reshape(V_3,N*M,1);

 Bt_3(k) = w'*v_3;

end

 202

if (phi_2<180)
 Bt_s = [fliplr(Bt_2) Bt_3];
else
 Bt_s = [fliplr(Bt_3) Bt_2];
end

% Calculation of Beamwidth in Phi Cut Plane
Bt_s = Bt_s([1:92 94:182]);
theta_m = 0:180;
Bt_s_max = max(abs(Bt_s));
Bt_s_3dB = Bt_s_max/2;
theta_beam = theta_m([abs(Bt_s)]>=Bt_s_3dB);
Beamwidth_theta = max(theta_beam)-min(theta_beam);

% Theta = MRA_theta Cut Pattern

theta_1 = theta_d;
phi = 0:360;

for k=1:length(phi)

 u_x_p = sin(theta_1*pi/180)*cos(phi(k)*pi/180);
 u_y_p = sin(theta_1*pi/180)*sin(phi(k)*pi/180);

 sai_x_p = 2*pi*dx*u_x_p;
 sai_y_p = 2*pi*dy*u_y_p;

 V_p = exp(j*(n*sai_x_p + m*sai_y_p));
 v_p = reshape(V_p,N*M,1);

 B_p(k) = w'*v_p;

end

% Result Figures
figure('Name','Simulated Beam Pattern of Standard Rectangular Array');
surf(x_B,y_B,z_B);
title('Magnitude in dB of Rectangular Array Beam Pattern');
xlabel('x');
ylabel('y');
zlabel('Magnitude (dB)');

polar3D(theta_coor_real,phi_coor_real,(20*log10(abs(B_sph)))',50,6,'Simulated Rectangular Array Beam
Pattern Polar Plot');

%% File: rectangular_DBFtransmitter_dolphchebyshev.m

clear;
clc;

% Rectangular Array Size

 203

N = 4;
M = 4;
[n,m] = meshgrid(-1*(N-1)/2:(N-1)/2,-1*(M-1)/2:(M-1)/2);

% Inter-element spacing in lambda terms
dx = 0.5;
dy = 0.5;

% Calculation of Weight Coefficients
theta_d = 16;
phi_d = 122;

sai_x_d = 2*pi*dx*sin(theta_d*pi/180)*cos(phi_d*pi/180);
sai_y_d = 2*pi*dy*sin(theta_d*pi/180)*sin(phi_d*pi/180);

W = (1/M*N)*exp(j*(n*sai_x_d + m*sai_y_d));
w = reshape(W,N*M,1);

R_l = 25;
R = 10^(R_l/20);
x0=cosh(acosh(R)/(N-1));

for k1=0:N-1
 for k2=0:M-1

 saix_k1 = (k1-(N-1)/2)*2*pi/N;
 saiy_k2 = (k2-(M-1)/2)*2*pi/M;
 ev(k1+1,k2+1) = x0*cos(saix_k1/2)*cos(saiy_k2/2);

 if abs(ev(k1+1,k2+1)) <= 1
 B_n(k1+1,k2+1) = exp(-j*((N-1)/2*saix_k1+(M-1)/2*saiy_k2))*cos((N-
1)*acos(ev(k1+1,k2+1)))/R;
 elseif ev(k1+1,k2+1) > 1
 B_n(k1+1,k2+1) = exp(-j*((N-1)/2*saix_k1+(M-1)/2*saiy_k2))*cosh((N-
1)*acosh(ev(k1+1,k2+1)))/R;
 else
 B_n(k1+1,k2+1) = exp(-j*((N-1)/2*saix_k1+(M-1)/2*saiy_k2))*(-1)^(N-1)*cosh((N-
1)*acosh(ev(k1+1,k2+1)))/R;
 end

 end
end

b_n = ifft2(B_n,N,M);

for a_i=0:N-1
 for b_i=0:M-1

 E_m(a_i+1,b_i+1) = exp(j*(a_i*pi*(N-1)/N+b_i*pi*(M-1)/M));

 end

 204

end

W_dc = b_n./E_m;
w_dc = reshape(W_dc,N*M,1);

w = w.*w_dc;
W = reshape(w,N,M);

save TRAINING -append W;

