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Abstract 

 

The increasing use of Hyperspectral data is causing many data analysis problems; 

one of these problems is to reduce noise in Hyperspectral images. One approach is 

resolution enhancement technique based on oversampling theory.  The oversampled 

spectrum in a Hyperspectral image implies that the information is redundant which can 

be exploited to reduce noise.  Another approach is Truncated Singular Value 

Decomposition (TSVD), a method for noise reduction.  The main idea of this method is 

to let the Hyperspectral image represent the noisy signal, compute the Singular Values 

Decomposition, discard small singular values that represent the noise, and then 

reconstruct the filtered image.  This research work compares the use of resolution 

enhancement versus TSVD filtering as image enhancement pre-processor on 

classification accuracy and class separability of Hyperspectral imagery.  Hyperspectral 

imagery from different sensors showing different scenarios were use for the study.  

Overall results show that resolution enhancement pre-processing does a better job 

improving the classification accuracy than TSVD and at much lower computational cost, 

making it an attractive technique for Hyperspectral Image Processing.   



 

 

Resumen 

 

El crecimiento en el uso de datos hiperespectrales esta causando problemas para 

analizar estos datos.  Uno de estos problemas es reducir el ruido en imágenes 

hiperespectrales.  Una solución a esto es el aumento de resolución en imágenes 

hiperespectrales basado en la teoría de sobre-muestreo.  El espectro sobre-muestreado en 

una imagen hyperspectral implica que la información es redundante y esta información 

puede ser utilizada para reducir ruido.  Otra solución es truncar la descomposición de 

valores singulares (TSVD) como método para reducir ruido.  La idea principal de este 

método es que la imagen hyperspectral represente la señal con ruido, calcular los valores 

singulares y descartar los valores singulares más pequeños que representan el ruido y 

luego reconstruir la imagen filtrada.  En esta tesis se comparo el uso del aumento de 

resolución basado en la teoría de sobre-muestreo versus truncar la descomposición de 

valores singulares como pre-procesadores en el realce de imágenes hiperespectrales sobre 

la clasificación y la separabilidad entre clases.  Se utilizaron imágenes hiperespectrales 

tomadas con diferentes sensores e ilustrando diferentes escenarios.   Resultados generales 

muestran que el aumento de resolución como pre-procesamiento realiza un mejor trabajo 

mejorando la clasificación que truncar los valores singulares y con menor costo 

computacional, haciéndolo una técnica atractiva para el procesamiento de imágenes 

hiperespectrales.  
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 Motivation 

 

Recently, there has been a growing interest in hyperspectral image analysis with 

applications ranging from remote environmental monitoring, atmospheric correction, and 

cancer detection, among others.  Hyperspectral imagery has been used for remote 

sensing.  This monitoring is dependent on the spectral coverage, spectral resolution, and 

signal-to-noise ratio of the spectrometer, the abundance of material and the strength of 

absorption features for that material in the wavelength region measured.   Hyperspectral 

data sets are composed of about 100 to 200 spectral bands of relatively small bandwidths 

of 5-10 nm, for example, the Airborne Visible/Infrared Spectrometer (AVIRIS) collects 

data in 224 spectral bands covering 0.4-2.5 µm wavelength region with 20 m spatial 

resolution.  Figure 1 illustrates the hyperspectral image concept, where each pixel 

represents many samples of the object spectral signature. 

 

Noise is produced by numerous factors including thermal effects, sensor 

saturation, quantization errors and transmission errors.  Noise added to the data in an 

optical remote sensing system is typically independent of the data, and is generally 

additive in nature. Therefore, filtering of noise is particularly important because noise 

present in a hyperspectral image is the main limiting factor for successful image 

classification.   

 

The signal-to-noise ratio is of prime importance in hyperspectral remote sensing, 

since it is closely related to our capability to retrieve information about the spatial process 

of interest.  The noise associated with any spectral measurement reduces the ability to 



 

discriminate among different spectral features.  Noise can be dealt by methods such as 

amplitude resolution spectral enhancement and truncated singular value decomposition.   

 

 
Figure 1 – Hyperspectral Image Concept (CSIRO) 

 

1.2 Problem Statement 

 

This research work compares the impact of amplitude resolution spectral 

enhancement based on oversampling theory versus Truncated Singular Value 

Decomposition in the classification accuracy and class separability of Hyperspectral 

imagery.   

 

1.3 Objectives 

 

The objectives of this work are 

 

To compare the impact of amplitude resolution spectral enhancement based on 

oversampling versus Truncated Singular Value Decomposition in the classification 

accuracy and separability among classes in Hyperspectral imagery. 



 

To determine the effect of amplitude resolution spectral enhancement based on 

oversampling and Truncated Singular Value Decomposition over atmospheric correction. 

 

To compare the computational efficiency of amplitude resolution spectral 

enhancement based on oversampling versus Truncated Singular Value Decomposition 

 

1.4 Literature Review 

 

In (Wei et al., 2001), the method for truncated singular value decomposition is 

proposed for electrocardiogram (ECG) data compression.  The signal decomposition 

capability of SVD is exploited to extract the significant feature components of the ECG 

by decomposing the ECG into a set of basic patterns with associated scaling factors.  The 

signal information is mostly concentrated within a certain number of singular values with 

their related singular vectors due to the strong interbeat correlation among ECG cycles 

(Wei, et al. 2001). The insignificant overhead can be truncated to eliminate the 

redundancy of ECG data compression.  Moreover, Herries (1996) applies singular value 

decomposition to optical airborne data at different resolutions.  The use of SVD as a tool 

in remote sensing is demonstrates in many applications.  In particular, SVD is applied to 

characterize agricultural species covering a highly dynamic terrain in Bavaria, Germany.  

A novel use of SVD for extracting mixed pixel quantities is also shown.  Also, Hansen 

(1998) shows that the reduced-rank output signal computed via truncated singular value 

decomposition is identical to that from an array of parallel connected analysis-synthesis 

finite impulse response (FIR) filter pairs.  Finally, Migliacco (2003) performed a 

sensitivity study the truncated singular value decomposition (TSVD) for spatial 

resolution enhancement of radiometric data.  

 

Hunt et al. (2002) investigated the use of oversampling techniques applied to 

hyperspectral imagery and whether oversampling actually occurs in hyperspectral signals 

also study the use of resolution enhancement based on oversampling to increase 

classification performance.  Hunt et al. (2004) also proposed an algorithm to exploit the 



 

fact that the system is supervised to determine the oversampling rate, using the training 

samples for this purpose.  The oversampling rate is used to determine the cutoff 

frequency for each class, and the highest of these is used to filter the image. 

 

Vélez-Reyes et al. (2004) investigated the effect of resolution enhancement as a 

pre-processing technique in a classification system. Also, they studied the effect on 

classification accuracy of resolution enhancement with and without atmospheric 

correction. The main result is that resolution enhancement does improve classification 

accuracy with and without atmospheric correction. Furthermore, classification accuracy 

using radiance data enhanced by resolution enhancement techniques was higher than 

accuracies obtained by atmospherically corrected data even when it was enhanced. 

 

1.5 Contribution 

 

Hunt et al. 2003 proposed a new method to improve signal to noise ratio in 

hyperspectral imagery using oversampling theory.  In order to incorporate this method 

into the Hyperspectral classification system, it is necessary to compare its performance 

against a benchmark method, such as Truncated Singular Value Decomposition (TSVD).   

 

A key question can be stated:  “Does resolution enhancement, based on 

oversampling theory result in equal or better classification results than TSVD?” The 

answer, according to the experiments performed in this research work, is that resolution 

enhancement improves classification accuracy in comparison with truncated SVD.  In 

addition, the resolution enhancement complexity is smaller than the complexity of 

Truncated SVD since on is based on the fast Fourier transform (FFT), making it more 

attractive as a pre-processing enhancement step on a Hyperspectral classification system.   

 

 

 



 

1.5 Thesis Overview 

 

Chapter 2 presents a literature review of the remote sensing concepts, 

oversampling and amplitude resolution approach, singular value decomposition theory 

and the fundamentals of atmospheric correction.   

 

Chapter 3 shows the details of the hyperspectral images and the sensors used, the 

characteristics of the Hyperspectral Matlab Toolbox, truncated singular value 

decomposition algorithm and the resolution enhancement algorithm used. 

 

Chapter 4 presents the experimental results of the classifications accuracy and 

class separability for the hyperspectral images studied in Chapter 3  

 

Chapter 5 presents the conclusions of this work and propose some possible 

alternatives to continue this work. 

 

The appendices present the Matlab code for the amplitude resolution spectral 

enhancement based on oversampling and the truncated singular value decomposition 

algorithms. 



 

CHAPTER 2 

 

2. BACKGROUND AND LITERATURE REVIEW  

 

This Chapter presents a literature review of the remote sensing concepts, 

oversampling and amplitude resolution approach, singular value decomposition theory, 

and the fundamentals of atmospheric correction.   

 

2.1 Hyperspectral Image Classification System 

 

Hyperspectral Image classification system is the process of creating an 

informational representation of an image which shows the spatial distribution of a 

particular area as vegetation, crops, benthic habitat, among others from satellite imagery.  

 

 
Figure 2 - Typical Hyperspectral Image Classification System 

 

Figure 2 illustrates the organization of a Hyperspectral classification system.  As 

the figure shows, the system may be divided into three basic parts: Pre-processing, 

Feature Extraction, and Classification.   

 

Pre-processing generally precedes data analysis or information extraction.  Its 

goal is the reduction of distortion or the enhancement of some aspect of the data.  There 

Pre-processing Feature
Extraction

Classification 

Full Data Cube Reduced Feature Set or 
Band Subset 

 Classification Map
or  

Thematic Map 



 

are a variety of types of pre-processing that are sometimes applied on the data.  Some 

examples are:  Radiometric Calibrations, Atmospheric Correction, Contrast 

Enhancements, and Image Registration.  This chapter will cover the atmospheric 

correction and two enhancements algorithms resolution enhancement based on 

oversampling theory and truncated singular value decomposition.  

 

Feature extraction is an optional step on the classification process which serves as 

a pre-processing of the image to reduce its spectral or spatial dimensionality.  It can be 

accomplished by selecting the optimum subset of channels (bands) in order to avoid the 

estimation problems due to interband correlation.  In this stage, the Hyperspectral image 

is transformed into a feature image.  The feature extraction algorithm must be designed to 

preserve the information of interest for a special problem such as classification. 

 

Classification of Hyperspectral data is used to identify and classify pixels in the 

data and this process assigns each pixel in an image to a particular class or theme based 

on statistical characteristics of the pixel values. There are two generic approaches which 

are used most often taken to perform classification, namely supervised and unsupervised 

classification.  The classified results should be checked and verified for their accuracy 

and reliability. 

 

In the following sections will be described each of these stages of Hyperspectral 

image classification system in more detail. 

 

2.2 Spectroscopy 

 

Spectroscopy is the science of measuring the emission and absorption at different 

wavelengths of visible and non-visible light; anything that produces light or radiates 

energy, whether a light bulb, is telling us about itself and anything between us and the 

source.  This is possible because each element has a unique signature, emitting or 

absorbing radiation at specific wavelengths.  



 

 

2.3 Remote Sensing 

 

The following definition will be use:  “Remote sensing is the science of deriving 

information about an object from measurements made at a distance from an object, i.e., 

without actually coming in contact with it.  The quantity most frequently measured in 

present-day remote sensing systems is the electromagnetic energy emanating from 

objects of interest, and although there are other possibilities (e.g., seismic waves, sonic 

waves, and gravitational force).” (Landgrebe et al. 1978) 

 

The process of remote sensing involves an interaction between incident radiation 

and the targets of interest (Figure 3).  This is exemplified by the use of imaging systems 

where the following seven elements are involved:   

 

 
Figure 3 - Remote Sensing Process (CCRS 2004) 

 

• Energy Source or Illumination (A) 

• Radiation and the Atmosphere (B) 

• Interaction with the Target (C) 

• Collect the electromagnetic radiation (D) 

• Transmission, Reception, and Processing (E) 



 

• Interpretation and Analysis (F) 

• Application (G) 

2.4 Hyperspectral Remote Sensing 

 

Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively 

new technology that is currently being investigated with regard to the detection and 

identification of minerals, vegetation, backgrounds and benthic habitats.  Spectroscopy 

can be used to detect individual spectral features due to specific chemical bonds in a 

solid, liquid, or gas.  Recently, with advancing technology, imaging spectroscopy has 

begun to focus on Earth.  Remote sensing of the Hyperspectral at this point has been used 

most widely by geologists for the mapping of minerals.  Actual detection of materials is 

dependent on the spectral coverage, spectral resolution, and signal-to-noise ratio of the 

spectrometer, the abundance of the material and the strength of absorption features for 

that material in the wavelength region measured.  Hyperspectral remote sensing combines 

imaging and spectroscopy in a single system which often includes large data sets and 

requires new processing methods.  Hyperspectral imagery is typically collected and 

represented as a data cube with spatial information collected in the x-y plane, and spectral 

information represented in the z-direction. 

