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ABSTRACT

A mathematical structured model was developed &alipt the behavior of glucose-
xylose mixtures using the suspended co-culturé@fnild-type yeast strairSaccharomyces
cerevisiaeMontrachet andPichia stipitis NRRL Y-11545 for ethanol production. Kinetic
characterization was estimated in single subs@at single strain batch fermentations in
order to construct the model for the mixture systefrhe simple Monod model was used to
describe the behavior of single substrate fermiemsiwith a high degree of accuracy’ (R
0.96) and residual standard deviations, (RSD < Y.G%e agreement between the simulated
and experimental data was superior for the ferntiemtaystem glucose S. cerevisiaeand
the system xylose P. stipitis promoted the best balance between cell growthethanol
production with a yield coefficient of 0.35 g ohanol/g xylose.

A non-linear ordinary differential equation systemmprising of nine equations was
constructed under the cybernetic framework to mtuebehavior of glucose-xylose mixtures
with the specified yeast co-culture. The resultaibied from the simulations suggest that the
proposed model fits accurately the experimentab.ddhe sensitivity of the model was
slightly higher for the mixture having the same godion of glucose and xylose (50%
glucose — 50% xylose), with average values DE®.99 and RSD = 2.21%. The accurate
prediction of the experimental concentrations acoméi that the model utilized provides
reliable kinetic information. Small deviations wesbserved but they are commonly found in
one simulation system which has not been objetirttier error minimizations. In the future,
the model can be utilized for other process coméigans such as fed-batch and continuous
culture, either with the same co-culture schemeusing immobilization techniques to

evaluate both fermentation efficiency and modelieacy.



RESUMEN

Un modelo matematico estructurado fue desarrolfeda predecir el comportamiento
de mezclas de glucosa y xilosa usando el co-culsuspendido de las levaduras
Saccharomyces cerevisidontrachet yPichia stipitisNRRL Y-11545 en su estado natural,
para la produccion de etanol. La caracterizaciogtica fue estimada en experimentos por
tandas, con un solo sustrato y una sola levaduna,de construir el modelo para los sistemas
de mezcla. El modelo simple de Monod fue usada gascribir el comportamiento de los
sistemas fermentativos de un solo sustrato conltongeado de precisiéon (R> 0.96) y
desviaciones estandar residuales (RSD > 7.5%)coheordancia entre los datos simulados y
los experimentales fue mejor para el sistema dadetacion glucosa S. cerevisiagy el
sistema xilosa P. stipitispromovié el mejor balance entre crecimiento celylaroduccion
de etanol con un coeficiente de rendimiento de §.88 etanol/g de xilosa.

Un sistema de ecuaciones diferenciales ordinaoakneales comprendido de nueve
ecuaciones fue construido bajo la perspectiva néhiea para modelar el comportamiento de
las mezclas de glucosa y xilosa con el co-cultededtaduras ya especificado. Los resultados
obtenidos de las simulaciones sugieren que el mquebuesto se ajusta en forma precisa a
los datos experimentales. La sensitividad del rnoofie ligeramente mayor para las mezclas
que contienen 50% glucosa y 50% xilosa, con valpresnedio de R= 0.99 Y RSD =
2.21%. La precisa prediccion de las concentrasiexperimentales confirma que el modelo
utilizado provee informacion cinética confiable.gBefias desviaciones fueron observadas,
pero son encontradas comunmente en un sistemanidasion que no ha sido objeto de
futuras minimizaciones de error. En el futuro, ebdelo puede ser utilizado para otras
configuraciones de proceso tales como semi-tandastiyo continuo, ya sea con el mismo
esquema de co-cultivo o usando técnicas de inmaaxithin para evaluar tanto la eficiencia de

la fermentacion como la precision del modelo.
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1. INTRODUCTION

Ethanol is one of the most important renewable aecsatile transportation fuels
contributing to the reduction of negative enviromta¢ impacts generated by the worldwide
utilization of fossil fuels. The outstanding adwages of fuel ethanol include its use as an
additive (high octane), high heat of vaporizatiand other characteristics that allow
achieving higher efficiency use than gasoline irtimozed engines. Internal combustion
engines that burn ethanol as a fuel have a bigradga when compared with engines that
burn the typical hydrocarbon components of refindd. This is because ethanol is more
oxygenated, and its combustion in oxygen genetatssenergy in comparison with either a
pure hydrocarbon or a typical gasoline [1-2]. hikee, ethanol is a good substitute for metyl
tert-butyl ether (MTBE) which was the first appravexygenated candidate for gasoline, but
due to environmental pollution incidents causedMBE spillage, several states in USA
switched from MTBE to ethanol and ethanol demandabeto expand considerably [3].
However, the production of bioethanol -ethanol pictl from biomass- is complicated and
lately has been constituted as a controversy byfdahethat some of the sources or raw
materials for this biofuel have been used histdlsicas food for humans and as feed for
animals [4]. Therefore, according to the currenergy requirements there are three
fundamental benefits to further develop ethana asnewable alternative transportation fuel:
() to reduce world dependence on petroleum-bageld {biofuels can be produced locally in
sustainable systems), (i) to improve the environimiey decreasing net greenhouse gas
emissions (renewable fuels contribute to recychbaa dioxide, which is extracted from the
atmosphere to regenerate biomass), and (iii) teigggonew employment (e.g., agriculture &
agro industries).

Ethanol can be produced from a considerable laigfeof feedstock containing

fermentable sugars that are metabolized by diffen@nroorganisms. The majority of this



feedstock has not been widely studied yet, andeptessome difficulties to release the
fermentable sugars. Two classes of this feeddtagk been the most utilized globally in the
last decades: sugar cane and corn starch, particiiaegions like Brazil and United States,
respectively. However, the use of these two fexmttshas been currently extended to several
countries worldwide, such as China, India, Frat@esmany and many others [5] and global
ethanol production reached 51 GL/year in 2006, loictv about 39 GL were used as fuel and
the rest for beverage and other industrial apptoaf6]. As mentioned before, to minimize
controversy generated by using these food/feedegieetistocks to produce ethanol, attention
and priority have been assigned to the study ofolkigllulosic biomass as raw material for
ethanol production. In Chapter 2, a completediiene review will be discussed covering the
areas of bioethanol production, modeling and yéashentation. A general classification
proposed by Cardona and Sanchez [5] separates $s8asoarces for bioethanol production as
follows: (i) sucrose-containing feedstock, (ii) retay materials, and (iii) lignocellulosic
biomass. This thesis is focused on the last cayegdrich deserves special attention because
of the availability of lignocellulosic materialsahcan be utilized for ethanol production and
other useful applications. Furthermore, becausecwfents technologies for bioethanol
production are crop-based using substrates sushiges cane juice and cornstarch, a lot of
efforts have to be made to make use of less expehighocellulosic materials to reduce the
cost of raw materials, the ones that can be as &wgh0% of the total production cost [7].
Typically, lignocellulose is composed about 35%6686 cellulose, which is a long chain of
single glucose sugar molecules bonded togethecigstalline structure [8]. Another 20% to
35% is made up of hemicellulose, a long, branchedncof heterogeneous sugar molecules,
including xylose as one abundant component and alifferent proportions of five and six
carbon sugars (pentoses and hexoses). The regpdiaction comprises lignin, an insoluble

phenylpropane polymer which is often attached te tellulose fibers to form a



lignocellulosic complex. This complex and the ligralone are usually quite resistant to
conversion by microbial systems and many chemigahts [9].

Globally, production of ethanol from lignocelluiodiomass comprises five main
steps{(i) biomass pretreatment, (ii) hydrolysis of polgsharides, (iii) fermentation of sugars,
(iv) separation of final products, and (v) effluérgatment [10]. The present work is focused
in the fermentation step using the co-culture ad Wild-type yeast strains to chemically
represent the fermentation media after the hydiolgs cellulose and hemicellulose. Then,
because of the premise is to work with mixturegloicose and xylose from cellulose and
hemicellulose respectively, using efficient micmbstrains, it is necessary to find those
strains, and they must consume both glucose amusayo increase and improve ethanol
yield. Several microorganisms can efficiently fennthe glucose component in cellulose to
ethanol but conversion of pentose sugars in theidetioiose fraction, and particularly
xylose, remained a bottleneck in biomass-to-ethatmiversion until some years ago.
Besides, the microorganisms should exhibit somendssg traits to achieve high ethanol
yields and tolerance, and the priority must be domnent the variety of sugars found in
lignocellulosic biomass to ethanol as the sole &mrtation product and to resist the high
ethanol concentrations necessary for economicalyataecovery.

Saccharomyces cerevisigea well known yeast strain in the alcoholic begrs
industry since ancient times and has been genaedigrded as safe (GRAS); currently it is
seemingly the best “platform” for lignocellulosiminass because of its relative tolerance to
the growth inhibitors found in the acid hydrolysatd lignocellulosic biomass [11]. It is able
to ferment glucose to ethanol with high yields agimg up to 90 g/L of ethanol with an initial
glucose concentration basis of approximately 200 [@2]. The main disadvantage i8.
cerevisiaeis the limited range of monosaccharides and dissmades that can be converted

into ethanol; xylose can not be fermentedSycerevisiadbecause it lacks both a xylose-



assimilation pathway and adequate levels of keytgsen phosphate pathway enzymes,
although it is capable to ferment xylulose but astquickly or efficiently as glucose [13-14].
Therefore, several studies have been made to fgead test efficient xylose-fermenting
yeast strains to produce ethanol, being the beasinstso farBrettanomyces naardenensis,
Pichia stipitis, Pichia segobiensis, Pachysolen nigphilus, Kluyveromyces marxianus,
Candida shehataggnd Candida teniugl16]. Usually, the naturally xylose-fermenting yeasts
have been shown to produce ethanol at 78% to 84%eanfretical yield (0.51 g ethanol/g
sugar) and at concentrations of up to 5%. Intenstudies have been developed to test the
efficiency of strains before mentioned, in bothgirsugar and mixture fermentations, and
the results have been high ethanol concentratioh@ed with respect to the initial sugar
concentrations, and high ethanol yields as welheWworking with mixtures of glucose and
xylose, P. stipitis best results have been achieved for the transt@maf substrates into
ethanol [16] and besides have shown that when &yi®ghe sole carbon source, the final
ethanol concentration at the end of fermentatiomgwith ethanol yield is slightly higher if
compared with 100% glucose media [1Therefore,Pichia stipitis appears to provide the
best overall performance in terms of complete sugglization, minimal co-product
formation, and insensitivity to temperature and sttdte concentrations [18}aving the
highest native capacity for xylose fermentatiorany known microbe and most of its strains
are among the best xylose-fermenting yeasts inc¢yfiare collections [19].

Once efficient yeast strains have been identifiredpurpose is to use them in a co-
culture scheme along with glucose and xylose megusetting different initial sugar ratios
and based in the optimal culture conditions with thain objective to develop mathematical
models to predict the behavior of cell, substrated products concentrations as a function of
fermentation time. Modeling a fermentation procgsesents some advantages such as

process knowledge improvement, decreasing theof@stpensive industrial experimentation,



mathematical optimization and process control. Hidity to predict the behavior of
fermentation systems enhances the possibility ofezng their performance. Mathematical
equations of model systems represent a tool ferahd the most recent advances in computer
hardware and software have made the approach nifeetiee than previous simplistic
attempts [20-21].

An adequate model which describes accurately thmererental concentration
profile in a fermentation process requires deteatndm and optimization of kinetic
parameters such as maximum specific growth ratesamgration constants. Besides, it is
necessary to choose the model that best fits enpatal conditions, also taking into account
all relevant aspects regarding the chemical, physiochemical and technical areas of the
process. Therefore in this research work, basexh yperational conditions and methods
described in Chapter 3, the model chosen is théruatered and non-segregated model
developed by Monog?2], which has been used widely and successfutigesseveral years
ago to describe cellular growth and fermentatiareics of a broad collection of substrates
and microbes. This model is one of the simplestet®including the effect of nutrient
concentration, assuming that only one substratedtbwth limiting substrate) is important in
determining the rate of cell proliferation. As Mile discussed in Chapter 4, this model fits
accurately the set of experimental data obtaineal series of single substrate fermentations,
using one substrate-one yeast strain, with no inbibeffects, neither substrate nor product,
present in the performed fermentations. Kineticoinfation such as maximum specific
growth rate and saturation constant, and yield fooefits were collected after processing
experimental data and then were used to constneciniodel that quantifies growth kinetics,
substrate consumption and ethanol production. ¢hépter also presents an analysis of the
efficiency of each yeast strain in the fermentatmncess, comparisons between biomass

yields and ethanol yields and the complete setadsbalance equations utilized to describe



the rates of consumption and production of suledrand products, respectively. However,
the efforts to model fermentations with more than substrates with a simple Monod model
are not adequate because simple unstructured mametieveloped to explain a particular set
of experimental data and do not take into constaerathe optimal nature of microbial
growth on multiple substrates. In a multiple stddst co-culture environment the cells show
to have mechanisms to grow first on the preferahblaestrate available and proliferate much
faster than the cells that respond differently.thiis environment microorganisms have to be
viewed as optimal strategists, which means thaeuadequate conditions they display the
ability to “think” and “decide” how to best utilizéne resources so as to maximize a particular
objective. Therefore as discussed in Chapter Fuatared model has been used to simulate
the concentration profiles in co-fermentations afcgse and xylose, but this model has a
basic premise which represents the most importaribuie of modeling efforts: information
obtained from growth on single substrate experisient each of the substrates will yield all
of the information required for predicting growt nixed substrates [23-24]The model is
based in the same mass balances made for singaelfermentations but it also takes into
account other important considerations and conttithat the model demands, specially
regarding to the enzyme balances and allocatiaruress policies. The first structured model
developed was made to analyze the profile condsmtsaof glucose and xylose for each one
of the strains used. This is, one model was deeeldprS. cerevisia@and the other one was
developed forP. stipitis After these models matched successfully singlestsate
fermentations, the complete structured model wastcacted on the basis of additive kinetics
for both yeast strains utilized. Hence all the numsubscripts belong to sugar identification
and the alphanumeric subscripts belong to yeaainstdifferentiation. Final fermentation
runs were carried out to validate the structuredehand the fitting was quantified by means

of experimental statistical tools such as detertronaof mean square errors, linear



correlation coefficients and residual standard atms between experimental and predicted
data. The conclusions of this research projectim@ayed in Chapter 6, which also includes
a list of recommendations to complement the scdpiis work and to extend it to other
process configurations in bioprocess engineering.

It is imperative to recognize the value and reheeaof this work, because as shown
in the next chapter, there is a large compilatibrpievious studies concerning research
projects made with mixtures of glucose and xylas@roduce fuel ethanol and modeling of
fermentation processes, nevertheless at the moaofights document’s writing there are no
apparent publications in which the objective isntodel co-fermentations of glucose and
xylose using co-cultures of the yeast strains abueationed. Therefore the efforts made in
this research project are vanguardist in the dewveémt of the lignocellulosic ethanol
framework, mainly in areas such as optimization pratess design. Likewise, the area of
yeast dynamics is also promoted when evaluatingprormance of two different types of
strains in an environment governed by sequentiagwmption of two substrates, the ones that

have to be completely metabolized to achieve thbdst ethanol yields in the bioprocess.

1.1. Objectives
1.1.1. General objective
* To experimentally determine kinetics and vyield fiogfnts to further develop a
structured model to mathematically predict the mthg@roduction using the wild-type
yeast strainsSaccharomyces cerevisiaand Pichia stipitis and media containing

mixtures of glucose and xylose.



1.1.2. Specific objectives
To determine kinetic parameters such as the maxinguowth rates, Monod’s
saturation constant, and product yield coefficiantsingle glucose and xylose batch

fermentations and to analyze experimental datafascion of fermentation time.

To use the above experimental parameters in omenddel the growth of cells,
substrate consumption and ethanol production intiphel substrate fermentations -
glucose and xylose- using an appropriate structaredel or based on the sequential

utilization of two carbon carbohydrate sources ¢gke and xylose).

To validate the developed mathematical modeling, doth single and multiple

substrates, with experimental fermentation runs.
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2. LITERATURE REVIEW

2.1. Bioethanol as a transportation fuel
2.1.1. Historical development

Ethanol has been known and produced by human $singe ancient times. Modern
techniques and development of molecular archaedbagg proven that ethanol was present
in wine making, as early as 5400-5000 BC in Westssia, and further spread around the
world, to Egypt and Mediterranean Europe. In faetitial DNA sequence data identified a
yeast similar to the moderBaccharomyces cerevisias the biological agent used for the
production of wine, beer and bread in Ancient Egj{pt Whisky, brandy and other distilled
spirits from grape and other fruits emerged worttevand their production techniques were
refined and further modernized. Distillation wag@oduced in 1310 and a comprehensive text
on the subject was published in Germany by 1556 3jain spirits production arose for the
first time in North America in 1640, and operati@mducted in stills were extended all over
Ireland and Scotland until the twin-column distibe apparatus devised by the Irishman
Aeneas Coffey was implemented in 1830, which caomtnto yield high-proof ethanol (94-
96% by volume) [2].

The above references are regarding to histori@leldpment of for alcoholic
beverages. However, the use of ethanol as a fuliivaglis believed to have begun by the end
of the nineteenth century, when emerged as a fushace for automobiles among engineers
and motorists [2]. For example, the Automobile ChailAmerica sponsored a competition for
alcohol-powered vehicles in 1906, which steered d#tiention towards ethanol as an
important resource by fear about oil scarcity,ngsgasoline prices, and the monopolistic
practices of Standard Oil [3]. Figure 2.1 shows finst automobile designed to use pure
ethanol as a fuel in 1896. The first companies dli@impted use of alternative fuels to replace

gasoline were Ford and Diesel, and these alteewmtivere ethanol and powdered coal
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respectively, but soon they opted for the less egipe option of gasoline and other crude oil

fractions like kerosene [4].

Figure 2.1— Ford Model Car (1896), which used pure ethabpl [

Nevertheless, Henry Ford continued his interestliernative fuels, and he sponsored
conferences concerning with the industrial usesgfcultural mass products. He created
model A in 1935 - 1937, an automobile that wasroéiquipped with an adjustable carburator
designed to allow the use of gasoline, alcohola anixture of two fuels. Several countries
(Argentina, Australia, Cuba, Japan, New Zealand atfer) in the 1920s and 1930s used
ethanol blends in gasoline and Germany became g@ianealcohol-fueled vehicles during
World War II. By 1944, the U.S. Army had developgchascent biomass-derived alcohol
industry [6]. However, these efforts were mostlyaccontingency or emergency nature and
were abandoned once oil began to flow in incredgitagge amounts after World War I
ended in 1945.

From the 1970s onwards considerable rising oilgsricave occurred similar to those
of the 1860’s motivating energy conservation asiarify, encouraging every country to use

alternative fuels like alcohol and liquefied gay. B280, Brazil was the pioneer country to
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establish a national alcohol program (PROALCOOLY dhis boosted the production of
ethanol-based automobiles, reaching 96% of thd &#kes in 1980 in that country [7].
Nevertheless these sales diminished as a consexjoétiae reduction in prices of the crude
oil barrel and it was until 2003 when the Braziliantomobile producers introduced truly
flexible-fuel vehicles (FFVs), with engines capabfebeing powered by pure gasoline, 93%
aqueous ethanol, or by a blend of gasoline anddinbyg ethanol [8]. But ten years before, in
1993 a law was enacted, stating that all gasobiek should have at least a 20% of ethanol by
volume. Figure 2.2 shows the changes in oil prigenf 1860 until 2007 and the main
worldwide events that have promoted those chang@aparing the value of the money in
2007 (green line) with respect to the value in egadr that is being analyzed (black line).
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Figure 2.2— Historical oil price. Data from BP Statisti¢aview of World Energy, British
Petroleum, London, 2007 [9].
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Finally in 2006, the tax rate for gasoline was wetbe 58% higher than that for
hydrated ethanol (93% ethanol and 7% water), aswltalx rates were made advantageous for
gasoline/ethanol blends higher than 13% [10]. 18422005, Brazil was the world’s largest

producer of ethanol and Figure 2.3 shows world&-athanol production in the last 32 years.
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Figure 2.3— Worldwide ethanol production after 1975 in noifliof liters. Data from RISE
[11].

Besides Brazil, the second major contributing coum the development of fuel
ethanol production is the United States [2]. Tigloout the twentieth century, ethanol
production in USA was intended for the manufactofea large number of chemical
intermediates and fine chemicals, using synthetites with ethylene from the petrochemical

industry as a raw material, but the oil price shatkthe early 1970s, coupled with the
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requirements for cleaner burning gasoline and thendatory inclusion of oxygen-rich
additives in gasoline, certainly focused attentmn ethanol as an “extender” for gasoline.
The compound mainly used was methyl tert-butyl ettMTBE), another petrochemical
industry product, but after 1999 its use stoppezhbse of its toxic and polluting effects [11].
Since then, MTBE’s consumption in the United Statesreased considerably as shown in
Figure 2.4, ethanol consumption has exceeded thRtTBE from 2003 onwards. In that
moment, the perfect candidate to replace MTBE wtham®l, and therefore its production
increased rapidly after showing little sustainedwgh for most of the 1990s, having an

exponential growth after 2002 (Figure 2.5).
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Figure 2.4— MTBE production in USA. Data from the U.S. Depastihof Energy [12].
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Figure 2.5 —Ethanol production in USA (billons of gallons). @drom the Renewable Fuels
Association [11].

In 2005, the United States became the largest etl@nducer nation, followed by
Brazil, China, India, France and Russia. The ethalemd most commonly used is E85 (85%
ethanol, 15% gasoline), which is well suited forstnflexible-fuel vehicles, although blend
E10 is also popular [13]. Greater quantities obathl are expected to be used as a motor fuel
in the future because of two federal policies ideldi in the 2005 Energy Policy Act (EPACT
2005) [13]: a $0.51 tax credit per gallon of etHamsed as a motor fuel and a new mandate

for up to 7.5 billion gallons of renewable fuellde used in gasoline by 2012.

2.1.2. Ethanol fuel specifications

The use of ethanol as a fuel in the transportaiea is supported by a compilation of
chemical and physical properties that make thigidiquel an excellent alternative to enable

cleaner combustion and better engine performamckicing the dependence on fossil fuels
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(mainly oil), and avoiding the release of exces&mgironmental contaminants that promote
and aggravate global warming issues. It is immrta clarify that use of ethanol can be
analyzed from three points of view: (i) as an oxyaged additive (substituting MTBE from
2002 to date), (ii) as an anhydrous blender fol iimdow-level and high-level gasoline and
ethanol mixtures, and (iii) as a pure fuel. Alssgent advances in lignocellulosic feedstock
processing technology may give ethanol a strongst position relative to other alternative
fuels [14].

The outstanding ethanol properties compared wadobne are discussed below, and
Table 2.1 summarizes this comparison. Ethanol h&sglher octane number, which is a
measure of a fuel's resistance to self-ignition afetonation, and this means higher
compression ratios resulting in greater engineciefiicies and higher power from a given
engine size. Regarding flammability limits, ongaited, ethanol burns faster than gasoline,
thus allowing more efficient torque development][&so ethanol has a much higher heat of
vaporization (about 390 BTU/Ib) than gasoline (ab&@0 BTU/Ib), which increases the
power produced from a given engine size, and dsesedhe maximum combustion
temperature and the thermal load on the enginbariél’s stoichiometric flame temperature
of 1930°C (compared to 1977°C for gasoline and 2054r diesel fuel) contributes to higher
efficiencies for an optimized ethanol engine. Hinasolubility could be an obstacle to a
greater acceptance of ethanol as a fuel becautiee giossibility of water phase separation
from a gasoline-ethanol blend. However, the moharetl added to gasoline, the less this
problem tends to occur, because gasoline-ethaantiblhave a capacity to dissolve water that

is directly proportional to the ethanol content [5]
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Table 2.1 —Gasoline and ethanol properties [5].