% Creating U and Sai Space
sample_u_x = 100;
sample_u_y = 100;
u_x = -1:1/(sample_u_x*2):1;
u_y = -1:1/(sample_u_y*2):1;
sai_x = 2*pi*dx*u_x;
sai_y = 2*pi*dy*u_y;

% 2-D Beampattern Calculation
for k=1:length(sai_x)

 for h=1:length(sai_y)

 V = exp(j*(n*sai_x(k) + m*sai_y(h)));
 v = reshape(V,N*M,1);

 B(k,h) = w'*v;

 end

end

% 2-D Beampattern Calculation in Angle Space
phi_coor_real = 0:360;
theta_coor_real = 0:90;
theta_coor_extra = 0:180;
V = [];
v = [];
SA = 0;
for k=1:length(phi_coor_real)

 for h=1:length(theta_coor_extra)

 sai_x_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*cos(phi_coor_real(k)*pi/180);
 sai_y_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*sin(phi_coor_real(k)*pi/180);

 V = exp(j*(n*sai_x_now + m*sai_y_now));
 v = reshape(V,N*M,1);

 205

 if theta_coor_extra(h) <= 90

 B_sph(k,h) = w'*v;

 phi_coor_real_sph(k,h) = phi_coor_real(k);
 theta_coor_real_sph(k,h) = theta_coor_real(h);

 if (phi_coor_real(k)~=360)

 SA = SA + (abs(B_sph(k,h)))^2*sin(theta_coor_real(h)*pi/180)*(pi/180)^2;

 end

 else

 B_SA = w'*v;

 if (phi_coor_real(k)~=360 && theta_coor_extra(h)~=180)

 SA = SA + (abs(B_SA))^2*sin(theta_coor_extra(h)*pi/180)*(pi/180)^2;

 end

 end

 end

end

SA = SA/(4*pi);

% Calculation of Directivity
D = abs(B_sph(phi_d+1,theta_d+1))^2/SA;
D_dB = 10*log10(D);

B_max = max(max(abs(B_sph)));

B_sph = B_sph/max(max(abs(B_sph)));

[x_B,y_B,z_B] = sph2cart(phi_coor_real_sph*pi/180, (-(theta_coor_real_sph-90)*pi/180), abs(B_sph));

% Phi = 0 & Phi = MRA_phi Cut Beampattern Calculation

phi_1 = phi_d;
phi_2 = phi_d-45;
phi_3 = phi_d+45;
phi_4 = phi_d+180;

% sample_theta = 100;
theta = 0:1:90;

 206

for k=1:length(theta)

 u_x_1 = sin(theta(k)*pi/180)*cos(phi_1*pi/180);
 u_y_1 = sin(theta(k)*pi/180)*sin(phi_1*pi/180);

 u_x_2 = sin(theta(k)*pi/180)*cos(phi_2*pi/180);
 u_y_2 = sin(theta(k)*pi/180)*sin(phi_2*pi/180);

 u_x_3 = sin(theta(k)*pi/180)*cos(phi_3*pi/180);
 u_y_3 = sin(theta(k)*pi/180)*sin(phi_3*pi/180);

 u_x_4 = sin(theta(k)*pi/180)*cos(phi_4*pi/180);
 u_y_4 = sin(theta(k)*pi/180)*sin(phi_4*pi/180);

 sai_x_1 = 2*pi*dx*u_x_1;
 sai_y_1 = 2*pi*dy*u_y_1;

 sai_x_2 = 2*pi*dx*u_x_2;
 sai_y_2 = 2*pi*dy*u_y_2;

 sai_x_3 = 2*pi*dx*u_x_3;
 sai_y_3 = 2*pi*dy*u_y_3;

 sai_x_4 = 2*pi*dx*u_x_4;
 sai_y_4 = 2*pi*dy*u_y_4;

