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ABSTRACT 
 

 
This work presents the design of a transmitter/receiver Digital Beamformer (DBF) 

based on the mathematical model of a far-field plane wave incident on a sensor array. 

Simulations of a DBF transmitter and receiver are performed to control the power pattern 

of a 4-element linear array, a 16-element linear array and a 16-element rectangular array. 

For each sensor array, two spatial filters were constructed with different pattern 

requirements to demonstrate the operation of the DBF. An implementation of a DBF 

transmitter was performed using a digital processing board containing a Virtex-II 

XC2V6000 FPGA to control the radiation pattern of a Phased Array Antenna transmitter. 

A 16-element patch antenna array and the RF front end were fabricated and its radiation 

pattern was measured in an anechoic chamber to test the performance of the DBF 

transmitter giving an error of less than 5 degrees in each angular direction of the main 

beam’s angle-of-transmission. 
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RESUMEN 
 

 
Este trabajo presenta el diseño de un “digital beamformer" (DBF) transmisor y 

receptor basados en el modelo matemático de una onda plana que incide en un arreglo de 

sensores. Simulaciones del DBF transmisor y receptor fueron realizadas para controlar el 

patrón de radiación de tres arreglos con geometrías diferentes. Para cada arreglo de 

sensores, dos filtros espaciales fueron construidos con requisitos específicos con el 

propósito de demostrar el funcionamiento del DBF y comparar sus resultados con los 

resultados obtenidos al calcular el patrón teóricamente. Una implementación del DBF 

tipo transmisor fue realizada utilizando una tarjeta de procesamiento de datos con un 

Virtex-II XC2V6000 FPGA para controlar el patrón de radiación de un arreglo de antenas 

transmisor.  Para implementar los componentes RF del arreglo de antenas se diseñaron y 

construyeron un arreglo de parches con 16 elementos, una etapa de distribución para la 

señal del oscilador local, y una etapa de mezclado y amplificación de potencia. 

Finalmente, el patrón de radiación del arreglo de antenas fue medido utilizando una 

cámara anecoica con el fin de mostrar el funcionamiento del DBF transmisor donde se 

obtuvo patrones con menos de 5 grados de error en el ángulo de transmisión de su lóbulo 

principal. 
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1 INTRODUCTION 
 

Phased array antennas are known for their capability to steer the beam pattern 

electronically with high effectiveness, managing to get minimal side-lobe levels and 

narrow beamwidths. Implementations beginning during the 1950s depended largely on 

microwave circuitry components such as phase shifters, and variable amplifiers. To 

achieve performance specifications such as narrow beamwidth or considerable scanning 

range with high angle resolution, a large number of antenna elements were needed to 

construct the array. The use of these microwave components in large quantities pose 

numerous obstacles to good performance and complicate the maintenance process of the 

phased array antenna. 

 

 Phase shifters, which are used in great quantities in a phased array antenna, have 

high power consumption. This might be perceived as a decrease in the gain of the phased 

antenna array. Another problem with phase shifters and their intrinsic tolerance of a 

phase shift value. The progressive phase shift between each phase shifter needs to be 

equal for all phase shifters in order to achieve a defined beam to fulfill antenna 

specifications. In order to achieve constant phase progression between phase shifters, 

every phase shifter in a phased array antenna needs to be calibrated. The calibration 

process is done after the array has been fabricated to ensure the correction of all the 

effects of phase and amplitude errors in the excitation. This calibration process tends to 



 
 
 

 
 

 15 

complicate the integration process of a communication system using a large phased array 

antenna. Also, since the phase shifter has inherent variations in its operation due to 

temperature, time, mechanical vibrations, etc., repetition of this calibration process may 

be needed over time. 

 

An alternative approach in the design of a phased array antenna is to use digital 

beamforming. Digital beamforming consists of the spatial filtering of a signal where the 

phase shifting, amplitude scaling, and adding are implemented digitally. The idea is to 

use a computational and programmable environment which processes a signal in the 

digital domain to control the progressive phase shift between each antenna element in the 

array. Digital beamforming has many of the advantages a digital computational 

environment has over its analog counterpart. In most cases, less power is needed to 

perform the beam steering of the phased array antenna. Another advantage is the 

reduction of variations associated with time, temperature, and other environmental 

changes found in analog devices. The phased array antenna will still contain analog 

components such as Low Noise Amplifiers (LNAs) and Power Amplifiers (PA) found in 

the RF stages, but the number of analog components in general can be greatly reduced for 

large antenna arrays. Finally, an important reason which favors the use of a digital 

beamformer on a phased array antenna is its versatility. Digital beamformers can 

accomplish minimization of side-lobe levels, interference canceling and multiple beam 

operation without changing the physical architecture of the phased array antenna. Every 
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mode of operation of the digital beamformer is created and controlled by means of code 

written on a programmable device of the digital beamformer. 

 

In the beginning of the 1980s, advancement in digital circuitry technology made 

possible and feasible the idea of implementing the beamforming networks through digital 

signal processing. Digital Beamforming (DBF) offers advantages in terms of power 

consumption, flexibility, and accuracy. In general, digital systems tend to consume less 

power in computation operations and have programmable interface adding versatility to 

the system. Steyskal stated advantages in DBF implementation such as improved 

adaptive pattern nulling, superresolution, array element pattern correction, self calibration, 

and radar power and time management [Steyskal, 1988]. Experimental DBF systems have 

been built since then to improve the antenna performance for system-level environments. 

In the 1998, Simonangeli developed a testbed of a C band 32-element dipole DBF array 

[Simonangeli, 1988]. At the same time, the study of efficient beamforming algorithms 

paved the way for flexible and versatility in DBF designs [Mucci, 1984].  

 

Phased array antenna designs based on DBF implementation are currently being 

devised for radar applications. Currently, the Netherlands Foundation for Research in 

Astronomy (NFRA) is working on the creation of a radio telescope based on the phased 

array antenna principle [Hiemstra, 2000]. The project is called the Square Kilometer 

Array (SKA). The radio telescope will consist of 32 array antennas stations. It will cover 
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an area of a square kilometer with a frequency range from 200 MHz to 2 GHz. A series 

of four feasibility stages of four different array antennas are been developed for research 

and development purposes. In the two final array antennas, DBF will be implemented 

with a multi-processor computational environment. The DBF will consist of a processing 

board containing FPGAs and a DSP. For the third array antenna called Thousand Element 

Array (THEA), a group of six FPGAs will be used to process the signal. The DSP will be 

used to implement an adaptive algorithm based on Minimum Variance (MV) to calculate 

the beamformer’s weigth coefficients [Alliot, 2000]. The signal will have a bandwidth of 

20 MHz. 

 

Finally, phased array antennas have been used largely in communication systems. 

Their capability to change radiation pattern electronically, multi-beam capacity and high 

spatial resolution has made them attractive for mobile communication applications. 

Miura [Miura, 1997] worked with a DBF Multibeam Antenna for mobile satellite 

communication. The DBF consisted on a 4 x 4 ring patch array which received a signal 

with a carrier frequency of 1542.5 MHz and a bandwidth of 11 kHz. The spatial filtering 

was performed using a DSP board of ten FPGAs. An adaptive beamforming algorithm 

called constant modulus algorithm (CMA) was used to perform the satellite tracking. To 

achieve multibeam operation, an FFT beamformer was implemented in conjunction with 

Multibeam selector, which decides the beam with the strongest receiving power to 

receive the arriving signal. Dreher [Dreher, 1999, 2003] worked with a planar DBF for 
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satellite navigation. The antenna array, a 5 x 5 aperture coupled patch array, was 

designed to receive a signal with a carrier frequency of 5.15 GHz and a bandwidth of 16 

MHz. The RF-signal is processed through an Intermediate Frequency (IF) network, 

digitized using a sub-sampling mechanism with a 40 Msps 10-bit ADC converters, 

modulated to baseband with DDC, and the actual beamforming is performed by a PC. 

The data transfer between the IF networks and the PC was done via the IEEE 488 

standard bus. The calculation of the weights of the spatial filter was made using 

Schelkunnoff’s method, where the radiation patterns’ nulls are located at detected 

interfering signals. 

 

In the next chapter of this thesis, a theoretical background of array signal processing 

is presented. The chapter describes the mathematical model of the DBF receiver and 

transmitter based on the behavior of a far-field plane wave traveling along a 

homogeneous medium and incident on an array of sensor. Detailed designs of the DBF 

receiver and transmitter are then derived, based on their mathematical model, with the 

goal of reducing the mathematical operational complexity of each DBF stage. In chapter 

3, different spatial filters are designed as examples to satisfy certain requirements in the 

beam pattern of three different antenna arrays. A digital computational environment was 

programmed to corroborate the simplified DBF transmitter design presented in this thesis. 

Also, the rectangular patch antenna and two microwave circuits were simulated and 

tested to verify their performance on a 16-element rectangular PAA. Finally, the last 
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chapter presents concluding remarks about the results obtained in each stage of the PAA 

and recommendations are suggested to improve the performance and decrease the 

complexity of a PAA. 
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2 THEORETICAL BACKGROUND 
 
 

2.1  Array Processing Theory 
 
2.1.1 Frequency-wavenumber Response and Beam Patterns 
 

An array of sensors can be organized in any form in space, where the position of each 

sensor can be described by a coordinate p = ( px, py, pz ). If a plane wave signal f(t,p) is 

arriving at a particular point in space, and the position each sensor in space is different, 

the signal received by each sensor will be the same original signal with a time-delay, 

depending on the position of the sensor. The following vector can be used to describe the 

signal received by each sensor: 
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where N is the number of elements in the array and τi is a time-delay associated with the 

position of the element. Figure 1 shows an arbitrary N-element sensor array.  
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Figure 2.1 Diagram of an N-element sensor array receiving a plane wave 

signal f(t,p) coming from the far-field 
 

If the signal f(t,p) generated in space is a far-field planar wave, the equation to describe 

each signal in the sensor array reduces to: 
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where k represents the wavenumber, w is the frequency of the plane wave, t is a variable 

representing the time, and j is 1− . The wavenumber k and the position of each sensor 

p  can be represented in the following form: 

sin cos
2 sin sin , ,

cos

x

y

z

p

k p p

p

θ φ
π θ φλ

θ

   
   = =   
      

    2.3  

  

where λ represents the wavelength, and θ and φ represent the angle of arrival of the 

incoming wave. If the Fourier Transform is applied to the incoming signal in each sensor, 

the signal in the spectral domain can be represented as: 
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The resulting vector v(k) is usually described in literature as the array manifold vector 

[Van Trees, 2002] and it gives a representation of the position of each sensor with respect 

to the incidence angle of an incoming plane wave. The incoming signal can be acquired if 

each sensor is considered a discrete sample in space. The resulting signal can be 

considered a superposition of all the sensor signals: 
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If a series of weights are applied to the output of each sensor and superposition is applied 

to acquire the incoming plane wave coming from the far-field, the equation for B(k) then 

reduces to: 

( ) ( )
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  2.6  

 
B(k) is the value of the beam pattern at a particular position in space. Frequently, in 

Antenna Theory, it is easier to visualize the pattern in terms of angle of incidence 

between the source of the signal and a point in space. Thus, the following change of 

variables can be made to show B(k) in terms of the angle of incidence: 

 ( ) ( ) [ ]2 sin cos sin sin cos
, .T

k
B B k π θ φ θ φ θλ

θ φ
=

=   2.7  

 

 If the geometry of the sensors can be described using a mathematical equation for 

the variables of the position, the array manifold vector equation can be simplified. In this 

thesis, two antenna array geometries will be presented: a uniform linear antenna array and 

a uniform rectangular antenna array. For a uniform linear array, which is a linear array 

were the space between elements of the array is the same throughout the array, the 

position of each sensor can be described in the following form: 
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where ∆z is the spacing between the sensors in the z axis. For a uniform rectangular array, 

the position of each sensor can be described in the following form: 
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where L and M are the number of elements in the x and y axis respectively and ∆x and ∆y 

are the spacing between the sensors in the x and y axis respectively. The number of 

elements N in a rectangular array is given by L*M. The mathematical description of the 

position of each sensor in the previous arrays has been developed to satisfy center of 

gravity at the origin: 
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The inter-element spacing in each axis of any array is adjusted to avoid a 

phenomenon known in antenna literature as grating lobe, which is the aliasing of a 

wavenumber occurring from the under sampling in space of a time-space signal. All the 



 
 
 

 
 

 25 

arrays described in this work will have inter-element spacing of 0.5λ in each axis, where 

λ is the wavelength of the carrier wave received by the array.   

 
 
2.1.2 Delay-and-Sum Beamformer 
 
 

If each sensor in the array receives a signal f(t) with a particular time-delay τ, 

recovery of the signal can be performed by means of linear processing. In this case, the 

filter for each channel n would be a time-delay τn associated with the channel. After all 

the space samples are aligned in time, they can be added to recover f(t). It is important to 

consider that a scaling by 1/N has to be applied to the resulting signal since adding the 

output of each processed channel would give a result of N*f(t). Figure 2 shows a system 

illustration of the Delay-and-Sum Beamformer. 

 
Figure 2.2 Diagram of a Delay-and-Sum Beamformer 
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2.1.3 Narrowband Beamformer 
 
 

A general characterization of the signal f(t,p), where a bandpass signal is used to 

transmit information, can be described in the following form: 

( ){ }( , ) 2 Re , , 0, , 1,cjw t
n nf t f t e n N= = −� …p p      2.11  

 
where wc is the carrier frequency and ( ), nf t� p  is the complex envelope [Van Trees]. If 

the signal f(t,p) is a plane-wave, the equation (2.11) can be simplified to: 

( ) ( ){ }( , ) 2 Re , 0, , 1,c njw t
n nf t f t e n Nττ −= − = −� …p   2.12  

 
where τn is given by: 

.
T

n
n

c

k p

w
τ ⋅=      2.13  

 
An important parameter in the design of an array ismaxT∆ , which is the maximum 

travel time of a plane wave between any two elements of the array. If the mathematical 

description of the position of the elements of the array satisfies (2.10) then: 

, 0, , 1.n maxT n Nτ ≤ ∆ = −…    2.14  
 
A signal f(t,p), which has a complex envelope ( ), nf t� p  with a bandwidth Bs, received by 

an array with a  maxT∆  is defined as a narrowband signal if the following condition is 

satisfied: 

1.max sT B∆ ⋅ �      2.15  
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When the signal f(t,p) is considered a narrowband signal, a suitable and convenient 

approximation can be used on the complex envelope: 

( ) ( ) , 0, , 1.nf t f t n Nτ− = −� �� …   2.16  

 
This approximation modifies the mathematical representation of f(t,p) into: 
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From this simplification, it can be seen that the delay lines associated with τn can be 

replaced with a phase shift c njwe τ−
. An array which uses phase shifts to approximate the 

delay lines to process a narrowband space-time signal is known as a phased array. For a 

uniform array, a progressive phase shift can be used to steer the main response axis 

(MRA), which is the direction where the beam pattern has its maximum absolute value, 

to any desired value. If additional requirements are imposed on the beam pattern of an 

array, such as a particular sidelobe level, minimum half-power beamwidth, and null 

placement, the amplitude of each sensor in the array needs to be adjusted. This leads to a 

beamformer configuration where the resulting signal becomes a linear combination of the 

received or transmitted signals and each sensor signal has a complex weight w*
n, 

described in (2.6), which controls the MRA and the beam pattern characteristics of the 

array. A diagram of the narrowband beamformer model is shown in Figure 2.3. 
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Figure 2.3 Diagram of Narrowband Beamformer 

 

 

2.1.4 Spatial Filter Design 
 
 

The beam pattern response of a sensor array is the inner product of the array 

manifold vector and the weights associated with each sensor. If the structure of the beam 

pattern response calculation is analyzed, it can be seen that the beam pattern response is a 

spatial filter. A spatial filter discriminates between planes waves coming from different 

locations in space, where the angle of incidence of the plane wave is related to a spatial 

frequency. Thus, for a particular sensor geometrical distribution, the weight vector 

characterizes the radiation pattern response of the sensor array. Such characterization is 

made by defining design constraints such as beamwidth of the MRA, sidelobe level 
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behavior, null pattern placement, null-to-null beamwidth, etc. the same way a filter in the 

time domain characterizes a frequency response. For example, the beamwidth of the 

MRA defines the half-power angular difference near the maximum radiation intensity 

point in the beam pattern, similar to the passband frequency difference found in time 

series analysis. As for sidelobe level behavior, the sidelobe level defines the power level 

of the sidelobes with respect to the main lobe, analogous to the passband to stopband 

power difference found in the spectral representation of a time series. Although filter 

design is important in the radation pattern response of an antenna array, array geometry 

may impose limitations on some desirable beam pattern response characteristics. 

Analogous to choosing an appropriate sampling frequency in the time domain, spatial 

sampling selection, which is determined by the geometrical distribution and size of the 

array, determines some beam pattern response characteristics. 

 

The process of obtaining a geometrical distribution and the coefficients for the 

weight vector for a beam pattern response is called beam pattern synthesis. In Antenna 

Theory, the radiation pattern response is constructed based on a realization of an 

analytical or desired model by an antenna model [Balanis, 1997]. The classification of 

beam pattern synthesis techniques are based on three beam pattern design constraints: 

null placement, beam shaping, and beamwidth-sidelobe behavior. Null placement 

synthesis consists of determining the coefficients of the weight vector based on the 

position of nulls in the radiation pattern response of the sensor array. A popular null 
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placement synthesis technique is the Schelkunoff polynomial method. This method 

derives the weight coefficients of the array based on the root placement of a complex 

polynomial, which is derived form the beam pattern response equation (Eq. 2.6). In beam 

shaping synthesis, the weight vector is calculated based on a specified beam pattern 

response sampled at discrete wavenumber values. Classic antenna pattern synthesis 

methods included in this category are the Woodward-Lawson method, the Fourier 

Transform method and the z-transform method.  

 

The last category of beam pattern synthesis based on spatial response design 

constraints is the beamwidth-sidelobe behavior. In these techniques, the weight vector 

coefficients are determined based on the desired behavior of the MRA’s beamwidth and 

sidelobe level. A common synthesis technique used in the spectral analysis of time series 

in signal processing is the Spectral Weighting technique [Van Trees, 2002]. This 

technique defines a set of weights based on a windowing function, which simplifies the 

weight calculation procedure. The Uniform window, Cosine window, Hamming window, 

Hann window, etc. are just a few of the windowing functions available to control the 

response of a sensor array. Each window function provides a constant weight vector 

which defines a fixed beam pattern response. Through performance analysis of each 

windowing function, a tradeoff can be found between minimizing the MRA’s beamwidth, 

reducing the sidelobe level, and increasing the directivity of the radiation pattern 

response. Other beamwidth-sidelobe behavior methods include Taylor distrimution 
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method, Villanueava distribution and Dolph-Chevyshev method where the beamwidth of 

the radiation pattern’s MRA is minimized for a particular sidelobe level value. Beam 

pattern synthesis can also be obtained through adaptive array processing. By changing the 

weights of each sensor adaptively, design goals such as minimizing the noise variance of 

the signal, minimizing the square error between the beamformer output and a reference 

signal, or maximize the signal-to-noise ratio of the receiver [Haynes] can be satisfied. 

Antennas using adaptive beamforming are, often referred as, “Smart Antennas” in 

communication literature. 

 

Another method of synthesizing a beam pattern is beamspace processing. In this 

approach, a set of beams created at an introductory step are processed instead of the 

signals arriving at each sensor element [Van Trees, 2002]. The latter method of pattern 

synthesis is known as “element-space processing.” Beamspace processing is typically 

used in applications where the number of elements in the array is very large and the 

received signals need to be reduced to simplify further processing. Three types of 

beamspace processing methods are full-dimension beamspace, reduced-dimension 

beamspace and multiple-beam beamspace. In full-dimension beamspace, the signals of 

the N sensor in the array are processed to deliver an output of N orthogonal beams. In the 

case of reduced-dimension beamspace, only a set of beams covering a particular 

wavenumber region are calculated. As for multiple-beam beamspace, multiple beams are 

created to span specific regions of the space. An example of a beamspace beamformer is 
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the FFT beamformer (often called the conventional beamformer). In FFT beamforming, 

the Discrete Fourier Transform is used to process samples separated in distance to 

produce multiple beams separated in the space domain. All the generated beams in the 

FFT beamformer are orthogonal, fixed and equally spaced. The FFT beamformer 

depends largely on the spatial resolution of the array antenna. This beamformer performs 

a “spatial FFT” [Haynes] where input samples are separated by space and outputs 

samples are separated by direction-of-arrival. One disadvantage of FFT beamformers is 

its fixed beam performance. Alliot [Alliot, 2000] comments on beamforming 

interpolation techniques for FFT beamformers. Beamforming interpolation consists of the 

creation of a beam by adding of various beams generated by the FFT beamformer 

multiplied by real weights corresponding to a particular coordinate. The combination of 

multiple beam radiation pattern and versatility in direction of observation are the main 

advantages of beamforming interpolation. 

 

In spatial filter design, alternative filter structures have been presented to solve the 

problem of narrow bandwidth in phased array antennas (PAA), such as the use of a filter-

and-sum beamformer [Kajala, 1999, 2001]. The filter-and-sum beamforming operates on 

the amplitude and the phase of the digitized antenna element current signal. Each antenna 

element has its filter and the output of each filter is added in a summing network to 

acquire the desired spatial beam pattern. Various methods have been proposed to 

implement filter-and-sum beamformers. For example, Kajala implements spatial filtering 
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through an optimized polynomial FIR filter. The polynomial FIR filters’s coefficients are 

chosen to minimize the mean square error (MSE) between the desired and the actual 

response of the beamformer.  

 
 

2.2 Phased Array Antenna Implementations 
 
 

The PAA is composed of a group of similar antennas, each with its power feed 

network, phase shifter, variable amplifiers and a summing network which gives a 

resulting signal representing a beam on an expected location. Figure 2.4 shows a diagram 

of the transmitter and receiver stages of a phased array antenna. The complex weight w*
n 

associated with each antenna element is implemented by means of a variable amplifier 

and a phase shifter. Analog components such as Low Noise Amplifiers (LNAs) and 

Power Amplifiers (PA) found in the RF stages are needed in order to condition the signal 

to be transmitted or received by the antenna array. 
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Figure 2.4 Diagram of PAA using an RF Beamformer 

 

An alternative approach for implementing a beamformer is by means of 

quadrature modulation theory. In this approach, a signal is decomposed into its 

quadrature components which are processed separately in the baseband region using the 

complex weights w*
n to achieve a desired beam pattern response. One way to implement 

quadrature modulation/demodulation is through digital beamforming. Digital 

beamforming (DBF) consists of the spatial filtering of a signal where the phase shifting, 

amplitude scaling, and adding are implemented digitally. Analog-to-Digital Converters 

(ADCs) and the Digital-to-Analog Converters (DACs) are required to make the necessary 

transformations of the signal between the IF analog domain and the digital domain. 

Figure 2.5 shows the architecture of a PAA using a DBF. A design example of a DBF 

was shown by Chang [Chang, 1988]. Chang created a DBF for a circularly polarized 
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phased array antenna with resonant frequency of 2.95 GHz. The amplitude and phase of 

the current in the elements of the array were controlled by a weight vector applied to the 

In-phase (IC) and Quadrature (QC) channel of the element. The amplitude scaling, phase 

shifting and summing operation were performed digitally. 

 
Figure 2.5 Diagram of a PAA using a Digital Beamformer 

 
 
 
 

2.3 DBF Receiver 
 

2.3.1 Mathematical Model of DBF Receiver 
 

The incident plane wave on an antenna array’s receiver can be modeled by the 

following equation: 
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( )( )( , ) ( ) ( ) cos , 0, , 1n n n RF nf t c t x t w t n Nτ τ= = − − = −…p   

     ( )( )cos ,RF nx t w t θ≈ −      2.18  

 

where θn is given by: 

.n RF nwθ τ=       2.19  
 

After the incident plane wave has been received by the antennas of the PAA, the 

incoming signal arrives at the RF Modulation Stage. This stage is often required because 

the incoming signal’s frequency components are high compared to the speed of the ADCs 

and analog signal modulation is needed to shift the signal’s frequency components into a 

lower frequency band. If the RF Modulation Stage has a Local Oscillator (LO) with a 

frequency of wLO, then the signal modulation operation can be described in the following 

form: 

( ) ( )' ( ) ( ) cos cos .
n RF n LOg t x t w t w tθ= −    2.20  

 

Using trigonometric identities, the signal g’n(t) can be represented as a sum of two 

cosines: 

( ) ( )' ( )
( ) cos cos ,

2n IF n IM n

x t
g t w t w tθ θ = − + −    2.21  

where: 

, ,IF RF LO IM RF LOw w w w w w− +� �    2.22  
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If a passband filter with gain G=2 is used centered at the signal’s component with wIF as 

its center frequency, the output signal obtained is: 

( )( ) ( ) cos .n IF ng t x t w t θ= −     2.23  

 

The angular displacement, which represents the time delay of the incoming plane 

wave between the antennas of the array, is left unchanged in a modulation operation. 

After the incoming signal in an antenna channel has been modulated into an intermediate 

frequency and the signal higher frequency is at least half as small as the sampling 

frequency, the ADCs with a sampling rate TS can be used to transform the signal into a 

digital representation: 

[ ][ ] ( ) [ ]cos ,
sn n t mT s IF s ng m g t x mT w mT θ== = −  2.24  

 
To simplify the mathematical representation of the signal gn[m] , the constant TS in the 

signal x[mTs]  will be omitted and the variable ωIF = wIFTS will be used to distinguish the 

cosine component in the digital signal representation from its analog representation. After 

making such simplifications, the digital signal observed in each DBF receiver channel n 

of the PAA is: 

[ ][ ] [ ]cos .n IF ng m x m mω θ= −    2.25  

 
It is important to observe that the digital representation of the DBF receiver signal 

contains the phase delay θn associated with the time delay found in each n element of the 

PAA. 
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After the antenna signal has been successfully sampled into the digital domain, 

the signal needs to be processed by the first stage of the DBF receiver, which is the 

Digital Down-Converter (DDC). The Digital Down-Conversion is performed by 

multiplying the digital signal with a sinusoidal signal and a 90º phase-shifted version of 

the sinusoidal signal, both generated by digital local oscillator. Both mathematical 

operations can be represented in the following form: 

[ ] [ ]' [ ] cos
n n DLOi m g m mω=   

[ ] [ ][ ]cos cos ,IF n DLOx m m mω θ ω= −    2.26  

[ ] [ ]' [ ] sin
n n DLOq m g m mω=   

  [ ] [ ][ ]cos sin .IF n DLOx m m mω θ ω= −    2.27  

 
If the digital local oscillator frequency ωDLO = ωIF, the digital signals i’ n[m]  and q’n[m]  

for each DBF receiver channel can be represented in the following form: 

[ ] [ ] [ ]( )' [ ]
cos 2 cos ,

2n IF n

x m
i m mω θ= +    2.28  

[ ] [ ] [ ]( )' [ ]
sin 2 sin .

2n IF n

x m
q m mω θ= +     2.29  

 

The final step in the DDC stage of the DBF receiver is the filtering of the 

frequency component centered at the digital frequency 2ωIF for both digital signals 

(image frequencies). If a lowpass filter with a gain G=2 is used to process the signals 

in’[m]  and qn’[m] , the output signals found in each filter are: 

[ ] [ ][ ]cosn ni m x m θ=      2.30  

[ ] [ ][ ]sinn nq m x m θ=      2.31  



 
 
 

 
 

 39 

 
It can be seen that the DDC stage of the DBF receiver transforms a digital bandpass 

signal with the time-delay τn into two digital baseband signals where the phase 

information of the bandpass signal is represented in the amplitude of both baseband 

signals. The previous transformation of the signal into its quadrature components is 

necessary in order to apply the next filtering phase as a double-input, double-output 

lowpass filter operation, which is equivalent to a single-input, single-output bandpass 

filter operation [Franks, 1969]. Figure 2.6 shows a block diagram of the RF modulator 

and the DDC stage of each antenna channel in the PAA with the mathematical equations 

derived previously. 
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Figure 2.6 Block diagram (including equations) of RF Modulator and DDC 

 

The second stage of the DBF receiver is the Complex Weight Multiplication 

(CWM) stage. In this stage, the complex weight w*n associated with each antenna 

channel in the PAA is multiplied by the digital baseband signals in[m]  and qn[m] . To 

represent this complex multiplication operation, a signal bn[m]  will be defined which is 

composed of the signals in[m]  and qn[m] : 

[ ] [ ]
[ ] [ ]( )

[ ]

[ ] cos sin

n n n

n n

b m i m jq m

x m jθ θ

= −

= −  

      [ ] .njx m e θ−=      2.32 
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It can be seen that the defined signal bn[m]  is basically the signal x[m] multiplied by a 

complex constant with an associated phase θn. To recover x[m], the complex signal bn[m]  

has to be multiplied by the complex conjugate of the complex constant. In other words, if 

the complex weight * nj
nw e θ= , then the product of the complex signal bn[m]  and the 

complex weight is equal to the signal x[m]: 

      
[ ] [ ]

[ ]
*

n n

n n n

j j

y m w b m

e x m eθ θ−

=

=
 

      [ ].x m=        2.33 

 

It is important to emphasize that the application of the previous w*n assures phase 

coherency only with signals coming from space with a phase delay θn associated to its 

carrier signal. If the incoming signal is coming from another direction in space, the 

multiplication of the complex weight and the complex coefficient will not equal 1, thus 

making yn[m] ≠  x[m]. 