Parameter Unit Gasoline Ethanol

Lower caloric value kIikg #3500 28225
kJ/L 32180 22350

Density kJ/L 0.72-0.78 0.792
Research Octane Number (RON) - 90 - 100 102 - 130
Motor Octane Number (MON) - 80 -92 89 -96
Vaporization latent heat kJ/kg 330 - 400 842 - 930
Stoichiometric relation air/fuel 14.5 9.0
Steam pressure kPa 40 - 65 15 - 17
Ignition temperature °C 220 420
Solubility in water % in volume ~0 100

2.1.3. Economic and environmental issues for bioethanol

To be competitive, and to win economic acceptatioe,cost for bioconversion of
biomass to liquid fuel must be lower than the aurrgasoline production costs. Regarding
bioethanol production, the cost of feedstock anliulodytic enzymes are two important
parameters for a low cost ethanol production. Bissnfeedstock cost represents around 40%
of the ethanol production cost [16]. An importaattbr for reducing the cost of bioethanol
production is to use larger industrial facilitieghrer than smaller ones. Wilke and co-workers
[17] have made the first effort to analyze the aafsthe conversion of biomass to ethanol
process based on a Simultaneous Hydrolysis and dr¢ation (SHF) operation and
concluded that neat ethanol could compete withlgesat the oil prices in the range of $20
to $30 per barrel. They also suggested an integrapproach, that is, process engineering,
fermentation and enzyme and metabolic engineeraligtogether [17]. Estimates and
economic analyses from primary scientific journalata from a range of sources (including

reports prepared for governments and conferenceepdings) show productions costs for
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bioethanol on the basis of 2003, as described bleTa.2. Ethanol produced from sugar,
starch (grain), and lignocellulosic sources covepeatiuction cost estimates from less than
$1/gallon to more than $4/gallon. Even with thevdo production costs for lignocellulosic

ethanol in the United States, taking into accoumdrfcial outlays and risks, an ethanol price

of $2.75/gallon would be more realistic, accordingohlman’s review [18].

Table 2.2 —Estimated production costs for bioethanol in 2008

Production Production

Production cost

Source of Ethanol €/GJ) ($(/:I(i)tztr) ($/;gﬁé .
Sugarcane (Brazil) 10-12 0.24 -0.29 0.91-1.10
Starch and sugar (U.S. and Europe) 16.2 — 23 0(B95- 1.48 - 2.08
Lignocellulosic (U.S.) 15-19 0.36 —0.46 1.36.741
Lignocellulosic (Europe) 34 -45 0.82-1.08 3-140.09

Regarding environmental issues, ethanol representksed carbon dioxide cycle
because after burning of ethanol, the releasegi€@cycled back into plant materials by the
photosynthesis effect to synthesize cellulose, Whiteans no net addition of G@o the
atmosphere, making ethanol an environmentally beiaeE&nergy source. However, the main
feature of ethanol as a renewable fuel and its ®mo the environment is a tiny contribution
to the green house gas effect. Direct comparisdingas emissions resulting from the
combustion of anhydrous ethanol, ethanol-gasolieeds, and gasoline are straightforward to
perform but are poor indicators of the overall @mngences of substituting ethanol for
gasoline. Therefore, one effective methodologyttly the environmental impact of ethanol
is to compare CPemissions among various fuels as shown in Figuee Rloncarbon-based

fuels (i.e., electric vehicles powered using eleityr generated by nuclear and solar options)
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along with ethanol from biomass are the best optibacause of their low G@missions.
Ethanol from corn showed no net advantage, despdee recent estimates that place its

production as giving modest reductions in greenb@as emissions, 12-14% [12,20].
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Figure 2.6 —Total fuel cycle carbon dioxide emissions [2].

Figure 2.7 shows how cellulosic ethanol has thpn@ntribution to the reduction of
greenhouse gas emissions when compared to gasafideglso to corn and sugarcane based
ethanol. Filled bars represent the percentage eérgrouse gas emissions where gasoline

contributes to 100% of emissions and cellulosicaetth has a contribution of 149%,

approximately [21].
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Figure 2.7 —Percentage of reduction of greenhouse gas emsssidoel ethanol [21].

2.2. Biomass-to-ethanol technology
2.2.1. Classic feedstocks for ethanol production

As mentioned in section 2.1, historical developnwriiioethanol motivated the use of
different feedstocks for its production, dependomgthe policies established in each country
encouraging to reduce the use of petroleum-derivel$ and toxic oxygenate additives. In
general, bioethanol feedstocks can be conveniadlysified into three types, as described
briefly in chapter 1: (i) sucrose-containing feedst (e.g. sugar cane, sugar beet and sweet
sorghum), (ii) starchy materials (e.g. corn, wreaad barley), and (iii) lignocellulosic biomass
(e.g. wood, agricultural wastes, straw and grasg4) A brief introduction concerning
types (i) and (ii) will be made now, although emgikawill be made on the third type because
of the scope and purpose of this research work.

The first type of feedstocks comprises ethanol pced from sugars, which involves

either sugar cane juice or molasses (by-produstigér mills), and the leading country using
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these feedstocks is Brazil with about 27% of glgbaduction. The Brazilian bioethanol
industry was poised for a major jump during 20002@s a part of new national plan to
increase sugar cane production by 40% by 2009 [P3¢ main advantage in sugar-based
bioethanol production lies on the reduction of siep if compared with starch-bioethanol,
since sugars are already present in the feedt3dwekprocess is based on extraction of sugars
(by means of milling or diffusion), which may beethfed straight to fermentation [5]. The
most employed microorganism$accharomyces cerevisideae to its capability to hydrolyze
cane sucrose into glucose and fructose, two easyymilable hexoses. Ethanol yields
achieved using sugar cane molasses&ncerevisiagange 85-90% in batch processes [24]
and 94.5% in continuous processes carried on iireaus-stirred tank reactors (CSTR)
using residence times of 3-6 hours and achievingdymtivities of 5-20 g/L-h [25].
Production cost of ethanol from sugar cane wasnestid in ~$160/being the lowest cost
so far of all different feedstocks for bioethanabguction [26]. Sugar beet is also very
utilized, especially in European countries, and ohthe main advantages is a lower cycle of
crop production, higher yield, and high toleranta wide range of climatic variations.

The second type comprises ethanol from starchyemadt, being corn the most
utilized, almost exclusively in countries like Uatk States. Starch is a high yield feedstock, a
homopolymer consisting of only-glucose monomers but acid or enzymatic hydrolysis
break down the chains of this polymer is requir@@btain glucose syrup and then produce
ethanol by yeast fermentation. USA has a larga-based bioethanol industry with a
capacity of over 15 billion of liters per year aitd production capacity is anticipated to
continue to rise to about 28 billion of liters perar by 2012, as dictated by the Energy Policy
Act of 2005 [26]. Ethanol produced from corn hhs higher conversion rate, with 410
liters/ton, although ethanol yield is so much lowercompared to sugar cane, and the

production cost reaches values ranging from $230r2[26]. This is due mainly by two

22



reasons: yeasts such @scerevisiaeannot utilize starchy materials and thereforeysres
such as glucoamylases amehmylases need to be added, and the other onatistdrchy
materials need to be cooked at high temperaturebtan a high bioethanol yield [28]. The
starch-based bioethanol industry has been commigreiable for about 30 years; in that
time, tremendous improvements have been made ymenefficiency, reducing process costs
and time, and increasing bioethanol yields [27].

The third type of feedstock involves lignocellulbgbiomass, and it is currently
considered as the best option when compared ta sngestarchy materials because of the so
called “food versus fuel” controversy generatedubing these food/feed grade-feedstocks to
produce ethanol and thus increasing the costsdoeml food market, which have reached
alarming bounds. Therefore, attention and priotigve been assigned to the study of
lignocellulosic biomass as a raw material for etiganoduction. As mentioned in Chapter 1,
production of ethanol from biomass is one way tuce both consumption of crude oil and
environmental pollution. Bioethanol can be produéem cellulosic feedstocks, but one
major problem related to production processes & dkailability of raw materials; the
availability can vary considerably from season éason and depends on the geographic
locations. Lignocellulosic biomass is the mostnpiong feedstock considering its great
availability and low cost, but the large-scale caencral production of fuel bioethanol from
lignocellulosic materials has still not been impéted widely [22]. The lignocellulosic
complex is the most abundant biopolymer in thetgadaching about 50% of world biomass
and its annual production was estimated in 10-8@biton [24] and could produce up to 442
billion liters per year of bioethanol [29]. Figu&8 shows the summarized technological

routes for ethanol production from the three feeclst described above.
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Figure 2.8 —Technological routes for ethanol production [5].

2.2.2. Components of lignocellulose

Lignocellulose is one component of the cell walhigher plants, which provides the
structural rigidity necessary for growth. Thredypgers comprise the entire microscopic
structure of lignocellulose: cellulosedd;(Os), hemicellulose such as xylans(304)m, and
lignin [CoH1003.(OCHs)o9-14n in trunk, foliage, and bark [30,31]. Figure 2.Row/s a
schematic representation of these three compoimeiatsnacrofibril array of any given plant

cell.
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Figure 2.9 —Lignocellulose microscopic structure and distribat[32].

Cellulose is a homopolysaccharide comprising apprately the 35-50% of
lignocellulose materials. It is composed @fp-glucopyranose units (glucose chair
conformation) linked together b@(1->4)-glycosidic bonds. The cellulose molecules are
linear; thep-p-glucopyranose chain units are in a chair confoionatnd the substituents HO-
2, HO-3, and CKHOH are oriented equatorially. Glucose anhydrideictv is formed via the
removal of water from each glucose unit, is polyizedt into long cellulose chains that
contain 5000-10000 glucose units. The basic rempanit of the cellulose polymer consists
of two glucose anhydride units, called a cellobiosét [33]. The second major chemical
constituent in lignocellulose biomass is hemicel@ (~20-35%), which is a mixture of

various polymerized monosaccharides such as gluowmenose, galactose, xylose, arabinose,
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4-O-methyl glucoronic acid and galacturonic acid ras&l but xylose and arabinose are the
predominant pentose sugars derived from the helmicseé of most hardwood feedstocks,
agricultural residues and other herbaceous crapsh ss switchgrass. Lignocellulose’s
remaining fraction are the lignins, highly brancheuibstituted, mononuclear aromatic
polymers in the cell walls of certain biomassegeesmlly woody species. Lignin cannot be
readily converted to ethanol but can be used asehdr precursor for specific chemical
syntheses. Likewise, there is no microorganisnrecty available that can utilize lignin
monomers for ethanol production [34]. Lignins aneimicelluloses may form chemically
linked complexes that bind water-soluble hemiceles into a three-dimensional array,
cemented together by lignin, that sheaths the loskumicrofibrils and protects them from
enzymatic and chemical degradation [2]. FigureD 2d 2.12 show the basic chemical

structure of these three polymers.

THOH
H 8]
H
OH H
H
H oH

Figure 2.10 —Structure of a short segment of cellulose [35].
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Figure 2.11 —Structure of xylan a short segment of hemicellul@&3.

Figure 2.12 —Structure of segment of lignin [37].
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The contents of these three fractions in lignatedic materials may vary depending
on the type of material and the geographic areacco&ling to Saez’s review [38]
lignocellulosic materials can be divided in five imaroups: herbaceous, crop residues,
hardwood, softwood and cellulose wastes. TablesBBvs some examples of each one of
these five main categories and the abundance &f eae of the three fractions described
above.

Table 2.3 —Approximate composition of selected lignocellulosiaterials for ethanol
production [38].

Cellulose Hemicellulose Lignin

Material % % %
Alfalfa hay 38 9 14
Switchgrass 45 31 12
Leaves 15-20 80 -85 0
Corn cobs 45 35 15
Corn stover 41 21-28 17 - 22
Sugarcane bagasse 40 22.5 25
Wheat straw 36 28 29
Nut shells 25-30 25-30 30-40
Aspen 46 26 18
Hybrid poplar 43 21 26
Spruce 43 26 29
Pine 44 26 29
Newsprint 61 16 21
Newspaper 40 - 55 25 -40 18-30
Recycled paper sludge 50 10 0
Sorted refuse 60 20 20




2.2.3. Processing of lignocellulosics to bioethanol

There are several options for a lignocelluloséitethanol process, but regardless of
which is chosen, some features must be assesssmimparison with established sugar- or
starch-based bioethanol production. These featmasde efficient de-polymerization of
cellulose and hemicellulose to soluble sugars,ciefit fermentation of a mixed-sugar
hydrolysate containing hexoses and pentoses, addlapoocess integration to minimize
process energy demand and reduction of lignin comtethe feedstock to decrease the cost of
bioethanol [22]. Processing of lignocellulosics dimethanol consists of four major unit
operations: pre-treatment, hydrolysis, fermentatemmd product recovery. Each one is

described below.

2.2.3.1. Pre-treatment of biomass

Pre-treatment of biomass is necessary becausedtnix of cellulose and lignin bound
by hemicellulose chains should be broken in orderetluce the crystallinity degree of the
cellulose and to increase the fraction of amorphmikilose, with the objective of making
more accessible to the enzymes that convert thieokbgdrate polymers into fermentable
sugars and to ethanol producing microorganismsditiaally, the hemicellulose fraction
should be hydrolyzed and lignin should be releasedemoved. Several methods and/or
combination of methods already exist to carry otg-tpeatment. The physical-chemical
method known as steam explosion is the most stualeldapplied, since it is recognized as
one of the most cost-effective for hardwood andcatjural residues, but it is less efficient
for softwood. [39]. One very promising method he tpre-treatment with Liquid Hot Water
(LHW) or thermohydrolysis, which presents elevatecbvery rates of pentoses and does not
generate inhibitors [40]. Chemical methods sucHilge acid hydrolysis are also available,

but the costs are higher than the ones correspgridirsteam explosion. Finally, there are
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biological methods, the ones that have low eneeguirements and mild environmental
conditions. However, most of the biological pro@ssare too slow, limiting their application
at the industrial level. The fung@hanerochaete chrysosporiunas been proposed in the
patent of Zhang [41] for degrading the lignin inbeéomass-to-ethanol process scheme
involving the separate fermentation of pentoseshanases. No matter which of the methods
described before is used, one of the main problamee-treatment and hydrolysis of biomass
is the variability in the composition of both lignand hemicellulose, and this depends on
several factors such as the type of plant, crop mg¢hod of harvesting, etc. [42]. After the
pre-treatment step and even after the hydrolysig, stetoxification should be carried out to
remove inhibitors produced by the addition of cheats and from the degradation products of
soluble sugars and lignin. Therefore, detoxificatiof the streams that will undergo
fermentation is required. Among the various phaisichemical and biological existent
methods, the best candidates are alkali treatmedt adition of calcium hydroxide
(overliming) or ammonia, this last one has showttebeesults than treatment with sodium or

potassium hydroxide [42].

2.2.3.2. Hydrolysis

The hydrolysis step is next to the pre-treatmant] here takes place the cleavage of
the cellulose polymer to glucose units with theitaold of one molecule of water, according

to the chemical reaction:

(C6H1005)n + nH>0 = NnCgH 1,06 (21)

Hydrolysis of lignocellulosic biomass is more cdiogted than that of pure cellulose

due to the presence of nonglucan components sudlgras and hemicellulose [41]. A
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number of processes for hydrolyzing cellulose ighocose have been developed over the
years, and the majority of these processing schartikze either cellulolytic enzymes or
sulfuric acid of various concentrations. Nowadaszymatic hydrolysis has demonstrated
better results for the subsequent fermentationusecao degradation components of glucose
are formed although the process is slower. Sew¢hal chemical methods are also available,
such as dilute acid processes with fast ratesaatien but with the disadvantage of low sugar
yield. Even novel physical methods such as gammasraelectron-beam irradiation, or
microwave irradiation are currently being testegbilot plants [43]. Most of the commercial
cellulases are obtained aerobically from microoigas such adrichoderma resseand
Aspergillus niger they release a mixture of cellulases, among whathleast two
cellobiohydrolases, five endoglucanases, Arglucosidases and hemicellulases have been

found [41].

2.2.3.3. Fermentation of biomass hydrolysates

When carbohydrates coming from cellulose and heliniose are released free in
solution, after any of the hydrolysis methods nwmmed above, the next step is the
fermentation of these carbohydrates to producenethasing microorganisms such as yeast
or bacteria. Because such lignocellulose hydrofgsatontain more than one type of
carbohydrate, including oligosaccharides, microoigas should be required to efficiently
ferment these sugars for the successful indugir@uction of bioethanol [44]. The general
reactions involved in the production of ethanolngidering glucose and xylose as the main

free sugars in solution after hydrolysis step aspectively:

CeH120s 2> 2GHsOH + 2CQ (2.2)

3CsH 1005 2> 5GHsOH + 5CQ (23)
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The classic configuration employed for fermentligmass hydrolysates involves a
sequential process where the hydrolysis and femient are carried out in different units,
this is known as separate hydrolysis and fermemtgisHF). In the alternative variant, the
simultaneous saccharification and fermentation S8t hydrolysis and fermentation are
performed in a single processing unit. This lastfiuration has been improved through the
use of genetically engineered microorganisms capabfermenting simultaneously hexoses
and pentoses from cellulose and hemicellulose otispéy, or through the use of two or more
different strains of microorganisms with the alilib ferment their corresponding sugars.
This new variant of SSF is known as simultaneouxlsaification and co-fermentation
(SSCF). The main feature of SHF process is that step can be performed at its individual
optimal operation conditions but one disadvantagyghat cellulolytic enzymes are end-
product inhibited, so that the rate of hydrolyssprogressively reduced when glucose and
cellobiose accumulate [45]. The SSF shows mdradcitve profiles than the SHF as higher
ethanol yields and less energy consumption areiljes$ut this process operates at non-
optimal conditions for hydrolysis and requires ghgir enzyme dosage, which positively
influences on substrate conversion, but negativaely process costs [42]. In the SSCF
technology, the enzymatic hydrolysis continuoushgases hexose sugars, which increase the
rate of glycolysis such that the pentose sugardearmeented faster and with higher yields.
SSF and SSCF are preferred technologies sincechatbe performed in the same bioreaction

tank, resulting in lower capital costs [46].

2.2.3.4. Product recovery

Distillation is the technology more utilized forthanol recovery, and different
technologies that will allow the economic recovefydilute volatile products from streams

containing a variety of impurities have been depetband commercially demonstrated [47].
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However, ethanol can be distilled up to concerdraif 95.6% because of the azeotrope
formation of the mixture of ethanol with water, afutther dehydration would be needed to
achieve ethanol concentrations of ~99.6%. Othears¢pn technologies include the removal
of ethanol from a fermentation broth under vacuwmneat a normal operating temperature
[22]; extraction of ethanol with a solvent suchnegecanol when using immobilized cells of

S. cerevisiag48]; gas stripping of ethanol in an air-lift feemtor, which is a type of vessel

originally developed for viscous microbial fermerda broths but it is also used for some of
the more fragile and shear-sensitive mammalias aeltulture [49].

Figure 2.13 shows a generic block developed byl@w and Sanchez [50] for fuel
ethanol production from lignocellulosic biomasss#ibilities for reaction-reaction integration
are shown inside shaded boxes: SHF, SSF and SSE€FRgscribed previously); co-
fermentation (CF); and consolidated bioprocessi@BR). Main stream components are:
cellulose, (C); hemicellulose, (H); lignin, (L); ladases, (Cel); glucose, (G); pentoses, (P);

inhibitors, (I); and ethanol, (EtOH).
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Waste streams

2.3. Biocatalysts for ethanol fermentation

Finding the right microorganisms to produce ethdnom the mixture of sugars
resulting from the hydrolysis of lignocellulosicef#stocks is a major challenge in this
bioprocess, because one of the main requirementsrisetabolize the majority of sugars in
solution to increase ethanol yield and process ymiddty. However, the best ethanol
producers are incompetent at utilizing pentose rsgahereas species that can efficiently
utilize both pentoses and hexoses are less effieienonverting sugars to ethanol. Several
microorganisms can efficiently ferment the glucasenponent in cellulose to ethanol, but
conversion of the pentose sugars in the hemicshkuftaction, particularly xylose, remained a
bottleneck in biomass-to-ethanol until a couple/edrs ago. Three options are suggested for

actual processing, in order to find the best balgat scheme: (i) endowing traditional yeast
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ethanologens with novel traits, including the aypilio utilize pentoses, (ii) “reforming”
bacterial species and nonconventional yeasts tadye efficient at converting both pentoses
and hexoses to ethanol, and (iii) devising condgidfor mixed cultures to function
synergistically with mixtures of major carbon substs [2]. There are some essential traits in
microorganisms used in bioethanol production, reagsto achieve high ethanol yields and
concentration; microorganisms should ferment b@&kokses and pentoses with ethanol as the
sole fermentation product, tolerating high etharwicentrations and inhibitory compounds as
well typically present in dilute-acid hydrolysatesid should require hypoxic conditions (very
low concentrations of oxygen).

Different strains of microbes have been utilizegptoduce ethanol, for both fuel and
alcoholic purposes. Yeasts and bacteria are thierped microbes although some fungus
species such aBaecilomyces sg\NF1 have been also proposed to ferment all ofmlagor
sugars derived from hydrolysis of plant biomasstteanol using the SSF configuration [51].
The microorganism more utilized along the histopcdwse of its advantages is the yeast
Saccharomyces cerevisjaleut despite of such advantages it has some tionta that have
motivated the search of other species to complenvbatS. cerevisiadacks for an efficient

ethanol production process.

2.3.1. Hexose-fermenting microbes

As mentioned aboveS. cerevisiads a well-known yeast strain used in alcoholic
fermentations because of its ability to fermentgke to ethanol as virtually the sole product,
superior ethanol tolerance, and rapid fermentates under acidic conditions and resistance
to the acetic acid found in lignocellulosic hydsalies [52]. However, the main disadvantage
of S. cerevisiaas its narrow substrate utilization range, becatsannot ferment pentoses

due to the lack of both pentose-assimilation paysnand adequate levels of key pentose
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phosphate pathway enzymes. Bacteria are muchvidsty known as ethanol producers than
are yeasts, butscherichia, Klesbiella, Erwiniaand Zymomonasspecies have all received
serious and detailed considerations for indususg. Zymomonas mobilihias extremely
desirable features as an ethanologen with the &ayarto grow at high sugar concentrations

and to produce and tolerate ethanol at concentisatip to 13% mass/volume (w/v) [53].

2.3.2. Pentose-fermenting microbes

The lack of an effective pentose-assimilation paty in efficient hexose-fermenting
microbes and the need to take advantage of allrsugsulting from the hydrolysis of
cellulose and hemicellulose, motivated several syeago the search of strains that could
ferment xylose under strictly anaerobic conditioeasts such afandida shehatae,
Pachysolen tannophilus, Pichia stipitend Kluyveromyces marxianusave been postulated
to use a two-step pathway in which xylose is freluced to xylitol by xylose reductase
enzyme (XR), and then is oxidized to xylulose byitaly dehydrogenase enzyme (XD).
Xylulose is subsequently phosphorylated to formuboge-5-phosphate and then metabolized
to ethanol through the pentose phosphate and EriYddgarhoff-Parnas pathways [54P.
stipitis reportedly provides the best overall performanneterms of complete sugar
utilization, minimal coproduct formation, and insdivity to temperature and substrate
concentrations [55]. In bacteria, the pentose nwdiapathway is different, being the enzyme
xylose isomerase (XI) the responsible for isoméiaraof xylose to xylulose directly without
the production of xylitol. However, one limitatida the use of these yeasts on an industrial
scale is their requirement for low levels of oxygend on the other hand, excess oxygen
causes them to completely cease ethanol produatidrmetabolize aerobically the substrate

to form biomass. Therefore, the degree of contemlessary to maintain the narrow range of
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microaerophilic conditions that permit efficienhahol production could be difficult and cost-

prohibitive on an industrial scale.