 

 
Figure 4 – AVIRIS hyperspectral data cube over Moffett Field, CA (Generated using ENVI) 



 

 

2.5 The Electromagnetic Spectrum 

 

The electromagnetic spectrum ranges from the shorter wavelengths (including 

gamma and x-rays) to the longer wavelengths (including microwaves and broadcast radio 

waves) (Figure 5).  There are several regions of the electromagnetic spectrum which are 

useful for remote sensing.  For most purposes, the ultraviolet or UV portion of the 

spectrum has the shortest wavelengths which are practical for remote sensing.  This 

radiation is just beyond the violet portion of the visible wavelengths.  Some Earth surface 

materials, primarily rocks and minerals, fluoresce or emit visible light when illuminated 

by UV radiation.  The visible wavelengths cover a range from approximately 0.4 to 0.7 

µm.  The longest visible wavelength is red and the shortest is violet.  Common 

wavelengths of what we perceive as particular colors from the visible portion of spectrum 

are listed below.   

Color Wavelength 

Violet 0.400 -  0.446 µm 

Blue 0.446 -  0.500 µm 

Green 0.500 – 0.578 µm  

Yellow 0.578 – 0.592 µm 

Orange 0.592 – 0.620 µm 

Red 0.620 – 0.700 µm 

 

The next portion of the spectrum of interest is the infrared (IR) region which 

covers the wavelength range from approximately 0.7 µm to 100 µm.  The infrared region 

can be divided into two categories based on their radiation properties.  The reflected IR, 

and the emitted or thermal IR.   Radiation in the reflected IR region is used for remote 

sensing purposes in ways very similar to radiation in the visible portion.  The thermal IR 

region is quite different than the visible and reflected IR portions, as this energy is 

essentially the radiation that is emitted from the Earth’s surface in the form of heat.  

Other portion of the spectrum is the microwave region; this covers the longest 

wavelengths used for remote sensing.  The shorter wavelengths have properties similar to 



 

the thermal infrared region while the longer wavelengths approach the wavelengths used 

for radio broadcasts.   

 
Figure 5 - The Electromagnetic Spectrum (Landgrebe 2003) 

2.6 The Atmosphere 

 

Before radiation used for remote sensing reaches the Earth’s surface it has to 

travel through some distance in the Earth’s atmosphere.  Particles and gases in the 

atmosphere can affect the incoming light and radiation.  These effects are caused by 

mechanisms of scattering and absorption. (Landgrebe 2003) 

 

Scattering occurs when particles or large gas molecules present in the atmosphere 

interact with and cause the electromagnetic radiation to be redirected from its original 

path.  How much scattering takes place depends on several factors including the 

wavelength of the radiation, the abundance of particles or gases, and the distance the 

radiation travels through the atmosphere.   There are three types of scattering which take 

place.   

 

• Rayleigh scattering occurs when particles are very small compared to the 

wavelength of the radiation.  These could be particles such as small specks of 

dust or nitrogen and oxygen molecules.  



 

• Mie scattering occurs when the particles are just about the same size as the 

wavelength of the radiation.  Dust, pollen, smoke and water vapour are 

common causes of Mie scattering.   

• Nonselective scattering occurs when the particles are much larger than the 

wavelength of the radiation.  Water droplets and large dust particles can 

cause this type of scattering. 

 

Absorption is the other main mechanism at work when electromagnetic radiation 

interacts with the atmosphere.  In contrast to scattering, this phenomenon causes 

molecules in the atmosphere to absorb energy at various wavelengths.  Ozone, carbon 

dioxide, and water vapor are the three main atmospheric constituents which absorb 

radiation.  

 

Path radiance is radiation entering the sensor aperture that did not arrive directly 

from the scene pixel under view.  Its origin is scattering from the atmosphere and 

radiance from adjacent scene pixels. 

 

Transmittance is related to Visibility or Meteorological Range, a quantity often 

available in a generalized sense from meteorological sources for a given area.   

 

In addition to direct solar rays, the surface target is illuminated by the diffuse light 

from the rest of the sky.  This light emanates from direct rays scattered by the 

atmosphere.  This illumination is not spectrally similar to the direct rays.  Rather, it tends 

to be blue on a clear day since its origin is primarily Rayleigh scattering, but it varies 

significantly depending on the clarity or optical depth of the atmosphere.  As result the 

total irradiance falling on a given area can vary quite significantly both in magnitude and 

spectral distribution depending on the atmosphere.  It is also varies depending on how 

much of the sky is visible from the ground surface element under consideration.    

 

A significant problem arises due to the scattering of the response from nearby 

objects that have different reflectance characteristics than the object being viewed.  Due 



 

to the atmospheric scattering, the spectral response at a given point on the Earth’s surface 

can be significantly affected by what is present on the Earth’s surface at nearby points.  

This is referred to as the adjacency effect.  

 

Clouds pose a significant limitation to passive optical remote sensing systems.  

They affect both the illumination and the view of the surface; they vary in this effect 

spatially, spectrally, and temporally, and these variations are of high frequency.   

 

2.7 Satellites and Sensors 

 

In order for a sensor to collect and record energy reflected or emitted from a 

target or surface, it must reside on a stable platform removed from the target or surface 

being observed.  Platforms for remote sensors may be situated on the ground, on an 

aircraft or some other platform within the Earth’s atmosphere, or on a spacecraft or 

satellite outside of the Earth’s atmosphere.  Ground-based sensors are often used to 

record detailed information about the surface which is compared with information 

collected from aircraft or satellite sensors.  In some cases, this can be used to better 

characterize the target which is being imaged by these other sensors, making it possible 

to better understand the information in the imagery.  Aircraft are often used to collect 

very detailed images and facilitate the collection of data over virtually any portion of the 

Earth’s surface at any time.  In space, remote sensing is conducted from satellites.  

Satellites are objects which revolve around another object in this case, the Earth.   

 

2.8 Spatial Resolution 

 

For some remote sensing instruments, the distance between the target being 

imaged and the platform, plays a large role in determining the detail of information 

obtained and the total area imaged by the sensor.  Sensors onboard platforms far away 

from their targets, typically view a larger area, but cannot provide great detail.  The detail 

discernible in an image is dependent on the spatial resolution of the sensor and refers to 



 

the size of the smallest possible feature that can be detected.  Spatial resolution of sensors 

depends primarily on their Instantaneous Field of View (IFOV).  The IFOV is the angular 

cone of visibility of the sensor and determines the area on the Earth’s surface which is 

“seen” from a given altitude at one particular moment in time.  The size of the area 

viewed is determined by multiplying the IFOV by the distance from the ground to the 

sensor.  This area on the ground is called the resolution cell and determines a sensor’s 

maximum spatial resolution.  (CCRS 2004) 

 

2.9 Spectral Resolution 

 

Spectral resolution describes the ability of a sensor to define fine wavelength 

intervals.  The finer the spectral resolution, the narrower the wavelengths range for a 

particular channel or band.  Black and white film records wavelengths extending over 

much, or the entire visible portion of the electromagnetic spectrum.  Its spectral 

resolution is fairly coarse, as the various wavelengths of the visible spectrum are not 

individually distinguished and the overall reflectance in the entire visible portion is 

recorded.  Colors film is also sensitive to the reflected energy over the visible portion of 

the spectrum, but has higher spectral resolution, as it is individually sensitive to the 

reflected energy at the blue, green, and red wavelengths of the spectrum.  Thus, it can 

represent features of various colors based on their reflectance in each of these distinct 

wavelength features of various colors based on their reflectance in each of these distinct 

wavelength ranges. (CCRS 2004) 

 

2.10 Hyperspectral Imagery 

 

Hyperspectral imagery is in essence a picture that contains both spatially and 

spectrally continuous data.  The term "hyper" means more than enough.  By having a 

hyperspectral image, there are more than enough spectra, or spectral bands, than 

absolutely necessary to resolve whatever component is looking for within the image.  

Hyperspectral imagery often times consists of hundreds of bands.   



 

Hyperspectral imagery is spectrally over determined; they provide ample spectral 

information to identify and distinguish between spectrally similar but unique materials.  

Consequently, hyperspectral imagery provides the potential for more accurate and 

detailed information extraction than is possible with other types of remotely sensed data. 

 

Most multispectral imagers (e.g. Landsat, IKONOS, and AVHRR) measure 

reflectance and/or emission of Earth’s surface at few wide bandwidth bands separated by 

spectral segments where no measurements are taken.  In contrast, most hyperspectral 

sensors measure reflected radiation as a series of narrow and contiguous wavelength 

bands.  This type of detailed pixel spectrum can provide much more information about a 

surface than is available in a traditional multispectral pixel. See Figure 6. 

 
Figure 6 – Types of Spectral Imaging 

2.11 Dimension Reduction 

 

Dimension reduction is a process designed to reduce data volumes by filtering out 

specific redundant information.  With hundreds of channels, hyperspectral imagery 

possesses much richer spectral information than multispectral imagery.  However, 

realizing the full potential of hyperspectral technology remains a challenge.  It is clear 

that more effective data processing techniques are needed to deal with hyperspectral 

images (Umaña et al, 2003).  One example is land image classification with sensors such 



 

as HYPERION.  For this application, it is necessary to have a minimum number of 

training pixels to the number of spectral bands in order to ensure a reliable estimate of 

class statistics, and as a consequence, dimension reduction has become a significant part 

of hyperspectral land classification.   

 

2.12 Atmospheric Correction 

 

The nature of remote sensing requires that the solar radiation pass through the 

atmosphere before it is collected by the sensor.  Remotely sensed images therefore 

include not only the information about the surface but also about the atmosphere.  For 

those interested in quantitative analysis of surface reflectance, removing the influence of 

the atmosphere is a critical pre-processing step.  To compensate for atmospheric effects, 

properties such as the amount of water vapor, distribution of aerosols, and scene visibility 

must be known.  Because direct measurements of these atmospheric properties are rarely 

available, techniques have been developed to infer them from their imprint on 

hyperspectral radiance data.  These properties are then used to constrain highly accurate 

models of atmospheric radiation transfer to produce an estimate of the true surface 

reflectance.  Moreover, atmospheric corrections of this type can be applied on a pixel-by-

pixel basis because each pixel in a hyperspectral image contains an independent 

measurement of atmospheric water vapor absorption bands. (Adler-Golden 98) 

 

Some atmospheric correction methods are FLAASH and ACORN, based on 

ENVI, here an introduction of this methods. 

 

2.12.1 Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

 

ENVI’s atmospheric correction module, called FLAASH is a first-principles 

atmospheric correction modeling tool for retrieving spectral reflectance from 

hyperspectral radiance images. With the FLAASH module for ENVI, you can 

compensate for atmospheric effects accurately.  FLAASH module incorporates the 



 

MODTRAN4 radiation transfer code.  You may choose any of the standard MODTRAN 

model atmospheres and aerosol types to represent the scene, and a unique MODTRAN 

solution is computed for each image.  FLAASH also includes a correction for the 

“adjacency affect” (pixel mixing due to scattering of surface reflected radiance), provides 

an option to compute a scene-average visibility, and utilizes techniques for handling 

particularly stressing atmospheric conditions (such as the presence of clouds).  Other 

features include a cirrus and opaque cloud classification map and adjustable spectral 

“polishing” for artifact suppression. (Research Systems, 2001) 

 

FLAASH supports most high spectral resolution instrument that covers the 

reflective spectra (0.4 to 2.5µm), including the following sensors: HyMAP (Keeling et al, 

98), AVIRIS (Adler-Golden 98), HYDICE (Kappus et al, 96) and HYPERION (EO-1 

Webpage).  In addition, FLAASH can correct images collected in either vertical (nadir) 

or slant viewing geometries.  FLAASH was developed by Spectral Sciences, Inc., a world 

leader in optical phenomenology research, under the sponsorship of the U.S. Air Force 

Research Laboratory.  (Research Systems, 2001) 

 

2.12.2 Atmospheric Correction Now (ACORN) 

 

ACORN uses look-up-tables calculated with the MODTRAN4 (Adler-Golden 

98), radiative transfer code to model atmospheric gas absorption as well as molecular and 

aerosol scattering effects.  These modeled atmospheric characteristics are used to convert 

the calibrated sensor radiance measurements to apparent surface reflectance.  The 

technique uses a fast and accurate look-up-table approach to calculate water vapor 

amounts on a pixel-by-pixel basis.  The user may choose to use the water vapor 

absorption bands at 940 or 1150nm or both for the water vapor derivations.  Additionally 

the user may input a visibility or ask ACORN to attempt to estimate the visibility from 

the data.  A set of artifact suppression options are included in the ACORN software.  