 V_1 = exp(j*(n*sai_x_1 + m*sai_y_1));
 v_1 = reshape(V_1,N*M,1);

 Bt_1(k) = w'*v_1;

 V_2 = exp(j*(n*sai_x_2 + m*sai_y_2));
 v_2 = reshape(V_2,N*M,1);

 Bt_2(k) = w'*v_2;

 V_3 = exp(j*(n*sai_x_3 + m*sai_y_3));
 v_3 = reshape(V_3,N*M,1);

 Bt_3(k) = w'*v_3;

 V_4 = exp(j*(n*sai_x_4 + m*sai_y_4));
 v_4 = reshape(V_4,N*M,1);

 Bt_4(k) = w'*v_4;

end

if (phi_2<180)
 Bt_s = [fliplr(Bt_2) Bt_3];
else

 207

 Bt_s = [fliplr(Bt_3) Bt_2];
end

% Calculation of Beamwidth in Phi Cut Plane
Bt_s = Bt_s([1:92 94:182]);
theta_m = 0:180;
Bt_s_max = max(abs(Bt_s));
Bt_s_3dB = Bt_s_max/2;
theta_beam = theta_m([abs(Bt_s)]>=Bt_s_3dB);
Beamwidth_theta = max(theta_beam)-min(theta_beam);

% Theta = MRA_theta Cut Pattern

theta_1 = theta_d;
phi = 0:360;

for k=1:length(phi)

 u_x_p = sin(theta_1*pi/180)*cos(phi(k)*pi/180);
 u_y_p = sin(theta_1*pi/180)*sin(phi(k)*pi/180);

 sai_x_p = 2*pi*dx*u_x_p;
 sai_y_p = 2*pi*dy*u_y_p;

 V_p = exp(j*(n*sai_x_p + m*sai_y_p));
 v_p = reshape(V_p,N*M,1);

 B_p(k) = w'*v_p;

end

B_p_max = max(abs(B_p));
B_p_3dB = B_p_max/2;
phi_beam = phi([abs(B_p)]>=B_p_3dB);
Beamwidth_phi = max(phi_beam)-min(phi_beam);

% Result Figures
figure('Name','Beam Pattern of Standard Rectangular Array');
surf(x_B,y_B,z_B);
title('Magnitude in dB of 2-D Beam Pattern');
xlabel('x');
ylabel('y');
zlabel('Magnitude (dB)');

polar3D(theta_coor_real,phi_coor_real,(20*log10(abs(B_sph)))',50,4,'Polar Color Plot');

function status = sp_read(data_filename,mat_filename)
% SP_read S-Parameter File Reader (Cititype file)
% SP_read(data_filename,mat_filename) retrieves S-Parameter data stored
% in cititype format named data_filename and stores the S-Parameter
% values in .MAT format on a file named mat_filename.mat. SP_read()

 208

% stores the frequency vector 'freq', the name of the S-Parameter
% 'SP_Name' and the S-Parameter value 'SP' where each row of the matrix
% represents an S-Parameter at frequencies specified by the frequency
% vector.
% Author: Juan A. Torres-Rosario

fid = fopen(data_filename,'r');

% Read the filetype name
ftype = fgetl(fid);

% Read Network Analyzer Version
NAversion = fgetl(fid);

% Read citifile type
cftype = fgetl(fid);

% Read register value
register_value = fgetl(fid);

% Read comment
comment_var = fgetl(fid);

% Read Number of S-Parameters in File
k = 0;
l = 1;

SP_Name(l,:)=fread(fid,14,'uint8=>char').';
fread(fid,2,'uint8=>char');

next = fread(fid,4,'uint8=>char').';

if next~='DATA'
 k = 1;
end

l = l+1;

while k==0

 SP_Name(l,:)=[next fread(fid,10,'uint8=>char').'];
 fread(fid,2,'uint8=>char');

 next = fread(fid,4,'uint8=>char').';

 if next~='DATA'
 k = 1;
 end

 l = l+1;

end

 209

% Read Segment Begin Label
begin_label = [next fread(fid,10,'uint8=>char').'];
fread(fid,2,'uint8=>char');