2.3.3. Genetically engineered microbial strains

Some microorganisms have been genetically modittedhange and improve their
role in metabolism of substrates and consequeatfyréduce ethanol with higher yields and
productivities, but mainly to optimize the conversiof the various types of sugars after
hydrolysis of lignocellulosic biomass. These chemgnclude expression analysis of key
genes in metabolic pathways for further inclusibthese genes in other microorganisms that
naturally do not display them in their wild-typeahs. The recent determination of the
genome sequence fét. stipitisis important, as its genome characteristics andlatgyy
patterns could serve as guides for further devetoyrm this natural xylose-fermenting yeast
or in engineered. cerevisiae. In fact, P. stipitis has been the most widely used donor,
probably because it shows relatively little accuatioh of xylitol when growing on and
fermenting xylose, thus wasting less sugar asol\fii6]. For direct genetic manipulation of
S. cerevisiagthe most used strategy has been to insert thegémes fronP. stipitis coding
for XR and XDH enzymes to conduct the intermediatetabolites through the pentose
phosphate pathway with final ethanol production.adidition to this XR-XDH strategy, other
option is the inclusion in of Xl enzyme gene comifigm bacteria or fungi such as
Piromycesin S. cerevisiago metabolize xylose to ethanol. Some studie® Heeen carried
out to compare these two strategies, and resulimnga by the group of Grauslund [57]
reveal that despite a little xylitol accumulatioflR-XDH xylose utilization pathway provides
faster ethanol production than using the Xl pathwaMowever, in chemically defined
medium, XI pathway showed the highest ethanol yi€dnetic manipulation of bacteria has

been also carried out to utilize high-performanaetéria strains in the production of ethanol,
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being Escherichia coli, Klesbiella oxytocand Zymomonas mobilishe species assayed.
Among themZ. mobilishas shown the most promising results, when sorasstwere first
engineered to catabolize xylose at the NationaleReble Energy Laboratory in Colorado,
United States. Genes for xylose utilizationEhycoli were introduced intd. mobilis[58].

Regardless the utilization of wild-type or genelliz engineered hexose- and/or
pentose-fermenting microbes, the complete degm@dati glucose or xylose using yeasts, as
the most abundant sugars in lignocellulosic hydvalyg, proceed along the metabolic
pathways shown in Figure 2.14. Microorganisms usedhe process have the ability to
produce all of the enzymes required for each inggliate step in the corresponding metabolic
pathways. The metabolic pathway shown in the d&fe of Figure 2.14 describes glucose
degradation by means of glycolysis (dotted box he teft) with further catabolism of
pyruvate produced in glycolysis to ethanol. The ham between each intermediate step
correspond to the enzymes that catalyze each oeagti) hexokinase, (2) phosphoglucose
isomerase, (3) phosphofructokinase-1, (4) aldola@dsg, triose phosphate isomerase,
(6) glyceraldehyde-3-phosphate  dehydrogenase, (7hosghoglyerate  kinase,
(8) phosphoglycerate mutase, (9) enolase, (10)vayelkinase, (11) pyruvate decarboxylase,
and (12) alcohol dehydrogenase [59].

The right side of Figure 2.14 describes the yrgsise degradation pathway, either by
wild-type strains or genetically engineered yeastiiss encoding genes to express enzymes
for xylose degradation. In this pathway xylose itaolized in two steps to form xylulose-5-
phosphate and at this point begins the PentosepRatsPathway (PPP) to yield fructose-6-
phosphate and glyceraldehyde-3-phosphate, whicarsenhto the glycolysis pathway to
finally produce ethanol. The enzymes catalyzingoggl and PPP pathways are shown as
letters between each intermediate step in Figutré, 2and they are: (a) xylose reductase, (b)

xylitol dehydrogenase, (c) xylulokinase, (d) tragtsiase, and (e) transaldolase [56].
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from Nelson and Cox [59]).

39



2.4. Fermentation of mixtures of glucose and xylose

After hydrolysis and detoxification of cellulosacahemicellulose, glucose and xylose
are predominant in the resulting sugar solutioepéhding on the type of feedstock used, and
on the employed pre-treatment and hydrolysis methad well, the proportion of
glucose/xylose in hydrolysate can vary. Howeveg, rtiain objective is to ferment completely
both sugars to improve ethanol yields. Various istichave focused in fermentation of
glucose and xylose mixtures, with different initratios and methodologies, such as batch,
fed-batch and continuous processes and the typermenting microorganisms used, where
the most used are yeast and bacteria strains. fQbse, some included a given hexose- and
xylose-fermenting, genetically engineered microargas as described in the previous
section, or co-cultures of strains having the gbib ferment both sugars.

One important contribution in this regard is thedy carried out by Agbogbo and co-
workers [60] where different synthetic glucose/xsgdamixtures with a total concentration of
60% (w/v) were fermented into ethanol usigstipitisCBS 6054. The different percentage
proportions of glucose/xylose mixtures used wespeetively: 75/25, 50/50, 25/75, and also
100% of each single sugar. In all cases, glucoss the preferred substrate in the
glucose/xylose mixtures; the high glucose fractibad higher cell biomass production rates
and therefore higher substrate consumption ratéstranol production rates as compared to
high xylose fractions. However, the high xylosactrons had a slightly higher ethanol yields
when compared to the high glucose fractions, becthes xylose was channeled into ethanol
production rather a cell biomass. These resuéisraagreement with studies by Meyrial and
co-workers [61] wher®. stipitisgrowth rate was higher on glucose than xylose,randell
growth was observed for any of the glucose/xylosdures after a given period of time, but

ethanol production continued until complete suggpletion.
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Other important contribution was made by Sanched eo-workers, [62] with
mixtures of glucose and xylose usiRg stipitis, C. shehataandP. tannophilus Based on
the parameters of specific production rate andallvgield, P. stipitisgave the best results for
the transformation of substrates into ethanol, witids of 0.42 and 0.47 g ethanol/g sugar
for mixtures with ratios of glucose/xylose of 2@bd 24/1, respectively. All of the mixtures
showed sequential substrate consumption, initiadiyng up glucose quite rapidly, followed
by a period during which biomass production, swatstconsumption and ethanol formation
ceased or progressed only very slowly. Subsequexylose was consumed and further
production of biomass and ethanol occurred. Alsoing the first hours of culture, the higher
the initial concentration of glucose, the closee thpecific substrate consumption rates
approached those obtained in the experiments Wittoge alone as substrate.

The effect of operation conditions during ferméiotahave been also studied, such as
agitation rate with suggested values ranging betwd®-100 rpm according to
Kongkiattikajorn [63]; and initial cell concentrah studied by Agbogbo and co-workers. It
was concluded that the rate of xylose consumpti@hethanol production was high when the
initial cell concentrations were high, being thastl one possible since cells used the substrate
for ethanol production rather than for cell groéH].

Mixed sugar fermentations using microorganisma ico-culture array is also a very
important subject, because as mentioned in secd@®) it is one of the suggested
configurations in trying to find a suitable biodsgtst scheme. Results of experiments
conducted with co-cultures &. cerevisiaeandP. stipitis, both wild-type strains show that
there is no improvement in maximum ethanol conegioin and yield when compared with
single substrate-single yeast strain fermentatitms, the fermentation time was certainly
decreased [65]. In that work, the co-cultureéSotcerevisia@ndP. stipitisused with a culture

medium containing 30 g/L of both glucose and xyJok2 g/L of mannose and 8 g/L of
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galactose had a yield of 0.41 g ethanol/g sugangltbis a 70% of theoretical yield. The co-
culture of P. stipitis and K. marxianushad a high theoretical yield (80%) and also a high
ethanol concentration. However, even with the midé of the co-culture process to
maximize ethanol production, the development ofdheulture process to convert a glucose
and xylose mixture into ethanol was confronted leyesal problems dealing with the
necessity to co-cultivate two different yeast spgcilnteraction between strains must be
verified to assure that each of the strains wiltabelize both sugars efficiently and without
inhibition effects of any type. Regarding this,place and co-workers [66] have identified
some strains ofP. stipitisthat have a negative impact on strainsSotcerevisiaeand this is
strongly dependent upon physical parameters ofntedium, such as pH. The inhibitory
effect was mainly observed in the pH range 4.8-5-Other parameters affecting this
relationship between strains is oxygen; a very leld of ethanol from xylose can be
obtained due to the limited oxygen supply to thosg-fermenting yeast, and therefore, the

use of a respiratory-defficient mutant of the hextesmenting yeast could be necessary [67].

2.5. Mathematical modeling of fermentation processes

Modeling a fermentation process presents some galyes such as process knowledge
improvement, decreasing the cost of expensive mdlusexperimentation, mathematical
optimization and process control. The mathemateglations describing fermentation
processes have their origins in the intrinsic nbatogical aspects and in mass balances
applied to the process to describe properly then@ds in concentration as a function of
fermentation time. While in chemical reactors thecgss kinetics reflect the reaction rates at
a molecular level, microbial process dynamics atftae interaction between living cells and
the culture environment. Mathematical models statth the quantification of cell growth,

which can be viewed from various perspectives aiitti warying degrees of complexity,

42



depending whether we distinguish between individeglls in a reactor and whether we
examine the individual metabolic reactions occgmwvithin the cell. Cellular representations
which are multicomponent are called structured, simgle component representations are
designated unstructured. Consideration of discréeterogeneous cells constitutes a
segregated viewpoint, while an unsegregated pergpeconsiders only averaged cellular
properties [68]. The most idealized case is anruastred-unsegregated model where cell
population is treated as one-component solute, aamdore realistic case is a structured-
segregated model, where a multicomponent desaniptib cell-to-cell heterogeneity is
considered. Some models also take into accourgftbet of inhibition caused by substrates,
products or toxic compounds present in medium doiestts. Table 2.4 summarizes some
unstructured models used to quantify fermentatimetics. Unstructured models to describe
multiple substrate kinetics are also available. Eesv, as discussed in the next section, and
according to the objectives of this research warkfructured model is a better approach to
describe some processes.

In the simplest approach to modeling batch cultitrés supposed that the rate of

increase in cell mass (X) is a function of the osdiss only. Thus:

dx _
=0 (2.4)

In the exponential phase of microbial growth, setn multiply rapidly, and cell
mass/cell number density increases exponentialtih tume. This is a period of balanced
growth, in which all cells are assumed to grow,stome and produce products at the same
rate. That is, the average composition of a singleremains relatively constant during this

phase of growth. Since the nutrient concentratameslarge in this phase, the growth rate is

43



independent of nutrient concentration. The expbtakgrowth rate is then a first order

kinetic equation:

C:;t(:yx withX =X, att=0 (2.5)

wherep represents the specific growth rate of cells.

Table 2.4 —Unstructured models to quantify fermentation kioetiAdapted from Séez [38].

Kinetic expression

Description

(Cri=piX)
Monod ri=k S/(K+S)
Mosser Substrate-limited r=k SY(K+S")
Tessier rs=k[1-exp(-S / K)
Logistic law r4=k(1-X / k)
Noncompetitive o rs=k/(1+K4S)(1+S/K)
Substrate inhibition
Competitive re=k S(1+S/K)+S
Noncompetitive S r-=k/(1+K4S)(1+P/Kp)
Product inhibition
Competitive rgs=k S(1+P/kp)+S
Noncompetitive Toxic compound ro=k/(1+KdJS)(1+I/K))
Competitive inhibition ro=k SIK(1+I/K)+S

4The rate expression for growth on fliesubstrate is given by= y;X.

2.5.1. Kinetics and modeling of single substrate fermentabns

The simplest relationships describing exponergi@wth are unstructured models.
The models that were first developed for cell gtowid not account for the dependency of
the exponential growth rate on nutrient concerdrgtthey were devised to have a maximum

achievable population built into the constitutivgpeessions employed. Such models find
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applicability today when the growth-limiting sukete cannot be identified. One of the
simplest models which include the effect of nutrieoncentration is the model developed by
Jacques Monod, based on observations of microliavty at various initial glucose
concentrations, assuming that only one substrdte @rowth-limiting substrate, S) is
important in determining the rate of cell prolifeom denoted ag. The form of the Monod
equation is analog to that of the Michaelis-Men&zyme kinetics, and is given by the
following equation, whereimay is the maximum specific growth rate iff,hand K is the
saturation constant in g/L, which is that valuehdd limiting nutrient concentration at which

the specific growth rate is half its maximum va]G8:

S
s (2.6)
Values ofumax vary with the type of organism and the value qfdépends on the
nature of substrate, and it is generally quite §nmalplying that the specific growth rate is
near its maximum value for much of the period dtharowth. The parametaiga, and K,
named henceforth kinetic parameters, are obtaixgérenentally from the values of cell
concentration and substrate concentration (X ande§pectively) during the fermentation
time. For cell concentration the values chosencalg those belonging to the exponential
phase, since the Monod model works under the assampf balanced growth, which is
achieved only at this growth stage. The parametsrcalculated from the slope of the natural
logarithm of cell concentration values in its expotial phase, plotted against fermentation
time. The values oOfinax and K can be obtained from several linearization methafdhe

Monod equation, including Lineweaver-Burk, Eadiefidtee, Hanes-Woolf, or a “batch

Kinetics” equation as described by Shuler and Ki&ej.
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To better describe microbial growth kinetics, & necessary to define yield
coefficients, the ones that relate the amount oflpcts and cells formed per unit of substrate
consumed by cells, giving the yield or efficiengy the process. A knowledge of yield
coefficients allows us to design a growth mediuat thill supply all of the required nutrients
in balanced amounts, so that a desired substratbecanade growth-rate limiting. Equations
for yield coefficients can be found in literatur&] and they are defined on both molar and
mass basis.

As mentioned before, optimization of ethanol femtagion processes could be based
on the development of accurate growth and fermient&inetic models, properly describing
the consumption of substrates, and the producticextvacellular products. Several kinetic
models for growth of botl$. cerevisiaandP. stipitishave been proposed previously in the
literature, sometimes with the purpose of modeliogly cell growth and substrate
consumption, but also for modeling ethanol produrc8imultaneouslyS. cerevisiagrowing
on glucose has been the most studied case, areffdot of inhibition of both ethanol and
substrate on the fermentation process has beeméne object of those studies. Some
modified Monod models that include terms for sudistrand product inhibition were
developed by these researchers [71, 72], achiesxagllent fits between experimental data
and simulations made with unstructured models.efticident factors studied were substrate
limitation effects, cell maintenance, effect of mamature, and these factors were studied in
different culture modes such as batch, fed-batchcamtinuous. Novak and co-workers [71]
obtained inhibition constants for ethanol, assayatiganol added at the beginning of the
fermentation and the ethanol produced along thegs Similar results were obtained by
the group of Luong [72], were ethanol inhibition the growth ofS. cerevsiaavas studied,
showing that the maximum allowable ethanol conediatin above which cells do not grow is

112 g/L and the level above which cells stop praayethanol was 115 g ethanol/L. Models
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for glucose fermentation witls. cerevisiaevere also developed by Thatipamala and co-
workers [73], studying the effect of both substrae ethanol on the kinetics of biomass and
product yields. These researchers proposed thétition occurs when glucose concentration
in the culture medium increases above 150 g/L,thrg also found that product inhibition
does not have any effect on product yield, whesedustrate inhibition significantly affects
the product yield. The reason for this substratabition is because at higher substrate
concentrations, catabolite inhibition of enzymes tire fermentative pathway becomes
important, indicating the onset of substrate irtiobi as a result of high osmotic pressure and
low water activity [73]. Other studies have alsopgmsed kinetic models on the basis of
enzyme deactivation kinetics to explain the effectemperature in cell mass growth and
ethanol production [74]. A very important unstruetl kinetic model was obtained by
CIATEJ (Centro de Investigaciéon y Asistencia ennidagia y Disefio del Estado de Jalisco)
in Mexico [75], and although the purpose of thaigess was the production of tequila, the
same criteria can be easily applied for the prooésel ethanol production. In this study, the
combination of the Moser and Luong [76] kinetic rabdave the best prediction for biomass,
substrate and ethanol profiles with initial substreoncentrations ranging from 60 — 90 g/L.
Kinetic parameters such asnax Ks, K, etc. were optimized simultaneously along the
solution of non-linear differential equations désicrg mass balances for cells, substrate and
product, with the objective to fit simulated dataexperimental concentrations to minimize
the error. Excellent linear correlations were ot#d as a product of the validation of the
proposed models. Other models different to thatlohod with or without inhibition terms
have been utilized, and these models include tgestlo equation which has a sigmoidal
shape trend to represent cell growth, used to shevgelf-regression made by the increase in
cell concentration characteristic of in batch femtagions. Wang and co-workers [76] used the

logistic equation to describe fermentation kinetawfs different sugars byS. cerevisiae
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achieving good predictions for the sugars utilized a special analysis of different initial
sugar concentrations. The model included the temgfowth-associated products and the
parameter of lag time in mass balance for ethaaalescribe the delay of ethanol production
to cell growth.

In the case of modeling alcoholic fermentatiorxgibose withP. stipitisthe research
history is not as abundant as glucose v8thcerevisiagbut previous attempts to model
fermentation with this yeast strain used the Monumtlel [77]. As mentioned previously in
this chapterP. stipitisis more vulnerable tha®. cerevisia¢o inhibitory effects of substrates,
ethanol, secondary metabolites and toxic compotnoas ethanol production stages prior to
fermentation. Therefore these effects have to lm@wated in kinetic models from several
points of view, but moreover when experimental ¢oos require it. From literature it is
known that substrate concentrations above 40 diibinthe metabolism oP. stipitis,and
ethanol concentrations above 64 g/L completely egprenzymatic synthesis for xylose
degradation [78]. Research on xylose fermentattmiudes the work of Agbogbo and co-
workers [63], studying the effect of initial celbracentration and the development of a model
to predict the fermentation process. Results sh@atwhen initial cell concentration is high,
the rate of xylose utilization, ethanol formaticand the ethanol yield increase. A two-
parameter mathematical model was used to predectctl population dynamics at the
different initial cell concentrations, and thesegmaeters coupled to the Monod model for cell
growth equation were determined at the differentiaincell concentrations used in the
fermentation. The rates of substrate consumptigheshanol production were modeled using
Leudeking-Piret kinetics involving parameters fell enaintenance and parameters associated
with growth. The form of the empirical mathematicabdel used describes the population

dynamics with just two parameters, which correlategty well with the initial cell

48



concentration used. From the results, the sulbst@sumption and ethanol production rate
are both functions of the initial cell concentratio

Current technologies for ethanol production fromndcellulosic biomass require
different approaches for the development of arcieffit model that takes into account all the
possible negative effects that intrinsic fermeotatiactors have on xylose degradation into
ethanol. However, models can be as simple as uka@§lonod model and then incorporate
appropriate parameters, the ones that can be ebt&iom statistical methodologies. Kumar
and co-workers [79] studied the ethanol productrom pentoses resultant of hydrolysis of
hemicellulose present in a floating aquatic pldiite system developed can be described for
the rate of biomass growth in which concentratiohsugar, ethanol production and cell
activation are linked by coefficients of cell forimem and inhibition, and working with the
assumption that the rate or product formation lstee both to the rate of cell growth and the
concentration of microorganism present. The fitloegween experimental data and simulated
results from the model was statistically analyzgdreans of residual plots, showing a right
appropriateness of the model, since residuals wardomly distributed around the line of
zero error. The model was also validated with datien coefficients and the values obtained,

above 0.98, imply that the proposed model was tabdxplain the experimental results.

2.5.1.1. Mass balances for batch fermentation

As mentioned above, kinetic models describing métation procesderive initially
from the analysis of the cell population dynamidsyosing the appropriate model depending
on the point of view to consider cell behavior idtare medium. Furthermore, cell growth,
substrate consumption and product formation are itored during the course of
fermentation, therefore, the model to be developasl to be a function of time. For this

reason, a complete analysis of the process inpat®atputs is necessary, and this analysis is
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nothing but a mass balance, which depends on thiggooation of the process (batch, fed-
batch or continuous). Since this research work mvade carrying out only batch processes,
the mass balance describing this configuration am¢snvolve the terms for “in” and “out”

of material because no material is added or reménad the reactor and it is assumed that
gas stripping of culture liquid is negligible, théme volume is constant. Cell death and
maintenance are neglected because of the assungbtitanced growth, therefore the mass

balance for each component reduces to:

Accumulaton = productionor consumptio, (2.7)
or
dC
L=r 2.8
dt I ( )

Equation 2.7 is the general mass balance for eactponeni and equation 2.8 is its
generic, showing that change in concentration gf @mponent, with respect to time is
equal to the rate of formation or consumption afttbomponent. First it is necessary to
define the rate of formation or consumption of easimponent, and beginning with cell mass

we have the equation which describes the ratelbpeuction:

LiX (2.9)

wherey is the specific growth rate in‘*hand X is cell concentration in g/L. Next, théeraf
substrate consumption which accounts for both pelliferation and product formation is

described by the equation:
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fo == T X + Y 4 (2.10)
YX/S

note that the substrate rate is negative becaussdrate is being consumed, promoting cell
growth and product formation. The termgg@and Ypx are the yield coefficient of cells based
on substrate and the yield coefficient of produasdd on cells, in g/g [69]. The rate of

product formation is given by the equation:
Mo = Yo, x X (2.11)

Therefore, when equation 2.8 is applied to ratgagqns above described and using
the Monod expression (Eq. 2.6) to represent theispeell growth rate, without inhibition
effects from any type (substrate, product, toxienpounds), the non-linear differential

equation set for mass balances in a batch fermentatocess is obtained:

X _ Hrad S|y (2.12)
dt K, +[S] '
dsz_{ 1 +YP/x:| Hsl S .13

dt Yuis Ks +[S]
aP_y  HmalS] 12)

dt 7 K +[9]

These equations are solved with an appropriate nanmeethod, employing kinetic
parameters and yield coefficients obtained as de=tin Chapter 3, in order to obtain the

profile concentrations for each component.
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2.5.2. Kinetics and modeling of multiple substrate fermenations

Although empirical models, such as Monod’s, démcricrobial growth kinetics on a
single substrate, they are not applicable to mubstrate environments, and are very specific
regarding system parameters. Simple unstructuredelsoare developed to explain a
particular set of experimental data and do not take consideration the optimal nature of
microbial growth on multiple substrates. Hence predictive capability of such models
remains within the bounds of the experiments theybased. In nature, microorganisms grow
on multiple substrates, and different growth pheaoanof microorganisms are observed in
these environments: (i) sequential utilization obstrates, (i) simultaneous consumption of
substrates, and (iii) co-metabolism of substra@@$. [The diauxie phenomenon, discovered by
Monod, is a well-known example of sequential uaitisn of two carbon substrates, with an
intermediate lag phase between the two exponegrttalth phases. In this intermediate lag
phase that precedes consumption of the next peefesubstrate, the synthesis of enzymes
needed for the metabolism of the next substratarised out.

Among the various proposed models to explain therahial behavior in multiple
substrates, one of the most studied and extensitéized has been the cybernetic concept
developed by Ramkrishna and Kompala [81]. This rhe@avs microorganisms as optimal
strategists, that given a set of conditions, thayehthe ability to “think” and “decide” how
best to utilize the resources so as to maximizewrécplar objective; cybernetic modeling
translates the idea that cells regulate their dietsvby exerting control over the activities and
the rates of synthesis of enzymes [82]. The cydermapproach assumes that one key
enzyme limits the growth rate achievable on a paldr substrate, but this enzyme synthesis
precedes that a particular substrate can be wtiline cell growth. Figure 2.15 shows a
schematic diagram of the cybernetic model accortinyarang and co-workers [83] with a

binary mixture of substrates as two parallel enzgatalyzed growth reactions; &notes the
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ith substrate, Elenotes the “lumped” system of inducible enzynss®eiated with growth on
S, and B denotes the biomass or cell concentratfubstrate consumption and enzyme
synthesis are based on Monod'’s kinetics, but thdemalso takes into account the enzyme

degradation stage, and the assumption for thi ssag first-order reaction.

