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ABSTRACT

An evaluation of the interrelation between different up-scaling parameters and inputs
were evaluated to quantify their influence on hydrologic predictability in complex terrain
and small watersheds. An up-scaling experiment was performed, consisting of increasing
the grid size to produce incrementally coarser resolution maps of each parameter, terrain
and rainfall inputs. Each resolution was evaluated by an ensemble approach and
generalized likelihood uncertainty estimation (GLUE) methodology using high resolution
rain gauge network (rainfall resolution of 100 m) and fully distributed hydrologic model
(10 meters). Each parameter perturbation, hydrologic model resolution, and rainfall
resolution combination were modeled producing deterministic forecasts called “ensemble
members”. Objective functions were used to evaluate the behavior of each ensemble with
observed data using the variables time to peak, runoff depth and peak flow observations.
Ensemble skill was evaluated using scalar measures of accuracy for continuous
prediction as mean absolute errors (MAE), root mean square error (RMSE) and bias
between the average ensembles to observation variable. Probabilistic distribution
functions (PDF) were generated for each ensemble and prediction skill was measured by
ranked probability score (RPS). Based on the analyses presented in this research, the
recommended upscaled rainfall resolution, which will provide equivalent accuracy with
the 100 m rainfall resolution, is 1000 m, and the recommended upscaled hydrologic



model grid resolution, which will provide equivalent accuracy with the 10 m resolution,

is 100 m.



RESUMEN

Una evaluacion de la interrelacion entre distintos tipos de escalamiento de parametros e
insumos fueron evaluados para cuantificar su influencia en la predictibilidad hidrolégica
en un terreno complejo y pequefias cuencas hidrograficas. Un experimento de aumento de
escala se llevo a cabo, el cual consistio en aumentar el tamafio de la cuadricula para
producir mapas de resolucion mas gruesa en forma incremental de cada parametro,
modelo hidrolégico y entrada de precipitaciones. Cada resolucion fue evaluada por un
enfoque de ensamblaje y la metodologia de incertidumbre generalizada de estimacion de
la probabilidad (GLUE), utilizando una red de pluviometros de alta resolucion (100 m) y
el modelo hidrologico totalmente distribuido (10 metros). Cada perturbacién de
parametros del modelo y la combinacion de lluvias y modelos hidrologicos a distintas
resoluciones fueron modelados para producir prondsticos deterministicos llamados
"miembros del ensamblaje”. Las funciones objetivo se utilizaron para evaluar el
comportamiento de cada ensamblaje con los datos observados y con variables como el
tiempo al pico, profundidad de la escorrentia y las observaciones de flujo maximo. La
habilidad del ensamblaje se evalud con el uso de medidas escalares de precision para la
prediccién continua, como media de los errores absolutos (MAE), error cuadratico medio
(RMSE) y el sesgo entre los conjuntos de medios a la variable de observacién. Funciones
de distribucidn probabilisticas (PDF) se generaron para cada ensamblado y la capacidad

de prediccion se midi6é por puntuacion de probabilidad clasificado (RPS). En base a los

iv



analisis presentados en esta investigacion, la resolucion de lluvia recomendada, que
ofrecera una precision equivalente a la resolucion de 100 metros, es de 1000 m, y la
resolucion recomendada para la rejilla del modelo hidroldgico, que ofrecera una precision

equivalente a la resolucion de 10 m es 100m.



To God and my family. Especially, my mother,

Yadira Gonzalez, my daughter, Mariajosé. Thanks

for your majestic love, fidelity and spiritual support.

Vi



ACKNOWLEDGEMENTS

During the development of my graduate studies in the University of Puerto Rico
several persons and institutions collaborated directly and indirectly with my research.
Without their support it would be impossible for me to finish my work. That is why |

wish to dedicate this section to recognize their support.

| want to start expressing a sincere acknowledgement to my advisor, Dr. Eric W.
Harmsen because he gave me the opportunity to research under his guidance and
supervision. | received motivation; encouragement and support from him during my
studies. With him, | have learned how to write papers for conferences and sharing my
ideas with the public. I also want to thank the example, motivation, inspiration and
support. I also acknowledge Dr. Walter Silva for his financial support at the beginning of

my doctoral studies and the committee members and Civil Engineering Department.

I would like to thank the CASA project supported by the Engineering Research
Centers Program of the National Science Foundation under NSF award number 0313747,
for their financial support during my graduate program, in the form of a graduate research
assistantship, conferences, retreats and a summer internship to the National Weather
Center at Oklahoma. | would like to thank Dra. Damaris Santana of the UPRM
Mathematics Dept. for her help with the statistical analysis of the RPS data. Special

thanks to CASA-Puerto Rico Test Bed students and professors for their friendship and

vii



support during this project and for giving me the opportunity to work in a
multidisciplinary team. Especially 1 am grateful to Dra. Sandra Cruz Pol and Dr. José
Colom for the opportunity to participate and perform research on this project, under their

supervision, support and guidance.

| also want to thank the UPRM NOAA-CREST project (grant NA0O60OAR4810162)
for financial support and NOAA-CREST students for collecting and maintaining the rain
gauge data, which was used in this project. Finally, but the most importantly, I would like

to thank my family, for their unconditional support, inspiration and love.