 

The CWM stage of the DBF receiver (shown in Figure 3.7) is applied by means of 

multiplication and addition of real-value variables. To make such operations possible, it 

is necessary to express the complex weight w*n in rectangular form: 

{ } { }* Re * Im * .n n nw w j w= +     2.34 

 
Once w*n has been represented in rectangular form, the resulting signal yn[m]  can be 

obtained by applying the following mathematical operations: 
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[ ] [ ]
{ } { }( ) [ ] [ ]( )

*

Re * Im *

n n n

n n n n

y m w b m

w j w i m jq m

=

= + −  

 [ ] [ ],n nr m js m= +       2.35 

where: 

[ ] [ ] { } [ ]( ) { }( )Re * Im * ,n n n n nr m i m w q m w= + − −   2.36 

[ ] [ ] { } [ ]( ) { }( )Im * Re * .n n n n ns m i m w q m w= + −    2.37 

 

 
Figure 2.7 Block diagram of CWM phase 

 

The last stage of the DBF receiver involves the addition of all the resulting signals yn[m] : 

[ ] [ ] [ ] [ ]
1 1 1

0 0 0

1 1 1N N N

n n n
n n n

y m y m r m j s m
N N N

− − −

= = =

= = +∑ ∑ ∑  

           [ ] [ ]r m js m= +       2.38 
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An amplitude scaling by a factor of N is needed to recover x[m] without gain. If desired, 

the amplitude scaling factor can be included in the complex weight coefficient and 

omitted in the last phase of the DBF receiver. The signals r[m]  and s[m], which are the 

output of the DBF receiver, are the quadrature components of the resulting signal y[m]. 

Post-processing of this quadrature signals, which is done by other components of the 

system where the PAA is used, is needed for proper retrieval and analysis of the 

information signal x[m]. 

 

2.3.2 DBF Receiver Design 
 

The physical design of a DBF Receiver is based on the mathematical model 

described in the previous section. The design of the DBF Receiver considers how the 

mathematical model can be implemented using real components and takes into account 

limitations found in the physical implementation of the PAA system. The design of the 

DBF Receiver can be divided into four main components: RF Modulation Stage, Digital-

Down Conversion stage, Complex Weight Multiplication stage, and the Summation 

stage. It is important to remember that the RF Modulation Stage is not implemented 

digitally (technically, it is not part of the Digital Beamformer), but it is essential in the 

implementation of the PAA and thus, its design will be also explained in this section. 

 

The first stage in the implementation of an antenna channel in a PAA system is 

the RF Modulation Stage (also called RF Translator [Haynes]). The RF Modulator is 
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implemented using an RF Mixer. RF Mixers are available as Integrated Circuits (ICs) 

component packages and can be bought in commercial microwave components stores. RF 

Mixers need to receive sufficient signal power in its input ports in order to work properly. 

In PAA systems, the power of the signal found at the output port of each antenna in the 

array is very low. Since the first stage of a receiver has a major effect on the noise 

performance of the system [Pozar, 1998], it is necessary to include Low Noise 

Amplifiers at the RF Modulator Stage. The LNAs help to reduce the Noise Figure in a 

microwave circuit and increase the Signal-to-Noise Ratio (SNR) of the PAA system. 

Therefore, the RF Modulator Stage of each antenna channel has one LNA and one RF 

mixer. Also, the lines that connect each component of this stage need to be designed to 

work in a 50Ω system at the desired RF carrier frequency of the antenna array. 

 

An intermediate stage found in the antenna receiver channel of a PAA 

implemented using DBF is the ADC. The ADC transforms the analog signal found in the 

output of the RF Translator into a digital representation for further processing by the 

DBF. ADCs implement the operations of sampling, quantizing, and encoding of the 

analog signal [Garret, 1981]. Different ADC techniques can be used to perform the 

signal acquisition such as successive-approximation conversion technique, sigma-delta 

conversion technique, dual-slope conversion technique, voltage-comparison tracking 

conversion technique and charge balance conversion technique. Two important ADC 

parameters are the bit resolution and the sampling frequency per channel. The bit 
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resolution parameter determines the quantization error found in the analog-to-digital 

transformation. This quantization error can be represented as noise power, which affects 

the SNR of the antenna channel’s signal. The sampling rate parameter determines the 

analog frequency band which can be represented in the digital domain, which extends 

from DC to the folding frequency (one half of the sampling frequency). These two 

parameters are set depending on the desired frequency of operation and SNR level of the 

PAA design. ADCs are available as IC component packages. In the implementation of a 

PAA, it is important to use a single clock to digitize all the channels in the antenna array 

to assure proper synchronization. 

 

The first stage of the DBF Receiver (the second stage in antenna channel) is the 

Digital-Down Conversion Stage. The DDC receives an incoming digital IF signal 

(usually from an ADC), and modulates the signal into baseband and produces an in-phase 

signal and a quadrature signal as outputs. The design of the DDC can be implemented 

using FPGAs or dedicated ICs. The quadrature modulation is performed by the 

multiplication of the IF signal with a digital oscillator, as mentioned in the previous 

section. The implementation of the digital oscillator is accomplished using a direct digital 

synthesizer (DDS). Direct digital synthesis is a technique by which a sinusoidal signal is 

created by the generation of digital numbers which controls the input of a sinusoidal 

look-up table [Manassewitsch, 1980]. The digital numbers are generated by a phase 

accumulator, which receives a binary instruction representing a specific frequency of 
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oscillation. The frequency of this digital oscillator is proportional to the phase increment 

created in the phase accumulator. Since the signal is produced by a look-up table, phase 

synchronization between the digital local oscillator and its 90º phase-shifted version can 

be achieved easier than an equivalent analog implementation counterpart. A single DDS 

must be used for all the channels in the DBF receiver in order to assure proper 

synchronization between the signals of each antenna channel. After the in-phase and 

quadrature signals have been produced, a lowpass filter is used to remove image 

frequency components located on both signals. 

 

Some DDC designs may also include a multirate filter component. The multirate 

filter is a filter that alters the data rates [Harris, 1987]. In PAA applications, the received 

RF signals are centered at a high carrier frequency, which imposes the need for fast 

ADCs and DDCs with high sample rate frequencies. On the other hand, cost limitations 

and simplicity may motivate the need to use Digital Signal Processors (DSPs) working at 

low sample rate frequencies in the final stages of the DBF. The multirate filter, thus, 

allows the interconnection between fast DDCs and DSPs operating at different sample 

rate frequencies. In the case of a DBF receiver, a decimation filter is used to down-

sample the output signal of the DDC. A typical decimation filter implementation is 

composed of a lowpass filtering stage and a subsampling stage. The design of both stages 

is related to the decrease ratio between the high input sample rate frequency and the low 

output sample rate frequency. An interesting approach to simplifying the DBF receiver 
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design is the use of one single lowpass filter per antenna channel in the implementation 

of a DDC. The lowpass filter would accomplish two important tasks: removing image 

frequencies after modulation (DDC standard stage) and removing higher frequency 

components before subsampling (multirate filter stage).  

 

If a multirate filter system is needed in the DBF Receiver, such a filter can be 

implemented using a Cascaded Integrator-Comb (CIC) filter. The CIC is a linear phase 

FIR filter implemented without the use of multiplication operations operating as a 

multirate filter to connect two signal processing system components operating at different 

sampling frequencies. Its name is derived from its structure, which consists of an 

integrator section operating at a high sampling rate combined with a comb section 

operating at a low sampling rate [Hogenauer, 1981]. CIC filters can be used to implement 

decimation and interpolation filters. Figure 2.8 shows the architecture of a CIC 

decimation filter. The CIC filter design parameters are the rate change factor of the 

multirate filter (R), the number of tap delays in each comb stage (M), and the number of 

stages in the integrator and comb section of the filter (N). The transfer function of the 

CIC filter referenced to the high sampling rate is a result of the multiplication of the 

transfer function of the integrator section and transfer function of the comb section: 
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Figure 2.8 Architecture of CIC Decimation Filter 

 

The power frequency response (shown graphically in Figure 2.9) of the CIC filter relative 

to the low sampling rate is given by the following equation: 
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The power response of the CIC filter (decimator and interpolator) contains nulls at 

multiples of f = 1/M (relative to the low sampling rate frequency). Since the 

imaging/aliasing bands in multirate filters appear at multiples of the rate change factor, 

the CIC filter can be designed to suppress these bands. Information about passband 

attenuation, stopband attenuation, aliasing attenuation (for CIC decimators), and imaging 

attenuation (for CIC interpolators) as a function of the CIC filter parameters can be found 

in Hogenauer’s journal paper [Hogenauer, 1981] on CIC filters. 

 

 
Figure 2.9 Power Response of a CIC Filter with the following parameters: N 

= 8, M = 1, R = 10 
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Each comb stage of the CIC filter is a subtraction operation of the current sample 

by a sample with an M delay. In the case of the integrator stage, each integrator has a 

unity feedback coefficient. When CIC decimation filters are employed, register overflow 

occurs in all integrator stages. To avoid consequences in the output of the filter, two 

requirements must be fulfilled: 1) the implementation of filter arithmetic must be based 

on a number system which allows “wrap-around” between the most positive and most 

negative number (like the two’s complement arithmetic) and 2) the range of the number 

system must be greater than or equal to the maximum magnitude expected at the output 

of the filter [Hogenauer, 1981]. Figure 2.10 shows the design of the DDC with the 

multirate filter (CIC implementation). An additional scale block is included at the output 

of the CIC filter to increase the gain of the signal by a factor of 2. Since digital circuits 

are implemented using binary arithmetic, the scale block by a factor of 2 can be easily 

implemented using a “shift right” operation on the sample’s binary point. 
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Figure 2.10 Design of a DDC for a DBF Receiver 

 

The second stage in the DBF receiver (third stage in antenna channel) is the 

CWM stage. The CWM receives the in-phase baseband signal, the quadrature baseband 

signal, the magnitude of the complex weight and the phase of the complex weight as 

inputs. Figure 2.11 shows the design of the CWM phase. The CWM phase can be 

implemented using 7 multiplication operations and 2 addition operations per channel. The 

first 3 multiplication operations are the product of the complex weight’s amplitude with 

the sine, the negative sine, and the cosine of the complex weight’s phase which gives the 

real, imaginary, and negative imaginary part of the complex weight respectively. The 

other 4 multiplication operations are the product of the real and imaginary parts of the 

complex weight with the in-phase and quadrature baseband signals. Finally, the 2 

addition operations add the resulting in-phase baseband result and the resulting 
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quadrature baseband result in each channel. Also, 2 negation operators are needed to 

calculate the negative value of the quadrature baseband signal and the negative sine 

function and a sine look-up table is necessary to evaluate the sine and cosine function of 

the complex weight’s phase.  

 
Figure 2.11 Design of CWM for a DBF Receiver 

 

The CWM stage can be implemented using an FPGA or a DSP. The advantage of 

implementing the CWM in one of the previous devices mentioned strives in the tradeoff 

between speed of algorithm and cost of implementation. If a DSP is used, a single 

Multiply-accumulate (MAC) unit can be used to perform the addition and multiplication 

operations and a single look-up table can be used to evaluate the sine, negative sine and 
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cosine of the complex weight’s phase for all the antenna channels. If an FPGA is used, a 

parallel approach can be pursue, where each DBF channel has its 7 multipliers, 2 adders, 

and 2 sine look-up tables to process each in-phase and quadrature baseband signal. Also, 

multiple DSPs can be used to pursue a parallel approach implementation. 

 

The final stage in the DBF Receiver is the Summation Stage. In this stage, the in-

phase baseband signals and the quadrature baseband signals of all the antenna channels 

are added to give a final in-phase baseband signal and quadrature baseband signal as 

ouputs of the DBF receiver. The number of addition operations in this stage depends on 

the number of antenna channels in the PAA. The two resulting signals can be used in 

subsequent stages to process and analyze the data received in the information signal by 

the PAA. 

 

2.4 DBF Transmitter 
 

2.4.1 Mathematical Model of DBF Transmitter 
 

An information signal x[m] represents data which needs to be transmitted into a 

particular region in space using a PAA. To achieve a specific MRA, the phase delay θn 

between each antenna n in the array (which contains N antenna elements) must be 

precisely controlled. The relationship between a complex weight w*n and the phase delay 

θn of each antenna are presented by the following equation: 
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( ) ( )* cos sin , 0,1,..., 1.nj
n n nw e j n Nθ θ θ= = + = −   2.42 

 
The complex weight’s magnitude An for each antenna channel can have a particular value 

(different from one) if different beam pattern characteristics (change sidelobe level 

behavior, increase beamwidth, null placement, etc.) are required. The first stage of the 

DBF transmitter is the CWM stage, which consists in the multiplication of the 

information signal with the real part and the imaginary part of the complex weight. Two 

resulting signals in[m]  and qn[m]  are obtained for each antenna channel: 

[ ] { }[ ]Re * ,n ni m x m w=      2.43  

[ ] { }[ ] Im * ,n nq m x m w=      2.44  

where: 

{ } [ ] { } [ ]Re * cos , Im * sin .n n n n n nw A w Aθ θ= =   2.45  

 

The second stage of the DBF transmitter is the Digital-Up Conversion stage. In 

this stage, the signals in[m]  and qn[m]  are multiplied by a sinusoidal signal and its 90º 

phase-shifted version generated by a digital local oscillator with a sinosiodal frequency 

ωIF. The output of the product the signals in[m]  and qn[m]  and the digital local oscillator 

are: 

[ ] [ ] [ ] [ ][ ] cos [ ]cos cos ,n n IF n n IFfi m i m m A x m mω θ ω= = ⋅  2.46  

[ ] [ ] [ ] [ ] [ ]sin [ ]sin sin .n n IF n n IFfq m i m m A x m mω θ ω= = ⋅  2.47  

 

Using trigonometric identities, the signals fin[m]  and fqn[m]  can be represented in the 

following form: 
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[ ] [ ]( )[ ]
[ ] cos cos ,

2
n

n IF n IF n

A x m
fi m m mω θ ω θ⋅= + + −  2.48  

[ ] [ ] [ ]( )[ ]
cos cos .

2
n

n IF n IF n

A x m
fq m m mω θ ω θ⋅= − − +  2.49  

 
Then, the signals fin[m]  and fqn[m]  are added in order to generate a bandpass signal f[m]  

with the desired phase delay θn: 

[ ] [ ][ ] [ ] [ ]cos .n n n n IF nf m fi m fq m A x m mω θ= + = ⋅ −   2.50  

 

The last stage in the DBF transmitter consists of the transformation of the digital 

signal into the analog domain. If a Digital-to-Analog Converter (DAC) with a sampling 

frequency of fs is used to transform the digital signal, the output of the DAC can be 

represented in the following form: 

( ) [ ] ( ) ( )cos .
sn m tf n s IF s nf t f m A x tf f tω θ== = ⋅ −   2.51  

 
To simplify the mathematical representation of the signal fn(t), the constant fS in the 

signal x(tfs) will be omitted and the variable wIF = ωIFfS will be used to distinguish the 

cosine component in the analog domain from its digital representation. After making such 

simplifications, the analog signal observed at the output of each DBF transmitter n of the 

PAA is: 

( ) ( ) ( )cos .n n IF nf t A x t w t θ= ⋅ −     2.52  

 
From the previous equation, it can be seen that the output of the DBF transmitter contains 

the phase delay θn and the magnitude An, necessary to construct the desired beam pattern 
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for the PAA. Figure 2.12 shows a block diagram of the DBF transmitter’s mathematical 

model (CWM and Digital-Up Conversion stages). 

 
Figure 2.12 Block Diagram (with equations) of CWM and DUC for a DBF 

Transmitter 
 

Often, engineering applications may emerge where the speed of DACs and cost 

reduction in DBF transmitter’s design may limit the operating frequency of the carrier 

wave at the output of the DBF transmitter. If fn(t) needs to be transmitted at a higher 

frequency carrier, it is necessary to use an RF Modulator in the output of the DBF 

transmitter of the antenna channel. The RF Modulator Stage translates the output signal 

of the DBF transmitter into a higher frequency region, making the signal suitable for an 

antenna transmitting in the microwave frequency range. This operation can be 

represented by the product of the microwave local oscillator with frequency wLO and the 

output of the DBF transmitter in each antenna channel: 

( ) ( )' ( ) ( ) cos cos .
n n IF n LOc t A x t w t w tθ= ⋅ −    2.53  
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Using trigonometric identities, the signal c’n(t) can be represented as a sum of two 

cosines: 

( ) ( )' ( )
( ) cos cos ,

2n

n
RF n IM n

A x t
c t w t w tθ θ⋅

 = − + −    2.54  

where: 

, .RF LO IF IM LO IFw w w w w w− +� �   2.55  
 
If a passband filter with gain G=2 is centered at the signal’s component with wRF as its 

center frequency, the output signal obtained is: 

( )( ) ( ) cos .n n RF nc t A x t w t θ= ⋅ −    2.56  

 
The signal cn(t) has a higher frequency carrier than the output signal of the DBF 

transmitter and the phase delay θn and the magnitude An for each antenna channel has 

been left unchanged during the mixing operation. If the bandwidth of the signal is small 

compared to the carrier’s frequency (see Eq. 2.15), then cn(t) is considered a narrowband 

signal (in array processing theory context) and the following approximation is satisfied: 

( )
( )( )

( ) ( ) cos

( ) cos

n n RF n

n RF n

c t A x t w t

A x t w t

θ

τ

= ⋅ −

= ⋅ −

 ( )( )( ) cos ( , ),n n RF n nA x t w t f tτ τ≈ ⋅ − − = p  2.57  

 
where τn is the necessary time-delay experienced between each antenna’s irradiated plane 

wave in the PAA. Finally, the signal cn(t) satisfies the necessary conditions in order to 

direct the MRA of the beam pattern into a particular region in space and fulfill specific 

beam pattern requirements. 
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2.4.2 DBF Transmitter Design 
 

The physical design of a DBF transmitter is based on the mathematical model 

described in the previous section. The design of the DBF transmitter can be divided into 

three main stages: the CWM stage, the Digital-Up Converter (DUC) stage, and the RF 

Modulation Stage. As it was explained in section 2.3.2, the RF Modulation is not part of 

the Digital Beamformer, but it is important in the implementation of the PAA, and thus, 

its role will be discussed in the DBF transmitter. 

 

The first stage in the DBF transmitter is the CWM stage. Its function in the DBF 

transmitter is quite similar to its equivalent in the DBF receiver; it controls the amplitude 

of the in-phase and quadrature signals prior to the Digital-Up Conversion. The CWM 

stage receives the information signal as input, multiplies the signal by the real part and 

imaginary part of the complex weight assign to the channel, and outputs an in-phase 

signal and a quadrature signal. A simple CWM architecture consists of 4 multiplication 

operations per channel. The first 2 multiplication operations are used to evaluate the 

product of the complex weight’s amplitude with the sine, and the cosine of the complex 

weight’s phase which gives the real, and imaginary part of the complex weight 

respectively. The other 2 multiplication operations are used to evaluate the product of the 

real and imaginary parts of the complex weight with the information signal. In addition, 

as in the CWM for the DBF receiver, a sine look-up table is necessary to evaluate the sine 
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and cosine function of the complex weight’s phase. Figure 2.13 shows the design of the 

CWM stage for the DBF transmitter. 

 
Figure 2.13 Design of CWM for a DBF Transmitter 

 

As in the DBF receiver, the CWM stage in the DBF transmitter can be implemented 

using an FPGA or a DSP, depending on the importance given to the speed performance 

and/or the design cost. If the CWM is implemented using a DSP, a single Multiply-

accumulate (MAC) unit can be used to execute the multiplication operations and a single 

look-up table can be used to evaluate the sine, and cosine of the complex weight’s phase 

for all the antenna channels. On the other hand, an FPGA implementation gives the 

designer the flexibility for a parallel processing strategy where each multiplication 
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operation and sine/cosine table in each antenna channel has separate dedicated hardware 

to process the information signal. 

 

When the implementation of the DBF transmitter includes functions (software) or 

components (hardware) operating at different sampling frequencies, a multirate filter 

must be employed prior the DUC. For the DBF transmitter, a CIC interpolation filter 

should be used since it provides excellent results with low computational load. A 

standard interpolation filter implementation is composed of a zero-insertion phase and a 

lowpass filter phase. The design of both stages is related to the increase ratio between the 

input (low sample rate frequency) and the output (high sample rate frequency) of the 

filter. The CIC interpolation filter implements both phases using a unique design 

approach (shown in Figure 2.14). The low sampling comb stage followed by the high 

sampling integrator stage employs a lowpass linear phase FIR filter. The zero-insertion 

substage is performed between the two CIC interpolation filter stages. The nulls found at 

multiples of the frequency 1/M  (where M is the differential delay) relative to the low 

sampling rate are able to suppress the imaging bands found in the spectrum after the 

multirate filter’s zero-insertion substage. As mentioned in Section 2.3.2, the frequency 

response characteristics of the filter (passband and stopband attenuation, number of nulls, 

etc.) are determined entirely by the CIC filter parameters (number of tap delays, CIC 

filter stages, and rate change factor). 



 
 
 

 
 

 61 

 
Figure 2.14 Architecture of CIC Interpolation Filter 

 

The second stage in the DBF transmitter is the Digital-Up Conversion stage. The 

DUC receives two baseband signals (in-phase and quadrature lowpass signals) and 

modulates these signals into a single real bandpass signal. The design of the DUC can be 

implemented using FPGAs or dedicated ICs. The quadrature demodulation is performed 

by the multiplication of the in-phase and quadrature signal with the digital local oscillator 

and its 90º phase-shifted version respectively. The addition of these two resulting signals 

gives a real bandpass signal centered on the digital local oscilator’s frequency with an 

amplitude and phase offset associated with the complex weight assigned to that specific 

channel. As in the DBF receiver, a DDS is used to implement the digital local oscillator. 

The use of a single DDS in all the DBF transmitters of the antenna array is crucial in 
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guaranteeing proper synchronization between the signals of each antenna channel. Figure 

2.15 shows the design of the DUC with the multirate filter (CIC implementation). 

 
Figure 2.15 Design of DUC for a DBF Transmitter 

 

The gateway between the output of the DBF, which is a digital signal, and the 

input of the RF Translator (which is an analog signal) is the DAC. The DAC transforms a 

digital signal into an analog representation. A DAC can be considered a digitally 

controlled potentiometer that provides an output current or voltage normalized to its full-

scale [Garret, 1981]. The DAC has the same parameters as the ADC, which is its 

equivalent in a DBF receiver. In the implementation of a PAA, it is important to use a 

single clock for all the DACs to assure proper synchronization between each channel in 

the DBF transmitter. 
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The last stage in the antenna channel is the RF Translator. The RF Translator in 

the antenna’s transmitter modulates an input signal, found in an intermediate frequency 

band, to a higher frequency band where it can be use as input to the PAA’s antennas. 

Analogous to the DBF receiver’s RF Translator, the RF Translator in the DBF transmitter 

is implemented using an RF Mixer per antenna channel. Typically, the level of signal 

power found at the output of the RF Mixer might not be high enough to excite the 

antenna ports of the PAA. In a typical microwave communication system, a power 

amplifier (PA) is used after the RF Mixer to amplify the microwave signal, which is then 

radiated by each antenna of the array [Pozar, 1998]. Finally, the lines that connect each 

component in this stage need to be designed to work on a 50Ω system at the desired RF 

carrier frequency of the PAA. 
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3 SIMULATION AND IMPLEMENTATION 

RESULTS 
 
 

In this chapter, one DBF receiver and two DBF transmitter design prototypes will be 

presented. The difference between each design prototype consists in the number of 

elements and the geometrical distribution of the PAA where the DBF is used. The DBF 

receiver model shown in this chapter is designed for a 4-element linear PAA. As for DBF 

transmitters, models shown in this chapter are designed for a 16-element linear PAA and 

a 16-element 4x4 rectangular PAA. Two spatial filters will be applied to each design 

prototype and the resulting beam pattern on the simulations will be compared with the 

ideal beam pattern calculated using array processing theory. The computation of the ideal 

beam pattern is performed on MATLAB using the beam pattern equation (Eq. 2.6). All 

beam pattern plots shown in this chapter have been normalize with reference to the beam 

pattern’s maximum value. Each DBF prototype has been designed in order to be 

implemented on an FPGA device using fixed-point two’s complement arithmetic. The 

simulation of each DBF receiver and transmitter is performed on MATLAB’s Simulink 

environment using the FPGA functional blocks provided by the Xilinx’s System 

Generator Blockset. Finally, a 16-element 4x4 rectangular PAA will be constructed and a 

DBF transmitter, implemented on a commercial digital signal processing system, will be 

used to control the beam pattern of the PAA. 
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3.1 4-element linear PAA Receiver Prototype 
 

 The 4-element linear PAA Receiver Prototype consists of 4 isotropic radiating 

antennas arranged in a linear distribution and uniformly spaced by half-wavelength. The 

operating carrier frequency of the PAA is 5.85 GHz. The intermediate carrier frequency 

(where the ADCs sample the incoming signal) of the DBF is 3 MHz. The incoming 

signal’s bandwidth specification is 2 MHz. Since the Narrowband Factor (BS· ∆Tmax) is 

extremely small compared to one, a narrowband beamformer can be used to control the 

beam pattern of the array. Table 3.1 summarizes the specifications of this linear PAA 

Receiver Prototype. 

TABLE 3.1 4-element linear PAA parameters 

Parameter Value 

RF Carrier Frequency fRF = 5.85 GHz 

IF Frequency fIF = 3 MHz 

Signal Bandwidth BS = 2 MHz 

Number of Elements N = 4 

Inter-element Spacing ∆z = λc/2
 

Maximum Travel Time ∆Tmax = 3/2fRF 

Narrowband Factor BS· ∆Tmax = 0.000513 

 

 The implementation of the DBF receiver for this PAA is based on the design 

described in Section 2.3.2. Figure 3.1 shows a diagram of the DBF receiver 

implementation for a 4-element linear PAA using MATLAB’s Simulink and Xilinx’s 
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System Generator Blockset. The blue blocks on the diagram are the components of the 

DBF receiver, where each block represents FPGA code which implements the 

mathematical or logical operator/operation performed by the block. The bit resolution of 

all the multipliers in the DBF receiver is 18 bits with 16 bits of decimal precision and a 

latency of 3 clock cycles. As for the addition operators, each operation has no latency 

giving an output sample with a resolution of 14 bits with 12 bits of decimal precision. 

The two big white blocks in the figure are two stages of the DBF receiver: the DDC and 

the CWM stage. The blue blocks at the left side of the CWM are the amplitude and phase 

of the weight coefficient of that DBF receiver channel. The addition blocks at the right 

side of the CWM stage implement the summation stage of the DBF receiver. A single 

DDS Block has been used as the local digital oscillator for the 4 DBF channels. The DDS 

outputs a sinusoidal signal and its 90º phase-shifted version at a frequency of 3 MHz, 

where each sample has a sample frequency of 200 MHz. The yellow blocks at the left 

side of the figure represent the ADCs of the DBF, which sample the incoming signal at 

200 MHz per channel at a resolution of 14 bits with 12 bits of decimal precision. The 

yellow blocks at the right side of the figure represent the interface between the DBF 

Receiver output and the input of the data processing stage of the communication system 

where the PAA is used. The other white blocks in the diagram are Simulink blocks 

representing the incoming signal in each channel (left side of figure), and the post-

processing stage receiving the data processed by the DBF receiver (right side of figure).  