Figure 2.15— Schematic diagram of the cybernetic model (Aeldfitom Venkatesh and co-
workers [80]).

Cybernetic models have been able to successfeligribe diauxic growth in batch,
fed-batch and continuous cultures and the basimipes the most important attribute of the
modeling effort, is that information obtained frggrowth on single substrate experiments on
each of the substrates will yield all of the infation required for predicting growth in mixed
substrates. The complete definition of the oribaydernetic model along with modifications
made, as a product of the application of the doub&ching law can be found in the
literature, with the equations for cell growth, gme synthesis, substrate consumption and
mathematical definition of cybernetic variables ][8%the salient features of the cybernetic
modeling are represented with the assimilationttosubstrate Sy the biomass B, and it is
assumed to be catalyzed by a key enzymerdpresenting the whole set of enzymes

catalyzing the metabolic pathways of growth gn S
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E;
B+S 2> (1+Y)B+... 2.15)

The key enzyme Erequired for utilization of Sis induced in the presence of &cording

to:

B> E + B (2.16)

where Y is the biomass yield coefficient on substrate, Bhis the biomass excluding the
key enzyme E The rate equations for these two reactions sexseare similar to the Monod
equation but also include special terms for theifpdevel g and the enzyme synthesis rate
constanty;, as described in equations 2.17 and 2.18. Therdéfe expressiop; is replaced

by a mathematical relationship that will be diseassn Chapter 5 and the expressign
replaces Kin the unstructured Monod kinetics to bring out tiuence of specific enzyme
levels on the growth kinetics and to stand outekistence of more than one substrate. The

equation rates describing the rates of biomassustmh and enzyme synthesis are:

- :m (2.17)
_alsIX @2.18)
oK +[S]

The model development is complete and the equatom given below:

axX _ (2.19)
dt B,i Vi
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95 :(Yl +YP/X]rB,iVi (2.20)

dt Yy
daP _
a_ P/XrB,iVi 2_21)
d dLnX
e A e (2.22)

The last equation describes the change of coratemirof the enzyme levels as a
function of time, and takes into account not omhlg tate of enzyme synthesis (first term) but
also the first-order degenerative loss of the actinzymeE; (second term) and the dilution of
specific enzyme level due to cell growth (thirdm¢r The variablesy and v, are the
cybernetic variables controlling the effects of ukgjon, whereu; regulates the rate of
enzyme synthesis (induction/repression), amg regulates the growth rate
(inhibition/activation). These two laws of regutati were referred to as the matching and
proportional laws, respectively, and their derigatican be found in the literature [83, 84].

General equations are:

U, = (2.23)

Vi = ' (2.24)
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where rrepresents the rate of biomass production dueg@dnsumption of thieh substrate
and 1 represents the particular rate of biomass productiue to substrate consumption from
theith to thejth alternative. The equations 2.19 — 2.24 wilelk&ended in Chapter 5 in order
to construct the complete cybernetic frameworkliersystem studied in this work.

The first attempt to evaluate the cybernetic appihovas made by the same authors of
the model with the growth dflebsiella oxytocaon mixed substrates containing glucose,
xylose, arabinose, lactose and fructose [83], haddsults were in accurate concordance with
the experimental data, particularly with respecttiie increasing rates during the second
growth phase. Other modifications to the model Hasen proposed to describe simultaneous
utilization of substrates, continuous culture, apdcific mixtures of carbohydrates with other
biopolymers [84-85]. Values for initial enzyme é&s were proposed based on the past
history of the inoculum, being 90% of the maximupedfic level enzyme for fermentations
in which the inoculum was precultured on the saniesgate, and 18% of maximum specific
enzyme level for fermentations with the less prei@rsubstrate in which the inoculum was
precultured on the preferred substrate [86]. Alsduies for parametersandp were proposed
being 0.05 H and 1.0E-3 H, respectively. Doshi and Venkatesh [80] demotestra
simultaneous utilization of acetate, pyruvate aaddte usindescherichia coliK12, but the
mixtures of glucose and lactose were unable todmonstrated by means of the cybernetic
model. Growth ofS. cerevisiaeon complex substrates such as melibiose and other
carbohydrate mixtures including glucose, and geketwere also studied by means of the
cybernetic model by Venkatesh and co-workers [85)ovel feature of the model developed
was the incorporation of dynamics of the regulatddrenzymatic degradation of substrates,
and in general, the model can be easily used toridesmicrobial growth on disaccharides.
Other models have been proposed with differentpeets/es than the cybernetic framework,

such as the one developed by Nakamura and co-vedi&eéf which involves equations for the
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synthesis rate of inducible enzyme expressed adgifuns of promoter activity which at the
same time is activated by a promoter activator #dwedoperator activity is activated by the
second substrate. The specific growth rate exmessior substrates 1 and 2 involve the
effects of substrate and production inhibitions amaintenance coefficients. Because this
model is not based on a cybernetic perspectivegcyh@rnetic variables were used in the
developed model, but simulations showed a goodeaggat with the experimental data. Also,
the criteria used for incorporating the rates aluicible enzymes and promoter activator were
another interesting approach in the efforts to rhatte behavior of mixed substrate
fermentations. Other approach is the optimal madeposed by Venkatesh and co-workers
[80], which features the ability to simulate botimsltaneous and sequential utilization of
limiting carbon sources in a growth medium. In tmsdel, as successful as the cybernetic
framework, the metabolic and genetic controls hibeen represented as constraints in the
optimization scheme of the specific growth rated @anhas an additional advantage when
compared to the cybernetic one, which is the requént of less system parameters. This
model was further used to simulate the behaviotLaiftobacillus rhamnosugrowing on
glucose, citrate and lactate, being the first tithat model was used also for product
simulation, and the results of product formatiofgng with cell growth and substrate
consumption were found to be very accurate to exyggrtal data.

The majority of research performed in the topicevpusly discussed have
emphasized in different approaches substantiallyomant for the current research project,
such as fermentation of a single substrate or daumaxof substrates using only one type of
microorganism, the fermentation of mixtures of cdmydrates using a co-culture scheme, but
lacking of a mathematical model to predict the dreh the fermentative process, and so on.
Nonetheless, the specific case of mathematical hmodef glucose/xylose mixtures using co-

culture of wild-type strains 085. cerevisiaeand P. stipitis with no genetic or metabolic
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alterations at all, by means of a structured mogleth as the cybernetic model, has not been

reported yet at the moment when this documented beasg written. Therefore, the

contribution of this work to the vast topic of fuethanol production, hopefully is very

relevant and useful for future works with simildjectives to the present ones but involving

other process schemes, such as the modeling oflaateh or continuous process. Using as a

reference the model proposed here with its corredipg modifications depending on the

different conditions, or maybe attempting to useoaculture with other yeast or bacteria

strains, or any other alternative contributing e study of the fermentation phase in the

production of ethanol.
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3. MATERIALS AND METHODS

3.1. Microorganisms

Four yeast strains were used in this research woakidida shehata®lRRL Y-1285,
Pachysolen tannophiluSRRL Y-12885,Pichia stipitisNRRL Y-11545, obtained from the
National Renewable Resources Laboratory, Peor@moi#, and a commercial strain of
Saccharomyces cerevisiablontrachet, provided by Dr. Govind Nadathur frome th
Department of Marine Sciences, University of PudRico, Mayagiez Campus. Stock
cultures were stored in 1.5 mL microvials at -808G 60% (v/v) glycerol agqueous solution
and fresh colonies were aseptically transferredrye days spread on petri dishes
containing YPD Agar culture media (Difco, BD CoraFkce)

Preliminary screening of xylose-fermenting yedasaiss was carried out using.
shehatae, P. tannophilusnd P. stipitis but this last yeast strain proved to be the highe
ethanol producing strain from xylose as a carbamrc® and therefore was used wih

cerevisiaan all the experiments whose results are detarledhapters 4 and 5.

3.2. Inoculum preparation

3.2.1. Inocula for single substrate fermentations

Stock cultures were maintained on 60% glycerol88°PC. Approximately 10QL
were cultivated on YPD agar plates containing tiewing components (amounts in g/L):
glucose, 20; peptone, 20; yeast extract, 10; aad, dé. Petri dishes were incubated in an
Imperial Il static incubator (Lab-Line) at 32°Crf@2-90 hours in order to obtain fresh and
well defined colonies, and also to obtain viabléscat the exponential phase for all the

experiments [1-2]. A loopfull of the strain assdyeas added to 30 mL filter sterilized media
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in a 125 mL autoclaved baffled culture flask, comsipg the following components (in g/L):
yeast extract, 3; peptone, 5; malt extract, 3; Mg3a,0, 2; (NH,).SO;, 3, KH,PQ,, 2; and
sugar (glucose or xylose), 25. The medium comjaoosivas an average of the proportions
suggested by several previous works [2-5]. Cultuwwere aerobically incubated for 12-18
hours, 32°C and 185 rpm until mid-exponential glowhase was achieved, in a temperature

controlled orbital Innova 4000 shaker (New BrundyidJ), according to Figure 3.1

Figure 3.1 -Inoculum preparation for single substrate ferméonatin an Innova 4000
incubator shaker.

3.2.2. Inocula for mixed substrate and mixed strains fermatations

Culture media compositions for inocula in co-ferta¢ions are the same as those
described in section 3.2.1 for both solid agar didid media, with a total sugar
concentration of 25 g/L in liquid medium, varyinget proportions between glucose and
xylose in the following patterns. The differencemethod is one additional pre-culturing step
in the preparation chain, similar to the methodgldgscribed by Saez [6]. Two loopfulls
were taken from petri dishes incubated for 72-90rf0at 32°C containing. cerevisiaeand
P. stipitis respectively. Loopfulls were added to 30-mL filsterilized culture medium in a

125 mL autoclaved baffled culture flask and werkivated for 9-12 hours, at 32°C and 150
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rpm in a temperature-controlled orbital Innova 40@€ubator shaker. These cultures were
transferred into an autoclaved baffled polycarbesplypropylene 300 mL (150 mL working

volume) shake flask (TunAir, AVP Caribe, PR) coniag the same mixed sugar nutrient as
described above and incubation was continued irs&inge incubator shaker for 12-16 hours,

at 32°C and 200 rpm. Figure 3.2 shows the schemadoulum preparation.

Yeast colonies Seed cultures Inoculation Fermentation

Figure 3.2 -Inoculum preparation for co-fermentations in anoiwe 4000 incubator shaker.

3.3. Batch fermentations

In efforts to achieve the necessary conditionsafmigorous inoculum, and having a
high initial cell concentration in fermentationpoula as described above were transferred at
a 10% (v/v) [7] to a 500-mL autoclaved bioreactgystem consisting of one semi-baffled
culture flask (Pyrex, Fisher Scientific) along wahsampling-venting assembly integrated by
a polypropylene thread cap and a two-port staindéssl base (Bellco Company, NJ). One
port was used to provide the low-oxygen levels sgagy for ethanol fermentation, especially
when using xylose-fermenting yeast strains [8]. ¢¢gnair exchange was achieved by
plugging a polypropylene filter disk containing & Qum nitrocellulose membrane to the

shortest tube of the stainless steel assembly.|€fhport was connected to one sterile C-flex
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tubing (Wave Biotech, GE Lifesciences) providedhwat septum valve in the outer end, to
aseptically collect samples along the fermentatiolture. The culture flask contained 270
mL of the same filter-sterilized culture media désed in section 3.2.1, which was mixed
with the 30 mL of inoculum to give 300 mL of tofarmentation volume. The bioreactor was
inoculated to achieve an initial cell concentratajrat least 0.5 g/L and an initial pH 5.00 [9]
and was incubated in the Innova 4000 shaker at 32f@nd 100 rpm [10] for the time
necessary until complete sugar depletion. Theseldpime ranged between 8 and 72 hours,
depending on the combination of sugar and yeaanstoeing 8 hours for system glucos®. -
cerevisiaeand 72 hours for the system xyloseP- stipitis. All the experiments were
conducted by triplicate and were carried out atréial sugar substrate concentration of 25
g/L (using either pure glucose, pure xylose, ortares with the following proportions of
glucose and xylose, respectively, expressed agp@ges: 25/75, 50/50 and 75/25). Samples
were collected periodically throughout the courdetlte fermentations using standard
methods (withdrawing 5 mL of culture broth througtsyringe inserted in the septum at the
outer end of the C-flex tube). Samples were aralyw determine the concentrations of
sugars (glucose and xylose), using HPLC and the Bi&hemistry Analyzer, ethanol and
byproducts (i.e., xylitol, lactic acid, glycerol@acetic acid), using HPLC and cell mass using

spectrophotometry and the gravimetric method terdahe dry cell mass.
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Figure 3.4 -Aseptic sampling throughout the course of fermémrat

3.4. Cell growth and cell mass concentration

One milliliter of the total sample volume wased to measure cell growth, as optical
density (OD) at 600 nm in a Genesys 6 UV-Vis smgdiotometer (Thermo Scientific).
Dilutions were required when the @fgvalue was higher than 0.850 absorbance unitsgusin

sterile medium as sample diluent and also as theklib “zero” the spectrophotometer at the
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beginning of each measurement. Cell mass concemtratas calculated as dry cell mass,
DCM (g/L) from the sample dry weights (knowing teample volumes) with a manifold
filtration unit (Cole Parmer Instruments) followirthe gravimetric method, as shown in
Figure 3.5. Three milliliters of yeast whole bramples were filtered on to preweighed
cellulose acetate Advantec-25mm, (12 filter mats, (Cole Parmer Instruments) retairtimg
cells, and washed twice with deionized water, duath dried in an static Imperial Il incubator

(Labline) overnight until constant weight was attad.

Figure 3.5 -Manifold filtration unit used for cell filtration.

A linear correlation between OD and cell mass eatration was estimated for each of
the strains utilized to evaluate the consistencydméct and indirect methods for cell
concentration measurement and also for furthermals concentration measurements from

OD using a correlation factor, as shown in Figugés— 3.9.
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Figure 3.6 —Linear correlation between DCM concentration (gdhgd OD at 600 nm for
glucose withSaccharomyces cerevisiae.
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Figure 3.7 —Linear correlation between DCM concentration (gdhgd OD at 600 nm for
glucose withPichia stipitis.
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Figure 3.9 —Linear correlation between DCM concentration (gihyl OD at 600 nm for
xylose withPichia stipitis.
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3.5. Sugar, ethanol, and by-product concentrations

The concentration of sugars (glucose and xylosanol, and by-products xylitol,
lactic acid, glycerol and acetic acid were deteedirusing a high performance liquid
chromatography (HPLC) Shimadzu LC-10ATVP unit asveh in Figure 3.10. Samples
withdrawn from the bioreactor flasks were centrddgusing a microcentrifuge (Eppendorf,
model 5415C) at 7000 rpm by 5 minutes. The supanbavas filtered using a 0.2m
Fisherbrand nylon membrane (Fisher Scientific) mag then analyzed using HPLC with an
Aminex BioRad HPX-87H, 300 mm organic acids colu(®mRad Labs, CA) operating at
45°C. A refractive index detector was used for pound detection and dilute sulfuric acid
(0.001 M) at a flow rate of 0.6 mL/min was the melphase. Mixed standard solutions of
ethanol and sugar (only glucose, only xylose orcgbe/xylose mixtures) were run to
construct a calibration curve, and standards ofaga and xylose were periodically injected

to the HPLC to verify calibration accuracy.

UV and R 'V'r?b"e
detectors phase
reservoir
Software- Column
integrator oven
Manual
Pumps L
injector

Figure 3.10 -High performance liquid chromatography device (Skdau LC-10ATVP) for
analysis of sugars, ethanol and byproduct condsemtsa
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Sugar concentration was also analyzed throughontefigtation time by means of YSI
2700 Biochemistry Analyzer (YSI, OH). This analygjave excellent and accurate real-time
information about the consumption of sugar, eitagersole carbon source or in mixtures of
glucose/xylose. The sample -approximately 0.5 més centrifuged and filtered as described
above and processed in the YSI 2700 sample statibich aspirates only 138L and gives

directly the sugar concentration in less than omauta.

Figure 3.11 —Biochemistry Analyzer device (YSI 2700) for sugasmitoring.

3.6. Profile concentrations model development and simutan
3.6.1. Single substrate fermentations

The model proposed to simulate single substratedietations derives from the basis
of mass balances applied to a batch fermentatistesytaking into account that limiting
substrate is consumed for both cell proliferationd @thanol production and considering the
cells as a single species in solution, assumingdficomposition which is equivalent to
assuming balanced growth; this is the basic assampf an unstructured model [11]. Prior
to construct the complete set of equations, kingdiameters such as maximum cell growth
rate (1may and saturation kinetic constantgKnust be calculated. The values [Qfax are
determined from cell growth experimental data,ngkonly those cell concentrations that fall

inside the exponential growth phase and applyingx@onential regression to fit the data, as
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shown in Figure 3.12. The slope of the model widelkcribes the exponential trend of the
plotted data is the numeric value for which according to Shuler and Kargi [12] can be
approximated tQunax However, the value qfnax was further obtained using optimization

techniques.

Exponential
phase

Mmax=0.2785 h™
R?=0.995

00 e e
0 1 2 3 4 5 6 7 8

Fermentation time (h)

Dry Cell Mass (g/L)

Figure 3.12 —-Growth curve and maximum specific growth rate dateation for one run of
glucose fermentation wit8. cerevisiae.

The K value is determined from the various linearizedressions between substrate
concentration andunax such as Lineweaver-Burk, Eadie-Hofstee, Hanes-¥WoolBatch
Kinetics, the ones that are based in enzymatictiks¢l2]. This value was later optimized
while solving the mass balance equations, alonl thig optimization of themaxvalue.

Finally, the remaining experimental parameters o determined were the yield
coefficients: s, Ypix and Ygs corresponding to cell growth with respect to sudistr
consumption, ethanol production with respect td gedwth, and ethanol production with
respect to substrate consumption, respectivelyeldYcoefficients are defined based on the
amount of consumption of another material and girggpiate method to obtain them is to

plot experimental data according to yield relatlopsdesired, and then obtain the slope for

75



the linear correlation between them. Figure 3.A8ws the procedure utilized to calculate
ethanol mass yield coefficient with respect to getlwth, Yp/x for a particular case along this

research work. Note that a linear trend was pregder the relationship between ethanol
concentration versus cell concentration and thpestd such linear model results in the value

of Ypx.

7.0+ y:- 1.3182
6.0 % R2=0.9911

Yp/x=2.8131
[g Ethanol/g Cell]

Ethanol Concentration (g/L)
N
o

Cell Concentration (g/L)

Figure 3.13 —Linear regression between ethanol and cell massecdrations for yield
coefficient Yp;x. The slope of the regression equation represkeatgalue of
the yield coefficient, ¥x.

As mentioned in Chapter 2, mass balance equatiessribing the batch fermentation
process for cell mass production, sugar utilizatol ethanol production respectively, are
described by equations (2.12 — 2.14). In the foatmh of these mass balances, it was
assumed that the growth kinetics would show nabitibn effects, from substrate or product,
due to the relatively low concentration of bothrejdhe batch fermentation process. These
equations, along with kinetic parameters and vyieteefficients obtained as described
previously require being solved simultaneously ggdime initial conditions experimentally at
the start of fermentation process. Because of threlinear characteristics of the ordinary
differential equations system it was necessaryoteesit using an appropriate method. The

method used in this work is the fourth-order Ruigita algorithm, known as RK4 which is

76



a reasonably simple and robust method. RK4 is aellext procedure for numerical solution
of a set of non-linear differential equations wloembined with an intelligent adaptive step-
size routine [13]. The software utilized to solhe different sets of equations was MATLAB
(version 7.8.0.347, The MathWorks Inc., MA) usihg bde45 function, which is based on an
explicit 4" or 8" order-Runge-Kutta method, and it is believed toabsuitable method for
most problems [14]. Figure 3.14 shows the basiordlgn in which the above described non-

linear differential system is proposed and latévest

L MATLAR 7.8.0 (R2009a)

File Edit Debug Parallel Desktop Window Help
e B9 N ﬁ or 2| @ CiUsers\FernandoiDesktopiOpt uy K\Standarizec
. Shorkcuts [A] How to Add  [#] What's Mew

#T Editor - glucose carevisiae standim W O & X "Command Window

NMEE fRBoe 8- Aes f|B-E *»0 » 2x

BB -0 |+ | (11 [ x [k | @

1 Izl function dy=glucose cerevisias standit,v.L] |
2 EEE (1) =mie=0. 25952

3 5L (2)=k=5.492&7;

4 — A=0.1184:

e B=2.8131;

! Sans dy=zeros(3,1);

T dy (1) =L {1} *yi2)*gi1) /(L (2)+7(2));

Bih dy(Z)=-L{1) *g(2)*wi1) *(1/A)/ (Li2)+7(2)):
g dy (3)=B*Li1) *¢ (2] *¥ {1}/ (L{2)+¥(Z));

10

Figure 3.14 —Matlab Editor Window with proposed ordinary diffatel system.

Figure 3.15 shows the algorithm implemented to esdlve non-linear differential
system proposed in Figure 3.14, for batch ferm@mamass balances along with a
simultaneous optimization routine to obtain theirapin values of the parametergax and
Ks.  The optimization routine minimizes the objectigeror function E), between the

experimental data points and the values determimgdhe Runge-Kutta solution. This
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objective function, used previously in optimizatitgthniques for parameter estimation [15]

is:

L XS_X62 83_862 I:)S_F)e2
E(9)=Z_;,( > L < i p? ) (3.1)

e, max e,max e,max

where the subscripts s, e and max correspond talaied, experimental and maximum
measured concentrations in g/L, respectively, &lrmass (X), sugar (S) and ethanol (P), and
n is the number of sampling points. The objectivgction was further minimized using the

function “fmincon” included in the Optimization Ttmx of MATLAB version 7.8.0.347.

<) MATLAB 7.8.0 (R20093)
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Figure 3.15 -MATLAB Editor Window with the ode45 Runge-Kutta sel method and

simultaneous optimization feimax and K value based in minimization of
Equation 3.1.
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Other software was also used along with MATLABgdngse of its simplicity, to solve
the differential equations system when no optinmrats required. This alternative software
is Polymath (Polymath 6.0 Educational Releasejlst incorporates d"4order Runge-Kutta
method in its algorithm RKF45 [16] and the resultstained are quite similar to those
obtained with MATLAB. Figure 3.16 shows a routineea@ed in Polymath to solve a

differential equation system for glucose fermeptaivith S. cerevisiae.

) POLYMATH 6.0 Educational Release - [Ordinary Differential Equations Solver]

File Program  Edit Format Problemn  Examples Window  Help = |l &

DEE + BRI ML m Al &=
ey we o o | |REF45 | [ Table [T Graph [+ BReport

Difterential Equations: 2 | Ausiliar Equations: 4 " Ready for zolution

t0) = 0|

tif) =8

B=2813

A=0.1184

K =25972

u = 02594

diPyditj=B*(({u* S}/ K+ 5} * X
P(0} =1.0978

diS)ydit)=-({(u* S}/ (K+=S) "X *((1/A)+ B
S(0) = 25459

diX)ydit) = ([lu*S)/ K+ 3)) "X
X(0)=0.8576

Ln1  |DEQ Glucosa - 5. cereviziae pol | Mo Title
0223 p.n. [08/09/2009 | CAPS | RUM

Figure 3.16- Polymath Editor Window with the RK45 solver metHodthe system Glucose
—S. cerevisiae

3.6.2. Co-fermentations of glucose/xylose mixtures

Once analyses for single substrate fermentaticere Winished, the optimized kinetic
parameters and yield coefficients were used totoactsthe structured model to predict the

behavior of profile concentrations in batch fernagions with mixtures of glucose and xylose,
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starting with the mixture models for each yeastistand then a consolidated model for the
mixtures using co-cultures of the two yeast strains

As described in Chapter 2, structured models mn@zeghe complex set of metabolic
reactions occurring within the cell. Therefore thass balances presented previously still
apply, but it is necessary to add equations forrghes of key enzyme synthesis of both yeast
strains and to modify the equations for the rateaf growth. According to the equations
2.17 - 2.24, the structured differential systemclihmodels a mixture of two substrates using
two different yeast strains, including the enzynadabces and the cybernetic variables was
solved using MATLAB version 7.8.0.347 with the sadfeorder Runge-Kutta method used
for the single substrate fermentations differergiatem.