(ImSpec LLC, 2002) 

 



 

The Atmospheric CORrection Now (ACORN) software package provides an 

atmospheric correction of Hyperspectral and Multispectral data measured in the spectral 

range from 350 to 2500 nm.   ACORN is designed to work with all airborne and 

spaceborne calibrated hyperspectral and multispectral data types including HYPERION, 

ASTER, LANDSAT, AVIRIS, IKONOS, among others. (ImSpec LLC, 2002) 

 

ACORN provides the following specific modes of Atmospheric Correction: 

 

• Mode 1 Radiative transfer atmospheric correction of calibrated hyperspectral data. 

• Mode 1.5 Radiative transfer atmospheric correction of calibrated hyperspectral 

data with water vapor and liquid water spectral fitting 

• Mode 2 Single spectrum enhancement of a hyperspectral atmospheric correction. 

• Mode 3 Atmospheric correction using the empirical line method for hyperspectral 

data. 

• Mode 4 User specified convolution of hyperspectral data to multispectral data. 

• Mode 5 Radiative transfer atmospheric correction of calibrated multispectral data. 

• Mode 5.5 Radiative transfer atmospheric correction of calibrated multispectral 

data with independently know water vapor image for spatially varying water 

vapor correction 

• Mode 6 Single spectrum enhancement of a multispectral atmospheric correction. 

• Mode 7 Atmospheric correction by the empirical line method for multispectral 

data. 

 

2.13 Singular Value Decomposition Noise Filtering 

 

Signal Model  

 

Let us model the Hyperspectral pixel as a combination of a random spectral 

signature, s, (pure or mixed) with additive noise, n, given by:  

nsx += . 



 

where s is the spectral signature with covariance Σs, n is white noise with covariance µ2I 

and s and n are uncorrelated.  The nxn covariance matrix for x, Σx, given by  

Isx
2µ+Σ=Σ  

where Σs is of rank p<n which is equal to the dimension of the signal subspace.  The 

eigenvalues of Σx, λxi, are given by: 

λxi = λsi + µ2, i= 1, 2, ..., n 

where λsi is the i−th eigenvalue of Σs and the eigenvalues are ordered in descending order 

of magnitude.  Since Σs is rank p, λsi = 0 for i > p, so that:  

λxi = λsi + µ2,  i = 1, 2, ..., p (signal and noise) 

and 

λxi = µ2,         i = p+1, ..., n (only noise contribution) 

 

If we have a good signal to noise ratio, we should expect that λsi >> µ2 for all i. 

 

Of the measured signal x, only the first p principal components carry signal information 

and a filtered x is constructed using the first p eigenvectors of the Σx 

       (2.1) 

Where xp is the filtering version of x, Vp is the matrix of the first p eigenvectors of the 

covariance matrix.  Notice that 2.1 is a projection of x onto the space spawned by the 

signal eigenvectors.  This reconstruction is optimal in a mean squared sense; and it is 

used in many multivariable statistical applications.  

 

Computing the filtered image 

 

Let A = [x1, x2, … , xN] (pixels of the Hyperspectral cube) be a set of independent 

measurement of the random variable x (mean subtracted).  

 

The singular Value Decomposition (SVD) of a matrix A of size mxn is a decomposition 

of the form (Trefethen et al, 1997): 
TUSVA =       (2.2) 

xVVx T
pp=p



 

where U and V are orthogonal, square matrices of sizes mxm and nxn respectively, and S 

is a diagonal matrix of size mxn.  The columns ui (1 ≤ i ≤ m) and vj (1 ≤ j ≤ n) of U and V 

are called the left and right singular vectors, respectively, and the diagonal elements skk (1 

≤ k ≤ min{m,n}) of S are called the singular values of A.  The left (ui) and right (vj) 

singular vectors of A form orthonormal bases, and are related by the following relation: 

iii usAv =       (2.3) 

showing that each right singular vector is mapped onto the corresponding left singular 

vector, and the “magnification factor” is the corresponding singular value.   

 

Since
N

AAt

x =Σ , we get that
N

i
xi

2σλ = , where σi is the i-th singular value of A.  So we 

can use the SVD of A to compute the filtered mode.  The desired approximation is the 

rank p approximation to A.   Given by  T
pppp VUA Σ=  where Up is the matrix of the first 

p left singular vectors, Σp is a diagonal matrix with the first p singular values, and Vp is 

the matrix of the first p right vectors.  Notice that the right singular vectors of A are equal 

to the eigenvalues of Σx.  

 

 SVD has a variety of applications in scientific computing, signal processing, automatic 

control, and many other areas.   In signal processing, the SVD decomposition, followed 

by the truncation of the lower singular values has been traditionally used for noise 

reduction, in voice and image signals (Hansen et al, 98).  The central idea can be 

summarized as follows: let A be the matrix that represents the discretized noisy signal, 

compute the SVD decomposition of A (2.1), and then discard the smaller singular values 

of A and their corresponding singular vectors.  It can be shown that the small singular 

values of A, mainly represent the noise, and thus the rank-p matrix Ap (p < n) represents a 

filtered signal with less noise (A key problem is to determine the dimension of the signal 

space p).  This application of the SVD is called Truncated SVD (TSVD) or Reduced-

Rank Noise Reduction.  (Hansen 1998) 

 



 

2.14 Oversampling and Amplitude Resolution 

 

Shannon’s sampling theorem states that a band-limited signal needs to be sampled 

at least at a frequency that is twice its bandwidth in order to reconstruct it from its 

samples.  There are, however, advantages to sampling at higher rates.  The theory relating 

the sampling rate to precision assuming additive white noise will be presented first, with 

the results generalized later (Hunt et al., 2004). 

 

A hyperspectral image can be viewed as a three dimensional data cube, where two 

dimensions are spatial, and one spectral.  Only the spectral dimension is considered in 

oversampling analysis, so for simplicity, we will write each pixel as a function of the 

spectral dimension only, 

 

oo yyxxyxxx === ,|],,[][ λλ    (2.4) 

 

where x[λ] is the pixel at location (xo, yo) in the image, and λ  is the spectral index.  Let 

mf2  be the signal bandwidth and sf   be the sampling frequency. The oversampling rate 

is defined as: 

m

s

f
f

OSR
2

=
     (2.5) 

 

In the case where the signal has an oversampling rate of 1, x[λ ] cannot be filtered 

without loosing signal, given that the signal spectrum ranges from –π to π and it is 

periodical with period 2π.  Otherwise, if the signal is oversampled say by two, the signal 

spectrum ranges between –π/2 to π/2 and hence can be filtered with a Lowpass filter with 

cut off frequency also between –π/2 to π/2 without changing the signal but eliminating 

the noise located between π/2 and π, as can be seen in Figure 7,  leading to an increase in 

the signal to noise ratio.  



 

 
Figure 7 - Oversampling 

 

Where the added noise is assumed to be additive white noise with power spectral 

density, given by:  
2)( vvS σω =      πω <     (2.6) 

 

where 2
vσ  is the variance of the  noise.  Hence, its power will be uniformly distributed 

over all frequencies from - π to π.  Filtering a signal that has been oversampled by a 

factor of two using a Lowpass filter with cut off frequency at π/2 rad will eliminates the 

noise in the interval [-π, π/2]  and [π/2, π], as the Figure 7 shows.  This represents a 

reduction of the noise by exactly a half, without changing the signal, which means an 

increase in SNR of 10log10(2) = 3dB.  This can be related to the increase in precision or 

amplitude resolution as follows: for B number of bits and maximum amplitude of ±A, the 

amplitude resolution, or distance between one rounding level and the next is  

.
2
2

B
A=∆

     (2.7) 

Thus, the number of bits determines its precision, and the amount of quantization 

noise.  Quantization noise is typically modeled as additive white noise that is independent 

of the signal of interest.  Using the results above, oversampling by 4 and filtering at π/4 

rad/sam will lead to an increase in the SNR of 6 dB or one bit.  This formula works in 

general, so that 

( )
)4log(

log OSRw =
     (2.8) 

where w is the additional number of bits of precision. 

 



 

The additive noise was assumed white in the above examples, but this is not 

necessary.  The only thing necessary to obtain an increase in precision is to have an 

oversampling of the desired signal.  If we do not assume white noise, then we will not 

have the simple relation between the oversampling rates to the increase in precision 

shown in the previous equation.  The performance, however, may even be better than this 

case.  If the power of the noise is mainly concentrated at high frequencies, then there will 

be a greater SNR increase than with white noise.   

 

2.15 Pattern Recognition 

 

Pattern recognition is the scientific discipline whose goal is the classification of 

objects into a number of categories or classes.  These objects can be images, acoustic 

signal, seismographic signals and tomographic data.   

 

The general scheme of a pattern recognition system is shown in the following 

figure.  A natural pattern is viewed or measured with some type of a receptor containing a 

sensor.  The receptor reports out the measurements as an asset of numbers.  This set of 

numbers X=[x1,x2…xn], usually represented as a vector, (e.g Multi/Hyperspectral pixel), 

is then fed to a classifier which makes a decision as to what pattern the set of numbers of 

each pixel represent.   (Landgrebe 2003) 

 

 
Figure 8 - Diagram of a Pattern Recognition System 

 

 

 



 

2.15.1 Feature Extraction 

 

Feature extraction is the identification of real world objects or features from 

spatial datasets especially remotely sensed data.  The traditional goal of the feature 

extractor is to characterize an object by making numerical measurements.  Good features 

are those whose values are similar for objects belonging to the same category and distinct 

for objects in different categories.  Usually one feature is not enough to differentiate 

between objects from different categories.   

 

Feature extraction is an optional step on the classification process which serves 

only as a low level pre-processing of the image to reduce its spectral, or spatial, 

dimensionality.  It can be accomplished by using any type of spatial filters or spectral 

transforms to reduce the data and/or enhance its hyperspectral features, or even by simply 

selecting a subset of bands.  In this stage, the hyperspectral image is transformed into a 

feature image.  

 

2.15.2 Classification Concept 

 

The task of the classifier component is to use the features to assign the object to a 

category.  Essentially the classifier divides the feature space into regions corresponding 

to different categories.  The degree of difficulty of the classification problem depends on 

the variability in the feature values for objects in the same category relative to the feature 

value variation between the categories.  Variability is natural or is due to noise. 

 

Image classification is the process of creating an informational representation of 

an image which shows the spatial distribution of a particular theme (thematic maps) from 

satellite imagery.  Themes can be as diversified as their areas of interest.  Examples of 

themes are soil, vegetation, water depth, and coral among others.  Inside a theme, there 

can be defined sub-themes, and thus the process of classification needs to become more 

refined. 



 

2.15.2.1 Classification Process 

 

The image classification process can be summarized in 3 steps, as it is shown in 

the schematics bellow. 

 

 
Figure 9 - Image Classification Process 

 

2.15.2.2 Supervised and Unsupervised Classification 

 

Pixels from the hyperspectral image are extracted to train the classifier to 

recognize patterns which help differentiate the classes.  Based on these patterns, the 

classifier creates discriminant functions to assign each pixel to a class in the feature space 

(Landgrebe 2003).    

 

The training of the classifier can be either Supervised or Unsupervised.  

 

In Supervised classification, some pre-determined knowledge about the spatial 

distribution of the classes on the image is assumed.  The training points for each site are 



 

selected prior to the application of discriminant functions.  Themes are known at the time 

that the classes are labeled. 

 

In Unsupervised classification, the data is clustered according to its natural 

groups.  Those groups then become the classes.  

 

2.15.2.3 Classification Algorithm: Maximum Likelihood Classifier 

 

During the process of training the pixels, the classes are separated using 

classification algorithms.  One of these algorithms is Maximum Likelihood that uses a 

probability model to determine the decision boundaries; it also assumes that the training 

data for each class in each band are normally distributed.  Makes use of the mean 

measurement vector Mc for each class and the covariance matrix of class c for all bands 

Vc;  to classify the measurement vector X of a pixel into a class, the maximum likelihood 

decision rule computes the value pc for each class, then it assigns the pixel to the class 

that has the largest value assign the pixels class c if ci ≠  

),...,3,2,1( mipp ic =>   
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here Det(Vc) is the determinant of the covariance matrix Vc, ac is the apriori probability 

for a pixel to be in class c.  A probability threshold can exclude outliers, pixels with a low 

probability of belonging to any class.  The a posteriori probability of a pixel belonging to 

class c can be computed as:   
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where )|( cXp  is the probability density function for a pixel X as a member of class c, ac 

is the priori probability of membership of class c, and m is the total number of classes.  

The a posteriori probabilities sum to 1.0 for each pixel.  The posteriori information may 

be used to assess how much confidence should be placed on the classification of each 

pixel.  It may be interpreted as the relative proportions of each category within the 

spatially and spectrally integrated multispectral vector of the pixel. 

 

When the number of training samples is relatively small compared to the 

dimensionality, maximum likelihood estimates of parameters have large variances, 

leading to a large classification error (Fukunaga et al., 89) 

 

2.15.2.4 Bhattacharyya Distance 

 

The Bhattacharyya distance is a theoretical distance measure between two 

Gaussian distributions, this technique measures the statistical separability of spectral 

classes, giving an estimate of the probability of correct classification. 