 
 
 

 
 

 67 

 

Figure 3.1 Diagram of a simulated 4-element DBF receiver 
 

 Figure 3.2 shows diagrams of the DDC and the CWM stage (components inside 

each stage). The DDC (Figure 3.2a) operates at the sampling frequency of the ADC, 

which is 200 MHz. Each DDC contains two CIC filters (one for each quadrature channel) 

with 8 stages (N = 8), a differential delay of 2 samples (M = 2), a rate change factor of 4 

(R = 4) and a latency of 8 clock cycles. The two other blue blocks at the right of the CIC 

filter (“force” block and “cast” block) quantizes the output of the filter to samples with a 

bit resolution of 18 bits with 16 bits of decimal precision. The CWM (Figure 3.2b) 

operates at a sampling frequency of 50 MHz, which is the sampling frequency at the 

output of the CIC decimation filter. The resolution of the weight coefficient’s amplitude 

is 16 bits with 14 bits of decimal precision and the weight coefficient’s phase is 8 bits 
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with no decimal precision. The output of the sine/cosine table in the CWM gives a bit 

resolution of 8 bits with 7 bits of decimal precision. As for the output of DBF receiver, 

each output quadrature channel has a bit resolution of 14 bits with 12 bits of decimal 

precision at a sampling frequency of 50 MHz. The measurement SNR of a typical 

anechoic chamber (used to measure the beam pattern of an antenna array) ranges around 

40 dB, thus a resolution of more than 6 bits would satisfy the bit resolution requirement 

for each signal processing operation. Table 3.2 summarizes the parameters of the DBF 

receiver’s components. 

a)  

b)  

Figure 3.2 Diagram of simulated DDC (3.2a) and CWM (3.2b) stage in DBF 
receiver 
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TABLE 3.2 Parameters of the DBF receiver’s components 

Parameter Value 

Multiplier’s bit resolution 18 bits -16 bit decimal 
precision 

Adder’s bit resolution 14 bits – 12 bit 
decimal precision 

DDS Operating Frequency fDDS = 3 MHz 

ADC Sample Frequency fADC = 200 MHz 

ADC bit resolution 14 bits – 12  bit 
decimal precision 

DDC Sample Frequency fDDC = 200 MHz 

CIC Filter Stages NCIC = 8 

CIC Differential Filter M = 2 

CIC Rate Change Factor R = 4 

CIC bit resolution 18 bits – 16 bit 
decimal precision 

CWM Sample Frequency fCWM = 50 MHz 

Weight Coefficient – Amplitude bit 
resolution 

16 bits – 14 bit 
decimal precision 

Weight Coefficient – Phase bit resolution 8 bits with no decimal 
precision 

Sine/Cosine Look-Up Table input bit 
resolution 

8 bits – 7 bit decimal 
precision 

DBF Output Signal bit resolution 14 bits – 12 bit 
decimal precision 

 

 

 The DBF receiver simulations consist in applying sinusoidal signals with the 

same intermediate carrier frequency and a variable phase shift between each signal. The 

initial phase shift between each element gives an equivalent space signal coming from 
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endfire (direction parallel to the array’s axis) at the left side of the array. As the 

simulation iterates, the relative phase difference between each element changes until it 

reaches to a phase shift equivalent to a signal coming from endfire at the right side of the 

array. Since the weight coefficients of each DBF channel is held constant, the output in-

phase and quadrature channel of the DBF receiver will experience changes on each 

signal’s amplitude as the simulation time progresses. In the post-processing phase of the 

PAA, the two quadrature output signals are use to calculate the resulting beam pattern’s 

amplitude and phase. The resulting beam pattern of each DBF receiver simulation shown 

in this chapter will be compared with the theorical beam pattern calculated using Eq. 2.6.  

 

3.1.1 First Spatial Filter Example: Beam pattern with Uniform Amplitude 
Weight Function pointing to θMRA = 45º 

 

 The first spatial filter example used in the DBF receiver for a 4-element linear 

PAA produces a beam pattern with an MRA pointing at an angular position of 45º with 

respect to endfire on the right side of the array. If the desired beam pattern of a PAA has 

only one MRA, the weigh coefficients for each channel can be derived using the 

Narrowband Beamformer model discussed in Section 2.1.3: 

( ),1
* ,

T
MRA MRA nj k p

nw e
N

θ φ ⋅=      3.1 

 
where the wavenumber k and the position vector p are: 
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For a linear array, the position vector’s px and py value is equal to zero reducing the 

calculation of the weight coefficient for each channel n into: 

( ) ( )2 cos1
* .z MRAj p

nw e
N

π θλ=       3.3 

 
Table 3.3 shows the resulting weight coefficients for a uniform 4-element linear PAA 

with an inter-element spacing of λ/2. It can be seen that the amplitude of each weight 

coefficient has a value of 1/N, which is equivalent to applying a uniform spectral window  

 

Figure 3.3 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF 
pointing at θMRA = 45º 
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into the weight coefficients. A MATLAB program named “linear_steering_array.m” 

(which is shown in Appendix A) was prepared in order to calculate the theoretical beam 

pattern, the directivity and the beamwidth of the PAA for a one-MRA spatial filter design 

for a linear PAA. Figure 3.3 shows a polar graph of the theoretical beam pattern’s 

amplitude with the weight coefficients shown in Table 3.3. Figure 3.4 shows a 

rectangular plot of the beam pattern’s amplitude in dB units. These plots show the 

maximum value of the beam pattern’s amplitude at a signal’s angle-of-arrival of 45º with 

a directivity of 6.02 dB. The beamwidth of the MRA beam for the theoretical beam 

pattern is 40.5º. 

 

Figure 3.4 Rectangular plot of Beam pattern Magnitude of a 4-element linear 
DBF pointing at θMRA = 45º 
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TABLE 3.3 First Spatial Filter Weight Coefficients – Theoretical Weights 

Element Weight 

1 w1 = 0.25 ∟169.0812º 

2 w2 = 0.25 ∟-63.6396º 

3 w3 = 0.25 ∟63.6396º 

4 w1 = 0.25 ∟-169.0812º 

 

 After the weight coefficients have been calculated, the next step in the simulation 

preparation is the transformation of these coefficients into a form suitable for the DBF 

receiver to use. A MATLAB program named “linear_DBFreceiver_parameters.m” 

(included in the Appendix A) was prepared to quantize and transform the weight 

coefficients for each channel and set all the necessary DBF receiver parameters (shown in 

Table 3.2) needed to perform the DBF receiver simulation. The total simulation time used 

for this DBF receiver was 2 x 10-5 seconds, which is equivalent to 60 periods of the 

intermediate carrier frequency. The weight coefficients obtained after quantization of the 

weight values into the fixed-point representation used in the DBF receiver simulation are 

shown in Table 3.4. The results of the DBF receiver for the first spatial filter showing the 

behavior of the in-phase output signal, quadrature output signal and the amplitude and 

phase signals obtained in the post-processing phase of the PAA are shown in Figure 3.5 

and Figure 3.6. Figure 3.5 and Figure 3.6 shows the time plots for plane wave signals 

with the angle of arrival changing from 90º to 0º and 90º to 180º, respectively, with 

respect to right-side endfire. The change in amplitude experienced in the in-phase and 

quadrature output signals as time progresses illustrates the spatial filter’s response 



 
 
 

 
 

 74 

characteristics with respect to signals with different angle-of-arrival directions. These 

characteristics can be seen clearer in the amplitude and phase plots shown at the bottom 

of each figure, which where generated in the post-processing phase (not part of the DBF 

receiver) using the in-phase and quadrature output signals. 

TABLE 3.4 First Spatial Filter Weight Coefficients – FPGA Weights 

Element Weight 

1 w1 = 0.25 ∟168.75º 

2 w2 = 0.25 ∟-63.2813º 

3 w3 = 0.25 ∟63.2813º 

4 w1 = 0.25 ∟-168.75º 

 

Figure 3.5 Time plots for plane wave signals with the angle of arrival 
changing from 90º to 0º for first spatial filter on 4-element linear DBF 
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Figure 3.6 Time plots for plane wave signals with the angle of arrival 
changing from 90º to 180º for first spatial filter on 4-element linear DBF 

  

 To analyze the data results obtained in the DBF receiver simulation, each output 

signal generated was stored in a .mat files. A MATLAB program named 

“linear_DBFreceiver_results.m” was created to retrieve the simulation results stored in 

the .mat files and condition this output data in order to achieve proper viewing of the 

results. Figure 3.7 shows a polar graph of the simulation beam pattern’s amplitude with 

the weight coefficients and Figure 3.8 shows a rectangular plot of the simulation beam 

pattern’s amplitude in dB units. These plots show the maximum value of the beam 

pattern’s amplitude at a signal’s angle-of-arrival of 44.9º with a directivity of 6.03 dB. 

The beamwidth of the MRA beam for the simulated beam pattern is 40.49º. Table 3.5 
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shows the results obtained from the DBF receiver simulation with the results obtained in 

the theoretical beam pattern calculation. 

 

Figure 3.7 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF 
Simulation pointing at θMRA = 45º 

 
TABLE 3.5 First Spatial Filter Beam pattern Characteristics for a 4-element 

linear PAA 

Beam pattern Characteristic Theoretical Result Simulation Result 

MRA angle-of-arrival ΘMRA = 45º ΘMRA = 45.09º 

Half-power Beamwidth ΘBW = 40.47º ΘBW = 40.28º 

Directivity DdB = 6.02 dB DdB = 6.03 dB 

Sidelobe level SLLdB = -11.30 dB SLLdB = -11.43 dB 
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Figure 3.8 Rectangular plot of Beam pattern Magnitude of a 4-element linear 
DBF pointing at θMRA = 45º 

 

3.1.2 Second Spatial Filter Example: Synthesized Beam pattern using 
Schlkunoff polynomial null-placement method 

 

 The second spatial filter example used in the DBF receiver for a 4-element linear 

PAA produces a beam pattern with 3 nulls positioned at different angular positions: 30º, 

60º, and 100º from right-side endfire. The calculation of the weight coefficients was 

performed using the Schelkunoff polynomial null-placement method, which can position 

a maximum of N-1 nulls for an N-element PAA. A MATLAB file named 

“linear_DBFreceiver_nullplacer.m” (shown in the Appendix A) was created to calculate 

the weight coefficients for a linear PAA with null-placement specifications on its beam 
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pattern. The calculation of the weight coefficients involves the solution of a linear system 

which contains information of the position of the nulls and null depth (which can be 

controlled by means of null multiplicity). Table 3.6 shows the resulting weight 

coefficients for the specified beam pattern parameters. In this case, the amplitude of each 

weight coefficient is different from one implying the necessity for amplitude weight 

control on a DBF receiver where null-placement characteristics are required. Figure 3.9 

shows a polar graph of the theoretical beam pattern’s amplitude with the weight 

coefficients shown in Table 3.6. Figure 3.10 shows a rectangular plot of the beam 

pattern’s amplitude in dB units, which shows nulls placed at angles-of-arrival 30.06º, 

59.94º, and 100.08º from right-side endfire with a null depth of  -60.22 dB, -56.64 dB, 

and -47.73 dB respectively. 
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Figure 3.9 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF 
with beam pattern nulls placed at 30º, 60º, and 100º 

 
TABLE 3.6 Second Spatial Filter Weight Coefficients – Theoretical Weights 

Element Weight 

1 W1 = 0.8787 ∟-17.3140º 

2 W2 = 0.7835 ∟-103.5923º 

3 W3 = 0.7835 ∟103.5923º 

4 W1 = 0.8787 ∟-17.3140º 

 

Figure 3.10 Rectangular Plot of Beam pattern Magnitude of a 4-element 
linear DBF with beam pattern nulls placed at 30º, 60º, and 100º 

 

 The MATLAB file “linear_DBFreceiver_parameters.m” was also used in the 

second filter example to transform the weight coefficient values obtained and set the DBF 
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receiver parameters. The resulting weight coefficients, which are used in the simulation 

of the DBF receiver, are shown in Table 3.7. The simulation parameters used for this 

spatial filter example are the same parameters used for the first spatial filter example. 

Figure 3.11 and Figure 3.12 shows the time plots for plane wave signals with the angle of 

arrival changing from 90º to 0º and 90º to 180º, respectively, with respect to right-side 

endfire using the weight coefficients derived in the second spatial filter example. 

 

Figure 3.11 Time plots for plane wave signals with the angle of arrival 
changing from 90º to 0º for second spatial filter on 4-element linear DBF 

 
 

TABLE 3.7 Second Spatial Filter Weight Coefficients – FPGA Weights 

Element Weight 
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1 w1 = 0.878723 ∟-16.875º 

2 w2 = 0.783447 ∟-104.0625º 

3 w3 = 0.783447 ∟104.0625º 

4 w1 = 0.878723 ∟-17.3140º 

 

  
Figure 3.12 Time plots for plane wave signals with the angle of arrival changing 

from 90º to 180º for second spatial filter on 4-element linear DBF 
 

 The MATLAB program “linear_DBFreceiver_results.m” was also used to retrieve 

and analyze the data results for the second spatial filter example. Figure 3.13 shows a 

polar graph of the simulation beam pattern’s amplitude with the second spatial filter’s 

weight coefficients and Figure 3.14 shows a rectangular plot of the simulation beam 
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pattern’s amplitude in dB units. These plots show the beam pattern nulls placed at angles-

of-arrival 29.77º, 60.26º, and 99.91º from right-side endfire with a null depth of -55.56 

dB, -56.43 dB, and -55.3 dB respectively. Table 3.8 shows the beam pattern 

characteristics of the theoretical results and the simulation results for the second spatial 

filter example. 

 

Figure 3.13 Polar Plot of Beam pattern Magnitude of a simulated 4-element 
linear DBF with beam pattern nulls placed at 30º, 60º, and 100º 

 

TABLE 3.8 Second Spatial Filter Beam pattern Characteristics for a 4-
element linear PAA 

Beam pattern Characteristic Theoretical Result Simulation Result 

Null #1: Angle of Arrival = 30º ΘN1 = 30.06º ΘN1 = 29.77º 

Null-depth of Null #1 | B(ΘN1)|dB = -60.22 dB | B(ΘN1)|dB = -55.56 dB 
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Null #2: Angle of Arrival = 60º ΘN2 = 59.94º ΘN2 = 60.26º 

Null-depth of Null #2 | B(ΘN1)|dB = -56.64 dB | B(ΘN1)|dB = -56.43 dB 

Null #3: Angle of Arrival = 100º ΘN3 = 100.08º ΘN3 = 99.91º 

Null-depth of Null #3 | B(ΘN1)|dB = -47.73 dB | B(ΘN1)|dB = -55.3 dB 

MRA angle-of-arrival ΘMRA = 128.7º ΘMRA = 128.6º 

Half-power Beamwidth ΘBW = 33.82º ΘBW = 33.86º 

Directivity DdB = 5.73 dB DdB = 5.74 dB 

Sidelobe level SLLdB = -5.95 dB SLLdB = -6.12 dB 

 

 

Figure 3.14 Rectangular Plot of Beam pattern Magnitude of a simulated 4-
element linear DBF with beam pattern nulls placed at 30º, 60º, and 100º 
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3.1.3 Beam pattern Granularity for 4-element linear PAA 
 

 Granularity is defined as “the finest realizable increment between adjacent beam 

positions. [Hatcher, 1968]” The beam pattern granularity is controlled by the bit 

resolution of the weight coefficient’s phase parameter since the MRA’s angle-of-arrival 

of a beam pattern is controlled by the relative phase found between the signals of the 

elements in the PAA. For a linear array, the beam pattern granularity can be described by 

the following mathematical equation: 

( ) ( ) ( )2 1
1 2 max ( ) max ( )
, | |

MRA MRA
MRA MRA B B

BG θ θθ θ θ θ= −     3.4 

 
Ideally, ( )2max ( )

|
MRAB θθ would be equal to θMRA2 and ( )1max ( )

|
MRAB θθ  would be equal to θMRA1 

making BG(θMRA1,θMRA2) = θMRA2 - θMRA1. For DBF receivers with low bit resolution on 

the weight coefficient’s phase parameter, one may find that the MRA’s angle-of-arrival is 

not exactly θMRA, but an angular value close to θMRA. The relationship between the MRA’s 

angle-of-arrival and the weight coefficient’s phase parameter includes sine and cosine 

functions (not linear), making the beam pattern granularity dependent on the MRAs’ 

angular values, not just its angular difference. Figure 3.15 shows a plot of the beam 

pattern granularity as a function of the MRA’s angle-of-arrival when the weight 

coefficient’s phase parameter has a bit resolution of 8 bits with no decimal precision for 

the 4-element linear PAA. The beam pattern granularity plot has been constructed using a 

constant MRA angle difference (θMRA2 - θMRA1) of one degree along each angle-of-arrival 

value. It can be seen how the granularity value is larger on beam patterns with MRAs 
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pointing towards endfire of the array (leftside and rightside) with a value of 

approximately 5 degrees from beam patterns with MRAs pointing near broadside where 

the beam pattern granularity has a value close to one degree, which is the desired MRA 

angle difference. Figure 3.16 and Figure 3.17 shows beam pattern granularity for weight 

coefficient’s phase parameters with bit resolutions of 4 bits with no decimal precision and 

16 bits with no decimal precision, respectively. In these figures, it can be seen how low 

bit resolution results into poor beam pattern granularity restricting the MRA’s 

permissible angular value whereas high bit resolution results into good beam pattern 

graunularity where the resulting MRA’s angle difference is very close the proposed 

angular difference. 

 

Figure 3.15 Beam pattern Granularity Plot for a 4-element linear DBF with 8 
bits of resolution on the weight coefficient’s phase 
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Figure 3.16 Beam pattern Granularity Plot for a 4-element linear DBF with 4 
bits of resolution on the weight coefficient’s phase 

 

Figure 3.17 Beam pattern Granularity Plot for a 4-element linear DBF with 
16 bits of resolution on the weight coefficient’s phase 
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3.2 16-element linear PAA Transmitter Prototype 
 
The 16-element linear PAA Transmitter Prototype consists of 16 isotropic radiating 

antennas arranged in a linear distribution and uniformly spaced by half-wavelength. 

Some PAA parameters, such as signal bandwidth, RF carrier frequency, IF frequency and 

inter-element spacing, are the same parameters used in the 4-element linear PAA receiver 

prototype. Since this PAA has a different number of elements, the Narrowband Factor 

needs to be recalculated to assure proper array performance based on narrowband 

beamformer model implementation. Table 3.9 shows the PAA parameters for this 16-

element linear array. In this case, the Narrowband Factor (BS· ∆Tmax) is extremely small 

compared to one thus, the narrowband beamformer can be used to control the beam 

pattern of this 16-element PAA. 

 

TABLE 3.9 16-element linear PAA parameters 

Parameter Value 

RF Carrier Frequency fRF = 5.85 GHz 

IF Frequency fIF = 3 MHz 

Signal Bandwidth BS = 2 MHz 

Number of Elements N = 16 

Inter-element Spacing ∆z = λc/2
 

Maximum Travel Time ∆Tmax = 15/2fRF 

Narrowband Factor BS· ∆Tmax = 0.0026 
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The implementation of this DBF transmitter is based on the design described in Section 

2.4.2. Figure 3.18 shows a diagram of the DBF transmitter implementation for a 16-

element linear PAA using MATLAB’s Simulink and Xilinx’s System Generator Blockset. 

Each of the sixteen white blocks in the middle of the figure arranged in 4 x 4 matrix 

represent a DBF transmitter channel. The blue blocks at the left side of each DBF 

transmitter channel are the amplitude and phase of the weight coefficient of that 

particular channel. A single DDS Block has been used as the local digital oscillator for 

the 16 DBF channels. The DDS outputs a sinusoidal signal and its 90º phase-shifted 

version at a frequency of 3 MHz, where each sample has a sample frequency of 100 MHz. 

The yellow blocks at the right side of the each DBF transmitter channel represent the 

DACs of the DBF, which transform the digital signal into the analog domain at a sample  

 

Figure 3.18 Diagram of the simulated 16-element linear DBF transmitter 
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rate of 100 MHz per channel at a resolution of 14 bits with 12 bits of decimal precision. 

At the left side of the figure, the white figures and black figures are Simulink blocks used 

to display and store as a .mat file the 16 generated IF signals. 

 

 Figure 3.19 shows diagrams of the DUC and the CWM phase components, which 

are inside of each DBF transmitter channel. The CWM (Figure 3.19a) operates at a 

sampling frequency of 10 MHz, which is the sampling frequency at the input of the CIC 

interpolation filter. The resolution of the weight coefficient’s amplitude is 16 bits with 14 

bits of decimal precision and the weight coefficient’s phase is 8 bits with no decimal 

precision. The output of the sine/cosine table in the CWM gives a bit resolution of 8 bits 

with 7 bits of decimal precision. The mathematical operations in the DBF transmitter 

channel (addition and multiplication) have the same bit resolution used in the 4-element 

linear PAA receiver. The DUC (right side of Figure 3.19b) operates at the sampling 

frequency of the DAC, which is 100 MHz. Each DUC contains two CIC filters (one for 

each quadrature channel) with 2 stages (N = 2), a differential delay of 1 samples (M = 1), 

a rate change factor of 10 (R = 10) and a latency of 2 clock cycles. The two other blue 

blocks at the right of the CIC filter (“force” block and “cast” block) quantizes the output 

of the filter to samples with a bit resolution of 18 bits with 16 bits of decimal precision. 

The two scale blocks located at the output of the register, which are part of the CIC filter 

implementation, are used to condition the output of the CIC filter and prevent overflow in 

the multiplication stages. As for the output of DBF transmitter, each output channel has a 
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bit resolution of a resolution of 14 bits at a sampling frequency of 100 MHz. Table 3.10 

summarizes the parameters of the DBF receiver’s components. 

 

a)  

b)  

Figure 3.19 Diagram of the DUC (3.19a) and CWM (3.19b) of the simulated 
DBF transmitter 

 
TABLE 3.10 Parameters of the DBF transmitter’s components 

Parameter Value 

Multiplier’s bit resolution 18 bits -16 bit decimal 
precision 

Adder’s bit resolution 14 bits – 12 bit 
decimal precision 
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DDS Operating Frequency fDDS = 3 MHz 

DAC Sample Frequency fDAC = 100 MHz 

DAC bit resolution 14 bits – 12  bit 
decimal precision 

DUC Sample Frequency fDUC = 100 MHz 

CIC Filter Stages NCIC = 2 

CIC Differential Filter M = 1 

CIC Rate Change Factor R = 10 

CIC bit resolution 18 bits – 16 bit 
decimal precision 

CWM Sample Frequency fCWM = 10 MHz 

Weight Coefficient – Amplitude bit 
resolution 

16 bits – 14 bit 
decimal precision 

Weight Coefficient – Phase bit resolution 8 bits with no decimal 
precision 

Sine/Cosine Look-Up Table input bit 
resolution 

8 bits – 7 bit decimal 
precision 

DBF Output Signal bit resolution 14 bits – 12 bit 
decimal precision 

 

 The DBF transmitter simulations consist in generating a single data signal in the 

FPGA code for all the 16 DBF transmitter channels. At the output of the DBF transmitter 

simulation, 16 IF signals are generated, each with a relative phase shit associated with the 

channel’s weight coefficients. Four signal scopes are placed at the right side of each row 

channel to display the output of each DBF channel and make a visual comparison of the 

amplitude and relative phase difference between each signal. As for a post-processing 

phase for the PAA transmitter, the 16 IF signals are stored on a .mat file as a matrix 

variable where, later, they will be analyzed to observe the beam pattern formed based on 

the spatial combination of all the output signals.  
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3.2.1 First Spatial Filter Example: Beam pattern with Taylor Amplitude 
Weight Function pointing to θMRA = 60º 

 

 The first spatial filter example used in the DBF transmitter for a 16-element linear 

PAA produces a beam pattern with an MRA pointing at an angular position of 60º 

(respect to right-side endfire) with a Taylor distribution amplitude-weighting function. As 

mentioned in Section 2.1.4, the Taylor distribution method generates the amplitude of 

weight coefficients to minimize the MRA’s beamwidth based on sidelobe level 

specifications. This beam pattern synthesis technique gives constant inner sidelobe levels 

by moving the inner zeros of the beam pattern into new locations in the unit circle and 

decaying outer sidelobes by leaving the outer zeros in the same location as the uniform 

weight distribution [Van Trees, 2002]. The method requires two design parameters: 

maximum sidelobe height and number of inner zeros in the beam pattern.  The position of 

the nulls in ψ-space for Taylor weight distribution can be described in the following 

mathematical form: 

1
2 2
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     3.5 

 
where n is the number of inner zeros in the beam pattern and A is related to the maximum 

sidelobe height R by the following equation: 
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( )cosh A Rπ =        3.6 

A MATLAB file named “linear_DBFtransmitter_taylor.m” (shown in the Appendix A) 

was created to compute the weight coefficients for the first spatial filter example of the 

linear 16-element PAA. The code uses the Schelkunoff polynomial null-placement 

method, where the null positions are given by Eq. 3.5, to calculate amplitude of the 

weight and Eq. 3.1 to calculate the phase of the weight coefficient. The Taylor 

distribution specification for this filter is a maximum sidelobe level of -30 dB with a 

number of inner zeros equal to 6. Table 3.11 shows the resulting weight coefficients for 

the specified beam pattern parameters. Figure 3.20 shows a polar graph of the theoretical 

beam pattern’s amplitude with the weight coefficients shown in Table 3.11. Figure 3.21 

shows a rectangular plot of the beam pattern’s amplitude in dB units. These plots show 

the maximum value of the beam pattern’s amplitude at a signal’s angle-of-transmission of 

59.94º with a directivity of 11.34 dB. The beamwidth of the MRA beam for the 

theoretical beam pattern is 9.34º with a maximum sidelobe level of -30.11 dB. 

TABLE 3.11 First Spatial Filter Weight Coefficients – Theoretical Weights 

Element Weight 

1 w1 = 0.0076 ∟45º 

2 w2 = 0.0102 ∟135º 

3 w3 = 0.0134 ∟-135º 

4 w4 = 0.0185 ∟-45º 

5 w5 = 0.0226 ∟45º 

6 w6 = 0.0266 ∟135º 
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7 w7 = 0.0293 ∟-135º 

8 w8 = 0.0309 ∟-45º 

9 w9 = 0.0309 ∟45º 

10 w10 = 0.0293 ∟135º 

11 w11 = 0.0266 ∟-135º 

12 w12 = 0.0226 ∟-45º 

13 w13 = 0.0185 ∟45º 

14 w14 = 0.0134 ∟135º 

15 w15 = 0.0102 ∟-135º 

16 w16 = 0.0076 ∟-45º 

 

Figure 3.20 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF 
with Taylor Amplitude Distribution pointing at θMRA = 60º. 
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Figure 3.21 Rectangular Plot of Beam pattern Magnitude of a 4-element 
linear DBF with Taylor Amplitude Distribution point ing at θMRA = 60º 

 

 The next step before proceeding with the simulations of the DBF transmitter 

consist in the transformation of the weight coefficients into constant encoded in the 

FPGA code simulator. A MATLAB program named 

“linear_DBFtrasnmitter_parameters.m” (included in the Appendix A) was prepared to 

change the weight coefficients into its fixed-point format values and set all the necessary 

DBF transmitter parameters (shown in Table 3.10) needed to perform the DBF 

transmitter simulation. The total simulation time used for this DBF transmitter was 2 x 

10-5 seconds. The weight coefficients obtained after quantization of the weight values 

into the fixed-point representation used in the DBF receiver simulation are shown in 
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Table 3.12. Figure 3.22 shows 4 time plots of the first 4 elements in the 16-element DBF 

transmitter (elements 1 through 4). This figure shows the amplitude and phase difference 

found in the output IF signals, which is necessary in order to acquire proper spatial 

combination of the signals and achieve a desirable beam pattern. 

TABLE 3.12 First Spatial Filter Weight Coefficients – FPGA Weights 

Element Weight 

1 w1 = 0.00757 ∟45º 

2 w2 = 0.01025 ∟135º 

3 w3 = 0.01337 ∟-135º 

4 w4 = 0.01849 ∟-45º 

5 w5 = 0.02258 ∟45º 

6 w6 = 0.02661 ∟135º 

7 w7 = 0.02936 ∟-135º 

8 w8 = 0.03088 ∟-45º 

9 w9 = 0.03088 ∟45º 

10 w10 = 0.02936 ∟135º 

11 w11 = 0.02661 ∟-135º 

12 w12 = 0.02258 ∟-45º 

13 w13 = 0.01849 ∟45º 

14 W14 = 0.01337 ∟135º 

15 w15 = 0.01025 ∟-135º 

16 W16 = 0.00757 ∟-45º 
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Figure 3.22 Signal Plots of 4 of the 16-elements in the linear DBF transmitter 
for first spatial filter simulation 

 
 To analyze the data results obtained in the DBF transmitter simulation, each 

output signal generated was stored in a .mat files. A MATLAB program named 

“linear_DBFtransmitter_results.m” was created to retrieve the simulation results stored in 

the .mat files and calculate the beam pattern from the spatial combination of the IF output 

signals. The code calculates the Discrete Fourier Transform (DFT) of each of the 16 

output signals, retrieves the amplitude and phase difference value for the IF carrier 

frequency (in these case fIF = 3MHz), and computes the beam pattern based on the weight 

coefficients derived from the each signal’s amplitude and phase difference.  Figure 3.23 

shows a polar graph of the simulation beam pattern’s amplitude with the weight 
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coefficients derived from DFT analysis and Figure 3.24 shows a rectangular plot of the 

simulation beam pattern’s amplitude in dB units. These plots show the maximum value of 

the beam pattern’s amplitude at a signal’s angle-of-transmission of 59.94º with a 

directivity of 11.34 dB. The beamwidth of the MRA beam for the theoretical beam 

pattern is 9.34º with a maximum sidelobe level of -30.08 dB. Table 3.13 shows the results 

obtained from the DBF transmitter simulation with the results obtained in the theoretical 

beam pattern calculation. The results of each DBF (theoretical and simulated DBF) are 

similar in terms of beam pattern characteristics which makes the simulated DBF a good 

implementation of its theoretical counterpart. 