Following all of the considerations and assumptifod in the literature for the
analysis of the cybernetic models [17,18,19], am@xplained in Chapter 2, with appropriate
and reasonable expressions and values for the r@tievariables and initial conditions of
the six components, the system was solved. Figuré shows the MATLAB algorithm to
solve the differential equation system correspogdm a structured model for a mixture of
glucose and xylose witR. stipitis including the optimization of cellular resourcedjich is

mathematically described by the cybernetic varmble
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Figure 3.17 -MATLAB Editor Window with a set of non-linear ordany differential
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4. SINGLE SUBSTRATE FERMENTATIONS

This chapter presents kinetic information and mathtical modeling, which is
regarded as an indispensable step in developiegi@ehtation process with advantages such
as process knowledge improvement, decreasing thet ©f expensive industrial
experimentation, mathematical optimization and gssccontrol strategies. The main goal of
this work is to develop a mathematical model ablesuccessfully predict the behavior of
batch fermentations using a mixture of carbohydrate a co-culture configuration for
bioethanol production. To achieve this, and takimg account the cell optimization nature in
which the structured model is based, both sugdigedge and xylose) and the two yeast
strains §accharomyces cerevisiamnd Pichia stipitig were analyzed individually in four
isolated systems (one carbohydrate-one yeast strahus the kinetic parameters were
obtained to construct both unstructured and stradtunodels to describe individual and
mixed sugar fermentations, respectively. The fodividual systems analyzed and discussed
in this chapter are: glucode-stipitis glucosesS. cerevisiaexylose-P. stipitisand xyloses.
cerevisiae This last system was carried out only as a com@nitoring, since wild type-
strains ofS. cerevisia@lo not have metabolic capacity to efficiently iaél xylose as the sole
carbon source and ferment it to ethanol. Howereal research works have been dedicated
to develop improve®. cerevisiaetrains by means of genetic engineering, encogiemgs of
naturally pentose-fermenting yeast strains, resyith ethanol yields at near theoretical yields
of 0.51 g ethanol/g sugar, but with low maximaldrativities [1].

Each of the individual fermentations started wigh maximum initial sugar
concentration ranging from 20-25 g/L, therefore thmaximum ethanol concentration
achievable is ~12.5 g/L if reaction would yield #Qvith respect to the theoretical yield for
fermentation systems using yeast strains. A siropigructured model is good enough to

simulate these individual fermentation systemscesithe range of concentrations of both
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substrates and products do not cause the inhikagostudied by some authors. These studies
suggest that substrate inhibition should begin witgar concentrations above 40 g/L FRor
stipitis [3] and 150 g/L folS. cerevisiagbecause at higher substrate concentrations degabo
inhibition of enzymes in the fermentative pathwagdmes important, indicating the onset of
substrate inhibition as a result of high osmotiesgure and low water activity [4Product
inhibition takes place when ethanol produced remdegels at which cells do not grow
anymore. These concentrations have been found & lggl for P. stipitis[3] and 105 g/L

for S. cerevisiag¢5]. This is the reason why all the systems dssed in this chapter are on

the basis of the Monod model with no substraterodyct inhibition terms.

4.1. Fermentation kinetics and experimental profiles

Determination of fermentation kinetics for the fosystems previously described
started by determining the values of the maximulhgrewth rate umax For this purpose the
exponential growth phases were located and theeduwe suggested by Shuler, described in
section 3.6.1 was followed, which stipulates tha slope resulting from the exponential
regression applied to the set of experimental tfzh lie in the exponential growth phase
belongs to the numeric value @fas shown in Figures 4.1 — 4.3. According to Fegui1, the
ability of S. cerevisiado grow in glucose is easily and efficiently proyeisplaying a steep
exponential ramp which involves the highest spegfowth rate of all the four systems under
study, 0.2595 h. This well known efficiency is the result &. cerevisias outstanding
features such atarger size, thicker cell wall, better growth atwlgH, less stringent
nutritional requirements, and greater resistance comtamination [6]. Also, glucose
fermentation withP. stipitisshowed a higher specific growth rate when comptreglose as
a substrate for the same experimental conditiohg;twhas been observed previously in the

literature. However, the lowest specific cell gtbwate was achieved in the system xylose —
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P. stipitis,which is in complete agreement with the resulesented by other authors [7], but
opposite to results presented by Sanchez and deevg8]. As discussed later on this
chapter, xylose uptake is slower than glucose @ptak a given microorganism under the
same experimental conditions, and this situatios @aly observed through the valuesiof
when comparing Figures 4.1 — 4.3, where it is obsithatu for glucose is threefold qf for
xylose, under the same experimental conditions, a&mtbally the same initial cell
concentration. According to Figure 2.14 which shdiws metabolic pathways for ethanol
production from both glucose and xylose, the netrgetic yield when glucose is the carbon
source is 2 moles of ATP per mole of glucose, wiiators the glucose metabolism over that
of xylose, which yields ~1.67 moles of ATP per mofylose. Also, some nuclear magnetic
resonance studies prove that cell growth ratestefan glucose than xylose, concluding that
xylose metabolism is less energized than the gluaose, with cells consuming glucose
having higher levels of nucleoside triphosphateERNand sugar diphosphatases (UDP) than
those cells cultured in xylose. This is importéeicause NTP (mostly ATP) are cellular
energy reserve materials and UDP sugar levelsnaieative of cell growth potential; thus,

cells metabolizing xylose would have less energygfowth than cells metabolizing glucose

[9].
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Figure 4.1 —Determination ofunax for glucose fermentation wit8. cerevisiaeError bars are
+1 standard deviation of 3 replicates.
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Figure 4.2 —Determination ofimax for glucose fermentation witR. stipitis Error bars are 1
standard deviation of 3 replicates.
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Figure 4.3 —Determination ofimax for xylose fermentation witR. stipitis.Error bars are +1
standard deviation of 3 replicates.

Figure 4.4 belongs to the system xylos8.-cerevisiaeAs mentioned above, this one
was only a control-system, and it was proven thist wild-type yeast strain did not produce
measurable quantities of ethanol but showed an rappacell growth. However, an
exponential growth phase was identified suggestivegexistence of this apparent growth.
Indeed, this is not comparable to the growth trenehd in the other three systems because by
analyzing the scale of cell concentration, the gmésystem has cell concentrations ranging
between 0 and 0.5 g/L, while the other systemseaeki up to 3.5 g/L of biomass. Although
S. cerevisiaecannot metabolize xylose, it takes up this pentds®ugh its glucose
transporters even though their affinity for thigguis very low and competition with glucose
restricts xylose assimilation [6L.ikewise, this slight growth is also due to the inution of

other medium components, such as malt extract weoatains more than 90 sugars like
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glucose, fructose and sucrose, and these sugaresasaily metabolized bys. cerevisiae
Nonetheless, the malt extract proportion with respe the main carbon source in culture
medium is very low (Section 3.2.1), reason why ewdh the complete degradation of the

sugars present in it, cell growth is not significan

0.60 A

0.40 A

Cell Concentration (g/L)

0 2 4 6 8 10

Fermentation time (h)

Figure 4.4 —Apparent exponential phase for xylose culture mmdivith S. cerevisiaeError
bars are +1 standard deviation of 3 replicates.

Along with the mathematical determinationigfand after tabulating the complete set
of cell mass, sugars and ethanol concentratioma foeriodically and aseptically sampling
throughout the fermentation course, the experinigmtdiles were constructed as a function
of fermentation time. The +1 standard deviatioroebars represent the average of three
replicates that were carried out in each of thelsirsubstrate fermentation experiments,
showing a good run-to-run reproducibility for aflet components. Figure 4.5 proves the
discussed previously about the null consumptionxylbse by S. cerevisiag having an

apparent growth as a result of the consumptionuggis available in malt extract. Some

89



studies have also demonstrated slight growtlSotcerevisiaeon xylose as a sole carbon

source under both aerobic and anaerobic condifidis
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Figure 4.5 —Experimental profile concentration for xylose fentation withS. cerevisiae
Error bars are £1 standard deviation of 3 replgate

The existence of xylose reductase (XR) and xytdeydrogenase (XDH) enzymes in
P. stipitiswas then tested when culturing this yeast stratin xylose, as shown in Figure 4.6.
Sugar consumption started from ~20 g/L and it wagehsing slowly in the first 12 hours of
fermentation, but from this moment on, consumptiate increased mildly, but keeping the
typical slow kinetics reported for this sugar. lasvable to have a measurable quantity of
ethanol from the beginning of the fermentations tisi at t=0, because the inoculum was pre-
cultured using the same carbon source, and eveer @adobic conditions a small proportion
of sugar was converted to ethanol. Ethanol comagon was increasing slowly, having an
accumulation that was proportional to the consuomptof xylose, suggesting that the
relatively low protein synthesis of the xylose sparters system fd?. stipitispreclude rapid

production of ethanol from xylose in this organifih]. The maximum ethanol concentration
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achieved was 4.194 g/L, but this is not certairilg tighest concentration that could be
reached since xylose was not totally consumedimexperiment. Instantaneous monitoring
of sugar concentration for this research work wagied out by means of an enzymatic
biochemistry analyzer as described in Chapter 3, fbu this experiment the improved

membranes for xylose assay were not yet availdfsbeefore after 72 hours of fermentation,

and having the cell growth in apparent stationdrgse, the experiment was concluded.
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Figure 4.6 —Experimental profile concentration for xylose fentation withP. stipitis Error
bars are +1 standard deviation of 3 replicates.

Further HPLC analysis of the samples showed a derable xylose concentration
remaining in the culture medium, having the potdrith produce more ethanol even with the
cells in a post-exponential phase linear growthogewhich has been detected by others
[8,13] and this is characteristic of the kinetiattol of the bioprocess residing in the transfer
of oxygen within the cell suspension, sirfeestipitis requires hypoxic conditions for better

fermentative performance. Also, a characteristideofnentation systems with xylose as the
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sole carbon source, or mixtures of glucose andseyls the uncoupling of ethanol production
from cell growth that occurs towards the end ofchatermentation [13]. When the
uncoupling behavior is observed the cell growtle @d&creases even close to zero while the
remaining carbohydrate present in solution is sjofermented to ethanol. This uncoupled
ethanol production was observed after 36 hours esinéntation because cell growth
decreased virtually near to zero while ethanol kiepproduction rate. However, regardless
the availability of sugar, ethanol yield could betetmined successfully because the yield
coefficient is obtained by matching the concentratof both substrate and product for each
sampling time, and this coefficient is assumedt&y sonstant throughout the fermentation
for a given initial sugar concentration. Fermeptatyields will be discussed later in this
chapter. The total volumetric consumption and pobidn rates for xylose and ethanol were
0.19 g xylose/L-h and 0.07 g/L ethanol-h, respetyivbeing these the smallest volumetric
rates for all the single substrate fermentations,not necessarily the smallest yields because
yields and productivities are not directly relat@dce their calculation basis are different. As
discussed above, xylose transport into the callgeod indicative for these low rates, because
the uptake of this sugar is rate-limiting for catkdm and at least two transport systems
differing in their affinity for xylose are respob$e for the sugar uptake [12].

It is important to emphasize that, according to wwek developed by Busturia and
Lagunas [14] xylose is presumably transported leyséaime system as glucose for any given
type of cell, but with a 200-fold lower affinity dnthis results, as mentioned above, in a
slower ethanol production rate. After xylose ferta¢ion with P. stipitis was analyzed, the
performance of this yeast strain can be compareshwhlturing it with glucose as the main
carbon source, as shown in Figure 4.7. Fermentasi@arted with an initial glucose
concentration of 25 g/L and the exponential gropftilase represented one third of the total

fermentation time. Within this lapse (first 16 hguit was observed that along with cell
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growth both glucose consumption and ethanol pradludtad a high rate, with an ethanol
production of almost 50% with respect to the tethlanol accumulated in this period and a
proportional percentage of glucose was consumedeldsAgain, the linear post-exponential
cell growth phase was observed but unlike xylosséatation, this phase was extended all
over the two thirds of total fermentation time. Bvéhough biomass proliferation was
substantially lower if compared to the exponenpiahse, the remaining half of total ethanol
produced took place during this post-exponentiaseh This observation is consistent with
that reported in literature, where it is discus$edt when working with microorganisms
requiring low dissolved oxygen concentrations, etthaproduction occurs between two

different stages, and one of them does not nedbsisaply an exponential cell growth [8].
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Figure 4.7 —Experimental profile concentration for glucose fentation withP. stipitis
Error bars are 1 standard deviation of 3 replgate

The uncoupled ethanol production during the slmigt-exponential cell growth phase

was observed again, showing that uncoupling is ooy a characteristic of xylose
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fermentation but an inherent phenomenon of the sedermenting yeast strains. This
phenomenon means that fewer sugars are consumecelfogrowth and relatively more
sugars remain available fér. stipitisto produce ethanol. Glucose was exhausted 4&er
hours of low agitated-incubation and the highebaetl concentration achieved was 8.314
g/L with a total ethanol production rate of 0.2@tpanol/L-h. Since glucose consumption
was more pronounced than xylose fermentation,dts substrate consumption rate was 0.63
g glucose/L-h, which is very close to the valueporged in literature under similar

fermentation conditions [15].

The last system to be discussed is glucose featientwithS. cerevisiae This one is
probably one of the most widely studied and bestewstood fermentation processes, because
of its well-known desirable properties. One of a@dvantages is, unlikB. stipitis which
requires small quantities of oxygen, tl@atcerevisiags an efficient ethanol producer under
strictly anaerobic or microaerobic conditions. Timakes it feasible for the co-culture scheme
as described in next chapter. Besides the remigrkéadh growth rate attainable by this yeast
at very low levels of dissolved oxygen and itsaéit transformation of glucose to ethanol, it
makes it so attractive for alcohol production [1d]his high growth was briefly observed in
Figure 4.2 with a value fou just smaller than those reported previously in ohéhe first
attempts to study the oxygen requirementsSocerevisiaavith glucose as a carbon source
for ethanol production [18]. However, the complptefile concentration is shown in Figure
4.8 where it is observed that after 7 hours of fartation, glucose was completely exhausted,
from an initial concentration of 25 g/L. This rdpglucose abatement occurred with a total
substrate consumption of 3.93 g glucose/L-h, aevalhich is five-fold greater than those
reported by previous research works [8]. The tethanol production rate was 1.19 g/L-h,
which is at the same time a large value if compdoethose typically found in literature,

reflecting the higher growth efficiency of this paunlar strain. Unlike fermentations carried
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out with P. stipitisthis system does not reveal the slight post-expiaidinear cell growth
observed in xylose-fermenting yeast strains, p@vagain thatS. cerevisiagls able to

produce ethanol efficiently under total oxygen alogeor under oxygen-limited conditions.
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Figure 4.8 —Experimental profile concentration for glucose fentation withS. cerevisiae.
Error bars are £1 standard deviation of 3 replgate

A graphic comparison among the total volumetriesaof substrate consumption and
ethanol production of the systems analyzed befas made, as shown in Figures 4.9 and
4.10. In those figures it is also indicated thecpdure followed for the calculation of the
volumetric coefficients, which is based in lineagression along the fermentation time for
each system, but not limited to the exponentidlgrelwth rate. The linear regression method
for the calculation of volumetric rates has beencsssfully used by other researchers in
ethanol batch fermentations as indicative of pregaeductivity [18, 19]. These volumetric
rates denote one more time the predominant fastiks of glucose over xylose, and the

ability efficiency ofS. cerevisiago utilize the carbon source to produce biomaskethanol
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over P. stipitis Further in this chapter it will be demonstratéattconsumption rates by
themselves are not enough to describe overalliefity in fermentation experiments, and

they must be supported by yield coefficients.
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4.2. Fermentation yields

Yields in a fermentation process have significamplications on several aspects of
processing but the most relevant issues are thoseeming attainable productivity and
operating costs. This is the reason why efficiemtya fermentation process is usually
measured by means of yield coefficients, the ohashave their basis on the proportionality
relationship existing between cells, substrates arudlucts, i.e. the assumption that total
amount of cell mass obtained by growth is propagldo the mass of substrate. This is most
utilized mathematical definition of the coefficieiyss [20]. The methods used for the
calculation of apparent yield coefficients were aiigged in Chapter 3, being the result of
matching concentrations of cells, substrates armdiymts, for the same instant of time;
however other methods have been successfully wsedeid coefficient estimation based on

stoichiometry, carbon balances and ATP mole baandth a high degree of accuracy [21].

4.2.1. Experimental yield of biomass on substrate

The vyield of biomass produced with respect to gates consumed for the three
fermentation systems analyzed is shown in Figuté.4~ermentation runs carried out in this
work were performed under hypoxic conditions, thene Yy,s values are smaller than those
achieved when growing cells under aerobic conditiorhis difference lies in ATP vyield;
when working under aerobic conditions the valu&oP yield tends to be greater than 25 g
cell/mol ATP (i.e. glucose witls. cerevisiag as long as yields of ATP under anaerobic
conditions have a value nearly constant of 10.5gtc2ll/mol ATP; the higher yields of ATP
the larger values in s [23]. Yield of S. cerevisia®n glucose was the highest of the three
fermentations with a value of 0.1184 g cell/g geearepresenting a 97.93% of the theoretical
value, which is 0.116 g cell/g glucose. This hefficiency means that sugar uptake was fast

and the cell utilized the carbon source and theratlatrients for a rapid growth, being this the
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reason why the exponential phase was steep arfdrthentation time was noticeably shorter
than those reported in literature [17, 23-24]. Ag&. cerevisiagroved its superiority to
grow either under aerobic or anaerobic conditiodswever, even a high biomass yield does
not guarantee a successfully overall fermentatioegss, because it is important to find a
balance between the cell growth and the formatfatttanol.

The system glucose P. stipitisachieved a biomass yield of 0.0941 g cell/g glecos
which represents the 81.12% of the theoreticaldyibking a little lower than those values
found in literature [8,15,17,24]. In those resbaworks the values of ys are also lower
when compared with the yields obtained withcerevisiae Although biomass yield was not
as high as in the previous system, it is well kndlatP. stipitiskinetics is slower because of
transport issues involving sugar uptake into thtomgasm, and the cell likely utilizes its
resources more in accumulation of extracellulardpots than for budding, and this could
increase product yields, but this product formateam even involve the accumulation of
intermediate metabolites from glycolysis, reducihg yield of the main product. However,
despite the attempt to achieve some HPLC peak ifcation for these metabolites, no
measurable quantity was determined for some p@sbibthemical compounds such as acetic

acid, glycerol, lactic acid, and others [25].
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The system xylose P. stipitisyielded 0.0831 g cell/g xylose which is a 71.64Pthe
theoretical yield, showing a decrease if compaedhe systems discussed above. Other
authors present similar results to those obtaimethis work, even there was a¥ value
exceeding the 100% of the theoretical value forifferént yeast strain [24]P. stipitis
revealed in both substrates this trend of not prmduthe maximum of cell growth, based on
stoichiometric calculations to obtain the theoiticalues of ¥s. Ethanol production from
glucose yields 2 moles of ATP per mole of glucas®] each mole of xylose promotes the
formation of ~1.67 moles of ATP [22]. As a condhglremark, it is assumed that stipitis
invests its resources equitable between cell groand the formation of extracellular
products, as discussed later in the section ofnethgield, which is supported by special

features attributed to this yeast strain, and dised by Hahn-H&gerdal and co-workers [26].

4.2.2. Experimental yield of ethanol on substrate

The amount of product accumulated from a given amoof substrate is a
stoichiometric proportion which allows to know tyield in a fermentative process. Although
substrates are also utilized for cellular growthdessussed in previous section through the
coefficientYyss, yield of extracellular product has stronger irogtions since it is a key factor
for process economy, hence the need to achieve Vafjes for these yields, near the
theoretical ones. Since the yield coefficietii;s for ethanol fermentation is obtained using
the molar proportion between sugars and ethanakhnis 1:2 ratio for glucose and 3:5 for
xylose, according to equations 2.2 and 2.3 of doisument, there is a maximum achievable
value forYp;s which is 0.51 g ethanol/g sugar, for both glucasd xylose, being this the
theoretical yield used to compare yields obtaingdeamentally. The vast majority of
ethanol fermentations hardly rea¥hs with 100% of efficiency (0.51 g/g), and the xylese

fermenting yeast strains have this condition mowrrked if compared to those hexose-
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fermenting ones, (i.eS. cerevisiag being a challenge for all the pentose-fermentinig-
type microorganisms [16] and this is one of themmaasons supporting the use of genetically
engineered microbes. HoweVés;s does not depend only on the type of microorgarbsin
operation conditions, such as temperature, pH, exygvels and initial cell concentration,
therefore several studies have focused on estaigisbptimal operation conditions to
gradually improve ethanol yield [26, 27].

Correlations used to determiifg;s are shown in Figure 4.12 along with the numerical
values for each system. Starting withstipitis it was observed that ethanol yield was higher
with xylose than with glucose, but the differenadveen both sugars is minimaks with
xylose as a carbon source was 0.3529 g ethanolageythis is 69.20% of the theoretical
value, being pretty close to yields reported byPdeez [2] and Sanchez [8], and a little lower
than the other studies [7,17,24]. Among all thpesvious works, the highedt,s obtained
was 0.47 g/g, although higher values, near therétieal have been reported when using
recombinant strains @&. cerevisia@ncoding genes ¢f. stipitis

Ethanol yield with xylose P. stipitis system was the highest of the three systems,
although its cell yield was the lowest becausePofstipitis utilizes efficiently its carbon
source to promote a balanced cell growth, the b $timulates sugar degradation into
ethanol production. Small amounts of xylitol werbserved during the last hours of
fermentation, which is completely normal since toflis a strong and stable intermediate in
early xylose degradation, before entering the diyge pathway, and this has been also
observed for all the xylose-fermenting yeast sgdk stiptis, C. shehatae, P. tannoph)lus
but the amount of xylitol accumulated varied fromecstudy to another. Xylitol production
does not occur with glucose as a carbon sourcee sins not an intermediate metabolite in

the pathway followed by glucose to produce ethanol.
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The system glucose P. stipitis yielded aYp;s of 0.309 g ethanol/g glucose with a
60.59% of the theoretical yield, which is lowercdmpared with xylose. This was observed
and discussed by Lightelm and co-workers [17],doth anaerobic and hypoxic conditions,
suggesting yield diminishing as an effect of ribégcumulation, however for this work we
were unable to have an adequate ribitol deternginasince the HPLC column used does not
detect this compound. Ribitol accumulation is notc@ammon event in this type of
fermentations, and so far the work developed byielyn is the only one found in literature
that discusses ribitol production.

S. cerevisiagroduced arYp;s = 0.3364 g ethanol/g glucose, similar and a litilser
to those reported previously, with 65.96% of th&oat yield. Despite the highy,s for this
system and the fast sugar consumption, the yieletldnol on substrate was not that high
since substrate was used more efficiently for gedwth than for ethanol production, as will
be discussed in the next section, even when tla étnanol concentration was good. One
alternative to improve ethanol yield would be tafpen this fermentation under strictly
anaerobic conditions, since it was carried out ygadly. However, Laplace and co-workers
have demonstrated that fermentative behavior wasdified with respect to the anaerobic
culture, and this may be due to the fact that,eafopmed in this work, inoculum was pre-
cultured under strong aerobic conditions and thés aeay have found enough oxygen

necessary for the synthesis of key compounds [23].

