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ABSTRACT 
 
 

A mathematical structured model was developed to predict the behavior of glucose-

xylose mixtures using the suspended co-culture of the wild-type yeast strains Saccharomyces 

cerevisiae Montrachet and Pichia stipitis NRRL Y-11545 for ethanol production. Kinetic 

characterization was estimated in single substrate and single strain batch fermentations in 

order to construct the model for the mixture systems. The simple Monod model was used to 

describe the behavior of single substrate fermentations with a high degree of accuracy (R2 > 

0.96) and residual standard deviations, (RSD < 7.5%). The agreement between the simulated 

and experimental data was superior for the fermentation system glucose – S. cerevisiae, and 

the system xylose – P. stipitis promoted the best balance between cell growth and ethanol 

production with a yield coefficient of 0.35 g of ethanol/g xylose. 

A non-linear ordinary differential equation system comprising of nine equations was 

constructed under the cybernetic framework to model the behavior of glucose-xylose mixtures 

with the specified yeast co-culture. The results obtained from the simulations suggest that the 

proposed model fits accurately the experimental data. The sensitivity of the model was 

slightly higher for the mixture having the same proportion of glucose and xylose (50% 

glucose – 50% xylose), with average values of R2 = 0.99 and RSD = 2.21%.  The accurate 

prediction of the experimental concentrations confirms that the model utilized provides 

reliable kinetic information.  Small deviations were observed but they are commonly found in 

one simulation system which has not been object of further error minimizations. In the future, 

the model can be utilized for other process configurations such as fed-batch and continuous 

culture, either with the same co-culture scheme or using immobilization techniques to 

evaluate both fermentation efficiency and model accuracy.  
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RESUMEN 
 
 

Un modelo matemático estructurado fue desarrollado para predecir el comportamiento 

de mezclas de glucosa y xilosa usando el co-cultivo suspendido de las levaduras  

Saccharomyces cerevisiae Montrachet y Pichia stipitis NRRL Y-11545 en su estado natural, 

para la producción de etanol.  La caracterización cinética fue estimada en experimentos por 

tandas, con un solo sustrato y una sola levadura, a fin de construir el modelo para los sistemas 

de mezcla.  El modelo simple de Monod fue usado para describir el comportamiento de los 

sistemas fermentativos de un solo sustrato con un alto grado de precisión (R2 > 0.96) y 

desviaciones estándar residuales (RSD > 7.5%).  La concordancia entre los datos simulados y 

los experimentales fue mejor para el sistema de fermentación glucosa – S. cerevisiae, y el 

sistema xilosa – P. stipitis promovió el mejor balance entre crecimiento celular y producción 

de etanol con un coeficiente de rendimiento de 0.35 g de etanol/g de xilosa.  

Un sistema de ecuaciones diferenciales ordinarias no lineales comprendido de nueve 

ecuaciones fue construído bajo la perspectiva cibernética para modelar el comportamiento de 

las mezclas de glucosa y xilosa con el co-cultivo de levaduras ya especificado.  Los resultados 

obtenidos de las simulaciones sugieren que el modelo propuesto se ajusta en forma precisa a 

los datos experimentales.  La sensitividad del modelo fue ligeramente mayor para las mezclas 

que contienen 50% glucosa y 50% xilosa, con valores promedio de R2 = 0.99 Y RSD = 

2.21%.  La precisa predicción de las concentraciones experimentales confirma que el modelo 

utilizado provee información cinética confiable. Pequeñas desviaciones fueron observadas, 

pero son encontradas comúnmente en un sistema de simulación que no ha sido objeto de 

futuras minimizaciones de error. En el futuro, el modelo puede ser utilizado para otras 

configuraciones de proceso tales como semi-tandas y cultivo continuo, ya sea con el mismo 

esquema de co-cultivo o usando técnicas de inmovilización para evaluar tanto la eficiencia de 

la fermentación como la precisión del modelo. 
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1. INTRODUCTION 

 
Ethanol is one of the most important renewable and versatile transportation fuels 

contributing to the reduction of negative environmental impacts generated by the worldwide 

utilization of fossil fuels. The outstanding advantages of fuel ethanol include its use as an 

additive (high octane), high heat of vaporization, and other characteristics that allow 

achieving higher efficiency use than gasoline in optimized engines.  Internal combustion 

engines that burn ethanol as a fuel have a big advantage when compared with engines that 

burn the typical hydrocarbon components of refined oils. This is because ethanol is more 

oxygenated, and its combustion in oxygen generates less energy in comparison with either a 

pure hydrocarbon or a typical gasoline [1-2].  Likewise, ethanol is a good substitute for metyl 

tert-butyl ether (MTBE) which was the first approved oxygenated candidate for gasoline, but 

due to environmental pollution incidents caused by MTBE spillage, several states in USA 

switched from MTBE to ethanol and ethanol demand began to expand considerably [3].  

However, the production of bioethanol -ethanol produced from biomass- is complicated and 

lately has been constituted as a controversy by the fact that some of the sources or raw 

materials for this biofuel have been used historically as food for humans and as feed for 

animals [4]. Therefore, according to the current energy requirements there are three 

fundamental benefits to further develop ethanol as a renewable alternative transportation fuel:  

(i) to reduce world dependence on petroleum-based fuels (biofuels can be produced locally in 

sustainable systems), (ii) to improve the environment by decreasing net greenhouse gas 

emissions (renewable fuels contribute to recycle carbon dioxide, which is extracted from the 

atmosphere to regenerate biomass), and (iii) to provide new employment (e.g., agriculture & 

agro industries). 

Ethanol can be produced from a considerable large list of feedstock containing 

fermentable sugars that are metabolized by different microorganisms.  The majority of this 



 2 

feedstock has not been widely studied yet, and presents some difficulties to release the 

fermentable sugars.  Two classes of this feedstock have been the most utilized globally in the 

last decades: sugar cane and corn starch, particularly in regions like Brazil and United States, 

respectively.  However, the use of these two feedstock has been currently extended to several 

countries worldwide, such as China, India, France, Germany and many others [5] and global 

ethanol production reached 51 GL/year in 2006, of which about 39 GL were used as fuel and 

the rest for beverage and other industrial applications [6]. As mentioned before, to minimize 

controversy generated by using these food/feed grade-feedstocks to produce ethanol, attention 

and priority have been assigned to the study of lignocellulosic biomass as raw material for 

ethanol production.  In Chapter 2, a complete literature review will be discussed covering the 

areas of bioethanol production, modeling and yeast fermentation. A general classification 

proposed by Cardona and Sánchez [5] separates biomass sources for bioethanol production as 

follows: (i) sucrose-containing feedstock, (ii) starchy materials, and (iii) lignocellulosic 

biomass. This thesis is focused on the last category, which deserves special attention because 

of the availability of lignocellulosic materials that can be utilized for ethanol production and 

other useful applications. Furthermore, because of currents technologies for bioethanol 

production are crop-based using substrates such as sugar cane juice and cornstarch, a lot of 

efforts have to be made to make use of less expensive lignocellulosic materials to reduce the 

cost of raw materials, the ones that can be as high as 40% of the total production cost [7].  

Typically, lignocellulose is composed about 35% to 50% cellulose, which is a long chain of 

single glucose sugar molecules bonded together in a crystalline structure [8].  Another 20% to 

35% is made up of hemicellulose, a long, branched chain of heterogeneous sugar molecules, 

including xylose as one abundant component and other different proportions of five and six 

carbon sugars (pentoses and hexoses).  The remaining fraction comprises lignin, an insoluble 

phenylpropane polymer which is often attached to the cellulose fibers to form a 
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lignocellulosic complex.  This complex and the lignin alone are usually quite resistant to 

conversion by microbial systems and many chemical agents [9]. 

 Globally, production of ethanol from lignocellulosic biomass comprises five main 

steps: (i) biomass pretreatment, (ii) hydrolysis of polysaccharides, (iii) fermentation of sugars, 

(iv) separation of final products, and (v) effluent treatment [10].   The present work is focused 

in the fermentation step using the co-culture of the wild-type yeast strains to chemically 

represent the fermentation media after the hydrolysis of cellulose and hemicellulose. Then, 

because of the premise is to work with mixtures of glucose and xylose from cellulose and 

hemicellulose respectively, using efficient microbial strains, it is necessary to find those 

strains, and they must consume both glucose and xylose to increase and improve ethanol 

yield. Several microorganisms can efficiently ferment the glucose component in cellulose to 

ethanol but conversion of pentose sugars in the hemicellulose fraction, and particularly 

xylose, remained a bottleneck in biomass-to-ethanol conversion until some years ago.  

Besides, the microorganisms should exhibit some essential traits to achieve high ethanol 

yields and tolerance, and the priority must be to ferment the variety of sugars found in 

lignocellulosic biomass to ethanol as the sole fermentation product and to resist the high 

ethanol concentrations necessary for economical product recovery. 

 Saccharomyces cerevisiae is a well known yeast strain in the alcoholic beverages 

industry since ancient times and has been generally regarded as safe (GRAS); currently it is 

seemingly the best “platform” for lignocellulosic biomass because of its relative tolerance to 

the growth inhibitors found in the acid hydrolysates of lignocellulosic biomass [11].  It is able 

to ferment glucose to ethanol with high yields achieving up to 90 g/L of ethanol with an initial 

glucose concentration basis of approximately 200 g/L [12]. The main disadvantage in S. 

cerevisiae is the limited range of monosaccharides and disaccharides that can be converted 

into ethanol; xylose can not be fermented by S. cerevisiae because it lacks both a xylose-
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assimilation pathway and adequate levels of key pentose phosphate pathway enzymes, 

although it is capable to ferment xylulose but not as quickly or efficiently as glucose [13-14].  

Therefore, several studies have been made to identify and test efficient xylose-fermenting 

yeast strains to produce ethanol, being the best strains so far: Brettanomyces naardenensis, 

Pichia stipitis, Pichia segobiensis, Pachysolen tannophilus, Kluyveromyces marxianus, 

Candida shehatae, and Candida tenius [16].  Usually, the naturally xylose-fermenting yeasts 

have been shown to produce ethanol at 78% to 84% of theoretical yield (0.51 g ethanol/g 

sugar) and at concentrations of up to 5%.  Intensive studies have been developed to test the 

efficiency of strains before mentioned, in both single-sugar and mixture fermentations, and 

the results have been high ethanol concentrations achieved with respect to the initial sugar 

concentrations, and high ethanol yields as well.  When working with mixtures of glucose and 

xylose, P. stipitis best results have been achieved for the transformation of substrates into 

ethanol [16] and besides have shown that when xylose is the sole carbon source, the final 

ethanol concentration at the end of fermentation along with ethanol yield is slightly higher if 

compared with 100% glucose media [17]. Therefore, Pichia stipitis appears to provide the 

best overall performance in terms of complete sugar utilization, minimal co-product 

formation, and insensitivity to temperature and substrate concentrations [18] having the 

highest native capacity for xylose fermentation of any known microbe and most of its strains 

are among the best xylose-fermenting yeasts in type culture collections [19].   

 Once efficient yeast strains have been identified the purpose is to use them in a co-

culture scheme along with glucose and xylose mixtures, setting different initial sugar ratios 

and based in the optimal culture conditions with the main objective to develop mathematical 

models to predict the behavior of cell, substrates and products concentrations as a function of 

fermentation time.  Modeling a fermentation process presents some advantages such as 

process knowledge improvement, decreasing the cost of expensive industrial experimentation, 
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mathematical optimization and process control.  The ability to predict the behavior of 

fermentation systems enhances the possibility of optimizing their performance.  Mathematical 

equations of model systems represent a tool for this and the most recent advances in computer 

hardware and software have made the approach more effective than previous simplistic 

attempts [20-21]. 

 An adequate model which describes accurately the experimental concentration 

profile in a fermentation process requires determination and optimization of kinetic 

parameters such as maximum specific growth rate and saturation constants.  Besides, it is 

necessary to choose the model that best fits experimental conditions, also taking into account 

all relevant aspects regarding the chemical, physical, biochemical and technical areas of the 

process.  Therefore in this research work, based upon operational conditions and methods 

described in Chapter 3, the model chosen is the unstructured and non-segregated model 

developed by Monod [22], which has been used widely and successfully since several years 

ago to describe cellular growth and fermentation kinetics of a broad collection of substrates 

and microbes.  This model is one of the simplest models including the effect of nutrient 

concentration, assuming that only one substrate (the growth limiting substrate) is important in 

determining the rate of cell proliferation.  As will be discussed in Chapter 4, this model fits 

accurately the set of experimental data obtained in a series of single substrate fermentations, 

using one substrate-one yeast strain, with no inhibition effects, neither substrate nor product, 

present in the performed fermentations. Kinetic information such as maximum specific 

growth rate and saturation constant, and yield coefficients were collected after processing 

experimental data and then were used to construct the model that quantifies growth kinetics, 

substrate consumption and ethanol production. This chapter also presents an analysis of the 

efficiency of each yeast strain in the fermentation process, comparisons between biomass 

yields and ethanol yields and the complete set of mass balance equations utilized to describe 
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the rates of consumption and production of substrates and products, respectively.  However, 

the efforts to model fermentations with more than two substrates with a simple Monod model 

are not adequate because simple unstructured models are developed to explain a particular set 

of experimental data and do not take into consideration the optimal nature of microbial 

growth on multiple substrates.  In a multiple substrate co-culture environment the cells show 

to have mechanisms to grow first on the preferable substrate available and proliferate much 

faster than the cells that respond differently.  In this environment microorganisms have to be 

viewed as optimal strategists, which means that under adequate conditions they display the 

ability to “think” and “decide” how to best utilize the resources so as to maximize a particular 

objective. Therefore as discussed in Chapter 5, a structured model has been used to simulate 

the concentration profiles in co-fermentations of glucose and xylose, but this model has a 

basic premise which represents the most important attribute of modeling efforts: information 

obtained from growth on single substrate experiments on each of the substrates will yield all 

of the information required for predicting growth in mixed substrates [23-24].  The model is 

based in the same mass balances made for single substrate fermentations but it also takes into 

account other important considerations and conditions that the model demands, specially 

regarding to the enzyme balances and allocation resources policies. The first structured model 

developed was made to analyze the profile concentrations of glucose and xylose for each one 

of the strains used. This is, one model was developed for S. cerevisiae and the other one was 

developed for P. stipitis.  After these models matched successfully single substrate 

fermentations, the complete structured model was constructed on the basis of additive kinetics 

for both yeast strains utilized. Hence all the numeric subscripts belong to sugar identification 

and the alphanumeric subscripts belong to yeast strains differentiation. Final fermentation 

runs were carried out to validate the structured model and the fitting was quantified by means 

of experimental statistical tools such as determination of mean square errors, linear 
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correlation coefficients and residual standard deviations between experimental and predicted 

data. The conclusions of this research project are displayed in Chapter 6, which also includes 

a list of recommendations to complement the scope of this work and to extend it to other 

process configurations in bioprocess engineering. 

 It is imperative to recognize the value and relevance of this work, because as shown 

in the next chapter, there is a large compilation of previous studies concerning research 

projects made with mixtures of glucose and xylose to produce fuel ethanol and modeling of 

fermentation processes, nevertheless at the moment of this document’s writing there are no 

apparent publications in which the objective is to model co-fermentations of glucose and 

xylose using co-cultures of the yeast strains above mentioned. Therefore the efforts made in 

this research project are vanguardist in the development of the lignocellulosic ethanol 

framework, mainly in areas such as optimization and process design.  Likewise, the area of 

yeast dynamics is also promoted when evaluating the performance of two different types of 

strains in an environment governed by sequential consumption of two substrates, the ones that 

have to be completely metabolized to achieve the highest ethanol yields in the bioprocess. 

 

1.1. Objectives 

1.1.1. General objective 

• To experimentally determine kinetics and yield coefficients to further develop a 

structured model to mathematically predict the ethanol production using the wild-type 

yeast strains Saccharomyces cerevisiae and Pichia stipitis and media containing 

mixtures of glucose and xylose. 
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1.1.2. Specific objectives 

• To determine kinetic parameters such as the maximum growth rates, Monod’s 

saturation constant, and product yield coefficients in single glucose and xylose batch 

fermentations and to analyze experimental data as a function of fermentation time. 

• To use the above experimental parameters in order to model the growth of cells, 

substrate consumption and ethanol production in multiple substrate fermentations -

glucose and xylose- using an appropriate structured model or based on the sequential 

utilization of two carbon carbohydrate sources (glucose and xylose). 

• To validate the developed mathematical modeling, for both single and multiple 

substrates, with experimental fermentation runs. 

 

1.2. References cited 

[1] Cheremisinoff, N.P. (1979). Gasohol for Energy Production. Ann Arbor Science 
Publishers, Ann Arbor, MI. Chap. 6. 

 
[2] Bailey, B.K. (1996). Performance of ethanol as a transportation fuel, in Wyman, C.E. 

(Ed), Handbook on Bioethanol: Production and Utilization, Taylor & Francis, 
Washington, DC, Chap. 3. 

 
[3] Ethanol Industry Outlook (2006).  Renewable Fuels Association, Washington, DC. 

http://www.ethanolrfa.org/  Access date: Oct. 2009. 
 
[4] Mitchel, D. (2008). A Note on Rising Food Prices.  Policy research working paper.  The 

World Bank. 
 
[5] Sánchez, O.; Cardona, C.A. (2007). Trends in biotechnological production of fuel 

ethanol from different feedstocks.  Bioresource Technology. 99:5270-5292. 
 
[6] Walter, A.; Rosillo-Calle, F.; Dolzan, P.; Piacencte, E.; Borges da Cunha, K. (2008). 

Perspectives on fuel ethanol consumption and trade.  Biomass and Bioenergy. 32:730-
748. 

 
[7] Zaldivar, J.; Nielsen, J.; Olson, L. (2001).  Fuel ethanol production from lignocellulose: 

a challenger for metabolic engineering and process integration.  Appl. Microbiol. 
Biotechnol. 56:17-34. 

 



 9 

[8] Zhang, Y-HP; Lynd, L.R. (2004). Toward an aggregated understanding of enzymatic 
hydrolysis of cellulose: noncomplexed cellulose systems. Biotechnol. Bioeng. 
88(7):797-824. 

 
[9] Balat, M.; Balat, H.; Öz, C. (2007). Progress in bioethanol processing. Progress in 

Energy and Combustion Science. 34:551-573. 
 
[10] Cardona, C.; Sánchez, O. (2007). Fuel ethanol production: Process design trends and 

integration opportunities. Bioresource Technology. 98:2415-2457. 
 
[11] Hahn-Hägerdal, B. (2001) Metabolic engineering of Saccharomyces cerevisiae for 

xylose utilization. Adv. Biochem. Eng./Biotechnol. 75:53. 
 
[12] Vallet, C. (1996). Natural abundance isotopic fractionation in the fermentation reaction: 

influence of the nature of the yeast. Bioorg. Chem. 24:319. 
 
[13] Van Dijken, J.P. (1986). Alcoholic fermentation by non-fermenting yeasts. Yeast. 2:123. 
 
[14] Lagunas, R. (1986). Misconceptions about the energy metabolism of Saccharomyces 

cerevisiae. Yeast. 2:221. 
 
[15] Toivola, A.; Yarrow, D.; van den Bosch, E.; van Dijken, J.; Scheffers, W.A. (1984). 

Alcoholic fermentation of D-xylose by yeasts. App. and Environ. Microb.  47(6):1221-
1223. 

 
[16] Sánchez, S.; Bravo, V.; Castro, E.; Moya, A.J.; Camacho, F. (2002). The fermentation 

of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or 
Pachysolen tannophilus to produce ethanol. Journal of Chem. Technol. and Biotechnol. 
77:641-648. 

 
[17] Agbogbo, F.K; Coward-Kelly, G.; Torry-Smith, M.; Wenger, K.S. (2006). Fermentation 

of glucose/xylose mixtures using Pichia stipitis. Process Biochemistry. 41:2333-2336. 
 
[18] McMillan, J.D. (1993). Xylose fermentation to ethanol: A review. National Renewable 

Energy Laboratory, Golden CO. TP-421-4944 
 
[19] Jeffries, T.W. et al. (2007). Genome sequence of the lignocellulose-bioconverting and 

xylose-fermenting yeast Pichia stipitis.  Nature Biotechnology. 25(3):319-326 
 
[20] Arellano-Plaza, M.; Herrera-López, E.; Díaz-Montaño, D.M.; Moran, A.; Ramírez-

Córdova, J.J. (2007). Unstructured kinetic model for tequila batch fermentation. 
International Journal of Mathematics and Computers in Simulation. 1(1):1-6 

 
[21] Volesky, B.; Votruba, H. (1992). Modeling and Optimization of Fermentation 

Processes.  Elsevier, Amsterdam. 
 
[22] Monod, J. (1942). Recherches sur la croissance des cultures bacteriennes. Hermann and 

Cie, Paris 
 



 10 

[23] Kompala, D.; Ramkrishna, D.; Tsao, G. (1984). Cybernetic modeling of microbial 
growth on multiple substrates. Biotechnol. Bioeng. 26:1272-1281. 

 
[24] Kompala, D.; Ramkrishna, D. (1986). Investigation of bacterial growth on mixed 

substrates: Experimental evaluation of cybernetic models. Biotechnol.Bioeng. 28:1044-
1055. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 11 

2. LITERATURE REVIEW  

2.1. Bioethanol as a transportation fuel 

2.1.1. Historical development 

 Ethanol has been known and produced by human beings since ancient times.  Modern 

techniques and development of molecular archaeology have proven that ethanol was present 

in wine making, as early as 5400-5000 BC in Western Asia, and further spread around the 

world, to Egypt and Mediterranean Europe.  In fact, partial DNA sequence data identified a 

yeast similar to the modern Saccharomyces cerevisiae as the biological agent used for the 

production of wine, beer and bread in Ancient Egypt. [1].  Whisky, brandy and other distilled 

spirits from grape and other fruits emerged worldwide and their production techniques were 

refined and further modernized.  Distillation was introduced in 1310 and a comprehensive text 

on the subject was published in Germany by 1556 [1].  Grain spirits production arose for the 

first time in North America in 1640, and operations conducted in stills were extended all over 

Ireland and Scotland until the twin-column distillation apparatus devised by the Irishman 

Aeneas Coffey was implemented in 1830, which continues to yield high-proof ethanol (94-

96% by volume) [2]. 

 The above references are regarding to historical development of for alcoholic 

beverages. However, the use of ethanol as a fuel additive is believed to have begun by the end 

of the nineteenth century, when emerged as a fuel of choice for automobiles among engineers 

and motorists [2]. For example, the Automobile Club of America sponsored a competition for 

alcohol-powered vehicles in 1906, which steered the attention towards ethanol as an 

important resource by fear about oil scarcity, rising gasoline prices, and the monopolistic 

practices of Standard Oil [3].  Figure 2.1 shows the first automobile designed to use pure 

ethanol as a fuel in 1896. The first companies that attempted use of alternative fuels to replace 

gasoline were Ford and Diesel, and these alternatives were ethanol and powdered coal 
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respectively, but soon they opted for the less expensive option of gasoline and other crude oil 

fractions like kerosene [4].    

 

 

Figure 2.1 – Ford Model Car (1896), which used pure ethanol [5]. 
 

 
Nevertheless, Henry Ford continued his interest in alternative fuels, and he sponsored 

conferences concerning with the industrial uses of agricultural mass products.  He created 

model A in 1935 - 1937, an automobile that was often equipped with an adjustable carburator 

designed to allow the use of gasoline, alcohol, or a mixture of two fuels. Several countries 

(Argentina, Australia, Cuba, Japan, New Zealand and other) in the 1920s and 1930s used 

ethanol blends in gasoline and Germany became pioneer in alcohol-fueled vehicles during 

World War II. By 1944, the U.S. Army had developed a nascent biomass-derived alcohol 

industry [6].  However, these efforts were mostly of a contingency or emergency nature and 

were abandoned once oil began to flow in increasingly large amounts after World War II 

ended in 1945. 

From the 1970s onwards considerable rising oil prices have occurred similar to those 

of the 1860’s motivating energy conservation as a priority, encouraging every country to use 

alternative fuels like alcohol and liquefied gas. By 1980, Brazil was the pioneer country to 
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establish a national alcohol program (PROÁLCOOL) and this boosted the production of 

ethanol-based automobiles, reaching 96% of the total sales in 1980 in that country [7].    

Nevertheless these sales diminished as a consequence of the reduction in prices of the crude 

oil barrel and it was until 2003 when the Brazilian automobile producers introduced truly 

flexible-fuel vehicles (FFVs), with engines capable of being powered by pure gasoline, 93% 

aqueous ethanol, or by a blend of gasoline and anhydrous ethanol [8].  But ten years before, in 

1993 a law was enacted, stating that all gasoline sold should have at least a 20% of ethanol by 

volume. Figure 2.2 shows the changes in oil price from 1860 until 2007 and the main 

worldwide events that have promoted those changes, comparing the value of the money in 

2007 (green line) with respect to the value in each year that is being analyzed (black line). 

 

 

 
Figure 2.2 – Historical oil price.  Data from BP Statistical Review of World Energy, British 

Petroleum, London, 2007 [9]. 
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Finally in 2006, the tax rate for gasoline was set to be 58% higher than that for 

hydrated ethanol (93% ethanol and 7% water), and also tax rates were made advantageous for 

gasoline/ethanol blends higher than 13% [10]. In 2004-2005, Brazil was the world’s largest 

producer of ethanol and Figure 2.3 shows world’s fuel-ethanol production in the last 32 years. 

 

 
 

 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
Figure 2.3 – Worldwide ethanol production after 1975 in million of liters. Data from RISE 

[11]. 
 
 
 

 Besides Brazil, the second major contributing country in the development of fuel 

ethanol production is the United States [2].  Throughout the twentieth century, ethanol 

production in USA was intended for the manufacture of a large number of chemical 

intermediates and fine chemicals, using synthetic routes with ethylene from the petrochemical 

industry as a raw material, but the oil price shock of the early 1970s, coupled with the 
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requirements for cleaner burning gasoline and the mandatory inclusion of oxygen-rich 

additives in gasoline, certainly focused attention on ethanol as an “extender” for gasoline.  

The compound mainly used was methyl tert-butyl ether (MTBE), another petrochemical 

industry product, but after 1999 its use stopped because of its toxic and polluting effects [11]. 