 

Figure 3.23 Polar Plot of Beam pattern Magnitude of a simulated 4-element 
linear DBF with Taylor Amplitude Distribution point ing at θMRA = 60º 
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Figure 3.24 Rectangular Plot of Beam pattern Magnitude of a simulated 4-
element linear DBF with Taylor Amplitude Distributi on pointing at θMRA = 

60º 
 

TABLE 3.13 First Spatial Filter Beam pattern Characteristics for a 16-
element linear PAA 

Beam pattern Characteristic Theoretical Result Simulation Result 

MRA angle-of-arrival ΘMRA = 59.94º ΘMRA = 59.94º 

Half-power Beamwidth ΘBW = 9.34º ΘBW = 9.34º 

Directivity DdB = 11.34 dB DdB = 11.34 dB 

Sidelobe level SLLdB = -30.11 dB SLLdB = -30.08 dB 
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3.2.2 Second Spatial Filter Example: Beam pattern with Blackman-Harris 
Amplitude Weight Function pointing to θMRA = 82º 

 

 The second spatial filter example used in the DBF transmitter for a 16-element 

linear PAA produces a beam pattern with an MRA pointing at an angular position of 82º 

(respect to right-side endfire) with a Blackman-Harris window amplitude-weighting 

function. The Blackman-Harris window is one of the Spectral Windows used to control 

the beam pattern behavior of a PAA, as mentioned in Section 2.1.4. It contains all the 

characterisitics associated with a Spectral Window where the beam pattern characteristics 

such as beamwidth, sidelobe behavior and directivity are fixed by the number of elements 

in the PAA. The amplitude weight coefficients for each DBF element can be obtained 

using the mathematical equation [Van Trees, 2001] associated with this Spectral Window: 

( ) 2 4 1 1
0.42 0.5cos 0.08cos , .

2 2

n n N N
w n n

N N

π π − −   = + + − ≤ ≤   
   

  3.7 

The beam pattern characteristics of an N-element PAA with a Blackman-harris spectral 

window can be calculated using the following mathematical equations: 

2
1.65 ,BW N

Θ =         3.8 

56.6 ,dBSLL dB= −         3.9 

( )1010 log 0.577 .dBD N= ⋅ ⋅        3.10 

A MATLAB file named “linear_DBFtransmitter_blackmannharris.m” (shown in the 

Appendix A) was created to compute the weight coefficients for the second spatial filter 

example of the linear 16-element PAA. The code uses the Blackman-Harris amplitude 
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function (Eq. 3.7) to generate the amplitude of the weights and Eq. 3.1 to calculate the 

phase of the weight coefficients. Table 3.14 shows the resulting weight coefficients for 

the specified beam pattern parameters. Figure 3.25 shows a polar graph of the theoretical 

beam pattern’s amplitude with the weight coefficients shown in Table 3.14. Figure 3.26 

shows a rectangular plot of the beam pattern’s amplitude in dB units. These plots show 

the maximum value of the beam pattern’s amplitude at a signal’s angle-of-transmission of 

82.08º with a directivity of 9.67 dB. The beamwidth of the MRA beam for the theoretical 

beam pattern is 11.89º with a maximum sidelobe level of -57.79 dB. 

TABLE 3.14 Second Spatial Filter Weight Coefficients – Theoretical Weights 

Element Weight 

1 w1 = 0.0035 ∟172.12º 

2 w2 = 0.0349 ∟-162.83º 

3 w3 = 0.1116 ∟-137.78º 

4 w4 = 0.2485 ∟-112.73º 

5 w5 = 0.4436 ∟-87.68º 

6 w6 = 0.6672 ∟-62.63º 

7 w7 = 0.8663 ∟-37.58º 

8 w8 = 0.9843 ∟-12.53º 

9 w9 = 0.9843 ∟12.53º 

10 w10 = 0.8663 ∟37.58º 

11 w11 = 0.6672 ∟62.63º 

12 w12 = 0.4436 ∟87.68º 

13 w13 = 0.2485 ∟112.73º 
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14 w14 = 0.1116 ∟137.78º 

15 w15 = 0.0349 ∟162.83º 

16 w16 = 0.0035 ∟-172.12º 

 

 

Figure 3.25 Polar Plot of Beam pattern Magnitude of a 4-element linear DBF 
with Blackmann-Harris Amplitude Distribution pointi ng at θMRA = 82º 
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Figure 3.26 Rectangular Plot of Beam pattern Magnitude of a 4-element 
linear DBF with Blackmann-Harris Amplitude Distribu tion pointing at θMRA 

= 82º 
 
 The MATLAB file “linear_DBFtransmitter_parameters.m” was also used in the 

second filter example to transform the weight coefficient values obtained and set the DBF 

transmitter parameters. The resulting weight coefficients, which are used in the 

simulation of the DBF transmitter, are shown in Table 3.15. The simulation parameters 

used for this spatial filter example are the same parameters used for the first spatial filter 

example for the 16-element DBF. Figure 3.27 shows 4 time plots of the first 4 elements 

in the 16-element DBF transmitter (elements 1 through 4). Each signal shown in Figure 

3.27 exhibits a distinct amplitude and phase difference where the contribution of each 

signal forms the specified beam pattern. 
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Figure 3.27 Signal Plots of 4 of the 16-elements in the linear DBF transmitter 
for second spatial filter simulation 

 
TABLE 3.15 Second Spatial Filter Weight Coefficients – FPGA Weights 

Element Weight 

1 w1 = 0.0035 ∟171.56º 

2 w2 = 0.0349 ∟-163.13º 

3 w3 = 0.1116 ∟-137.81º 

4 w4 = 0.2485 ∟-112.50º 

5 w5 = 0.4437 ∟-87.19º 

6 w6 = 0.6672 ∟-63.28º 

7 w7 = 0.8663 ∟-37.97º 

8 w8 = 0.9843 ∟-12.66º 



 
 
 

 
 

 105 

9 w9 = 0.9843 ∟12.53º 

10 w10 = 0.8663 ∟37.97º 

11 w11 = 0.6672 ∟63.28º 

12 w12 = 0.4436 ∟87.19º 

13 w13 = 0.2485 ∟112.50º 

14 w14 = 0.1116 ∟137.81º 

15 w15 = 0.0349 ∟162.13º 

16 w16 = 0.0035 ∟-171.56º 

 

 The analysis of the results obtained in the simulation of the second spatial filter 

for the 16-element linear DBF is performed using the MATLAB program 

“linear_DBFtransmitter_results.m” also.  Figure 3.28 shows a polar graph of the 

simulation beam pattern’s amplitude with the weight coefficients derived from DFT 

analysis and Figure 3.29 shows a rectangular plot of the simulation beam pattern’s 

amplitude in dB units. The maximum value of the beam pattern’s amplitude is found at a 

signal’s angle-of-transmission of 82.08º with a directivity of 9.68 dB. Its beamwidth is 

11.89º with a maximum sidelobe level of -44.60 dB. Table 3.16 shows the results 

obtained from the DBF transmitter simulation with the results obtained in the theoretical 

beam pattern calculation. The beam pattern characteristics of the simulated DBF are 

similar to the results obtained from the theoretical DBF with a notable difference in the 

sidelobe level of the beam pattern. This difference of more than 10 dB may be found do 

to the low sidelobe level specification, which has nearly the same beam pattern 

magnitude as a first order null for a typical DBF system. 
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Figure 3.28 Polar Plot of Beam pattern Magnitude of simulated 4-element 
linear DBF with Blackmann-Harris Amplitude Distribu tion pointing at θMRA 

= 82º 
 

TABLE 3.16 Second Spatial Filter Beam pattern Characteristics for a 16-
element linear PAA 

Beam pattern Characteristic Theoretical Result Simulation Result 

MRA angle-of-arrival ΘMRA = 82.08º ΘMRA = 82.08º 

Half-power Beamwidth ΘBW = 11.89º ΘBW = 11.89º 

Directivity DdB = 9.67 dB DdB = 9.68 dB 

Sidelobe level SLLdB = -57.79 dB SLLdB = -44.60 dB 
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Figure 3.29 Rectangular Plot of Beam pattern Magnitude of simulated 4-

element linear DBF with Blackmann-Harris Amplitude Distribution pointing 
at θMRA = 82º 

 
 
3.2.3 Beam pattern Granularity for 16-element linear PAA 
 

 The beam pattern granularity, which was introduced as an important parameter in 

Section 3.1.3, is also affected by the number of elements in the PAA. Figure 3.30 shows a 

plot of the beam pattern granularity as a function of the MRA’s angle-of-arrival when the 

weight coefficient’s phase parameter has a bit resolution of 8 bits with no decimal 

precision for the 16-element linear PAA. Eq. 3.4 was also used to calculate the beam 

pattern granularity of this linear array. As in the case of the 4-element linear PAA, the 
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granularity value is larger on beam patterns with MRAs pointing towards endfire of the 

array (leftside and rightside) with a value of approximately 5 degrees from beam patterns 

with MRAs pointing near broadside where the beam pattern granularity has a value close 

to one degree, which is the desired MRA angle difference. Figure 3.31 and Figure 3.33 

shows beam pattern granularity for weight coefficient’s phase parameters with bit 

resolutions of 4 bits with no decimal precision and 16 bits with no decimal precision for 

the 16-element linear PAA, respectively. If these beam pattern granularity plots are 

compared with the ones shown in Section 3.1.3, it can be seen that for the same bit 

resolution a linear array with more elements exhibits a better beam pattern granularity in 

terms of an obtained degree difference closer to the real degree difference found between 

the two MRAs. 

 

Figure 3.30 Beam pattern Granularity Plot for a 16-element linear DBF with 
8 bits of resolution on the weight coefficient’s phase 
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Figure 3.31 Beam pattern Granularity Plot for a 16-element linear DBF with 
4 bits of resolution on the weight coefficient’s phase 

 

 

Figure 3.32 Beam pattern Granularity Plot for a 16-element linear DBF with 
16 bits of resolution on the weight coefficient’s phase 
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3.3 16-element rectangular PAA Transmitter Prototype 
 

The 16-element rectangular PAA Transmitter Prototype consists of 16 isotropic 

radiating antennas arranged in a rectangular distribution and uniformly spaced in each 

axis by half-wavelength. Most of the parameters of this PAA, such as signal bandwidth, 

RF carrier frequency, IF frequency and inter-element spacing, are the same parameters 

used in the 16-element linear PAA transmitter prototype. Table 3.17 shows the PAA 

parameters for this 16-element rectangular array. The 16-element rectangular PAA has 

the same number of elements as the PAA studied in Section 3.2 but since its geometrical 

distribution is different, a recalculation of the Narrowband Factor is necessary. In this 

case, the Maximum Travel Time (∆Tmax) is the time taken for a planar wave to travel in 

endfire direction from the first element in the first row to the last element in the last row 

of the planar array. The Narrowband Factor for this PAA (BS· ∆Tmax) is extremely small 

compared to one thus, the narrowband beamformer can be used to control this PAA’s 

beam pattern. 

 

TABLE 3.17 16-element rectangular PAA parameters 

Parameter Value 

RF Carrier Frequency fRF = 5.85 GHz 

IF Frequency fIF = 3 MHz 

Signal Bandwidth BS = 2 MHz 

Number of Elements N = 16 

Inter-element Spacing ∆x = λc/2, ∆y = λc/2
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Maximum Travel Time ∆Tmax = 2 *3/2fRF 

Narrowband Factor BS· ∆Tmax = 0.000725 

 

The implementation of this DBF transmitter is based on the design described in Section 

2.4.2. The DBF architecture provides design flexibility where a DBF with a particular 

number of channels can be used with any PAA with the same amount of antennas, not 

taking into account the geometrical distribution of the array. Since the 16-element 

rectangular PAA has the same amount of channels as its linear counterpart studied in 

Section 3.2, the architecture, design parameters, and simulation process of the DBF are 

the same as the one explained in Section 3.2. The architecture design of the DBF 

transmitter for this PAA can be reviewed in Figures 3.18 and 3.19 and its DBF design 

parameters are shown in Table 3.10. 

 

3.3.1 First Spatial Filter Example: Beam pattern with Uniform Amplitude 
Weight Function pointing to φMRA = 0º and θMRA = 30º 

 

 The first spatial filter example used in the DBF transmitter for a 16-element 

rectangular PAA produces a beam pattern with an MRA pointing at angular positions of 

φ = 0º (angle formed in the planar axis) and θ = 30º (angle formed in the axis 

perpendicular to the planar array) with a uniform distribution amplitude-weighting 

function. In Section 3.1, Eq. 1 showed the calculation of the weight coefficients for a 

general PAA with one MRA beam specification. For a rectangular array, the position 
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vector’s pz value is equal to zero reducing the calculation of the weight coefficient for 

each channel n into: 

( ) ( ) ( ) ( )2 sin cos sin1
* .MRA x MRA y MRAj p p

nw e
N

π θ φ φλ  + =      3.11 

 
The phase value found in each weight coefficient can be viewed as the sum of the phase 

differences between neighboring elements in the same x axis value and phase difference 

between neighboring elements in the same y axis of the rectangular array. This 

relationship can be seen by restructuring Eq. 3.11 into the following mathematical form: 

( )1
* ,x yj

nw e
N

ψ ψ∆ +∆=        3.12 

where: 

( ) ( ) ( )2 sin cos ,x x MRA MRApπψ θ φλ∆ =      3.13 

 

( ) ( ) ( )2 sin sin .y y MRA MRApπψ θ φλ∆ =      3.14 

 

Table 3.18 shows the resulting weight coefficients for a uniform 16-element rectangular 

PAA with an inter-element spacing of λ/2 in x and y axis, which are the axis parallel to 

the planar array. A MATLAB program named “rectangular_DBFtransmitter_steering.m” 

(which is shown in Appendix A) was prepared in order to calculate the theoretical beam 

pattern, the directivity and the beamwidth of the PAA for a one-MRA spatial filter design 

for a rectangular PAA. Figure 3.33 shows a top view polar graph of the theoretical beam 

pattern’s amplitude with the weight coefficients shown in Table 3.18. The top view polar 

graph was generated using MATLAB function polar3D() provided by Dr. Sébastien 
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Rondineau, Research Professor at the University of Colorado at Boulder. Figure 3.34 

shows rectangular plots of the beam pattern’s amplitude in dB units for beam pattern cuts 

of φ = 0º and φ = 45º. These plots show the maximum value of the beam pattern’s 

amplitude at a signal’s angle-of-transmission of φ = 0º and θ = 30º with a directivity of 

12.80 dB. The beamwidth of the MRA beam (shown in Figure 3.34a) for the theoretical 

beam pattern is 30.68º with a sidelobe of -7.40 dB (shown in Figure 3.34b). Figure 3.35 

shows a 3D surf plot of the beam pattern’s amplitude for this spatial filter design. 

TABLE 3.18 First Spatial Filter Weight Coefficients for 16-element 
rectangular PAA – Theoretical Weights 

Element Weight 

1, 1 w1,1 = 0.0625 ∟-135º 

1, 2 w1,2 = 0.0625 ∟-135º 

1, 3 w1,3 = 0.0625 ∟-135º 

1, 4 w1,4 = 0.0625 ∟-135º 

2, 1 w2,1 = 0.0625 ∟-45º 

2, 2 w2,2 = 0.0625 ∟-45º 

2, 3 w2,3 = 0.0625 ∟-45º 

2, 4 w2,4 = 0.0625 ∟-45º 

3, 1 w3,1 = 0.0625 ∟45º 

3, 2 w3,2 = 0.0625 ∟45º 

3, 3 w3,3 = 0.0625 ∟45º 

3, 4 w3,4 = 0.0625 ∟45º 

4, 1  w4,1 = 0.0625 ∟135º 

4, 2 w4,2 = 0.0625 ∟135º 
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4, 3 w4,3 = 0.0625 ∟135º 

4, 4 w4,4 = 0.0625 ∟135º 

 

Figure 3.33 Top View Polar Plot of Beam pattern Magnitude of 16-element 
rectangular DBF with Uniform Amplitude Distribution  pointing at φMRA = 0º 

and θMRA = 30º 

 

Figure 3.34 Rectangular Plots of Beam pattern Magnitude of 16-element 
rectangular DBF with Uniform Amplitude Distribution  pointing at φMRA = 

82º and θMRA = 0º for Plane cut on φ = 0º and φ = 45º 
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Figure 3.35 Surf Plot of Beam pattern Magnitude of 16-element rectangular 
DBF with Uniform Amplitude Distribution pointing at  φMRA = 0º and θMRA = 

30º 
 

 Before a simulation of the rectangular PAA is performed, transformation of the 

weight coefficients into constant encoded in the FPGA code simulator is required. A 

MATLAB program named “rectangular_DBFtransmitter_parameters.m” (included in the 

Appendix A) was prepared to change the weight coefficients into its fixed-point format 

values and set all the necessary DBF transmitter parameters. This MATLAB file is 

similar to the file created to set DBF parameters and condition weight coefficients values 

for a 16-element linear PAA. The difference strives in the way the file reads the weight 

coefficient; weights in a linear array are stored in vector form whereas weights in a 

rectangular array are stored in matrix form. The total simulation time used for this DBF 
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transmitter was 2 x 10-5 seconds. Table 3.19 shows the weight coefficients used by the 

DBF to perform the spatial signal processing. Figure 3.36 shows 4 time plots of the 4 

elements of the first row associated with the 16-element rectangular PAA. Since each 

weigh coefficient has the same weight amplitude, the signals shown in Figure 3.36 show 

only a difference in their relative phase. 

TABLE 3.19 First Spatial Filter Weight Coefficients for 16-element 
rectangular PAA – FPGA Weights 

Element Weight 

1, 1 w1,1 = 0.0625 ∟-135º 

1, 2 w1,2 = 0.0625 ∟-45º 

1, 3 w1,3 = 0.0625 ∟45º 

1, 4 w1,4 = 0.0625 ∟135º 

2, 1 w2,1 = 0.0625 ∟-135º 

2, 2 w2,2 = 0.0625 ∟-45º 

2, 3 w2,3 = 0.0625 ∟45º 

2, 4 w2,4 = 0.0625 ∟135º 

3, 1 w3,1 = 0.0625 ∟-135º 

3, 2 w3,2 = 0.0625 ∟-45º 

3, 3 w3,3 = 0.0625 ∟45º 

3, 4 w3,4 = 0.0625 ∟135º 

4, 1  w4,1 = 0.0625 ∟-135º 

4, 2 w4,2 = 0.0625 ∟-45º 

4, 3 w4,3 = 0.0625 ∟45º 

4, 4 w4,4 = 0.0625 ∟135º 
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Figure 3.36 Signal Plots of 4 of the 16-elements in the rectangular DBF 
transmitter for first spatial filter simulation 

 

 The next step in the simulation process involves analyzing the data obtained in the 

DBF transmitter simulation results which were stored in a .mat files. A MATLAB 

program named “rectangular_DBFtransmitter_results.m” was created to retrieve the 

simulation results stored in the .mat files and calculate the beam pattern from the spatial 

combination of the IF output signals for a planar array. The code uses the Discrete 

Fourier Transform (DFT) to retrieves the amplitude and phase difference value for the IF 

carrier frequency (in these case fIF = 3MHz) like the file used in Section 3.2 to retrieve 

beam pattern results from a linear transmitter array.  The difference, in this case, is that 
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the weight coefficient’s phase value for each element is calculated using Eq. 3.12, where 

the relative phase difference considers phase difference between neighboring elements in 

x and phase difference between neighboring elements in the y axis. Figure 3.37 shows a 

top view polar graph of the simulation beam pattern’s amplitude with the weight 

coefficients derived from DFT analysis. Figure 3.38 shows rectangular plots of the 

simulation beam pattern’s amplitude in dB units for beam pattern cuts of φ = 0º and φ = 

45º. These plots show the maximum value of the beam pattern’s amplitude at a signal’s 

angle-of-transmission of φ = 0º and θ = 30º with a directivity of 12.80 dB. The 

beamwidth of the MRA beam (shown in Figure 3.38a) for the theoretical beam pattern is 

30.81º with a sidelobe of -7.37 dB (shown in Figure 3.38b). Figure 3.39 shows a 3D surf 

plot of the beam pattern’s amplitude for this spatial filter design. Table 3.20 shows the 

results obtained from the DBF transmitter simulation with the results obtained in the 

theoretical beam pattern calculation. 

TABLE 3.20 First Spatial Filter Beam pattern Characteristics for a 16-
element rectangular PAA 

Beam pattern Characteristic Theoretical Result Simulation Result 

MRA angle-of-arrival φMRA = 0º,  
ΘMRA = 30º 

 

φMRA = 0º,  
ΘMRA = 30º 

Half-power Beamwidth ΘBW = 30.68º @  
φMRA = 0º 

ΘBW = 30.80º @  
φMRA = 0º 

Directivity DdB = 12.80 dB DdB = 12.80 dB 

Sidelobe level SLLdB = -7.40 dB @  
φMRA = 45º 

SLLdB = -7.37 dB @ 
φMRA = 45º 
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Figure 3.37 Top View Polar Plot of Beam pattern Magnitude of simulated 16-
element rectangular DBF with Uniform Amplitude Distribution pointing at 

φMRA = 0º and θMRA = 30º 

 

Figure 3.38 Rectangular Plots of Beam pattern Magnitude of simulated 16-
element rectangular DBF with Uniform Amplitude Distribution pointing at 

φMRA = 0º and θMRA = 30º for Plane cut on φ = 0º and φ = 45º 
  



 
 
 

 
 

 120 

 

Figure 3.39 Surf Plot of Beam pattern Magnitude of simulated 16-element 
rectangular DBF with Uniform Amplitude Distribution  pointing at φMRA = 0º 

and θMRA = 30º 
 
3.3.2 Second Spatial Filter Example: Beam pattern with Dolph-Chebyshev 

Amplitude Weight Function pointing to φMRA = 122º and θMRA = 16º 
 

 The second spatial filter example used in the DBF transmitter for a 16-element 

rectangular PAA produces a beam pattern with an MRA pointing at angular positions of 

φ = 122º (angle formed in the planar axis) and θ = 16º (angle formed in the axis 

perpendicular to the planar array) with a Dolph-Chebyshev distribution amplitude-

weighting function. As mentioned in Section 2.1.4, the Dolph-Chebyshev distribution 

method generates the amplitude of weight coefficients to minimize the MRA’s 
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beamwidth based on constant sidelobe level specifications. In this method, the properties 

of the Chebyshev polynomials are used to control the ratio RDCV of the MRA’s magnitude 

to the sidelobe level where the value of the magnitude of the MRA lobe corresponds to 

the value of the m-th degree Chebyshev polynomial Tm(x0) and the magnitude of the 

sidelobe is unity [Van Trees, 2002].  The relationship between the value x0 and the ratio 

RDCV is shown in the following equation: 

( )1

0

cosh
cosh ,

1
DCVR

x
L

− 
=   − 

       3.15 

where L is the number of elements along one of the axis of the rectangular array. After 

the parameter RDCV has been specified, the amplitude of the weight coefficients can be 

calculated using the beam pattern sampling in the wavenumber space. The beam pattern 

of a rectangular array with L elements in the x-axis and M elements in the y-axis using 

Dolph-Chebyshev weight distribution can be expressed in the following form: 

( ) 1 0, cos cos ,
2 2

yx
x y LB T xψ

ψψψ ψ −

   =         
    3.16 

where ψx and ψy are: 

( )2
sin cos ,x

x

dπψ θ ϕ
λ

=       3.17 

 

( )2
sin sin .y

y

dπ
ψ θ ϕ

λ
=       3.18 

 
The m-th degree Chebyshev polynomial Tm(x) is defined: 
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( )
( )( )

( )( )
( ) ( )( )

1

1

1

cos cos , 1,

cosh cosh , 1,

1 cosh cosh , 1.

m

m

m x x

T x m x x

m x x

−

−

−

 ≤

= >


− < −

    3.19 

 
In many beam pattern synthesis applications, the Inverse Discrete Fourier Transform 

(IDFT) algorithm is used to obtain the weights of a pattern sampled in the wavenumber 

space.  In this algorithm, a function B(k1, k2) is calculated using the beam pattern function 

Bψ(ψx, ψy):  

( ) 1 2 1 2

1 1
12 2

1 2 1 0, cos cos ,
2 2

xk yk
L M

j
xk yk

LB k k e T x R
ψ ψ ψ ψ− − − +  − 

−

    
=      

    
   3.20 

where ψxk1 and ψyk2 are: 

1 1 1

1 2
, 0,1, , 1,

2xk

L
k k L

L

πψ − = − = − 
 

…      3.21 

 

2 2 2

1 2
, 0,1, , 1.

2yk

M
k k M

M

πψ − = − = − 
 

…     3.22 

 

Applying the 2-D IDFT on the function B(k1,k2) gives a function b(l,m), which is related 

to the weight distribution function w(l,m). The final step in the algorithm involves the 

calculation of the weight coefficient of each antenna in the array using the following 

equation: 

( ) ( )
1 1

, , ,
L M

j l m
L Mw l m b l m e

π π − −   − +    
    =      3.23 

 
where the variables l and m represent the index position of the antenna in the array along 

the x-axis and y-axis respectively. A MATLAB file named 
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“rectangular_DBFtransmitter_dolphchebyshev.m” (shown in the Appendix A) was 

created to compute the weight coefficients for the second spatial filter example of the 

rectangular 16-element PAA. The code uses the Dolph-Chebyshev polynomials to 

calculate the amplitude of the weight coefficients and Eq. 3.11 to calculate the phase of 

the weight coefficients. Table 3.21 shows the resulting weight coefficients for the 

specified beam pattern parameters. Figure 3.40 shows a top view polar graph of the 

theoretical beam pattern’s amplitude with the weight coefficients shown in Table 3.21. 

Figure 3.41 shows rectangular plots of the beam pattern’s amplitude in dB units for beam 

pattern cuts of φ = 122º and φ = 302º. These plots show the maximum value of the beam 

pattern’s amplitude at a signal’s angle-of-transmission of φ = 122º and θ = 16º with a 

directivity of 12.58 dB. The beamwidth of the MRA beam (shown in Figure 3.41a) for 

the theoretical beam pattern is 33.1º with a sidelobe of -25.00 dB (shown in Figure 3.41b). 

Figure 3.42 shows a 3D surf plot of the beam pattern’s amplitude for this spatial filter 

design. 

TABLE 3.21 Second Spatial Filter Weight Coefficients for 16-element 
rectangular PAA – Theoretical Weights 

Element Weight 

1, 1 w1,1 = 0.0204 ∟-23.68º 

1, 2 w1,2 = 0.0611 ∟-49.97º 

1, 3 w1,3 = 0.0611 ∟-76.26º 

1, 4 w1,4 = 0.0204 ∟-102.55º 

2, 1 w2,1 = 0.0611 ∟18.40º 

2, 2 w2,2 = 0.1075 ∟-7.89º 
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2, 3 w2,3 = 0.1075 ∟-34.18º 

2, 4 w2,4 = 0.0611 ∟-60.48º 

3, 1 w3,1 = 0.0611 ∟60.48º 

3, 2 w3,2 = 0.1075 ∟34.18º 

3, 3 w3,3 = 0.1075 ∟7.89º 

3, 4 w3,4 = 0.0611 ∟-18.49º 

4, 1  w4,1 = 0.0204 ∟102.55º 

4, 2 w4,2 = 0.0611 ∟76.26º 

4, 3 w4,3 = 0.0611 ∟49.97º 

4, 4 w4,4 = 0.0204 ∟23.68º 

 

Figure 3.40 Top View Polar Plot of Beam pattern Magnitude of 16-element 
rectangular DBF with Dolph-Chebyshev Amplitude Distribution pointing at 

φMRA = 122º and θMRA = 16º 
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Figure 3.41 Rectangular Plots of Beam pattern Magnitude of 16-element 
rectangular DBF with Dolph-Chebyshev Amplitude Distribution pointing at 

φMRA = 122º and θMRA = 16º for Plane cut on φ = 122º and φ = 302º 
 

 

Figure 3.42 Surf Plot of Beam pattern Magnitude of 16-element rectangular 
DBF with Dolph-Chebyshev Amplitude Distribution pointing at φMRA = 122º 

and θMRA = 16º 
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The MATLAB file “rectangular_DBFtransmitter_parameters.m” was also used to set 

DBF parameters and condition weight coefficients values for the second spatial filter 

simulation for the 16-element rectangular PAA. Table 3.22 shows the weight coefficients 

used by the DBF to perform the second spatial filter on the FPGA simulation. Figure 3.40 

shows 4 time plots of the 4 elements of the first row associated with the 16-element 

rectangular PAA. The difference in the amplitude of each signal shown in Figure 3.43 is 

related to the Dolph-Chebyshev amplitude-distribution function, which assigns the 

magnitude of the weights to each antenna element in the array. 