4.2.3. Experimental yield of ethanol on biomass

Yields discussed above can be complemented thrihwggiield of ethanol on biomass
Yp/x and its determination and values are shown inrEigul3. This parameter is interesting
because it allows quantifying how much ethanol lbaproduced as compared to biomass that

is being simultaneously produced from the substeatplaining if substrate consumption has
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been balanced or if it has favored cell growththiaeol production. The theoretical value for
this yield is 4.38 g ethanol/g cells, and the high® value, the better ethanol production,
being favored this pathway rather than cell proguct This is the case of xyloseP- stipitis
with anYp;s = 3.59 g ethanol/g cells which confirms the disoois above regarding that this
was the system presenting the best balance betwadleaind ethanol production. The system
glucose -P. stipitisyielded 3.21 g ethanol/g cells, which is a litbaver than that for xylose,
suggesting once again that performance of thistystesin is more efficient with xylose. A
lower value was the one obtained for the systernagie —S. cerevisiaavith Yp/x of 2.81 g
ethanol/g cells, it was expected to happen this siage the value fo¥x,swas the highest,
suggesting that cell growth was favored rather #thanol production, even when the amount
of ethanol produced was significant. As an altemeatfermentation can be carried out with a
higher initial cell concentration to promote lesdl proliferation during exponential growth,
attenuating substrate consumption for cell grovitisesthe number of cells present in culture

media at the beginning of experiment is large ehdogstimulate ethanol production.
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Two additional parameters supporting yield coeéints are the specific substrate
consumption rate,sgand the specific ethanol production ratg, dhese specific rates are
useful because they relate the amounts of subst@isumed and ethanol accumulated,
specifically in grams, with respect to one singlang of biomass produced. Unlike total
volumetric rates discussed in section 4.1, the dmasdescribe the rates with respect to the
fermentation time without relating the consumptamproduction to any other quantity, the
specific rates are always related to biomass, fitwereéhey support and help to better explain
yield coefficients. Specific rates are summarigedable 4.1, along with the apparent yield
coefficients previously discussed, and Table 4@nshthe maximum vyield coefficients for
each fermentation system. The maximum achievabiges&or the yield coefficients were
obtained following the procedure suggested by Shael Kargi [22] and they were also
compared to their apparent values. This compangm made by means of the relative error
respect of the maximum yield coefficient for eaehrientation system. The values of relative
error fell below 11.5% showing that the apparemidyicoefficients were very close to their
maximum values, which confirms the assumption ofamzed cell growth for all the
experiments. However, a more accurate determinationaximum yield coefficients can be
achieved using experiments in a continuous culiirst the effects of energy maintenance
when balanced growth does not take place for th&t ofdhe fermentation time [20].

Regarding the specific substrate consumption rétesglucose -S. cerevisiasystem
was the system having the highegtwijth 2.19 g glucose/g cell-h. This value was-dlgl
the q for the glucose P.stipitissystem, and 4.5-fold for the fipr the xylose -P. stipitis For
P. stipitis specific consumption rates were lower and highespectively, to those reported
by Sanchez and co-workers [8], however, that stahcluded thaP. stipitiswith xylose was

the fastest kinetics, which is the opposite toptesent work.
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Specific ethanol production rates followed the sgrattern of substrate consumption.
The values for g as shown in Table 4.1 are high for glucos8.—<cerevisiaawith 0.73 g
ethanol/g cells-hdecreasing foP. stipitiswith glucose and xylose, with 0.302 and 0.148 g
ethanol/g cells-h, respectively. Some other resemmrks have obtained values qf wery
close to the ones obtained in the present worly sscthe work of Laplace and co-workers
[23] for the system xylose P. stipitisand the results of Ligthelm and co-workers [17] fo

glucose -P. stipitis

Table 4.1 -Summary of the apparent yield coefficients and igeates.

: Yx/s Ypis Yeix Js o
Fermentation system
4 (9/9) (9/9) (d9/9) (g/g-h) (9/g-h)
Xylose —P. stipitis 0.0831 0.3529 3.5945 0.496 0.148
Glucose -P. stipitis 0.0941 0.3090 3.2080 0.846 0.302

Glucose -S. cerevisiae 0.1184 0.3364 2.8131 2.190 0.730

Table 4.2— Maximum yield coefficients.

M M M
Yxis Yris Yrix

Fermentation System

(9/9) (9/9) (9/9)
Xylose —P. stipitis 0.0809  0.3173  3.9232

Glucose -P. stipitis 0.1013 0.3345 3.5515

Glucose -S. cerevisiae  0.1131 0.3136 2.7731
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4.3. Unstructured kinetic modeling

Once the kinetic information for each of the indial fermentative systems with their
corresponding yields were determined, all of thguned parameters are available for the
construction of models describing cell growth, drdise consumption and product
accumulation, based on a simple Monod model. Astimeed earlier in this chapter, the
simple Monod model was used since inhibition phesmanfor both substrates and product
are not likely to occur in any of the fermentatiaasried out in this research project, because
of the low initial sugar concentrations utilizeddatme low ethanol concentrations achieved
from their corresponding substrates. All of thesacentrations are therefore, out of the
limits established by several studies developedhe subject of inhibition [2-5]. Using
equations 2.12 — 2.14 presented in Chapter 2, andliag the kinetic parameters and yield
coefficients, differential equations were solvednauically through a fourth order Runge-
Kutta method, as described in Chapter 3. The opé#tiun criteria used was the minimization
of the error generated by differences between @xpetal and predicted data, which is
described by the objective function (Eqg. 3.1), tbbsaining the best fitting and optimization
of the Monod model parametelsax and K. Error minimization was based on least squares
associated with the maximum experimental valuedbiomass, sugars and ethanol achieved
in the fermentation [28]. Profile concentratiomse ahown in Figures 4.14 — 4.16, depicting
the fitting of predicted values from simulationsttmse obtained experimentally. Statistical
validation of simulations was made taking into agdothree statistic parameters: Mean
Squared Error (MSE), Linear Correlation Coeffici@d€C) and Residual Standard Deviation
(RSD) expressed as a percentage of the averaggefimental data, the ones that have been
used in previous studies of kinetic modeling anchpeeter estimation [28, 29]. In the next
figures, solid symbols were used to depict expenaledata, and the entire set of simulated

values is depicted by means of continuous linesdéll predicting substrate consumption for
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the system xylose PR. stipitisis shown in Figure 4.14, displaying a slow desasmdamp
with an almost linear trend, fitting very well expeental data for more than half of the total
fermentation time, but it deviated towards the ehthe experiment, having an LCC of 0.965.
For glucose fermentations, sugar consumption waiseably a little more abrupt, and the
models presented a soft curve that fits well thpeexnental trend of sugar consumption in
these systems. Agbogbo and co-workers [29] devdlapmathematical modeling for xylose
with P. stipitis using a two-parameter method for biomass predicti@rying initial cell
concentrations, and the Leudeking-Piret equatiordescribe substrate consumption and
ethanol production, achieving a good fitting for thle simulations. However, they did not
use the concept ofi to describe cell growth rate and did not use yietefficients or
optimization criteria for parameter estimation. ucose —P. stipitisthe model suggests
that sugar should have a faster uptake, and asmshowigure 4.15, simulation of glucose
consumption was totally consumed almost ten hoefsré it occurred experimentally; some
authors have also reported this situation for treetwith S. cerevisiagusing the Monod
model with Moser and Luong kinetic model fotto take into account substrate and product
inhibition [30] and also for glucose fermentationthnS. cerevisiaaising the logistic model
[31]. According to LCC, better substrate consumpt®mulations were achieved for the
system glucose -S. cerevisiagwith 0.981 of linear correlation between simutatend
experimental data. For this system the simulati@adeh suggests that glucose should have a
little lower consumption rate, but by the time ahigh sugar is completely exhausted it
becomes identical to that observed experimentalyshown in Figure 4.16. The percentage
of RSD remained in the range [3.3% - 6.4%], a @iminge has been reported in literature
for glucose [28]. In bioprocess engineering, ibétter to analyze RSD written as a percentage

of the average of the experimental values, bectgssimple RSD will vary depending on the
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magnitude of the variable to be predicted. This,alues of RSD (%) below 10% can be

considered acceptable [32].

Xylose Concentration (g/L)
Cell mass and ethanol
concentration (g/L)

Fermentation time (h)

\ ¢ Xylose ® Cells A Ethanol —— Model

Figure 4.14 —Comparison of the experimental data and predicteetiks using the simple
Monod model in xylose fermentation wih stipitis
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Cell mass and ethanol
concentration (g/L)

Glucose Concentration

Fermentation time (h)

‘ B Glucose ® Cells A Ethanol —Model‘

Figure 4.15 —Comparison of the experimental data and predicieetiks using the simple
Monod model in glucose fermentation wiRh stipitis
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Figure 4.16— Comparison of the experimental data and predidteegtics using the simple
Monod model in glucose fermentation wih cerevisiae
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Table 4.3— Optimized kinetic parameters used in Monod model

: K
Fermentation system ‘ Mmax ‘ S
y (h) (/L)
Xylose —P. stipitis 0.054 25.00
Glucose -P. stipitis 0.1766 25.00
Glucose -S. cerevisiae 0.3095 5.487

Regarding biomass production, the best fits werioed in fermentation systems
using glucose as a carbon source. The highest 103711 was achieved for the system
glucose -S. cerevisiaeand it appears to be the higher fit for biomadgyough the MSE
value for xylose P. stipitiswas the lowest value for the three systems, wilB® However,
making a comparison between the two values of MBE, difference is small, and such
comparison is possible since both concentratioasrathe same scale. Arellano-Plaza and
co-workers [29] have reported some inaccuracy @nfittings for biomass when working at
high and low substrate concentrations (i.e. 30 gilglucose present at t = 0), but this
situation has been attributed to the assumptianyield coefficients are constant for different
initial substrate concentrations [29]. RSD perages, in average, were lower for biomass
simulations than those for substrate and ethahog according to this statistical parameter,
biomass was the component best fitted by an urtabed model. However, for systems using
xylose as the carbon source, the model was not tabéficiently capture the exponential
growth phase.

Regarding ethanol production, a good fit was oleigim the system glucose S-
cerevisiaewith a LCC of 0.9837, which was the highest vdioeall the components in all
the fermentation systems, unlike the case of xyeBe stipitis which had a fit that was less

accurate, presenting the highest RSD of all thedatation systems, with a value of 7.018%.
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This situation can be justified since the trendofeed by ethanol production in this last
fermentation system did not have a constant upwattérn. Instead, it fluctuated having ups
and downs throughout the fermentation time. Ald® maximum ethanol concentration
achieved was not that value at the end of the fetatien as in the glucose systems, and
therefore the value used in the objective functionthe optimization of the differential
equations system was not the last one at t = T2nthy have caused that model simulation
for ethanol production soared upwards along the daperimental ethanol concentrations.
However, the equation for the objective functioguiees the maximal values obtained in the
experiment [32], even when that maximum value does match the last concentration
measured.

Of the three statistical parameters used to testfitting of the models to the
experimental data for the unstructured model, the that gives more reliable and objective
information is RSD expressed as percentage, bedauakes into account the differences
between experimental and simulated data by meafeasf squares analysis but also relates
these square differences to the average experimeabae for each component, which
diminishes the effect introduced by the differencenagnitude, even when the concentrations
units are the same; it is pretty different to waikh biomass concentrations ranging between
0 and 4 g/L than substrate concentrations rangetavden 0 and 25 g/L. Therefore, the
magnitude of all concentrations is equated, beimmgenmappropriate to make a comparison
among components whether if they have concentrasioges similar or different.

Table 4.4 summarizes the statistical parametelizadito validate the sensitivity of
the unstructured model to predict the behavior bé texperimental concentrations.
Furthermore, the consistency and agreement betweedicted and experimental
concentrations was successfully evaluated and atalid by means of Figures A.1 — A3

presented in Appendix A. The small biases of thdcheml concentrations from the 45°
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diagonal line is a good indication of the consistemetween the simulations and the
experimental profile concentrations. Appendix Blunies a graphic analysis of the residuals
of the fermentation modeling, showing if the conguhamairs of data (experimental and
predicted) follow a statistical normal distributidn all the cases, the normality criterion was

demonstrated since the residuals seem to fit egstrine.

Table 4.4— Statistical analysis for kinetic modeling wittetsimple Monod model. Units:
MSE [(g/LY]; LCC [%]; RSD [%].

Fermentation Statistical Cells Sugar Ethanol
system parameter (X) (S) (P)
MSE 0.0381 2.2573 0.3263
Xylose — LCC 0.8188  0.9650  0.8982
Pichia stipitis
RSD 4.8770 3.3688 7.0184
MSE 0.1382 6.3951 0.4472
Glucose - LCC 0.9119  0.9693  0.9535
Pichia stipitis
RSD 5.4670 6.1866 4.2199
MSE 0.0454 4.6790 0.2483
Glucose —
Saccharomyces LCC 0.9711 0.9810 0.9837
cerevisiae
RSD 3.1570 6.4260 3.3137

Overall, the proposed unstructured model basedroples Monod kinetics, describes
satisfactorily and with a good degree of accurahg, trend that biomass, substrates and
product follow in a batch fermentation to produdbaeol, under hypoxic conditions. The
relevance of optimizing the kinetic parameters,nglovith the determination of yield

coefficients, is reflected on the utilization ofl #he information procured on the single
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substrate experiments to construct the structuredem as will be discussed in Chapter 5.
Likewise, since the results of the unstructurednmaiatical model describing single substrate
fermentations are accurate, the model becomes ya usaful tool for design and process
control of fuel ethanol production and can be zeidl for scale-up in this and other type of

bioprocess engineering.
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5. MIXED SUBSTRATE FERMENTATIONS

This Chapter presents the results and analysiBeostructured modeling of glucose-
xylose mixtures using the suspended co-cultureheftivo yeast strains used separately in
single substrate fermentations. The results ok#perimental runs carried out to validate the
simulations are also presented, along with theyarsabf the specific enzyme levels for the

consumption glucose and xylose.

5.1. Construction of the structured cybernetic model

The cybernetic modeling framework developed by Kalapand Ramkrishna [1]
previously introduced in Chapter 2, builds uponittea than an organism’s nutritional goals
are carried out entirely within the domain of cheahikinetics through judicious utilization of
metabolic capabilities. The sum of all the chexhtcansformations taking place in a cell or
organism, occurs through a series of enzyme-cadlyeactions that constitute metabolic
pathways and the cybernetic perspective of mictajy@wth has reported that the metabolic
regulation of biochemical process can be contrdig@nzyme synthesis (cybernetic variable
u) and enzyme activity (cybernetic variab)e

As mentioned earlier, equations 2.17 and 2.18 aydifinations to the unstructured
Monod rate expressions, taking into account theewytic perspective which suggests
including the effect of key enzymes synthesis fag tetabolism of two or more different
substrates. Those equations contain the subsanipich specifies the synthesis of iitle set
of enzymes for theth substrate to produce both biomass and the platiextracellular
product, in this case ethanol. Since the presenk wequires mathematical expressions for a
binary mixture of carbohydrates using a co-cultofetwo yeast strains, the cybernetic
framework was extended not only to identify twofeliént carbohydrates but to make a

distinction between two different strains of céldomass) growing from each carbon source.
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Therefore, since numbers are traditionally usedthea nomenclature to represent the
substrates, the subsequent equations contain reahsubscripts identifying: (1) glucose and
(2) xylose, while alphanumeric subscripts weregrs=i to the yeast straing) . cerevisiae

and p) P. stipitis Now, equations 2.17 and 2.18 with the cyberregtigroach become:

_ U [STX

Bik — K, +[S] (5.2)
.= alSIXe (5.2
K +IS]

wherei represents thegh substrate (from 1 to 2), akdepresents thith yeast strain (froma

to b). Subscript B represents the biomass growth rate and subsé&ipdenotes the
corresponding enzyme synthesis rate, having fouthenaatical expressions for each
combination of substrate-strain. The experimentathmdology applied to this work did not
include measurements for enzymatic levels, thugppdrametee x, the specific level of key
enzymeswere estimated following the same criteria utilizegbrevious work [2], suggesting
the replacement of the traditional specific growttie expressionuix by the following

equation:

— Iumax,i,k (:umaxj,k + /8)
a

Hi (.3

wherea andp are the protein decay and the enzyme synthesicoaistants, respectively, and
their values were assigned as described afterwiardiis same section to bring out the

influence of specific enzyme levels on the growihekics. Mathematical representation of
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the specific enzyme leve is used instea@ nax Since this value is not as important as the
relative levele/g max Similarly, prior the discussion of the expandegiaions system, it is
necessary to emphasize the adaptation of the egsaf.23 and 2.24 to the cybernetic
framework with two microbial species. Both equasianust include now the subscripto
differentiate between the two strains. This madifion yields the following equations for the

cybernetic variables:

li
Uy = 5.4
K j er'k ( )
it
V. = 7ri’k (5 5)
" max( ) '

jk

where the subscriptjoined with the subscrifk keeps representing the rate of any of the two
substrates, but specifying the metabolism of tlaahes substrate with one particular yeast
strain (equation 5.4) or the rate of any of thessiatbe-strain systems having the maximum
value in any given instant (equation 5.5). Theseatgns are the heart of the cybernetic
perspective, based exclusively on the matching mogortional laws, which are heuristic
control policies serving as optimization surrogdmspredicting the response of metabolic
control circuits that modulate enzyme levels antiviies [3]. The cybernetic variable
accounts for the regulatory control inputs enaetetthe transcriptional and translational levels
that determine the enzyme synthesis rates. Higglesdoru suggest the induction of enzyme
synthesis while low values denote its repressious0 the polymerase does not transcribe the
gene for the enzyme & and if u=1 then obviously onhE; is induced. The cybernetic

variablev represents the mechanisms of catabolite inhibigind activation controlling the
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activity of the existing enzymes. &1, the enzyme is activated and reaction proceeds t
metabolize the first available carbohydrate whileyene for metabolism of the second
carbohydrate is inhibited, and therefore the rétsubstrate consumption of the first sugar is
higher than the rate of the second; otherwisis, close to zero suggesting that the enzyme
previously inhibited is now activated.

According to equation 2.19, the formation of bi@®anow is represented by two
different equations: one for the growth&fcerevisia¢a) and the other one for the growth of

P. stipitis(b), from both substrates: glucose (1) and xylosgg&Yollows:

dxa — Xa :umax,l,ael,a[sl]vl,a + :umax,Z,an,a[SZ]VZ,a (56)
dt Kl,a +[Sl] K2,a +[SZ]

dxb - lumax,l,bel,b[sl]vl,b + lumax,z,bez,b[sz]vz,b (57)
dt | Ky, +[S)] Kzp +[S,]

The second term of equation 5.6 can be negleatedusaimax 24 and K5 are zero;
there is no growth o8. cerevisiaalue to xylose consumption, therefore this termobees
zero. In fact, all the parameters and expressiotisthe subscript 2,can be deleted from all
of the equations of this model since they belonghto sugar-strain system indicated above.
Nevertheless, the subsequent equations will inclidese parameters for a better
understanding of the effect that both substratese hia the development of the complete
model.

Substrate consumption also has to be divided indifferent equations to denote the
utilization of each carbohydrate by each of thesyestrains. While equations describing cell

growth include terms on both sides of the sum #mdtfor the contribution of the two
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carbohydrates, the following equations also disphés sum but representing the contribution

of the two yeast strains:

d781 — _Xa 1 +Yp/x’1’a :umax,l,ael,a[sl]vl,a _ Xb 1 +Yp/)(’1’b :umax,l,bel,b[sl]vl,b
dt Yx/s1a Kia T[SI] Y Kip T[S

(5.8)

X/S1b

dt K,a t[S] K,p +[S)]
(5.9)

YX/S,Z,a YX/S,Z,b

d% — _Xa{ 1 + P/X’Z’a:l :umax,z,aez,a[sz]vz,a _ Xb{ 1 +Yp/x’2’b:| /'Imaxz,bez,b[sz]vz,b

Ethanol production is the result of sequential stonption of both substrates, and
therefore the equation 2.21 describing the accutionl®f ethanol is the sum of the two yeast

strains metabolisms multiplied by their own yietuetficient, adopts the following form:

dt

dP — lumax,l,ael,a[sl]vl,a lumax,Z,ana[SZ]VZ,a
4 Xa P/X la + P/X 2,a +
Kl,a+[S_l] K2,a+[82]

:umaxl,be[Sl]Vl,b + ,umax,z,b%,b[sz]vzbj| (510)

XY,
b|: P/X Lb Ky, +[S] P/X 2 K, +[S,]

Enzyme synthesis mass balance described by equafi@nis now applied for each
particular combination of substrate-strain, and@eithis intracellular synthesis is performed
by different metabolic pathways between the twoaiss, four equations illustrate
mathematically, the synthesis of the key enzymesssary to initiate the complexity of steps
involved in the metabolic pathways, already desctim section 2.3. The equations are the

following:
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del,a _ a[sl]ul,a _ _ dl—nxa

dt - Klva +[S_l] :Bel,a el,a dt (511)
d%,a _ a[SZ]UZ,a _ _ dl—nxa

dt - KZ’a +[Sz] :Bez,a e2,a dt (512)
de, _ a[S]u, _ __dLnX,
de, _ a[S)]u,, __dLnX,

K, r[e] T g (5.14)

The values for the enzyme synthesis rate constasta numeric estimation for the
maximum specific level of a single enzyme, whichaiverage, is of the order of i@
enzyme/g cell, and that value can be fixed for aerage enzymek,. The first-order
degenerative loss of the active enzyBé described by the constghtwhich value has been
fixed at 0.05 H for all enzymesE’s, and it was estimated from studies made on prote
decay, showing a slow rate and reaching its maximata of 5%/h under non-growth
conditions. The values for these two parametene wssumed to be the same for all key
enzymes in the present work, and the same values been successfully used in other
simulations found in the literature [2, 4-5].

Equations 5.6 — 5.14 are therefore the final esgioms of the complete cybernetic
model developed for this work, including the kiceparameters and yield coefficients
determined in single substrate experiments as skecliin Chapter 4. Solving this complex
non-linear ordinary differential system, includirtge criterion of resources optimization

denoted by cybernetic variablesimultaneously for each yeast strain, was possibieg the

123



same & order Runge-Kutta method included in the MATLABmmand ODE45. The model
was first constructed for each of the yeast stramgfforts to model single substrate-single
strain fermentations and to compare the unstrudtiMenod model with the structured
cybernetic perspective. Also, mathematical propest were made for sugar mixtures with a
single yeast strain, attempting to analyze theviddal performance o0$. cerevisiaandP.
stipitis in a mixed substrate environment. However, thasellations, presented in the next
section, are just a complementary vision of the @liag work to evaluate the behavior of
these co-fermentation systems but no statisticalpawison or validation was possible since
experiments for these schemes were not part adgbeific objectives and therefore were not
included in the methodology of this work.

Additional approaches have been proposed and unsethér studies to optimize the
mathematical description of the cellular metabolisoch as the precursor perspective
developed by the same authors of the cybernetmeweork, which involves the formation of
biosynthetic constituents of a lumped precursor péang with the production of energy in

the form of reduced pyridine nucleotides (e.g. NABtl ATP) [6].