Since then, MTBE’s consumption in the United States decreased considerably as shown in 

Figure 2.4, ethanol consumption has exceeded that of MTBE from 2003 onwards.  In that 

moment, the perfect candidate to replace MTBE was ethanol, and therefore its production 

increased rapidly after showing little sustained growth for most of the 1990s, having an 

exponential growth after 2002 (Figure 2.5). 

 

 
Figure 2.4 – MTBE production in USA.  Data from the U.S. Department of Energy [12]. 
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Figure 2.5 – Ethanol production in USA (billons of gallons).  Data from the Renewable Fuels 

Association [11]. 
 

 
 In 2005, the United States became the largest ethanol producer nation, followed by 

Brazil, China, India, France and Russia. The ethanol blend most commonly used is E85 (85% 

ethanol, 15% gasoline), which is well suited for most flexible-fuel vehicles, although blend 

E10 is also popular [13]. Greater quantities of ethanol are expected to be used as a motor fuel 

in the future because of two federal policies included in the 2005 Energy Policy Act (EPACT 

2005) [13]: a $0.51 tax credit per gallon of ethanol used as a motor fuel and a new mandate 

for up to 7.5 billion gallons of renewable fuel to be used in gasoline by 2012. 

2.1.2. Ethanol fuel specifications 

 The use of ethanol as a fuel in the transportation area is supported by a compilation of 

chemical and physical properties that make this liquid fuel an excellent alternative to enable 

cleaner combustion and better engine performance, reducing the dependence on fossil fuels 
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(mainly oil), and avoiding the release of excessive environmental contaminants that promote 

and aggravate global warming issues.  It is important to clarify that use of ethanol can be 

analyzed from three points of view: (i) as an oxygenated additive (substituting MTBE from 

2002 to date), (ii) as an anhydrous blender for fuel in low-level and high-level gasoline and 

ethanol mixtures, and (iii) as a pure fuel.  Also, recent advances in lignocellulosic feedstock 

processing technology may give ethanol a stronger cost position relative to other alternative 

fuels [14]. 

 The outstanding ethanol properties compared with gasoline are discussed below, and 

Table 2.1 summarizes this comparison. Ethanol has a higher octane number, which is a 

measure of a fuel’s resistance to self-ignition and detonation, and this means higher 

compression ratios resulting in greater engine efficiencies and higher power from a given 

engine size.  Regarding flammability limits, once ignited, ethanol burns faster than gasoline, 

thus allowing more efficient torque development [15]. Also ethanol has a much higher heat of 

vaporization (about 390 BTU/lb) than gasoline (about 170 BTU/lb), which increases the 

power produced from a given engine size, and decreases the maximum combustion 

temperature and the thermal load on the engine.  Ethanol’s stoichiometric flame temperature 

of 1930°C (compared to 1977°C for gasoline and 2054°C for diesel fuel) contributes to higher 

efficiencies for an optimized ethanol engine. Finally, solubility could be an obstacle to a 

greater acceptance of ethanol as a fuel because of the possibility of water phase separation 

from a gasoline-ethanol blend. However, the more ethanol added to gasoline, the less this 

problem tends to occur, because gasoline-ethanol blends have a capacity to dissolve water that 

is directly proportional to the ethanol content [5]. 
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Table 2.1 – Gasoline and ethanol properties [5]. 
 

Parameter Unit Gasoline Ethanol 

kJ/kg 43500 28225 
Lower caloric value 

kJ/L 32180 22350 

Density kJ/L 0.72 – 0.78 0.792 

Research Octane Number (RON) - 90 - 100 102 - 130 

Motor Octane Number (MON) - 80 - 92 89 – 96 

Vaporization latent heat kJ/kg 330 - 400 842 - 930 

Stoichiometric relation air/fuel  14.5 9.0 

Steam pressure kPa 40 - 65 15 – 17 

Ignition temperature °C 220 420 

Solubility in water % in volume ~0 100 

 

2.1.3. Economic and environmental issues for bioethanol 

 To be competitive, and to win economic acceptance, the cost for bioconversion of 

biomass to liquid fuel must be lower than the current gasoline production costs. Regarding 

bioethanol production, the cost of feedstock and cellulolytic enzymes are two important 

parameters for a low cost ethanol production.  Biomass feedstock cost represents around 40% 

of the ethanol production cost [16]. An important factor for reducing the cost of bioethanol 

production is to use larger industrial facilities rather than smaller ones.  Wilke and co-workers 

[17] have made the first effort to analyze the cost of the conversion of biomass to ethanol 

process based on a Simultaneous Hydrolysis and Fermentation (SHF) operation and 

concluded that neat ethanol could compete with gasoline at the oil prices in the range of $20 

to $30 per barrel.  They also suggested an integrated approach, that is, process engineering, 

fermentation and enzyme and metabolic engineering, all together [17].  Estimates and 

economic analyses from primary scientific journals, data from a range of sources (including 

reports prepared for governments and conference proceedings) show productions costs for 
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bioethanol on the basis of 2003, as described in Table 2.2.  Ethanol produced from sugar, 

starch (grain), and lignocellulosic sources covered production cost estimates from less than 

$1/gallon to more than $4/gallon.  Even with the lower production costs for lignocellulosic 

ethanol in the United States, taking into account financial outlays and risks, an ethanol price 

of $2.75/gallon would be more realistic, according to Bohlman’s review [18]. 

 

Table 2.2 – Estimated production costs for bioethanol in 2003 [19]. 
 

Source of Ethanol 
Production cost  

(€/GJ) 

Production 
cost  

($/liter) 

Production 
cost 

($/gallon) 

Sugarcane (Brazil) 10 – 12 0.24 – 0.29 0.91 – 1.10 

Starch and sugar (U.S. and Europe) 16.2 – 23 0.39 – 0.55 1.48 – 2.08 

Lignocellulosic (U.S.) 15 – 19 0.36 – 0.46 1.36 – 1.74 

Lignocellulosic (Europe) 34 – 45  0.82 – 1.08 3.10 – 4.09 

 
 

 
 Regarding environmental issues, ethanol represents a closed carbon dioxide cycle 

because after burning of ethanol, the released CO2 is recycled back into plant materials by the 

photosynthesis effect to synthesize cellulose, which means no net addition of CO2 to the 

atmosphere, making ethanol an environmentally beneficial energy source.  However, the main 

feature of ethanol as a renewable fuel and its promise to the environment is a tiny contribution 

to the green house gas effect.  Direct comparisons of gas emissions resulting from the 

combustion of anhydrous ethanol, ethanol-gasoline blends, and gasoline are straightforward to 

perform but are poor indicators of the overall consequences of substituting ethanol for 

gasoline. Therefore, one effective methodology to study the environmental impact of ethanol 

is to compare CO2 emissions among various fuels as shown in Figure 2.6.  Noncarbon-based 

fuels (i.e., electric vehicles powered using electricity generated by nuclear and solar options) 
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along with ethanol from biomass are the best options because of their low CO2 emissions. 

Ethanol from corn showed no net advantage, despite more recent estimates that place its 

production as giving modest reductions in greenhouse gas emissions, 12-14% [12,20].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 – Total fuel cycle carbon dioxide emissions [2]. 
 

 

 Figure 2.7 shows how cellulosic ethanol has the major contribution to the reduction of 

greenhouse gas emissions when compared to gasoline, and also to corn and sugarcane based 

ethanol. Filled bars represent the percentage of greenhouse gas emissions where gasoline 

contributes to 100% of emissions and cellulosic ethanol has a contribution of 14%, 

approximately [21]. 
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Figure 2.7 – Percentage of reduction of greenhouse gas emissions in fuel ethanol [21]. 
 

 

2.2. Biomass-to-ethanol technology 

2.2.1. Classic feedstocks for ethanol production 

As mentioned in section 2.1, historical development of bioethanol motivated the use of 

different feedstocks for its production, depending on the policies established in each country 

encouraging to reduce the use of petroleum-derived fuels and toxic oxygenate additives.  In 

general, bioethanol feedstocks can be conveniently classified into three types, as described 

briefly in chapter 1: (i) sucrose-containing feedstock (e.g. sugar cane, sugar beet and sweet 

sorghum), (ii) starchy materials (e.g. corn, wheat and barley), and (iii) lignocellulosic biomass 

(e.g. wood, agricultural wastes, straw and grasses) [22].  A brief introduction concerning 

types (i) and (ii) will be made now, although emphasis will be made on the third type because 

of the scope and purpose of this research work.   

The first type of feedstocks comprises ethanol produced from sugars, which involves 

either sugar cane juice or molasses (by-product of sugar mills), and the leading country using 
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these feedstocks is Brazil with about 27% of global production.  The Brazilian bioethanol 

industry was poised for a major jump during 2006-2008 as a part of new national plan to 

increase sugar cane production by 40% by 2009 [23]. The main advantage in sugar-based 

bioethanol production lies on the reduction of one step if compared with starch-bioethanol, 

since sugars are already present in the feedtsock. The process is based on extraction of sugars 

(by means of milling or diffusion), which may be then fed straight to fermentation [5]. The 

most employed microorganism is Saccharomyces cerevisiae due to its capability to hydrolyze 

cane sucrose into glucose and fructose, two easily assimilable hexoses.  Ethanol yields 

achieved using sugar cane molasses and S. cerevisiae range 85-90% in batch processes [24] 

and 94.5% in continuous processes carried on in continuous-stirred tank reactors (CSTR) 

using residence times of 3-6 hours and achieving productivities of 5-20 g/L-h [25].  

Production cost of ethanol from sugar cane was estimated in ~$160/m3 being the lowest cost 

so far of all different feedstocks for bioethanol production [26]. Sugar beet is also very 

utilized, especially in European countries, and one of the main advantages is a lower cycle of 

crop production, higher yield, and high tolerance of a wide range of climatic variations. 

 The second type comprises ethanol from starchy materials, being corn the most 

utilized, almost exclusively in countries like United States.  Starch is a high yield feedstock, a 

homopolymer consisting of only D-glucose monomers but acid or enzymatic hydrolysis to 

break down the chains of this polymer is required to obtain glucose syrup and then produce 

ethanol by yeast fermentation.  USA has a large corn-based bioethanol industry with a 

capacity of over 15 billion of liters per year and its production capacity is anticipated to 

continue to rise to about 28 billion of liters per year by 2012, as dictated by the Energy Policy 

Act of 2005 [26].  Ethanol produced from corn has the higher conversion rate, with 410 

liters/ton, although ethanol yield is so much lower if compared to sugar cane, and the 

production cost reaches values ranging from $250-420/m3 [26]. This is due mainly by two 
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reasons: yeasts such as S. cerevisiae cannot utilize starchy materials and therefore enzymes 

such as glucoamylases and α-amylases need to be added, and the other one is that starchy 

materials need to be cooked at high temperatures to obtain a high bioethanol yield [28].  The 

starch-based bioethanol industry has been commercially viable for about 30 years; in that 

time, tremendous improvements have been made in enzyme efficiency, reducing process costs 

and time, and increasing bioethanol yields [27]. 

The third type of feedstock involves lignocellulosic biomass, and it is currently 

considered as the best option when compared to sugar and starchy materials because of the so 

called “food versus fuel” controversy generated by using these food/feed grade-feedstocks to 

produce ethanol and thus increasing the costs for general food market, which have reached 

alarming bounds. Therefore, attention and priority have been assigned to the study of 

lignocellulosic biomass as a raw material for ethanol production.  As mentioned in Chapter 1, 

production of ethanol from biomass is one way to reduce both consumption of crude oil and 

environmental pollution.  Bioethanol can be produced from cellulosic feedstocks, but one 

major problem related to production processes is the availability of raw materials; the 

availability can vary considerably from season to season and depends on the geographic 

locations.  Lignocellulosic biomass is the most promising feedstock considering its great 

availability and low cost, but the large-scale commercial production of fuel bioethanol from 

lignocellulosic materials has still not been implemented widely [22].  The lignocellulosic 

complex is the most abundant biopolymer in the Earth, reaching about 50% of world biomass 

and its annual production was estimated in 10-50 billion ton [24] and could produce up to 442 

billion liters per year of bioethanol [29].  Figure 2.8 shows the summarized technological 

routes for ethanol production from the three feedstocks described above. 
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Figure 2.8 – Technological routes for ethanol production [5]. 

 

2.2.2. Components of lignocellulose 

 Lignocellulose is one component of the cell wall in higher plants, which provides the 

structural rigidity necessary for growth.  Three polymers comprise the entire microscopic 

structure of lignocellulose:  cellulose (C6H10O5)x, hemicellulose such as xylan (C5H804)m, and 

lignin [C9H10O3.(OCH3)0.9-1.7]n in trunk, foliage, and bark [30,31].  Figure 2.9 shows a 

schematic representation of these three components in a macrofibril array of any given plant 

cell. 
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Figure 2.9 – Lignocellulose microscopic structure and distribution [32]. 
 
 
 

 Cellulose is a homopolysaccharide comprising approximately the 35-50% of 

lignocellulose materials. It is composed of β-D-glucopyranose units (glucose chair 

conformation) linked together by β(1�4)-glycosidic bonds. The cellulose molecules are 

linear; the β-D-glucopyranose chain units are in a chair conformation and the substituents HO-

2, HO-3, and CH2-OH are oriented equatorially. Glucose anhydride, which is formed via the 

removal of water from each glucose unit, is polymerized into long cellulose chains that 

contain 5000-10000 glucose units.  The basic repeating unit of the cellulose polymer consists 

of two glucose anhydride units, called a cellobiose unit [33]. The second major chemical 

constituent in lignocellulose biomass is hemicellulose (~20-35%), which is a mixture of 

various polymerized monosaccharides such as glucose, mannose, galactose, xylose, arabinose, 
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4-O-methyl glucoronic acid and galacturonic acid residues, but xylose and arabinose are the 

predominant pentose sugars derived from the hemicellulose of most hardwood feedstocks, 

agricultural residues and other herbaceous crops, such as switchgrass.  Lignocellulose’s 

remaining fraction are the lignins, highly branched, substituted, mononuclear aromatic 

polymers in the cell walls of certain biomasses, especially woody species. Lignin cannot be 

readily converted to ethanol but can be used as a fuel or precursor for specific chemical 

syntheses.  Likewise, there is no microorganism currently available that can utilize lignin 

monomers for ethanol production [34]. Lignins and hemicelluloses may form chemically 

linked complexes that bind water-soluble hemicelluloses into a three-dimensional array, 

cemented together by lignin, that sheaths the cellulose microfibrils and protects them from 

enzymatic and chemical degradation [2]. Figures 2.10 to 2.12 show the basic chemical 

structure of these three polymers. 

 

 

 

 

 
 
 
 
 

 
Figure 2.10 – Structure of a short segment of cellulose [35]. 
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Figure 2.11 – Structure of xylan a short segment of hemicellulose [36]. 

 
 
 

 

 
 
 

 
Figure 2.12 – Structure of segment of lignin [37]. 
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 The contents of these three fractions in lignocellulosic materials may vary depending 

on the type of material and the geographic area.  According to Sáez’s review [38] 

lignocellulosic materials can be divided in five main groups: herbaceous, crop residues, 

hardwood, softwood and cellulose wastes.  Table 2.3 shows some examples of each one of 

these five main categories and the abundance of each one of the three fractions described 

above. 

 
Table 2.3 – Approximate composition of selected lignocellulosic materials for ethanol 

production [38]. 
 

Material Cellulose  
(%) 

Hemicellulose 
(%) 

Lignin 
(%) 

Herbaceous    

Alfalfa hay 38 9 14 

Switchgrass 45 31 12 

Leaves 15 – 20 80 - 85 0 

Crop residues    

Corn cobs 45 35 15 

Corn stover 41 21 - 28 17 – 22 

Sugarcane bagasse 40 22.5 25 

Wheat straw 36 28 29 

Nut shells 25 – 30 25 - 30 30 – 40 

Hardwood    

Aspen 46 26 18 

Hybrid poplar 43 21 26 

Softwood    

Spruce 43 26 29 

Pine 44 26 29 

Cellulose wastes    

Newsprint 61 16 21 

Newspaper 40 – 55 25 - 40 18 – 30 

Recycled paper sludge 50 10 0 

Sorted refuse 60 20 20 
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2.2.3. Processing of lignocellulosics to bioethanol 

 There are several options for a lignocellulose-to-bioethanol process, but regardless of 

which is chosen, some features must be assessed in comparison with established sugar- or 

starch-based bioethanol production.  These features include efficient de-polymerization of 

cellulose and hemicellulose to soluble sugars, efficient fermentation of a mixed-sugar 

hydrolysate containing hexoses and pentoses, advanced process integration to minimize 

process energy demand and reduction of lignin content of the feedstock to decrease the cost of 

bioethanol [22].  Processing of lignocellulosics to bioethanol consists of four major unit 

operations: pre-treatment, hydrolysis, fermentation and product recovery. Each one is 

described below. 

 

2.2.3.1. Pre-treatment of biomass 

 Pre-treatment of biomass is necessary because the matrix of cellulose and lignin bound 

by hemicellulose chains should be broken in order to reduce the crystallinity degree of the 

cellulose and to increase the fraction of amorphous cellulose, with the objective of making 

more accessible to the enzymes that convert the carbohydrate polymers into fermentable 

sugars and to ethanol producing microorganisms.  Additionally, the hemicellulose fraction 

should be hydrolyzed and lignin should be released or removed. Several methods and/or 

combination of methods already exist to carry out pre-treatment. The physical-chemical 

method known as steam explosion is the most studied and applied, since it is recognized as 

one of the most cost-effective for hardwood and agricultural residues, but it is less efficient 

for softwood. [39].  One very promising method is the pre-treatment with Liquid Hot Water 

(LHW) or thermohydrolysis, which presents elevated recovery rates of pentoses and does not 

generate inhibitors [40].  Chemical methods such as dilute acid hydrolysis are also available, 

but the costs are higher than the ones corresponding to steam explosion. Finally, there are 
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biological methods, the ones that have low energy requirements and mild environmental 

conditions. However, most of the biological processes are too slow, limiting their application 

at the industrial level.  The fungus Phanerochaete chrysosporium has been proposed in the 

patent of Zhang [41] for degrading the lignin in a biomass-to-ethanol process scheme 

involving the separate fermentation of pentoses and hexoses. No matter which of the methods 

described before is used, one of the main problems in pre-treatment and hydrolysis of biomass 

is the variability in the composition of both lignin and hemicellulose, and this depends on 

several factors such as the type of plant, crop age, method of harvesting, etc. [42].  After the 

pre-treatment step and even after the hydrolysis step, detoxification should be carried out to 

remove inhibitors produced by the addition of chemicals and from the degradation products of 

soluble sugars and lignin. Therefore, detoxification of the streams that will undergo 

fermentation is required.  Among the various physical, chemical and biological existent 

methods, the best candidates are alkali treatment and addition of calcium hydroxide 

(overliming) or ammonia, this last one has shown better results than treatment with sodium or 

potassium hydroxide [42]. 

 

2.2.3.2. Hydrolysis 

 The hydrolysis step is next to the pre-treatment, and here takes place the cleavage of 

the cellulose polymer to glucose units with the addition of one molecule of water, according 

to the chemical reaction: 

 

(C6H10O5)n + nH2O � nC6H12O6                                      (2.1) 

 

 Hydrolysis of lignocellulosic biomass is more complicated than that of pure cellulose 

due to the presence of nonglucan components such as lignin and hemicellulose [41]. A 
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number of processes for hydrolyzing cellulose into glucose have been developed over the 

years, and the majority of these processing schemes utilize either cellulolytic enzymes or 

sulfuric acid of various concentrations.   Nowadays, enzymatic hydrolysis has demonstrated 

better results for the subsequent fermentation because no degradation components of glucose 

are formed although the process is slower. Several other chemical methods are also available, 

such as dilute acid processes with fast rates of reaction but with the disadvantage of low sugar 

yield. Even novel physical methods such as gamma-ray or electron-beam irradiation, or 

microwave irradiation are currently being tested in pilot plants [43].  Most of the commercial 

cellulases are obtained aerobically from microorganisms such as Trichoderma ressei and 

Aspergillus niger; they release a mixture of cellulases, among which at least two 

cellobiohydrolases, five endoglucanases, and β-glucosidases and hemicellulases have been 

found [41]. 

 

2.2.3.3. Fermentation of biomass hydrolysates 

 When carbohydrates coming from cellulose and hemicellulose are released free in 

solution, after any of the hydrolysis methods mentioned above, the next step is the 

fermentation of these carbohydrates to produce ethanol, using microorganisms such as yeast 

or bacteria. Because such lignocellulose hydrolysates contain more than one type of 

carbohydrate, including oligosaccharides, microorganisms should be required to efficiently 

ferment these sugars for the successful industrial production of bioethanol [44].  The general 

reactions involved in the production of ethanol, considering glucose and xylose as the main 

free sugars in solution after hydrolysis step are respectively: 

 

C6H12O6  �  2C2H5OH  +  2CO2                                     (2.2) 

 
3C5H10O5  �  5C2H5OH  +  5CO2                                    (2.3) 
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 The classic configuration employed for fermenting biomass hydrolysates involves a 

sequential process where the hydrolysis and fermentation are carried out in different units, 

this is known as separate hydrolysis and fermentation (SHF).  In the alternative variant, the 

simultaneous saccharification and fermentation (SSF), the hydrolysis and fermentation are 

performed in a single processing unit. This last configuration has been improved through the 

use of genetically engineered microorganisms capable of fermenting simultaneously hexoses 

and pentoses from cellulose and hemicellulose respectively, or through the use of two or more 

different strains of microorganisms with the ability to ferment their corresponding sugars.  

This new variant of SSF is known as simultaneous saccharification and co-fermentation 

(SSCF).  The main feature of SHF process is that each step can be performed at its individual 

optimal operation conditions but one disadvantage is that cellulolytic enzymes are end-

product inhibited, so that the rate of hydrolysis is progressively reduced when glucose and 

cellobiose accumulate [45].   The SSF shows more attractive profiles than the SHF as higher 

ethanol yields and less energy consumption are possible; but this process operates at non-

optimal conditions for hydrolysis and requires a higher enzyme dosage, which positively 

influences on substrate conversion, but negatively on process costs [42]. In the SSCF 

technology, the enzymatic hydrolysis continuously releases hexose sugars, which increase the 

rate of glycolysis such that the pentose sugars are fermented faster and with higher yields.  

SSF and SSCF are preferred technologies since both can be performed in the same bioreaction 

tank, resulting in lower capital costs [46]. 

 

2.2.3.4. Product recovery 

 Distillation is the technology more utilized for ethanol recovery, and different 

technologies that will allow the economic recovery of dilute volatile products from streams 

containing a variety of impurities have been developed and commercially demonstrated [47]. 
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However, ethanol can be distilled up to concentration of 95.6% because of the azeotrope 

formation of the mixture of ethanol with water, and further dehydration would be needed to 

achieve ethanol concentrations of ~99.6%. Other separation technologies include the removal 

of ethanol from a fermentation broth under vacuum even at a normal operating temperature 

[22]; extraction of ethanol with a solvent such as n-decanol when using immobilized cells of 

S. cerevisiae [48]; gas stripping of ethanol in an air-lift fermentor, which is a type of vessel 

originally developed for viscous microbial fermentation broths but it is also used for some of 

the more fragile and shear-sensitive mammalian cells in culture [49]. 

 Figure 2.13 shows a generic block developed by Cardona and Sánchez [50] for fuel 

ethanol production from lignocellulosic biomass. Possibilities for reaction-reaction integration 

are shown inside shaded boxes: SHF, SSF and SSCF (as described previously); co-

fermentation (CF); and consolidated bioprocessing (CBP).  Main stream components are: 

cellulose, (C); hemicellulose, (H); lignin, (L); cellulases, (Cel); glucose, (G); pentoses, (P); 

inhibitors, (I); and ethanol, (EtOH). 
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Figure 2.13 – Generic block diagram of fuel ethanol production from lignocellulosic biomass, 

from Cardona and Sánchez [50]. 
 
 

2.3. Biocatalysts for ethanol fermentation 

 Finding the right microorganisms to produce ethanol from the mixture of sugars 

resulting from the hydrolysis of lignocellulosic feedstocks is a major challenge in this 

bioprocess, because one of the main requirements is to metabolize the majority of sugars in 

solution to increase ethanol yield and process productivity.  However, the best ethanol 

producers are incompetent at utilizing pentose sugars, whereas species that can efficiently 

utilize both pentoses and hexoses are less efficient at converting sugars to ethanol. Several 

microorganisms can efficiently ferment the glucose component in cellulose to ethanol, but 

conversion of the pentose sugars in the hemicellulose fraction, particularly xylose, remained a 

bottleneck in biomass-to-ethanol until a couple of years ago.  Three options are suggested for 

actual processing, in order to find the best biocatalyst scheme: (i) endowing traditional yeast 
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ethanologens with novel traits, including the ability to utilize pentoses, (ii) “reforming” 

bacterial species and nonconventional yeasts to be more efficient at converting both pentoses 

and hexoses to ethanol, and (iii) devising conditions for mixed cultures to function 

synergistically with mixtures of major carbon substrates [2].  There are some essential traits in 

microorganisms used in bioethanol production, necessary to achieve high ethanol yields and 

concentration; microorganisms should ferment both hexoses and pentoses with ethanol as the 

sole fermentation product, tolerating high ethanol concentrations and inhibitory compounds as 

well typically present in dilute-acid hydrolysates, and should require hypoxic conditions (very 

low concentrations of oxygen). 

 Different strains of microbes have been utilized to produce ethanol, for both fuel and 

alcoholic purposes. Yeasts and bacteria are the preferred microbes although some fungus 

species such as Paecilomyces sp. NF1 have been also proposed to ferment all of the major 

sugars derived from hydrolysis of plant biomass to ethanol using the SSF configuration [51]. 

The microorganism more utilized along the history because of its advantages is the yeast 

Saccharomyces cerevisiae, but despite of such advantages it has some limitations that have 

motivated the search of other species to complement what S. cerevisiae lacks for an efficient 

ethanol production process.   

 

2.3.1. Hexose-fermenting microbes 

 As mentioned above, S. cerevisiae is a well-known yeast strain used in alcoholic 

fermentations because of its ability to ferment glucose to ethanol as virtually the sole product, 

superior ethanol tolerance, and rapid fermentation rates under acidic conditions and resistance 

to the acetic acid found in lignocellulosic hydrolisates [52]. However, the main disadvantage 

of S. cerevisiae is its narrow substrate utilization range, because it cannot ferment pentoses 

due to the lack of both pentose-assimilation pathways and adequate levels of key pentose 
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phosphate pathway enzymes.  Bacteria are much less widely known as ethanol producers than 

are yeasts, but Escherichia, Klesbiella, Erwinia, and Zymomonas species have all received 

serious and detailed considerations for industrial use. Zymomonas mobilis has extremely 

desirable features as an ethanologen with the advantage to grow at high sugar concentrations 

and to produce and tolerate ethanol at concentrations up to 13% mass/volume (w/v) [53]. 