TABLE 3.22 Second Spatial Filter Weight Coefficients for 16-element 
rectangular PAA – FPGA Weights 

Element Weight 

1, 1 w1,1 = 0.0204 ∟-23.91º 

1, 2 w1,2 = 0.0611 ∟-50.63º 

1, 3 w1,3 = 0.0611 ∟-75.94º 

1, 4 w1,4 = 0.0204 ∟-102.66º 

2, 1 w2,1 = 0.0611 ∟18.28º 

2, 2 w2,2 = 0.1075 ∟-8.44º 

2, 3 w2,3 = 0.1075 ∟-33.75º 

2, 4 w2,4 = 0.0611 ∟-60.47º 

3, 1 w3,1 = 0.0611 ∟60.47º 

3, 2 w3,2 = 0.1075 ∟33.75º 

3, 3 w3,3 = 0.1075 ∟8.44º 

3, 4 w3,4 = 0.0611 ∟-18.28º 

4, 1  w4,1 = 0.0204 ∟102.66º 
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4, 2 w4,2 = 0.0611 ∟75.94º 

4, 3 w4,3 = 0.0611 ∟50.63º 

4, 4 w4,4 = 0.0204 ∟23.91º 

 

Figure 3.43 Signal Plots of 4 of the 16-elements in the rectangular DBF 
transmitter for second spatial filter simulation 

 
 After storing the results obtained in the simulation of the second spatial filter, the 

data is analyzed by means of the DFT, exactly like the first spatial filter example. The 

MATLAB program “rectangular_DBFtransmitter_results.m” was used to retrieve the 

results obtained in the simulation and analyze the data of each DBF channel. Figure 3.44 

shows a top view polar graph of the simulation beam pattern’s amplitude with the weight 

coefficients derived from DFT analysis. Figure 3.45 shows rectangular plots of the 
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simulation beam pattern’s amplitude in dB units for beam pattern cuts of φ = 122º and φ 

= 302º. These plots show the maximum value of the beam pattern’s amplitude at a 

signal’s angle-of-transmission of φ = 122º and θ = 16º with a directivity of 12.60 dB. The 

beamwidth of the MRA beam (shown in Figure 3.45a) for the theoretical beam pattern is 

33.01º with a sidelobe of -25.00 dB (shown in Figure 3.45b). Figure 3.46 shows a 3D surf 

plot of the beam pattern’s amplitude for this spatial filter design. Table 3.23 shows the 

results obtained from the DBF transmitter simulation with the results obtained in the 

theoretical beam pattern calculation. 

 

Figure 3.44 Top View Polar Plot of Beam pattern Magnitude of simulated 16-
element rectangular DBF with Dolph-Chebyshev Amplitude Distribution 

pointing at φMRA = 122º and θMRA = 16º 
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Figure 3.45 Rectangular Plots of Beam pattern Magnitude of simulated 16-
element rectangular DBF with Dolph-Chebyshev Amplitude Distribution 

pointing at φMRA = 122º and θMRA = 16º for Plane cut on φ = 122º and φ = 302º 
 

 

Figure 3.46 Surf Plot of Beam pattern Magnitude of simulated 16-element 
rectangular DBF with Dolph-Chebyshev Amplitude Distribution pointing at 

φMRA = 122º and θMRA = 16º 
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TABLE 3.23 Second Spatial Filter Beam pattern Characteristics for a 16-
element rectangular PAA 

Beam pattern Characteristic Theoretical Result Simulation Result 

MRA angle-of-arrival φMRA = 122º,  
ΘMRA = 16º 

 

φMRA = 122º,  
ΘMRA = 16º 

Half-power Beamwidth ΘBW = 33.1º @  
φMRA = 122º 

ΘBW = 33.01º @  
φMRA = 122º 

Directivity DdB = 12.58 dB DdB = 12.60 dB 

Sidelobe level SLLdB = -25.00 dB @  
φMRA = 302º 

SLLdB = -23.39 dB @ 
φMRA = 302º 

 

3.3.3 Beam pattern Granularity for 16-element rectangular PAA 
 

As all beam pattern characteristics, the beam pattern granularity is affected by the 

geometrical distribution of the antenna array. In the case of the rectangular array, the 

beam pattern granularity can be expressed in the following form: 

( ) ( ) ( )2 1
1 2 max ( , ) max ( , )
, , | | .

MRA MRA MRA MRA
MRA MRA MRA B B

BG θ φ θ φθ θ φ θ θ= −     3.24 

 
Eq. 3.24 is equivalent to applying Eq. 3.4 to a beam pattern cut in the φ-plane determined 

by the angle φMRA. Figure 3.47 shows a surf plot of the beam pattern granularity as a 

function of the MRA’s direction-of-arrival in terms of angle φ and angle θ when the 

weight coefficient’s phase parameter has a bit resolution of 8 bits with no decimal 

precision for the 16-element rectangular PAA. Similar to the beam pattern granularity 

plots for the linear arrays, the beam pattern granularity surf plot has been constructed 

using a constant MRA angle difference (θMRA2 - θMRA1) of one degree along each 

direction-of-arrival value for each φ-plane beam pattern cut. The maximum beam pattern 
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granularity value is shown at an angle-of-incidence φ = 38º, θ = 88º with a value of 3.6º, 

which illustrates the increase in error in terms of MRA beam position for scan angles 

near endfire of the array. Figure 3.48 illustrates this maximum beam pattern granularity 

value in a beam pattern cut on φ = 38º and φ = 208º. 

 

Figure 3.47 Beam pattern Granularity Surf Plot for a 16-element rectangular 
DBF with 8 bits of resolution on the weight coefficient’s phase 
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Figure 3.48 Beam pattern Granularity Rectangular Plots for a 16-element 
rectangular DBF with 8 bits of resolution on the weight coefficient’s phase 

for Plane cut on φ = 38º and φ = 208º 
 

3.4 16-element rectangular PAA Transmitter 
 

The 16-element rectangular PAA transmitter is the transmitter containing the DBF 

transmitter discussed in Section 3.3. The antenna array consists of 16 patch antennas 

arranged in a rectangular distribution and uniformly spaced in each axis by half-

wavelength. The array and signal parameters in the PAA transmitter are equal to 

parameters of the DBF transmitter (shown in Table 3.17), thus satisfying the narrowband 

characteristic requirement necessary for a narrowband beamformer implementation as a 

means to control the beam pattern of the array. The PAA transmitter contains 3 stages: 

the DBF transmitter, the RF up-conversion stage, and the patch antenna array. The DBF 

transmitter receives the information signal, digitally modulates the signal into IF and 

applies the appropriate weight to each channel. It uses the design proposed in Section 2.3 

and it is implemented using the Lyrtech VHS-DAC High-Speed Multichannel 
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Development Platform. The RF up-conversion stage distributes the Local Oscillator 

signal into each antenna channel, mixes the IF information signal with the LO signal, and 

amplifies the resulting signal prior transmission of the signal by means of power 

amplification. The final stage of the microwave transmitter consists in the transmission of 

the signal using a 16-element rectangular patch antenna array. The S-Parameter 

simulations of all the RF circuits in the RF up-conversion stage and the Electromagnetic 

simulations of the rectangular patch antenna array were performed using Ansoft Designer 

V2. Table 3.24 shows the ideal system requirements for each stage of the PAA 

transmitter. 

TABLE 3.24 Ideal System Requirements for PAA transmitter 

Requirement Value 

Wilkinson Power Dividers (WPD) 

VSWR at input port of each circuit Less than 2 

Gain of each output port 5 dB 

Relative amplitude difference between 
output port 

0 dB 

Relative phase difference between output 
port 

0º 

Mixer/Amplifier Stage 

Relative amplitude difference between 
output port 

0 dB 

Relative phase difference between output 
port 

0º 

Rectangular Patch Array 
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VSWR at input port of each antenna Less than 2 

Polarization Type Linear Polarization 

 

3.4.1 DBF Transmitter 
 

 The Lyrtech VHS-DAC High-Speed Multichannel Development Platform is the 

physical device which implements the DBF Transmitter. The VHS-DAC module contains 

a Xilinx XC2V6000 FPGA, 16 DAC channels with a bit resolution 14-bits and a 

sampling frequency of 125 mega-samples per second (MSPS) per channel, a 

programmable clock up to 125 MHz with a resolution of 10 kHz, and SD-RAM of 128 

MB. The data transmission module can interface with other digital devices by using the 

Front Panel Data Port (FPDP), which can communicate with an external processing board 

or a data acquisition module, additional input signal ports for external clock and manual 

trigger, and a GPIO connector, which provides connection to certain pins of the FPGA 

included inside the board. The VHS-DAC board also includes four read/write custom 

registers accessible to the user through VHS Control Utility software, which provides a 

real-time interface between the user and the computational equipment. The VHS-DAC is 

installed in a Compact PCI Card Cage, which includes a computer board with a 1.7 GHz 

Mobile Pentium 4 CPU, 512 MB of SDRAM and a 20 GB Hard Drive. A program named 

SMCCE allows the computer to monitor the status of the VHS-DAC module. Lyrtech 

Signal Processing, which is the company that manufactures the data transmission module, 



 
 
 

 
 

 135 

provides a software package which includes low-level drivers for  programming the 

board on a VHDL environment, and FPGALink, which is a blockset providing Lyrtech’s 

hardware integration with Simulink. Figure 3.49 shows a picture of the VHS-DAC 

module. 

 
Figure 3.49 Picture of VHS-DAC High-Speed Multichannel Development 

Platform 
 

 Using Xilinx System Generator for DSP, the simulation code for the DBF 

transmitter created on MATLAB’s Simulink discussed in Section 3.3 was translated into 

VHDL code. This VHDL code was downloaded into the FPGA inside the VHS-DAC 

module, which provides a physical realization of the simulation performed on Simulink. 

Table 3.10 in Section 3.2 shows the parameters used in the implementation of the DBF 
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transmitter for the PAA. An additional hardware module was designed to interface the 

control unit with the DBF transmitter. This hardware module, which was programmed in 

the FPGA through Simulink software, controls the assignation of amplitude and phase 

weight coefficients for each of the DBF channels. Figure 3.50 shows the Simulink 

diagram of the Control Interface Module (CIM). Figure 3.51 shows a diagram of the 

input and one of the channels of the CIM. Initially, the CIM was constructed to interface 

with the memory of the VHS-DAC, which is a typical communication topology in digital 

control systems. This initial design provided the flexibility of separating the DBF 

transmitter with the algorithm generating the weight coefficients, where the system 

memory would be used the link to interchange data between the two system components. 

Unfortunatly, a problem with the memory and its block module in the Simulink 

environment prevented it from functioning properly under real-time operation. Inactivity  
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Figure 3.50 Simulink Diagram of CIM 
 

of the memory’s “request signal” and “ready signal” in the block module was the main 

problem found in the system memory’s performance. During the debugging process, 

Lyrtech Signal Processing was notified of the errors in the performance in the memory, 

only to find out that its lack of performance under certain conditions is a known issue, 

which is currently being attended.  
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Figure 3.51 Diagram of input ports and one of the 16 channels in the CIM 
 
 

 The memory’s task in the CIM was substituted with the use of the custom register 

in the VHS-DAC as a means to input the weight coefficients of each DBF channel.  Table 

3.25 shows the information of the relationship between the bit structure of each custom 

registers and the parameters of the CIM. The bit description of the registers is given 

starting from the Least Significant Bit (LSB). Three of the four custom register were used 

to store the weight coefficient information used in the DBF transmitter. The first register, 

which is the control register, contains the vertical and horizontal position of the DBF 

channel and gives the triggering signal to DBF transmitter communicating that the weight 

coefficients are ready. The second register and third register store the amplitude and 

phase coefficient of the DBF channel, respectively. The bit resolution of the amplitude 
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and phase coefficients in the registers are determined by the MATLAB file *.m, which 

was used earlier to program the DBF transmitter simulations. A MATLAB code named 

*.m reads a MAT file containing the weight coefficient of each DBF channel in the PAA 

and translates the information into 3 vectors representing the 3 custom registers where the 

value of the control register is related to the value of the amplitude and phase register for 

each index. 

TABLE 3.25 Relationship between bit structure of custom register and DBF 
transmitter weight parameters 

Custom Register Bit Structure DBF Parameter 

Control Register Unsigned 6-bit 
value 

 

1st – 2nd bit: Horizontal position of 
DBF channel 

3rd – 4th bit : Vertical position of DBF 
channel 

5th bit: Trigger application of weight to 
current DBF channel 

6th bit: Trigger application of weight to 
all channels 

Weight Amplitude 
Register 

Signed 2’s 
complement value 

Amplitude of weight coefficient 

Weight Phase Register Signed 2’s 
complement value 

Phase of weight coefficient 

 

 After the VHDL code has been generated and the values of the custom registers 

for each DBF channel has been calculated, the next step involves downloading the 

synthesized code in the FPGA and programming the real-time parameters of the VHS-

DAC. As mentioned earlier in the section, the VHS Control Utility provides the means to 

program each VHS-DAC component. The process of programming the VHS-DAC 

module involves programming the FPGA, the programmable on-board clock, the system 
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memory, the channel gains, and the custom register’s content. The user is encouraged to 

read the user manual of the VHS-DAC [Lyrtech, 2004] to find details on the procedure of 

programming each device. The file generated by Xilinx System’s Generator and the 

vectors generated in the MATLAB code *.m are used to program the FPGA and assign 

the values of the custom registers, respectively. 

 

3.4.2 RF Up-Conversion Stage 
  

 The RF up-conversion stage of the microwave system contains three important 

sub-stages: the power divider network of the LO, the mixer stage, and power 

amplification of the RF carrier signal. The power divider network receives the signal of 

the LO and distributes the LO signal into each element of the PAA. The output signals of 

this stage must have the necessary power to assure proper operation of the mixer stage, 

since a minimum power requirement is expected at the input port of the LO of the mixers. 

The PAA controls the beam pattern of the array by means of progressive phase shift 

between each antenna element, thus the relative phase difference between each output 

signal in the power divider network must be very small. The mixer stage modulates the IF 

signal into the RF signal with the use of the LO received from the power divider network. 

The final stage of the RF up-conversion stage is the power amplification stage, where the 

RF signal received from the mixer stage is amplified in order to be transmitted by the 

antenna array. Two microwave circuits were designed to implement the RF up-

conversion stage of the microwave transmitter. The first designed circuit was a 1-to-4 
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power divider circuit. The power divider network uses 5 of this circuits to distribute the 

LO signal into the 16 antenna channels in the PAA. The second circuit contains four 

transmitter channels, where the mixer stage and the amplification stage are combined. 

The PAA uses 4 of this circuits to mix the LO signal with the IF signal and amplify the 

modulated RF signal in order to be transmitted by the antenna array. 

 

 A diagram of the first designed circuit is shown in Figure 3.52. The first stage of 

the circuit is composed of 3 Wilkinson Power Dividers which splits the power of the 

input equally into 4 output ports. Since the system impedance is 50 Ω, Each Wilkinson 

Power Divider contains a 100 Ω necessary to provide impedance matching at its output 

ports. The next stage of the circuit includes a linear amplifier in each output of the 

Wilkinson Power Dividers, which increases the power of the each signal. The Hittite 

HMC315 Darlington Amplifier is the RF amplifier component used to amplify the signals 

prior the output ports. The amplifier provides a typical gain of 4 dB for a frequency range 

of DC to 7 GHz with a single positive supply voltage of +5 V. The circuit also contains 

other RF passive components necessary to assure proper operation of the amplifiers. The 

amplifiers need a DC-bias resistance Rbias in order to receive the desired collector voltage 

Vcc voltage at its output port. Using a power supply voltage Vs = 8 V and a Rbias = 100 Ω, 

the transistors in the amplifier can received a required collector current Icc = 30 mA and 

the Vcc = 5 V.  
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Figure 3.52 Diagram of Power Divider Network Circuit 
 
 An RF-choke circuit was designed at the output of the amplifier in order to protect 

the DC power supply from the RF output signal. The requirements for the two-port 

circuit included good impedance match at a frequency of 5.85 GHz, which is the 

frequency of the LO, and low transmission losses. The layout diagram of the RF-shoke 

circuit is shown in Figure 3.53. The circuit is based on the Bias-T model and contains the 

100 Ω bias resistor and 2 chip capacitors with a capacitance of 220 pF. A simulation of 

the RF-choke circuit was performed in order to calculate its S-Parameters. The Scattering 

Parameters (S-Parameters) of a circuit relates the voltage waves incident on the ports to 

those reflected from the ports [Pozar, 1998]. Figure 3.54 shows rectangular plots of the 
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magnitude of the S-Parameters S(1,1) and S(2,1) for a frequency range of 4.5 GHz to 6.5 

GHz. Since the structure exhibits symmetry, S(1,2) and S(2,2) parameters exhibit the 

same behavior as S(2,1) and S(1,1) respectively. The magnitude of S(1,1) is -27.49 dB 

and the magnitude of S(2,1) is -0.11 , which satisfies with the requirements of a good RF-

shoke network at 5.85 GHz. At the input port of the amplifier and at the output port of the 

RF-shoke are 2 DC block capacitors with a capacitance of 0.1 µF with the purpose of 

protecting the RF signal source and the RF output sink from DC power. 

 
Figure 3.53 Layout of RF-Choke Circuit 
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Figure 3.54 Magnitude of S-Parameters S(1,1) and S(2,1) for Simulated Bias-
T Circuit 

 
 
 A simulation of the power divider network circuit with Bias-T was performed to 

test the performance of the circuit and compare the results with the required system 

parameters. Figure 3.55 shows 4 rectangular plots of the magnitude of the S-Parameters 

for all the 5 ports of the circuit. The magnitude of S(1,1) is -10.27 dB for a frequency of 

5.85 GHz, which satisfies the requirement of VSWR lower than 2. In the case of the 

input-output port relationship, the magnitude of S(2,1), S(3,1), S(4,1), and S(5,1) shows a 

circuit gain of 10 dB, which also fulfills the condition of at least 5 dB gain needed to 

deliver a considerable amount of power signal into the LO input port of the mixers. The 

magnitude of S(2,2), S(3,3), S(4,4) and S(5,5) is -16.12 dB but since the magnitudes of 

S(1,2), S(1,3), S(1,4), and S(1,5) are very small (around -28 dB), the reflections at the 

output ports have very little effect on the return loss of the circuit. Another important 

circuit requirement is guaranteeing zero phase error between the output ports of the 

circuit, since phase coherency is a very crucial characteristic in the implementation of a 

PAA. Figure 3.56 shows a rectangular plot of the phase of S(2,1), S(3,1), S(4,1), and 

S(5,1) as a function of frequency. The phase plot is equal for S(2,1), S(3,1), S(4,1), and 

S(5,1) over all the frequency range of 4.5 GHz to 6.5 GHz, which assures phase 

coherency between the output ports. The phase value for the transmission S-Parameters at 

a frequency of 5.85 GHz is 172.15º. 
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Figure 3.55 Magnitude of S-Parameters for Simulated Power Divider 
Network 
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Figure 3.56 Phase of S-Parameters S(2,1), S(3,1), S(4,1), and S(5,1) for 
Simulated Wilkinson Power Divider 

 
 After performing the simulations of the power divider network and confirming a 

fulfillment of the system requirements, the next step in the development of the RF up-

conversion stage was the construction of the circuit. Figure 3.57 shows the circuit layout 

of the power divider network. With the help of Ansoft Designer’s export utility, the *.dxf 

layout file was generated containing all the information necessary to construct a physical 

representation of the developed design. This *.dxf file is imported to Circuit CAM 

Software, which calculates the trajectory path of the router’s drills in order to make the 

construction of the microwave circuit possible and stores this information into a *.cam 

file. The LPKF H-100 router was used to construct all the microwave circuits, including 

the antenna array. A router is a machine used to construct a PCB based on a layout file 

containing the PCB design. The BoardMaster software controls the operation of the 

HP1000 router using the file generated by Circuit CAM software. Figure 3.58 shows a 
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picture of the constructed power divider network circuit. The printed circuit board (PCB) 

has rectangular dimensions of 116 mm x 90 mm. The distance between each output port 

of the Power Divider circuits is 26.6 mm, which is the inter-element distance between 

each antenna in the rectangular patch antenna array. Table 3.26 contains information of 

the components and the physical dimensions of the transmission lines in the Power 

Divider Network. An additional BNC connector was incorporated to provide the DC 

power supply port for the amplifiers in the circuit.  

   

Figure 3.57 Layout of Power Divider circuit 
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Figure 3.58 Picture of the Power Divider circuit 

 
 

TABLE 3.26 Parameters of the Power Divider circuit 

Parameter Value 

Wilkinson Power Dividers (WPD) 

Width of 50 transmission lines 1.7316 mm 

Width of 50*√2 transmission lines 0.9444 mm 

Length of λ/4 lines 7.8711 mm 

Length of transmission lines 
interconnecting 1st WPD with 2nd WPD 

42.5232 mm 

Length of transmission lines 
interconnecting 2nd WPD with amplifiers 

19.291 mm 

Resistance of WPD resistor 100 Ω 

Amplifier Stage 

Capacitance of DC Block Capacitors 0.1 µF 
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Capacitance of Bypass Capacitors 220 pF 

Width of  λ/4 High Impendance 
Transmission Lines in Bias-T 

0.3171 mm 

Length of λ/4 High Impedance 
Transmission Lines in Bias-T 

4.0865 mm 

Width of Low Impendance Line Section of 
Bias-T 

3.03491 mm 

Resistance of Bias Resistor 100 Ω 

Power Supply Voltage 8 V 

 

 After constructing the 5 Power Divider Network circuits, the S-Parameters for 

each cricuit were measured to verify them with the results obtained in Ansoft Designer 

V2. The S-Paremeters of the circuits were tested using the Agilent 8510C Network 

Analyzer. The frequency range used to test the antennas was form 4.5 GHz to 6.5 GHz 

with a resolution of 201 frequency points. The test results were stored in citifile format 

files. A MATLAB file function named sp_read(datafile,matfile) (shown in Appendix A) 

was created to read the datafile file, retrieve the S-Parameter data, and store the data in a 

matfile.mat file. Figure 3.59 shows a rectangular plot of the S-Parameter S(1,1) for the 5 

Power Divider Network circuits. The circuit with the highest S(1,1) magnitude at 5.85 

GHz is Circuit 5 with -12.69 dB, which ensures that all the Power Divider Network 

circuits satisfy the requirement of VSWR lower than 2. Figure 3.60 shows a rectangular 

plot of the S-Parameters S(2,1), S(3,1), S(4,1) and S(5,1) for 5 Power Divider Network 

circuits. The plot uses the same legend as the plot in Figure 3.53. The average value of 

the gain of each output channel of the circuits is 4.78 dB for 5.85 GHz. Even though the 

gain is not 5 dB for every channel, gain compensation can be performed by the DBF at 
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the mixer stage. Finally, Figure 3.61 shows a rectangular plot of the phase of S-

Parameters S(2,1), S(3,1), S(4,1) and S(5,1) as a function of frequency. The average value 

of the phase of each output channel of the circuits is -97.56 for 5.85 GHz. The larges 

phase error between two output of any of the output channels is 80º. Still, this relative 

phase error can be compensated by the DBF at the mixer stage of the RF up-converter. 

Table 3.27 shows important S-Parameters values of Power Divider Circuit for 5.85 GHz. 

 

Figure 3.59 Magnitude of S(1,1) for all constructed Power Divider circuits 
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Figure 3.60 Magnitude of S(2,1), S(3,1), S(4,1), and S(5,1) for all constructed 
Power Divider circuits 

 

Figure 3.61 Phase of S(2,1), S(3,1), S(4,1), and S(5,1) for all constructed 
Power Divider circuits 
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TABLE 3.27 S-Parameters for Constructed Power Divider Network Circuits 
at 5.85 GHz 

S-Parameter Circuit 1 Circuit 2 Circuit 3 Circuit 4  Circuit 5 

Magnitude of S(1,1) -15.37 dB -18.75 dB -13.33 dB -13.83 dB -12.69 dB 

Magnitude of S(2,1) 4.72 dB 4.61 dB 4.30 dB 5.33 dB 4.42 dB 

Magnitude of S(3,1) 4.83 dB 4.86 dB 4.23 dB 5.36 dB 4.78 dB 

Magnitude of S(4,1) 5.04 dB 5.09 dB 4.05 dB 4.96 dB 5.04 dB 

Magnitude of S(5,1) 5.07 dB 5.17 dB 4.04 dB 4.86 dB 4.80 dB 

Phase of S(2,1) -99.06º -63.02º -121.95º -91.18º -116.42º 

Phase of S(3,1) -90.37º -53.64º -133.12º -88.26º -119.24º 

Phase of S(4,1) -98.23º -55.30º -128.02º -89.55º -119.16º 

Phase of S(5,1) -94.53º -53.35º -133.00º -88.26º -115.43º 

 

 The second circuit designed for the RF up-conversion stage combines the mixer 

stage and the power amplification stage into a single PCB. Each circuit contains 4 

channels meaning that a total of 4 circuits are needed to implement the PAA with the 16-

element rectangular patch antenna array. The mixer stage was implemented the Hittite 

HMC488MS8G Mixer. This IC mixer comes with an integrated amplifier to improve the 

gain of the LO signal prior mixing the two incoming signals. The mixer operates with an 

LO signal with a frequency range of 5.0 GHz to 6.0 GHz and an IF signal from DC to 2.5 

GHz. The conversion loss of the mixer, which is the power ratio between the RF output 

signal and the IF input, is typically 8 dB. The mixer requires an external 10 nF bypass 

capacitor at the power supply terminal. The power amplification stage is implemented 
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using the Hittite HMC407MS8G Power Amplifier. This power amplifier operates at a 

frequency range of 5.0 GHz to 7.0 GHz, with a gain of 15 dB, and a saturated power of 

+29 dBm. The power amplifier has an integrated power down capability pin, which can 

be used to power down the amplifier when transmission is not required reducing the 

consumption of the 230mA of supply current. The amplifier has a thermal paddle at the 

bottom, which needs to be connected to the ground of the circuit in order to improve the 

heat dissipation of the component. Three 220 pF bypass capacitors and a 2.2 µF Tantalum 

capacitor are needed at the voltage supply terminals to assure proper operation.  

 

 The mixer, which is the first stage in the second circuit, is a nonlinear device. 

Thus, the S-Parameter simulation, which is a linear operation calculating voltage ratio 

between circuit ports, cannot be performed. Still, the Ansoft Designer V2 software was 

used to construct the layout diagram. Transmission lines between the mixers and the 

power amplifiers were designed to satisfy the requirement of good 50Ω-impedance match 

at 5.85 GHz. Figure 3.62 shows the layout diagram of the second circuit. The circuit was 

constructed using the Circuit CAM software, the BoardMaster software and the H-100 

router. Figure 3.63 shows the constructed circuit. Two signal generators and a spectrum 

analyzer were used to test the performance of the 4 constructed circuits. An IF signal of 0 

dBm at 3 MHz and a LO signal of 0 dBm at 5.85 GHz were used as input to the circuit. 

Table 3.28 shows the power obtained at the output of each channel in the 4 circuits. Even 

though the relative power difference between each circuit is not zero, the IF signal 
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coming from the DBF stage can be used to compensate for gain differences between the 

channels of the PAA. 

 
Figure 3.62 Layout of Mixer and Power Amplifier Circuit 

 

 

Figure 3.63 Picture of Mixer and Power Amplifier Circuit 
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TABLE 3.28 Power Gain of each PAA channel in the second circuit 

Channel Gain 
Circuit 1 

Gain  
Circuit 2 

Gain 
Circuit 3 

Gain 
Circuit 4 

Output Channel 1 1.33 dB 0 dB -0.5 dB 0.5 dB 

Output Channel 2 0.83 dB 1.8 dB -1.5 dB -1.5 dB 

Output Channel 3 0.83 dB -1.3 dB -0.4 dB -1.5 dB 

Output Channel 4 0.5 dB 1 dB -1.5 dB -1.5 dB 

 

3.4.3 Rectangular Patch Antenna Array 
 

The rectangular patch antenna array used in the PAA transmitter consists of 4 x 4 array of 

microstrip patch antennas spaced in each axis by half-wavelength. Each patch antenna 

element has square dimensions of half-wavelength by half-wavelength. The antenna 

resonates at a frequency of 5.85 GHz with linear polarization. The antennas are fed by a 

coaxial probe feed connected through the PCB and attached to the ground plane of the 

array. The position of the inner conductor of the coaxial cable was placed at with respect 

to one of the edges to match the impedance of the antenna with the impedance of the 

system, which is Z0 = 50 Ω. The antenna array was designed by Prof. Rafael Rodriguez-

Solis. The parameters of the antenna array are summarized in Table 3.29. 