Special thanks to the University of Costa Rica for its financial support in my last year

of study and for giving me the opportunity to work in the institution.

viii



Table of Contents

BN 5 1o 3 NG 1]
LR RS 810 29 v
ACKNOWLEDGEMENTS. ...ttt ettt s ettt e e ettt e e s st e e e s s bt e e e s eabaeessabeneessrbeeesssbaneeaan VII
TABLE OF CONTENTS ..ottt ettt ettt ettt ettt e e s ettt e e s s bt e e e s bt e e e s sab e s e s sabteessbessesabaeeesssbaeessbeneessnens IX
LIST OF TABLES.......oooi ittt ittt ettt e et e e ettt e s ettt e s st e e e sttt e e s aabeeessabbeessabaeeesasaeeesssreeessseeeessares X1
LIST OF FIGURES ...ttt ettt ettt e ettt e e ettt e e s ettt e s st e e e sttt e e s eabaeessabeeessabbesessareaessreeeean X1
GLOSSARY OF TERMS ...ttt ettt ettt ettt e e bt e s s s aba e e s s bt e e s s abb e e e s sabes e s sbbeessabbaneeans XVII
1 INTRODUGCGTION ...ttt et e st e s s bt e e e s sabe e e s sb b e e s ssbbeessssbaesssbbeesssbbenesanes 1
1.1 JUSTIFICATION ... 6
1.2 RESEARCH QUESTIONS AND OBUIECTIVES.....cciitiiueeitieasineestreastesastseassesassssassesssssesssessssssssssssssssensessnsns 7
(@5 72N i N ) 22 12
2 THEORETICAL BACKGROUND ...ttt ettt ettt ettt s et e sttt e s s eata s e s stan e s sbaeee s 12
2.1  QUANTITATIVE PRECIPITATION ESTIMATES......uteiiieeiiiesiee it estteesiaeesieeestaeessaeestaeesssessnseesssesssneessnens 12
2.2  PHYSICALLY-BASED DISTRIBUTED HYDROLOGIC MODELS .......ccciiiittiiiieeeiiiiinirieeeeessinissssnseeesssssnnns 17
2.3  CALIBRATION PROGCESS ......ccutttiiiiieiiiiittiiette et seiiitbaet e e e s s s sibbaet e e e e s st sabbbatesseessssabbbaeeeeessasabbbaseeesssssanres 22
2.3.1  SENSItIVILY ANGIYSIS ...ecuviiiiieiiciieste et e ettt et a e re e e e nre s 22

2.3.2  Calibration of diStributed MOGEIS.........c.eeiiiiiiie i 23

2.4 FLOOD PREDICTION.....citttttetitttesttteessesetsesesesessosesesaesessssasseessisstessassssessssssesssssesssasassesssesesssssesssans 27
(@5 2N o ) 2 TR 32
3 STUDY AREA ...ttt e sttt e s st e e e e bt e e e s et ae e e s bbeeesebbeeessabeaessbaeessssbeeesanns 32
3.1 MAYAGUEZ BAY DRAINAGE BASIN STUDY AREA.....ccccuteiiieeeieictitiiiee e e e sittttie e e e s s s seaaaae e s e s s s sssbaaeees 32
3.1.1  General description and stations iN the area...........cccoceveieniiene e 32

I I 1o 1 | [ O F= TXSY ) {To= L[] [ RT 40

3.1.3 Land USE ClaSSITICALION .........ociiueiiiiiiiei ettt ettt s et e s s sbae e e s et e s s sbae e s sbae e e s srbaeeeeaes 41

3.2  TEST BED SUB-WATERSHED........ciittttttttieeiiiiititieteeeesssistbteseesssssiasbbaaeeesesssabbbsteesessssssbbasesseesssassraseees 46
(@5 2N o ) 2 R 48
4 HYDROLOGIC MODEL CONFIGURATION AND SLOPE ANALYSIS........cccoccveeiiiinns 48
4.1 FLOWDIRECTION AND STREAM DEFINITION ...vvtiiiveeeeeetreeeseseeessosseessesesesssseessosseessassssessssssessssssessans 50
4,2 CHANNEL GEOMETRY .etttiiiiiiittttiitteesiisitstetsesssasisssetsessssssstestsesssssssssessssssssssssssessessssesssresssesssssninns 52
4.3 STAGE AND RATING CURVE FOR THE TBSW CREEK ........ccctvtiiiiiiiiiiiiiiei e seiiitae e ssaibann s e e e s ssannns 54
A4 SLOPE ANALYSIS .uttitiiiieeiiiitttiett e et s esatbees s e e st e st baeaseeesassab b aateeeeessabbbateeeeesssaababbeeeeessaabbbbaaeeeeeeaarres 57
45 GREEN AMPT INFILTRATION PARAMETERS ASSIGNMENT ...uvvviiieiiiiiiiirieeeeessiiiirieseeessssssssessesssesssnnes 64