% Read Number of Frequency Points in S-Parameter File
% Note: Only works when 3 digits are used to express number of
% frequency points

freq_label = fgetl(fid);

freq_min = str2num(freq_label(5:14));
freq_max = str2num(freq_label(16:25));
freq_points = str2num(freq_label(27:29))-1;

freq_delta = (freq_max-freq_min)/freq_points;

freq = freq_min:freq_delta:freq_max;

% Read Segment End Label
end_label = fgetl(fid);

% Read Comment Information (Time,Date,Year)
comment_label = fgetl(fid);
comment_info = fgetl(fid);

%% Use space later for file information

% Begin process of reading S-Parameters
SP = [];
for j=1:size(SP_Name,1)

 begin_splabel = fgetl(fid);

 for k=1:length(freq)

 SP_line = fgetl(fid);
 SP_value = str2num(SP_line);

 if SP_Name(j,13:14)=='RI'

 SP(j,k) = complex(SP_value(1),SP_value(2));

 end

 end

 end_splabel = fgetl(fid);

end

 210

save(mat_filename,'SP_Name','SP','freq','-mat');

status = 1;

fclose(fid);

function status = sp_show(mat_filename);
% SP_SHOW S-Parameter Plotter
% sp_show(mat_filename) reads the specified mat_filename and plots
% the magnitude (in dB) and phase (in degrees) of the S-Parameters
% specified in the file
% Author: Juan A. Torres-Rosario

load(mat_filename);

figure('Name','S-Parameter Magnitude Plots');
subplot(221),plot(freq,20*log10(abs(SP(1,:))));
grid on;
title(['S-Parameter ',SP_Name(1,6:11)]);
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
subplot(222),plot(freq,20*log10(abs(SP(2,:))));
grid on;
title(['S-Parameter ',SP_Name(2,6:11)]);
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
subplot(223),plot(freq,20*log10(abs(SP(3,:))));
grid on;
title(['S-Parameter ',SP_Name(3,6:11)]);
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
subplot(224),plot(freq,20*log10(abs(SP(4,:))));
grid on;
title(['S-Parameter ',SP_Name(4,6:11)]);
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');

figure('Name','S-Parameter Phase Plots');
subplot(221),plot(freq,angle(SP(1,:))*180/pi);
grid on;
title(['S-Parameter ',SP_Name(1,6:11)]);
xlabel('Frequency (Hz)');
ylabel('Phase (degrees)');
subplot(222),plot(freq,angle(SP(2,:))*180/pi);
grid on;
title(['S-Parameter ',SP_Name(2,6:11)]);
xlabel('Frequency (Hz)');
ylabel('Phase (degrees)');
subplot(223),plot(freq,angle(SP(3,:))*180/pi);
grid on;

 211

title(['S-Parameter ',SP_Name(3,6:11)]);
xlabel('Frequency (Hz)');
ylabel('Phase (degrees)');
subplot(224),plot(freq,angle(SP(4,:))*180/pi);
grid on;
title(['S-Parameter ',SP_Name(4,6:11)]);
xlabel('Frequency (Hz)');
ylabel('Phase (degrees)');

function status = pattern_read(data_filename,mat_filename)
% pattern_read Antenna Pattern File Reader
% pattern_read(data_filename,mat_filename) retreives antenna
% measurement data stored in data_filename from the NSI 2000 software
% and stores the file information and measurement
% electric field pattern data into the mat_filename.
% Note: The content in the description field of the file must not exceed
% one line.
% Author: Juan A. Torres-Rosario

fid = fopen(data_filename,'r');