TABLE 3.29 Parameters of the Rectangular Patch Array 

Parameter Value 

Length of Patch Antenna 16.5 mm 

Width of Patch Antenna 16.5 mm 
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Inter-element spacing in x-axis and y-axis 25.6 mm 

Distance of probe feed in the x-axis 8.3 mm 

Distance of probe feed in the y-axis 10.77 mm 

 

 The simulation of the antenna array was performed using Ansoft Designer V2, 

which calculates the S-Parameters and the current distribution of the antennas using the 

method of moments. The S-Parameters for the antenna port, which for a one-port network 

is S(1,1), determines the amount of power loss as a result of impedance mismatch 

between the RF Up-conversion stage and the antenna. The current distribution in the 

antenna determines the type of polarization exhibited in the waves radiated or received by 

the antenna. Also, the Fourier Transform relates the current distribution along the antenna 

to its far-field pattern. The simulation was performed in a frequency range of 4.5 GHz to 

6.5 GHz. Figure 3.64 shows the magnitude of the S-Parameter S(1,1) for all the antenna’s 

in the rectangular array. The magnitude of S(1,1) -32.19 dB for a frequency of 5.85 GHz, 

thus satisfying the requirement for a S(1,1) magnitude lower than -10 dB, which is a 

Voltage Standing Wave Ratio (VSWR) smaller than 2. The Electric Field (E-Field) 

pattern of the array, shown in Figure 3.65, has a beamwidth of 24.5º with sidelobe levels 

of -13.8dB. The E-Field magnitude in the x-direction (Ex) and the E-Field magnitude in 

the y-direction (Ey) plots are show in Figure 3.66 for a field φ-plane cut of 0º. Since the 

magnitude of Ey is *20 dB lower than the magnitude of Ex, the antenna array exhibits 
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linear polarization in the direction of Ex. Figure 3.67 shows the layout of the patch 

antenna array. 

 

Figure 3.64 Magnitude of S(1,1) for antennas in Rectangular Patch Array 
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Figure 3.65 Magnitude of E-Field for antennas in Rectangular Patch Array 
on Plane Cut of φ = 0º and φ = 90º 

 

Figure 3.66 Magnitude of E-Field Components Ex and Ey 
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Figure 3.67 Layout of Rectangular Patch Antenna Array 

 

 

 Since the antenna array simulations results satisfied the specified requirements in 

terms of bandwidth and beam pattern characteristics, the next step in the process of 

implementing the PAA was the construction of the rectangular patch antenna array. 

Figure 3.68 shows a picture of the constructed rectangular patch array antenna. The S-

Parameters for each antenna port in the constructed array was measured to verify the 

reflection coefficient of the antennas and compare them with the simulation results 

obtained in Ansoft Designer V2. The S-Paremeters of the antennas were tested using the 

Agilent 8510C Network Analyzer. The frequency range used to test the antennas was 

form 4.5 GHz to 6.5 GHz with a resolution of 201 frequency points. The test results for 

each antenna were stored in citifile format files. A MATLAB file function named 

sp_read(datafile,matfile) (shown in Appendix A) was created to read the datafile file, 
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retrieve the S-Parameter data, and store the data in a matfile.mat file. Figure 3.69 shows a 

rectangular plot of the S-Parameter S(1,1) for all the antennas in the rectangular array. 

The Return Loss for a frequency of 5.85 GHz, which is the RF carrier frequency used in 

the microwave transmitter, is larger than 10 dB satisfying the system requirement of an 

antenna array with a VSWR smaller than 2. 

 

 
Figure 3.68 Picture of Rectangular Patch Antenna Array 
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Figure 3.69 Magnitude of S(1,1) for antennas in constructed Rectangular 
Patch Antenna Array 

 

3.4.4 PAA Measurement Results 
 

After each PAA component was tested and fulfilled the specified system 

requirements, the last stage of this thesis project involved the measurement of the PAA 

transmitter’s radiation pattern. The radiation pattern measurement was performed using 

the NSI spherical near-field measurement system located in an anechoic chamber on the 

Radiation Laboratory in Stefani Building Room 120. The measurement data was 

extracted using the NSI 2000 Software and processed using MATLAB program called 

pattern_read() (shown in Appendix A). The first measurement was performed on an 

antenna array composed of the LO Feed Network connected to the 16-element patch 
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antenna array. The simulated top-view radiation pattern plot of this antenna array is 

shown in Figure 3.70. The beam pattern plot calculation considers changes in the 

antenna’s current distribution produced by the relative gain and phase difference 

experimented by the LO feed network circuits. Figure 3.80 shows the measured top-view 

beam pattern plot, where the drift experimented in the main beam’s angular position is 

approximately two degrees from broadside. 

 

Figure 3.70 Simulated Top-View Polar Beam pattern Plot of the 16-element 
patch rectangular array with the LO Feed Network 
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Figure 3.71 Measured Top-View Polar Beam pattern Plot of the 16-element 
patch rectangular array with the LO Feed Network 

 
The second measurement was performed on the PAA transmitter, which is composed 

of the DBF Transmitter, LO Feed Network, the Mixer/Power Amplification Stage, and 

the 16-element rectangular patch array. A picture of the PAA transmitter (without DBF 

Transmitter) is shown in Figure 3.72. Figures 3.73 and 3.74 show the simulated and 

measured beam pattern plot of the PAA transmitter, respectively. The drift in the main 

beam’s angular position is still approximately two degrees from broadside. An increase in 

sidelobe power levels was found in the measured beam pattern plot. Since these increase 

was not experienced in the first measurement, the gain and phase changes in the antenna 

element’s current distribution is being significantly affected by the mixer/power 

amplification stage. To correct this problem, each channel of the PAA transmitter must 

be properly calibrated. 
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Figure 3.72 Picture of the PAA Transmitter 
 

 

Figure 3.73 Simulated Top-View Polar Beam pattern Plot of Constructed 
PAA Transmitter 
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Figure 3.74 Measured Top-View Beam pattern Plot of Constructed PAA 
Transmitter 

 
The last measurement was performed on the PAA Transmitter, where the DBF 

Transmitter implements the spatial filter discussed in Section 3.3.1. The spatial filter was 

constructed based on a uniform amplitude distribution with the MRA angle-of-

transmission of φ = 0º and θ = 30º. Figure 3.75 shows the simulated top-view beam 

pattern plot of the PAA with the DBF Transmitter implementing the spatial filter. 

Differences between this beam pattern plot and the beam pattern plot shown in the 

simulation results on Figure 3.37 can be found, which result from using a non-isotropic 

element (patch antenna) as the sensor array and gain/phase changes introduced by the 

linear amplifiers in the LO feed network and the Mixer/Amplification Stage. The 

measured beam pattern plot in the anechoic chamber is shown in Figure 3.76. The MRA 
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angle-of-transmission of the resulting beam pattern points at φ = 5.4º and θ = 35.1º, 

which represents an error of approximately 5 degrees in each angular direction. The 

measured results still show an increase in sidelobe levels, which is produced from 

gain/phase changes introduced by the rf components in the RF Conversion Stage. Figure 

3.77 and Figure 3.78 show surf plots of the simulated and measured PAA Transmitter 

beam pattern magnitude, respectively. 

 

Figure 3.75 Simulated Top-View Beam pattern Plot of PAA Transmitter with 
Uniform Amplitude Distribution pointing at φMRA  = 0º and θMRA  = 30º  
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Figure 3.76 Measured Top-View Beam pattern Plot of PAA Transmitter with 

Uniform Amplitude Distribution pointing at φMRA  = 0º and θMRA  = 30º 
 

  
Figure 3.77 Simulated Surf Plot of Beam pattern Magnitude for a PAA 

Transmitter with Uniform Amplitude Distribution poi nting at φMRA  = 0º and 
θMRA  = 30º  
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Figure 3.78 Measured Surf Plot of Beam pattern Magnitude for a PAA 

Transmitter with Uniform Amplitude Distribution poi nting at φMRA  = 0º and 
θMRA  = 30º 



 
 
 

 
 

 169 

 

4 CONCLUSIONS AND FUTURE WORK 
 

4.1 Conclusions 
 

After comparing the beam pattern results obtained for the theoretical, simulated and 

measured data, it can be seen that the Digital Beamformer has proven to be a versatile 

option as a controller for a Phased Array Antenna. The PAA measured results obtained 

showed an increase in sidelobe level due to the gain/phase changes in the linear 

amplifiers, mixers, and power amplifiers. This can be corrected by calibrating each 

channel of the PAA, where the error introduced by the RF components in the current 

distribution on the antennas of the array is considered in the calculation of the complex 

weight of each DBF channel. Thus, the digital implementation of the control architecture 

in the PAA provides flexibility in the design of each stage, making it suitable for 

applications where controlling special requirements in the beam pattern of a sensor array 

is necessary. The DBF transmitter and receiver design model can be derived from the 

mathematical model describing a far-field plane wave intersecting an array of sensors. If 

the bandwidth of the signal is small compared to the maximum travel time of the plane 

wave across the antenna array, the narrowband beamformer model can be employed in 

the implementation of a PAA.  
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Compared to the Delay-and-Sum Beamformer model, which uses time delays in each 

channel as a means of creating the beam pattern, the Narrowband Beamformer model can 

be expressed as a Finite Impulse Response (FIR) spatial filter with complex coefficients 

operating on a space-time signal. In the case of the antenna array, the weight coefficients 

control the amplitude and relative phase of the current in the antennas. Since the current 

distribution is related to the beam pattern of an antenna by the Fourier Transform, a 

synthesized beam pattern can be implemented by carefully choosing the coefficients of 

each antenna channel in the array. The resulting spatial filter, thus, can be used in the 

DBF receiver or transmitter to create a beam pattern based on the geometrical distribution 

of the antennas in the array. The results obtained in each simulation prove the versatility 

of the DBF in implementing the control of a PAA. Different spatial filters were tested, 

where each one represented particular beam pattern characteristics. The simulations, 

which were performed in MATLAB’s Simulink using software code representing FPGA 

hardware based on Xilinx’s System Generator for DSP Blockset, gave results closely 

matching the results obtained from a theoretical DBF. After obtaining successful 

simulations results, the System Generator for DSP tool was used to transform the DBF 

transmitter design into VHDL code. The resulting code was used to program the FPGA in 

the digital processing board. 

 

Another advantage offered by the DBF is its independence on the geometrical 

distribution of the array. A DBF with an N-channel capacity is able to operate on a PAA 
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with N-elements, not mattering if the N elements are distributed linearly, rectangularly, 

cubically, etc. The calculation of the weight coefficients of the spatial filter is the 

operation which considers the geometrical distribution of the array. As for the physical 

implementation of the PAA, the RF up-conversion stage and the antenna array were 

designed and constructed based on the system requirements of a microwave transmitter 

operating in the C band frequency. The RF up-conversion stage was implemented using 

two microwave circuits: a power divider circuit which distributed the LO signal into each 

antenna channel and a mixer/power amplification signal which performed the RF 

modulation and amplification of the RF signal before the antenna array stage. The 

simulations and the testing results of both circuits satisfied most of the system 

requirements of the PAA microwave transmitter. The relative amplitude and phase errors 

found between antenna channels may be corrected in the DBF transmitter stage. The 

rectangular antenna array also fulfilled the system requirements, providing a good return 

loss at the RF carrier frequency for a system impedance of 50Ω. 

 

4.2 Future Work 
 

Even though the design of the DBF receiver and transmitter was greatly simplified, 

future work should be addressed on improving the DBF design in terms of component 

reduction. The presented DBF model is a scalable model, capable of being implemented 

for any array size, as long as the spatial filter weight coefficient calculation has 
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considered the number of elements and the geometrical distribution of the antenna array. 

Still, a large PAA with very strict beam pattern requirements might prove to be costly and 

complex in terms of system integration. Alternative PAA designs must be considered, 

where reducing the complexity of the design should lie on how rigorous the system 

requirements of the application containing the PAA are. For example, if the system 

requires a beam pattern with a single MRA beam and MRA steering control, the 

progressive phase shift nature found in the currents of the antenna array can be exploited 

to reduce the complexity of the PAA system. Figure 4.1 shows a diagram of a simplified 

PAA implementation for a single MRA-beam beam pattern known as row-column 

phasing architecture [Corey, 1996]. The PAA uses a phase-shifted LO signal and a phase-

shifted IF signal to generate the progressive phase shift necessary to steer the beam into a 

desired direction. If the LO signal is mixed twice, where one mixing stage adds the 

relative phase shift in the x-axis and the second mixing stage adds the relative phase shift 

in the y-axis (Eq. 3.12), theoretically an L*M antenna array can be controlled by 

processing L+M  IF signals in the DBF stage. Still, the condition of a fixed amplitude 

value in the input of the mixers might limit the dynamic range of the weight coefficient’s 

amplitude in the DBF transmitter. 
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Figure 4.1 Diagram of PAA with single MRA beam and steering capability 
 
 
 Also, future work should be concentrated on the scalability of the DBF receiver 

and DBF transmitter. Although the FPGA provided flexibility in the creation of the DBF 

design, a system topology where ICs are used in certain substages of the DBF might 

reduce the cost of implementing a PAA. For example, semiconductor companies such as 

TI and Analog Devices provide ICs such as GC5016 (TI) and AD6654 (Analog Devices) 

which perform the Digital Down-conversion and Digital Up-conversion at high speeds. 

Some ICs may even have an integrated ADC/DAC and provide the two conversion 

modes into a single chip. Still, an FPGA would be very useful in performing the 
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necessary “gluelogic” in order to interconnect the different digital devices in the DBF 

receiver/transmitter. The FPGA’s use as an interconnection component versus a signal 

processing component might increase its capacity in terms of number of DBF channels 

interconnected by a single FPGA. If low sampling frequencies can be obtained on the 

signal processing stage in the DBF, a DSP can be used to perform weight coefficient 

calculation. 

 

 Finally, the use of an analog pre-processor might improve the performance of a 

PAA with strict system requirements. RF Discrete Lens Antenna Arrays (DLAA) might 

be used to transform the signals from an element-space domain into a beamspace signal 

domain, were each signal in the DBF receiver or transmitter represents beams that are 

separated by space instead of being signals separated by distance. In this approach, a 

spatial filter with real coefficients might satisfy the beam pattern characteristics of the 

PAA. However, the use of a DLAA requires a change in the way signals are processed 

inside the DBF [Torres, 2005]. Algorithms which only considers power incidence at the 

antennas on the focal surface of the DLAA are suitable for this type of systems.   
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APPENDIX A.  MATLAB CODE FILES 

 
%% File: linear_steering_array.m 
 
clear; 
clc; 
 
% Number of Elements 
N = 4; 
 
% Antenna Array Vector 
n = 0:(N-1); 
 
% MRA Angle Theta 
theta_d = 45; 
sai_d = pi*cos(theta_d*pi/180); 
 
% Weight Coefficients 
w = (1/N)*exp(j*(n.'-(N-1)/2)*sai_d); 
 
% Parameters prior sampling of the Beampattern 
sample = 1000; 
theta = 0:(180/sample):180; 
sai = pi*cos(theta*pi/180); 
 
% Calculation of the Beampattern 
SA = 0; 
BSA_max = 0; 
for k=1:length(theta) 
     
    v = exp(j*(n - (N-1)/2)*sai(k)); 
    v_sai(:,k) = v.'; 
     
    B(k) = w'*v_sai(:,k); 
     
    SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180); 
     
    if(abs(B(k))>BSA_max) 
        BSA_max = abs(B(k)); 
    end 
     
end 
 
% Calculation of Directivity 
D = 10*log10(BSA_max.^2/SA); 
 
B_max = max(B); 
Bl_max = 20*log10(B_max); 
B_min = min(B); 
Bl_min = 20*log10(B_min); 
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% Calculation of Beamwidth 
B_3dB = B_max/2; 
theta_beam = theta([abs(B)]>=B_3dB); 
Beamwidth_theta = theta(610)-theta(1); 
 
% Result Figures 
figure(1) 
polar(theta*pi/180,abs(B)); 
 
figure(2) 
plot(theta,20*log10(abs(B))); 
 
%% File: linear_DBFreceiver_parameters.m 
 
% Information Signal 
fis = 0; 
sig_ts = 1e-9; 
samp_period = 100; 
 
% Carrier Signal 
fif = 3e6; 
i_phase = pi/2-2*pi*(fif)*(3/200e6); 
 
% ADC Parameters 
adc_ts = 1/200e6; 
adc_bit_res = 14; 
adc_point_res = 12; 
 
% Operation Precision Parameters 
% Adder Block Parameters 
add_bit_width = 14; 
add_point_width = 12; 
% Multiply Block Parameters 
mult_bit_width = 18; 
mult_point_width = 16; 
mult_latency = 3; 
% Operator Parameters 
prec_bit_width = 18; 
prec_point_width = 16; 
 
% Antenna Weights and Digital Beamformer 
w_amp = abs(w); 
phase_res = 8; 
w_phase_d = angle(w)*180/pi; 
w_phase_r = angle(w); 
bit_phase = w_phase_r*2^phase_res/(2*pi); 
db_ts = 1/50e6; 
wamp_bit_res = 16; 
wamp_point_res = 14; 
wphase_bit_res = phase_res; 
wphase_point_res = 0; 
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% Max Time Delay 
plane_wave_angle = 0; 
ant_spacing = 0.5; 
fant = 8.2e9; 
maxt = ant_spacing/fif; 
sim_t = 1e-5; 
slope_t = maxt/sim_t; 
 
% DDS Parameters 
output_width = 32; 
flo = fif; 
ddc_ts = adc_ts; 
npi = flo*ddc_ts; 
 
% Scope Parameters 
scope_ts = 1e-11; 
scope_sig = 1e-11; 
 
% Latency Repair 
lat_n = 12; 
lat_time = lat_n*100e-9; 
total_time = lat_time+sim_t; 
 
% CIC Specs 
d_sample = db_ts/adc_ts; 
n_stages = 8; 
cic_lat = 8; 
diff_delay = 2; 
force_bit_width = 45; 
scale_factor = 0; 
 
% Butterworth Analog Filter for post-processing 
[Nb,Wnb]=buttord(3e6*db_ts,4e6*db_ts,3,25); 
[Bb,Ab]=butter(Nb,Wnb); 
 
% Gain of IF Signal prior Time Delay 
K2 = 0.99; 
K1 = 1; 
 
%% File: linear_DBFreceiver_results.m 
 
clear all; 
clear; 
 
% load MAT Files 
load signal_out_0; 
load signal_out_1; 
load signal_out_2; 
load signal_out_3; 
load signal_out_4; 
load signal_out_5; 
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% Simulation Parameters 
total_time = 1e-5; 
db_ts = 1/50e6; 
delta_index = total_time/db_ts; 
angle_low_index = 251; 
angle_high_index = angle_low_index+delta_index; 
mag_low_index = 310; 
mag_high_index = mag_low_index+delta_index; 
phase_low_index = 310; 
phase_high_index = phase_low_index+delta_index; 
 
% Retrieving Beampattern Results 
angle = [fliplr(angle_0_90(2,angle_low_index:angle_high_index)) 
angle_90_180(2,(angle_low_index+1):angle_high_index)]; 
mag = [fliplr(mag_0_90(2,mag_low_index:mag_high_index)) 
mag_90_180(2,(mag_low_index+1):mag_high_index)]; 
mag = mag/max(mag); 
phase = [fliplr(phase_0_90(2,phase_low_index:phase_high_index)) 
phase_90_180(2,(phase_low_index+1):phase_high_index)]; 
 
% Calculation of Directivity in Beampattern 
SA = 0; 
BSA_max = 0; 
for k=1:(length(angle)-1) 
 
    SA = SA + 0.5*mag(k).^2*sin(angle(k)*pi/180)*(angle(k+1)-angle(k))*(pi/180); 
 
    if(mag(k)>BSA_max) 
        BSA_max = mag(k); 
    end 
     
end 
D = 10*log10(BSA_max.^2/SA); 
 
% Result Figures 
figure(1) 
polar(angle*pi/180,mag); 
 
figure(2) 
plot(angle,20*log10(mag)); 
 
%% File: linear_DBFreceiver_nullplacer.m 
 
clear; 
clc; 
 
% Number of Antennas 
N = 4; 
 
% Generation of Antenna Array Vector 
n = 0:(N-1); 
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% Calculation of Weight Coefficients based on Null Placement parameters 
Bd = [1 zeros(1,N-1)]; 
MRA = 0; 
Nulls = [30 60 100]; 
theta_d = [MRA Nulls]; 
sai_d = pi*cos(theta_d*pi/180); 
 
for k=1:length(theta_d) 
     
    v = exp(j*(n - (N-1)/2)*sai_d(k)); 
    v_sai_d(:,k) = v.'; 
     
end 
 
w = (inv(v_sai_d))'*Bd'; 
 
 
% Parameters prior sampling of the Beampatter 
sample = 1000; 
theta = 0:(180/sample):180; 
sai = pi*cos(theta*pi/180); 
 
% Calculation of the Beampattern 
SA = 0; 
BSA_max = 0; 
for k=1:length(theta) 
     
    v = exp(j*(n - (N-1)/2)*sai(k)); 
    v_sai(:,k) = v.'; 
     
    B(k) = w'*v_sai(:,k); 
     
    SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180); 
     
    if(abs(B(k))>BSA_max) 
        BSA_max = abs(B(k)); 
    end 
     
end 
 
 
% Calculation of the Directivity 
D = 10*log10(BSA_max.^2/SA); 
 
 
B = B/max(B); 
 
B_max = abs(max(B)); 
Bl_max = 20*log10(B_max); 
B_min = abs(min(B)); 
Bl_min = 20*log10(B_min); 
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% Result Figures 
figure(1); 
plot(theta,20*log10(abs(B))); 
axis([0 180 Bl_min-3 Bl_max+4]); 
 
figure(2); 
polar(theta*pi/180,abs(B)); 
 
%% File: linear_DBFtransmitter_taylor.m 
 
clear; 
clc; 
 
% Number of Antennas 
N = 16; 
 
% Inter-element Spacing (in lambda terms) 
d = 0.5; 
 
% Generation of Array Vector 
n = 0:(N-1); 
 
% Parameters of Taylor Amplitude Function 
R_l = 20; 
R = 10^(R_l/20); 
 
A = acosh(R)/pi; 
n_l = 4; 
 
 
% Calculation of Taylor Amplitude Function based on Null-placement Method 
Nulls = []; 
if (round(N/2)-N/2)==0.5 
     
    for k=1:(N-1)/2 
         
        Nulls(k)=2*pi/N*(n_l*sqrt((A^2+(k-0.5)^2)/(A^2+(n_l-0.5)^2))); 
         
    end 
     
    Nulls = [Nulls -1*Nulls]; 
     
    % MRA Broadside 
    MRA = pi*cos(90*pi/180); 
     
    sai_d = [MRA Nulls]; 
     
    Bd = [1 zeros(1,N-1)]; 
     
else 
     
    theta_d = [89.9 90.1]; 
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    u_d = cos(theta_d*pi/180); 
     
    Bd = sin(N*d*u_d)./(pi*N*d*u_d); 
     
    for k=1:(N-1)/2 
         
        Nulls(k)=2*pi/N*(n_l*sqrt((A^2+(k-0.5)^2)/(A^2+(n_l-0.5)^2))); 
         
    end 
     
    Nulls = [Nulls -1*Nulls]; 
     
    sai_d = [pi*u_d Nulls]; 
     
    Bd = [Bd zeros(1,N-2)]; 
     
end 
 
 
for k=1:length(sai_d) 
     
    v = exp(j*(n - (N-1)/2)*sai_d(k)); 
    v_sai_d(:,k) = v.'; 
     
end 
 
w_t = (inv(v_sai_d))'*Bd'; 
 
% Calculation of MRA Beam Direction 
theta_d = 82; 
sai_d = pi*cos(theta_d*pi/180); 
 
w = w_t.*exp(j*(n.'-(N-1)/2)*sai_d); 
 
% Parameters prior sampling of the Beampattern 
sample = 1000; 
theta = 0:(180/sample):180; 
sai = pi*cos(theta*pi/180); 
 
% Calculation of Beampattern 
SA = 0; 
BSA_max = 0; 
for k=1:length(theta) 
     
    v = exp(j*(n - (N-1)/2)*sai(k)); 
    v_sai(:,k) = v.'; 
     
    B(k) = w'*v_sai(:,k); 
     
    SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180); 
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    if(abs(B(k))>BSA_max) 
        BSA_max = abs(B(k)); 
    end 
     
end 
 
% Calculation of Directivity 
D = 10*log10(BSA_max.^2/SA); 
 
 
% Result Figures 
figure(1) 
polar(theta*pi/180,abs(B)); 
 
figure(2) 
plot(theta,20*log10(abs(B))); 
 
 
% File: linear_DBFtransmitter_parameters.m 
 
% Information Signal 
sig_ts = 1e-8; 
 
% Information Signal 
output_width = 16; 
fis = 1e6; 
db_ts = 1/10e6; 
npi = fis*db_ts; 
 
% Antenna Weights and Digital Beamformer 
phase_res = 8; 
w_amp = abs(w); 
w_phase_d = angle(w)*180/pi; 
w_phase_r = angle(w); 
bit_phase = w_phase_r*2^phase_res/(2*pi); 
wamp_bit_res = 16; 
wamp_point_res = 14; 
wphase_bit_res = 8; 
wphase_point_res = 0; 
w_phase_d_corr = round(bit_phase)*2*pi/(2^phase_res)*180/pi; 
 
% DAC 
dac_ts = 1/100e6; 
dac_bit_res = 14; 
dac_point_res = 12; 
 
% System Frequencies 
fc = 8.2e9; 
fif = 3e6; 
error_index = 0; 
i_phase = pi/2-(2*pi*fif)*(1e-8)*error_index; 
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% DDS Parameters 
output_width = 16; 
flo = fif; 
duc_ts = dac_ts; 
npd = flo*duc_ts; 
 
% Max Time Delay 
plane_wave_angle = 0; 
ant_spacing = 0.5; 
maxt = (fc/fif)*ant_spacing/fc; 
sim_t = 1e-5; 
slope_t = maxt/sim_t; 
 
% DUC Filter Specs 
filter_order = 30; 
factor = 10; 
u_sample = db_ts/dac_ts; 
hp = u_sample*fir1(filter_order,1/(factor*u_sample)); 
filter_lat = 15; 
 
% CIC Specs 
n_stages = 2; 
cic_lat = 2; 
diff_delay = 2; 
force_bit_width = 18; 
scale_factor = -2; 
 
% Scope Parameters 
scope_ts = 1e-8; 
scope_sig = 1e-8; 
 
% Latency Repair 
lat_duc_n = 3 + filter_lat; 
lat_db_n = 8; 
lat_time = (lat_duc_n+filter_order)*duc_ts+lat_db_n*db_ts; 
total_time = lat_time+sim_t; 
 
% Operation Precision 
add_bit_width = 14; 
add_point_width = 12; 
mult_bit_width = 18; 
mult_point_width = 16; 
prec_bit_width = 16; 
prec_point_width = 14; 
 
% Transforming Weight Matrix into vector form 
w_amp = reshape(w_amp,sqrt(N),sqrt(N)).'; 
bit_phase = reshape(bit_phase,sqrt(N),sqrt(N)).'; 
 
%% File: linear_DBFtransmitter_results.m 
 
clear; 
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clc; 
 
% Load MAT FILE 
load TRANSMITTER; 
 
% Removing Transient State of Transmission Signal 
total_time = 2e-5; 
sim_time = 1e-5; 
sim_period = 1e-8; 
extra_samples = (total_time-sim_time)/sim_period; 
[r_trans_signal,c_trans_signal] = size(trans_signal); 
trans_signal = trans_signal(:,(c_trans_signal-extra_samples):c_trans_signal); 
[r_trans_signal,c_trans_signal] = size(trans_signal); 
 
% Calculate FFT of each antenna signal 
fft_size = 2^16; 
 
spectral_signal = []; 
 
for k=1:r_trans_signal-1 
     
    spectral_signal(k,:) = fft(trans_signal(k+1,:),fft_size); 
     
end 
 
f_range = 0:1/(fft_size*sim_period):1/sim_period-1/(fft_size*sim_period); 
index_range = 1:length(f_range); 
 