IX



451  Assumptions for unclassified SOil CIASSES ..........cccureriiieiiiiieee e 66

o | I 1 = o OSSPSR 69
4.7 OVERLAND ROUGHNESS, IMPERVIOUS AND CROP COEFFICIENT ASSIGNMENT .....ccovviiiiniieieiennenes 70
4.8 EVAPOTRANSPIRATION ....ecuviiteeiteesteesteasteassesseesseesseesseassssseesseesseesssasseasssassessssssesssenssenssssssesseesseenes 75
L@ 72Nl 2 3 SR 80
5 METHODOLOGY ...ttt te et e et e et e s bt e st e e s be e beesbesseesteesteesteenteenreenns 80
5.1 ADDITIONAL FIELD MEASUREMENTS .......ccuettteittetiatessuesseesseesseasseassssssessessseessesssssssessesssessseanes 82
5.2 EVALUATION OF PARAMETER AGGREGATION TECHNIQUES WITHIN THE TBSW .............c......... 84
5.3 DETERMINATION OF HYDROLOGIC MODEL SENSITIVITY DUE TO PARAMETERS AND RAINFALL
PERTURBATIONS FOR THE MBDB MODEL.....ccuuiiitiiiiiiiiiie et esee st e s see st ste et e et estaesbaaanee e 85
5.4 EVALUATION OF CURRENT QUANTITATIVE PRECIPITATION ESTIMATES........ccicveivieiireeeitrecireeenes 87
5.4.1  Evaluating rainfall detection accuracy and long term Bias quantification............cc.c.c.c..... 89
5.4.2  Evaluation of flow response to Rainfall interpolation Methods ...........c.cccvevveiiineniiiennn 94
5.5 EVALUATION OF PREDICTABILITY DUE TO HYDROLOGIC MODEL PARAMETERS AND INPUTS
RESOLUTIONS AT TBSW ...ttt ettt ettt e n e et e be et e et eanaesneesneenteeneenes 95
5.5.1  Estimation of Uncertainty due to hydrologic model at TBSW ........ccccccvevviiiiinvee s 96
5.5.2  Estimation of Uncertainty due to Rainfall up-scaling and temporal variations.................. 103
CHAPTER 6 ...ttt ettt st e b e e s be e et e e teeae e e bt e ebe e be e beesbesseesbeesbeeabeenbeensesnbestsesteea 106
6 SENSITIVITY ANALYSIS RESULTS .......cccooiiiiiii ettt 106
6.1 PARAMETERS AND INPUT SENSITIVITY RESULTS .....ccuviiitieiieeiitieeieesieesreesteesveesveesnnessnneesnnee e 106
6.2 SENSITIVITY DUE TO QUANTITATIVE PRECIPITATION ESTIMATION WITHIN GAP AREAS............. 117
CHAPTER 7 ...ttt et s bt ettt s e s b e e s be e e be e abeeae e e bt e abe e be e baesbeeseesbeesbeeabeenbeenbessbesteesteea 121
7 BIAS ESTIMATION IN RADAR PRECIPITATION PRODUCT.........ccccoevieiieieee e, 121
L@ 72Nl 2 0SSR 136
8 PREDICTABILITY LIMITS DUE TO UP-SCALING...........cccoiiiiiiit et 136
8.1 PARAMETER UNCERTAINTY PROPAGATION DUE TO RAINFALL SPATIAL VARIABILITY AND
HYDROLOGIC MODEL CONFIGURATIONS ......eiutteistiesieesstiessteesstesssessssessssessssesssessssessssessssessssesssessssessns 136
8.1.1  Evaluating predictability HMItS .........ccccoeiiiiiiie e 145
8.1.2  Evaluating hydrologic models resolutions and rainfall resolutions.............cc.ccoceverernnnnne 158
8.2  SELECTION OF THE OPTIMAL RAINFALL AND GRID RESOLUTION FOR THE MBDB MODEL .....171
L@ 2Nl 2 0L TSSO 174
9 CALIBRATION/VALIDATION OF A DISTRIBUTED HYDROLOGIC MODEL AT
IMBDIB ...ttt et et e et b e he e ebe et eateeateebe e be e be e beeraeaheeabeeabeebeebeetbeareeareen 174
CHAPTER T0 .....oiiiiiiicie ettt ettt ettt e s te e s be e ebe e teeateeateebeeebeesbeesbesseesbeesbeeabeenbeessessbesssesreens 181
10 CONCLUSIONS AND FUTURE WORK ........oooiiiiiiiiiiie et stee et stne et nnee s 181
11 REFERENCES ...ttt et et e st e et e et et e s s e e s aeesbeesbeeteesaesasesreenteens 187