% Read line
line = fgetl(fid);
k = 1;

while line(k)~=',',
 k = k+1;
end

% Polarization Cut
k = k+2;
polarization = [];
while line(k)~=':',
 polarization = [polarization line(k)];
 k = k+1;
end

% Polarization Type
k = k+2;
pol_type = [];
while line(k)~=',',
 pol_type = [pol_type line(k)];
 k = k+1;
end

% Tau: Polarization Tilt
tau = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '

 212

 tau = [tau line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

% Gain Parameter
gain = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 gain = [gain line(k)];
 k = k+1;
end

% Max Far-Field (Global) in dB
max_global = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 max_global = [max_global line(k)];
 k = k+1;
end

% Max Far-Field (Plot) in dB
max_plot = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 max_plot = [max_plot line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

% Normalization
normalization = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=','

 213

 normalization = [normalization line(k)];
 k = k+1;
end

% Network Offset
network_offset = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 network_offset = [network_offset line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

% Hpeak
hpeak = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=' '
 hpeak = [hpeak line(k)];
 k = k+1;
end

% Vpeak
vpeak = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=' '
 vpeak = [vpeak line(k)];
 k = k+1;
end

status = 1;

% Read line
line = fgetl(fid);
k = 1;

% Plot Centering
plot_centering = [];
while line(k)~=':'
 k = k+1;
end

 214

k = k+2;
while k<=length(line)
 plot_centering = [plot_centering line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

% Directivity
directivity = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 directivity = [directivity line(k)];
 k = k+1;
end

% FF Amplitude Info Structure
FF_amplitude_info = struct('Eprincipal',pol_type,'Tau',str2num(tau),'Gain',str2num(gain),...
 'Global_Max_Farfield',str2num(max_global),'Plot_Max_Farfield',str2num(max_plot),...
 'Normalization',normalization,'Network_Offset',str2num(network_offset),'Hpeak',str2num(hpeak),...
 'Vpeak',str2num(vpeak),'Plot_Centering',plot_centering,'Directivity',str2num(directivity));

% Read line
line = fgetl(fid);
k = 1;

% Read line
line = fgetl(fid);
k = 1;

% Read line
line = fgetl(fid);
k = 1;

% Description
Description = line;

% Read line
line = fgetl(fid);
k = 1;

% Read line
line = fgetl(fid);
k = 1;

% Read line

 215

line = fgetl(fid);
k = 1;

% Program Version
prog_version = [];
while line(k)~=','
 prog_version = [prog_version line(k)];
 k = k+1;
end

% Filename
filename = [];
while line(k)~=':'
 k = k+1;
end
k = k+1;
while k<=length(line)
 filename = [filename line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

% Measurement Date/Time
measurement_date = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=' '
 measurement_date = [measurement_date line(k)];
 k = k+1;
end
k = k+1;
measurement_time = [];
while line(k)~=','
 measurement_time = [measurement_time line(k)];
 k = k+1;
end

% Filetype
filetype = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 filetype = [filetype line(k)];
 k = k+1;
end

 216

% File Info Structure
File_info =
struct('Program_Version',prog_version,'Filename',filename,'Measurement_date',measurement_date,...
 'Measurement_Time',measurement_time,'Filetype',filetype);

%% Far-Field Display Setup
% Read line
line = fgetl(fid);
k = 1;

% Read line
line = fgetl(fid);
k = 1;

% Read line
line = fgetl(fid);
k = 1;

% Theta_Info
theta_span = [];
theta_center = [];
theta_points = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 theta_span = [theta_span line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 theta_center = [theta_center line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 theta_points = [theta_points line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

 217

theta_start = [];
theta_stop = [];
theta_delta = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 theta_start = [theta_start line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 theta_stop = [theta_stop line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 theta_delta = [theta_delta line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

% Read line
line = fgetl(fid);
k = 1;

% Phi_Info
phi_span = [];
phi_center = [];
phi_points = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 phi_span = [phi_span line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;