% Frequencies and index where information signal is present 
center_f = 3e6; 
delta_f = 1/(2*fft_size*sim_period); 
 
center_f_index = [f_range>=center_f-delta_f & f_range<=center_f+delta_f]*index_range.'; 
 
% Rectangular Array Size 
N = 1; 
M = 16; 
w_phase_x = []; 
w_phase_x(:,1) = zeros(N,1); 
 
% Calculation of Weight Coefficient's Phase 
for k=2:M 
    center_phase = -1*(angle(spectral_signal(k,center_f_index))-angle(spectral_signal(1,center_f_index))); 
    if (center_phase>=180) 
        center_phase = center_phase-360; 
    end 
    w_phase_x(k)=center_phase; 
end 
 
% Calculation of Weight Coefficient's Magnitude 
for k=1:M 
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    w_abs(k) = abs(spectral_signal(k,center_f_index))/2; 
 
end 
 
% Number of Antennas 
N = 16; 
 
% Generation of Array Vector 
n = 0:(N-1); 
 
% Calculation of Array Weight 
w = (w_abs.*exp(j*w_phase_x)).'; 
 
save WEIGHT_INFO w; 
 
% Parameters prior sampling of the Beampattern 
sample = 1000; 
theta = 0:(180/sample):180; 
sai = pi*cos(theta*pi/180); 
 
 
% Calculation of the Beampattern 
SA = 0; 
BSA_max = 0; 
for k=1:length(theta) 
     
    v = exp(j*(n - (N-1)/2)*sai(k)); 
    v_sai(:,k) = v.'; 
     
    B(k) = w'*v_sai(:,k); 
     
    SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180); 
     
    if(abs(B(k))>BSA_max) 
        BSA_max = abs(B(k)); 
    end 
     
end 
 
 
% Calculation of the Directivity 
D = 10*log10(BSA_max.^2/SA); 
 
% Result Figures 
figure(1) 
polar(theta*pi/180,abs(B)); 
 
figure(2) 
plot(theta,20*log10(abs(B))); 
 
% File: linear_DBFtransmitter_blackmannharris.m 
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clear; 
clc; 
 
% Number of Antennas 
N = 16; 
 
% Generation of Array Vector 
n = 0:(N-1); 
 
% Calculation of MRA Beam Direction 
theta_d = 82; 
sai_d = pi*cos(theta_d*pi/180); 
 
% Calculation of Weight's Amplitude based on Blackmann-harris Spectral 
% Window function 
w_abs = (0.42+0.5*cos(2*pi*(n-(N-1)/2)/N)+0.08*cos(4*pi*(n-(N-1)/2)/N)).'; 
 
% Calculation of Weight Coefficients 
w = w_abs.*exp(j*(n.'-(N-1)/2)*sai_d); 
 
% Paramaters prior sampling of the Beampatter 
sample = 1000; 
theta = 0:(180/sample):180; 
sai = pi*cos(theta*pi/180); 
 
% Calculation of Beampattern 
SA = 0;  
BSA_max = 0; 
for k=1:length(theta) 
     
    v = exp(j*(n - (N-1)/2)*sai(k)); 
    v_sai(:,k) = v.'; 
     
    B(k) = w'*v_sai(:,k); 
     
    SA = SA + 0.5*abs(B(k)).^2*sin(theta(k)*pi/180)*(180/sample)*(pi/180); 
     
    if(abs(B(k))>BSA_max) 
        BSA_max = abs(B(k)); 
    end 
     
end 
 
% Calculation  of Directivity 
D = 10*log10(BSA_max.^2/SA); 
 
 
% Result Figures 
figure(1) 
polar(theta*pi/180,abs(B)); 
 
figure(2) 
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plot(theta,20*log10(abs(B))); 
 
 
%% File: rectangular_DBFtransmitter_steering.m 
 
clear; 
clc; 
 
% Rectangular Array Size 
N = 4; 
M = 4; 
[n,m] = meshgrid(-1*(N-1)/2:(N-1)/2,-1*(M-1)/2:(M-1)/2); 
 
% Inter-element spacing in lambda terms 
dx = 0.5; 
dy = 0.5; 
 
% Weight function 
theta_d = 30; 
phi_d = 0; 
 
sai_x_d = 2*pi*dx*sin(theta_d*pi/180)*cos(phi_d*pi/180); 
sai_y_d = 2*pi*dy*sin(theta_d*pi/180)*sin(phi_d*pi/180); 
 
W = (1/(M*N))*exp(j*(n*sai_x_d + m*sai_y_d)); 
w = reshape(W,N*M,1); 
 
 
save TRAINING -append W; 
 
% Creating U and Sai Space 
sample_u_x = 100; 
sample_u_y = 100; 
u_x = -1:1/(sample_u_x*2):1; 
u_y = -1:1/(sample_u_y*2):1; 
sai_x = 2*pi*dx*u_x; 
sai_y = 2*pi*dy*u_y; 
 
 
% 2-D Beampattern Calculation 
for k=1:length(sai_x) 
     
    for h=1:length(sai_y) 
         
        V = exp(j*(n*sai_x(k) + m*sai_y(h))); 
        v = reshape(V,N*M,1); 
         
        B(k,h) = w'*v; 
         
         
    end 
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end 
 
% 2-D Beampattern Calculation in Angle Space 
phi_coor_real = 0:360; 
theta_coor_real = 0:90; 
theta_coor_extra = 0:180; 
V = []; 
v = []; 
SA = 0; 
for k=1:length(phi_coor_real) 
 
    for h=1:length(theta_coor_extra) 
 
 
 
        sai_x_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*cos(phi_coor_real(k)*pi/180); 
        sai_y_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*sin(phi_coor_real(k)*pi/180); 
 
        V = exp(j*(n*sai_x_now + m*sai_y_now)); 
        v = reshape(V,N*M,1); 
 
        if theta_coor_extra(h) <= 90 
             
            B_sph(k,h) = w'*v; 
             
            phi_coor_real_sph(k,h) = phi_coor_real(k); 
            theta_coor_real_sph(k,h) = theta_coor_real(h); 
             
            if (phi_coor_real(k)~=360) 
                 
                SA = SA + (abs(B_sph(k,h)))^2*sin(theta_coor_real(h)*pi/180)*(pi/180)^2; 
                 
            end 
             
        else 
             
            B_SA = w'*v; 
             
            if (phi_coor_real(k)~=360 && theta_coor_extra(h)~=180 ) 
                 
                SA = SA + (abs(B_SA))^2*sin(theta_coor_extra(h)*pi/180)*(pi/180)^2; 
                 
            end 
             
        end 
         
    end 
 
end 
 
SA = SA/(4*pi); 
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% Calculation of Directivity 
 
D = abs(B_sph(phi_d+1,theta_d+1))^2/SA; 
D_dB = 10*log10(D); 
 
B_max = max(max(abs(B_sph))); 
 
B_sph = B_sph/max(max(abs(B_sph))); 
 
[x_B,y_B,z_B] = sph2cart(phi_coor_real_sph*pi/180, (-(theta_coor_real_sph-90)*pi/180), abs(B_sph)); 
 
 
% Phi = 0 & Phi = MRA_phi Cut Beampattern Calculation 
phi_1 = 0; 
phi_2 = phi_d; 
phi_3 = phi_d + 45; 
 
theta = 0:1:90; 
for k=1:length(theta) 
 
    u_x_1 = sin(theta(k)*pi/180)*cos(phi_1*pi/180); 
    u_y_1 = sin(theta(k)*pi/180)*sin(phi_1*pi/180); 
  
    u_x_2 = sin(theta(k)*pi/180)*cos(phi_2*pi/180); 
    u_y_2 = sin(theta(k)*pi/180)*sin(phi_2*pi/180); 
     
    u_x_3 = sin(theta(k)*pi/180)*cos(phi_3*pi/180); 
    u_y_3 = sin(theta(k)*pi/180)*sin(phi_3*pi/180); 
 
    sai_x_1 = 2*pi*dx*u_x_1; 
    sai_y_1 = 2*pi*dy*u_y_1; 
     
    sai_x_2 = 2*pi*dx*u_x_2; 
    sai_y_2 = 2*pi*dy*u_y_2; 
     
    sai_x_3 = 2*pi*dx*u_x_3; 
    sai_y_3 = 2*pi*dy*u_y_3; 
     
    V_1 = exp(j*(n*sai_x_1 + m*sai_y_1)); 
    v_1 = reshape(V_1,N*M,1); 
         
    Bt_1(k) = w'*v_1; 
     
    V_2 = exp(j*(n*sai_x_2 + m*sai_y_2)); 
    v_2 = reshape(V_2,N*M,1); 
         
    Bt_2(k) = w'*v_2; 
     
    V_3 = exp(j*(n*sai_x_3 + m*sai_y_3)); 
    v_3 = reshape(V_3,N*M,1); 
         
    Bt_3(k) = w'*v_3; 



 
 
 
 

 193 

     
     
end 
 
if (phi_2<180) 
    Bt_s = [fliplr(Bt_2) Bt_3]; 
else 
    Bt_s = [fliplr(Bt_3) Bt_2]; 
end 
 
% Calculation of Beamwidth in Phi Plane Cut 
Bt_s = Bt_s([1:92 94:182]); 
theta_m = 0:180; 
Bt_s_max = max(abs(Bt_s)); 
Bt_s_3dB = Bt_s_max/2; 
theta_beam = theta_m([abs(Bt_s)]>=Bt_s_3dB); 
Beamwidth_theta = max(theta_beam)-min(theta_beam); 
 
figure('Name','Beam Pattern of Standard Rectangular Array'); 
surf(x_B,y_B,z_B); 
title('Magnitude in dB of Rectangular Array Beam Pattern'); 
xlabel('x'); 
ylabel('y'); 
zlabel('Magnitude (dB)'); 
 
polar3D(theta_coor_real,phi_coor_real,(20*log10(abs(B_sph)))',50,3,'Rectangular Array Beam Pattern 
Polar Plot'); 
 
 
function hpol = polar3D(theta,phi,z,graph_dynamic,fig_nb,title_fig) 
%POLAR3D  3D Polar coordinate plot. 
%   polar3D(THETA,PHI,Z,GRAPH_DYNAMIC,FIG_NB,TITLE_FIG) makes a plot using polar 
coordinates of 
%   the angles THETA and PHI, in degrees, versus the 3rd dimension Z. 
%   GRAPH_DYNAMIC allows to display the dynamic range from the maximum value of Z. 
%   FIG_NB indicates the figure number in which the graph has to be displayed. 
%   TITLE_FIG is a string containing the figure's title. 
% 
%   Copyright Sebastien and Marcelo, The Dream-Team, Nov. 21, 2003. 
 
% get hold state 
figure(fig_nb) 
cax = newplot; 
next = lower(get(cax,'NextPlot')); 
hold_state = ishold; 
 
% get x-axis text color so grid is in same color 
tc = get(cax,'xcolor'); 
ls = get(cax,'gridlinestyle'); 
 
% Hold on to current Text defaults, reset them to the 
% Axes' font attributes so tick marks use them. 
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fAngle  = get(cax, 'DefaultTextFontAngle'); 
fName   = get(cax, 'DefaultTextFontName'); 
fSize   = get(cax, 'DefaultTextFontSize'); 
fWeight = get(cax, 'DefaultTextFontWeight'); 
fUnits  = get(cax, 'DefaultTextUnits'); 
set(cax, 'DefaultTextFontAngle',  get(cax, 'FontAngle'), ... 
    'DefaultTextFontName',   get(cax, 'FontName'), ... 
    'DefaultTextFontSize',   get(cax, 'FontSize'), ... 
    'DefaultTextFontWeight', get(cax, 'FontWeight'), ... 
    'DefaultTextUnits','data') 
 
 
% transform data to Cartesian coordinates. 
xx=theta.'*cos(pi*phi/180); 
yy=theta.'*sin(pi*phi/180); 
pcolor(xx,yy,z), shading interp; 
if (graph_dynamic~=0) 
    caxis([(max(max(z))-graph_dynamic) max(max(z))]); 
end 
axis square; 
colorbar; 
title(title_fig) 
 
% plot gird on top of data 
 
% make a radial grid 
    hold on; 
    max_theta = max( max(abs(theta))); 
    hhh=plot([-max_theta -max_theta max_theta max_theta],[-max_theta max_theta max_theta -max_theta]); 
    set(gca,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto') 
    v = [get(cax,'xlim') get(cax,'ylim')]; 
    ticks = 7; 
    delete(hhh); 
% check radial limits and ticks 
    rmin = 0; rmax = 90; rticks = max(ticks-1,2); 
 
% define a circle 
    th = 0:pi/50:2*pi; 
    xunit = cos(th); 
    yunit = sin(th); 
% now really force points on x/y axes to lie on them exactly 
    inds = 1:(length(th)-1)/4:length(th); 
    xunit(inds(2:2:4)) = zeros(2,1); 
    yunit(inds(1:2:5)) = zeros(3,1); 
 
% draw radial circles 
    c82 = cos(82*pi/180); 
    s82 = sin(82*pi/180); 
    rinc = (rmax-rmin)/rticks; 
    for i=(rmin+rinc):rinc:rmax 
        hhh = plot(xunit*i,yunit*i,ls,'color',tc,'linewidth',1,... 
                   'handlevisibility','off'); 
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        text((i+rinc/20)*c82,(i+rinc/20)*s82, ... 
            ['  ' num2str(i) '^o'],'verticalalignment','bottom',... 
            'handlevisibility','off') 
   end 
     set(hhh,'linestyle','-') % Make outer circle solid 
 
% plot spokes 
    th = (1:6)*2*pi/12; 
    cst = cos(th); snt = sin(th); 
    cs = [-cst; cst]; 
    sn = [-snt; snt]; 
    plot(rmax*cs,rmax*sn,ls,'color',tc,'linewidth',1,... 
         'handlevisibility','off') 
 
% annotate spokes in degrees 
    rt = 1.1*rmax; 
    for i = 1:length(th) 
        text(rt*cst(i),rt*snt(i),[int2str(i*30) '^o'],... 
             'horizontalalignment','center',... 
             'handlevisibility','off'); 
        if i == length(th) 
            loc = int2str(0); 
        else 
            loc = int2str(180+i*30); 
        end 
        text(-rt*cst(i),-rt*snt(i),[loc '^o'],'horizontalalignment','center',... 
             'handlevisibility','off') 
    end 
 
% set view to 2-D 
    view(2); 
% set axis limits 
     axis(rmax*[-1 1 -1.15 1.15]); 
 
% Reset defaults. 
set(cax, 'DefaultTextFontAngle', fAngle , ... 
    'DefaultTextFontName',   fName , ... 
    'DefaultTextFontSize',   fSize, ... 
    'DefaultTextFontWeight', fWeight, ... 
    'DefaultTextUnits',fUnits ); 
 
hold off; 
 
if nargout > 0 
    hpol = q; 
end 
if ~hold_state 
    set(gca,'dataaspectratio',[1 1 1]), axis off; set(cax,'NextPlot',next); 
end 
set(get(gca,'xlabel'),'visible','on') 
set(get(gca,'ylabel'),'visible','on') 
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hold off; 
 
 
% File: rectangular_DBFtransmitter_parameters.m 
 
% Information Signal 
sig_ts = 1e-8; 
 
% Information Signal 
output_width = 16; 
fis = 1e6; 
db_ts = 1/10e6; 
npi = fis*db_ts; 
 
% Antenna Weights and Digital Beamformer 
phase_res = 8; 
w_amp = abs(W)/sum(sum(abs(W))); 
w_phase_d = angle(W)*180/pi; 
w_phase_r = angle(W); 
bit_phase = w_phase_r*2^phase_res/(2*pi); 
wamp_bit_res = 16; 
wamp_point_res = 14; 
wphase_bit_res = phase_res; 
wphase_point_res = 0; 
w_phase_d_corr = round(bit_phase)*2*pi/(2^phase_res)*180/pi; 
 
% DAC 
dac_ts = 1/100e6; 
dac_bit_res = 14; 
dac_point_res = 12; 
 
% System Frequencies 
fc = 8.2e9; 
fif = 3e6; 
error_index = 0; 
i_phase = pi/2-(2*pi*fif)*(1e-8)*error_index; 
 
% DDS Parameters 
output_width = 16; 
flo = fif; 
duc_ts = dac_ts; 
npd = flo*duc_ts; 
 
% Max Time Delay 
plane_wave_angle = 0; 
ant_spacing = 0.5; 
maxt = (fc/fif)*ant_spacing/fc; 
sim_t = 1e-5; 
slope_t = maxt/sim_t; 
 
% DUC Filter Specs 
filter_order = 30; 



 
 
 
 

 197 

factor = 10; 
u_sample = db_ts/dac_ts; 
hp = u_sample*fir1(filter_order,1/(factor*u_sample)); 
filter_lat = 15; 
 
% CIC Specs 
n_stages = 2; 
cic_lat = 2; 
diff_delay = 2; 
force_bit_width = 18; 
scale_factor = -2; 
 
% Scope Parameters 
scope_ts = 1e-8; 
scope_sig = 1e-8; 
 
% Latency Repair 
lat_duc_n = 3 + filter_lat; 
lat_db_n = 8; 
lat_time = (lat_duc_n+filter_order)*duc_ts+lat_db_n*db_ts; 
total_time = lat_time+sim_t; 
 
% Operation Precision 
add_bit_width = 14; 
add_point_width = 12; 
mult_bit_width = 18; 
mult_point_width = 16; 
prec_bit_width = 16; 
prec_point_width = 14; 
 
load TRAINING; 
 
save WEIGHT_INFO w_amp w_phase_r w_phase_d_corr; 
 
 
%% File: rectangular_DBFtransmitter_results.m 
 
clear; 
clc; 
 
% Load MAT FILE 
load TRANSMITTER; 
 
% Removing Transient State of Transmission Signal 
total_time = 1.1e-5; 
sim_time = 1e-5; 
sim_period = 1e-8; 
extra_samples = (total_time-sim_time)/sim_period; 
[r_trans_signal,c_trans_signal] = size(trans_signal); 
trans_signal = trans_signal(:,(c_trans_signal-extra_samples):c_trans_signal); 
[r_trans_signal,c_trans_signal] = size(trans_signal); 
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% Calculate FFT of each antenna signal 
fft_size = 2^16; 
spectral_signal = []; 
for k=1:r_trans_signal-1 
     
    spectral_signal(k,:) = fft(trans_signal(k+1,:),fft_size); 
     
end 
 
f_range = 0:1/(fft_size*sim_period):1/sim_period-1/(fft_size*sim_period); 
index_range = 1:length(f_range); 
 
% Frequencies and index where information signal is present 
center_f = 3e6; 
delta_f = 1/(2*fft_size*sim_period); 
 
center_f_index = [f_range>=center_f-delta_f & f_range<=center_f+delta_f]*index_range.'; 
 
% Rectangular Array Size 
N = 4; 
M = 4; 
w_phase_x = []; 
w_phase_x(:,1) = zeros(N,1); 
 
 
% Calculation of Weight Coefficients' Phase 
for k=1:N 
     
    for h=2:M 
        center_phase = -1*(angle(spectral_signal(h+(k-1)*N,center_f_index))-angle(spectral_signal(1+(k-
1)*N,center_f_index))); 
        if (center_phase>=180) 
            center_phase = center_phase-360; 
        end 
        w_phase_x(k,h)=center_phase; 
    end 
end 
 
w_phase_y = []; 
w_phase_y(1,:) = zeros(1,M); 
 
for k=2:N 
     
    for h=1:M 
        center_phase = -1*(angle(spectral_signal(h+(k-1)*N,center_f_index))-
angle(spectral_signal(h,center_f_index))); 
        if (center_phase>=180) 
            center_phase = center_phase-360; 
        end 
        w_phase_y(k,h)=center_phase; 
    end 
end 
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% Calculation of Weight Coefficients' Magnitude 
for k=1:N 
    for h=1:M 
        w_abs(k,h) = abs(spectral_signal(h+(k-1)*N,center_f_index))/2; 
    end 
end 
 
% Rectangular Array Size 
N = 4; 
M = 4; 
[n,m] = meshgrid(-1*(N-1)/2:(N-1)/2,-1*(M-1)/2:(M-1)/2); 
 
% Inter-element spacing in lambda terms 
dx = 0.5; 
dy = 0.5; 
 
% Weight function 
theta_d = 16; 
phi_d = 122; 
 
sai_x_d = 2*pi*dx*sin(theta_d*pi/180)*cos(phi_d*pi/180); 
sai_y_d = 2*pi*dy*sin(theta_d*pi/180)*sin(phi_d*pi/180); 
 
W = w_abs.*exp(j*(w_phase_x + w_phase_y)); 
w = reshape(W,N*M,1); 
 
save WEIGHT_INFO W -append; 
 
% Creating U and Sai Space 
sample_u_x = 100; 
sample_u_y = 100; 
u_x = -1:1/(sample_u_x*2):1; 
u_y = -1:1/(sample_u_y*2):1; 
sai_x = 2*pi*dx*u_x; 
sai_y = 2*pi*dy*u_y; 
 
% [u_x,u_y] = meshgrid(2*pi*dx*(-1:1/(sample_u_x*2):1),2*pi*dy*(-1:1/(sample_u_y*2):1)); 
 
% 2-D Beampattern Calculation 
for k=1:length(sai_x) 
     
    for h=1:length(sai_y) 
         
        V = exp(j*(n*sai_x(k) + m*sai_y(h))); 
        v = reshape(V,N*M,1); 
         
        B(k,h) = w'*v; 
         
         
    end 
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end 
 
% 2-D Beampattern Calculation in Angle Space 
phi_coor_real = 0:360; 
theta_coor_real = 0:90; 
theta_coor_extra = 0:180; 
V = []; 
v = []; 
SA = 0; 
for k=1:length(phi_coor_real) 
 
    for h=1:length(theta_coor_extra) 
 
 
 
        sai_x_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*cos(phi_coor_real(k)*pi/180); 
        sai_y_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*sin(phi_coor_real(k)*pi/180); 
 
        V = exp(j*(n*sai_x_now + m*sai_y_now)); 
        v = reshape(V,N*M,1); 
 
        if theta_coor_extra(h) <= 90 
             
            B_sph(k,h) = w'*v; 
             
            phi_coor_real_sph(k,h) = phi_coor_real(k); 
            theta_coor_real_sph(k,h) = theta_coor_real(h); 
             
            if (phi_coor_real(k)~=360) 
                 
                SA = SA + (abs(B_sph(k,h)))^2*sin(theta_coor_real(h)*pi/180)*(pi/180)^2; 
                 
            end 
             
        else 
             
            B_SA = w'*v; 
             
            if (phi_coor_real(k)~=360 && theta_coor_extra(h)~=180 ) 
                 
                SA = SA + (abs(B_SA))^2*sin(theta_coor_extra(h)*pi/180)*(pi/180)^2; 
                 
            end 
             
        end 
         
    end 
 
end 
 
SA = SA/(4*pi); 
 



 
 
 
 

 201 

D = abs(B_sph(phi_d+1,theta_d+1))^2/SA; 
D_dB = 10*log10(D); 
 
B_max = max(max(abs(B_sph))); 
 
[x_B,y_B,z_B] = sph2cart(phi_coor_real_sph*pi/180, (-(theta_coor_real_sph-90)*pi/180), abs(B_sph)); 
 
 
% Phi = 0 & Phi = MRA_phi Cut Beampattern Calculation 
 
phi_1 = 0; 
phi_2 = phi_d; 
phi_3 = phi_d + 180; 
 
theta = 0:1:90; 
for k=1:length(theta) 
 
    u_x_1 = sin(theta(k)*pi/180)*cos(phi_1*pi/180); 
    u_y_1 = sin(theta(k)*pi/180)*sin(phi_1*pi/180); 
  
    u_x_2 = sin(theta(k)*pi/180)*cos(phi_2*pi/180); 
    u_y_2 = sin(theta(k)*pi/180)*sin(phi_2*pi/180); 
     
    u_x_3 = sin(theta(k)*pi/180)*cos(phi_3*pi/180); 
    u_y_3 = sin(theta(k)*pi/180)*sin(phi_3*pi/180); 
 
    sai_x_1 = 2*pi*dx*u_x_1; 
    sai_y_1 = 2*pi*dy*u_y_1; 
     
    sai_x_2 = 2*pi*dx*u_x_2; 
    sai_y_2 = 2*pi*dy*u_y_2; 
     
    sai_x_3 = 2*pi*dx*u_x_3; 
    sai_y_3 = 2*pi*dy*u_y_3; 
     
    V_1 = exp(j*(n*sai_x_1 + m*sai_y_1)); 
    v_1 = reshape(V_1,N*M,1); 
         
    Bt_1(k) = w'*v_1; 
     
    V_2 = exp(j*(n*sai_x_2 + m*sai_y_2)); 
    v_2 = reshape(V_2,N*M,1); 
         
    Bt_2(k) = w'*v_2; 
     
    V_3 = exp(j*(n*sai_x_3 + m*sai_y_3)); 
    v_3 = reshape(V_3,N*M,1); 
         
    Bt_3(k) = w'*v_3; 
     
     
end 
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if (phi_2<180) 
    Bt_s = [fliplr(Bt_2) Bt_3]; 
else 
    Bt_s = [fliplr(Bt_3) Bt_2]; 
end 
 
% Calculation of Beamwidth in Phi Cut Plane 
Bt_s = Bt_s([1:92 94:182]); 
theta_m = 0:180; 
Bt_s_max = max(abs(Bt_s)); 
Bt_s_3dB = Bt_s_max/2; 
theta_beam = theta_m([abs(Bt_s)]>=Bt_s_3dB); 
Beamwidth_theta = max(theta_beam)-min(theta_beam); 
 
% Theta = MRA_theta Cut Pattern 
 
theta_1 = theta_d; 
phi = 0:360; 
 
for k=1:length(phi) 
     
    u_x_p = sin(theta_1*pi/180)*cos(phi(k)*pi/180); 
    u_y_p = sin(theta_1*pi/180)*sin(phi(k)*pi/180); 
     
    sai_x_p = 2*pi*dx*u_x_p; 
    sai_y_p = 2*pi*dy*u_y_p; 
     
    V_p = exp(j*(n*sai_x_p + m*sai_y_p)); 
    v_p = reshape(V_p,N*M,1); 
         
    B_p(k) = w'*v_p;     
     
end 
  
% Result Figures 
figure('Name','Simulated Beam Pattern of Standard Rectangular Array'); 
surf(x_B,y_B,z_B); 
title('Magnitude in dB of Rectangular Array Beam Pattern'); 
xlabel('x'); 
ylabel('y'); 
zlabel('Magnitude (dB)'); 
 
polar3D(theta_coor_real,phi_coor_real,(20*log10(abs(B_sph)))',50,6,'Simulated Rectangular Array Beam 
Pattern Polar Plot'); 
 
%% File: rectangular_DBFtransmitter_dolphchebyshev.m 
 
clear; 
clc; 
 
% Rectangular Array Size 
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N = 4; 
M = 4; 
[n,m] = meshgrid(-1*(N-1)/2:(N-1)/2,-1*(M-1)/2:(M-1)/2); 
 
% Inter-element spacing in lambda terms 
dx = 0.5; 
dy = 0.5; 
 
% Calculation of Weight Coefficients 
theta_d = 16; 
phi_d = 122; 
 
sai_x_d = 2*pi*dx*sin(theta_d*pi/180)*cos(phi_d*pi/180); 
sai_y_d = 2*pi*dy*sin(theta_d*pi/180)*sin(phi_d*pi/180); 
  
W = (1/M*N)*exp(j*(n*sai_x_d + m*sai_y_d)); 
w = reshape(W,N*M,1); 
 
R_l = 25; 
R = 10^(R_l/20); 
x0=cosh(acosh(R)/(N-1)); 
 
for k1=0:N-1     
    for k2=0:M-1 
         
        saix_k1 = (k1-(N-1)/2)*2*pi/N; 
        saiy_k2 = (k2-(M-1)/2)*2*pi/M; 
        ev(k1+1,k2+1) = x0*cos(saix_k1/2)*cos(saiy_k2/2); 
         
        if abs(ev(k1+1,k2+1)) <= 1 
            B_n(k1+1,k2+1) = exp(-j*((N-1)/2*saix_k1+(M-1)/2*saiy_k2))*cos((N-
1)*acos(ev(k1+1,k2+1)))/R; 
        elseif ev(k1+1,k2+1) > 1 
            B_n(k1+1,k2+1) = exp(-j*((N-1)/2*saix_k1+(M-1)/2*saiy_k2))*cosh((N-
1)*acosh(ev(k1+1,k2+1)))/R; 
        else 
            B_n(k1+1,k2+1) = exp(-j*((N-1)/2*saix_k1+(M-1)/2*saiy_k2))*(-1)^(N-1)*cosh((N-
1)*acosh(ev(k1+1,k2+1)))/R; 
        end 
         
         
    end 
end 
 
b_n = ifft2(B_n,N,M); 
 
for a_i=0:N-1 
    for b_i=0:M-1 
         
        E_m(a_i+1,b_i+1) = exp(j*(a_i*pi*(N-1)/N+b_i*pi*(M-1)/M)); 
         
    end 
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end 
 
W_dc = b_n./E_m; 
w_dc = reshape(W_dc,N*M,1); 
 
w = w.*w_dc; 
W = reshape(w,N,M); 
 
save TRAINING -append W; 
 