 

To relate the effect of the resolution enhancement algorithms to class separability, 

we use the Bhattacharyya distance between normaly distributed classes.  The 

Bhattacharyya distance is widely used as a measure of class separability because of its 

analytical form and its relation to the Bayes error.  
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where, B is the Bhattacharya distance, i and j are sub-indices that corresponds to the ith 

and jth classes, Σ stands for the covariance matrix, and µ for the mean.  The first term and 

the second term represent the class separability due to the mean difference and 

covariance difference, respectively.   



 

2.16 Summary 

 

In this chapter, the basic concepts of Hyperspectral remote sensing were 

introduced.  Also, the fundamentals of atmospheric correction, the basis of truncated 

singular value decomposition and the theory of oversampling were described in 

conceptual form as the pattern recognition method.  



 

CHAPTER 3 

 

3. METHODOLOGY  

 

This chapter presents the methodology used in this research work, shows the 

details of the Hyperspectral images and the sensors used, the characteristics of the 

Hyperspectral Matlab Toolbox, the truncated singular value decomposition algorithm and 

the resolution enhancement based on the oversampling theory algorithm used. 

 

3.1 Methodology used for comparison 

 

The Methodology used for the comparison of the resolution enhancement based 

on the oversampling theory and the truncated singular values is described as follow. 

 

For this study several Hyperspectral images from different types of sensors, under 

different environmental conditions, and the availability of ground truth were used.  These 

images were taken from the Hyperion sensor over the benthic habitat of Enrique Reef in 

Puerto Rico, the Aviris sensor over the crops in the Indian Pine test site, North West of 

Indiana and the Moffet field in California, the TRWISS III sensor over the crops of the 

GRS site in Brooksville, MS, and a test image using the Hyperspectral SOC-700 camera 

available at the Laboratory of Remote Sensing and Image Processing (LARSIP) in the 

UPRM. 

 

In the pre-processing stage of the Hyperspectral Image classification system, 

resolution enhancement based on the oversampling theory and truncated SVD methods 

for enhancement were applied to the images.  In the feature extraction stage, we used 

band subset selection based on matrix factorization, this algorithm requires as input the 

number of bands to select, which in turn depends on the dimensionality of the data.  The 

dimensionality of the images was determined as the number of principal components 



 

needed to explain at least 99.5% of the total variability.  The classification method 

employed was the supervised Maximum Likelihood.  The training and testing samples of 

each class were manually selected over the images with the aid of the graphical tool 

provided by the Hyperspectral image analysis Matlab Toolbox.  The results of these 

classifications are the accuracy (the ratio of the number of correctly classified samples to 

the total number of samples) and the Bhattacharya distance, which helps to compute the 

effect of each algorithm used in the pre-processing stage.    

 

In all the experiments the feature extraction and classification methods were 

fixed.  Only the pre-processing stage was changed.  Samples for training and testing came 

from the same location. 

 

The methodology explain before is illustrated in the following figure 

 

 
Figure 10 - Methodology used for Comparison 
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3.2 Hyperspectral Sensors Description 

 

This section presents a brief description of the Hyperspectral sensors used in this 

work. 

 

3.2.1 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

 

AVIRIS is an acronym for the Airborne Visible InfraRed Imaging Spectrometer.  

AVIRIS is a world class instrument in the realm of Earth Remote Sensing.  It is a unique 

optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 

contiguous spectral channels (also called bands) with wavelengths from 400 to 2500 

nanometers (nm).  AVIRIS has been flown on two aircraft platforms: a NASA ER-2 jet 

and the Twin Otter turboprop.  The ER-2 is a U2 aircraft modified for increased 

performance which flies at approximately 20 km above sea level, at about 730 km/hr.  

The Twin Otter aircraft flies at 4km above ground level at 130km/hr.   

 

  
Figure 11 - AVIRIS Instrument (EarthSat, 2004) 

 

AVIRIS uses a scanning mirror to sweep back and forth ("whisk broom" fashion), 

producing 614 pixels for the 224 detectors each scan.  The pixel size and swath width of 

the AVIRIS data depend on the altitude from which the data is collected.  When collected 

by the ER-2 20km above the ground each pixel produced by the instrument covers an 

area approximately 20 meters square on the ground with some overlap between pixels, 

thus yielding a ground swath about 11 kilometers wide.  When collected by the Twin 



 

Otter (4km above the ground), each ground pixel is 4m square, and the swath is 2km 

wide. 

 

3.2.2 HYPERION  

 

Hyperion provides a high spectral resolution hyperspectral imager capable of 

resolve 220 spectral bands (from 0.4 to 2.5 µm) with a 30 meter spatial resolution (EO-1 

webpage).  The instrument images a 7.5 km by 100 km land area per image and provides 

detailed spectral mapping across all 220 channels.   

 

 
Figure 12 - Hyperion Instrument (Taken from NASA EO-1 Webpage) 

 

The major components of the instrument include the following:  

 

• System fore-optics design based on the KOMPSAT EOC mission.  The 

telescope provides for two separate grating image spectrometers to improve 

signal-to-noise ratio (SNR). 

• A focal plane array which provides separate short wave infrared (SWIR) and 

visible/near infrared (VNIR) detectors based on spare hardware from the 

LEWIS HSI program. 

• A cryocooler identical to that fabricated for the LEWIS HSI mission for 

cooling of the SWIR focal plane. 

 

Hyperion Specifications  



 

 

 

 

3.2.3 TRW Imaging Spectrometer III (TRWIS III) 

 

The latest generation of TRWIS hyperspectral instruments, TRWIS III shown in 

Figure 13, provides broader spectral coverage (0.3 to 2.5 microns) and improved 

signal/noise (Sandor-Leahy et al, 2000).  It has 384 channels with the VNIR segment 

covering 0.3 to 1.0 microns in 5nm channels and the SWIR segment covering from 0.9 to 

2.5 microns in 6.25 nm channels.  The sensor operates in a pushbroom mode with 256 

spatial channels.  Although it is designed to operate up to 240 Hz frame rate, most 

operations will be between 15 and 60 Hz depending on altitude and aircraft velocity.  The 

IFOV (or resolution) is 0.9 milliradians, which corresponds to a resolution of better than 

1 meter from an altitude of 1000 meters.  The total field of view is 230 milliradians.   

 

 
Figure 13 - The TRWIS 3 Hyperspectral Imager (Pearlman et al, 1999) 

 

Instantaneous FOV (Field of View)  0.043 mrad 

Sensor Altitude 705 km 

Spectral bands 242 

Swath  7.5 Km 

Spectral Coverage VNIR: 355 – 1000 nm 

SWIR: 900 – 2577 nm 



 

TRWIS III was designed to satisfy the requirements of a wide variety of earth 

observing missions such as geological surveying, natural resource management, and 

environmental monitoring.  It can fly on many different aircraft platforms and can also 

mimic the capability of the TRW-built Lewis hyperspectral imager (HSI), the primary 

payload on the Lewis satellite which was also built by TRW for NASA.  In its first flight 

season, TRWIS III was used to gather data for applications including remote 

classification of desert vegetation, forest species, and man-made materials.  Along with 

its first season of operational demonstrations, the instrument underwent laboratory 

performance validation and radiometric calibration. 

 

3.2.4 SOC-700 Visible Spectral Imaging System 

 

The SOC700 Hyperspectral Imager (shown in Figure 14) is a high quality, 

portable and easy-to-use spectral imaging instrument that is radiometrically calibrated 

with software for analysis and viewing.  The imager acquires a 640 pixel by 640 pixel 

images that are 120 bands deep in as little as four seconds. 

 

 
Figure 14 - SOC-700 Visible Spectral Imaging System (taken from SOC) Webpage) 

 

Highlights 

 

• Spectral Band:  0.43 – 0.9 microns 

• Number of Bands:  120, 240 or 480 (configurable) 

• Dynamic Range:   12-bit 



 

• Line Rate:   Up to 100 lines/second (120 bands) 

• Pixels per line:   640 

• Exposure Time:   10 - > 107 microsecond 

 

3.3 Hyperspectral Data Description 

3.3.1 Indiana Pine 

 

The Indiana Image was acquired over Indian Pines test site in NW Indiana on June 12, 

1992 by the AVIRIS sensor, (see Figure 15).  The image is 145 lines, 145 samples and 

has 220 bands from 400nm to 2500nm at a spectral resolution of 10nm.  It contains 16 

classes (Landgrebe 2003).  For this study, six classes were selected, see Figure 16.  The 

classes selected were Corn no-till, Grass/Pasture, Woods, Hay Windrowed, Corn Min and 

Soybean min-till.   

 

The original data has 220 bands, but, for classification, the water adsorption bands 

and band 220 have to be eliminating, because they are noisy (Tadjudin et al 1998).  

Additionally, bands 1-5, 77-80, 102-112, and 147-219 were eliminate because, the 

atmospherically corrected spectrum has strong artifacts in these bands. 

 



 

Figure 15 - AVIRIS 1992 NW Indiana Indian 

Pines Image 
Figure 16 – Indian Pine Image Ground Truth 

for the 6 Selected Classes 

 

The data values in the scene are proportional to radiance, 1000 has been added to 

the calibrated data so that all data values in this scene are positive, to convert the scene 

data values (SDV) to radiance values (RV), one must first subtract 1000 and then divide 

by a gain factor of 500 provided by NASA Jet Propulsion Laboratory (JPL)1. 
 

500
1000 )(SDVRV −=  , The RV units are  

srnmcm
W

**2   (3.1) 

 

3.3.2 Moffet Field 

 

The Moffet Field image was taken from the JPL's Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS).  AVIRIS acquired the data on August 20, 1992 when it 

was flown on a NASA ER-2 plane at an altitude of 20,000 meters (65,000 feet) over 

Moffett Field, California, at the southern end of the San Francisco Bay. 

                                                
1 This data is from the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) built by JPL and flown by 

NASA/Ames on June 12, 1992 



 

        
Figure 17 - Moffet Field data from AVIRIS.   RGB created using 53, 29, 19 bands.  

 

Figure 17 shows an image of the Moffett field data recorded using the AVIRIS 

sensor in 224 bands (0.4 µm to 2.4 µm spectral range). This data are 12 bit digital 

numbers without any atmospheric corrections for absorption and scattering.  Five regions 

of interest are marked in the image for classification (Figure 18).  Four of these regions 

are different water bodies ranging from clear water to an evaporation pond. The water 

bodies in between have different levels of clarity due to different amounts of particle 

suspension.  Another region is sparse vegetation.  The entire image was classified to 

identify pixels belonging to these 5 regions (classes).  The same bands of the Indiana Pine 

image were eliminated in Moffet Field image.  The ground truth was taken from 

(Subramanian et al, 1997) 
 



 

 
Figure 18 – Moffet field data.  The polygons are the 5 classes 

 

3.3.3 GRS-S Data Fusion Committee Data Set  

 

The Geoscience and Remote Sensing Society (GRS-S) Data Fusion Committee 

benchmark data set GRSS_DFC_0008 was acquired over Brooksville in MS on June 25, 

2000 by the TRWISS III sensor (see Figure 19).  The image is 1515 lines, 256 samples 

and has 384 bands from 367nm to 2500nm at a spectral resolution of 2m.  It contains 3 

classes Corn, Cotton and Soybean.  The original data set was already atmospheric 

corrected using ACORN in mode 1. 

 

 



 

Image Description 

 

Elevation of Target:     82 meters 

Altitude of Sensor:     1800 meters (MSL) 

Image Length:      2337 meters 

Spatial Resolution (GSD)    2 meters 

Time:       17:37 UTC  

Visibility      7 miles 

Visual Description:     Slight overcast  

 
Figure 19 - GRS-S Data Fusion Committee benchmark data set GRSS_DFC_0008  

 

3.3.4  Benthic Habitat of La Parguera in Puerto Rico 

 

This image was acquired over “La Parguera” in Southwestern Puerto Rico on 

February 21, 2003 by the HYPERION satellite hyperspectral sensor (see Figure 20) at 

17:05:50.  The original image is 3128 lines, 256 samples and has 242 bands from 355.6 

nm to 2577nm at a spectral resolution of 30m.  Five classes were selected: Mangrove, 



 

Seagrass, Coral Community, Sand, and Seawater (see Figure 22).  The HYPERION data 

set was atmospheric corrected using ACORN in mode 1 (see section 3.4 for details). 

 

 
Figure 20 – La Parguera in Southwestern Puerto Rico.  (HYPERION) 

 

 
Figure 21 - "La Parguera" image from IKONOS (Grount truth) 
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The image processed is 121 lines, 88 samples, 196 bands, starting at column 48, 

line 1914 as can be seen in the Figure 20.  Hyperion data always is delivered at level 1, 

where the data have been calibrated in radiance units (W/m2-sr-µm).  The SWIR bands 

have a scaling factor of 80 and the VNIR bands have a scaling factor of 40.  Level 1 

Radiometric product has 242 channels but only 196 of them are calibrated because the 

overlap that exists between the VNIR (426-925 nm) and SWIR (912-2395 nm) bands.  