5.2. Simulation of glucose-xylose mixtures using one gjte yeast strain

Fermentation of mixtures of glucose-xylose to i ethanol using one single
microbial strain have been lately studied usindpezitwild-type or genetically engineered
strains in order to improve the efficiency of thenhentative process and ethanol yield, as
well. The approach of the majority of these stadicuses on kinetic parameter estimation
and vyields determination, but other authors hawe alorked with both unstructured and
structured mathematical models. However, very tatempts have been made using the
cybernetic perspective, as discussed later in gbation. Cybernetic modeling applied to

systems comprising only one substrate is not @atzant in the sense that cellular resources
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optimization to synthesize more than one carbomcgodoes not occur, but it is important to
demonstrate some theoretical aspects between angsgd and structured models. For
instance, the equation of maximum specific grovdte rfor the single substrate present in
culture media also involves the maximum specifieyeme level because during balanced
growth the specific enzyme level remains at its imaxn value. For that reason, cybernetic
model in this case reduces to the simple Monod madealescribed in the next figures where
the single substrate fermentations from Chapteredaaalyzed again to make a comparison
with respect to the experimental data, but thigtoantrasting both the Monod and cybernetic
model. After this comparison, simulations of glueoglose mixtures are analyzed prior the
discussion of co-fermentations that were carried with a co-culture of yeast strains.
Equations 5.5 — 5.14 were used but taking onlytdmns of each equation (or the entire
equation) corresponding to any given strain (énglf the equations comprising the subscripts
afor S. cerevisigeand using only one equation for microbial growth.

Figure 5.1 shows the comparison explained aboitb, dotted lines representing the
Monod model and solid lines representing the cydtenmodel. It is evident that both
mathematical projections overlap, proving actudhwat the equations of the cybernetic
perspective are reduced to the Monod model equatmmsingle substrate systems, the ones
that are identified as: glucoseS- cerevisiae(A), glucose —P. stipitis (B) and xylose P.
stipitis (C). When the cybernetic model reduces to the lemfmnod model, the value for the
cybernetic variable is 1 throughout the whole fermentation time, amd bccurs because the
predominant rate is that existing for the only stdis that is being metabolized. Using this
same analysis for the cybernetic varialleve can easily determine that its value is als®. on
Mathematically, the main difference between the taadels is the contribution & but for
these single substrate systems it has no effectspgeeific level of the key enzymes

responsible for substrate degradation are allithe at their maximum value.
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As mentioned before, the model developed now @iegh to simulate mixtures of
glucose-xylose separately for each yeast straishawn in Figure 5.2. The percentages of
glucose/xylose utilized are 75/25 (mixture A), SDfBnixture B) and 25/75 (mixture C) g/L,
in a basis of 25 g/L of total sugar concentratiomially present in the culture media. These
simulations have been made as an introductiong@tfalysis of utilization of two substrates,
including graphic representations of specific eneymevels e, necessary for the well
understanding of the cybernetic perspective, andgusformation provided in previous
studies where monoculture was utilized (maiplystipitig to relate those experimental results
to the ones obtained by simulation in this work.

Beginning with the mixtures using. cerevisiaes the sole fermenting yeast strain,
Figure 5.2 shows the simulation for mixtures A, BlaC, with cellular and ethanol initial
concentrations of 0.85 and 0.50 g/L, respectiviglgse values are an average of the ones that
were used as initial conditions in single substf@@nentations, varying only the initial
proportions of carbohydrates. For the three medukylose concentration remained virtually
unchanged throughout the total fermentation timayirlg a very slight consumption of
approximately 0.25 g/L in average for the threelym®l systems, which has been also
reported in literature [7]. As discussed earlierthis document, althougB. cerevisiae
naturally does harbor genes for xylose utilizatithese are expressed at such low levels that
they do not support growth on xylose, thereforelegtst a very small amount of this
carbohydrate is utilized by cells attempting to abelize it but without success because they
are not able to put it into the metabolic pathwapitoduce ethanol [8]. Glucose consumption
occurs similarly to the system when xylose is naspnt, and its exhaustion depends on the
initial proportion of glucose; the higher the progpan of sugar the faster the glucose
exhaustion, showing a steep reduction because ihenere biomass growing and hence the

sugar transports rapidly across the cell membrane.
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Figure 5.2 —Simulations of glucose-xylose fermentation mixtunath S. cerevisiae A: 75%
Glu — 25% Xyl; B: 50% Glu — 50% Xyl; C: 25% Glu 5% Xyl.
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Since glucose is the only carbon source utilizgdSbcerevisiaen this fermentative
system, it is expected that both cell growth arfthiedl production will be less efficient in
mixtures with low glucose fractions, if compareddiher systems were both substrates are
consumed. These simulations were then usefuldeepthat the cybernetic model is able to
predict the null xylose metabolism . cerevisiaeno matter how high or low is the
concentration of this sugar in the mixture. Besjdgucose consumption is not affected by
the presence of xylose, but when the xylose prapors very high then the system resembles
a pure xylose fermentation, which does not makesamge when using a wild-type strain of
S. cerevisiae Moreover, the existence of fermentation systemsipethanol production
where xylose concentration is very high when comgao glucose concentration in the same
culture broth is not the usual, since the majoatyhydrolyzed fractions from pre-treated
lignocellulosic biomass have higher or equal praporof glucose, nevertheless this depends
on the type of feedstock [9].

Figure 5.3 shows the evolution of the specificelevof key enzymes for substrate
degradation, glucose in this case. Since inoauiahe three mixtures were pre-cultured in
pure glucose, the initial value ferfor glucose consumption is assumed to be apprdgigna
90% of the maximum specific enzyme level [2], whiléo was assumed far in xylose
because, despite the existence of genes for xyletabolism inS. cerevisiaethe cells did
not have even minimum levels for xylose degradasioge inoculum was cultured using pure
glucose. Therefore, the change in specific levedreyme for glucosee() displays a slow
increase, reaching its maximum value towards thetliohour of fermentation, and this
proves the assumption made for the initial valle.the other hand, the values for specific
levels of enzyme for xylose{) remained virtually close to zero. It was expddigat while
the glucose proportion decreases, its enzyme l@geteases because the cell spends less

resources in synthesizing that particular enzynaedilability of sugar is poor.
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The performance of. stipitis was also evaluated creating simulations for theesa
mixtures used in theS. cerevisiaesimulations. The predictions suggest sequential
carbohydrate consumption for all of the mixtures ltaving this effect noticeably in mixtures
A and B; glucose was first consumed while xylosecemtration remained virtually constant
or decreased slightly until glucose concentratices iow enough to allow faster xylose
consumption. Simulations are shown in Figure %id the initial values for cell and ethanol
concentrations were the same for the three mixtuigs 0.4 and 0.1 g/L, respectively, but in
practice these values can be different dependinth@mistory of the inoculum which can be
cultured either on pure glucose, pure xylose, onigure of both sugars. For the present
simulation it was assumed that tRe stipitis inoculum was grown on pure Xxylose, but
sometimes working with inocula grown on mixtureseath sugar helps to standardize all the
possible results that can be achieved through empatal work [10].

Simulations indicate that glucose consumption khba faster for those mixtures with
high glucose fractions, because it is the prefeswdostrate foP. stipitis but when glucose
concentration is low cells experiment a decreasthéir growth due to the limited glucose
present and they start to consume xylose, espgevaén inoculum has been grown on pure
xylose or a mixture of glucose xylose; when thisuws the small fraction of available glucose
is consumed slowly. This is the reason why xylosesumption for mixture C begins even
when glucose is not completely exhausted, and airolbservations have been reported in the
literature [11], with inocula also grown in purelase. These studies have also reported that,
the high xylose fractions have had also a slightgher ethanol yield. Of course this also
depends on the yeast strain utilized because sdértteese strains, lik&ichia stipitisCBS
5773, display less ability to synthesize the intlecenzyme necessary for degrading xylose,

which is the result of the strong catabolite repi@s caused by glucose [12].
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Despite P. stipitis yield on xylose is slightly lower than that on gbse, for the
previous simulations it was assumed that inocula® lbeen grown on pure xylose because
this allows the xylose degrading enzymes to achievels at the beginning of fermentation,
and although at this time, enzymatic synthesisully frepressed by the presence of the
preferred substrate, when glucose is almost coelglexhausted the polymerase will not
spend much time transcribing again the gene foose/ldegrading enzymes, and hence
enzyme activation will be much faster if comparedthie scenario when enzymes are not
originally present in the cell (i.e. when inoculuhas been grown on pure glucose).
Additionally, when growing inoculum in the less fen@ed substrate a marked reduction in the
intermediate lag phase (diauxic lag) is achieved this is a desirable situation for time
optimization in fermentation processes [2].

Figure 5.5 shows the evolution of the specificyame levels for glucosee{) and
xylose €;) consumption in simulations previously describfed,the same mixtures A, B and
C. The initial values foe, ande, were chosen following the analysis of specific agldtive
enzyme levels found in literature [2] beingc30* and 6x 10“, respectively. Since inoculum
was cultured on xylose, the initial levels of enagfor xylose degradation are higher than
that for glucose, but when working high glucosetigns (mixture A)e; is strongly repressed
and it tends to decrease while glucose is beingwoed because already existing enzymes
are inhibited; activation occurs after has reached its maximum value. Unlike mixture A,
the other mixtures show a faswractivation even before, is decreasing for mixture B and
even high values befors reaches its maximum value for mixture C; this ERiation causes
that xylose consumption occurs before glucose auraigon drops to zero, which has been
reported by Agbogbo and co-workers for the sameturéxbut with a little lower xylose

consumption rate [13] and also for the same mistusengZymomonas mobiligl0].
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5.3. Experimental profiles and fermentation yields

The same mixtures considered previously for simutatof glucose and xylose using
a single yeast strain were carried out experimbntalstudy the performance &8f cerevisiae
and P.stipitis co-cultured for ethanol production, then the sammenclature is kept (A, B
and C) and will be also utilized to make referetwe@ach mixture from now on. Using the
observations made in single substrate fermentatitimsre was a modification in the
procedure for the cultivation of inoculum, to actg@ea high cell concentration, as described in
Chapter 3. Each yeast strain was grown in its sehigh-performance carbohydrate (i.e.
S. cerevisiaeon glucose andP. stipitis on xylose) to promote the induction of necessary
enzymes for the degradation of both sugars in s#en, and thus reducing or eliminating
the intermediate lag phase, as it was first madierimentation of glucose-xylose mixtures
with Klesbiella oxytocd2].

Figure 5.6 shows the evolution of cell growth &ach mixture, the ones that display
clearly the distinction of two phases: the firsieas the growth under glucose, which took
place rapidly in the first then hours of fermerdatiand the second one is the growth phase
under xylose, which was prolonged towards the ehdfeamentation time. Glucose
consumption occurred mainly under the action Sf cerevisiag because although the
proportion of cell concentrations from each stiaithe inocula was fairly similar, kinetics of
P. stipitison glucose is markedly low as a result of the ceduaffinity for the transport of
this carbohydrate into the cytoplasm when comp#oes. cerevisiagl4]. Therefore, after
the promoterwas activated with the exhaustion of glucose, th@ucible enzyme was
produced, causing the degradation of xylosePhystipitis less rapidly and with smaller

proportion than on the glucose growth phase.
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Mixture A was the only one that displayed cleaalyshort intermediate lag phase
between the fourth and sixth hours of fermentatibime high glucose proportion caused a
stronger xylose repression, promoting a cell groe#issation while enzymes for xylose
degradation are synthesized, therefore transitimm Qlucose to xylose consumption was able
to be observed unlike mixtures B and C; the firsie chad an almost imperceptible
intermediate lag phase, and the last one did rnab#xhis phase. Similar results were found
in literature for glucose-xylose mixtures with poopons 67% — 33%, respectively [12]. In
general, between 50 and 65% of total cell prodacti@s obtained by glucose degradation,
even in mixture C that had only 5.3 g/L of glucasgally present.

Cell growth inhibition in suspended co-culturesdny of the microbial strains is one
limiting step in the development of efficient chescfor mixed cultures, especially betwen
cerevisiaeand xylose-fermenting yeast strains. Howeverwbek developed by Laplace and
co-workers [15] supports the use of these two @adr yeast strains, since their compatibility
was tested using a special technique involving chibmdrial inhibitors, in which no growth
inhibition occurred frontS. cerevisiado P. stipitisand vice versa. Accordingly, no growth
inhibition phenomena were observed between they®ast strains utilized in the co-culture
process for this work. The relationship existiregviieen them is neutralism since there was
no appreciable change in growth rate of any of thand the pure-culture behavior of both
species was very close to their behavior in mixalluce, with high growth rates fo®.
cerevisiaeand a low growth rates fd?. stipitis but showing an excellent compatibility and
performance for ethanol production, as discussed ¢an this section.

Experimental profiles are now analyzed for the¢hmixtures, showing the monitored
concentrations of total cell mass, glucose, xylasel ethanol throughout 100 hours of
hypoxic fermentation. Each mixture was performedtiplicate, and each replicate was

cultured using the same initial cell and sugar eot@tions, thus the mean value of replicates
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is displayed in the next profiles, with error baosresponding to =+ one standard deviation for
each concentration.

Profile concentrations are depicted in Figure 317 general, the three mixtures show
fast glucose consumption in less than ten houtsatfh fermentation, which promoted both
cell growth and ethanol production at high ratee dw degradation of this carbohydrate.
Xylose consumption remained virtually unchangecdhg@lthis short time, mainly for mixtures
A and B, showing an average xylose decline of Gl5 gnd approximately 0.75 g/L for
mixture C, until complete glucose exhaustion. Aldee three mixtures revealed the same
pattern of incomplete xylose utilization at the esfdfermentation because of the severe
inhibition by glucose on the xylose conversion, stag that the xylose conversion rate be
significantly lower than the glucose conversionerawvhich has been also reported in the
literature [7,15], but xylose remaining concentyasi in those studies have been considerably
higher. However, making a comparison of the threetures in Figure 5.7, the curve of
xylose consumption shows a steep descent whenytbhsexconcentration is high, indicating
that as the initial lower glucose concentratiorlow, the faster turns out to be the xylose
consumption, as shown later in Table 5.1. There,ttltal substrate consumption rates are
compiled; these were calculated in basis of thee tnequired for the consumption of each
substrate, similar to the method used in ChaptetMdxture C presents the highest xylose
consumption rate (0.185 g/L-h) and the lowest gbecoonsumption rate (0.838 g/L-h) of the
three mixtures, which was previously predictechi@ simulation of this mixture using oriy
stipitis. Despite the increase in xylose consumption irataixture C, the remaining xylose
concentration was the highest, suggesting probaldarger time of fermentation in order to

further evaluate if complete xylose degradatiopassible.
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Table 5.1 — Substrate and ethanol volumetric rates from eagjar in the fermentation
mixtures with the yeast co-culture.

Sugar Mixtures ElmsoEE
(% Glucose - % Xylose) Qs Qp
g (g/L-h)  (g/L-h) (g/L-h)
A (75 - 25) 2.729 0.565 0.042 0.023
B (50 — 50) 1.375 0.414 0.099 0.030
C (25-175) 0.838 0.319 0.185 0.047

In the other hand, other alternatives such as inilimabon of P. stipitis in
combination with suspende®l cerevisia®r using a respiratory deficient mutant yeasts of
cerevisiaehave been proposed as an alternative to improl@seyutilization, but results
obtained by some authors still report incompletess utilization [15,16].

Competition between the two yeast strains for orygethe culture media is also a
parameter having a great significance in mixed ucaltfermentations, especially when
working with xylose-fermenting strains because fwit well known requirements for low
oxygen levels. Since batch co-fermentations wengiexd out under hypoxic conditions,
competition for oxygen availability was not likely occur, and this assumption is valid since
both yeast strains had a level of growth prettyselto the single substrate experiments for
each substrate. Otherwise, all the available oxygeuld be used b¥. cerevisiag¢o grow
aerobically, producing a large number of cells #mas reducing ethanol production. The
ethanol consumption rates shown in Table 5.1, hadethanol concentrations achieved from
glucose consumption proved that oxygen concentraticere adequate for both yeast strains.
Nonetheless, remaining xylose concentrations atetigk of fermentation for each mixture
were substantially lower than those reported inliteeature when using the same co-culture

and also fofS. cerevisiaeo-cultured withCandida shehataf 7].
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Regarding ethanol production, it was observed that maximum concentration
achieved was 7.486 g/L in mixture A, while mixtuisnd C reported 6.919 and 6.906 g/L,
respectively. It is worthy to note that, althougk difference in ethanol produced among the
three mixtures is small, ethanol produced in mxtérwas higher than the other two mixtures
not because of the high glucose concentration boause of xylose utilization, which was
better utilized in mixture A. In fact, percentag#dotal ethanol produced from glucose were
decreasing from mixture A to C, from 54% to 64%gd aethanol produced from xylose
increased from 46% in mixture A to 64% in mixture [@oving that despite the fast cell
growth and rapid ethanol produced with glucosehIsoigars had their respective contribution
for total ethanol production.

Ethanol yield on substrate was slightly higher iixtore A, but yield coefficients for
the three mixtures are very close to each otherahithe same time are very similar to those
obtained in single substrate experiments, whichnmehat the co-fermentation process is
efficient because ethanol yields were not lowenthay of those achieved in fermentations
comprising only one substrate and only one yeaainst All Yp/s coefficients were greater
than 0.32 g ethanol/g sugar, very close to thokeegabbtained by Ballesteros and co-workers
for the suspended co-culture f cerevisiaavith C. shehatag¢l8], however better yields and
better xylose utilization, as mentioned before, banachieved using coimmobilization with
high initial concentrations dP. stipitis since the glucose concentration in the centdhef
beads will be almost zero, which makes xylose coser possible [19].

Similar to the yields of ethanol on biomass obtdine Chapter 4 for xylose
fermentation withP. stipitis the mixtures comprising the same or higher propoof xylose
yielded larger ¥x coefficients than those on mixture A, and at tame time, this mixture
exhibits the highest ys coefficient, meaning that sugar uptakePinstipitisis more efficient

for ethanol production rather than for cell growtHowever, all the yield coefficients in the
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mixtures, shown in Table 5.2, have a short vaiitgbivhen comparing the different mixtures
and demonstrates that the three systems are gmodadives for ethanol production using the
suspended co-culture. Although the initial celhcentrations utilized were high enough to
reduce lag time and to promote high cell densitthanculture medium, higher values should
be used in future experiments, in order to imprguelds and to have a total xylose

consumption, which will also increase¥coefficients.

Table 5.2— Summary of yield coefficients for glucose-xyldeementations with the yeast
co-culture.

Sugar Mixtures

(% Glucose - % Xylose)

A (75 — 25) 0.336  3.003 0.111
B (50 — 50) 0.3169  3.429 0.092
C (25 - 75) 0.3313  3.363 0.098

Fermentation byproducts were monitored with thalgital determination of sugars
and ethanol by means of HPLC analyses. Very snmadlumts of glycerol, acetic acid and
lactic acid were detected, especially in mixtureb@t the quantification was not necessary
since the peaks only were visible when the scalehodmatograms was amplified. Another
byproduct of particular interest in xylose fermeiatas is xylitol, which has been reported to
affect ethanol yields in fermentative systems cosipy both xylose alone and mixtures of
glucose-xylose [17, 20]. Xylitol accumulation wabserved in mixture C and in less
proportion in mixture B, but likewise the other bygucts, the amounts produced were very
small and this did not affect significantly ethawyalds. In fact, one of the main advantages
offered by fermentation of mixtures of glucose axglose is a reduction in xylitol

accumulation, because under these conditions tieeofaxylose utilization is increased, as
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shown in Table 5.1, suggesting that xylitol formatis a consequence of insufficient xylose

flux [22].

5.4. Structured modeling glucose-xylose mixtures using

Once the kinetic parameters were estimated anteuxptimized by means of the
Monod unstructured model, according to the resdigsussed in Chapter 4, and having the
complete set of equations developed in sectiontbelaim and main objective of this work is
the kinetic modeling of the glucose-xylose ferm&atamixtures, using the yeast co-culture,
by means of one adequate structured model thas iak@ account the instantaneous cellular
optimization occurring in a multisubstrate enviramti the cybernetic framework. This last
section displays the results obtained when modeleg same mixtures so far discussed,
evaluating the quality of the model and its appiarato real fermentation systems for process
optimization and scaling-up for industrial applioas.

Using equations 5.6 — 5.14 with the inclusion ofekic and yield parameters from
single substrate experiments, the non-linear diffgéal system was solved in MATLAB as
described in Figure 3.18 with the constraint fde naaximization described by the cybernetic
variablev, in each step of the Runge-Kutta method; beforeisglmumerically the system for
each instant of timg the rate of the uppermost limiting substrate s@®puted and included
in the denominator of equation 5.5, thus the catluésources optimization was represented
mathematically at the start of every iteration. sThgrocedure has been utilized in the
programming of Runge-Kutta methods for the growthcaculture of Kluyveromyces
marxianus and Candida utilis [22]. However, it is worthy to note that the siations
obtained in the present work were not subject ah&r optimizations for error minimization,
therefore the proposed models were directly contptreéhe results obtained experimentally,

and statistically validated by means of the sameamaters used for the validation of
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unstructured models: Linear Correlation Coefficida©C), Mean Squared Error (MSE) and
Residual Standard Deviation expressed as a pegeemtaaverage of experimental values
(%RSD), the ones that will be later summarized.

The model obtained for mixture A is depicted igu¥e 5.8, and it shows a very good
concordance between simulated and experimenta) dapeecially for the prediction of cell
and ethanol concentrations since there were thedbwalues for both MSE and RSD%.
Ethanol appears to be the best fitted parameté, ani LCC of 99.38%, since the predicted
model captures the stages of ethanol productiaenmixture: the first one very fast and
accelerated which corresponds to glucose consumptid the second one corresponding to
xylose consumption. The maximum cell mass andneiheoncentrations achieved are very
well predicted by the model. Xylose consumptioediction by the model is slightly less
accurate, even though it is statistically suppontgith RSD% of 4.60 and 98.83% of LCC,
showing some differences mainly at the end of grenéntation, since the model predicts a
higher sugar degradation which may be due to ttle ¢& adequate oxygen levels at the end
of fermentation or the requirements of higher a&itoncentration oP. stipitis which has
been previously studied by means of experimentgingrthe initial concentrations d?.

stipitis [23].
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Figure 5.8 —Comparison of the experimental data and predictedtiks of the mixture A,
with 75% of glucose and 25% of xylose using a sndpd co-culture of.
cerevisiaeandP. stipitis

Glucose consumption is predicted to be a littlssldast than that measured
experimentally, showing a noticeable difference waein experimental and predicted
concentrations in the sixth hour of fermentationstag that both MSE and RSD% to be large
when compared to the other parameters. Experimeataes are very similar to those
obtained in the single substrate system glucoSe eerevisiagsince glucose is completely
exhausted between the six and eight hours, but ihn@dwilation somehow predicts the
consumption of this sugar more slowly. This siwatdepends exclusively on the rate
maximization responsible for the values of the egbtc variablev, and this at the same time
is a direct consequence of the initial values chdeethe specific levels of key enzymes, the
ones that are based on the history of inocula. tiiersimulation, the initial value fag was

8 x 10* sinceS. cerevisiaavas pre-cultured on glucose, however other valudke range
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suggested by Ramkrishna and Kompala [2] can beechwsorder to improve the fitting of
simulations for substrate consumption. Despitedtiference explained above, the RSD%
calculated was 10.636, barely above of the 10% hviscthe limit considered statistically
acceptable for bioprocess engineering [24]. OVetab mixture provides an average LCC of
0.9727 for prediction of cells, substrates and mwhparofiles.