% Creating U and Sai Space 
sample_u_x = 100; 
sample_u_y = 100; 
u_x = -1:1/(sample_u_x*2):1; 
u_y = -1:1/(sample_u_y*2):1; 
sai_x = 2*pi*dx*u_x; 
sai_y = 2*pi*dy*u_y; 
 
% 2-D Beampattern Calculation 
for k=1:length(sai_x) 
     
    for h=1:length(sai_y) 
         
        V = exp(j*(n*sai_x(k) + m*sai_y(h))); 
        v = reshape(V,N*M,1); 
         
        B(k,h) = w'*v; 
         
         
    end 
     
end 
 
% 2-D Beampattern Calculation in Angle Space 
phi_coor_real = 0:360; 
theta_coor_real = 0:90; 
theta_coor_extra = 0:180; 
V = []; 
v = []; 
SA = 0; 
for k=1:length(phi_coor_real) 
 
    for h=1:length(theta_coor_extra) 
 
 
 
        sai_x_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*cos(phi_coor_real(k)*pi/180); 
        sai_y_now = 2*pi*dx*sin(theta_coor_extra(h)*pi/180)*sin(phi_coor_real(k)*pi/180); 
 
        V = exp(j*(n*sai_x_now + m*sai_y_now)); 
        v = reshape(V,N*M,1); 
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        if theta_coor_extra(h) <= 90 
             
            B_sph(k,h) = w'*v; 
             
            phi_coor_real_sph(k,h) = phi_coor_real(k); 
            theta_coor_real_sph(k,h) = theta_coor_real(h); 
             
            if (phi_coor_real(k)~=360) 
                 
                SA = SA + (abs(B_sph(k,h)))^2*sin(theta_coor_real(h)*pi/180)*(pi/180)^2; 
                 
            end 
             
        else 
             
            B_SA = w'*v; 
             
            if (phi_coor_real(k)~=360 && theta_coor_extra(h)~=180 ) 
                 
                SA = SA + (abs(B_SA))^2*sin(theta_coor_extra(h)*pi/180)*(pi/180)^2; 
                 
            end 
             
        end 
         
    end 
 
end 
 
SA = SA/(4*pi); 
 
% Calculation of Directivity 
D = abs(B_sph(phi_d+1,theta_d+1))^2/SA; 
D_dB = 10*log10(D); 
 
B_max = max(max(abs(B_sph))); 
 
B_sph = B_sph/max(max(abs(B_sph))); 
 
[x_B,y_B,z_B] = sph2cart(phi_coor_real_sph*pi/180, (-(theta_coor_real_sph-90)*pi/180), abs(B_sph)); 
 
 
% Phi = 0 & Phi = MRA_phi Cut Beampattern Calculation 
 
phi_1 = phi_d; 
phi_2 = phi_d-45; 
phi_3 = phi_d+45; 
phi_4 = phi_d+180; 
 
% sample_theta = 100; 
theta = 0:1:90; 
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for k=1:length(theta) 
 
    u_x_1 = sin(theta(k)*pi/180)*cos(phi_1*pi/180); 
    u_y_1 = sin(theta(k)*pi/180)*sin(phi_1*pi/180); 
  
    u_x_2 = sin(theta(k)*pi/180)*cos(phi_2*pi/180); 
    u_y_2 = sin(theta(k)*pi/180)*sin(phi_2*pi/180); 
     
    u_x_3 = sin(theta(k)*pi/180)*cos(phi_3*pi/180); 
    u_y_3 = sin(theta(k)*pi/180)*sin(phi_3*pi/180); 
     
    u_x_4 = sin(theta(k)*pi/180)*cos(phi_4*pi/180); 
    u_y_4 = sin(theta(k)*pi/180)*sin(phi_4*pi/180); 
 
    sai_x_1 = 2*pi*dx*u_x_1; 
    sai_y_1 = 2*pi*dy*u_y_1; 
     
    sai_x_2 = 2*pi*dx*u_x_2; 
    sai_y_2 = 2*pi*dy*u_y_2; 
     
    sai_x_3 = 2*pi*dx*u_x_3; 
    sai_y_3 = 2*pi*dy*u_y_3; 
     
    sai_x_4 = 2*pi*dx*u_x_4; 
    sai_y_4 = 2*pi*dy*u_y_4; 
     
    V_1 = exp(j*(n*sai_x_1 + m*sai_y_1)); 
    v_1 = reshape(V_1,N*M,1); 
         
    Bt_1(k) = w'*v_1; 
     
    V_2 = exp(j*(n*sai_x_2 + m*sai_y_2)); 
    v_2 = reshape(V_2,N*M,1); 
         
    Bt_2(k) = w'*v_2; 
     
    V_3 = exp(j*(n*sai_x_3 + m*sai_y_3)); 
    v_3 = reshape(V_3,N*M,1); 
         
    Bt_3(k) = w'*v_3; 
     
    V_4 = exp(j*(n*sai_x_4 + m*sai_y_4)); 
    v_4 = reshape(V_4,N*M,1); 
         
    Bt_4(k) = w'*v_4; 
     
     
end 
 
if (phi_2<180) 
    Bt_s = [fliplr(Bt_2) Bt_3]; 
else 
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    Bt_s = [fliplr(Bt_3) Bt_2]; 
end 
 
% Calculation of Beamwidth in Phi Cut Plane 
Bt_s = Bt_s([1:92 94:182]); 
theta_m = 0:180; 
Bt_s_max = max(abs(Bt_s)); 
Bt_s_3dB = Bt_s_max/2; 
theta_beam = theta_m([abs(Bt_s)]>=Bt_s_3dB); 
Beamwidth_theta = max(theta_beam)-min(theta_beam); 
 
% Theta = MRA_theta Cut Pattern 
 
theta_1 = theta_d; 
phi = 0:360; 
 
for k=1:length(phi) 
     
    u_x_p = sin(theta_1*pi/180)*cos(phi(k)*pi/180); 
    u_y_p = sin(theta_1*pi/180)*sin(phi(k)*pi/180); 
     
    sai_x_p = 2*pi*dx*u_x_p; 
    sai_y_p = 2*pi*dy*u_y_p; 
     
    V_p = exp(j*(n*sai_x_p + m*sai_y_p)); 
    v_p = reshape(V_p,N*M,1); 
         
    B_p(k) = w'*v_p;     
     
end 
 
B_p_max = max(abs(B_p)); 
B_p_3dB = B_p_max/2; 
phi_beam = phi([abs(B_p)]>=B_p_3dB); 
Beamwidth_phi = max(phi_beam)-min(phi_beam); 
 
% Result Figures 
figure('Name','Beam Pattern of Standard Rectangular Array'); 
surf(x_B,y_B,z_B); 
title('Magnitude in dB of 2-D Beam Pattern'); 
xlabel('x'); 
ylabel('y'); 
zlabel('Magnitude (dB)'); 
 
polar3D(theta_coor_real,phi_coor_real,(20*log10(abs(B_sph)))',50,4,'Polar Color Plot'); 
 
 
function status = sp_read(data_filename,mat_filename) 
% SP_read S-Parameter File Reader (Cititype file) 
%    SP_read(data_filename,mat_filename) retrieves S-Parameter data stored 
%    in cititype format named data_filename and stores the S-Parameter 
%    values in .MAT format on a file named mat_filename.mat. SP_read() 
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%    stores the frequency vector 'freq', the name of the S-Parameter 
%    'SP_Name' and the S-Parameter value 'SP' where each row of the matrix 
%    represents an S-Parameter at frequencies specified by the frequency 
%    vector. 
%   Author: Juan A. Torres-Rosario 
 
fid = fopen(data_filename,'r'); 
 
% Read the filetype name 
ftype = fgetl(fid); 
 
% Read Network Analyzer Version 
NAversion = fgetl(fid); 
 
% Read citifile type 
cftype = fgetl(fid); 
 
% Read register value 
register_value = fgetl(fid); 
 
% Read comment 
comment_var = fgetl(fid); 
 
% Read Number of S-Parameters in File 
k = 0; 
l = 1; 
 
SP_Name(l,:)=fread(fid,14,'uint8=>char').'; 
fread(fid,2,'uint8=>char'); 
 
next = fread(fid,4,'uint8=>char').'; 
 
if next~='DATA' 
       k = 1; 
end 
 
l = l+1; 
 
while k==0 
     
   SP_Name(l,:)=[next fread(fid,10,'uint8=>char').']; 
   fread(fid,2,'uint8=>char'); 
    
   next = fread(fid,4,'uint8=>char').'; 
    
   if next~='DATA' 
       k = 1; 
   end 
    
   l = l+1; 
    
end 
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% Read Segment Begin Label 
begin_label = [next fread(fid,10,'uint8=>char').']; 
fread(fid,2,'uint8=>char'); 
 
% Read Number of Frequency Points in S-Parameter File 
% Note: Only works when 3 digits are used to express number of 
%       frequency points 
 
freq_label = fgetl(fid); 
 
freq_min = str2num(freq_label(5:14)); 
freq_max = str2num(freq_label(16:25)); 
freq_points = str2num(freq_label(27:29))-1; 
 
freq_delta = (freq_max-freq_min)/freq_points; 
 
freq = freq_min:freq_delta:freq_max; 
 
% Read Segment End Label 
end_label = fgetl(fid); 
 
% Read Comment Information (Time,Date,Year) 
comment_label = fgetl(fid); 
comment_info = fgetl(fid); 
 
%% Use space later for file information 
 
% Begin process of reading S-Parameters 
SP = []; 
for j=1:size(SP_Name,1) 
 
    begin_splabel = fgetl(fid); 
 
    for k=1:length(freq) 
 
        SP_line = fgetl(fid); 
        SP_value = str2num(SP_line); 
         
        if SP_Name(j,13:14)=='RI' 
             
            SP(j,k) = complex(SP_value(1),SP_value(2)); 
             
        end 
 
    end 
 
    end_splabel = fgetl(fid); 
 
 
end 
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save(mat_filename,'SP_Name','SP','freq','-mat'); 
 
status = 1; 
 
fclose(fid); 
 
 
function status = sp_show(mat_filename); 
% SP_SHOW S-Parameter Plotter 
%       sp_show(mat_filename) reads the specified mat_filename and plots 
%       the magnitude (in dB) and phase (in degrees) of the S-Parameters 
%       specified in the file 
%   Author: Juan A. Torres-Rosario 
 
 
load(mat_filename); 
 
figure('Name','S-Parameter Magnitude Plots'); 
subplot(221),plot(freq,20*log10(abs(SP(1,:)))); 
grid on; 
title(['S-Parameter ',SP_Name(1,6:11)]); 
xlabel('Frequency (Hz)'); 
ylabel('Magnitude (dB)'); 
subplot(222),plot(freq,20*log10(abs(SP(2,:)))); 
grid on; 
title(['S-Parameter ',SP_Name(2,6:11)]); 
xlabel('Frequency (Hz)'); 
ylabel('Magnitude (dB)'); 
subplot(223),plot(freq,20*log10(abs(SP(3,:)))); 
grid on; 
title(['S-Parameter ',SP_Name(3,6:11)]); 
xlabel('Frequency (Hz)'); 
ylabel('Magnitude (dB)'); 
subplot(224),plot(freq,20*log10(abs(SP(4,:)))); 
grid on; 
title(['S-Parameter ',SP_Name(4,6:11)]); 
xlabel('Frequency (Hz)'); 
ylabel('Magnitude (dB)'); 
 
figure('Name','S-Parameter Phase Plots'); 
subplot(221),plot(freq,angle(SP(1,:))*180/pi); 
grid on; 
title(['S-Parameter ',SP_Name(1,6:11)]); 
xlabel('Frequency (Hz)'); 
ylabel('Phase (degrees)'); 
subplot(222),plot(freq,angle(SP(2,:))*180/pi); 
grid on; 
title(['S-Parameter ',SP_Name(2,6:11)]); 
xlabel('Frequency (Hz)'); 
ylabel('Phase (degrees)'); 
subplot(223),plot(freq,angle(SP(3,:))*180/pi); 
grid on; 
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title(['S-Parameter ',SP_Name(3,6:11)]); 
xlabel('Frequency (Hz)'); 
ylabel('Phase (degrees)'); 
subplot(224),plot(freq,angle(SP(4,:))*180/pi); 
grid on; 
title(['S-Parameter ',SP_Name(4,6:11)]); 
xlabel('Frequency (Hz)'); 
ylabel('Phase (degrees)'); 
 
function status = pattern_read(data_filename,mat_filename) 
% pattern_read Antenna Pattern File Reader 
%    pattern_read(data_filename,mat_filename) retreives antenna 
%    measurement data stored in data_filename from the NSI 2000 software  
%    and stores the file information and measurement  
%    electric field pattern data into the mat_filename.  
%    Note: The content in the description field of the file must not exceed 
%    one line. 
%   Author: Juan A. Torres-Rosario 
 
fid = fopen(data_filename,'r'); 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
while line(k)~=',', 
    k = k+1; 
end 
 
% Polarization Cut 
k = k+2; 
polarization = []; 
while line(k)~=':', 
    polarization = [polarization line(k)]; 
    k = k+1; 
end 
 
% Polarization Type 
k = k+2; 
pol_type = []; 
while line(k)~=',', 
    pol_type = [pol_type line(k)]; 
    k = k+1; 
end 
 
% Tau: Polarization Tilt 
tau = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
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    tau = [tau line(k)]; 
    k = k+1; 
end 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Gain Parameter 
gain = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    gain = [gain line(k)]; 
    k = k+1; 
end 
 
% Max Far-Field (Global) in dB 
max_global = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    max_global = [max_global line(k)]; 
    k = k+1; 
end 
 
% Max Far-Field (Plot) in dB 
max_plot = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    max_plot = [max_plot line(k)]; 
    k = k+1; 
end 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Normalization 
normalization = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=',' 
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    normalization = [normalization line(k)]; 
    k = k+1; 
end 
 
% Network Offset 
network_offset = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    network_offset = [network_offset line(k)]; 
    k = k+1; 
end 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Hpeak 
hpeak = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    hpeak = [hpeak line(k)]; 
    k = k+1; 
end 
 
% Vpeak 
vpeak = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    vpeak = [vpeak line(k)]; 
    k = k+1; 
end 
 
status = 1; 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Plot Centering 
plot_centering = []; 
while line(k)~=':' 
    k = k+1; 
end 
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k = k+2; 
while k<=length(line) 
    plot_centering = [plot_centering line(k)]; 
    k = k+1; 
end 
 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Directivity 
directivity = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    directivity = [directivity line(k)]; 
    k = k+1; 
end 
 
% FF Amplitude Info Structure 
FF_amplitude_info = struct('Eprincipal',pol_type,'Tau',str2num(tau),'Gain',str2num(gain),... 
    'Global_Max_Farfield',str2num(max_global),'Plot_Max_Farfield',str2num(max_plot),... 
    'Normalization',normalization,'Network_Offset',str2num(network_offset),'Hpeak',str2num(hpeak),... 
    'Vpeak',str2num(vpeak),'Plot_Centering',plot_centering,'Directivity',str2num(directivity)); 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Description 
Description = line; 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Read line 
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line = fgetl(fid); 
k = 1; 
 
% Program Version 
prog_version = []; 
while line(k)~=',' 
    prog_version = [prog_version line(k)]; 
    k = k+1; 
end 
 
% Filename 
filename = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+1; 
while k<=length(line) 
    filename = [filename line(k)]; 
    k = k+1; 
end 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Measurement Date/Time 
measurement_date = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    measurement_date = [measurement_date line(k)]; 
    k = k+1; 
end 
k = k+1; 
measurement_time = []; 
while line(k)~=',' 
    measurement_time = [measurement_time line(k)]; 
    k = k+1; 
end 
 
% Filetype 
filetype = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    filetype = [filetype line(k)]; 
    k = k+1; 
end 
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% File Info Structure 
File_info = 
struct('Program_Version',prog_version,'Filename',filename,'Measurement_date',measurement_date,... 
    'Measurement_Time',measurement_time,'Filetype',filetype); 
 
%% Far-Field Display Setup 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Theta_Info 
theta_span = []; 
theta_center = []; 
theta_points = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    theta_span = [theta_span line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    theta_center = [theta_center line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    theta_points = [theta_points line(k)]; 
    k = k+1; 
end 
 
% Read line 
line = fgetl(fid); 
k = 1; 
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theta_start = []; 
theta_stop = []; 
theta_delta = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    theta_start = [theta_start line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    theta_stop = [theta_stop line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    theta_delta = [theta_delta line(k)]; 
    k = k+1; 
end 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Phi_Info 
phi_span = []; 
phi_center = []; 
phi_points = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    phi_span = [phi_span line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
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while line(k)~=' ' 
    phi_center = [phi_center line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    phi_points = [phi_points line(k)]; 
    k = k+1; 
end 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
phi_start = []; 
phi_stop = []; 
phi_delta = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    phi_start = [phi_start line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    phi_stop = [phi_stop line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    phi_delta = [phi_delta line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Plot Rotation 
plot_rotation = []; 
while line(k)~='=' 
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    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    plot_rotation = [plot_rotation line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Interpolation 
interpolation = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    interpolation = [interpolation line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Coordinate System 
coordinate_system = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=';' 
    coordinate_system = [coordinate_system line(k)]; 
    k = k+1; 
end 
 
% Far-Field Display Polarization 
display_polarization = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    display_polarization = [display_polarization line(k)]; 
    k = k+1; 
end 
 
% FF Display Setup Info Structure 
FF_display_setup_info = struct('Theta_Span',str2num(theta_span),'Theta_Center',str2num(theta_center),... 
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'Theta_Points',str2num(theta_points),'Theta_Start',str2num(theta_start),'Theta_Stop',str2num(theta_stop),... 
    'Theta_Delta',str2num(theta_delta),'Phi_Span',str2num(phi_span),'Phi_Center',str2num(phi_center),... 
    'Phi_Points',str2num(phi_points),'Phi_Start',str2num(phi_start),'Phi_Stop',str2num(phi_stop),... 
    'Phi_Delta',str2num(phi_delta),'Plot_Rotation',str2num(plot_rotation),'Interpolation',interpolation,... 
    'Coordinate_System',coordinate_system,'Display_Polarization',display_polarization); 
 
 
%% Far-Field Transform 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% FFT Size 
fft_size = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+3; 
while k<=length(line) 
    fft_size = [fft_size line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Far-Field Display Polarization 
filter_mode = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=',' 
    filter_mode = [filter_mode line(k)]; 
    k = k+1; 
end 
 
zoom = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    zoom = [zoom line(k)]; 
    k = k+1; 
end 



 
 
 
 

 221 

 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Probe Setup 
probe_setup = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    probe_setup = [probe_setup line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Probe Model 
probe_model = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    probe_model = [probe_model line(k)]; 
    k = k+1; 
end 
 
% FF Transform Setup Info Structure 
FF_transform_setup_info = struct('FFT_Size',fft_size,'Filter_Mode',filter_mode,... 
    'Zoom',zoom,'Probe_Setup',probe_setup,'Probe_Model',probe_model); 
 
%% Beam Information (Code valid only for one beam) 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
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% Beam - Future work involves rearranging the information 
beam_info = line; 
 
%% Near-field setup 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Near-field data 
near_field_data = []; 
while line(k)~='-' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    near_field_data = [near_field_data line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Truncation 
truncation = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    truncation = [truncation line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Amplitude Tapering 
amplitude_tapering = []; 
while line(k)~=':' 
    k = k+1; 
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end 
k = k+2; 
while k<=length(line) 
    amplitude_tapering = [amplitude_tapering line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Network Correction 
network_correction = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    network_correction = [network_correction line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Phase Correction 
phase_correction = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    phase_correction = [phase_correction line(k)]; 
    k = k+1; 
end 
 
% NF Setup Info Structure 
NF_setup_info = 
struct('Data',near_field_data,'Truncation',truncation,'Amplitude_Tapering',amplitude_tapering,... 
    'Network_Correction',network_correction,'Position_Phase_Correction',phase_correction); 
 
 
%% Measured Data 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
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% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Measured Theta_Info 
mtheta_span = []; 
mtheta_center = []; 
mtheta_points = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mtheta_span = [mtheta_span line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mtheta_center = [mtheta_center line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mtheta_points = [mtheta_points line(k)]; 
    k = k+1; 
end 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
mtheta_start = []; 
mtheta_stop = []; 
mtheta_delta = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mtheta_start = [mtheta_start line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
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k = k+2; 
while line(k)~=' ' 
    mtheta_stop = [mtheta_stop line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mtheta_delta = [mtheta_delta line(k)]; 
    k = k+1; 
end 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Read line 
line = fgetl(fid); 
k = 1; 
 
% Phi_Info 
mphi_span = []; 
mphi_center = []; 
mphi_points = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mphi_span = [mphi_span line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mphi_center = [mphi_center line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mphi_points = [mphi_points line(k)]; 
    k = k+1; 
end 
 
% Read line 
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line = fgetl(fid); 
k = 1; 
 
mphi_start = []; 
mphi_stop = []; 
mphi_delta = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mphi_start = [mphi_start line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mphi_stop = [mphi_stop line(k)]; 
    k = k+1; 
end 
while line(k)~='=' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    mphi_delta = [mphi_delta line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% AUT Dimensions 
aut_height = []; 
aut_width = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    aut_width = [aut_width line(k)]; 
    k = k+1; 
end 
while line(k)~=',' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    aut_height = [aut_height line(k)]; 
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    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% H/V Max Far-field Angles 
h_max_angle = []; 
v_max_angle = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    h_max_angle = [h_max_angle line(k)]; 
    k = k+1; 
end 
while line(k)~=',' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    v_max_angle = [v_max_angle line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Measurement Radius 
measure_radius = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    measure_radius = [measure_radius line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% MRE 
mre = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
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while line(k)~=' ' 
    mre = [mre line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Measured Data Info Structure 
Measured_data_info = 
struct('Measured_Theta_Span',str2num(mtheta_span),'Measured_Theta_Center',str2num(mtheta_center),... 
    
'Measured_Theta_Points',str2num(mtheta_points),'Measured_Theta_Start',str2num(mtheta_start),'Measured
_Theta_Stop',str2num(mtheta_stop),... 
    
'Measured_Theta_Delta',str2num(mtheta_delta),'Measured_Phi_Span',str2num(mphi_span),'Measured_Phi
_Center',str2num(mphi_center),... 
    
'Measured_Phi_Points',str2num(mphi_points),'Measured_Phi_Start',str2num(mphi_start),'Measured_Phi_St
op',str2num(mphi_stop),... 
    
'Measured_Phi_Delta',str2num(mphi_delta),'AUT_Width',str2num(aut_width),'AUT_Height',str2num(aut_
height),'H_Max_Farfield_Angle',str2num(h_max_angle),... 
    
'V_Max_Farfield_Angle',str2num(v_max_angle),'Measurement_Radius',str2num(measure_radius),'MRE',st
r2num(mre)); 
 
% Measurement Type 
measure_type = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    measure_type = [measure_type line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Scan Options 
scan_options = []; 
while line(k)~=':' 
    k = k+1; 
end 
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k = k+2; 
while k<=length(line) 
    scan_options = [scan_options line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Beamset Smear 
beamset_smear = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    beamset_smear = [beamset_smear line(k)]; 
    k = k+1; 
end 
 
%% Probe setup as acquired 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Beamset Smear 
mprobe_model = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while k<=length(line) 
    mprobe_model = [mprobe_model line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Probe 1 
probe_1 = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=',' 
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    probe_1 = [probe_1 line(k)]; 
    k = k+1; 
end 
 
% Probe 2 
probe_2 = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+1; 
while k<=length(line) 
    probe_2 = [probe_2 line(k)]; 
    k = k+1; 
end 
 
% Measurement Info Structure 
Measurement_info = struct('Measure_Type',measure_type,'Scan_Options',scan_options,... 
    'Beamset_Smear',str2num(beamset_smear),'Probe_Setup','as Acquired','Probe_Model',mprobe_model,... 
    'Probe_1',probe_1,'Probe_2',probe_2); 
 
 
%% RF System 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Integration Time 
integration_time = []; 
while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    integration_time = [integration_time line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Scan Speed 
scan_speed = []; 
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while line(k)~=':' 
    k = k+1; 
end 
k = k+2; 
while line(k)~=' ' 
    scan_speed = [scan_speed line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Scan Info 
scan_info = line; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Amp/Phase Initial 
amp_initial = []; 
phase_initial = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+3; 
while line(k)~=' ' 
    amp_initial = [amp_initial line(k)]; 
    k = k+1; 
end 
while line(k)~=',' 
    k = k+1; 
end 
k = k+3; 
while line(k)~=' ' 
    phase_initial = [phase_initial line(k)]; 
    k = k+1; 
end 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Amp/Phase Drift 
amp_drift = []; 
phase_drift = []; 
while line(k)~='=' 
    k = k+1; 
end 
k = k+3; 
while line(k)~=' ' 
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    amp_drift = [amp_drift line(k)]; 
    k = k+1; 
end 
while line(k)~=',' 
    k = k+1; 
end 
k = k+3; 
while line(k)~=' ' 
    phase_drift = [phase_drift line(k)]; 
    k = k+1; 
end 
 
% RF System Info Structure 
RF_system_info = 
struct('Integration_Time',str2num(integration_time),'Scan_Speed',str2num(scan_speed),... 
    
'Amp_Initial',str2num(amp_initial),'Phase_Initial',str2num(phase_initial),'Amp_Drift',str2num(amp_drift),... 
    'Phase_Drift',str2num(phase_drift)); 
 
 
%% Measurement Data 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
% Read Line 
line = fgetl(fid); 
k = 1; 
 
for p=1:FF_display_setup_info.Phi_Points 
 
    for q=1:FF_display_setup_info.Theta_Points 
 
        % Read Line 
        line = fgetl(fid); 
        k = 1; 
         
        % Change String Format into Numerical Format 
        nline = str2num(line); 
         
        % Spherical Coordinates 
        theta_coor(p,q) = nline(1); 
        phi_coor(p,q) = nline(2); 
         
        % E-field Pattern 
        E_field(p,q) = 10^(nline(3)/20).*exp(j*nline(4)*pi/180); 
 
    end 
 
end 
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save(mat_filename,'FF_amplitude_info','File_info','FF_display_setup_info','FF_transform_setup_info',... 
    'NF_setup_info','Measured_data_info','Measurement_info','RF_system_info','theta_coor','phi_coor',... 
    'E_field','-mat'); 
 
fclose(fid); 
 
function status = pattern_calc(Ephi_filename,Etheta_filename,Efield_filename) 
% pattern_calc Antenna Pattern Calculator 
%    pattern_calc(Ephi_filename,Etheta_filename,Efield_filename) retrieves 
%    Electric Field measurement data from Ephi_filename and 
%    Etheta_filename MAT files, calculates the Magnitude of the Electric Field, and 
%    stores the result in the Efield_filename mat file. 
%    Note: Linear antenna is placed along Azimuth plane 
%   Author: Juan A. Torres-Rosario 
 
 
% Load Ephi Component 
load(Ephi_filename); 
E_phi = E_field; 
 
% Load Etheta Component 
load(Etheta_filename); 
E_theta = E_field; 
 
% Calculate Electric Field Radiation Pattern 
E_field = sqrt(abs(E_theta).^2+abs(E_phi).^2); 
[E_x,E_y,E_z] = sph2cart(phi_coor*pi/180, (-(theta_coor)*pi/180), abs(E_field)); 
theta_coor = theta_coor+90; 
 
% Calculate Efield for Polar Plot View 
E_polar = E_field(:,1:101); 
 
% Calculate Theta vector 
theta_vector = [-1*fliplr(theta_coor(151,2:201)) theta_coor(51,1:201)]; 
 
% Calculate Elevation Cut 
El_cut = [fliplr(E_field(151,2:201)) E_field(51,1:201)]; 
 
% Calculate Azimuth Cut 
Az_cut = [fliplr(E_field(101,2:201)) E_field(1,1:201)]; 
 
save(Efield_filename,'E_field','theta_coor','phi_coor','theta_vector','E_x','E_y','E_z','Az_cut','El_cut',... 
    'E_phi','E_theta','E_polar'); 
 