The reason for not calibrating all 242 channels is due to the detectors low responsivity in 

the 1-7, 58-76 channels.   It is necessary to eliminate these channels because are set to 

zero.  

 

 
Figure 22 – HYPERION Image.  Training and Testing Samples 

 

Five regions of interest are marked in the HYPERION image for classification 

Figure 22.  These regions are Seagrass, Sand, Mangrove, Coral Community and 

Seawater.  The ground truth was provided by Dr. Fernando Gilbes and Jeannette Arce 

from the Department of Geology in the University of Puerto Rico at Mayagüez.  

 



 

3.3.5 Hyperspectral SOC700 Camera Test Image  

 

This image was acquired over grass on August 13, 2004 by the Hyperspectral 

SOC700 Camera (see Figure 23).  The original image is 640 lines, 640 samples and has 

120 bands from 430 nm to 900nm.  Three regions of interest are marked in the SOC700 

Test Image for classification Figure 24.  These regions are Grass (Background), Coin1 

(Quarter Dollar) and Coin2 (Half dime).   

 
Figure 23 - SOC700 Test Image.  Grass and Coins 

 

 
Figure 24 - SOC700 Test Image.  Training and Testing Samples 
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3.4 The MATLAB Toolbox for Hyperspectral Image Analysis 

 

The Hyperspectral Image Analysis Toolbox (Arzuaga et al, 2004) is an 

application being developed at the UPRM Laboratory for Applied Remote Sensing and 

Image Processing (LARSIP).  This toolbox has a graphical user interface (GUI) (Figure 

25 ) in MATLAB offering several options to manipulate and analyze the Hyperspectral 

Image data  

 
Figure 25 - MATLAB Toolbox for Hyperspectral Image Analysis 

 

MATLAB Toolbox features. 

 

o Load and Save between different image formats as MATLAB (.mat), Remote 

Sensing binary (bil, bis, bsq), JPG and TIFF. 

• Visualization of the image, band by band presented in grayscale or in a RGB 

composite color using three selected bands.  

• Select from one of the available feature extraction/selection routines: 

 

o Principal Components Analysis (Fukunaga 1990) 

o Discriminant Analysis (Fukunaga 1990) 



 

o Singular Value Decomposition (SVD) (Vélez 1998) 

o Band Subset Selection (Lacouture 2002) 

o Projection Pursuit (Ifarraguerr 2000) 

o Optimized Information Divergence Projection Pursuit (Arzuaga 2003) 

 

• Visualization of the spectral response in each pixel.  

• Supervised and unsupervised classification, using one of the following 

classifiers: 

 

o Euclidean Distance 

o Fisher’s Linear Discriminant Analysis 

o Mahalanobis Distance 

o Maximum Likelihood 

o Angle Detection  

 

The supervised classification module allows the selection of areas of the 

image as training and testing samples for the spectral classes present in the 

image.  It is also possible to load a previously saved set of samples to for 

training. 

 

The unsupervised classification module enables the user to select the 

stopping criteria to minimize the change of certain metric between iterations.  

The metrics used in the toolbox as stopping criteria are: 

 

o Bhattacharyya Distance 

o Covariance matrix 

o Pixel quantity of variation 

o Sum of squared error 

� Sum of squared error with covariance matrix information 



 

• Post-processing techniques that allows integrate contextual information of the 

scene to the resulting spectral classification map (Rivera-Medina 2003). The 

available routines are: 

 

o Supervised & Unsupervised ECHO classifier 

o Spatial Information Integration based on Markov Random Fields 

 

The result of applying post-processing techniques is an enhanced 

classification map.  After a set of classes have been defined by supervised or 

unsupervised classification methods the toolbox allows visualize the 

class/cluster statistics.  The statistics available are the graphical representation 

of the mean vector and correlation matrix for each class/cluster.  

 

3.5 Atmospheric Correction over Hyperion Image 

 

The Hyperion Image product was distributed with a Hyperion level 1 

radiometrically corrected (L1R) data product. 

 
Table 1- Hyperion L1R product 

File Name Contains 

EO1H0050482003015110KZ.MET Metadata file  

EO1H0050482003015110KZ.L1R HDF datasets (image data, spectral center 

wavelengths, spectral bandwidths, gain 

coefficients, and a flag mask) 

EO1H0050482003015110KZ.hdr ENVI formatted header 

 

ID Naming convention: 

EO1 Satellite 

H  Hyperion Sensor  

005 Target WRS path 

048 Target WRS row   



 

2003 Year of acquisition  

015 Julian day of acquisition  

1  Hyperion 0=off; 1=on 

1  ALI 0=off; 1=on 

0  AC 0=off; 1=on 

K Pointing mode 

Z Scene length 

L1R  Hyperion Level 1 product 

 

3.5.1 Input Data Requirements 

 

ACORN only works with image files that are stored as 16 bit integers in either BIP or 

BIL format.  The format of the integers may be big endian (NETWORK) or little endian (HOST 

or INTEL).  The image data must be 16-bit integer format.  The integer format little endian or big 

endian must be known and specified by the user at runtime.  Data written by PCs are often little 

endian integer format.  Hence, Level 1 product has to be converted to this format first.  This 

operation should be done in ENVI before trying to use the FLAASH or ACORN 

atmospheric correction tools.  The image interleave must be Band Interleaved by Pixel (BIP) 

or Band Interleaved by Line (BIL) and known.  If the input radiance image has an ENVI header, 

ACORN copies the ENVI header information to an output ENVI header to allow easy use of the 

reflectance corrected output file in ENVI. Also, for better results in the atmospheric 

correction, is due to work with the calibrated channels.  Calibrated channels are 8-57 for 

the VNIR, and 77-224 for the SWIR, these channels are set to zero.   

 

3.5.2 Data Files  

 

The atmospheric correction methods used is ACORN, based on ENVI.  The 

ACORN software is designed to be simple and straight forward, however the atmosphere 

correction modes of ACORN requires a number of parameters and input files in specific 

formats.  For atmospheric correction these include a calibrated radiance image file, a 

spectral calibration file (wavelength and FWHM), a gain file, and an offset file 



 

(Appendix A).  These files must be prepared in advance of the ACORN run and must be 

obtained from the hyperspectral instrument data provider, built from scratch, or 

developed from existing ACORN files. 

 

3.4.2.1 Spectral Calibration file 

 

The ACORN spectral calibration file must be an ASCII files. Spectral calibration 

files describe how the electromagnetic radiation is measured spectrally by the instrument 

of interest. Different modes of ACORN require different spectral calibration input.  For 

example, for hyperspectral, the first column is the wavelength position of each band in 

units of nanometers. The second column is the full-width-half-maximum (FWHM) of the 

image that describes the spectral response of each band. The spectral calibration files or 

information to create them must come from the data provider. 

 

3.5.2.2 Gain File 

 

Several of the modes of ACORN require input gain files that convert the stored 

integer numbers of the image data to units of radiance (W/m^2 /µm/sr).  To make the 

appropriate input gain file it is necessary to know the units of the image integers stored 

on disk.  Then produce the ASCII input gain file that has a value for each image band that 

converts that band to radiance (W/m^2/µm/sr).  

 

3.5.2.3 Offset File 

 

The ACORN offset file is an ASCII file with one column with a value for each 

image band.  The values in this offset file are the real numbers that are added to the 

image radiance values after the gain file has been applied. The units of the offset file are 

(W/m^2/µm/sr).  For most data sets the offset file values will be 0.0. 

 



 

3.5.3 The ACORN requirements to perform the atmospheric correction 

 
Table 2- Hyperion Sensor Specifications 

Instantaneous FOV (Field of View) 0.043 mrad 

Sensor Altitude 705 km 

Spectral bands 242 

Swath 7.5 Km 

Spectral Coverage VNIR: 355 – 1000 nm 

SWIR: 900 – 2577 nm 

 
Table 3 - ACORN Software Requirements 

Data Required Assumed Value 

Image Mean Elevation (m) 0 

Flight Date, Time Taken from the metadata file 

Scene Center Location (Lat, Lon) Taken from the metadata file 

Atmospheric Model  Tropic 

Image Atmosphere Visibility (Km) 40 

Derive Water Vapor 940 and 1140 nm 

Image Spectral Calibration Taken from the header file 

Gain File 40 for VNIR, 80 for SWIR 

Offset File 0 for all wavelength 

 

ACORN offers three options of artifact removal and all can be selected 

simultaneously: 

 

1. Correct by mismatch between the spectral calibration and the radiative 

transfer calculations. 

2. Suppress small artifacts across the spectral range. 

3. Suppress noisy values from low signal data. 

 



 

ACORN allows to select the bands where the water vapor would be retrieved 

(820, 940, 1140, and 940-1140 nm).  Best results were obtained using both bands at 940 

and 1140 nm.  This result agrees with the recommended water vapor channels in coastal 

water by (Gao et al 2000).   

 

For the application to the HYPERION image considered in this study, the 

algorithm was run in mode 1 (Radiative transfer atmospheric correction of calibrated 

hyperspectral data) using a Tropic atmospheric model.  The 940-1140nm bands were 

used to derive water vapor, and atmospheric visibility was estimated based on image 

characteristics.  Results of ACORN using the mode 1 in Figure 26 

 

     
Figure 26 - Result of ACORN over Sea-Water pixels using 940-1140nm bands to retrieve water vapor 

 

 

 

 

 



 

3.6 Truncated Singular Value Decomposition (TSVD) 

 

The Singular Value Decomposition (SVD) of a rectangular matrix A of size mxn 

is a decomposition of the form: TUSVA = .  The SVD followed by the truncation of the 

lower singular values has been used for noise reduction.  This application of the SVD is 

called Truncated SVD (TSVD) or Reduced-Rank Noise Reduction.  (Hansen 1998). 

 

The algorithm can be summarized as follows:  

 

1. Let A be the matrix representation of the Hyperspectral cube  

                                                         
2. Compute the SVD decomposition of A  

 

 

 

 

3. Discard the smaller singular values of A and their corresponding singular 

vectors.   

A 
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Figure 27 – Singular Values of A (Moffet Image) 

 

The number of singular values p (See Figure 27), taken from the SVD 

decomposition to form the TSVD is given by: 
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where, N is the total number of singular values and 0 < th < 100 is a threshold that 

correspond to the percentage of singular taken with respect to the total, which is chosen 

according to the data itself.   

 

The new SVD decomposition it is as follows: 

 

 

 

 

 

4. Finally, the filtered image is obtained by T
pppp VUA Σ=  

The small singular values of A, represent the noise, and thus the rank-p matrix Ap 

(p<n) approximations of A represents a filtered signal with less noise.   
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3.7 Amplitude Resolution Spectral Enhancement Based on Oversampling 

 

Hyperspectral imagery is characterized by its high spectral resolution and a large 

number of spectral samples which results in oversampling in the spectral domain.  

Resolution enhancement takes advantage of the additional information provided by the 

oversampling to improve the signal to noise ratio of the image and class separability 

(Hunt et al, 2003).  The resolution enhancement based on Oversampling algorithm can be 

summarized as follows:  

 
 

 

 

 

 

 

 

 

 
Figure 28 - Amplitude Resolution Spectral Enhancement based on Oversampling Process 
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3.7.1 Cutoff Frequency Selection 

 

The amplitude resolution spectral enhancement algorithm was run using 10 cutoff 

frequencies in the range [0.1π, 1π], at intervals of 0.1π.  The cutoff frequency that 

produced the highest classification accuracy was selected 

 

3.8 Computational Complexity 

 

A complexity analysis is performed to demonstrate the lower computational 

complexity of resolution enhancement over Truncated SVD.  

 

3.8.1 Computational Complexity of Truncated Singular Value Decomposition  

 

Let Amxn be the matrix that represents the Hyperspectral image, where m are the 

pixels in the image and n the number of bands. 

 

Step 1: Compute the SVD of matrix A.  T
nnnnmnmn VUA Σ= . 

 

 

 

 

The computational complexity of this step is O (mn2) (Van-Loan et al, 97). 

 

Step 2: Perform Principal Component Analysis (Karhunen-Loeve method) (Te-

Ming Tu, et al 2001), to reduce the dimensionality of the data, that is, compute the 

first p first singular values such that: 
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where, threshold (%) is the percentage of contribution to the total variability of 

the data of the first p-singular values, which is usually taken above 90%.   In this 

work, the threshold used was 99.5%, selected as the minimum value that does not 

affect the classification accuracy of the data retrieved after dimension reduction 

and the original data.    

 

The computational complexity of this step is O(n), since it requires at most 2n + 2 

computations of order O(1). 