 218

while line(k)~=' '
 phi_center = [phi_center line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 phi_points = [phi_points line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

phi_start = [];
phi_stop = [];
phi_delta = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 phi_start = [phi_start line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 phi_stop = [phi_stop line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 phi_delta = [phi_delta line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Plot Rotation
plot_rotation = [];
while line(k)~='='

 219

 k = k+1;
end
k = k+2;
while line(k)~=' '
 plot_rotation = [plot_rotation line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Interpolation
interpolation = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 interpolation = [interpolation line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Coordinate System
coordinate_system = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=';'
 coordinate_system = [coordinate_system line(k)];
 k = k+1;
end

% Far-Field Display Polarization
display_polarization = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 display_polarization = [display_polarization line(k)];
 k = k+1;
end

% FF Display Setup Info Structure
FF_display_setup_info = struct('Theta_Span',str2num(theta_span),'Theta_Center',str2num(theta_center),...

 220

'Theta_Points',str2num(theta_points),'Theta_Start',str2num(theta_start),'Theta_Stop',str2num(theta_stop),...
 'Theta_Delta',str2num(theta_delta),'Phi_Span',str2num(phi_span),'Phi_Center',str2num(phi_center),...
 'Phi_Points',str2num(phi_points),'Phi_Start',str2num(phi_start),'Phi_Stop',str2num(phi_stop),...
 'Phi_Delta',str2num(phi_delta),'Plot_Rotation',str2num(plot_rotation),'Interpolation',interpolation,...
 'Coordinate_System',coordinate_system,'Display_Polarization',display_polarization);

%% Far-Field Transform
% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

% FFT Size
fft_size = [];
while line(k)~=':'
 k = k+1;
end
k = k+3;
while k<=length(line)
 fft_size = [fft_size line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Far-Field Display Polarization
filter_mode = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=','
 filter_mode = [filter_mode line(k)];
 k = k+1;
end

zoom = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 zoom = [zoom line(k)];
 k = k+1;
end

 221

% Read Line
line = fgetl(fid);
k = 1;

% Probe Setup
probe_setup = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 probe_setup = [probe_setup line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Probe Model
probe_model = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 probe_model = [probe_model line(k)];
 k = k+1;
end

% FF Transform Setup Info Structure
FF_transform_setup_info = struct('FFT_Size',fft_size,'Filter_Mode',filter_mode,...
 'Zoom',zoom,'Probe_Setup',probe_setup,'Probe_Model',probe_model);

%% Beam Information (Code valid only for one beam)

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

 222

% Beam - Future work involves rearranging the information
beam_info = line;

%% Near-field setup

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

% Near-field data
near_field_data = [];
while line(k)~='-'
 k = k+1;
end
k = k+2;
while k<=length(line)
 near_field_data = [near_field_data line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Truncation
truncation = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 truncation = [truncation line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Amplitude Tapering
amplitude_tapering = [];
while line(k)~=':'
 k = k+1;

 223

end
k = k+2;
while k<=length(line)
 amplitude_tapering = [amplitude_tapering line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Network Correction
network_correction = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 network_correction = [network_correction line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Phase Correction
phase_correction = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 phase_correction = [phase_correction line(k)];
 k = k+1;
end

% NF Setup Info Structure
NF_setup_info =
struct('Data',near_field_data,'Truncation',truncation,'Amplitude_Tapering',amplitude_tapering,...
 'Network_Correction',network_correction,'Position_Phase_Correction',phase_correction);

%% Measured Data

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

 224

% Read Line
line = fgetl(fid);
k = 1;

% Measured Theta_Info
mtheta_span = [];
mtheta_center = [];
mtheta_points = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mtheta_span = [mtheta_span line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mtheta_center = [mtheta_center line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mtheta_points = [mtheta_points line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

mtheta_start = [];
mtheta_stop = [];
mtheta_delta = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mtheta_start = [mtheta_start line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end

 225

k = k+2;
while line(k)~=' '
 mtheta_stop = [mtheta_stop line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mtheta_delta = [mtheta_delta line(k)];
 k = k+1;
end