The mixture B involving the same proportion of atggwas also simulated by means
of the cybernetic model, as shown in Figure 5.8isT8hows in the first place, a better
prediction of both glucose and xylose consumpti@when compared to the mixture A, with
LCC of 0.9867 and 0.9954, respectively. Simulatérxylose profile concentration was the
parameter best fitted in this mixture, with RSD%véo than 1 and MSE of 0.055; very
accurate prediction of the final xylose concentrativas also achieved which is an important

tool to foresee the proper fermentation time irtHfer fermentation experiments.
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B Glucose @ Xylose @ Cels A Ethanol —— Model

Figure 5.9 —Comparison of the experimental data and predictedtiks of the mixture B,
with 50% of glucose and 50% of xylose using a sndpd co-culture of.
cerevisiaeandP. stipitis
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Ethanol production and cell growth simulation®oakowed excellent convergence for
this co-fermentation, with both production stagesriesponding to glucose and xylose
degradation, respectively) well defined and in gagreement with experimental data.
Unlike mixture A where the model simulation for Icgrowth did not account for of the
intermediate lag phase efficiently, the growth rates very well predicted in this mixture
capturing the right moment whege cerevisiastopped its growth, leadirf®. stipitisgrowth
in the culture medium. The RSD% for cell growtlasw1.956 and 1.811 for ethanol
production, and these values are a good indicatii@gh accuracy in the prediction of the
trends followed in this fermentation mixture. Teaeassults are very similar to those reported
by Leksawasdi and co-workers [10] in glucose-xylosextures using recombinant
Zymomonas mobiligvith 50/50 sugar proportion. By analyzing the istatal information
extracted from the model simulations, it can be alestrated that mixture B had the better
overall prediction by cybernetic model since itadp the lowest average RSD% and the
highest average LCC with values 2.214 and 0.93%jactively. This high accuracy may be
attributed because at the beginning of fermentatiom amount of both sugars in the culture
medium was the same, and the proportion in tothlcoacentration was approximately 60%
for S. cerevisiagthis cell proportion fermented rapidly all thaugbse available in solution,
while P. stipitis had just began to consume this sugar but at tlusent it was almost
completely exhausted, which caused the enzyme finaufor xylose and therefore, the slight
diauxie existing in cell growth between the constiomp of both sugars was perfectly
captured by the model, which originally was credtedescribe the diauxic nature of multiple
substrate environments. This did not occur in orixtA, because it had a higher amount of
glucose and probably it was necessary to set arlow&l concentration oP. stipitisas an
initial condition for the simulation, however ifithhad been done also experimentally the

remaining amount of xylose without consumption wbuhave been likely greater.
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Unfortunately, at the moment when this document watten we were unable to make
comparisons to other co-fermentations using theesamspended co-culture, since this
scheme was not found in literature, having onlyultssof experiments performed with
immobilization and co-immobilization techniquest backing models attempting to simulate
the fermentation kinetics.

Simulation of mixture C, with 25% glucose/75% 3o depicted in Figure 5.9, which
reveals a slight consumption of xylose from theiteigg of the fermentation, in the same
manner that it was observed experimentally. Thissamption which took place even before
glucose exhaustion, and it was also captured bycyernetic model, suggests the high
potential ofPichia stipitisNRRL-Y11545 to be considered in other processefigurations,

either suspended or immobilized, involving hydrales from high hemicellulose fractions.

Glucose and xylose

concentrations (g/L)

Cell mass and ethanol
concentration (g/L)

Fermentation time (h)

B Glucose ¢ Xylose ® Cells A Ethanol —— Model

Figure 5.10 —Comparison of the experimental data and predicteetiks of the mixture C,
with 25% of glucose and 75% of xylose using a sndpd co-culture oS.
cerevisiaeandP. stipitis
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The sensitivity of the model to predict xylose somption is such that it was the
parameter better predicted, involving the lowesDR&Sand the higher LCC with values of
1.134 and 0.9953, respectively. Regarding cellwginpo the model was not able to capture
properly the amount of cells grown from glucose stonption. In this case, similar to the
explaination for mixture A, higher initial conceations ofS. cerevisiaas initial condition
for solving the non-linear differential system wauyrobably fall into a better prediction of
cell growth, especially in the moment whd?e stipitis starts to grow as a consequence of
xylose degradation. This situation is feasiblecsima little increase in concentration $f
cerevisiaewill cause that, when glucose depletion is immtnBnstipitiswill consume xylose
by itself whileS. cerevisiaavill not grow any longer. This is a good altermatio improve
the discrepancies between the model simulationtlamexperimental values for cell growth.
However, RSD% for this prediction is under 10%. tWan increase in the accuracy to
simulate cell growth will be also improved the a@my for glucose consumption, which
reached the highest RSD% for this mixture. Preahcof ethanol production was also in
good agreement with the experimental values, eslhedor the stage when ethanol is

produced from xylose consumption. RSD% for ethamabulation in this mixture was 1.811.
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Table 5.3 —Statistical analysis for kinetic modeling using egfetic model. Units: MSE
[(9/L)%]; LCC [%]; RSD [%].

Ferrr_lentauon Sl Cells Glucose | Xylose | Ethanol
mixture parameter
MSE 0.047 2.7786 0.487 0.108
A
75% glucose — LCC 0.9675 0.9411  0.9883  0.9938
25% xylose
RSD 3.252 10.636 4.600 2.329
B MSE 0.012 0.2314 0.055 0.045
50% glucose — LCC 0.9865 0.9867  0.9954  0.9938
50% xylose
RSD 1.956 4.245 0.846 1.811
c MSE 0.058 0.2274 0.300 0.073
25% glucose — LCC 0.9310 0.9570  0.9953  0.9842
75% xylose
RSD 4.483 9.434 1.394 2.754

In general, the results obtained and discussed fomulations of glucose-xylose
mixtures, allow to postulate that the model uttizeas been successfully validated by means
of fermentation runs, and the fitting of predictedlues to the experimental profiles is
statistically consistent, based on information enésed in Table 5.3, having small deviations
commonly found in one system which has not beeaablgf further error minimizations, and
these deviations fall in a range considered as uwateq As mentioned before, the values
obtained in the average of RSD% for substratets aeld ethanol, the mixture exhibiting the
best fitting by cybernetic model was that havingagroportion of glucose-xylose (mixture
B) with an average RSD of 2.214%; followed by mmet«C and mixture A with RSD values
of 4.516% and 5.204%, respectively. SimilarlyGbapter 4, a qualitative analysis of the
consistency and agreement between the predictedeapdrimental concentrations was

carried out for total cell growth, glucose, xyloaed ethanol concentrations, respectively.
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Therefore, figures A.4 — A.7 in Appendix A suppthré statistical criteria used to evaluate the
sensitivity of the models in the mixed substrataixed strain fermentations.

The performance of the cybernetic model can be alsalyzed using the profiles
followed by the specific level of key enzymes, m@sgble for consumption of any given
substrate, by each of the yeast strains preseheiculture media. These profiles are shown
in Figure 5.10 indicating that in mixture A the gme levels for glucose degradation for both
yeast strainsg{ andes) prevail and predominate during the first thenrsoof fermentation.
From those levels, the ones exhibitedS\cerevisia@are almost twofold those levels present
in P. stipitis which is a valid argument to prove that the mgjaf glucose degradation was
carried out by means @&. cerevisiaanetabolism, while contribution d?. stipitisin this
degradation was minimum. Levels®&f key enzymes for xylose degradationSycerevisiae
will be always close to zero because of the nulbsg consumption existing in this yeast
strain. Also, the strong catabolite repression edusy glucose consumption can be observed
in the slight reduction o, initially present inP. stipitis and product of pre-culturing its
inoculum on pure xylose [2, 3]. As soon as glucess exhausted, enzymes initially present
in P. stipitiswere induced and xylose degradation proceeds sigotlie obvious increase in
€.

The argument explained previously about settimipér or lower initial concentrations
for any of the two yeast strains for simulationspases only in a mixture, has a great effect
in the enzyme levels profiles currently analyzeddwse of according to the basic postulates
of the cybernetic model, the parametes included in the biomass rate, and at the same t
all the €s also include the terms for biomass rate; all dguations of the model are
dependent of each other which increases the neafity and therefore, any change or
modification in cell concentrations, even at thgibring, returns that effect on the specific

enzyme level profiles.
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In mixture B, a decrease & ande; as a result of the lower amount of glucose present
in culture medium caused the more anticipated aszeine,; as compared to mixture A.
Likewise, repression caused by glucose is baretemable and the specific level for xylose
consumption byP. stipitis e, is now higher tham;. It is important to note that the narrowest
the maximum specific enzyme level curve, the faiterconsumption of substrate, hence the
curve forey for mixtures B and C is very similar because xglasnsumption was slower; the
difference is the maximum level achieved.

Finally, mixture C suggests that the amountepfo degrade the small amount of
glucose is just a little higher than the initialéé that was attained from pre-culturing the
inoculum of S. cerevisiaen pure glucose. Besideas, did not have a significant increase,
falling belowe,, which is a new indicative to prove again the potedl earlier in this chapter
regarding the no contribution &f. stipitis for glucose consumption in this mixture, since
activation of the enzyme levels for xylose degremhatachieved at the same time in its
respective inoculum, was immediate at the beginoinigrmentation. This is the reason why
xylose consumption took place even slightly simngtusly with glucose consumption, due
to the small amount of glucose initially presend @ime high rate of consumption that was not
enough to repress.

Based on the results already discussed, the pedpstsuctured model to predict the
behavior of glucose-xylose mixtures using the cybtc framework, has fulfilled the main
objective of this research work, and the correspandonclusions and improvements to the
methodology used in this project will be expandedChapter 6. Because of the excellent
accuracy between the model and experimental dasamtodel can be utilized not only for the
scale-up of batch fermentation, but also for tryiiger configurations such as fed-batch and
continuous culture, in order to chose that scherhielwprovides the best yields in ethanol

production. Furthermore, the model can be apgbedther process entailing suspended co-
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cultures, such as the production of antibioticshim pharmaceutical industry, the production
of probiotic yogurts from mixtures afactobacillusstrains, and other applications in the vast

knowledge area of bioprocess engineering.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1. Single substrate fermentations

Overall, the work developed in Chapter 4 providedoedtter understanding of the
properties and performance &accharomyces cerevisiand Pichia stipitis as efficient
fermenting yeast strains for bioethanol producfrom glucose and xylose, respectively. The
detailed analysis of these single substrate expettisrseparately allowed the determination of
kinetic parameters and yield coefficients, whichihet same time were the key parameters to
determine aspects such as the performance of theefgation process, the unstructured
modeling of each individual fermentative system &hd source of all the parameters
necessary for the modeling of mixed substrate fatat®ns. Therefore, reliable kinetic
information was estimated from these experiments the quality of the Monod model to

predict profile concentrations was successfully destrated.

6.1.1. Conclusions on single substrate fermentations

The yield of ethanol on substrate was found toighédr in xylose fermentations with
P. stipitis(Yps= 0.35 g/g), which represents almost a 70% of tie®retical yield based on
stoichiometric calculations, thus it is consideagdacceptable value when compared to those
yields reported in the literature for other nondieegred xylose-fermenting yeast strains.
Even when the yield of biomass on substrate wakehifor glucose fermentation wit8.
cerevisiaet is concluded thaP. stipitisutilized xylose efficiently to promote a balancesl|
growth that channeled sugar degradation into eth@noduction. This situation was
confirmed with the yield of ethanol on biomass, ethwas higher for the system xylos®-—
stipitis (Ypix = 3.59 g/g) and the nearest to the theoreticaleyadupporting the conclusion
that this yeast strain degrades xylose preferéntial ethanol production rather than cell

growth.
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The quality of the proposed model to predict th&fifg concentrations behavior in the
different fermentation systems was very good, wipetves that the utilization of the simple
Monod model to describe and quantify cell growtld &s further incorporation in the mass
balances for the batch fermentation process, w#abse and provides excellent kinetic
information which can be used as a tool for optatian, scaling-up and the development of
other process configurations such as fed-batclcantinuous culture, in order to improve the
yields in the production of ethanol from lignocédisic feedstock.

Since the initial concentration of substrates zeti for each experiment and the
maximum ethanol concentrations achieved did noéeac¢he limits to take into account both
substrate and product inhibition, the combinatidérihe kinetic models proposed by Moser
and Luong, successfully used in batch fermentagaperiments carried out by other
researchers, were assayed by modifying the Monagatem with the corresponding
inhibition terms and constants, but it was dematstt that these mathematical expressions
representing the inhibition phenomena were reduoethe unity, which at the same time
reduced the equation to that represented by thplsiMonod model, supporting the use of
this substrate-limiting model to mathematicallyrnegent cell growth in this work.

In order to estimate the sensitivity of the moaethoose the system best fitted based
on R and RSD for the average of cell mass, substrate ethanol concentrations, it is
concluded that such system is glucos® <erevisiaavith RZ= 0.98 and RSD = 4.30%, being
these the highest and lowest values of the threesg, respectively. However, none of the
other fermentative systems vyielded average RSD esalhigher than 7.5%, which
demonstrates that all the models predict the emmsral profile concentrations with
statistical consistency, and therefore the obtaiaed optimized kinetic parameters were
suitable to be used in the structured model deeeldp describe the behavior of glucose-

xylose mixtures.
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6.1.2. Recommendations on single substrate fermentations

Even when the model obtained to predict the belavigorofile concentrations in
single substrate fermentations was accurate, #ldsyof ethanol produced from glucose and
xylose using the two yeast strains were acceptablethe optimization of kinetic parameters
provided the minimization of error when comparihg tsimulated values to those obtained
experimentally, it is necessary to stress aboutptementary work and techniques that
certainly will help to enhance the results alreattyained, expanding them to study other
factors and configuration processes.

It would be interesting to quantify the specifidlggrowth rate from either various
batch experiments varying the initial concentratimhnsubstrate for each experiment, or
similarly, conducting continuous culture experingend maintain control of the specific
growth rates. In this manner, the maximum spedifiowth rate fimay and the Monod
saturation constant K would be determined more accurately using anyheflinearized
forms of the Monod equation (e.g. Lineweaver-Bilgkddie-Hoffstee or Hanes-Woolf plots,
or continuous culture graphical analysis). Someheke plots were used in this work to
determine the Monod saturation constant, but usiedinite differences technique with cell
and substrate concentrations in order to constmetset of different substrate concentrations.
This method provided the “initial guess” value #g which was further optimized with the
values ofumax When solving the differential system by meanshefRunge-Kutta method.

Although it was demonstrated that inhibition effeclid not impact neither growth
kinetics nor ethanol production, it is recommentedtudy and evaluate the applicability of
other growth models such as the logistic and théhJa rate equations, the ones that have
been utilized with great results by other autharéermentation of various carbon sources to
produce ethanol. In case that these models progidat results with high accuracy to

describe fermentation kinetics, even more intemgsti would be the utilization of them to
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construct the structured platform, coupling theyamz synthesis rate and the instantaneous
cellular optimization. This approach would be chagling for the fermentation modeling area
since the process control and optimization in lopss engineering increasingly demands
the use of robust models involving different pecdpes to represent cell growth. This is a
critical factor in the nature of these bioprocessksrefore finding a model that optimally
predicts the behavior of cell growth will allow wesign the best and most successful
operation.

It is also recommended to perform each one of itgles substrate experiments using
a continuous culture in order to have a completastterization of kinetic parameters and
yield coefficients. This scheme is a powerful expental tool since it allows the variation of
the specific growth rate as an independent parar(ditation rate) in order to better estimate

Ks, tmax@nd the maximum yield coefficients.

6.2. Mixed substrate and mixed strain fermentations

Through the work described in Chapter 5, a satid eomplete structured model with
the cybernetic perspective was developed for arpimaxture of substrates, biocatalyzed by
the co-culture of two yeast strains. Likewise,edtdr understanding on the behavior of the
experimental profiles of these mixtures, and thedtion of trends followed by these
profiles from data collected in single substratenientations, was accomplished. Very good
ethanol yields were attained by co-culturing the tyeast strains with the sugar mixtures,
being in the same order of magnitude to those bthin single substrate experiments, which
means that the two strains had an excellent rollaenconsumption of both carbohydrates.
All these insights are very promising in the ligalglosic biomass-to-ethanol growing
industry, and the results obtained in this work mwitiee model was evaluated have greatly

fulfilled the objectives settled at the beginnirfghee project.
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6.2.1. Conclusions on mixed substrate and mixed strain fenentations

A non-linear ordinary differential equation systemmprising of nine equations was
constructed by applying the basic equations andufadss of the cybernetic model to a
mixture of two carbohydrates with two yeast straingnlike other cybernetic platforms
proposed previously in the literature, the actyetesn involves two different equations to
separately represent the growth of the two yeaainstinteracting in the culture medium, and
each of those equations accounts for the consumptiothe two limiting substrates.
Therefore, a system ah different microbial strains growing on an envircemh wheren
substrates limit their growth, the structured modelnstructed under the cybernetic
perspective will havan x n combination of equations for microbial growth asubstrate
consumption, respectively. Even when the quaatifon of total cell mass is good enough to
test the models predicted, the mathematical distincbetween the two yeast strains is
desirable in order to evaluate their correspondingwth patterns. Ultimately, the total
number of equations included in the cybernetic hadea system comprising aih x n
combination of strains-substrates will ben n) + p, where the number 2 expands two-fold
the combination of strains and substrates to take account their respective equations
describing the specific levels of key enzymes, pnepresents the number of extracellular
products of interest in the fermentative process.

From experimental profile concentrations it is daded that the three mixtures
analyzed provide very good ethanol yields on sabstrbeing these values very similar to
each other. However, in mixtures comprising of sanhigher xylose proportionB, stipitis
showed a slightly higher efficiency for ethanol gwotion rather than for cell growth, and this
behavior is very similar to that obtained when wiittg this yeast strain on pure xylose as a

carbon source, already discussed in the previaimoae
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Overall, the results obtained from the simulati@applied to mixtures of glucose-
xylose using the co-culture scheme suggest thatptloposed unstructured model fits
accurately experimental data, being statisticadlysistent according to the averaged values of
R? coefficients and RSD. The sensitivity of the mloutereased for the majority of the
profiles among substrates, cell mass and ethar@nwompared to those analyzed in single
substrate experiments, and in average, the mixtetter predicted is that comprising of the
same proportion of both glucose and xylose sudii%h glucose-50% xylose, with?R:
0.9906 and RSD = 2.214%, followed the mixture casmpg of 75% xylose-25% glucose
with RSD = 4.516%, and finally the mixture compnigiof 75% glucose-25% xylose with
RSD = 5.204%, with Rfor these latter mixtures above 0.97. It is werth note that the
predictions achieved have successfully fulfille@ tmain goal of this To work, since the
models were obtained only utilizing data collectemn single substrate fermentations, and
they were not subject of subsequent error mininopatherefore the prediction made by the
structured model in this work, when applied to fsenentation mixtures with the co-culture
of yeast strains represents a meaningful contobutid the fermentation modeling area since
it is one of the few works developed in course whmibernetic modeling is also applied for a

mixed microbial population.

6.2.2. Recommendations on mixed substrate and mixed straifermentations.

As discussed in Chapter 5, the consumption ofagledn the fermentation mixtures
was carried out mainly b$. cerevisiaavith a little low contribution ofP. stipitis but when
the xylose proportion in the mixture increased tmntribution of P. stipitis was not
significant, reason why the consumption of xylosarted even when glucose was not
completely exhausted for the high xylose fractionEven when the two yeast strains
demonstrated their performance to degrade bottogiuand xylose, it would be interesting to

study the effect of immobilization and coimmobilipa techniques in cell growth to promote
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higher concentrations d®. stipitis and hence, a higher xylose conversion which widba
improve the ethanol yields, as proposed by othéncas. Working with immobilized cells
changes substantially the equations used to desitrédogrowth rate, because it is necessary to
account for the transport of substrates into theaatilized bead and the conversion of those
substrates inside the bead, therefore the developofea complete structured model with
either immobilized or coimmobilized scheme is ateliasting option to be considered in the
future.

Because of the accuracy achieved with the modgkldped in this work, the
extension of the same model can be done to otloereps configurations such as fed-batch
and continuous culture, pursuing the evaluationhef option showing an optimum balance
between ethanol yield, substrate conversion andrinénization of secondary metabolites.
Also, as mentioned at the end of Chapter 5, theahehodel can be utilized not only at
bioethanol industry levels, but to processes rdlabepharmaceutical and food industry; the
production of antibiotics from complex fermentatitnoths, the processing of probiotic
yogurts, and bioremediation processes carried muwvdstewater and soil, are examples of
industrial processing where microbial mixed culsuege utilized, thus the use of a robust
model able to describe efficiently cell growth wablle strongly recommended.

The use of controlled sequential addition of biem& the culture media along the
fermentation time may be useful, starting the batidtess with the mixture of glucose and
xylose but only withS. cerevisiaeLater on, when glucose has been completely exbaduthe
aseptic inoculation oP. stipitiscould be carried out to in order to lead the comstion of
xylose. This complementary process configuratiotaies some difficulties to consider, such
as the oxygen availability in culture medium attee growth ofS. cerevisiagthe adaptation
of P. stipitisto an environment having a dense concentratidsiarhass, and the high initial

concentration ofP. stipitis necessary to avoid a prolonged lag phase. Addiliyp the
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mathematical model used to simulate the fermemtakimetics should be subject to the
corresponding modification to describe the incogtion of the new microbial strain, and the
right time when this inoculation can take placeartieularly, this scheme for the sequential
addition of biomass it would be useful especiallyew the strain dP. stipitisutilized causes
an inhibitory effect oveS. cerevisiaeor when catabolic repression of glucose conswnpti
over xylose utilization is too strong that interratd lag phase is very large. Therefore, the
study of this scheme could be certainly analyzeal future research project.

Regarding the experimental measurement of cellcemmnation, even when the
guantification of total cell mass is good enoughestimate both biomass proliferation and
adequacy of the structured kinetic model, it mayals® useful the distinction between the
two yeast strains by means of an appropriate mdtkedeplica plating, based in the inability
of S. cerevisia@o grow on xylose. This distinction will providiee experimental profiles for
each strain, the ones that could be compared &etbbtained from simulations, which will
lead to a better understanding of the relationsbxisting in the mixed culture. Measurement
of enzymatic levels can be also performed experiatignto validate the simulated trends
obtained by means of the cybernetic model. Furtbezmboth experimental and simulated
specific enzyme level trends can be compared wibise reported in the literature of xylose
fermentation.

Ultimately, it is also recommended for both singlébstrate and mixed substrate —
mixed strain fermentations the use of a continwsiirsed-tank reactor (CSTR bioreactor) in
order to have a better control of the critical m®x parameters such as temperature, agitation,
pH, and dissolved oxygen. Likewise, the measurerattiiese parameters can be optimized
by the implementation of Process Analytical Tecbgas (PAT) using essential tools such as
Near Infrared and Raman Spectroscopy, biosensarsnauitivariate data acquisition for the

accurate determination of experimental concentnataf cells, sugars and ethanol.
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APPENDIX A: CONSISTENCY OF THE PROPOSED MODELS

In order to support the statistical analysis mad€hapters 4 and 5 and to evaluate the
sensitivity of the proposed models, this appendpludes a qualitative analysis of error to
better understand the capability to predict the eexpental trends followed in all the
experiments. The consistency between the condtiemsais evaluated by means of a 45°
diagonal line that represents the perfect agreerbeiween predicted and experimental
concentrationsin all the cases the solid symbols represent tfierdnt fermentation systems
as follows: squares: XyloseP- stipitis triangles: Glucose R. stipitis diamonds: Glucose —

S. cerevisiae

A.1 Single substrate fermentations
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Figure A.1 —Comparison of the consistency between predicteceapdrimental cell
concentrations.
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Figure A.2 —Comparison of the consistency between predicteceapdrimental
substrate concentrations.
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Figure A.3 —Comparison of the consistency between predicteceapdrimental
ethanol concentrations.
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A.2 Mixed substrate — mixed strain fermentations
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Figure A.4 —Comparison of the consistency between predicteceapdrimental
total cell concentrations.
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Figure A.5 —Comparison of the consistency between predicteceapdrimental
glucose concentrations.
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Figure A.6 —Comparison of the consistency between predicteceapdrimental
xylose concentrations.
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APPENDIX B: ANALYSIS OF RESIDUALS
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Figure B.4— Probability plots of residuals for the mixture% glucose and 25% xylase
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