 

Step 3:  Define pU , pΣ   and pV  as  

[ ]pp uuuU L21=  

[ ]pp vvvV L21=  

 

 

 

which requires O(mp) to copy the corresponding p-eigenvectors of size at most m 

on to the matrix Up, meanwhile Vp and Σp only requires O(p2) = O(mp) time, since 

m > p.  Hence, the step requires O(mn) time. 

 

Step 4: Compute T
pppp VUA Σ= .  The ppU Σ  product requires O(mp2) time and 

the product ( ) T
ppp VU Σ  requires O(mpn). Since n>p, then this step requires 

O(mpn) time.    

 

The computational complexity of the truncated SVD transform is O(mn2) + O(n) 

+ O(mn) +  O(mpn) =  O(mn2) 
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3.8.2 Computational Complexity of Resolution Enhancement based on 

oversampling  

 

Let Amxn be the matrix that represent the Hyperspectral image, where m are the 

pixels in the image and n are the number of bands. 

 

Step 1: Obtain the Fast Fourier Transform (FFT) of every pixel.  Here, the FFT of 

a vector of length n, requires O(nlogn) time (Cormen et al, 2001).  Since, there are 

m pixels in the image, then the computational complexity of this step is 

O(mnlogn) 

 

Step 2: Multiply the image with a predefined Lowpass filter.   This step involves 

the multiplication in the domain frequency of two vectors of size n, that is O(n) 

steps; and since there are m pixels in the image this step takes O(mn) time. 

 

Step3: Obtain the inverse FFT of the filtered pixels, obtained in the prior step.  

Here, the computational complexity is O(mnlogn) since the inverse Fourier 

Transform requires O(nlogn) time for each pixel. 

 

The computational complexity of the resolution enhancement algorithm, based on 

oversampling theory is O(mnlogn) + O(mn) +  O(mnlogn) = O(mnlogn).   

 

3.8.3 Complexity Comparison  

 

Since the computational complexity of the truncated SVD algorithm is O(mn2)  

we can see that resolution enhancement is asymptotically faster, by replacing an n factor 

by logn. 

 



 

For comparison purposes the algorithms were run on a Dell Optiplex operating 

under Microsoft Windows XP, Professional.  The machine specifications were: an Intel 

Pentium 4 processor of 2.20GHz, 1 GB of RAM.   

 

Figure 29 present the computational cost of the amplitude resolution enhancement 

based on oversampling and truncated singular value algorithms in seconds.  It is 

noteworthy that in all cases the amplitude resolution spectral enhancement runtime is 

better than truncated SVD.  As can be revealed by the Figure 29 the Truncated SVD 

elapsed time is approximately twice the elapsed time of resolution enhancement in most 

of the cases.     

 

Comparing the experimental results of the algorithms in terms of running time 

with their theoretical complexities these results agree with the complexity of the 

algorithms.   
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Figure 29 - Computational Cost (Algorithms run time in seconds) 

 

3.9 Summary 

 

The methodology for comparison of the two algorithms Truncated SVD and 

Resolution Enhancement based on the oversampling theory presented in this chapter were 



 

intended to explain how the algorithms were validated, besides a brief description of the 

different characteristics of the Hyperspectral images used in this work, also the 

characteristic’s of the Hyperspectral Matlab toolbox used to perform the classification of 

the images, additionally this chapter present the algorithms used for comparison,  and 

finally, the algorithms computational cost.  



 

CHAPTER 4 

 

4. EXPERIMENTAL RESULTS 

 

In order to evaluate the effect of amplitude resolution spectral enhancement based 

on oversampling, truncated singular value decomposition and atmospheric correction 

over classification accuracy and class separability, several experiments were conducted 

using the Indian Pines image in the North west of Indiana, Moffet Field image in 

California, Enrique Reef in Puerto Rico, GRS site in Brooksville, and a test image 

collected using the Hyperspectral SOC-700 camera.  These experiments combined 

amplitude resolution spectral enhancement truncated singular value decomposition and 

Atmospheric correction in preprocessing before image classification.  Figure 30 shows all 

pre-processing schemes studied. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30 - Pre Processing Experiments Scheme 

 

The classification method employed was the supervised Maximum Likelihood 

method (Landgrebe 2003).   The training and testing samples of each class were manually 

selected over the image with the aid of the graphical tool provided by the hyperspectral 
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image analysis Matlab Toolbox (Arzuaga et al, 2004).  The classification accuracy (the 

ratio of the number of correctly classified samples to the total number of samples) and the 

Bhattacharya distance were computed to asses the effect of each pre-processing scheme 

on the classification accuracy and on class separability.   

 

As a feature extraction process for classification, we used band subset selection 

based on matrix factorizations (Velez et al, 1998).  The subset band selection algorithm 

requires as input the number of bands to select, which in turn depends on the 

dimensionality of the data.  We determined dimensionality of the image input to the band 

subset selection procedure as the number of principal components needed to explain at 

least 99.5% of the total variability (Umaña et al, 2003). The dimensionality estimation 

results are shown in Table 5.  

 

 

List of Acronyms used for tables and figures 

 
Table 4 - Nomenclature for Tables and Figures 

TSVD Truncated Singular Value Decomposition 

RE Amplitude resolution spectral enhancement 

TSVD_RE Truncated Singular Value Decomposition first, then 

Amplitude resolution spectral enhancement 

RE_TSVD Amplitude resolution spectral enhancement first, then 

Truncated Singular Value Decomposition 

ATM Atmospheric Correction 

ATM_TSVD Atmospheric Correction first, then Truncated Singular 

Value Decomposition 

ATM_RE Atmospheric Correction first, then Amplitude resolution 

spectral enhancement 

 

 

 



 

Table 5 - Dimensionality of the Data after each experiment 

 Bands selected by the SVDSS algorithm 

Preprocessing 

Method Indiana Moffet GRS Hyperion Test Image 

Original 2,24,31,35,36,65,81,102 11,23,27,35,59,91,99 46,61,114,117,118,146,148 12,19,36,51,58 8,33,62,71,79,80,81,82,85,106

TSVD 1,24,31,35,36,65,81,103 11,23,27,32,68,91,100 46, 77, 114, 116, 147 12,19,36,51,58 8,33,62,71,79,80,81,82,85,106

RE 8, 21, 36, 65, 81 11,23,27,38,58,91,99 43, 64, 117, 133, 149 6,14,22,35,57 8,21,32,44,52,61,72,82,92,109

TSVD_RE 7,21,33,43,60,82,104,114   8,21,34,63,94,108 46, 77, 114, 116, 147 4,13,22,35,57 7,20,31,40,50,61,72,82,92,107

RE_TSVD 3,13,23,34,44,62,84,106 11,22,28,65,91,114 42, 79, 149 6,14,22,35,57 8,21,32,44,52,61,72,82,92,109

ATM N/A N/A N/A 13,28,48,51,53 N/A 

ATM_TSVD N/A N/A N/A 13,28,48,51,53 N/A 

ATM_RE N/A N/A N/A 13,28,49,51,53 N/A 

 

4.1 Classification accuracy, Class Separability and Noise Reduction Effect 

4.1.1 Indiana Pine 

 

Figure 31 and Figure 32 show the classification accuracy of the training and 

testing samples using the maximum likelihood classifier, per class of the each 

combination preprocessing scheme for the Indiana Image.  As can be seen in Figure 31 

resolution enhancement increments the accuracy of Corn_Notill, Woods and Corn_min 

classes, but decrements the accuracy of the Soybeans and Grass classes, meanwhile the 

Hay_windrowed class remains the same.  Whereas, truncated SVD increments the 

accuracy of the Corn_Notill and Woods classes, but decrements the accuracy of Grass 

and Hay_windrowed classes, meanwhile the Soybeans class remains with the same 

accuracy.  
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Figure 31 - Classification Accuracy of the testing samples per class in the Indiana Image 
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Figure 32 - Classification Accuracy of the training samples per class in the Indiana Image 

 

The overall classification accuracy and the improvement over classification of the 

image without pre-processing (None) are shown in Table 6 and Table 7.  For information 

purposes, the frequency of the low pass filter used for resolution enhancement is 0.1π and 

the number of singular values taken was 8.  As shown in Table 7, resolution enhancement 

increments the overall accuracy in 3.082% in comparison with the accuracy on the image 

without preprocessing (None). 

 

 

 

 

 

 



 

Table 6 - Overall Classification Accuracy per each Preprocessing Scheme (Training Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

None 95.5772 N/A 
Truncated SVD 98.8756 3.2984 
Resolution Enhancement 95.8771 0.2999 
TSVD_RE 98.8696 3.2924 
RE_TSVD 98.2948 2.7176 

 
Table 7 – Overall Classification Accuracy per each Preprocessing Scheme (Testing Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

None 81.5068 N/A 
Truncated SVD 81.6023 0.0955 
Resolution Enhancement 84.589 3.0822 
TSVD_RE 82.5994 1.0926 
RE_TSVD 82.1236 0.6168 
 

Figure 33 shows the minimum Bhattacharya distance among classes for each 

preprocessing scheme.  As can be seen, amplitude resolution spectral enhancement based 

on oversampling and Truncated SVD increase class separability in the majority of cases; 

these results correlate with the classification accuracy results described previously and 

give some insight in what is the effect of each preprocessing scheme used.    Figure 34 

shows the maximum Bhattacharya distance per class for each preprocessing scheme.  In 

this case, resolution enhancement reduces the maximum Bhattacharya distance between 

classes, meanwhile truncated SVD increases them.  
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Figure 33 - Minimum Bhattacharya Distance of the Indiana image 
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Figure 34 - Maximum Bhattacharya Distance of the Indiana image 

 

Noise Reduction Effect 

 

 
 

Figure 35 - Noise reduction effect on Indiana Pine Image 

 

Figure 35a shows the image difference between the original and truncated SVD 

images, Figure 35b shows the image difference between the original and resolution 

Figure 31a – Difference between Original and TSVD images 

Figure 31b – Difference between Original and RE images 

Building 



 

enhancement images.   It is clear from this figure that truncated SVD is removing noise 

meanwhile; resolution enhancement is removing some information as can be appreciated 

on the image difference that shows clearly some features of the original image: the road, 

the building and part of the crops.   

 

 
Figure 36 - Effect of Image Pre-Processing on the spectral signature (Indiana Pine) 

 

Figure 36 shows the effect of truncated SVD and resolution enhancement on the 

spectral signature of the original image.  It can be seen that truncated SVD does not affect 

sensibly the spectral signature of the original image, meanwhile resolution enhancement 

extract only the low frequency components of the spectral signature and modifies it 

sensibly. 

 

Even though truncated SVD seems to remove noise and increase class separability 

better than resolution enhancement, the classification accuracy is improved more by 



 

resolution enhancement.  Maybe because resolution enhancement increased the minimum 

Bhattacharya distance which is a more effective measure of class separability than the 

maximum Bhattacharya distance; also classification by clustering do not necessarily 

improve by using all the information available.  

 

4.1.2 Moffet Field 

 

Figure 37 and Figure 38 show the classification accuracy of the testing and 

training samples using the maximum likelihood classifier, per class of the each 

combination preprocessing scheme for the Moffet Field Image.  As can be seen in Figure 

37 resolution enhancement increments the accuracy of Water_2 and Water_3 classes, but 

decrements the accuracy of the Evaporation_Pond class, meanwhile the Water_1 and 

Sparse_Vegetation classes remains the same.  Whereas, truncated SVD decrements the 

accuracy of Water_2, Water_3 and Evaporation_Pond classes, meanwhile the Water_1 

and Sparse_Vegetation class remains with the same accuracy.  
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Figure 37 - Classification Accuracy of the training samples per class in the Moffet Image 
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Figure 38 - Classification Accuracy of the testing samples per class in the Moffet Image 

 

The overall classification accuracy and the improvement over classification of the 

image without pre-processing (None) are shown in Table 8 and Table 9.  The frequency 

of the low pass filter used for resolution enhancement was 0.9π and the number of 

singular values taken was 8.  As shown in Table 9, resolution enhancement increments 

the overall accuracy in 0.2078% in comparison with the accuracy on the image without 

preprocessing (None). 

 
Table 8 - Overall Classification Accuracy per each Preprocessing Scheme of Moffet Field      

(Training Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

None 99.8082 N/A 
Truncated SVD 99.7498 -0.0584 
Resolution Enhancement 99.8082 0 
TSVD_RE 99.7248 -0.0834 
RE_TSVD 99.6915 -0.1167 

 
Table 9 - Overall Classification Accuracy per each Preprocessing Scheme of Moffet Field         

(Testing Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

None 95.2312 N/A 
Truncated SVD 89.7247 -5.5065 
Resolution Enhancement 95.439 0.2078 
TSVD_RE 94.4 -0.8312 
RE_TSVD 94.9091 -0.3221 

 



 

Figure 28 shows the minimum Bhattacharya distance among classes for each 

preprocessing scheme.  As can be seen, Truncated SVD increase class separability in the 

majority of cases, meanwhile, amplitude resolution spectral enhancement based on 

oversampling decrement the minimum Bhattacharya distance for the Water_1, Water_2 

and Water_3 classes, however resolution enhancement increment the minimum distance 

of Evaporation_Pond and Sparse_Vegetation classes.   