 

2.3.2. Pentose-fermenting microbes 

 The lack of an effective pentose-assimilation pathway in efficient hexose-fermenting 

microbes and the need to take advantage of all sugars resulting from the hydrolysis of 

cellulose and hemicellulose, motivated several years ago the search of strains that could 

ferment xylose under strictly anaerobic conditions. Yeasts such as Candida shehatae, 

Pachysolen tannophilus, Pichia stipitis, and Kluyveromyces marxianus have been postulated 

to use a two-step pathway in which xylose is first reduced to xylitol by xylose reductase 

enzyme (XR), and then is oxidized to xylulose by xylitol dehydrogenase enzyme (XD).  

Xylulose is subsequently phosphorylated to form xylulose-5-phosphate and then metabolized 

to ethanol through the pentose phosphate and Embden-Meyerhoff-Parnas pathways [54].  P. 

stipitis reportedly provides the best overall performance in terms of complete sugar 

utilization, minimal coproduct formation, and insensitivity to temperature and substrate 

concentrations [55]. In bacteria, the pentose metabolic pathway is different, being the enzyme 

xylose isomerase (XI) the responsible for isomerization of xylose to xylulose directly without 

the production of xylitol.  However, one limitation to the use of these yeasts on an industrial 

scale is their requirement for low levels of oxygen, and on the other hand, excess oxygen 

causes them to completely cease ethanol production and metabolize aerobically the substrate 

to form biomass. Therefore, the degree of control necessary to maintain the narrow range of 



 37 

microaerophilic conditions that permit efficient ethanol production could be difficult and cost-

prohibitive on an industrial scale.  

 

2.3.3. Genetically engineered microbial strains 

 Some microorganisms have been genetically modified to change and improve their 

role in metabolism of substrates and consequently to produce ethanol with higher yields and 

productivities, but mainly to optimize the conversion of the various types of sugars after 

hydrolysis of lignocellulosic biomass.  These changes include expression analysis of key 

genes in metabolic pathways for further inclusion of these genes in other microorganisms that 

naturally do not display them in their wild-type strains.  The recent determination of the 

genome sequence for P. stipitis is important, as its genome characteristics and regulatory 

patterns could serve as guides for further development in this natural xylose-fermenting yeast 

or in engineered S. cerevisiae.  In fact, P. stipitis has been the most widely used donor, 

probably because it shows relatively little accumulation of xylitol when growing on and 

fermenting xylose, thus wasting less sugar as xylitol [56].  For direct genetic manipulation of 

S. cerevisiae, the most used strategy has been to insert the two genes from P. stipitis coding 

for XR and XDH enzymes to conduct the intermediate metabolites through the pentose 

phosphate pathway with final ethanol production.  In addition to this XR-XDH strategy, other 

option is the inclusion in of XI enzyme gene coming from bacteria or fungi such as 

Piromyces, in S. cerevisiae to metabolize xylose to ethanol.  Some studies have been carried 

out to compare these two strategies, and results obtained by the group of Grauslund [57] 

reveal that despite a little xylitol accumulation, XR-XDH xylose utilization pathway provides 

faster ethanol production than using the XI pathway.  However, in chemically defined 

medium, XI pathway showed the highest ethanol yield. Genetic manipulation of bacteria has 

been also carried out to utilize high-performance bacteria strains in the production of ethanol, 
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being Escherichia coli, Klesbiella oxytoca and Zymomonas mobilis the species assayed. 

Among them, Z. mobilis has shown the most promising results, when some strains were first 

engineered to catabolize xylose at the National Renewable Energy Laboratory in Colorado, 

United States.  Genes for xylose utilization by E. coli were introduced into Z. mobilis [58]. 

 Regardless the utilization of wild-type or genetically engineered hexose- and/or 

pentose-fermenting microbes, the complete degradation of glucose or xylose using yeasts, as 

the most abundant sugars in lignocellulosic hydrolysate, proceed along the metabolic 

pathways shown in Figure 2.14. Microorganisms used in the process have the ability to 

produce all of the enzymes required for each intermediate step in the corresponding metabolic 

pathways.  The metabolic pathway shown in the left side of Figure 2.14 describes glucose 

degradation by means of glycolysis (dotted box to the left) with further catabolism of 

pyruvate produced in glycolysis to ethanol. The numbers between each intermediate step 

correspond to the enzymes that catalyze each reaction: (1) hexokinase, (2) phosphoglucose 

isomerase, (3) phosphofructokinase-1, (4) aldolase, (5) triose phosphate isomerase,              

(6) glyceraldehyde-3-phosphate dehydrogenase, (7) phosphoglycerate kinase,                        

(8) phosphoglycerate mutase, (9) enolase, (10) pyruvate kinase, (11) pyruvate decarboxylase, 

and (12) alcohol dehydrogenase [59].  

 The right side of Figure 2.14 describes the yeast xylose degradation pathway, either by 

wild-type strains or genetically engineered yeast strains encoding genes to express enzymes 

for xylose degradation. In this pathway xylose is metabolized in two steps to form xylulose-5-

phosphate and at this point begins the Pentose Phosphate Pathway (PPP) to yield fructose-6-

phosphate and glyceraldehyde-3-phosphate, which enters into the glycolysis pathway to 

finally produce ethanol. The enzymes catalyzing xylose and PPP pathways are shown as 

letters between each intermediate step in Figure 2.14, and they are: (a) xylose reductase, (b) 

xylitol dehydrogenase, (c) xylulokinase, (d) transketolase, and (e) transaldolase [56]. 
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Figure 2.14 – Metabolic pathways to produce ethanol from glucose and xylose. (Adapted 

from Nelson and Cox [59]). 
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2.4. Fermentation of mixtures of glucose and xylose 

 After hydrolysis and detoxification of cellulose and hemicellulose, glucose and xylose 

are predominant in the resulting sugar solution.  Depending on the type of feedstock used, and 

on the employed pre-treatment and hydrolysis methods as well, the proportion of 

glucose/xylose in hydrolysate can vary. However, the main objective is to ferment completely 

both sugars to improve ethanol yields. Various studies have focused in fermentation of 

glucose and xylose mixtures, with different initial ratios and methodologies, such as batch, 

fed-batch and continuous processes and the type of fermenting microorganisms used, where 

the most used are yeast and bacteria strains. Out of those, some included a given hexose- and 

xylose-fermenting, genetically engineered microorganisms as described in the previous 

section, or co-cultures of strains having the ability to ferment both sugars. 

 One important contribution in this regard is the study carried out by Agbogbo and co-

workers [60] where different synthetic glucose/xylose mixtures with a total concentration of 

60% (w/v) were fermented into ethanol using P. stipitis CBS 6054.  The different percentage 

proportions of glucose/xylose mixtures used were respectively:  75/25, 50/50, 25/75, and also 

100% of each single sugar.  In all cases, glucose was the preferred substrate in the 

glucose/xylose mixtures; the high glucose fractions had higher cell biomass production rates 

and therefore higher substrate consumption rates and ethanol production rates as compared to 

high xylose fractions.  However, the high xylose fractions had a slightly higher ethanol yields 

when compared to the high glucose fractions, because the xylose was channeled into ethanol 

production rather a cell biomass.  These results are in agreement with studies by Meyrial and 

co-workers [61] where P. stipitis growth rate was higher on glucose than xylose, and no cell 

growth was observed for any of the glucose/xylose mixtures after a given period of time, but 

ethanol production continued until complete sugar depletion. 
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 Other important contribution was made by Sánchez and co-workers, [62] with 

mixtures of glucose and xylose using P. stipitis, C. shehatae and P. tannophilus.  Based on 

the parameters of specific production rate and overall yield, P. stipitis gave the best results for 

the transformation of substrates into ethanol, with yields of 0.42 and 0.47 g ethanol/g sugar 

for mixtures with ratios of glucose/xylose of 20/5 and 24/1, respectively. All of the mixtures 

showed sequential substrate consumption, initially using up glucose quite rapidly, followed 

by a period during which biomass production, substrate consumption and ethanol formation 

ceased or progressed only very slowly.  Subsequently, xylose was consumed and further 

production of biomass and ethanol occurred. Also, during the first hours of culture, the higher 

the initial concentration of glucose, the closer the specific substrate consumption rates 

approached those obtained in the experiments with glucose alone as substrate. 

 The effect of operation conditions during fermentation have been also studied, such as 

agitation rate with suggested values ranging between 50-100 rpm according to 

Kongkiattikajorn [63]; and initial cell concentration studied by Agbogbo and co-workers. It 

was concluded that the rate of xylose consumption and ethanol production was high when the 

initial cell concentrations were high, being this last one possible since cells used the substrate 

for ethanol production rather than for cell growth [64]. 

 Mixed sugar fermentations using microorganisms in a co-culture array is also a very 

important subject, because as mentioned in section 2.3, it is one of the suggested 

configurations in trying to find a suitable biocatalyst scheme. Results of experiments 

conducted with co-cultures of S. cerevisiae and P. stipitis, both wild-type strains show that 

there is no improvement in maximum ethanol concentration and yield when compared with 

single substrate-single yeast strain fermentations, but the fermentation time was certainly 

decreased [65]. In that work, the co-culture of S. cerevisiae and P. stipitis used with a culture 

medium containing 30 g/L of both glucose and xylose, 12 g/L of mannose and 8 g/L of 
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galactose had a yield of 0.41 g ethanol/g sugar, being this a 70% of theoretical yield.  The co-

culture of P. stipitis and K. marxianus had a high theoretical yield (80%) and also a high 

ethanol concentration.  However, even with the potential of the co-culture process to 

maximize ethanol production, the development of the co-culture process to convert a glucose 

and xylose mixture into ethanol was confronted by several problems dealing with the 

necessity to co-cultivate two different yeast species. Interaction between strains must be 

verified to assure that each of the strains will metabolize both sugars efficiently and without 

inhibition effects of any type.  Regarding this, Laplace and co-workers [66] have identified 

some strains of P. stipitis that have a negative impact on strains of S. cerevisiae, and this is 

strongly dependent upon physical parameters of the medium, such as pH. The inhibitory 

effect was mainly observed in the pH range 4.8-5-0.  Other parameters affecting this 

relationship between strains is oxygen; a very low yield of ethanol from xylose can be 

obtained due to the limited oxygen supply to the xylose-fermenting yeast, and therefore, the 

use of a respiratory-defficient mutant of the hexose-fermenting yeast could be necessary [67]. 

 

2.5. Mathematical modeling of fermentation processes 

 Modeling a fermentation process presents some advantages such as process knowledge 

improvement, decreasing the cost of expensive industrial experimentation, mathematical 

optimization and process control.  The mathematical equations describing fermentation 

processes have their origins in the intrinsic microbiological aspects and in mass balances 

applied to the process to describe properly the changes in concentration as a function of 

fermentation time. While in chemical reactors the process kinetics reflect the reaction rates at 

a molecular level, microbial process dynamics reflect the interaction between living cells and 

the culture environment.  Mathematical models start with the quantification of cell growth, 

which can be viewed from various perspectives and with varying degrees of complexity, 
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depending whether we distinguish between individual cells in a reactor and whether we 

examine the individual metabolic reactions occurring within the cell. Cellular representations 

which are multicomponent are called structured, and single component representations are 

designated unstructured.  Consideration of discrete, heterogeneous cells constitutes a 

segregated viewpoint, while an unsegregated perspective considers only averaged cellular 

properties [68]. The most idealized case is an unstructured-unsegregated model where cell 

population is treated as one-component solute, and a more realistic case is a structured-

segregated model, where a multicomponent description of cell-to-cell heterogeneity is 

considered.  Some models also take into account the effect of inhibition caused by substrates, 

products or toxic compounds present in medium constituents.  Table 2.4 summarizes some 

unstructured models used to quantify fermentation kinetics. Unstructured models to describe 

multiple substrate kinetics are also available. However, as discussed in the next section, and 

according to the objectives of this research work, a structured model is a better approach to 

describe some processes. 

 In the simplest approach to modeling batch culture, it is supposed that the rate of 

increase in cell mass (X) is a function of the cell mass only. Thus: 

 

)(Xf
dt

dX =                                                          (2.4) 

  

 In the exponential phase of microbial growth, cells can multiply rapidly, and cell 

mass/cell number density increases exponentially with time.  This is a period of balanced 

growth, in which all cells are assumed to grow, consume and produce products at the same 

rate.  That is, the average composition of a single cell remains relatively constant during this 

phase of growth.  Since the nutrient concentrations are large in this phase, the growth rate is 
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independent of nutrient concentration.  The exponential growth rate is then a first order 

kinetic equation: 

 

X
dt

dX µ=     with X = Xo at t = 0                                                       (2.5) 

 

where µ represents the specific growth rate of cells. 

 

Table 2.4 – Unstructured models to quantify fermentation kinetics. Adapted from Sáez [38]. 
 

Name  Description Kinetic expression  
(ar i=µiX) 

Monod r1=k S/(K+S) 

Mosser r2=k Sn/(K+Sn) 

Tessier r3=k[1-exp(-S / K) 

Logistic law 

Substrate-limited 
 

r4=k(1-X / k) 

Noncompetitive r5=k/(1+Ks/S)(1+S/KI) 

Competitive 
Substrate inhibition 

r6=k S(1+S/KI)+S 

Noncompetitive r7=k/(1+Ks/S)(1+P/KP) 

Competitive 
Product inhibition 

r8=k S(1+P/KP)+S 

Noncompetitive r9=k/(1+Ks/S)(1+I/KI) 

Competitive 

Toxic compound 
inhibition r10=k S/Ks(1+I/KI)+S 

   
   a The rate expression for growth on the ith substrate is given by ri = µiX. 

 
 

2.5.1. Kinetics and modeling of single substrate fermentations 

 The simplest relationships describing exponential growth are unstructured models.  

The models that were first developed for cell growth did not account for the dependency of 

the exponential growth rate on nutrient concentration, they were devised to have a maximum 

achievable population built into the constitutive expressions employed.  Such models find 
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applicability today when the growth-limiting substrate cannot be identified.  One of the 

simplest models which include the effect of nutrient concentration is the model developed by 

Jacques Monod, based on observations of microbial growth at various initial glucose 

concentrations, assuming that only one substrate (the growth-limiting substrate, S) is 

important in determining the rate of cell proliferation denoted as µ.  The form of the Monod 

equation is analog to that of the Michaelis-Menten enzyme kinetics, and is given by the 

following equation, where µmax is the maximum specific growth rate in h-1, and Ks is the 

saturation constant in g/L, which is that value of the limiting nutrient concentration at which 

the specific growth rate is half its maximum value [68]: 

 

SK

S

s +
= maxµµ                                                               (2.6) 

  

 Values of µmax vary with the type of organism and the value of Ks depends on the 

nature of substrate, and it is generally quite small, implying that the specific growth rate is 

near its maximum value for much of the period of batch growth.  The parameters µmax, and Ks, 

named henceforth kinetic parameters, are obtained experimentally from the values of cell 

concentration and substrate concentration (X and S, respectively) during the fermentation 

time. For cell concentration the values chosen are only those belonging to the exponential 

phase, since the Monod model works under the assumption of balanced growth, which is 

achieved only at this growth stage. The parameter µ is calculated from the slope of the natural 

logarithm of cell concentration values in its exponential phase, plotted against fermentation 

time.  The values of µmax and Ks can be obtained from several linearization methods of the 

Monod equation, including Lineweaver-Burk, Eadie-Hoffstee, Hanes-Woolf, or a “batch 

kinetics” equation as described by Shuler and Kargi [69].   
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 To better describe microbial growth kinetics, it is necessary to define yield 

coefficients, the ones that relate the amount of products and cells formed per unit of substrate 

consumed by cells, giving the yield or efficiency in the process.  A knowledge of yield 

coefficients allows us to design a growth medium that will supply all of the required nutrients 

in balanced amounts, so that a desired substrate can be made growth-rate limiting.  Equations 

for yield coefficients can be found in literature [70] and they are defined on both molar and 

mass basis. 

 As mentioned before, optimization of ethanol fermentation processes could be based 

on the development of accurate growth and fermentation kinetic models, properly describing 

the consumption of substrates, and the production of extracellular products.  Several kinetic 

models for growth of both S. cerevisiae and P. stipitis have been proposed previously in the 

literature, sometimes with the purpose of modeling only cell growth and substrate 

consumption, but also for modeling ethanol production simultaneously.  S. cerevisiae growing 

on glucose has been the most studied case, and the effect of inhibition of both ethanol and 

substrate on the fermentation process has been the main object of those studies.  Some 

modified Monod models that include terms for substrate and product inhibition were 

developed by these researchers [71, 72], achieving excellent fits between experimental data 

and simulations made with unstructured models.  Other incident factors studied were substrate 

limitation effects, cell maintenance, effect of temperature, and these factors were studied in 

different culture modes such as batch, fed-batch and continuous.  Novak and co-workers [71] 

obtained inhibition constants for ethanol, assaying ethanol added at the beginning of the 

fermentation and the ethanol produced along the process.  Similar results were obtained by 

the group of Luong [72], were ethanol inhibition on the growth of S. cerevsiae was studied, 

showing that the maximum allowable ethanol concentration above which cells do not grow is 

112 g/L and the level above which cells stop producing ethanol was 115 g ethanol/L.  Models 
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for glucose fermentation with S. cerevisiae were also developed by Thatipamala and co-

workers [73], studying the effect of both substrate and ethanol on the kinetics of biomass and 

product yields.  These researchers proposed that inhibition occurs when glucose concentration 

in the culture medium increases above 150 g/L, and they also found that product inhibition 

does not have any effect on product yield, whereas substrate inhibition significantly affects 

the product yield.  The reason for this substrate inhibition is because at higher substrate 

concentrations, catabolite inhibition of enzymes in the fermentative pathway becomes 

important, indicating the onset of substrate inhibition as a result of high osmotic pressure and 

low water activity [73].  Other studies have also proposed kinetic models on the basis of 

enzyme deactivation kinetics to explain the effect of temperature in cell mass growth and 

ethanol production [74]. A very important unstructured kinetic model was obtained by 

CIATEJ (Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco) 

in Mexico [75], and although the purpose of that process was the production of tequila, the 

same criteria can be easily applied for the process of fuel ethanol production. In this study, the 

combination of the Moser and Luong [76] kinetic model gave the best prediction for biomass, 

substrate and ethanol profiles with initial substrate concentrations ranging from 60 – 90 g/L.  

Kinetic parameters such as µmax, Ks, Kp, etc. were optimized simultaneously along the 

solution of non-linear differential equations describing mass balances for cells, substrate and 

product, with the objective to fit simulated data to experimental concentrations to minimize 

the error.  Excellent linear correlations were obtained as a product of the validation of the 

proposed models. Other models different to that of Monod with or without inhibition terms 

have been utilized, and these models include the logistic equation which has a sigmoidal 

shape trend to represent cell growth, used to show the self-regression made by the increase in 

cell concentration characteristic of in batch fermentations. Wang and co-workers [76] used the 

logistic equation to describe fermentation kinetics of different sugars by S. cerevisiae, 
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achieving good predictions for the sugars utilized and a special analysis of different initial 

sugar concentrations. The model included the term for growth-associated products and the 

parameter of lag time in mass balance for ethanol, to describe the delay of ethanol production 

to cell growth.  

 In the case of modeling alcoholic fermentation of xylose with P. stipitis the research 

history is not as abundant as glucose with S. cerevisiae, but previous attempts to model 

fermentation with this yeast strain used the Monod model [77]. As mentioned previously in 

this chapter, P. stipitis is more vulnerable than S. cerevisiae to inhibitory effects of substrates, 

ethanol, secondary metabolites and toxic compounds from ethanol production stages prior to 

fermentation. Therefore these effects have to be accounted in kinetic models from several 

points of view, but moreover when experimental conditions require it. From literature it is 

known that substrate concentrations above 40 g/L inhibit the metabolism of P. stipitis, and 

ethanol concentrations above 64 g/L completely repress enzymatic synthesis for xylose 

degradation [78]. Research on xylose fermentation includes the work of Agbogbo and co-

workers [63], studying the effect of initial cell concentration and the development of a model 

to predict the fermentation process. Results show that when initial cell concentration is high, 

the rate of xylose utilization, ethanol formation, and the ethanol yield increase.  A two-

parameter mathematical model was used to predict the cell population dynamics at the 

different initial cell concentrations, and these parameters coupled to the Monod model for cell 

growth equation were determined at the different initial cell concentrations used in the 

fermentation.  The rates of substrate consumption and ethanol production were modeled using 

Leudeking-Piret kinetics involving parameters for cell maintenance and parameters associated 

with growth. The form of the empirical mathematical model used describes the population 

dynamics with just two parameters, which correlated very well with the initial cell 
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concentration used.  From the results, the substrate consumption and ethanol production rate 

are both functions of the initial cell concentration.   

 Current technologies for ethanol production from lignocellulosic biomass require 

different approaches for the development of an efficient model that takes into account all the 

possible negative effects that intrinsic fermentation factors have on xylose degradation into 

ethanol.  However, models can be as simple as using the Monod model and then incorporate 

appropriate parameters, the ones that can be obtained from statistical methodologies.  Kumar 

and co-workers [79] studied the ethanol production from pentoses resultant of hydrolysis of 

hemicellulose present in a floating aquatic plant. The system developed can be described for 

the rate of biomass growth in which concentrations of sugar, ethanol production and cell 

activation are linked by coefficients of cell formation and inhibition, and working with the 

assumption that the rate or product formation is related both to the rate of cell growth and the 

concentration of microorganism present. The fitting between experimental data and simulated 

results from the model was statistically analyzed by means of residual plots, showing a right 

appropriateness of the model, since residuals were randomly distributed around the line of 

zero error. The model was also validated with correlation coefficients and the values obtained, 

above 0.98, imply that the proposed model was able to explain the experimental results. 

 

2.5.1.1. Mass balances for batch fermentation 

 As mentioned above, kinetic models describing a fermentation process derive initially 

from the analysis of the cell population dynamics, choosing the appropriate model depending 

on the point of view to consider cell behavior in culture medium.  Furthermore, cell growth, 

substrate consumption and product formation are monitored during the course of 

fermentation, therefore, the model to be developed has to be a function of time.  For this 

reason, a complete analysis of the process inputs and outputs is necessary, and this analysis is 
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nothing but a mass balance, which depends on the configuration of the process (batch, fed-

batch or continuous).  Since this research work was made carrying out only batch processes, 

the mass balance describing this configuration does not involve the terms for “in” and “out” 

of material because no material is added or removed from the reactor and it is assumed that 

gas stripping of culture liquid is negligible, then the volume is constant. Cell death and 

maintenance are neglected because of the assumption of balanced growth, therefore the mass 

balance for each component reduces to: 

 

ii nconsumptio or productiononAccumulati =                                    (2.7)  

or 

i
i r

dt

dC =                                                                (2.8) 

 

 Equation 2.7 is the general mass balance for each component i and equation 2.8 is its 

generic, showing that change in concentration of any component i, with respect to time is 

equal to the rate of formation or consumption of that component i.  First it is necessary to 

define the rate of formation or consumption of each component, and beginning with cell mass 

we have the equation which describes the rate of cell production: 

 

XrX µ=                                                                (2.9) 

 

where µ is the specific growth rate in h-1, and X is cell concentration in g/L.  Next, the rate of 

substrate consumption which accounts for both cell proliferation and product formation is 

described by the equation: 
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note that the substrate rate is negative because substrate is being consumed, promoting cell 

growth and product formation.  The terms YX/S and YP/X are the yield coefficient of cells based 

on substrate and the yield coefficient of product based on cells, in g/g [69].  The rate of 

product formation is given by the equation: 

 

XYr XPP µ/=                                                            (2.11) 

 

 Therefore, when equation 2.8 is applied to rate equations above described and using 

the Monod expression (Eq. 2.6) to represent the specific cell growth rate, without inhibition 

effects from any type (substrate, product, toxic compounds), the non-linear differential 

equation set for mass balances in a batch fermentation process is obtained: 
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 These equations are solved with an appropriate numeric method, employing kinetic 

parameters and yield coefficients obtained as described in Chapter 3, in order to obtain the 

profile concentrations for each component. 
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2.5.2. Kinetics and modeling of multiple substrate fermentations 

 Although empirical models, such as Monod’s, describe microbial growth kinetics on a 

single substrate, they are not applicable to multisubstrate environments, and are very specific 

regarding system parameters. Simple unstructured models are developed to explain a 

particular set of experimental data and do not take into consideration the optimal nature of 

microbial growth on multiple substrates. Hence the predictive capability of such models 

remains within the bounds of the experiments they are based. In nature, microorganisms grow 

on multiple substrates, and different growth phenomena of microorganisms are observed in 

these environments: (i) sequential utilization of substrates, (ii) simultaneous consumption of 

substrates, and (iii) co-metabolism of substrates [80]. The diauxie phenomenon, discovered by 

Monod, is a well-known example of sequential utilization of two carbon substrates, with an 

intermediate lag phase between the two exponential growth phases. In this intermediate lag 

phase that precedes consumption of the next preferred substrate, the synthesis of enzymes 

needed for the metabolism of the next substrate is carried out. 

 Among the various proposed models to explain the microbial behavior in multiple 

substrates, one of the most studied and extensively utilized has been the cybernetic concept 

developed by Ramkrishna and Kompala [81]. This model views microorganisms as optimal 

strategists, that given a set of conditions, they have the ability to “think” and “decide” how 

best to utilize the resources so as to maximize a particular objective; cybernetic modeling 

translates the idea that cells regulate their activities by exerting control over the activities and 

the rates of synthesis of enzymes [82].  The cybernetic approach assumes that one key 

enzyme limits the growth rate achievable on a particular substrate, but this enzyme synthesis 

precedes that a particular substrate can be utilized for cell growth.  Figure 2.15 shows a 

schematic diagram of the cybernetic model according to Narang and co-workers [83] with a 

binary mixture of substrates as two parallel enzyme-catalyzed growth reactions. Si denotes the 
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ith substrate, Ei denotes the “lumped” system of inducible enzymes associated with growth on 

Si, and B denotes the biomass or cell concentration. Substrate consumption and enzyme 

synthesis are based on Monod’s kinetics, but the model also takes into account the enzyme 

degradation stage, and the assumption for this stage is a first-order reaction.   