% Read line
line = fgetl(fid);
k = 1;

% Read line
line = fgetl(fid);
k = 1;

% Phi_Info
mphi_span = [];
mphi_center = [];
mphi_points = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mphi_span = [mphi_span line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mphi_center = [mphi_center line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mphi_points = [mphi_points line(k)];
 k = k+1;
end

% Read line

 226

line = fgetl(fid);
k = 1;

mphi_start = [];
mphi_stop = [];
mphi_delta = [];
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mphi_start = [mphi_start line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mphi_stop = [mphi_stop line(k)];
 k = k+1;
end
while line(k)~='='
 k = k+1;
end
k = k+2;
while line(k)~=' '
 mphi_delta = [mphi_delta line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% AUT Dimensions
aut_height = [];
aut_width = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=' '
 aut_width = [aut_width line(k)];
 k = k+1;
end
while line(k)~=','
 k = k+1;
end
k = k+2;
while line(k)~=' '
 aut_height = [aut_height line(k)];

 227

 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% H/V Max Far-field Angles
h_max_angle = [];
v_max_angle = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=' '
 h_max_angle = [h_max_angle line(k)];
 k = k+1;
end
while line(k)~=','
 k = k+1;
end
k = k+2;
while line(k)~=' '
 v_max_angle = [v_max_angle line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Measurement Radius
measure_radius = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=' '
 measure_radius = [measure_radius line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% MRE
mre = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;

 228

while line(k)~=' '
 mre = [mre line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

% Measured Data Info Structure
Measured_data_info =
struct('Measured_Theta_Span',str2num(mtheta_span),'Measured_Theta_Center',str2num(mtheta_center),...

'Measured_Theta_Points',str2num(mtheta_points),'Measured_Theta_Start',str2num(mtheta_start),'Measured
_Theta_Stop',str2num(mtheta_stop),...

'Measured_Theta_Delta',str2num(mtheta_delta),'Measured_Phi_Span',str2num(mphi_span),'Measured_Phi
_Center',str2num(mphi_center),...

'Measured_Phi_Points',str2num(mphi_points),'Measured_Phi_Start',str2num(mphi_start),'Measured_Phi_St
op',str2num(mphi_stop),...

'Measured_Phi_Delta',str2num(mphi_delta),'AUT_Width',str2num(aut_width),'AUT_Height',str2num(aut_
height),'H_Max_Farfield_Angle',str2num(h_max_angle),...

'V_Max_Farfield_Angle',str2num(v_max_angle),'Measurement_Radius',str2num(measure_radius),'MRE',st
r2num(mre));

% Measurement Type
measure_type = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 measure_type = [measure_type line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Scan Options
scan_options = [];
while line(k)~=':'
 k = k+1;
end

 229

k = k+2;
while k<=length(line)
 scan_options = [scan_options line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Beamset Smear
beamset_smear = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=' '
 beamset_smear = [beamset_smear line(k)];
 k = k+1;
end

%% Probe setup as acquired
% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

% Beamset Smear
mprobe_model = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while k<=length(line)
 mprobe_model = [mprobe_model line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Probe 1
probe_1 = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=','

 230

 probe_1 = [probe_1 line(k)];
 k = k+1;
end

% Probe 2
probe_2 = [];
while line(k)~=':'
 k = k+1;
end
k = k+1;
while k<=length(line)
 probe_2 = [probe_2 line(k)];
 k = k+1;
end

% Measurement Info Structure
Measurement_info = struct('Measure_Type',measure_type,'Scan_Options',scan_options,...
 'Beamset_Smear',str2num(beamset_smear),'Probe_Setup','as Acquired','Probe_Model',mprobe_model,...
 'Probe_1',probe_1,'Probe_2',probe_2);

%% RF System

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

% Integration Time
integration_time = [];
while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=' '
 integration_time = [integration_time line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Scan Speed
scan_speed = [];