 

Figure 40 shows the maximum Bhattacharya distance per class for each 

preprocessing scheme.  In this case, resolution enhancement increment the distance of the 

Water_2, Water_3 and Sparse_Vegetation but decrement the distance of the Water_1 and 

Evaporation_Pond; meanwhile, truncated SVD reduces the maximum Bhattacharya 

distance of the Water_2 and Water_3 classes, but increase the distance of the Water_1, 

Evaporation_Pond, and Sparse_Vegetation classes.  
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Figure 39 - Minimum Bhattacharya Distance of the Moffet Field Image 



 

Maximum Bathacharya Distance - Moffet Field Image
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Figure 40 - Maximum Bhattacharya Distance of the Moffet Field Image 

 

Noise Reduction Effect 

 

 
 

Figure 41 - Noise reduction effect on Moffet Field Image 

 

 

Figure 37a – Difference between Original and TSVD images

Figure 37b – Difference between Original and RE images



 

Figure 41a shows the image difference between the original and truncated SVD 

images,  

 

Figure 41b shows the image difference between the original and resolution 

enhancement images.  In the two images it is clear that resolution enhancement and 

truncated SVD are removing some information as can be seen on the image difference.  

However, resolution enhancement clearly filters more features of the original image than 

truncated SVD. 

 
Figure 42 - Effect of Image Pre-Processing on the spectral signature (Moffet Field) 

 

 

Figure 42 shows the effect of truncated SVD and resolution enhancement on the 

spectral signature of the Moffet Field image.  It can be seen that truncated SVD does not 

affect sensibly the spectral signature of the original image, meanwhile resolution 



 

enhancement extract only the low frequency components of the spectral signature and 

modifies it sensibly. 

Although truncated SVD seems to increase class separability better than 

resolution enhancement, the classification accuracy is improved more by resolution 

enhancement.   

 

4.1.3 GRS-S Data Set 

 

Figure 43 and Figure 44 show the classification accuracy of the testing and 

training samples using the maximum likelihood classifier, per class of the each 

combination preprocessing scheme for the GRS-S Data Set.  As can be seen in Figure 44 

resolution enhancement and truncated SVD increment the classification accuracy in all 

the cases.  However, it is important to point out that resolution enhancement increment 

the accuracy more than truncated SVD.  
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Figure 43 - Classification Accuracy of training samples per class in the GRS-S Data Set 
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Figure 44 - Classification Accuracy of the testing samples per class in the GRS-S Data Set 

 

The overall classification accuracy and the improvement over classification of the 

image without pre-processing (None) are shown in Table 10 and Table 11.  The 

frequency of the low pass filter used for resolution enhancement was 0.1π and the 

number of singular values taken was 13.  As shown in Table 11, resolution enhancement 

increments the overall accuracy in 10.3211% whereas truncated SVD increase the overall 

accuracy in 8.0682% in comparison with the accuracy on the image without 

preprocessing (None). 

 
Table 10 - Overall Classification Accuracy per each Preprocessing Scheme of GRS-S Data Set 

(Training Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy from 
None 

None 89.0483 N/A 
Truncated SVD 85.9501 -3.0982 
Resolution Enhancement 87.2208 -1.8275 
TSVD_RE 85.8322 -3.2161 
RE_TSVD 81.2864 -7.7619 

 

 

 

 

 

 

 



 

Table 11 - Overall Classification Accuracy per each Preprocessing Scheme of GRS-S Data Set 

(Testing Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy from 
None 

None 57.0258 N/A 
Truncated SVD 65.094 8.0682 
Resolution Enhancement 67.3469 10.3211 
TSVD_RE 65.3573 8.3315 
RE_TSVD 62.724 5.6982 

 

Figure 45 shows the minimum Bhattacharya distance among classes for each 

preprocessing scheme.  As can be seen, Truncated SVD and amplitude resolution 

enhancement increases class separability in all cases.  It is noteworthy that truncated SVD 

increases the separability more than resolution enhancement.  

 

Figure 46 shows the maximum Bhattacharya distance per class for each 

preprocessing scheme.  In this case, resolution enhancement and truncated SVD 

decrement the distance in all cases. 
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Figure 45 - Minimum Bhattacharya Distance of the GRS-S Data Set 

 



 

Maximum Bathacharya Distance - GRS-S Data Set
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Figure 46 - Maximum Bhattacharya Distance of the GRS-S Data Set 

 

Noise reduction effect 

 
 

Figure 47 - Noise reduction effect on GRS-S Data Set 

Figure 43b – Difference between Original and RE images 

Figure 43a – Difference between Original and TSVD images 



 

Figure 47a shows the image difference between the original and truncated SVD 

images, Figure 47b shows the image difference between the original and resolution 

enhancement images.  In the two images resolution enhancement and truncated SVD are 

removing some information as can be seen on the image difference.  

 

 
Figure 48 - Effect of Image Pre-Processing on the spectral signature (GRS-S Data Set) 

 

Figure 48 shows the effect of truncated SVD and resolution enhancement on the 

spectral signature of the GRS-S data set.  It can be seen that truncated SVD does not 

affect sensibly the spectral signature of the original image, meanwhile resolution 

enhancement extract only the low frequency components of the spectral signature and 

modifies it sensibly. 

 

Even though truncated SVD seems to increase class separability better than 

resolution enhancement, however, the classification accuracy is improved more by 

resolution enhancement.   



 

4.1.4 Benthic Habitat Classification of “La Parguera” in Puerto Rico  

 

Figure 49 and Figure 50 show the classification accuracy of the testing and 

training samples using the maximum likelihood classifier, per class of the each 

combination preprocessing scheme for the “La Parguera” Image.  As can be seen in 

Figure 50 resolution enhancement increments the accuracy in all cases.  Whereas, 

truncated SVD decrements the accuracy of the Seagrass, Coral Community and SeaWater 

classes, meanwhile the Mangrove class remains with the same accuracy.  
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Figure 49 - Classification Accuracy of the training samples per class in "La Parguera" 
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Figure 50 - Classification Accuracy of the testing samples per class in "La Parguera" 

 

The overall classification accuracy and the improvement over classification of the 

image without pre-processing (None) are shown in Table 12 and Table 13.  The 



 

frequency of the low pass filter used for resolution enhancement was 0.2π and the 

number of singular values taken was 8.  As shown in Table 13, resolution enhancement 

increments the overall accuracy in 4.4843% in comparison with the accuracy on the 

image without preprocessing (None). 

 
Table 12 - Overall Classification Accuracy per each Preprocessing Scheme of “La Parguera" 

(Training Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

None 99.5495 N/A
Truncated SVD 100 0.4505 
Resolution Enhancement 100 0.4505 
TSVD_RE 100 0.4505 
RE_TSVD 100 0.4505 

 
Table 13 - Overall Classification Accuracy per each Preprocessing Scheme of “La Parguera"   

(Testing Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

None 95.5157 N/A
Truncated SVD 85.65 -9.8657 
Resolution Enhancement 100 4.4843 
TSVD_RE 95.5516 0.0359 
RE_TSVD 100 4.4843 

 

Figure 51 shows the minimum Bhattacharya distance among classes for each 

preprocessing scheme.  As can be seen, truncated SVD and resolution enhancement 

increase the minimum Bhattacharya distance in all cases.   

 

Figure 52 shows the maximum Bhattacharya distance per class for each 

preprocessing scheme.  In this case, resolution enhancement increment the distance of the 

Seagrass, Coral_Community, Carbonate_Sand, and Mangrove but decrement the distance 

of the Sea_Water; meanwhile, truncated SVD reduces the maximum Bhattacharya 

distance of the Seagrass, Coral_Community and Sea_Water classes, but increase the 

distance of the Carbonate_Sand and Mangrove classes.  
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Figure 51- Minimum Bhattacharya Distance of "La Parguera" 

 

Maximum Bathacharya Distance - "La Parguera" 
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Figure 52 - Maximum Bhattacharya Distance of "La Parguera" 

 

 

 

 

 

 

 

 

 



 

Noise reduction effect 

 

 
 

Figure 53 - Noise reduction effect on “La Parguera” Image 

 

Figure 53a shows the image difference between the original and truncated SVD 

images, Figure 53b shows the image difference between the original and resolution 

enhancement images.  In the two images it is clear that resolution enhancement and 

truncated SVD are removing some information as can be seen on the image difference.  

However, resolution enhancement clearly filters more features of the original image than 

truncated SVD. 

Figure 49b – Difference between Original and RE images 

Figure 49a – Difference between Original and TSVD images



 

 
Figure 54 - Effect of Image Pre-Processing on the spectral signature (“La Parguera”) 

 

Figure 54 shows the effect of truncated SVD and resolution enhancement on the 

spectral signature of the “La Parguera” image.  It can be seen that truncated SVD does 

not affect sensibly the spectral signature of the original image, meanwhile resolution 

enhancement extract only the low frequency components of the spectral signature and 

modifies it sensibly. 

 

Notwithstanding truncated SVD seems to increase class separability better than 

resolution enhancement, but the classification accuracy is improved more by resolution 

enhancement.   

 

 

 



 

4.1.4.1 Atmospheric correction on benthic habitat of “La Parguera”  

 

Figure 55 and Figure 56 shows the classification accuracy of the testing and 

training samples using the maximum likelihood classifier, per class of the each 

combination preprocessing scheme including the atmospheric correction for “La 

Parguera” Image.  As revealed by the Figure 56 resolution enhancement increments the 

accuracy in all cases.  Whereas, truncated SVD decrements the accuracy in the majority 

of cases, in the same way atmospheric correction decrement the accuracy of Sea_Water 

Class, and increment the Coral_Community and Carbonate_Sand classes, besides the 

Seagrass and Mangrove remain the same value. 
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Figure 55 - Training Samples Accuracy with Atmospheric Correction over "La Parguera" 

 



 

Testing Samples Accuracy with Atmospheric Correction over "La Parguera"
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Figure 56 - Testing Samples Accuracy with Atmospheric Correction over "La Parguera" 

 

The overall classification accuracy and the improvement over classification of the 

image without pre-processing (None) with atmospheric correction are shown in Table 14 

and Table 15.  As shown in Table 14, resolution enhancement increments the overall 

accuracy in 4.4843% in comparison with the accuracy on the image without 

preprocessing (None) and in comparison with the accuracy on the atmospheric corrected 

image the overall increase in 24.23% 

 
Table 14 - Overall Classification Accuracy per each Preprocessing Scheme of “La Parguera" 

Corrected (Training Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

None 99.5495 N/A 
TSVD 100 0.4505 
RE 100 0.4505 
ATM 100 0.4505 
ATM_SVD 100 0.4505 
ATM_RE 100 0.4505 

 

 

 

 

 

 



 

Table 15- Overall Classification Accuracy per each Preprocessing Scheme of “La Parguera" 

Corrected (Testing Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

None 95.5157 N/A 
TSVD 85.65 -9.8657 
RE 100 4.4843 
ATM 75.7648 -19.7509 
ATM_SVD 36.7713 -58.7444 
ATM_RE 86.9955 -8.5202 

 

Figure 57 shows the minimum Bhattacharya distance among classes for each 

preprocessing scheme including atmospheric correction.  As can be seen, truncated SVD 

and resolution enhancement increase the minimum Bhattacharya distance in all cases, 

whereas the atmospheric correction reduces the minimum distance in almost all cases.   

 

Figure 58 shows the maximum Bhattacharya distance per class for each 

preprocessing scheme.  In this case, resolution enhancement increment the distance in the 

majority of cases; meanwhile, truncated SVD and atmospheric correction reduces the 

maximum Bhattacharya distance in almost all cases.  
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Figure 57 - Minimum Bhattacharya Distance of "La Parguera" Corrected Image 

 



 

Maximum Bathacharya Distance - "La Parguera" Corrected Image
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Figure 58 - Maximum Bhattacharya Distance of "La Parguera" Corrected Image 

 

It is important to point out that in this example resolution enhancement results in 

higher class separability than atmospheric correction by itself.  This support our thesis 

that atmospheric pre-processing might not be needed for HSI classification and use of the 

simple low pass filtering used in resolution enhancement can results in higher 

classification accuracy at a low computational cost. 