 

 

 

 

 

 

 

 

 
Figure 2.15 – Schematic diagram of the cybernetic model (Adapted from Venkatesh and co-

workers [80]). 
 

 Cybernetic models have been able to successfully describe diauxic growth in batch, 

fed-batch and continuous cultures and the basic premise, the most important attribute of the 

modeling effort, is that information obtained from growth on single substrate experiments on 

each of the substrates will yield all of the information required for predicting growth in mixed 

substrates.  The complete definition of the original cybernetic model along with modifications 

made, as a product of the application of the double matching law can be found in the 

literature, with the equations for cell growth, enzyme synthesis, substrate consumption and 

mathematical definition of cybernetic variables [84]. The salient features of the cybernetic 

modeling are represented with the assimilation of ith substrate Si by the biomass B, and it is 

assumed to be catalyzed by a key enzyme Ei, representing the whole set of enzymes 

catalyzing the metabolic pathways of growth on Si: 

S1 

S2 

+ 

+ 

E1 

E2 

ATP 
B 
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                                                    B  +  Si     �    (1 + Yi) B + . . .                                       (2.15) 

 

The key enzyme Ei, required for utilization of Si, is induced in the presence of Si, according 

to: 

                                                             B    �    Ei   +   B’                                                  (2.16)  

 

where Yi is the biomass yield coefficient on substrate, and B’ is the biomass excluding the 

key enzyme Ei.  The rate equations for these two reactions sequences are similar to the Monod 

equation but also include special terms for the specific level ei and the enzyme synthesis rate 

constant αi, as described in equations 2.17 and 2.18.  Therefore the expression µi is replaced 

by a mathematical relationship that will be discussed in Chapter 5 and the expression Ki 

replaces Ks in the unstructured Monod kinetics to bring out the influence of specific enzyme 

levels on the growth kinetics and to stand out the existence of more than one substrate.  The 

equation rates describing the rates of biomass production and enzyme synthesis are: 

 

 

(2.17) 

 

      

(2.18) 

 

 

 The model development is complete and the equations are given below: 
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 The last equation describes the change of concentration of the enzyme levels as a 

function of time, and takes into account not only the rate of enzyme synthesis (first term) but 

also the first-order degenerative loss of the active enzyme Ei (second term) and the dilution of 

specific enzyme level due to cell growth (third term).  The variables ui and vi are the 

cybernetic variables controlling the effects of regulation, where ui regulates the rate of 

enzyme synthesis (induction/repression), and vi regulates the growth rate 

(inhibition/activation). These two laws of regulation were referred to as the matching and 

proportional laws, respectively, and their derivation can be found in the literature [83, 84]. 

General equations are: 
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where ri represents the rate of biomass production due to the consumption of the ith substrate 

and rj represents the particular rate of biomass production, due to substrate consumption from 

the ith to the jth alternative.  The equations 2.19 – 2.24 will be extended in Chapter 5 in order 

to construct the complete cybernetic framework for the system studied in this work. 

 The first attempt to evaluate the cybernetic approach was made by the same authors of 

the model with the growth of Klebsiella oxytoca on mixed substrates containing glucose, 

xylose, arabinose, lactose and fructose [83], and the results were in accurate concordance with 

the experimental data, particularly with respect to the increasing rates during the second 

growth phase. Other modifications to the model have been proposed to describe simultaneous 

utilization of substrates, continuous culture, and specific mixtures of carbohydrates with other 

biopolymers [84-85].  Values for initial enzyme levels were proposed based on the past 

history of the inoculum, being 90% of the maximum specific level enzyme for fermentations 

in which the inoculum was precultured on the same substrate, and 18% of maximum specific 

enzyme level for fermentations with the less preferred substrate in which the inoculum was 

precultured on the preferred substrate [86]. Also, values for parameters α and β were proposed 

being 0.05 h-1 and 1.0E-3 h-1, respectively.  Doshi and Venkatesh [80] demonstrated 

simultaneous utilization of acetate, pyruvate and lactate using Escherichia coli K12, but the 

mixtures of glucose and lactose were unable to be demonstrated by means of the cybernetic 

model.  Growth of S. cerevisiae on complex substrates such as melibiose and other 

carbohydrate mixtures including glucose, and galactose were also studied by means of the 

cybernetic model by Venkatesh and co-workers [85]. A novel feature of the model developed 

was the incorporation of dynamics of the regulation of enzymatic degradation of substrates, 

and in general, the model can be easily used to describe microbial growth on disaccharides.  

Other models have been proposed with different perspectives than the cybernetic framework, 

such as the one developed by Nakamura and co-workers [87] which involves equations for the 
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synthesis rate of inducible enzyme expressed as functions of promoter activity which at the 

same time is activated by a promoter activator and the operator activity is activated by the 

second substrate. The specific growth rate expressions for substrates 1 and 2 involve the 

effects of substrate and production inhibitions and maintenance coefficients.  Because this 

model is not based on a cybernetic perspective, no cybernetic variables were used in the 

developed model, but simulations showed a good agreement with the experimental data. Also, 

the criteria used for incorporating the rates of inducible enzymes and promoter activator were 

another interesting approach in the efforts to model the behavior of mixed substrate 

fermentations. Other approach is the optimal model proposed by Venkatesh and co-workers 

[80], which features the ability to simulate both simultaneous and sequential utilization of 

limiting carbon sources in a growth medium. In this model, as successful as the cybernetic 

framework, the metabolic and genetic controls have been represented as constraints in the 

optimization scheme of the specific growth rate, and it has an additional advantage when 

compared to the cybernetic one, which is the requirement of less system parameters.  This 

model was further used to simulate the behavior of Lactobacillus rhamnosus growing on 

glucose, citrate and lactate, being the first time that model was used also for product 

simulation, and the results of product formation, along with cell growth and substrate 

consumption were found to be very accurate to experimental data. 

 The majority of research performed in the topics previously discussed have 

emphasized in different approaches substantially important for the current research project, 

such as fermentation of a single substrate or a mixture of substrates using only one type of 

microorganism, the fermentation of mixtures of carbohydrates using a co-culture scheme, but 

lacking of a mathematical model to predict the trend of the fermentative process, and so on. 

Nonetheless, the specific case of mathematical modeling of glucose/xylose mixtures using co-

culture of wild-type strains of S. cerevisiae and P. stipitis, with no genetic or metabolic 
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alterations at all, by means of a structured model, such as the cybernetic model, has not been 

reported yet at the moment when this documented was being written. Therefore, the 

contribution of this work to the vast topic of fuel ethanol production, hopefully is very 

relevant and useful for future works with similar objectives to the present ones but involving 

other process schemes, such as the modeling of a fed-batch or continuous process. Using as a 

reference the model proposed here with its corresponding modifications depending on the 

different conditions, or maybe attempting to use a co-culture with other yeast or bacteria 

strains, or any other alternative contributing to the study of the fermentation phase in the 

production of ethanol. 
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3. MATERIALS AND METHODS 

 

3.1. Microorganisms 

 
Four yeast strains were used in this research work: Candida shehatae NRRL Y-1285, 

Pachysolen tannophilus NRRL Y-12885, Pichia stipitis NRRL Y-11545, obtained from the 

National Renewable Resources Laboratory, Peoria, Illinois, and a commercial strain of 

Saccharomyces cerevisiae Montrachet, provided by Dr. Govind Nadathur from the 

Department of Marine Sciences, University of Puerto Rico, Mayagüez Campus.  Stock 

cultures were stored in 1.5 mL microvials at -80ºC in a 60% (v/v) glycerol aqueous solution 

and fresh colonies were aseptically transferred every 10 days spread on petri dishes 

containing YPD Agar culture media (Difco, BD Co., France)  

 Preliminary screening of xylose-fermenting yeast strains was carried out using C. 

shehatae, P. tannophilus and P. stipitis, but this last yeast strain proved to be the higher 

ethanol producing strain from xylose as a carbon source, and therefore was used with S. 

cerevisiae in all the experiments whose results are detailed in Chapters 4 and 5. 

 

3.2. Inoculum preparation 

3.2.1. Inocula for single substrate fermentations 

 
 Stock cultures were maintained on 60% glycerol at -80ºC.  Approximately 100 µL 

were cultivated on YPD agar plates containing the following components (amounts in g/L): 

glucose, 20; peptone, 20; yeast extract, 10; and agar, 15.  Petri dishes were incubated in an 

Imperial III static incubator (Lab-Line) at 32ºC for 72-90 hours in order to obtain fresh and 

well defined colonies, and also to obtain viable cells at the exponential phase for all the 

experiments [1-2].  A loopfull of the strain assayed was added to 30 mL filter sterilized media 
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in a 125 mL autoclaved baffled culture flask, comprising the following components (in g/L): 

yeast extract, 3; peptone, 5; malt extract, 3; MgSO4·7H2O, 2; (NH4)2SO4, 3, KH2PO4, 2; and 

sugar (glucose or xylose), 25.  The medium composition was an average of the proportions 

suggested by several previous works [2-5].  Cultures were aerobically incubated for 12-18 

hours, 32°C and 185 rpm until mid-exponential growth phase was achieved, in a temperature 

controlled orbital Innova 4000 shaker (New Brunswick, NJ), according to Figure 3.1  

 

 

 

 
 
 
 
 
 
 
 

 
Figure 3.1 - Inoculum preparation for single substrate fermentations in an Innova 4000 

incubator shaker. 
  
 

3.2.2. Inocula for mixed substrate and mixed strains fermentations 

 Culture media compositions for inocula in co-fermentations are the same as those 

described in section 3.2.1 for both solid agar and liquid media, with a total sugar 

concentration of 25 g/L in liquid medium, varying the proportions between glucose and 

xylose in the following patterns.  The difference in method is one additional pre-culturing step 

in the preparation chain, similar to the methodology described by Sáez [6].  Two loopfulls 

were taken from petri dishes incubated for 72-90 hours, at 32°C containing S. cerevisiae and 

P. stipitis, respectively.  Loopfulls were added to 30-mL filter sterilized culture medium in a 

125 mL autoclaved baffled culture flask and were cultivated for 9-12 hours, at 32°C and 150 
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rpm in a temperature-controlled orbital Innova 4000 incubator shaker.  These cultures were 

transferred into an autoclaved baffled polycarbonate-polypropylene 300 mL (150 mL working 

volume) shake flask (TunAir, AVP Caribe, PR) containing the same mixed sugar nutrient as 

described above and incubation was continued in the same incubator shaker for 12-16 hours, 

at 32°C and 200 rpm. Figure 3.2 shows the scheme for inoculum preparation. 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.2 - Inoculum preparation for co-fermentations in an Innova 4000 incubator shaker. 
 
 
 

3.3. Batch fermentations 

 
 In efforts to achieve the necessary conditions for a vigorous inoculum, and having a 

high initial cell concentration in fermentation, inocula as described above were transferred at 

a 10% (v/v) [7] to a 500-mL autoclaved bioreaction system consisting of one semi-baffled 

culture flask (Pyrex, Fisher Scientific) along with a sampling-venting assembly integrated by 

a polypropylene thread cap and a two-port stainless steel base (Bellco Company, NJ).  One 

port was used to provide the low-oxygen levels necessary for ethanol fermentation, especially 

when using xylose-fermenting yeast strains [8]. Hence, air exchange was achieved by 

plugging a polypropylene filter disk containing a 0.2 µm nitrocellulose membrane to the 

shortest tube of the stainless steel assembly.  The left port was connected to one sterile C-flex 

Yeast colonies  Seed cultures  Inoculation  Fermentation  
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tubing (Wave Biotech, GE Lifesciences) provided with a septum valve in the outer end, to 

aseptically collect samples along the fermentation culture. The culture flask contained 270 

mL of the same filter-sterilized culture media described in section 3.2.1, which was mixed 

with the 30 mL of inoculum to give 300 mL of total fermentation volume.  The bioreactor was 

inoculated to achieve an initial cell concentration of at least 0.5 g/L and an initial pH 5.00 [9] 

and was incubated in the Innova 4000 shaker at 32°C [9] and 100 rpm [10] for the time 

necessary until complete sugar depletion.  The elapsed time ranged between 8 and 72 hours, 

depending on the combination of sugar and yeast strain, being 8 hours for system glucose - S. 

cerevisiae and 72 hours for the system xylose - P. stipitis.  All the experiments were 

conducted by triplicate and were carried out at an initial sugar substrate concentration of 25 

g/L (using either pure glucose, pure xylose, or mixtures with the following proportions of 

glucose and xylose, respectively, expressed as percentages: 25/75, 50/50 and 75/25). Samples 

were collected periodically throughout the course of the fermentations using standard 

methods (withdrawing 5 mL of culture broth through a syringe inserted in the septum at the 

outer end of the C-flex tube).  Samples were analyzed to determine the concentrations of 

sugars (glucose and xylose), using HPLC and the YSI Biochemistry Analyzer, ethanol and 

byproducts (i.e., xylitol, lactic acid, glycerol and acetic acid), using HPLC and cell mass using 

spectrophotometry and the gravimetric method to determine dry cell mass. 
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Figure 3.3 - Batch fermentation in an Innova 4000 incubator shaker. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.4 - Aseptic sampling throughout the course of fermentation. 
 
 
 
 

3.4. Cell growth and cell mass concentration 

    One milliliter of the total sample volume was used to measure cell growth, as optical 

density (OD) at 600 nm in a Genesys 6 UV-Vis spectrophotometer (Thermo Scientific). 

Dilutions were required when the OD600 value was higher than 0.850 absorbance units, using 

sterile medium as sample diluent and also as the blank to “zero” the spectrophotometer at the 
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beginning of each measurement. Cell mass concentration was calculated as dry cell mass, 

DCM (g/L) from the sample dry weights (knowing the sample volumes) with a manifold 

filtration unit (Cole Parmer Instruments) following the gravimetric method, as shown in 

Figure 3.5.  Three milliliters of yeast whole broth samples were filtered on to preweighed 

cellulose acetate Advantec-25mm, 0.2 µm filter mats, (Cole Parmer Instruments) retaining the 

cells, and washed twice with deionized water, and then dried in an static Imperial III incubator 

(Labline) overnight until constant weight was attained.   

 

 

 

Figure 3.5 - Manifold filtration unit used for cell filtration. 
 

 A linear correlation between OD and cell mass concentration was estimated for each of 

the strains utilized to evaluate the consistency of direct and indirect methods for cell 

concentration measurement and also for further cell mass concentration measurements from 

OD using a correlation factor, as shown in Figures 3.6 – 3.9. 
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Figure 3.6 – Linear correlation between DCM concentration (g/L) and OD at 600 nm for 

glucose with Saccharomyces cerevisiae. 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 3.7 – Linear correlation between DCM concentration (g/L) and OD at 600 nm for 
glucose with Pichia stipitis. 
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Figure 3.8 – Linear correlation between DCM concentration (g/L) and OD at 600 nm for 

xylose with Saccharomyces cerevisiae. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.9 – Linear correlation between DCM concentration (g/L) and OD at 600 nm for 
xylose with Pichia stipitis. 
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3.5. Sugar, ethanol, and by-product concentrations 

 
 The concentration of sugars (glucose and xylose), ethanol, and by-products xylitol, 

lactic acid, glycerol and acetic acid were determined using a high performance liquid 

chromatography (HPLC) Shimadzu LC-10ATVP unit as shown in Figure 3.10.  Samples 

withdrawn from the bioreactor flasks were centrifuged using a microcentrifuge (Eppendorf, 

model 5415C) at 7000 rpm by 5 minutes.  The supernatant was filtered using a 0.20 µm 

Fisherbrand nylon membrane (Fisher Scientific) and was then analyzed using HPLC with an 

Aminex BioRad HPX-87H, 300 mm organic acids column (BioRad Labs, CA) operating at 

45ºC.  A refractive index detector was used for compound detection and dilute sulfuric acid 

(0.001 M) at a flow rate of 0.6 mL/min was the mobile phase.  Mixed standard solutions of 

ethanol and sugar (only glucose, only xylose or glucose/xylose mixtures) were run to 

construct a calibration curve, and standards of glucose and xylose were periodically injected 

to the HPLC to verify calibration accuracy. 

 

 

 

 
Figure 3.10 - High performance liquid chromatography device (Shimadzu LC-10ATVP) for 

analysis of sugars, ethanol and byproduct concentrations. 
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Sugar concentration was also analyzed throughout fermentation time by means of YSI 

2700 Biochemistry Analyzer (YSI, OH).  This analysis gave excellent and accurate real-time 

information about the consumption of sugar, either as sole carbon source or in mixtures of 

glucose/xylose.  The sample -approximately 0.5 mL- was centrifuged and filtered as described 

above and processed in the YSI 2700 sample station, which aspirates only 13 µL and gives 

directly the sugar concentration in less than one minute.   

 

 

 
Figure 3.11 – Biochemistry Analyzer device (YSI 2700) for sugar monitoring. 

 
 

3.6. Profile concentrations model development and simulation 

3.6.1. Single substrate fermentations 

The model proposed to simulate single substrate fermentations derives from the basis 

of mass balances applied to a batch fermentation system taking into account that limiting 

substrate is consumed for both cell proliferation and ethanol production and considering the 

cells as a single species in solution, assuming fixed composition which is equivalent to 

assuming balanced growth; this is the basic assumption of an unstructured model [11].  Prior 

to construct the complete set of equations, kinetic parameters such as maximum cell growth 

rate (µmax) and saturation kinetic constant (Ks) must be calculated.  The values for µmax are 

determined from cell growth experimental data, taking only those cell concentrations that fall 

inside the exponential growth phase and applying an exponential regression to fit the data, as 
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shown in Figure 3.12.  The slope of the model which describes the exponential trend of the 

plotted data is the numeric value for µ, which according to Shuler and Kargi [12] can be 

approximated to µmax.  However, the value of µmax was further obtained using optimization 

techniques. 

 

 

 

 

 

 

 

 

 

Figure 3.12 – Growth curve and maximum specific growth rate determination for one run of 
glucose fermentation with S. cerevisiae. 

 
 

The Ks value is determined from the various linearized expressions between substrate 

concentration and µmax such as Lineweaver-Burk, Eadie-Hofstee, Hanes-Woolf or Batch 

Kinetics, the ones that are based in enzymatic kinetics [12].  This value was later optimized 

while solving the mass balance equations, along with the optimization of the µmax value. 

Finally, the remaining experimental parameters to be determined were the yield 

coefficients:  YX/S, YP/X and YP/S corresponding to cell growth with respect to substrate 

consumption, ethanol production with respect to cell growth, and ethanol production with 

respect to substrate consumption, respectively.  Yield coefficients are defined based on the 

amount of consumption of another material and an appropriate method to obtain them is to 

plot experimental data according to yield relationship desired, and then obtain the slope for 

Exponential 
phase 

µmax=0.2785 h-1 

R2=0.995 
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the linear correlation between them.  Figure 3.13 shows the procedure utilized to calculate 

ethanol mass yield coefficient with respect to cell growth, YP/X for a particular case along this 

research work.  Note that a linear trend was proposed for the relationship between ethanol 

concentration versus cell concentration and the slope of such linear model results in the value 

of YP/X. 

 

 

 

 

 

 

 

 

Figure 3.13 – Linear regression between ethanol and cell mass concentrations for yield 
coefficient YP/X.  The slope of the regression equation represents the value of 
the yield coefficient, YP/X. 

 

 As mentioned in Chapter 2, mass balance equations describing the batch fermentation 

process for cell mass production, sugar utilization and ethanol production respectively, are 

described by equations (2.12 – 2.14). In the formulation of these mass balances, it was 

assumed that the growth kinetics would show no inhibition effects, from substrate or product, 

due to the relatively low concentration of both along the batch fermentation process.  These 

equations, along with kinetic parameters and yield coefficients obtained as described 

previously require being solved simultaneously using the initial conditions experimentally at 

the start of fermentation process. Because of the non-linear characteristics of the ordinary 

differential equations system it was necessary to solve it using an appropriate method.  The 

method used in this work is the fourth-order Runge-Kutta algorithm, known as RK4 which is 

YP/X=2.8131  
[g Ethanol/g Cell]  
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a reasonably simple and robust method. RK4 is an excellent procedure for numerical solution 

of a set of non-linear differential equations when combined with an intelligent adaptive step-

size routine [13]. The software utilized to solve the different sets of equations was MATLAB 

(version 7.8.0.347, The MathWorks Inc., MA) using the ode45 function, which is based on an 

explicit 4th or 5th order-Runge-Kutta method, and it is believed to be a suitable method for 

most problems [14]. Figure 3.14 shows the basic algorithm in which the above described non-

linear differential system is proposed and later solved: 

 

 

 
 

Figure 3.14 – Matlab Editor Window with proposed ordinary differential system. 
 

 
 

 
Figure 3.15 shows the algorithm implemented to solve the non-linear differential 

system proposed in Figure 3.14, for batch fermentation mass balances along with a 

simultaneous optimization routine to obtain the optimum values of the parameters µmax and 

Ks.  The optimization routine minimizes the objective error function E(θ), between the 

experimental data points and the values determined by the Runge-Kutta solution. This 
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objective function, used previously in optimization techniques for parameter estimation [15] 

is: 
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where the subscripts s, e and max correspond to simulated, experimental and maximum 

measured concentrations in g/L, respectively, for cell mass (X), sugar (S) and ethanol (P), and 

n is the number of sampling points.  The objective function was further minimized using the 

function “fmincon” included in the Optimization Toolbox of MATLAB version 7.8.0.347. 

 

 
 
 
 

 
Figure 3.15 – MATLAB Editor Window with the ode45 Runge-Kutta solver method and 

simultaneous optimization for µmax and Ks value based in minimization of 
Equation 3.1. 
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 Other software was also used along with MATLAB, because of its simplicity, to solve 

the differential equations system when no optimization is required. This alternative software 

is Polymath (Polymath 6.0 Educational Release). It also incorporates a 4th-order Runge-Kutta 

method in its algorithm RKF45 [16] and the results obtained are quite similar to those 

obtained with MATLAB. Figure 3.16 shows a routine created in Polymath to solve  a 

differential equation system for glucose fermentation with S. cerevisiae. 

 

 

 

 
Figure 3.16 - Polymath Editor Window with the RK45 solver method for the system Glucose 

– S. cerevisiae. 
 

 

3.6.2. Co-fermentations of glucose/xylose mixtures 

 Once analyses for single substrate fermentations were finished, the optimized kinetic 

parameters and yield coefficients were used to construct the structured model to predict the 

behavior of profile concentrations in batch fermentations with mixtures of glucose and xylose, 
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starting with the mixture models for each yeast strain and then a consolidated model for the 

mixtures using co-cultures of the two yeast strains. 

 As described in Chapter 2, structured models recognize the complex set of metabolic 

reactions occurring within the cell.  Therefore the mass balances presented previously still 

apply, but it is necessary to add equations for the rates of key enzyme synthesis of both yeast 

strains and to modify the equations for the rate of cell growth.  According to the equations 

2.17 - 2.24, the structured differential system which models a mixture of two substrates using 

two different yeast strains, including the enzyme balances and the cybernetic variables was 

solved using MATLAB version 7.8.0.347 with the same 4th order Runge-Kutta method used 

for the single substrate fermentations differential system. 

Following all of the considerations and assumptions found in the literature for the 

analysis of the cybernetic models [17,18,19], and as explained in Chapter 2, with appropriate 

and reasonable expressions and values for the cybernetic variables and initial conditions of 

the six components, the system was solved.  Figure 3.17 shows the MATLAB algorithm to 

solve the differential equation system corresponding to a structured model for a mixture of 

glucose and xylose with P. stipitis, including the optimization of cellular resources, which is 

mathematically described by the cybernetic variables.   
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Figure 3.17 - MATLAB Editor Window with a set of non-linear ordinary differential 
equations for a mixture of glucose and xylose with P. stipitis, including a rate 
maximization subroutine in the calculation of the cybernetic variables. 
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4. SINGLE SUBSTRATE FERMENTATIONS 

 
 This chapter presents kinetic information and mathematical modeling, which is 

regarded as an indispensable step in developing a fermentation process with advantages such 

as process knowledge improvement, decreasing the cost of expensive industrial 

experimentation, mathematical optimization and process control strategies. The main goal of 

this work is to develop a mathematical model able to successfully predict the behavior of 

batch fermentations using a mixture of carbohydrates in a co-culture configuration for 

bioethanol production.  To achieve this, and taking into account the cell optimization nature in 

which the structured model is based, both sugars (glucose and xylose) and the two yeast 

strains (Saccharomyces cerevisiae and Pichia stipitis) were analyzed individually in four 

isolated systems (one carbohydrate-one yeast strain). Thus the kinetic parameters were 

obtained to construct both unstructured and structured models to describe individual and 

mixed sugar fermentations, respectively. The four individual systems analyzed and discussed 

in this chapter are: glucose–P. stipitis, glucose–S. cerevisiae, xylose–P. stipitis and xylose–S. 

cerevisiae. This last system was carried out only as a control monitoring, since wild type-

strains of S. cerevisiae do not have metabolic capacity to efficiently utilize xylose as the sole 

carbon source and ferment it to ethanol. However, several research works have been dedicated 

to develop improved S. cerevisiae strains by means of genetic engineering, encoding genes of 

naturally pentose-fermenting yeast strains, resulting in ethanol yields at near theoretical yields 

of 0.51 g ethanol/g sugar, but with low maximal productivities [1]. 

 Each of the individual fermentations started with a maximum initial sugar 

concentration ranging from 20-25 g/L, therefore the maximum ethanol concentration 

achievable is ~12.5 g/L if reaction would yield 100% with respect to the theoretical yield for 

fermentation systems using yeast strains.  A simple unstructured model is good enough to 

simulate these individual fermentation systems, since the range of concentrations of both 
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substrates and products do not cause the inhibition as studied by some authors. These studies 

suggest that substrate inhibition should begin with sugar concentrations above 40 g/L for P. 

stipitis [3] and 150 g/L for S. cerevisiae, because at higher substrate concentrations catabolite 

inhibition of enzymes in the fermentative pathway becomes important, indicating the onset of 

substrate inhibition as a result of high osmotic pressure and low water activity [4]. Product 

inhibition takes place when ethanol produced reaches levels at which cells do not grow 

anymore. These concentrations have been found to be 64 g/L for P. stipitis [3] and 105 g/L 

for S. cerevisiae [5].  This is the reason why all the systems discussed in this chapter are on 

the basis of the Monod model with no substrate or product inhibition terms. 