 231

while line(k)~=':'
 k = k+1;
end
k = k+2;
while line(k)~=' '
 scan_speed = [scan_speed line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Scan Info
scan_info = line;

% Read Line
line = fgetl(fid);
k = 1;

% Amp/Phase Initial
amp_initial = [];
phase_initial = [];
while line(k)~='='
 k = k+1;
end
k = k+3;
while line(k)~=' '
 amp_initial = [amp_initial line(k)];
 k = k+1;
end
while line(k)~=','
 k = k+1;
end
k = k+3;
while line(k)~=' '
 phase_initial = [phase_initial line(k)];
 k = k+1;
end

% Read Line
line = fgetl(fid);
k = 1;

% Amp/Phase Drift
amp_drift = [];
phase_drift = [];
while line(k)~='='
 k = k+1;
end
k = k+3;
while line(k)~=' '

 232

 amp_drift = [amp_drift line(k)];
 k = k+1;
end
while line(k)~=','
 k = k+1;
end
k = k+3;
while line(k)~=' '
 phase_drift = [phase_drift line(k)];
 k = k+1;
end

% RF System Info Structure
RF_system_info =
struct('Integration_Time',str2num(integration_time),'Scan_Speed',str2num(scan_speed),...

'Amp_Initial',str2num(amp_initial),'Phase_Initial',str2num(phase_initial),'Amp_Drift',str2num(amp_drift),...
 'Phase_Drift',str2num(phase_drift));

%% Measurement Data

% Read Line
line = fgetl(fid);
k = 1;

% Read Line
line = fgetl(fid);
k = 1;

for p=1:FF_display_setup_info.Phi_Points

 for q=1:FF_display_setup_info.Theta_Points

 % Read Line
 line = fgetl(fid);
 k = 1;

 % Change String Format into Numerical Format
 nline = str2num(line);

 % Spherical Coordinates
 theta_coor(p,q) = nline(1);
 phi_coor(p,q) = nline(2);

 % E-field Pattern
 E_field(p,q) = 10^(nline(3)/20).*exp(j*nline(4)*pi/180);

 end

end

 233

save(mat_filename,'FF_amplitude_info','File_info','FF_display_setup_info','FF_transform_setup_info',...
 'NF_setup_info','Measured_data_info','Measurement_info','RF_system_info','theta_coor','phi_coor',...
 'E_field','-mat');

fclose(fid);

function status = pattern_calc(Ephi_filename,Etheta_filename,Efield_filename)
% pattern_calc Antenna Pattern Calculator
% pattern_calc(Ephi_filename,Etheta_filename,Efield_filename) retrieves
% Electric Field measurement data from Ephi_filename and
% Etheta_filename MAT files, calculates the Magnitude of the Electric Field, and
% stores the result in the Efield_filename mat file.
% Note: Linear antenna is placed along Azimuth plane
% Author: Juan A. Torres-Rosario

% Load Ephi Component
load(Ephi_filename);
E_phi = E_field;

% Load Etheta Component
load(Etheta_filename);
E_theta = E_field;

% Calculate Electric Field Radiation Pattern
E_field = sqrt(abs(E_theta).^2+abs(E_phi).^2);
[E_x,E_y,E_z] = sph2cart(phi_coor*pi/180, (-(theta_coor)*pi/180), abs(E_field));
theta_coor = theta_coor+90;

% Calculate Efield for Polar Plot View
E_polar = E_field(:,1:101);

% Calculate Theta vector
theta_vector = [-1*fliplr(theta_coor(151,2:201)) theta_coor(51,1:201)];

% Calculate Elevation Cut
El_cut = [fliplr(E_field(151,2:201)) E_field(51,1:201)];

% Calculate Azimuth Cut
Az_cut = [fliplr(E_field(101,2:201)) E_field(1,1:201)];

save(Efield_filename,'E_field','theta_coor','phi_coor','theta_vector','E_x','E_y','E_z','Az_cut','El_cut',...
 'E_phi','E_theta','E_polar');