 

4.1.5 Hyperspectral SOC700 Camera Test Image 

 

Figure 59 and Figure 60 show the classification accuracy of the testing and 

training samples using the maximum likelihood classifier, per class of the each 

combination preprocessing scheme for the test image.  As can be seen in Figure 60 

resolution enhancement increments the classification accuracy in all cases, whereas 

truncated SVD decrement the accuracy in the Cein_Coint class.  However, it is important 

to point out that resolution enhancement increment the accuracy more than truncated 

SVD.  
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Figure 59 - Training Samples Accuracy - Test Image 
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Figure 60 - Testing Samples Accuracy - Test Image 

 

The overall classification accuracy and the improvement over classification of the 

image without pre-processing (None) are shown in Table 16 and Table 17.  The 

frequency of the low pass filter used for resolution enhancement was 0.1π and the 

number of singular values taken was 13.  As shown in Table 17, resolution enhancement 

increments the overall accuracy in 3.4048% in comparison with the accuracy on the 

image without preprocessing (None). 

 



 

Table 16 - Overall Classification Accuracy per each Preprocessing Scheme of the Test Image  

(Testing Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

Original 98.69126667 N/A 
Truncated SVD 98.9319 0.240633333 
Resolution Enhancement 99.9791 1.287833333 
TSVD_RE 99.9691 1.277833333 
RE_TSVD 99.9791 1.287833333 

 
Table 17 - Overall Classification Accuracy per each Preprocessing Scheme of the Test Image 

(Training Samples) 

Image Preprocessing 
Scheme 

Overall Classification 
Accuracy (%) 

Increase in accuracy 
from None 

Original 92.4926 N/A 
Truncated SVD 90.5042 -1.9884 
Resolution Enhancement 95.8974 3.4048 
TSVD_RE 99.8945 7.4019 
RE_TSVD 95.8974 3.4048 

 

Figure 61 shows the minimum Bhattacharya distance among classes for each 

preprocessing scheme.  As can be seen, Truncated SVD and amplitude resolution 

enhancement increases class separability in all cases.  It is noteworthy that resolution 

enhancement increases the separability more than truncated SVD.  

 

Figure 62 shows the maximum Bhattacharya distance per class for each 

preprocessing scheme.  In this case, resolution enhancement and truncated SVD 

increment the distance in all cases. 
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Figure 61 - Minimum Bhattacharya Distance of the Test Image 

 

Maximum Bathacharya Distance - Test Image
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Figure 62 - Maximum Bhattacharya Distance of the Test Image 

 

 

 

 

 

 

 



 

Noise reduction effect 

 
 

Figure 63 - Noise reduction effect on Camera Test Image 

 

Figure 63a shows the image difference between the original and truncated SVD 

images, Figure 63b shows the image difference between the original and resolution 

enhancement images.  It is clear from this figure that truncated SVD is removing noise 

meanwhile; resolution enhancement is removing some information as can be appreciated 

on the image difference that shows clearly some features of the original image: the 

Quarter Coins. 

 

 

Figure 59b – Difference between Original and RE images

Figure 59a – Difference between Original and TSVD images

Quarter Coins 



 

 

Figure 64 - Effect of Image Pre-Processing on the spectral signature (Test Image) 

 

Figure 64 shows the effect of truncated SVD and resolution enhancement on the 

spectral signature of the “La Parguera” image.  It can be seen that truncated SVD does 

not affect sensibly the spectral signature of the original image, meanwhile resolution 

enhancement extract only the low frequency components of the spectral signature and 

modifies it sensibly. 

 

 

 

 

 

 

 

 



 

Classification Map 

 

Figure 65 - Classification Maps of the GRS-S Data Set 

 

Figure 65 shows the classification maps of the GRS-S data set for original, 

truncated SVD and resolution enhancement preprocessing.  It is noteworthy that 

resolution enhancement improve the classification accuracy, because as we can see in 

Figure 65 the classification map of resolution enhancement is better that the classification 

map of truncated SVD.  

 

4.2 Concluding remarks 

 

The experiments presented in this chapter showed that Resolution enhancement 

based on oversampling theory increased the overall classification accuracy better than 

Truncated SVD, as can be seen in Table 18.   

 

 

 



 

Table 18 - Increase in the Overall Classification Accuracy 

Image Name 

 

Resolution Enhancement 

% 

Truncated SVD 

% 

Indiana Pine 3.0822 0.0955 

Moffett Field 0.2078 -5.5065 

GRS Image 8.0682 10.3211 

Test Image 3.4048 -1.9884 

"La Parguera" 4.4843 -9.8657 

Average 3.84946 -1.3888 

Standard deviation 2.8 7.6 

 

Spectral resolution enhancement based on oversampling is a technique with 

excellent noise reduction and in comparison with TSVD demonstrated the method as an 

effective technique for Hyperspectral data analysis. 

 

Resolution enhancement runs, in average, at approximately a half (48%, δ=15%) 

of the time expended by truncated SVD in all experiments conducted in this work.  These 

results validate the theoretical complexities of the algorithms TSVD, O(mn2), and 

resolution enhancement, O(mnlogn); being thus resolution enhancement asymptotically 

faster than TSVD and hence more cost-effective.   

 

Atmospheric correction also improved classification accuracy with results 

comparable to resolution enhancement.  However, spectral resolution enhancement is just 

a low pass filtering of the image while atmospheric correction is a significantly more 

complex computational process. 

 



 

CHAPTER 5 

 

5. CONCLUSIONS AND FUTURE WORK 

 

This Chapter presents the conclusions of this research work and proposes further 

research activities. 

 

5.1 Summary 

 

This research work compares the use of amplitude resolution enhancement based 

on oversampling versus truncated singular value decomposition filtering as image 

enhancement preprocessors on classification accuracy and class separability of 

Hyperspectral imagery.  Hyperspectral imagery from different sensors showing different 

scenarios were use for the study.   

 

The improvements over classification of the images without pre-processing 

(None) are shown for each image as follow:  

 

The results with the Indiana Pine image shows that resolution enhancement 

increments the overall accuracy in 3.082%, meanwhile truncated SVD increments the 

overall accuracy in. 0.0955%, these results are in comparison with the accuracy on the 

image without preprocessing (None).  Amplitude resolution spectral enhancement based 

on oversampling and Truncated SVD increase class separability in the majority of cases. 

 

• The results with the Moffet field image shows that resolution enhancement 

increments the overall accuracy in 0.2078%, meanwhile truncated SVD reduce the 

overall accuracy in. 5.5056%, these results are in comparison with the accuracy on 

the image without preprocessing (None).  Amplitude resolution spectral enhancement 

based on oversampling and Truncated SVD increase class separability in all cases; 



 

however truncated SVD seems to increase class separability better than resolution 

enhancement. 

 

• The results with the GRS-S data set shows that resolution enhancement increments 

the overall accuracy in 10.3211%, meanwhile truncated SVD increments the overall 

accuracy in 8.0682%, these results are in comparison with the accuracy on the image 

without preprocessing (None).  Amplitude resolution spectral enhancement based on 

oversampling and Truncated SVD increase class separability in all cases; however 

truncated SVD seems to increase class separability better than resolution 

enhancement. 

 

• The results with the “La Parguera” image shows that resolution enhancement 

increments the overall accuracy in 4.4843%, meanwhile truncated SVD reduces the 

overall accuracy in 9.8657%, these results are in comparison with the accuracy on the 

image without preprocessing (None).  Amplitude resolution spectral enhancement 

based on oversampling and Truncated SVD increase class separability in all cases; 

notwithstanding truncated SVD seems to increase class separability better than 

resolution enhancement. 

 

• The results with the “La Parguera” corrected image shows that, atmospheric 

correction reduces the overall accuracy in 19.7509% resolution enhancement 

increments the overall accuracy in 4.4843% and truncated SVD reduces the overall 

accuracy in 9.8657%; these results are in comparison with the accuracy on the image 

without preprocessing (None).  Amplitude resolution spectral enhancement based on 

oversampling and Truncated SVD increase class separability in all cases, meanwhile 

atmospheric correction reduces the minimum distance in almost all cases.  

 

• The results with the Test Image shows that resolution enhancement increments the 

overall classification accuracy in 3.4048%, meanwhile truncated SVD reduces the 

overall classification accuracy in 1.9884%; these results are in comparison with the 

accuracy on the image without preprocessing (None).  Amplitude resolution spectral 



 

enhancement based on oversampling and Truncated SVD increase class separability 

in all cases; resolution enhancement increases the class separability more than 

truncated SVD.  It is important to point out that resolution enhancement improve the 

classification accuracy. 

 

5.2 Conclusions 

 

Resolution enhancement increases the overall classification accuracy by 

approximately 3.9% (δ=2.8%) in average, with respect to the classification without image 

pre-processing.  Otherwise, TSVD decreases the overall classification accuracy by 

approximately 1.4% (δ=7.6%) in average.  

 

Resolution enhancement runs, in average, at approximately a half (48%, δ=15%) 

of the time expended by truncated SVD in all experiments conducted in this work.  These 

results validate the theoretical complexities of TSVD and resolution enhancement 

algorithms, being thus resolution enhancement more cost-effective than TSVD.   

 

Atmospheric correction improves the classification accuracy with results 

comparable to resolution enhancement, in land areas and shallow water benthic habitats 

as coral, sea grass and sand; but degrades the classification accuracy over deep waters as 

it should be expected of algorithms that were not designed for sea water.   

 

Resolution enhancement increases classification accuracy in HSI processing. 

Furthermore, we can see that the combination of atmospheric and resolution enhancement 

pre-processing does not add significant accuracy improvement over resolution 

enhancement by itself.  This result points out at the possibility that resolution 

enhancement can be used as the only pre-processing stage in classification systems for 

hyperspectral imagery.  The little effect of the atmospheric correction could be due to the 

fact that the image visibility was high, but in general it is convenient to reduce sources of 

variability that may degrade the performance of the classifier.  It is important, to conduct 



 

similar studies with images of lower visibility where atmospheric effects are mode 

significant. 

 

In general we can conclude that spectral resolution enhancement preprocessing 

does a better job improving the classification accuracy than truncated singular value 

decomposition and at a much lower computational cost.   

 

5.3 Future Work 

 

Spectral resolution enhancement might be improved by adding a convenient 

window (Hamming, Hann, Bartlett, among others) to reduce the oscillations introduced 

on both extremes of the spectral signature after filtering. 

 

Further work could be to apply these algorithms to images affected by a more 

optically challenging media (turbid atmosphere, skin, water with high sedimentation) 

 

It is necessary to develop an algorithm that automatically determines the cut off 

frequency of spectral resolution enhancement low pass filter from the image data. 
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APPENDICES     

 

A. Data Files for Atmospheric Correction over HYPERION using ACORN 

 

 
Figure 1 - Control File 

 

 

 

 

 



 

 

 

 

 

 
Figure 2 - Spectral Calibration file 



 

 

 

 

 

 
Figure  3 - Gain File Figure  4 - Offset File 

 

 



 

B.  Truncated Singular Value Decomposition Algorithm 

 
%Loading the Image 

load ('Image_Name'); 

[U, S, V] = svd(pixels',0); 

Diagonal= diag(S); 

figure; plot(log(Diagonal),'.'); 

Total   = sum(Diagonal); 

x    = (0.995 * Total); 

r       = 0; 

acum    = 0; 

while acum<x 

    r   = r+1;     

   acum = acum+Diagonal(r);    

end 

% r is the number of singular values 

r; 

S2 = S(1:r,1:r); 

V2 = V(:,1:r); 

U2 = U(:,1:r); 

pixels = V2*S2*U2'; 

 

%Saving the Filter Image 

save('Image_Name_TSVD', 

'pixels','number_of_bands','number_of_columns','number_of_rows'); 

 



 

C. Amplitude Resolution Spectral Enhancement Based on Oversampling Algorithm 

 
%Do the loads 

filename = 'Image_Name'; 

load(filename); 

pixels2  = pixels;  

w        = [0.1:0.1:1]; 

wk       = w.*pi; 

L    = length(wk); 

[rows , cols] = size(pixels); 

%Outer Loop (This loops acquires a new cutoff frequency) 

for m = 1:L     

    %empty matrix 

    pixels = zeros(rows, cols); 

    %selects the appropriate number of bands to be filtered 

    k      = fix ((wk (m)*rows) / (2*pi));   

    %two-dimensional discrete filter, composed of ones and zeros 

    h      = [ones (k, 1); zeros (rows-2*k, 1); ones (k, 1)]; 

    for counter = 1:cols 

         %obtain the fft of every column vector (column vector is a pixel) 

        fpixels  = fft(pixels2(:,counter));       

  %obtain absolute value (magnitude) 

        fapixels = abs(fpixels);                         

        %phase angle 

        theta    = angle(fpixels);                       

   %multiply the image with the filter 

        temp     = fapixels.*h;                          

   %reconstructs the signal 

        X        = temp.*exp (i*theta);                   

        %obtain the inverse fft 

        ifpixels = ifft(X);                              

        %keep the real part, remember: original data was real 

        pixels(:,counter) = real(ifpixels);              

    end 

    %Save the image in the frecuency wk 

    save(['Image_Name_RE_' num2str(w(m)*10)], ...            

   'pixels','number_of_bands','number_of_columns','number_of_rows'); 

end 