 

4.1. Fermentation kinetics and experimental profiles 

 Determination of fermentation kinetics for the four systems previously described 

started by determining the values of the maximum cell growth rate, µmax. For this purpose the 

exponential growth phases were located and the procedure suggested by Shuler, described in 

section 3.6.1 was followed, which stipulates that the slope resulting from the exponential 

regression applied to the set of experimental data that lie in the exponential growth phase 

belongs to the numeric value of µ, as shown in Figures 4.1 – 4.3.  According to Figure 4.1, the 

ability of S. cerevisiae to grow in glucose is easily and efficiently proved, displaying a steep 

exponential ramp which involves the highest specific growth rate of all the four systems under 

study, 0.2595 h-1.  This well known efficiency is the result of S. cerevisiae’s outstanding 

features such as larger size, thicker cell wall, better growth at low pH, less stringent 

nutritional requirements, and greater resistance to contamination [6]. Also, glucose 

fermentation with P. stipitis showed a higher specific growth rate when compared to xylose as 

a substrate for the same experimental conditions, which has been observed previously in the 

literature.  However, the lowest specific cell growth rate was achieved in the system xylose – 
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P. stipitis, which is in complete agreement with the results presented by other authors [7], but 

opposite to results presented by Sánchez and co-workers [8]. As discussed later on this 

chapter, xylose uptake is slower than glucose uptake for a given microorganism under the 

same experimental conditions, and this situation was early observed through the values of µ 

when comparing Figures 4.1 – 4.3, where it is obvious that µ for glucose is threefold of µ for 

xylose, under the same experimental conditions, and virtually the same initial cell 

concentration. According to Figure 2.14 which shows the metabolic pathways for ethanol 

production from both glucose and xylose, the net energetic yield when glucose is the carbon 

source is 2 moles of ATP per mole of glucose, which favors the glucose metabolism over that 

of xylose, which yields ~1.67 moles of ATP per mole of xylose.  Also, some nuclear magnetic 

resonance studies prove that cell growth rate is faster in glucose than xylose, concluding that 

xylose metabolism is less energized than the glucose one, with cells consuming glucose 

having higher levels of nucleoside triphosphates (NTP) and sugar diphosphatases (UDP) than 

those cells cultured in xylose.  This is important because NTP (mostly ATP) are cellular 

energy reserve materials and UDP sugar levels are indicative of cell growth potential; thus, 

cells metabolizing xylose would have less energy for growth than cells metabolizing glucose 

[9]. 
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Figure 4.1 – Determination of µmax for glucose fermentation with S. cerevisiae. Error bars are 

±1 standard deviation of 3 replicates. 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 – Determination of µmax for glucose fermentation with P. stipitis. Error bars are ±1 

standard deviation of 3 replicates. 

µmax=0.0796 h-1 

µmax=0.259 h-1 



 88 

y = 0.5443e0.0412x

R2 = 0.9838

0.00

0.30

0.60

0.90

1.20

1.50

0 5 10 15 20 25

Fermentation time (h)

C
el

l C
on

ce
nt

ra
tio

n 
(g

/L
)

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
             

 
Figure 4.3 – Determination of µmax for xylose fermentation with P. stipitis. Error bars are ±1 

standard deviation of 3 replicates. 
 
 

Figure 4.4 belongs to the system xylose – S. cerevisiae. As mentioned above, this one 

was only a control-system, and it was proven that this wild-type yeast strain did not produce 

measurable quantities of ethanol but showed an apparent cell growth.  However, an 

exponential growth phase was identified suggesting the existence of this apparent growth. 

Indeed, this is not comparable to the growth trend found in the other three systems because by 

analyzing the scale of cell concentration, the present system has cell concentrations ranging 

between 0 and 0.5 g/L, while the other systems achieved up to 3.5 g/L of biomass.  Although 

S. cerevisiae cannot metabolize xylose, it takes up this pentose through its glucose 

transporters even though their affinity for this sugar is very low and competition with glucose 

restricts xylose assimilation [6].  Likewise, this slight growth is also due to the contribution of 

other medium components, such as malt extract which contains more than 90% of sugars like 

µmax=0.0412 h-1 
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glucose, fructose and sucrose, and these sugars are easily metabolized by S. cerevisiae. 

Nonetheless, the malt extract proportion with respect to the main carbon source in culture 

medium is very low (Section 3.2.1), reason why even with the complete degradation of the 

sugars present in it, cell growth is not significant. 
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Figure 4.4 – Apparent exponential phase for xylose culture medium with S. cerevisiae. Error 
bars are ±1 standard deviation of 3 replicates. 

 
 
 

 Along with the mathematical determination of µ, and after tabulating the complete set 

of cell mass, sugars and ethanol concentrations from periodically and aseptically sampling 

throughout the fermentation course, the experimental profiles were constructed as a function 

of fermentation time.  The ±1 standard deviation error bars represent the average of three 

replicates that were carried out in each of the single substrate fermentation experiments, 

showing a good run-to-run reproducibility for all the components.  Figure 4.5 proves the 

discussed previously about the null consumption of xylose by S. cerevisiae, having an 

apparent growth as a result of the consumption of sugar available in malt extract. Some 
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studies have also demonstrated slight growth of S. cerevisiae on xylose as a sole carbon 

source under both aerobic and anaerobic conditions [10].   
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Figure 4.5 – Experimental profile concentration for xylose fermentation with S. cerevisiae. 
Error bars are ±1 standard deviation of 3 replicates. 

 
 
 

 The existence of xylose reductase (XR) and xylose dehydrogenase (XDH) enzymes in 

P. stipitis was then tested when culturing this yeast strain with xylose, as shown in Figure 4.6.  

Sugar consumption started from ~20 g/L and it was decreasing slowly in the first 12 hours of 

fermentation, but from this moment on, consumption rate increased mildly, but keeping the 

typical slow kinetics reported for this sugar. It was able to have a measurable quantity of 

ethanol from the beginning of the fermentation, this is at t=0, because the inoculum was pre-

cultured using the same carbon source, and even under aerobic conditions a small proportion 

of sugar was converted to ethanol.  Ethanol concentration was increasing slowly, having an 

accumulation that was proportional to the consumption of xylose, suggesting that the 

relatively low protein synthesis of the xylose transporters system for P. stipitis preclude rapid 

production of ethanol from xylose in this organism [11].  The maximum ethanol concentration 
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achieved was 4.194 g/L, but this is not certainly the highest concentration that could be 

reached since xylose was not totally consumed in this experiment.  Instantaneous monitoring 

of sugar concentration for this research work was carried out by means of an enzymatic 

biochemistry analyzer as described in Chapter 3, but for this experiment the improved 

membranes for xylose assay were not yet available, therefore after 72 hours of fermentation, 

and having the cell growth in apparent stationary phase, the experiment was concluded.  
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Figure 4.6 – Experimental profile concentration for xylose fermentation with P. stipitis. Error 

bars are ±1 standard deviation of 3 replicates. 
 

 

Further HPLC analysis of the samples showed a considerable xylose concentration 

remaining in the culture medium, having the potential to produce more ethanol even with the 

cells in a post-exponential phase linear growth period which has been detected by others 

[8,13] and this is characteristic of the kinetic control of the bioprocess residing in the transfer 

of oxygen within the cell suspension, since P. stipitis requires hypoxic conditions for better 

fermentative performance. Also, a characteristic of fermentation systems with xylose as the 
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sole carbon source, or mixtures of glucose and xylose is the uncoupling of ethanol production 

from cell growth that occurs towards the end of batch fermentation [13]. When the 

uncoupling behavior is observed the cell growth rate decreases even close to zero while the 

remaining carbohydrate present in solution is slowly fermented to ethanol. This uncoupled 

ethanol production was observed after 36 hours of fermentation because cell growth 

decreased virtually near to zero while ethanol kept its production rate.  However, regardless 

the availability of sugar, ethanol yield could be determined successfully because the yield 

coefficient is obtained by matching the concentration of both substrate and product for each 

sampling time, and this coefficient is assumed to stay constant throughout the fermentation 

for a given initial sugar concentration.  Fermentation yields will be discussed later in this 

chapter.  The total volumetric consumption and production rates for xylose and ethanol were 

0.19 g xylose/L-h and 0.07 g/L ethanol-h, respectively, being these the smallest volumetric 

rates for all the single substrate fermentations, but not necessarily the smallest yields because 

yields and productivities are not directly related since their calculation basis are different.  As 

discussed above, xylose transport into the cell is a good indicative for these low rates, because 

the uptake of this sugar is rate-limiting for catabolism and at least two transport systems 

differing in their affinity for xylose are responsible for the sugar uptake [12].   

 It is important to emphasize that, according to the work developed by Busturia and 

Lagunas [14] xylose is presumably transported by the same system as glucose for any given 

type of cell, but with a 200-fold lower affinity and this results, as mentioned above, in a 

slower ethanol production rate. After xylose fermentation with P. stipitis was analyzed, the 

performance of this yeast strain can be compared when culturing it with glucose as the main 

carbon source, as shown in Figure 4.7.  Fermentation started with an initial glucose 

concentration of 25 g/L and the exponential growth phase represented one third of the total 

fermentation time.  Within this lapse (first 16 hours) it was observed that along with cell 
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growth both glucose consumption and ethanol production had a high rate, with an ethanol 

production of almost 50% with respect to the total ethanol accumulated in this period and a 

proportional percentage of glucose was consumed as well. Again, the linear post-exponential 

cell growth phase was observed but unlike xylose fermentation, this phase was extended all 

over the two thirds of total fermentation time. Even though biomass proliferation was 

substantially lower if compared to the exponential phase, the remaining half of total ethanol 

produced took place during this post-exponential phase.  This observation is consistent with 

that reported in literature, where it is discussed that when working with microorganisms 

requiring low dissolved oxygen concentrations, ethanol production occurs between two 

different stages, and one of them does not necessarily imply an exponential cell growth [8].  
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Figure 4.7 – Experimental profile concentration for glucose fermentation with P. stipitis. 

Error bars are ±1 standard deviation of 3 replicates. 
 

 

The uncoupled ethanol production during the slight post-exponential cell growth phase 

was observed again, showing that uncoupling is not only a characteristic of xylose 
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fermentation but an inherent phenomenon of the xylose-fermenting yeast strains. This 

phenomenon means that fewer sugars are consumed for cell growth and relatively more 

sugars remain available for P. stipitis to produce ethanol.   Glucose was exhausted after 49 

hours of low agitated-incubation and the highest ethanol concentration achieved was 8.314 

g/L with a total ethanol production rate of 0.20 g ethanol/L-h.  Since glucose consumption 

was more pronounced than xylose fermentation, the total substrate consumption rate was 0.63 

g glucose/L-h, which is very close to the values reported in literature under similar 

fermentation conditions [15]. 

 
 The last system to be discussed is glucose fermentation with S. cerevisiae.  This one is 

probably one of the most widely studied and best understood fermentation processes, because 

of its well-known desirable properties.  One of its advantages is, unlike P. stipitis, which 

requires small quantities of oxygen, that S. cerevisiae is an efficient ethanol producer under 

strictly anaerobic or microaerobic conditions. This makes it feasible for the co-culture scheme 

as described in next chapter.  Besides the remarkably high growth rate attainable by this yeast 

at very low levels of dissolved oxygen and its efficient transformation of glucose to ethanol, it 

makes it so attractive for alcohol production [16].  This high growth was briefly observed in 

Figure 4.2 with a value for µ just smaller than those reported previously in one of the first 

attempts to study the oxygen requirements for S. cerevisiae with glucose as a carbon source 

for ethanol production [18]. However, the complete profile concentration is shown in Figure 

4.8 where it is observed that after 7 hours of fermentation, glucose was completely exhausted, 

from an initial concentration of 25 g/L.  This rapid glucose abatement occurred with a total 

substrate consumption of 3.93 g glucose/L-h, a value which is five-fold greater than those 

reported by previous research works [8]. The total ethanol production rate was 1.19 g/L-h, 

which is at the same time a large value if compared to those typically found in literature, 

reflecting the higher growth efficiency of this particular strain. Unlike fermentations carried 
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out with P. stipitis this system does not reveal the slight post-exponential linear cell growth 

observed in xylose-fermenting yeast strains, proving again that S. cerevisiae is able to 

produce ethanol efficiently under total oxygen absence or under oxygen-limited conditions.   
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Figure 4.8 – Experimental profile concentration for glucose fermentation with S. cerevisiae. 
Error bars are ±1 standard deviation of 3 replicates. 

 

 A graphic comparison among the total volumetric rates of substrate consumption and 

ethanol production of the systems analyzed before was made, as shown in Figures 4.9 and 

4.10. In those figures it is also indicated the procedure followed for the calculation of the 

volumetric coefficients, which is based in linear regression along the fermentation time for 

each system, but not limited to the exponential cell growth rate. The linear regression method 

for the calculation of volumetric rates has been successfully used by other researchers in 

ethanol batch fermentations as indicative of process productivity [18, 19]. These volumetric 

rates denote one more time the predominant fast kinetics of glucose over xylose, and the 

ability efficiency of S. cerevisiae to utilize the carbon source to produce biomass and ethanol 
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over P. stipitis. Further in this chapter it will be demonstrated that consumption rates by 

themselves are not enough to describe overall efficiency in fermentation experiments, and 

they must be supported by yield coefficients.  

 

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64 72

Fermentation time (h)

S
ub

st
ra

te
 c

on
ce

nt
ra

tio
n 

(g
/L

)

Xylose - P. stipitis

Glucose - P. stipitis

Glucose - S. cerevisiae

 
 

Figure 4.9 – Total substrate consumption rates for single substrate fermentations, QS.              
Xyl - P. stipitis: 0.19 g/L-h;  Glu – P. stipitis: 0.63 g/L-h; Glu – S. cerevisiae: 
3.93 g/L-h. 
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Figure 4.10 – Total ethanol production rates for single substrate fermentations, QP.             

Xyl - P. stipitis:  0.07 g/L-h;  Glu – P. stipitis:  0.20 g/L-h;   Glu – S. cerevisiae:  
1.19 g/L-h. 
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4.2. Fermentation yields 

 Yields in a fermentation process have significant implications on several aspects of 

processing but the most relevant issues are those concerning attainable productivity and 

operating costs.  This is the reason why efficiency in a fermentation process is usually 

measured by means of yield coefficients, the ones that have their basis on the proportionality 

relationship existing between cells, substrates and products, i.e. the assumption that total 

amount of cell mass obtained by growth is proportional to the mass of substrate. This is most 

utilized mathematical definition of the coefficient YX/S
 [20].  The methods used for the 

calculation of apparent yield coefficients were described in Chapter 3, being the result of 

matching concentrations of cells, substrates and products, for the same instant of time; 

however other methods have been successfully used for yield coefficient estimation based on 

stoichiometry, carbon balances and ATP mole balances with a high degree of accuracy [21].  

 

4.2.1. Experimental yield of biomass on substrate 

 The yield of biomass produced with respect to substrate consumed for the three 

fermentation systems analyzed is shown in Figure 4.11. Fermentation runs carried out in this 

work were performed under hypoxic conditions, therefore YX/S values are smaller than those 

achieved when growing cells under aerobic conditions. This difference lies in ATP yield; 

when working under aerobic conditions the value of ATP yield tends to be greater than 25 g 

cell/mol ATP (i.e. glucose with S. cerevisiae), as long as yields of ATP under anaerobic 

conditions have a value nearly constant of 10.5 ± 2 g cell/mol ATP; the higher yields of ATP 

the larger values in YX/S [23].  Yield of S. cerevisiae on glucose was the highest of the three 

fermentations with a value of 0.1184 g cell/g glucose, representing a 97.93% of the theoretical 

value, which is 0.116 g cell/g glucose.  This high efficiency means that sugar uptake was fast 

and the cell utilized the carbon source and the other nutrients for a rapid growth, being this the 
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reason why the exponential phase was steep and the fermentation time was noticeably shorter 

than those reported in literature [17, 23-24]. Again, S. cerevisiae proved its superiority to 

grow either under aerobic or anaerobic conditions.  However, even a high biomass yield does 

not guarantee a successfully overall fermentative process, because it is important to find a 

balance between the cell growth and the formation of ethanol. 

The system glucose – P. stipitis achieved a biomass yield of 0.0941 g cell/g glucose, 

which represents the 81.12% of the theoretical yield, being a little lower than those values 

found in literature [8,15,17,24].  In those research works the values of YX/S are also lower 

when compared with the yields obtained with S. cerevisiae.  Although biomass yield was not 

as high as in the previous system, it is well known that P. stipitis kinetics is slower because of 

transport issues involving sugar uptake into the cytoplasm, and the cell likely utilizes its 

resources more in accumulation of extracellular products than for budding, and this could 

increase product yields, but this product formation can even involve the accumulation of 

intermediate metabolites from glycolysis, reducing the yield of the main product.  However, 

despite the attempt to achieve some HPLC peak quantification for these metabolites, no 

measurable quantity was determined for some possible biochemical compounds such as acetic 

acid, glycerol, lactic acid, and others [25].  
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Figure 4.11 – Determination of biomass yield on substrate, YX/S. 

 

 

YX/S = 0.0831 

 

YX/S = 0.0941 

 

YX/S = 0.1184 

 

A:  Xylose – P. stipitis 

 

B:  Glucose – P. stipitis 

 

C:  Glucose – S. cerevisiae 
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The system xylose – P. stipitis yielded 0.0831 g cell/g xylose which is a 71.64% of the 

theoretical yield, showing a decrease if compared to the systems discussed above. Other 

authors present similar results to those obtained in this work, even there was a YX/S value 

exceeding the 100% of the theoretical value for a different yeast strain [24]. P. stipitis 

revealed in both substrates this trend of not producing the maximum of cell growth, based on 

stoichiometric calculations to obtain the theoretical values of YX/S. Ethanol production from 

glucose yields 2 moles of ATP per mole of glucose, and each mole of xylose promotes the 

formation of  ~1.67 moles of ATP [22]. As a concluding remark, it is assumed that P. stipitis 

invests its resources equitable between cell growth and the formation of extracellular 

products, as discussed later in the section of ethanol yield, which is supported by special 

features attributed to this yeast strain, and discussed by Hahn-Hägerdal and co-workers [26]. 

 

4.2.2. Experimental yield of ethanol on substrate 

The amount of product accumulated from a given amount of substrate is a 

stoichiometric proportion which allows to know the yield in a fermentative process.  Although 

substrates are also utilized for cellular growth as discussed in previous section through the 

coefficient YX/S, yield of extracellular product has stronger implications since it is a key factor 

for process economy, hence the need to achieve high values for these yields, near the 

theoretical ones.  Since the yield coefficient, YP/S for ethanol fermentation is obtained using 

the molar proportion between sugars and ethanol, which is 1:2 ratio for glucose and 3:5 for 

xylose, according to equations 2.2 and 2.3 of this document, there is a maximum achievable 

value for YP/S, which is 0.51 g ethanol/g sugar, for both glucose and xylose, being this the 

theoretical yield used to compare yields obtained experimentally.  The vast majority of 

ethanol fermentations hardly reach YP/S with 100% of efficiency (0.51 g/g), and the xylose-

fermenting yeast strains have this condition more marked if compared to those hexose-
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fermenting ones, (i.e., S. cerevisiae), being a challenge for all the pentose-fermenting wild-

type microorganisms [16] and this is one of the main reasons supporting the use of genetically 

engineered microbes.  However YP/S does not depend only on the type of microorganism but 

operation conditions, such as temperature, pH, oxygen levels and initial cell concentration, 

therefore several studies have focused on establishing optimal operation conditions to 

gradually improve ethanol yield [26, 27]. 

Correlations used to determine YP/S are shown in Figure 4.12 along with the numerical 

values for each system.  Starting with P. stipitis, it was observed that ethanol yield was higher 

with xylose than with glucose, but the difference between both sugars is minimal. YP/S with 

xylose as a carbon source was 0.3529 g ethanol/g xylose, this is 69.20% of the theoretical 

value, being pretty close to yields reported by du Preez [2] and Sánchez [8], and a little lower 

than the other studies [7,17,24].  Among all those previous works, the highest YP/S obtained 

was 0.47 g/g, although higher values, near the theoretical have been reported when using 

recombinant strains of S. cerevisiae encoding genes of P. stipitis. 

Ethanol yield with xylose – P. stipitis system was the highest of the three systems, 

although its cell yield was the lowest because of P. stipitis utilizes efficiently its carbon 

source to promote a balanced cell growth, the one that stimulates sugar degradation into 

ethanol production. Small amounts of xylitol were observed during the last hours of 

fermentation, which is completely normal since xylitol is a strong and stable intermediate in 

early xylose degradation, before entering the glycolysis pathway, and this has been also 

observed for all the xylose-fermenting yeast strains (P. stiptis, C. shehatae, P. tannophilus), 

but the amount of xylitol accumulated varied from one study to another. Xylitol production 

does not occur with glucose as a carbon source, since it is not an intermediate metabolite in 

the pathway followed by glucose to produce ethanol. 
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Figure 4.12 – Determination of ethanol yield on substrate, YP/S. 
 

A:  Xylose – P. stipitis 

B:  Glucose – P. stipitis 

C:  Glucose – S. cerevisiae 

 

YP/S = 0.3529 

 

YP/S = 0.309 

 

YP/S = 0.3364 
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The system glucose – P. stipitis yielded a YP/S of 0.309 g ethanol/g glucose with a 

60.59% of the theoretical yield, which is lower if compared with xylose.  This was observed 

and discussed by Lightelm and co-workers [17], for both anaerobic and hypoxic conditions, 

suggesting yield diminishing as an effect of ribitol accumulation, however for this work we 

were unable to have an adequate ribitol determination, since the HPLC column used does not 

detect this compound. Ribitol accumulation is not a common event in this type of 

fermentations, and so far the work developed by Lightelm is the only one found in literature 

that discusses ribitol production. 

S. cerevisiae produced an YP/S = 0.3364 g ethanol/g glucose, similar and a little lower 

to those reported previously, with 65.96% of theoretical yield. Despite the high YX//S for this 

system and the fast sugar consumption, the yield of ethanol on substrate was not that high 

since substrate was used more efficiently for cell growth than for ethanol production, as will 

be discussed in the next section, even when the final ethanol concentration was good. One 

alternative to improve ethanol yield would be to perform this fermentation under strictly 

anaerobic conditions, since it was carried out hypoxically. However, Laplace and co-workers 

have demonstrated that fermentative behavior was not modified with respect to the anaerobic 

culture, and this may be due to the fact that, as performed in this work, inoculum was pre-

cultured under strong aerobic conditions and the cells may have found enough oxygen 

necessary for the synthesis of key compounds [23].  

 

4.2.3. Experimental yield of ethanol on biomass 

Yields discussed above can be complemented through the yield of ethanol on biomass 

YP/X and its determination and values are shown in Figure 4.13. This parameter is interesting 

because it allows quantifying how much ethanol can be produced as compared to biomass that 

is being simultaneously produced from the substrate, explaining if substrate consumption has 
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been balanced or if it has favored cell growth or ethanol production. The theoretical value for 

this yield is 4.38 g ethanol/g cells, and the higher its value, the better ethanol production, 

being favored this pathway rather than cell production.  This is the case of xylose – P. stipitis, 

with an YP/S = 3.59 g ethanol/g cells which confirms the discussion above regarding that this 

was the system presenting the best balance between cell and ethanol production.  The system 

glucose – P. stipitis yielded 3.21 g ethanol/g cells, which is a little lower than that for xylose, 

suggesting once again that performance of this yeast strain is more efficient with xylose.  A 

lower value was the one obtained for the system glucose – S. cerevisiae with YP/X of 2.81 g 

ethanol/g cells, it was expected to happen this way since the value for YX/S was the highest, 

suggesting that cell growth was favored rather than ethanol production, even when the amount 

of ethanol produced was significant. As an alternative, fermentation can be carried out with a 

higher initial cell concentration to promote less cell proliferation during exponential growth, 

attenuating substrate consumption for cell growth since the number of cells present in culture 

media at the beginning of experiment is large enough to stimulate ethanol production. 
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Figure 4.13 – Determination of ethanol yield on biomass, YP/X. 

A:  Xylose – P. stipitis 

B:  Glucose – P. stipitis 

C:  Glucose – S. cerevisiae 

 

YP/X = 3.595 

 

YP/X = 3.208 

 

YP/X = 2.813 
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Two additional parameters supporting yield coefficients are the specific substrate 

consumption rate, qs, and the specific ethanol production rate, qp.  These specific rates are 

useful because they relate the amounts of substrate consumed and ethanol accumulated, 

specifically in grams, with respect to one single gram of biomass produced. Unlike total 

volumetric rates discussed in section 4.1, the ones that describe the rates with respect to the 

fermentation time without relating the consumption or production to any other quantity, the 

specific rates are always related to biomass, therefore they support and help to better explain 

yield coefficients.  Specific rates are summarized in Table 4.1, along with the apparent yield 

coefficients previously discussed, and Table 4.2 shows the maximum yield coefficients for 

each fermentation system. The maximum achievable values for the yield coefficients were 

obtained following the procedure suggested by Shuler and Kargi [22] and they were also 

compared to their apparent values. This comparison was made by means of the relative error 

respect of the maximum yield coefficient for each fermentation system. The values of relative 

error fell below 11.5% showing that the apparent yield coefficients were very close to their 

maximum values, which confirms the assumption of balanced cell growth for all the 

experiments. However, a more accurate determination of maximum yield coefficients can be 

achieved using experiments in a continuous culture to test the effects of energy maintenance 

when balanced growth does not take place for the most of the fermentation time [20]. 

 Regarding the specific substrate consumption rates, the glucose – S. cerevisiae system 

was the system having the highest qs, with 2.19 g glucose/g cell-h.  This value was 2.5-fold 

the qs for the glucose – P.stipitis system, and 4.5-fold for the qs for the xylose – P. stipitis. For 

P. stipitis, specific consumption rates were lower and higher, respectively, to those reported 

by Sánchez and co-workers [8], however, that study concluded that P. stipitis with xylose was 

the fastest kinetics, which is the opposite to the present work. 
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 Specific ethanol production rates followed the same pattern of substrate consumption.  

The values for qp, as shown in Table 4.1 are high for glucose – S. cerevisiae with 0.73 g 

ethanol/g cells-h, decreasing for P. stipitis with glucose and xylose, with 0.302 and 0.148 g 

ethanol/g cells-h, respectively. Some other research works have obtained values of qp very 

close to the ones obtained in the present work, such as the work of Laplace and co-workers 

[23] for the system xylose – P. stipitis and the results of Ligthelm and co-workers [17] for 

glucose – P. stipitis. 

 

Table 4.1 – Summary of the apparent yield coefficients and specific rates. 
 

 

 

 

 

 

 

 

 

Table 4.2 – Maximum yield coefficients. 
 

Fermentation System YX/S
M 

(g/g) 
YP/S

M 
(g/g) 

YP/X
M 

(g/g) 

Xylose – P. stipitis 0.0809 0.3173 3.9232 

Glucose – P. stipitis 0.1013 0.3345 3.5515 

Glucose – S. cerevisiae 0.1131 0.3136 2.7731 

 

 

Fermentation system YX/S 

(g/g) 
YP/S 
(g/g) 

YP/X 
(g/g) 

qs 
(g/g-h) 

qp 
(g/g-h) 

Xylose – P. stipitis 0.0831 0.3529 3.5945 0.496 0.148 

Glucose – P. stipitis 0.0941 0.3090 3.2080 0.846 0.302 

Glucose – S. cerevisiae 0.1184 0.3364 2.8131 2.190 0.730 
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4.3. Unstructured kinetic modeling 

 Once the kinetic information for each of the individual fermentative systems with their 

corresponding yields were determined, all of the required parameters are available for the 

construction of models describing cell growth, substrate consumption and product 

accumulation, based on a simple Monod model.  As mentioned earlier in this chapter, the 

simple Monod model was used since inhibition phenomena for both substrates and product 

are not likely to occur in any of the fermentations carried out in this research project, because 

of the low initial sugar concentrations utilized and the low ethanol concentrations achieved 

from their corresponding substrates.  All of these concentrations are therefore, out of the 

limits established by several studies developed in the subject of inhibition [2-5].  Using 

equations 2.12 – 2.14 presented in Chapter 2, and coupling the kinetic parameters and yield 

coefficients, differential equations were solved numerically through a fourth order Runge-

Kutta method, as described in Chapter 3. The optimization criteria used was the minimization 

of the error generated by differences between experimental and predicted data, which is 

described by the objective function (Eq. 3.1), thus obtaining the best fitting and optimization 

of the Monod model parameters µmax and Ks. Error minimization was based on least squares 

associated with the maximum experimental values for biomass, sugars and ethanol achieved 

in the fermentation [28].  Profile concentrations are shown in Figures 4.14 – 4.16, depicting 

the fitting of predicted values from simulations to those obtained experimentally.  Statistical 

validation of simulations was made taking into account three statistic parameters: Mean 

Squared Error (MSE), Linear Correlation Coefficient (LCC) and Residual Standard Deviation 

(RSD) expressed as a percentage of the average of experimental data, the ones that have been 

used in previous studies of kinetic modeling and parameter estimation [28, 29]. In the next 

figures, solid symbols were used to depict experimental data, and the entire set of simulated 

values is depicted by means of continuous lines.  Model predicting substrate consumption for 
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the system xylose – P. stipitis is shown in Figure 4.14, displaying a slow descending ramp 

with an almost linear trend, fitting very well experimental data for more than half of the total 

fermentation time, but it deviated towards the end of the experiment, having an LCC of 0.965.  

For glucose fermentations, sugar consumption was noticeably a little more abrupt, and the 

models presented a soft curve that fits well the experimental trend of sugar consumption in 

these systems. Agbogbo and co-workers [29] developed a mathematical modeling for xylose 

with P. stipitis using a two-parameter method for biomass prediction, varying initial cell 

concentrations, and the Leudeking-Piret equation to describe substrate consumption and 

ethanol production, achieving a good fitting for all the simulations.  However, they did not 

use the concept of µ to describe cell growth rate and did not use yield coefficients or 

optimization criteria for parameter estimation. For glucose – P. stipitis the model suggests 

that sugar should have a faster uptake, and as shown in Figure 4.15, simulation of glucose 

consumption was totally consumed almost ten hours before it occurred experimentally; some 

authors have also reported this situation for fructose with S. cerevisiae, using the Monod 

model with Moser and Luong kinetic model for µ to take into account substrate and product 

inhibition [30] and also for glucose fermentation with S. cerevisiae using the logistic model 

[31]. According to LCC, better substrate consumption simulations were achieved for the 

system glucose – S. cerevisiae, with 0.981 of linear correlation between simulated and 

experimental data. For this system the simulation model suggests that glucose should have a 

little lower consumption rate, but by the time at which sugar is completely exhausted it 

becomes identical to that observed experimentally, as shown in Figure 4.16. The percentage 

of RSD remained in the range [3.3% - 6.4%], a similar range has been reported in literature 

for glucose [28]. In bioprocess engineering, it is better to analyze RSD written as a percentage 

of the average of the experimental values, because the simple RSD will vary depending on the 
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magnitude of the variable to be predicted.  Thus, the values of RSD (%) below 10% can be 

considered acceptable [32]. 

 

0.0

5.0

10.0

15.0

20.0

0 10 20 30 40 50 60 70

Fermentation time (h)

X
yl

os
e 

C
on

ce
nt

ra
tio

n 
(g

/L
)

0.0

1.0

2.0

3.0

4.0

5.0

C
el

l m
as

s 
an

d 
et

ha
no

l 
co

nc
en

tra
tio

n 
(g

/L
)

Xylose Cells Ethanol Model
 

 

Figure 4.14 – Comparison of the experimental data and predicted kinetics using the simple 
Monod model in xylose fermentation with P. stipitis.  
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Figure 4.15 – Comparison of the experimental data and predicted kinetics using the simple 

Monod model in glucose fermentation with P. stipitis. 
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Figure 4.16 – Comparison of the experimental data and predicted kinetics using the simple 
Monod model in glucose fermentation with S. cerevisiae. 
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Table 4.3 – Optimized kinetic parameters used in Monod model. 
 

Fermentation system µmax 
(h-1) 

K s 
(g/L) 

Xylose – P. stipitis 0.054 25.00 

Glucose – P. stipitis 0.1766 25.00 

Glucose – S. cerevisiae 0.3095 5.487 

 

 

Regarding biomass production, the best fits were obtained in fermentation systems 

using glucose as a carbon source. The highest LCC, 0.9711 was achieved for the system 

glucose – S. cerevisiae, and it appears to be the higher fit for biomass, although the MSE 

value for xylose – P. stipitis was the lowest value for the three systems, with 0.038.  However, 

making a comparison between the two values of MSE, the difference is small, and such 

comparison is possible since both concentrations are in the same scale.  Arellano-Plaza and 

co-workers [29] have reported some inaccuracy in the fittings for biomass when working at 

high and low substrate concentrations (i.e. 30 g/L of glucose present at t = 0), but this 

situation has been attributed to the assumption that yield coefficients are constant for different 

initial substrate concentrations [29].  RSD percentages, in average, were lower for biomass 

simulations than those for substrate and ethanol, thus according to this statistical parameter, 

biomass was the component best fitted by an unstructured model. However, for systems using 

xylose as the carbon source, the model was not able to efficiently capture the exponential 

growth phase.  

Regarding ethanol production, a good fit was obtained in the system glucose – S. 

cerevisiae with a LCC of 0.9837, which was the highest value for all the components in all 

the fermentation systems, unlike the case of xylose – P. stipitis, which had a fit that was less 

accurate, presenting the highest RSD of all the fermentation systems, with a value of 7.018%.  
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This situation can be justified since the trend followed by ethanol production in this last 

fermentation system did not have a constant upward pattern. Instead, it fluctuated having ups 

and downs throughout the fermentation time.  Also, the maximum ethanol concentration 

achieved was not that value at the end of the fermentation as in the glucose systems, and 

therefore the value used in the objective function for the optimization of the differential 

equations system was not the last one at t = 72; this may have caused that model simulation 

for ethanol production soared upwards along the last experimental ethanol concentrations. 

However, the equation for the objective function requires the maximal values obtained in the 

experiment [32], even when that maximum value does not match the last concentration 

measured. 

Of the three statistical parameters used to test the fitting of the models to the 

experimental data for the unstructured model, the one that gives more reliable and objective 

information is RSD expressed as percentage, because it takes into account the differences 

between experimental and simulated data by means of least squares analysis but also relates 

these square differences to the average experimental value for each component, which 

diminishes the effect introduced by the difference in magnitude, even when the concentrations 

units are the same; it is pretty different to work with biomass concentrations ranging between 

0 and 4 g/L than substrate concentrations ranging between 0 and 25 g/L.  Therefore, the 

magnitude of all concentrations is equated, being more appropriate to make a comparison 

among components whether if they have concentration ranges similar or different. 

Table 4.4 summarizes the statistical parameters utilized to validate the sensitivity of 

the unstructured model to predict the behavior of the experimental concentrations. 

Furthermore, the consistency and agreement between predicted and experimental 

concentrations was successfully evaluated and validated by means of Figures A.1 – A.3 

presented in Appendix A. The small biases of the matched concentrations from the 45º 
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diagonal line is a good indication of the consistency between the simulations and the 

experimental profile concentrations. Appendix B includes a graphic analysis of the residuals 

of the fermentation modeling, showing if the compared pairs of data (experimental and 

predicted) follow a statistical normal distribution. In all the cases, the normality criterion was 

demonstrated since the residuals seem to fit a straight line. 

 

Table 4.4 – Statistical analysis for kinetic modeling with the simple Monod model. Units:  
MSE [(g/L)2];  LCC [%];  RSD [%]. 

 

Fermentation 
system 

Statistical 
parameter 

Cells 
(X) 

Sugar 
(S) 

Ethanol 
(P) 

MSE 0.0381 2.2573 0.3263 

LCC 0.8188 0.9650 0.8982 
Xylose –  

Pichia stipitis 

RSD 4.8770 3.3688 7.0184 

MSE 0.1382 6.3951 0.4472 

LCC 0.9119 0.9693 0.9535 
Glucose –  

Pichia stipitis  

RSD 5.4670 6.1866 4.2199 

MSE 0.0454 4.6790 0.2483 

LCC 0.9711 0.9810 0.9837 
Glucose –  

Saccharomyces 
cerevisiae 

RSD 3.1570 6.4260 3.3137 

 

 

Overall, the proposed unstructured model based on simple Monod kinetics, describes 

satisfactorily and with a good degree of accuracy, the trend that biomass, substrates and 

product follow in a batch fermentation to produce ethanol, under hypoxic conditions. The 

relevance of optimizing the kinetic parameters, along with the determination of yield 

coefficients, is reflected on the utilization of all the information procured on the single 
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substrate experiments to construct the structured model, as will be discussed in Chapter 5. 

Likewise, since the results of the unstructured mathematical model describing single substrate 

fermentations are accurate, the model becomes a very useful tool for design and process 

control of fuel ethanol production and can be utilized for scale-up in this and other type of 

bioprocess engineering.  
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5. MIXED SUBSTRATE FERMENTATIONS 

 
This Chapter presents the results and analysis of the structured modeling of glucose-

xylose mixtures using the suspended co-culture of the two yeast strains used separately in 

single substrate fermentations. The results of the experimental runs carried out to validate the 

simulations are also presented, along with the analysis of the specific enzyme levels for the 

consumption glucose and xylose. 

5.1. Construction of the structured cybernetic model 

The cybernetic modeling framework developed by Kompala and Ramkrishna [1] 

previously introduced in Chapter 2, builds upon the idea than an organism’s nutritional goals 

are carried out entirely within the domain of chemical kinetics through judicious utilization of 

metabolic capabilities.   The sum of all the chemical transformations taking place in a cell or 

organism, occurs through a series of enzyme-catalyzed reactions that constitute metabolic 

pathways and the cybernetic perspective of microbial growth has reported that the metabolic 

regulation of biochemical process can be controlled by enzyme synthesis (cybernetic variable 

u) and enzyme activity (cybernetic variable v).   

As mentioned earlier, equations 2.17 and 2.18 are modifications to the unstructured 

Monod rate expressions, taking into account the cybernetic perspective which suggests 

including the effect of key enzymes synthesis for the metabolism of two or more different 

substrates.  Those equations contain the subscript i which specifies the synthesis of the ith set 

of enzymes for the ith substrate to produce both biomass and the particular extracellular 

product, in this case ethanol.  Since the present work requires mathematical expressions for a 

binary mixture of carbohydrates using a co-culture of two yeast strains, the cybernetic 

framework was extended not only to identify two different carbohydrates but to make a 

distinction between two different strains of cells (biomass) growing from each carbon source.  
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Therefore, since numbers are traditionally used in the nomenclature to represent the 

substrates, the subsequent equations contain numerical subscripts identifying: (1) glucose and 

(2) xylose, while alphanumeric subscripts were assigned to the yeast strains: (a) S. cerevisiae 

and (b) P. stipitis. Now, equations 2.17 and 2.18 with the cybernetic approach become: 
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where i represents the ith substrate (from 1 to 2), and k represents the kth yeast strain (from a 

to b). Subscript B represents the biomass growth rate and subscript E denotes the 

corresponding enzyme synthesis rate, having four mathematical expressions for each 

combination of substrate-strain. The experimental methodology applied to this work did not 

include measurements for enzymatic levels, thus the parameter ei,k, the specific level of key 

enzymes,  were estimated following the same criteria utilized in previous work [2], suggesting 

the replacement of the traditional specific growth rate expression µ,i,k by the following 

equation: 
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where α and β are the protein decay and the enzyme synthesis rate constants, respectively, and 

their values were assigned as described afterwards in this same section to bring out the 

influence of specific enzyme levels on the growth kinetics.  Mathematical representation of 
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the specific enzyme level ei is used instead ei,max since this value is not as important as the 

relative level ei/ei,max. Similarly, prior the discussion of the expanded equations system, it is 

necessary to emphasize the adaptation of the equations 2.23 and 2.24 to the cybernetic 

framework with two microbial species. Both equations must include now the subscript k to 

differentiate between the two strains.  This modification yields the following equations for the 

cybernetic variables: 
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where the subscript j joined with the subscript k keeps representing the rate of any of the two 

substrates, but specifying the metabolism of that same substrate with one particular yeast 

strain (equation 5.4) or the rate of any of the substrate-strain systems having the maximum 

value in any given instant (equation 5.5). These equations are the heart of the cybernetic 

perspective, based exclusively on the matching and proportional laws, which are heuristic 

control policies serving as optimization surrogates for predicting the response of metabolic 

control circuits that modulate enzyme levels and activities [3].  The cybernetic variable u 

accounts for the regulatory control inputs enacted at the transcriptional and translational levels 

that determine the enzyme synthesis rates.  High values for u suggest the induction of enzyme 

synthesis while low values denote its repression; if u=0 the polymerase does not transcribe the 

gene for the enzyme of Ei and if u=1 then obviously only Ei is induced.   The cybernetic 

variable v represents the mechanisms of catabolite inhibition and activation controlling the 
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activity of the existing enzymes. If v=1, the enzyme is activated and reaction proceeds to 

metabolize the first available carbohydrate while enzyme for metabolism of the second 

carbohydrate is inhibited, and therefore the rate of substrate consumption of the first sugar is 

higher than the rate of the second; otherwise, v is close to zero suggesting that the enzyme 

previously inhibited is now activated. 

 According to equation 2.19, the formation of biomass now is represented by two 

different equations: one for the growth of S. cerevisiae (a) and the other one for the growth of 

P. stipitis (b), from both substrates: glucose (1) and xylose (2), as follows: 
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 The second term of equation 5.6 can be neglected because µmax,2,a and K2,a are zero; 

there is no growth of S. cerevisiae due to xylose consumption, therefore this term becomes 

zero.  In fact, all the parameters and expressions with the subscript 2,a can be deleted from all 

of the equations of this model since they belong to the sugar-strain system indicated above.  

Nevertheless, the subsequent equations will include those parameters for a better 

understanding of the effect that both substrates have in the development of the complete 

model. 

 Substrate consumption also has to be divided in two different equations to denote the 

utilization of each carbohydrate by each of the yeast strains.  While equations describing cell 

growth include terms on both sides of the sum to stand for the contribution of the two 
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carbohydrates, the following equations also display this sum but representing the contribution 

of the two yeast strains: 
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 Ethanol production is the result of sequential consumption of both substrates, and 

therefore the equation 2.21 describing the accumulation of ethanol is the sum of the two yeast 

strains metabolisms multiplied by their own yield coefficient, adopts the following form: 
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 Enzyme synthesis mass balance described by equation 2.22 is now applied for each 

particular combination of substrate-strain, and since this intracellular synthesis is performed 

by different metabolic pathways between the two strains, four equations illustrate 

mathematically, the synthesis of the key enzymes necessary to initiate the complexity of steps 

involved in the metabolic pathways, already described in section 2.3.  The equations are the 

following: 
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The values for the enzyme synthesis rate constant α is a numeric estimation for the 

maximum specific level of a single enzyme, which in average, is of the order of 10-3 g 

enzyme/g cell, and that value can be fixed for an average enzyme Ei. The first-order 

degenerative loss of the active enzyme Ei is described by the constant β, which value has been 

fixed at 0.05 h-1 for all enzymes Ei’s, and it was estimated from studies made on protein 

decay, showing a slow rate and reaching its maximum rate of 5%/h under non-growth 

conditions.  The values for these two parameters were assumed to be the same for all key 

enzymes in the present work, and the same values have been successfully used in other 

simulations found in the literature [2, 4-5]. 

 Equations 5.6 – 5.14 are therefore the final expressions of the complete cybernetic 

model developed for this work, including the kinetic parameters and yield coefficients 

determined in single substrate experiments as discussed in Chapter 4. Solving this complex 

non-linear ordinary differential system, including the criterion of resources optimization 

denoted by cybernetic variable v simultaneously for each yeast strain, was possible using the 



 124 

same 4th order Runge-Kutta method included in the MATLAB command ODE45.  The model 

was first constructed for each of the yeast strains, in efforts to model single substrate-single 

strain fermentations and to compare the unstructured Monod model with the structured 

cybernetic perspective.  Also, mathematical projections were made for sugar mixtures with a 

single yeast strain, attempting to analyze the individual performance of S. cerevisiae and P. 

stipitis in a mixed substrate environment. However, these simulations, presented in the next 

section, are just a complementary vision of the modeling work to evaluate the behavior of 

these co-fermentation systems but no statistical comparison or validation was possible since 

experiments for these schemes were not part of the specific objectives and therefore were not 

included in the methodology of this work.    

Additional approaches have been proposed and used in other studies to optimize the 

mathematical description of the cellular metabolism such as the precursor perspective 

developed by the same authors of the cybernetic framework, which involves the formation of 

biosynthetic constituents of a lumped precursor pool along with the production of energy in 

the form of reduced pyridine nucleotides (e.g. NADH and ATP) [6]. 

 

5.2. Simulation of glucose-xylose mixtures using one single yeast strain 

 Fermentation of mixtures of glucose-xylose to produce ethanol using one single 

microbial strain have been lately studied using either wild-type or genetically engineered 

strains in order to improve the efficiency of the fermentative process and ethanol yield, as 

well.  The approach of the majority of these studies focuses on kinetic parameter estimation 

and yields determination, but other authors have also worked with both unstructured and 

structured mathematical models.  However, very few attempts have been made using the 

cybernetic perspective, as discussed later in this section.  Cybernetic modeling applied to 

systems comprising only one substrate is not that relevant in the sense that cellular resources 
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optimization to synthesize more than one carbon source does not occur, but it is important to 

demonstrate some theoretical aspects between unstructured and structured models. For 

instance, the equation of maximum specific growth rate for the single substrate present in 

culture media also involves the maximum specific enzyme level because during balanced 

growth the specific enzyme level remains at its maximum value.  For that reason, cybernetic 

model in this case reduces to the simple Monod model, as described in the next figures where 

the single substrate fermentations from Chapter 4 are analyzed again to make a comparison 

with respect to the experimental data, but this time contrasting both the Monod and cybernetic 

model. After this comparison, simulations of glucose-xylose mixtures are analyzed prior the 

discussion of co-fermentations that were carried out with a co-culture of yeast strains. 

Equations 5.5 – 5.14 were used but taking only the terms of each equation (or the entire 

equation) corresponding to any given strain (e.g., half the equations comprising the subscripts 

a for S. cerevisiae) and using only one equation for microbial growth.   

 Figure 5.1 shows the comparison explained above, with dotted lines representing the 

Monod model and solid lines representing the cybernetic model.  It is evident that both 

mathematical projections overlap, proving actually that the equations of the cybernetic 

perspective are reduced to the Monod model equations for single substrate systems, the ones 

that are identified as: glucose – S. cerevisiae  (A), glucose – P. stipitis (B) and xylose – P. 

stipitis (C). When the cybernetic model reduces to the simple Monod model, the value for the 

cybernetic variable v is 1 throughout the whole fermentation time, and this occurs because the 

predominant rate is that existing for the only substrate that is being metabolized. Using this 

same analysis for the cybernetic variable u, we can easily determine that its value is also one.  

Mathematically, the main difference between the two models is the contribution of e, but for 

these single substrate systems it has no effect the specific level of the key enzymes 

responsible for substrate degradation are all the time at their maximum value. 
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Figure 5.1 – Comparison of the Monod model to the cybernetic perspective for single 
substrate fermentations. A: Glucose – S. cerevisiae; B: Glucose – P. stipitis;   
C: Xylose – P. stipitis. 

A

B  

C  
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 As mentioned before, the model developed now is applied to simulate mixtures of 

glucose-xylose separately for each yeast strain, as shown in Figure 5.2.  The percentages of 

glucose/xylose utilized are 75/25 (mixture A), 50/50 (mixture B) and 25/75 (mixture C) g/L, 

in a basis of 25 g/L of total sugar concentration initially present in the culture media.  These 

simulations have been made as an introduction to the analysis of utilization of two substrates, 

including graphic representations of specific enzyme levels e, necessary for the well 

understanding of the cybernetic perspective, and using information provided in previous 

studies where monoculture was utilized (mainly P. stipitis) to relate those experimental results 

to the ones obtained by simulation in this work. 

 Beginning with the mixtures using S. cerevisiae as the sole fermenting yeast strain, 

Figure 5.2 shows the simulation for mixtures A, B and C, with cellular and ethanol initial 

concentrations of 0.85 and 0.50 g/L, respectively; those values are an average of the ones that 

were used as initial conditions in single substrate fermentations, varying only the initial 

proportions of carbohydrates.  For the three mixtures, xylose concentration remained virtually 

unchanged throughout the total fermentation time, having a very slight consumption of 

approximately 0.25 g/L in average for the three analyzed systems, which has been also 

reported in literature [7].  As discussed earlier in this document, although S. cerevisiae 

naturally does harbor genes for xylose utilization, these are expressed at such low levels that 

they do not support growth on xylose, therefore at least a very small amount of this 

carbohydrate is utilized by cells attempting to metabolize it but without success because they 

are not able to put it into the metabolic pathway to produce ethanol [8].  Glucose consumption 

occurs similarly to the system when xylose is not present, and its exhaustion depends on the 

initial proportion of glucose; the higher the proportion of sugar the faster the glucose 

exhaustion, showing a steep reduction because there is more biomass growing and hence the 

sugar transports rapidly across the cell membrane. 
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Figure 5.2 – Simulations of glucose-xylose fermentation mixtures with S. cerevisiae.  A: 75% 
Glu – 25% Xyl; B: 50% Glu – 50% Xyl; C: 25% Glu – 75% Xyl. 
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 Since glucose is the only carbon source utilized by S. cerevisiae in this fermentative 

system, it is expected that both cell growth and ethanol production will be less efficient in 

mixtures with low glucose fractions, if compared to other systems were both substrates are 

consumed.  These simulations were then useful to prove that the cybernetic model is able to 

predict the null xylose metabolism by S. cerevisiae, no matter how high or low is the 

concentration of this sugar in the mixture.  Besides, glucose consumption is not affected by 

the presence of xylose, but when the xylose proportion is very high then the system resembles 

a pure xylose fermentation, which does not make any sense when using a wild-type strain of 

S. cerevisiae. Moreover, the existence of fermentation systems in bioethanol production 

where xylose concentration is very high when compared to glucose concentration in the same 

culture broth is not the usual, since the majority of hydrolyzed fractions from pre-treated 

lignocellulosic biomass have higher or equal proportion of glucose, nevertheless this depends 

on the type of feedstock [9]. 

 Figure 5.3 shows the evolution of the specific levels of key enzymes for substrate 

degradation, glucose in this case.  Since inocula for the three mixtures were pre-cultured in 

pure glucose, the initial value for e for glucose consumption is assumed to be approximately 

90% of the maximum specific enzyme level [2], while 0% was assumed for e in xylose 

because, despite the existence of genes for xylose metabolism in S. cerevisiae, the cells did 

not have even minimum levels for xylose degradation since inoculum was cultured using pure 

glucose.  Therefore, the change in specific level of enzyme for glucose (e1) displays a slow 

increase, reaching its maximum value towards the fourth hour of fermentation, and this 

proves the assumption made for the initial value.  In the other hand, the values for specific 

levels of enzyme for xylose (e2) remained virtually close to zero.  It was expected that while 

the glucose proportion decreases, its enzyme level decreases because the cell spends less 

resources in synthesizing that particular enzyme if availability of sugar is poor.  
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Figure 5.3 – Simulation of enzyme levels in glucose-xylose fermentation with S. cerevisiae. 

A: 75% Glu – 25% Xyl; B: 50% Glu – 50% Xyl; C: 25% Glu – 75% Xyl. 
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 The performance of P. stipitis was also evaluated creating simulations for the same 

mixtures used in the S. cerevisiae simulations.  The predictions suggest sequential 

carbohydrate consumption for all of the mixtures but having this effect noticeably in mixtures 

A and B; glucose was first consumed while xylose concentration remained virtually constant 

or decreased slightly until glucose concentration was low enough to allow faster xylose 

consumption.  Simulations are shown in Figure 5.4 and the initial values for cell and ethanol 

concentrations were the same for the three mixtures, with 0.4 and 0.1 g/L, respectively, but in 

practice these values can be different depending on the history of the inoculum which can be 

cultured either on pure glucose, pure xylose, or a mixture of both sugars.  For the present 

simulation it was assumed that the P. stipitis inoculum was grown on pure xylose, but 

sometimes working with inocula grown on mixtures of each sugar helps to standardize all the 

possible results that can be achieved through experimental work [10]. 

 Simulations indicate that glucose consumption should be faster for those mixtures with 

high glucose fractions, because it is the preferred substrate for P. stipitis, but when glucose 

concentration is low cells experiment a decrease in their growth due to the limited glucose 

present and they start to consume xylose, especially when inoculum has been grown on pure 

xylose or a mixture of glucose xylose; when this occurs the small fraction of available glucose 

is consumed slowly.  This is the reason why xylose consumption for mixture C begins even 

when glucose is not completely exhausted, and similar observations have been reported in the 

literature [11], with inocula also grown in pure xylose. These studies have also reported that, 

the high xylose fractions have had also a slightly higher ethanol yield.  Of course this also 

depends on the yeast strain utilized because some of these strains, like Pichia stipitis CBS 

5773, display less ability to synthesize the inducible enzyme necessary for degrading xylose, 

which is the result of the strong catabolite repression caused by glucose [12].  
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Figure 5.4 – Simulations of glucose-xylose fermentation mixtures with P. stipitis. A: 75% 

Glu – 25% Xyl; B: 50% Glu – 50% Xyl; C: 25% Glu – 75% Xyl. 
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 Despite P. stipitis yield on xylose is slightly lower than that on glucose, for the 

previous simulations it was assumed that inoculum has been grown on pure xylose because 

this allows the xylose degrading enzymes to achieve levels at the beginning of fermentation, 

and although at this time, enzymatic synthesis is fully repressed by the presence of the 

preferred substrate, when glucose is almost completely exhausted the polymerase will not 

spend much time transcribing again the gene for xylose degrading enzymes, and hence 

enzyme activation will be much faster if compared to the scenario when enzymes are not 

originally present in the cell (i.e. when inoculum has been grown on pure glucose). 

Additionally, when growing inoculum in the less preferred substrate a marked reduction in the 

intermediate lag phase (diauxic lag) is achieved, and this is a desirable situation for time 

optimization in fermentation processes [2]. 

 Figure 5.5 shows the evolution of the specific enzyme levels for glucose (e1) and 

xylose (e2) consumption in simulations previously described, for the same mixtures A, B and 

C.  The initial values for e1 and e2 were chosen following the analysis of specific and relative 

enzyme levels found in literature [2] being 3 × 10-4 and 6 × 10-4, respectively. Since inoculum 

was cultured on xylose, the initial levels of enzymes for xylose degradation are higher than 

that for glucose, but when working high glucose fractions (mixture A) e2 is strongly repressed 

and it tends to decrease while glucose is being consumed because already existing enzymes 

are inhibited; activation occurs after e1 has reached its maximum value.  Unlike mixture A, 

the other mixtures show a faster e2 activation even before e1 is decreasing for mixture B and 

even high values before e1 reaches its maximum value for mixture C; this last situation causes 

that xylose consumption occurs before glucose concentration drops to zero, which has been 

reported by Agbogbo and co-workers for the same mixture but with a little lower xylose 

consumption rate [13] and also for the same mixtures using Zymomonas mobilis [10]. 
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Figure 5.5 – Simulation of enzyme levels in glucose-xylose fermentation with P. stipitis. A: 

75% Glu – 25% Xyl; B: 50% Glu – 50% Xyl; C: 25% Glu – 75% Xyl. 
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5.3. Experimental profiles and fermentation yields 

 The same mixtures considered previously for simulations of glucose and xylose using 

a single yeast strain were carried out experimentally to study the performance of S. cerevisiae 

and P.stipitis co-cultured for ethanol production, then the same nomenclature is kept (A, B 

and C) and will be also utilized to make reference to each mixture from now on.  Using the 

observations made in single substrate fermentations, there was a modification in the 

procedure for the cultivation of inoculum, to achieve a high cell concentration, as described in 

Chapter 3. Each yeast strain was grown in its respective high-performance carbohydrate (i.e. 

S. cerevisiae on glucose and P. stipitis on xylose) to promote the induction of necessary 

enzymes for the degradation of both sugars in each strain, and thus reducing or eliminating 

the intermediate lag phase, as it was first made in fermentation of glucose-xylose mixtures 

with Klesbiella oxytoca [2]. 

 Figure 5.6 shows the evolution of cell growth for each mixture, the ones that display 

clearly the distinction of two phases: the first one is the growth under glucose, which took 

place rapidly in the first then hours of fermentation, and the second one is the growth phase 

under xylose, which was prolonged towards the end of fermentation time.  Glucose 

consumption occurred mainly under the action of S. cerevisiae, because although the 

proportion of cell concentrations from each strain in the inocula was fairly similar, kinetics of 

P. stipitis on glucose is markedly low as a result of the reduced affinity for the transport of 

this carbohydrate into the cytoplasm when compared to S. cerevisiae [14].  Therefore, after 

the promoter was activated with the exhaustion of glucose, the inducible enzyme was 

produced, causing the degradation of xylose by P. stipitis, less rapidly and with smaller 

proportion than on the glucose growth phase. 
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Figure 5.6 – Cell growth curves for glucose-xylose mixtures with yeast co-culture. A: 75% 

Glu – 25% Xyl; B: 50% Glu – 50% Xyl; C: 25% Glu – 75% Xyl. Error bars are 
± 1 standard deviation of 3 replicates. 
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 Mixture A was the only one that displayed clearly a short intermediate lag phase 

between the fourth and sixth hours of fermentation. The high glucose proportion caused a 

stronger xylose repression, promoting a cell growth cessation while enzymes for xylose 

degradation are synthesized, therefore transition from glucose to xylose consumption was able 

to be observed unlike mixtures B and C; the first one had an almost imperceptible 

intermediate lag phase, and the last one did not exhibit this phase.  Similar results were found 

in literature for glucose-xylose mixtures with proportions 67% – 33%, respectively [12]. In 

general, between 50 and 65% of total cell production was obtained by glucose degradation, 

even in mixture C that had only 5.3 g/L of glucose initially present.  

 Cell growth inhibition in suspended co-cultures by any of the microbial strains is one 

limiting step in the development of efficient choices for mixed cultures, especially between S. 

cerevisiae and xylose-fermenting yeast strains.  However, the work developed by Laplace and 

co-workers [15] supports the use of these two particular yeast strains, since their compatibility 

was tested using a special technique involving mitochondrial inhibitors, in which no growth 

inhibition occurred from S. cerevisiae to P. stipitis and vice versa.  Accordingly, no growth 

inhibition phenomena were observed between the two yeast strains utilized in the co-culture 

process for this work.  The relationship existing between them is neutralism since there was 

no appreciable change in growth rate of any of them, and the pure-culture behavior of both 

species was very close to their behavior in mixed culture, with high growth rates for S. 

cerevisiae and a low growth rates for P. stipitis, but showing an excellent compatibility and 

performance for ethanol production, as discussed later on this section. 

 Experimental profiles are now analyzed for the three mixtures, showing the monitored 

concentrations of total cell mass, glucose, xylose and ethanol throughout 100 hours of 

hypoxic fermentation.  Each mixture was performed by triplicate, and each replicate was 

cultured using the same initial cell and sugar concentrations, thus the mean value of replicates 
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is displayed in the next profiles, with error bars corresponding to ± one standard deviation for 

each concentration. 

 Profile concentrations are depicted in Figure 5.7.  In general, the three mixtures show 

fast glucose consumption in less than ten hours of batch fermentation, which promoted both 

cell growth and ethanol production at high rates due to degradation of this carbohydrate. 

Xylose consumption remained virtually unchanged along this short time, mainly for mixtures 

A and B, showing an average xylose decline of 0.5 g/L, and approximately 0.75 g/L for 

mixture C, until complete glucose exhaustion.  Also, the three mixtures revealed the same 

pattern of incomplete xylose utilization at the end of fermentation because of the severe 

inhibition by glucose on the xylose conversion, causing that the xylose conversion rate be 

significantly lower than the glucose conversion rate, which has been also reported in the 

literature [7,15], but xylose remaining concentrations in those studies have been considerably 

higher. However, making a comparison of the three mixtures in Figure 5.7, the curve of 

xylose consumption shows a steep descent when the xylose concentration is high, indicating 

that as the initial lower glucose concentration is low, the faster turns out to be the xylose 

consumption, as shown later in Table 5.1. There, the total substrate consumption rates are 

compiled; these were calculated in basis of the time required for the consumption of each 

substrate, similar to the method used in Chapter 4.  Mixture C presents the highest xylose 

consumption rate (0.185 g/L-h) and the lowest glucose consumption rate (0.838 g/L-h) of the 

three mixtures, which was previously predicted in the simulation of this mixture using only P. 

stipitis.   Despite the increase in xylose consumption rate in mixture C, the remaining xylose 

concentration was the highest, suggesting probably a larger time of fermentation in order to 

further evaluate if complete xylose degradation is possible. 

 

 



 139 

0

3

6

9

12

15

18

0 20 40 60 80 100

Fermentation time (h)

G
lu

co
se

 a
nd

 x
yl

os
e 

co
nc

en
tr

at
io

ns
 (

g/
L)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

C
el

l m
as

s 
an

d 
et

ha
no

l 
co

nc
en

tr
at

io
n 

(g
/L

)

0

3

6

9

12

0 20 40 60 80 100

Fermentation time (h)

G
lu

co
se

 a
nd

 x
yl

os
e 

co
nc

en
tr

at
io

ns
 (

g/
L)

0.0

1.0

2.0

3.0
4.0

5.0

6.0

7.0

8.0

C
el

l m
as

s 
an

d 
et

ha
no

l 
co

nc
en

tr
at

io
n 

(g
/L

)

0

3

6

9

12

15

18

0 20 40 60 80 100

Fermentation time (h)

G
lu

co
se

 a
nd

 x
yl

os
e 

co
nc

en
tr

at
io

ns
 (

g/
L)

0.0
1.0
2.0
3.0
4.0

5.0
6.0
7.0
8.0

C
el

l m
as

s 
an

d 
et

ha
no

l 
co

nc
en

tr
at

io
n 

(g
/L

)

Glucose Xylose Cells Ethanol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 – Experimental profiles for glucose-xylose fermentations using suspended co-
culture of S. cerevisiae and P. stipitis. A: 75% Glu – 25% Xyl; B: 50% Glu – 
50% Xyl; C: 25% Glu – 75% Xyl. Error bars are ± 1 standard deviation of 3 
replicates. 
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Table 5.1 – Substrate and ethanol volumetric rates from each sugar in the fermentation 
mixtures with the yeast co-culture. 

 
 
 
 

 

 

 

 

 

In the other hand, other alternatives such as immobilization of P. stipitis in 

combination with suspended S. cerevisiae or using a respiratory deficient mutant yeasts of S. 

cerevisiae have been proposed as an alternative to improve xylose utilization, but results 

obtained by some authors still report incomplete xylose utilization [15,16]. 

Competition between the two yeast strains for oxygen in the culture media is also a 

parameter having a great significance in mixed culture fermentations, especially when 

working with xylose-fermenting strains because of their well known requirements for low 

oxygen levels.  Since batch co-fermentations were carried out under hypoxic conditions, 

competition for oxygen availability was not likely to occur, and this assumption is valid since 

both yeast strains had a level of growth pretty close to the single substrate experiments for 

each substrate. Otherwise, all the available oxygen would be used by S. cerevisiae to grow 

aerobically, producing a large number of cells and thus reducing ethanol production. The 

ethanol consumption rates shown in Table 5.1, and the ethanol concentrations achieved from 

glucose consumption proved that oxygen concentrations were adequate for both yeast strains.  

Nonetheless, remaining xylose concentrations at the end of fermentation for each mixture 

were substantially lower than those reported in the literature when using the same co-culture 

and also for S. cerevisiae co-cultured with Candida shehatae [17].  

Glucose Xylose Sugar Mixtures 
(% Glucose - % Xylose) Qs 

(g/L-h) 
Qp 

(g/L-h) 
Qs 

(g/L-h) 
Qp 

(g/L-h) 

A (75 – 25) 2.729 0.565 0.042 0.023 

B (50 – 50) 1.375 0.414 0.099 0.030 

C (25 – 75) 0.838 0.319 0.185 0.047 
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Regarding ethanol production, it was observed that the maximum concentration 

achieved was 7.486 g/L in mixture A, while mixtures B and C reported 6.919 and 6.906 g/L, 

respectively.  It is worthy to note that, although the difference in ethanol produced among the 

three mixtures is small, ethanol produced in mixture A was higher than the other two mixtures 

not because of the high glucose concentration but because of xylose utilization, which was 

better utilized in mixture A.  In fact, percentages of total ethanol produced from glucose were 

decreasing from mixture A to C, from 54% to 64%, and ethanol produced from xylose 

increased from 46% in mixture A to 64% in mixture C, proving that despite the fast cell 

growth and rapid ethanol produced with glucose, both sugars had their respective contribution 

for total ethanol production. 

Ethanol yield on substrate was slightly higher in mixture A, but yield coefficients for 

the three mixtures are very close to each other, and at the same time are very similar to those 

obtained in single substrate experiments, which means that the co-fermentation process is 

efficient because ethanol yields were not lower than any of those achieved in fermentations 

comprising only one substrate and only one yeast strain.  All YP/S coefficients were greater 

than 0.32 g ethanol/g sugar, very close to those values obtained by Ballesteros and co-workers 

for the suspended co-culture of S. cerevisiae with C. shehatae [18], however better yields and 

better xylose utilization, as mentioned before, can be achieved using coimmobilization with 

high initial concentrations of P. stipitis, since the glucose concentration in the center of the 

beads will be almost zero, which makes xylose conversion possible [19]. 

Similar to the yields of ethanol on biomass obtained in Chapter 4 for xylose 

fermentation with P. stipitis, the mixtures comprising the same or higher proportion of xylose 

yielded larger YP/X coefficients than those on mixture A, and at the same time, this mixture 

exhibits the highest YX/S coefficient, meaning that sugar uptake in P. stipitis is more efficient 

for ethanol production rather than for cell growth.  However, all the yield coefficients in the 
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mixtures, shown in Table 5.2, have a short variability when comparing the different mixtures 

and demonstrates that the three systems are good alternatives for ethanol production using the 

suspended co-culture.  Although the initial cell concentrations utilized were high enough to 

reduce lag time and to promote high cell density in the culture medium, higher values should 

be used in future experiments, in order to improve yields and to have a total xylose 

consumption, which will also increase YP/S coefficients. 

 

Table 5.2 – Summary of yield coefficients for glucose-xylose fermentations with the yeast 
co-culture. 

 
 

Sugar Mixtures 
(% Glucose - % Xylose) 

YP/S 
(g/g) 

YP/X 
(g/g) 

YX/S 
(g/g) 

A (75 – 25) 0.336 3.003 0.111 

B (50 – 50) 0.3169 3.429 0.092 

C (25 – 75) 0.3313 3.363 0.098 

 
 

                                        
 Fermentation byproducts were monitored with the analytical determination of sugars 

and ethanol by means of HPLC analyses. Very small amounts of glycerol, acetic acid and 

lactic acid were detected, especially in mixture A, but the quantification was not necessary 

since the peaks only were visible when the scale of chromatograms was amplified.  Another 

byproduct of particular interest in xylose fermentations is xylitol, which has been reported to 

affect ethanol yields in fermentative systems comprising both xylose alone and mixtures of 

glucose-xylose [17, 20].  Xylitol accumulation was observed in mixture C and in less 

proportion in mixture B, but likewise the other byproducts, the amounts produced were very 

small and this did not affect significantly ethanol yields. In fact, one of the main advantages 

offered by fermentation of mixtures of glucose and xylose is a reduction in xylitol 

accumulation, because under these conditions the rate of xylose utilization is increased, as 
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shown in Table 5.1, suggesting that xylitol formation is a consequence of insufficient xylose 

flux [22]. 

 

5.4. Structured modeling glucose-xylose mixtures using 

 Once the kinetic parameters were estimated and further optimized by means of the 

Monod unstructured model, according to the results discussed in Chapter 4, and having the 

complete set of equations developed in section 5.1, the aim and main objective of this work is 

the kinetic modeling of the glucose-xylose fermentation mixtures, using the yeast co-culture, 

by means of one adequate structured model that takes into account the instantaneous cellular 

optimization occurring in a multisubstrate environment: the cybernetic framework.  This last 

section displays the results obtained when modeling the same mixtures so far discussed, 

evaluating the quality of the model and its application to real fermentation systems for process 

optimization and scaling-up for industrial applications. 

 Using equations 5.6 – 5.14 with the inclusion of kinetic and yield parameters from 

single substrate experiments, the non-linear differential system was solved in MATLAB as 

described in Figure 3.18 with the constraint for rate maximization described by the cybernetic 

variable v, in each step of the Runge-Kutta method; before solving numerically the system for 

each instant of time t, the rate of the uppermost limiting substrate was computed and included 

in the denominator of equation 5.5, thus the cellular resources optimization was represented 

mathematically at the start of every iteration. This procedure has been utilized in the 

programming of Runge-Kutta methods for the growth a co-culture of Kluyveromyces 

marxianus and Candida utilis [22].  However, it is worthy to note that the simulations 

obtained in the present work were not subject of further optimizations for error minimization, 

therefore the proposed models were directly compared to the results obtained experimentally, 

and statistically validated by means of the same parameters used for the validation of 
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unstructured models: Linear Correlation Coefficient (LCC), Mean Squared Error (MSE) and 

Residual Standard Deviation expressed as a percentage of average of experimental values 

(%RSD), the ones that will be  later summarized. 

 The model obtained for mixture A is depicted in Figure 5.8, and it shows a very good 

concordance between simulated and experimental data, especially for the prediction of cell 

and ethanol concentrations since there were the lowest values for both MSE and RSD%.  

Ethanol appears to be the best fitted parameter, with an LCC of 99.38%, since the predicted 

model captures the stages of ethanol production in the mixture: the first one very fast and 

accelerated which corresponds to glucose consumption and the second one corresponding to 

xylose consumption.  The maximum cell mass and ethanol concentrations achieved are very 

well predicted by the model.  Xylose consumption prediction by the model is slightly less 

accurate, even though it is statistically supported with RSD% of 4.60 and 98.83% of LCC, 

showing some differences mainly at the end of the fermentation, since the model predicts a 

higher sugar degradation which may be due to the lack of adequate oxygen levels at the end 

of fermentation or the requirements of higher initial concentration of P. stipitis, which has 

been previously studied by means of experiments varying the initial concentrations of P. 

stipitis [23].  
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Figure 5.8 – Comparison of the experimental data and predicted kinetics of the mixture A, 

with 75% of glucose and 25% of xylose using a suspended co-culture of S. 
cerevisiae and P. stipitis.  

  

 

 Glucose consumption is predicted to be a little less fast than that measured 

experimentally, showing a noticeable difference between experimental and predicted 

concentrations in the sixth hour of fermentation causing that both MSE and RSD% to be large 

when compared to the other parameters.  Experimental values are very similar to those 

obtained in the single substrate system glucose – S. cerevisiae, since glucose is completely 

exhausted between the six and eight hours, but model simulation somehow predicts the 

consumption of this sugar more slowly.  This situation depends exclusively on the rate 

maximization responsible for the values of the cybernetic variable v, and this at the same time 

is a direct consequence of the initial values chosen for the specific levels of key enzymes, the 

ones that are based on the history of inocula.  For this simulation, the initial value for e1 was  

8 × 10-4 since S. cerevisiae was pre-cultured on glucose, however other values in the range 

A 
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suggested by Ramkrishna and Kompala [2] can be chosen in order to improve the fitting of 

simulations for substrate consumption.   Despite the difference explained above, the RSD% 

calculated was 10.636, barely above of the 10% which is the limit considered statistically 

acceptable for bioprocess engineering [24].  Overall, this mixture provides an average LCC of 

0.9727 for prediction of cells, substrates and ethanol profiles. 

 The mixture B involving the same proportion of sugars was also simulated by means 

of the cybernetic model, as shown in Figure 5.8. This shows in the first place, a better 

prediction of both glucose and xylose consumptions when compared to the mixture A, with 

LCC of 0.9867 and 0.9954, respectively.  Simulation of xylose profile concentration was the 

parameter best fitted in this mixture, with RSD% lower than 1 and MSE of 0.055; very 

accurate prediction of the final xylose concentration was also achieved which is an important 

tool to foresee the proper fermentation time in further fermentation experiments.   
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Figure 5.9 – Comparison of the experimental data and predicted kinetics of the mixture B, 

with 50% of glucose and 50% of xylose using a suspended co-culture of S. 
cerevisiae and P. stipitis.  

B 



 147 

 Ethanol production and cell growth simulations also showed excellent convergence for 

this co-fermentation, with both production stages (corresponding to glucose and xylose 

degradation, respectively) well defined and in good agreement with experimental data.  

Unlike mixture A where the model simulation for cell growth did not account for of the 

intermediate lag phase efficiently, the growth rate was very well predicted in this mixture 

capturing the right moment where S. cerevisiae stopped its growth, leading P. stipitis growth 

in the culture medium.   The RSD% for cell growth was 1.956 and 1.811 for ethanol 

production, and these values are a good indicative of high accuracy in the prediction of the 

trends followed in this fermentation mixture.  These results are very similar to those reported 

by Leksawasdi and co-workers [10] in glucose-xylose mixtures using recombinant 

Zymomonas mobilis with 50/50 sugar proportion.  By analyzing the statistical information 

extracted from the model simulations, it can be demonstrated that mixture B had the better 

overall prediction by cybernetic model since it reports the lowest average RSD% and the 

highest average LCC with values 2.214 and 0.9906, respectively. This high accuracy may be 

attributed because at the beginning of fermentation, the amount of both sugars in the culture 

medium was the same, and the proportion in total cell concentration was approximately 60% 

for S. cerevisiae; this cell proportion fermented rapidly all the glucose available in solution, 

while P. stipitis had just began to consume this sugar but at this moment it was almost 

completely exhausted, which caused the enzyme induction for xylose and therefore, the slight 

diauxie existing in cell growth between the consumption of both sugars was perfectly 

captured by the model, which originally was created to describe the diauxic nature of multiple 

substrate environments.  This did not occur in mixture A, because it had a higher amount of 

glucose and probably it was necessary to set a lower initial concentration of P. stipitis as an 

initial condition for the simulation, however if this had been done also experimentally the 

remaining amount of xylose without consumption would have been likely greater. 
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Unfortunately, at the moment when this document was written we were unable to make 

comparisons to other co-fermentations using the same suspended co-culture, since this 

scheme was not found in literature, having only results of experiments performed with 

immobilization and co-immobilization techniques, but lacking models attempting to simulate 

the fermentation kinetics.   

 Simulation of mixture C, with 25% glucose/75% xylose, depicted in Figure 5.9, which 

reveals a slight consumption of xylose from the beginning of the fermentation, in the same 

manner that it was observed experimentally.  This consumption which took place even before 

glucose exhaustion, and it was also captured by the cybernetic model, suggests the high 

potential of Pichia stipitis NRRL-Y11545 to be considered in other processes configurations, 

either suspended or immobilized, involving hydrolisates from high hemicellulose fractions.  
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Figure 5.10 – Comparison of the experimental data and predicted kinetics of the mixture C, 
with 25% of glucose and 75% of xylose using a suspended co-culture of S. 
cerevisiae and P. stipitis.  
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 The sensitivity of the model to predict xylose consumption is such that it was the 

parameter better predicted, involving the lowest RSD% and the higher LCC with values of 

1.134 and 0.9953, respectively.  Regarding cell growth, the model was not able to capture 

properly the amount of cells grown from glucose consumption. In this case, similar to the 

explaination for mixture A, higher initial concentrations of S. cerevisiae as initial condition 

for solving the non-linear differential system would probably fall into a better prediction of 

cell growth, especially in the moment where P. stipitis starts to grow as a consequence of 

xylose degradation.  This situation is feasible since a little increase in concentration of S. 

cerevisiae will cause that, when glucose depletion is imminent, P. stipitis will consume xylose 

by itself while S. cerevisiae will not grow any longer.  This is a good alternative to improve 

the discrepancies between the model simulation and the experimental values for cell growth.  

However, RSD% for this prediction is under 10%.  With an increase in the accuracy to 

simulate cell growth will be also improved the accuracy for glucose consumption, which 

reached the highest RSD% for this mixture.  Prediction of ethanol production was also in 

good agreement with the experimental values, especially for the stage when ethanol is 

produced from xylose consumption.  RSD% for ethanol simulation in this mixture was 1.811.   
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Table 5.3 – Statistical analysis for kinetic modeling using cybernetic model. Units:  MSE 
[(g/L)2];  LCC [%];  RSD [%]. 
 
 

Fermentation 
mixture 

Statistical 
parameter Cells Glucose Xylose Ethanol 

MSE 0.047 2.7786 0.487 0.108 

LCC 0.9675 0.9411 0.9883 0.9938 
A  

 

75% glucose –  
25% xylose 

RSD 3.252 10.636 4.600 2.329 

MSE 0.012 0.2314 0.055 0.045 

LCC 0.9865 0.9867 0.9954 0.9938 
B 

 

50% glucose –  
50% xylose 

RSD 1.956 4.245 0.846 1.811 

MSE 0.058 0.2274 0.300 0.073 

LCC 0.9310 0.9570 0.9953 0.9842 

C 

 

25% glucose –  
75% xylose 

RSD 4.483 9.434 1.394 2.754 

 

In general, the results obtained and discussed from simulations of glucose-xylose 

mixtures, allow to postulate that the model utilized has been successfully validated by means 

of fermentation runs, and the fitting of predicted values to the experimental profiles is 

statistically consistent, based on information presented in Table 5.3, having small deviations 

commonly found in one system which has not been object of further error minimizations, and 

these deviations fall in a range considered as adequate.  As mentioned before, the values 

obtained in the average of RSD% for substrates, cells and ethanol, the mixture exhibiting the 

best fitting by cybernetic model was that having equal proportion of glucose-xylose (mixture 

B) with an average RSD of 2.214%; followed by mixture C and mixture A with RSD values 

of 4.516%  and 5.204%, respectively.  Similarly to Chapter 4, a qualitative analysis of the 

consistency and agreement between the predicted and experimental concentrations was 

carried out for total cell growth, glucose, xylose and ethanol concentrations, respectively. 
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Therefore, figures A.4 – A.7 in Appendix A support the statistical criteria used to evaluate the 

sensitivity of the models in the mixed substrate – mixed strain fermentations. 

 The performance of the cybernetic model can be also analyzed using the profiles 

followed by the specific level of key enzymes, responsible for consumption of any given 

substrate, by each of the yeast strains present in the culture media.  These profiles are shown 

in Figure 5.10 indicating that in mixture A the enzyme levels for glucose degradation for both 

yeast strains (e1 and e3) prevail and predominate during the first then hours of fermentation.  

From those levels, the ones exhibited by S. cerevisiae are almost twofold those levels present 

in P. stipitis, which is a valid argument to prove that the majority of glucose degradation was 

carried out by means of S. cerevisiae metabolism, while contribution of P. stipitis in this 

degradation was minimum. Levels of e2, key enzymes for xylose degradation by S. cerevisiae 

will be always close to zero because of the null xylose consumption existing in this yeast 

strain. Also, the strong catabolite repression caused by glucose consumption can be observed 

in the slight reduction of e4 initially present in P. stipitis, and product of pre-culturing its 

inoculum on pure xylose [2, 3]. As soon as glucose was exhausted, enzymes initially present 

in P. stipitis were induced and xylose degradation proceeds showing the obvious increase in 

e4.  

 The argument explained previously about setting higher or lower initial concentrations 

for any of the two yeast strains for simulations purposes only in a mixture, has a great effect 

in the enzyme levels profiles currently analyzed because of according to the basic postulates 

of the cybernetic model, the parameter e is included in the biomass rate, and at the same time 

all the e’s also include the terms for biomass rate; all the equations of the model are 

dependent of each other which increases the non-linearity and therefore, any change or 

modification in cell concentrations, even at the beginning, returns that effect on the specific 

enzyme level profiles. 
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Figure 5.11 – Simulation of enzyme levels in glucose-xylose fermentation with S. cerevisiae: 

e1 and e2, and P. stipitis: e3 and e4 A: 75% Glu – 25% Xyl; B: 50% Glu – 50% 
Xyl; C: 25% Glu – 75% Xyl. 

A 

B 
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 In mixture B, a decrease in e1 and e3 as a result of the lower amount of glucose present 

in culture medium caused the more anticipated increase in e4 as compared to mixture A.  

Likewise, repression caused by glucose is barely observable and the specific level for xylose 

consumption by P. stipitis, e4 is now higher than e1.  It is important to note that the narrowest 

the maximum specific enzyme level curve, the faster the consumption of substrate, hence the 

curve for e4 for mixtures B and C is very similar because xylose consumption was slower; the 

difference is the maximum level achieved. 

  Finally, mixture C suggests that the amount of e1 to degrade the small amount of 

glucose is just a little higher than the initial level that was attained from pre-culturing the 

inoculum of S. cerevisiae on pure glucose.  Besides, e3 did not have a significant increase, 

falling below e4, which is a new indicative to prove again the predicted earlier in this chapter 

regarding the no contribution of P. stipitis for glucose consumption in this mixture, since 

activation of the enzyme levels for xylose degradation, achieved at the same time in its 

respective inoculum, was immediate at the beginning of fermentation. This is the reason why 

xylose consumption took place even slightly simultaneously with glucose consumption, due 

to the small amount of glucose initially present and the high rate of consumption that was not 

enough to repress e4. 

 Based on the results already discussed, the proposed structured model to predict the 

behavior of glucose-xylose mixtures using the cybernetic framework, has fulfilled the main 

objective of this research work, and the corresponding conclusions and improvements to the 

methodology used in this project will be expanded in Chapter 6. Because of the excellent 

accuracy between the model and experimental data, this model can be utilized not only for the 

scale-up of batch fermentation, but also for trying other configurations such as fed-batch and 

continuous culture, in order to chose that scheme which provides the best yields in ethanol 

production.  Furthermore, the model can be applied to other process entailing suspended co-
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cultures, such as the production of antibiotics in the pharmaceutical industry, the production 

of probiotic yogurts from mixtures of Lactobacillus strains, and other applications in the vast 

knowledge area of bioprocess engineering. 

 

5.5. References cited 

 

[1] Kompala, D.S.; Ramkrishna, D.; Tsao, G.T. (1984). Cybernetic modeling of microbial 
growth on multiple substrates. Biotechnol. Bioeng. 26:1272-1281. 

 
[2] Kompala, D.S.; Ramkrishna, D. (1986). Investigation of bacterial growth on mixed 

substrates: Experimental evaluation of cybernetic models. Biotechnol. Bioeng. 28:1044-
1055. 

 
[3] Young, J.D.; Ramkrishna, D. (2007). On the matching and proportional laws of 

cybernetic models. Biotechnol. Prog. 23:83-89. 
 
[4] Narang, A.; Konopka, A.; Ramkrishna, D. (1996). Dynamic analysis of the cybernetic 

model for diauxic growth. Chem. Eng. Science. 52(15):2567-2578. 
 
[5] Narang, A.; Konopka, A.; Ramkrishna, D. (1997). The dynamics of microbial growth 

on mixtures of substrates in batch reactors. J. theor. Biol. 184:201-317. 
 
[6] Ramkrishna, R.; Ramkrishna, D. (1996). Cybernetic modeling of growth in mixed, 

substitutable substrate environments: Preferential and simultaneous utilization. 
Biotechnol. Bioeng. 52:141-151. 

 
[7] Rouhollah, H.; Iraj, N.; Giti, E.; Sorah, A. (2007). Mixed sugar fermentation by Pichia 

stipitis, Saccharomyces cerevisiae, and an isolated xylose-fermenting Kluyveromyces 
marxianus and their co-cultures. African Journal of Biotechnology. 6(9): 1110-1114. 

 
[8] Hahn-Hägerdal, B.; Karhumaa, K.; Fonseca, C.; Spencer-Martins, I.; Gorwa-Grauslund, 

M.F. (2007). Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. 
Biotechnol. 74:937-953. 

 
[9] Mousdale, D.M. (2008). Chemistry, Biochemistry and Microbiology of lignocellulosic 

biomass. Biofuels: Biotechnology, Chemistry and Sustainable Development.  First 
Edition. CRC Press, Taylor & Francis Group. Chapter 2:49-86. 

 
[10] Leksawasdi, N; Joachimsthal, E. L.; Rogers, P. L. (2001). Mathematical modeling of 

ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. 
Biotechnol. Letters. 23:1087-1093. 

 



 155 

[11] Agbogbo, F.K.; Coward-Kelly, G.; Torry-Smith, M.; Wenger, K.S. (2006). 
Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochemistry. 
41:2333-2336. 

 
[12] Nakamura, Y.; Sawada, T.; Inoue, E. (2001). Mathematical model for ethanol 

production from mixed sugars by Pichia stipitis. Journal of Chem. Technol Biotechnol. 
76:586-592. 

 
[13] Agbogbo, F.K.; Coward-Kelly, G.; Torry-Smith, M.; Wenger, K.S. (2006). 

Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochemistry. 
41:2333-2336. 

 
[14] Busturia, A.; Lagunas, R. (1986). Catabolite inactivation of the glucose transport system 

in Saccharomyces cerevisiae. J. Gen. Microbiol. 132:379-385. 
 
[15] Taniguchi, M.; Tohma, T.; Itaya, T.; Fujii, M. (1997). Ethanol production from a 

mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-
defficient mutant of Saccharomyces cerevisiae. Journal of Fermentation and 
Biotechnology. 83(4):364-370. 

 
[16] Laplace, J.M.; Delgenes, J.P.; Moletta, R. (1992). Alcoholic glucose and xylose 

fermentations by the coculture process: compatibility and typing of associated strains. 
Can. J. Microbiol. 38:654-658. 

 
[17] Lebeau, T.; Jouenne, T.; Junter, G.A. (2007). Long-term incomplete xylose 

fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with 
Saccharomyces cerevisiae. Microbiological Research. 162:211-218. 

 
[18] Ballesteros, M.; Ballesteros, I.; Olivia, J.M.; Cabanas, A.; Saez, F.; Carrasco, J. (1991). 

Comparative study of different fermentation schemes to produce ethanol from 
lignocellulosic sugar components. In: Grassi G, Collina A, Zibetta H (eds) Proceedings 
of the 6th European Conference on Biomass for Energy, Industry and Environment. 21-
27 April, Athens. Elsevier Applied Science, London and New York, Pp. 536-540. 

 
[19] Grootjen, D.R.J.; Meijlink, L.H.H.M.; Vleesenbeek, R. van der Lans, R.G.J.M.; 

Luyben, K.Ch.A.M. (1991). Cofermentation of glucose and xylose with immobilized 
Pichia stipitis in combination with Saccharomyces cerevisiae. Enzyme Microb. Technol. 
13:530-536. 

 
[20] Sánchez, S.; Bravo, V.; Castro, E.; Moya, A.J.; Camacho, F. (2002). The fermentation 

of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or 
Pachysolen tannophilus to produce ethanol. Journal of Chem. Technol. and Biotechnol. 
77:641-648. 

 
[21] Hahn-Hägerdal, B.; Karhumaa, K.; Fonseca, C.; Spencer-Martins, I.; Gorwa-Grauslund, 

M.F. (2007). Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. 
Biotechnol. 74:937-953. 

 



 156 

[22] Saliceti-Piazza, L. (1994). Aerobic co-cultures of Kluyveromyces marxianus and 
Candida utilis utilizing multiple substrates from whey bioconversion waste streams. 
PhD Thesis, Purdue University. 

 
[23] Laplace, J.M.; Delgenes, J.P.; Moletta, R.; Navarro, J.M. (1993). Ethanol production 

from glucose and xylose by separated and co-culture processes using high cell density 
systems. Process Biochemistry. 28:519-525. 

 
[24] Atala, D.I.P.; Costa, A.C.; Maciel, R.; Maugeri, F. (2001). Kinetics of ethanol 

fermentation with high biomass concentration considering the effect of temperature. 
Appl. Biochem. Biotechnol. 91-93(1-9):353-366. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 157 

6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Single substrate fermentations 

Overall, the work developed in Chapter 4 provided a better understanding of the 

properties and performance of Saccharomyces cerevisiae and Pichia stipitis as efficient 

fermenting yeast strains for bioethanol production from glucose and xylose, respectively.  The 

detailed analysis of these single substrate experiments separately allowed the determination of 

kinetic parameters and yield coefficients, which at the same time were the key parameters to 

determine aspects such as the performance of the fermentation process, the unstructured 

modeling of each individual fermentative system and the source of all the parameters 

necessary for the modeling of mixed substrate fermentations.  Therefore, reliable kinetic 

information was estimated from these experiments and the quality of the Monod model to 

predict profile concentrations was successfully demonstrated. 

6.1.1. Conclusions on single substrate fermentations 

The yield of ethanol on substrate was found to be higher in xylose fermentations with 

P. stipitis (YP/S = 0.35 g/g), which represents almost a 70% of the theoretical yield based on 

stoichiometric calculations, thus it is considered an acceptable value when compared to those 

yields reported in the literature for other non-engineered xylose-fermenting yeast strains.  

Even when the yield of biomass on substrate was higher for glucose fermentation with S. 

cerevisiae it is concluded that P. stipitis utilized xylose efficiently to promote a balanced cell 

growth that channeled sugar degradation into ethanol production.  This situation was 

confirmed with the yield of ethanol on biomass, which was higher for the system xylose – P. 

stipitis (YP/X = 3.59 g/g) and the nearest to the theoretical value, supporting the conclusion 

that this yeast strain degrades xylose preferentially for ethanol production rather than cell 

growth. 
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The quality of the proposed model to predict the profile concentrations behavior in the 

different fermentation systems was very good, which proves that the utilization of the simple 

Monod model to describe and quantify cell growth and its further incorporation in the mass 

balances for the batch fermentation process, was suitable and provides excellent kinetic 

information which can be used as a tool for optimization, scaling-up and the development of 

other process configurations such as fed-batch and continuous culture, in order to improve the 

yields in the production of ethanol from lignocellulosic feedstock. 

Since the initial concentration of substrates utilized for each experiment and the 

maximum ethanol concentrations achieved did not exceed the limits to take into account both 

substrate and product inhibition, the combination of the kinetic models proposed by Moser 

and Luong, successfully used in batch fermentation experiments carried out by other 

researchers, were assayed by modifying the Monod equation with the corresponding 

inhibition terms and constants, but it was demonstrated that these mathematical expressions 

representing the inhibition phenomena were reduced to the unity, which at the same time  

reduced the equation to that represented by the simple Monod model, supporting the use of 

this substrate-limiting model to mathematically represent cell growth in this work. 

In order to estimate the sensitivity of the model to choose the system best fitted based 

on R2 and RSD for the average of cell mass, substrate and ethanol concentrations, it is 

concluded that such system is glucose – S. cerevisiae with R2 = 0.98 and RSD = 4.30%, being 

these the highest and lowest values of the three systems, respectively.  However, none of the 

other fermentative systems yielded average RSD values higher than 7.5%, which 

demonstrates that all the models predict the experimental profile concentrations with 

statistical consistency, and therefore the obtained and optimized kinetic parameters were 

suitable to be used in the structured model developed to describe the behavior of glucose-

xylose mixtures. 
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6.1.2. Recommendations on single substrate fermentations 

Even when the model obtained to predict the behavior of profile concentrations in 

single substrate fermentations was accurate, the yields of ethanol produced from glucose and 

xylose using the two yeast strains were acceptable, and the optimization of kinetic parameters 

provided the minimization of error when comparing the simulated values to those obtained 

experimentally, it is necessary to stress about complementary work and techniques that 

certainly will help to enhance the results already obtained,  expanding them to study other 

factors and configuration processes. 

It would be interesting to quantify the specific cell growth rate from either various 

batch experiments varying the initial concentration of substrate for each experiment, or 

similarly, conducting continuous culture experiments to maintain control of the specific 

growth rates.  In this manner, the maximum specific growth rate (µmax) and the Monod 

saturation constant (Ks) would be determined more accurately using any of the linearized 

forms of the Monod equation (e.g. Lineweaver-Burk, Eaddie-Hoffstee or Hanes-Woolf plots, 

or continuous culture graphical analysis).  Some of these plots were used in this work to 

determine the Monod saturation constant, but using the finite differences technique with cell 

and substrate concentrations in order to construct one set of different substrate concentrations.  

This method provided the “initial guess” value for Ks, which was further optimized with the 

values of µmax when solving the differential system by means of the Runge-Kutta method. 

Although it was demonstrated that inhibition effects did not impact neither growth 

kinetics nor ethanol production, it is recommended to study and evaluate the applicability of 

other growth models such as the logistic and the Malthus rate equations, the ones that have 

been utilized with great results by other authors in fermentation of various carbon sources to 

produce ethanol. In case that these models provide great results with high accuracy to 

describe fermentation kinetics, even more interesting it would be the utilization of them to 
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construct the structured platform, coupling the enzyme synthesis rate and the instantaneous 

cellular optimization. This approach would be challenging for the fermentation modeling area 

since the process control and optimization in bioprocess engineering increasingly demands 

the use of robust models involving different perspectives to represent cell growth. This is a 

critical factor in the nature of these bioprocesses, therefore finding a model that optimally 

predicts the behavior of cell growth will allow to design the best and most successful 

operation. 

It is also recommended to perform each one of the single substrate experiments using 

a continuous culture in order to have a complete characterization of kinetic parameters and 

yield coefficients. This scheme is a powerful experimental tool since it allows the variation of 

the specific growth rate as an independent parameter (dilution rate) in order to better estimate 

Ks, µmax and the maximum yield coefficients.  

 

6.2. Mixed substrate and mixed strain fermentations 

 Through the work described in Chapter 5, a solid and complete structured model with 

the cybernetic perspective was developed for a binary mixture of substrates, biocatalyzed by 

the co-culture of two yeast strains.  Likewise, a better understanding on the behavior of the 

experimental profiles of these mixtures, and the prediction of trends followed by these 

profiles from data collected in single substrate fermentations, was accomplished. Very good 

ethanol yields were attained by co-culturing the two yeast strains with the sugar mixtures, 

being in the same order of magnitude to those obtained in single substrate experiments, which 

means that the two strains had an excellent role in the consumption of both carbohydrates.  

All these insights are very promising in the lignocellulosic biomass-to-ethanol growing 

industry, and the results obtained in this work when the model was evaluated have greatly 

fulfilled the objectives settled at the beginning of the project. 
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6.2.1. Conclusions on mixed substrate and mixed strain fermentations 

  A non-linear ordinary differential equation system comprising of nine equations was 

constructed by applying the basic equations and postulates of the cybernetic model to a 

mixture of two carbohydrates with two yeast strains.  Unlike other cybernetic platforms 

proposed previously in the literature, the actual system involves two different equations to 

separately represent the growth of the two yeast strains interacting in the culture medium, and 

each of those equations accounts for the consumption of the two limiting substrates.  

Therefore, a system of m different microbial strains growing on an environment where n 

substrates limit their growth, the structured model constructed under the cybernetic 

perspective will have m × n combination of equations for microbial growth and substrate 

consumption, respectively.  Even when the quantification of total cell mass is good enough to 

test the models predicted, the mathematical distinction between the two yeast strains is 

desirable in order to evaluate their corresponding growth patterns.  Ultimately, the total 

number of equations included in the cybernetic model in a system comprising of m × n 

combination of strains-substrates will be 2(m × n) + p, where the number 2 expands two-fold 

the combination of strains and substrates to take into account their respective equations 

describing the specific levels of key enzymes, and p represents the number of extracellular 

products of interest in the fermentative process. 

 From experimental profile concentrations it is concluded that the three mixtures 

analyzed provide very good ethanol yields on substrate, being these values very similar to 

each other.  However, in mixtures comprising of same or higher xylose proportions, P. stipitis 

showed a slightly higher efficiency for ethanol production rather than for cell growth, and this 

behavior is very similar to that obtained when culturing this yeast strain on pure xylose as a 

carbon source, already discussed in the previous section. 



 162 

 Overall, the results obtained from the simulations applied to mixtures of glucose-

xylose using the co-culture scheme suggest that the proposed unstructured model fits 

accurately experimental data, being statistically consistent according to the averaged values of 

R2 coefficients and RSD.  The sensitivity of the model increased for the majority of the 

profiles among substrates, cell mass and ethanol, when compared to those analyzed in single 

substrate experiments, and in average, the mixture better predicted is that comprising of the 

same proportion of both glucose and xylose sugars, 50% glucose-50% xylose, with R2 = 

0.9906 and RSD = 2.214%, followed the mixture comprising of 75% xylose-25% glucose 

with RSD = 4.516%, and finally the mixture comprising of 75% glucose-25% xylose with 

RSD = 5.204%, with R2 for these latter mixtures above 0.97.  It is worthy to note that the 

predictions achieved have successfully fulfilled the main goal of this To work, since the 

models were obtained only utilizing data collected from single substrate fermentations, and 

they were not subject of subsequent error minimization, therefore the prediction made by the 

structured model in this work, when applied to the fermentation mixtures with the co-culture 

of yeast strains represents a meaningful contribution to the fermentation modeling area since 

it is one of the few works developed in course where cybernetic modeling is also applied for a 

mixed microbial population. 

6.2.2. Recommendations on mixed substrate and mixed strain fermentations. 

 As discussed in Chapter 5, the consumption of glucose in the fermentation mixtures 

was carried out mainly by S. cerevisiae with a little low contribution of P. stipitis, but when 

the xylose proportion in the mixture increased the contribution of P. stipitis was not 

significant, reason why the consumption of xylose started even when glucose was not 

completely exhausted for the high xylose fractions.  Even when the two yeast strains 

demonstrated their performance to degrade both glucose and xylose, it would be interesting to 

study the effect of immobilization and coimmobilization techniques in cell growth to promote 
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higher concentrations of P. stipitis and hence, a higher xylose conversion which will also 

improve the ethanol yields, as proposed by other authors.  Working with immobilized cells 

changes substantially the equations used to describe the growth rate, because it is necessary to 

account for the transport of substrates into the immobilized bead and the conversion of those 

substrates inside the bead, therefore the development of a complete structured model with 

either immobilized or coimmobilized scheme is an interesting option to be considered in the 

future. 

 Because of the accuracy achieved with the model developed in this work, the 

extension of the same model can be done to other process configurations such as fed-batch 

and continuous culture, pursuing the evaluation of the option showing an optimum balance 

between ethanol yield, substrate conversion and the minimization of secondary metabolites.  

Also, as mentioned at the end of Chapter 5, the actual model can be utilized not only at 

bioethanol industry levels, but to processes related to pharmaceutical and food industry; the 

production of antibiotics from complex fermentation broths, the processing of probiotic 

yogurts, and bioremediation processes carried out in wastewater and soil, are examples of 

industrial processing where microbial mixed cultures are utilized, thus the use of a robust 

model able to describe efficiently cell growth would be strongly recommended. 

 The use of controlled sequential addition of biomass to the culture media along the 

fermentation time may be useful, starting the batch process with the mixture of glucose and 

xylose but only with S. cerevisiae. Later on, when glucose has been completely exhausted, the 

aseptic inoculation of P. stipitis could be carried out to in order to lead the consumption of 

xylose.  This complementary process configuration entails some difficulties to consider, such 

as the oxygen availability in culture medium after the growth of S. cerevisiae, the adaptation 

of P. stipitis to an environment having a dense concentration of biomass, and the high initial 

concentration of P. stipitis necessary to avoid a prolonged lag phase.  Additionally, the 
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mathematical model used to simulate the fermentation kinetics should be subject to the 

corresponding modification to describe the incorporation of the new microbial strain, and the 

right time when this inoculation can take place.  Particularly, this scheme for the sequential 

addition of biomass it would be useful especially when the strain of P. stipitis utilized causes 

an inhibitory effect over S. cerevisiae, or when catabolic repression of glucose consumption 

over xylose utilization is too strong that intermediate lag phase is very large.  Therefore, the 

study of this scheme could be certainly analyzed in a future research project.  

 Regarding the experimental measurement of cell concentration, even when the 

quantification of total cell mass is good enough to estimate both biomass proliferation and 

adequacy of the structured kinetic model, it may be also useful the distinction between the 

two yeast strains by means of an appropriate method like replica plating, based in the inability 

of S. cerevisiae to grow on xylose.  This distinction will provide the experimental profiles for 

each strain, the ones that could be compared to those obtained from simulations, which will 

lead to a better understanding of the relationships existing in the mixed culture. Measurement 

of enzymatic levels can be also performed experimentally to validate the simulated trends 

obtained by means of the cybernetic model. Furthermore, both experimental and simulated 

specific enzyme level trends can be compared with those reported in the literature of xylose 

fermentation. 

 Ultimately, it is also recommended for both single substrate and mixed substrate – 

mixed strain fermentations the use of a continuous stirred-tank reactor (CSTR bioreactor) in 

order to have a better control of the critical process parameters such as temperature, agitation, 

pH, and dissolved oxygen. Likewise, the measurement of these parameters can be optimized 

by the implementation of Process Analytical Technologies (PAT) using essential tools such as 

Near Infrared and Raman Spectroscopy, biosensors and multivariate data acquisition for the 

accurate determination of experimental concentrations of cells, sugars and ethanol. 
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APPENDIX A: CONSISTENCY OF THE PROPOSED MODELS 
 

 
In order to support the statistical analysis made in Chapters 4 and 5 and to evaluate the 

sensitivity of the proposed models, this appendix includes a qualitative analysis of error to 

better understand the capability to predict the experimental trends followed in all the 

experiments.  The consistency between the concentrations is evaluated by means of a 45º 

diagonal line that represents the perfect agreement between predicted and experimental 

concentrations. In all the cases the solid symbols represent the different fermentation systems 

as follows: squares: Xylose – P. stipitis, triangles: Glucose – P. stipitis, diamonds: Glucose –  

S. cerevisiae. 

 

A.1   Single substrate fermentations 
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Figure A.1 – Comparison of the consistency between predicted and experimental cell 

        concentrations. 
 
 



 167 

 

0.0

5.0

10.0

15.0

20.0

25.0

0.0 5.0 10.0 15.0 20.0 25.0

Experimental substrate (g/L)

P
re

di
ct

ed
 s

ub
st

ra
te

 (g
/L

)

Xylose - P.stipitis Glucose - P. stipitis Glucose - S. cerevisiae

 

 
 
 

Figure A.2 – Comparison of the consistency between predicted and experimental 
            substrate concentrations. 
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Figure A.3 – Comparison of the consistency between predicted and experimental 
            ethanol concentrations. 
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A.2   Mixed substrate – mixed strain fermentations 
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Figure A.4 – Comparison of the consistency between predicted and experimental 
            total cell concentrations. 
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Figure A.5 – Comparison of the consistency between predicted and experimental 
            glucose concentrations. 
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Figure A.6 – Comparison of the consistency between predicted and experimental 
            xylose concentrations. 
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Figure A.7 – Comparison of the consistency between predicted and experimental 
            ethanol concentrations. 
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APPENDIX B: ANALYSIS OF RESIDUALS  
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Figure B.1 – Residual probability plots for the system xylose – P. stipitis. 
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Figure B.2 – Probability plots of residuals for the system glucose – P. stipitis. 
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 Figure B.3 – Probability plots of residuals for the system glucose – S. cerevisiae. 
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Figure B.4 – Probability plots of residuals for the mixture of 75% glucose and 25% xylose. 



 174 

0.20.10.0-0.1-0.2-0.3

99

95

90

80

70
60
50
40
30

20

10

5

1

Residuals

P
e
rc
e
n
t

Mean -0.04979

StDev 0.1033

N 9

KS 0.204

P-Value >0.150

Total cell concentration

0.750.500.250.00-0.25-0.50

99

95

90

80

70
60
50
40
30

20

10

5

1

Residuals

P
e
rc
e
n
t

Mean 0.06075

StDev 0.2406

N 9

KS 0.266

P-Value 0.065

Xylose concentrations

1.00.50.0-0.5-1.0-1.5

99

95

90

80

70
60
50
40
30

20

10

5

1

Residuals

P
e
rc
e
n
t

Mean -0.1384

StDev 0.4886

N 9

KS 0.398

P-Value <0.010

Glucose concentrations

0.40.20.0-0.2-0.4-0.6

99

95

90

80

70
60
50
40
30

20

10

5

1

Residuals
P
e
rc
e
n
t

Mean -0.1212

StDev 0.1857

N 9

KS 0.187

P-Value >0.150

Ethanol concentrations

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.5 – Probability plots of residuals for the mixture of 50% glucose and 50% xylose. 
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Figure B.6 – Probability plots of residuals for the mixture of 25% glucose and 75% xylose. 