List of Tables

Tables Page
Table 3-1 Climatic and river flow stations located within the study area ........................ 38
Table 3-2 Temperature and Precipitation Normals for NOAA stations within the study
Ared (NOAA, 2000). .. c.eeiieireeieiiesieeiesee e ete e ste e este e e e e sre e s e sraesaeareesraeseeeneens 39
Table 4-1. Mean land surface slope and standard deviation for the sub-watersheds........ 59
Table 4-2 Summary of the infiltration values for the Green Ampt Model ...................... 65
Table 4-3. Soil classification (SSURGO), hydrologic group and infiltration parameters at
TBSW ettt bbbttt b re e 69
Table 4-4 Resized Grid Area for the 1and USe Map.........cccovviirinininiiee s 71
Table 4-5 Land Use Classification with the Manning Roughness values and crop
coefficient (Kc) FOr MBDB ........co.ooiiiiiiiiieee s 73
Table 4-6 Land use classification, Manning Roughness (n) values and K. for
Evapotranspiration quantification in the TBSW..........cccociiiiiiiiiiiincccs 74
Table 5-1 Two-way contingencCy table ...........ccoiieiieii i 91
Table 6-1 Relative sensitivity analysis for peak flow evaluating 3 events and 3 USGS
station outlet points for peak fIOW ...........cccoiveiiicic 115
Table 6-2 Relative sensitivity analysis for 3 events and 3 USGS station outlet points for
FUNOTT AEPEN....eee e 115
Table 6-3 Comparison of hydrologic results and rainfall interpolation methods and radar
................................................................................................................................. 120
Table 7-1 Contingency tables for the MPE pPiXels. .........ccocooiiiiiiiiiiiicie 127
Table 7-2 Discrete validation scores for the MPE pixels and time scales. ..................... 127
Table 7-3 Continuous validation scores for the MPE pixels and time scales. ................ 129
Table 7-4 Total rainfall in the MPE pixels and mean field daily bias calculation for year
2007 ettt e te e teere Rt R e e rt et et e nr e tenrenreanennes 134
Table 8-1 Descriptive variables and statistical quantification for hydrologic model
resolution TBSW CONFIGUIATION .......cc.oiviiiiiiiiiiieeie e 138
Table 8-2 Inventory of 0bSErved BVENLS..........ccveiviiiiie s 140
Table 8-3 Total rainfall event measured in rain gauges network over 4 km x 4 km areal4?2
Table 8-4 Storm Total produced for different resolutions.............ccccccevveveiieieececeene. 144
Table 8-5 Ensemble statistics and skill of prediction according to rainfall resolution and
hydrologic model resolution for October 22, 2007 ..........ccoeeieeieiieieece e 164
Table 8-6 Ensemble statistics and skill of the prediction according to rainfall resolution
and hydrologic model for May 2, 2008 ............ccoooeeiiiiiieiie e 166
Table 8-7 Ensemble statistics and skill of the prediction according to rainfall resolution
and hydrologic model for June 5, 2008 ..........ccccoiieiiiiiiciie e 167

Xi



Table 8-8 Ensemble statistics and skill of the prediction according to rainfall resolution

and hydrologic model for August 28, 2008 ...........ccccoceriririinieieee e 168
Table 8-9 Ensemble statistics and skill of the prediction according to rainfall resolution

and hydrologic model for September 3, 2008...........cccooiiriiiiiieieees 169
Table 8-10 Mean RPS values for Peak Flow, Volume and Time to Peak for 5 Storms, 5

Rainfall Resolutions and 5 Grid ReSOIULIONS...........cccveiiriiiiiniiiie e 173
Table 9-1 Base flow separation at 3 USGS streamflow stations for 2003...................... 175

xii



List of Figures

Figures Page

Figure 3-1 Digital Elevation Model and Rio Guanajibo, Yaguez, and Grande de Afiasco

watersheds, rain gauges and flow gauging Stations. ..........cccccooevieiiieneicicneseens 33
Figure 3-2 Soil Map distribution for the study area. Source: SSURGO data base, (USDA,
20068, D, C, @) riiiiieiie i e 41

Figure 3-3 Soil Texture for the study area, SSURGO map (USDA, 20064, b, c, d) ........ 42
Figure 3-4 Map of Puerto Rico natural vegetation and land cover. Source: Helmer, E.H.

L1 |2 0 1R 44
Figure 3-5 Land Use Classification at 30 m resolution from LandSat ETM, 2000. Source:
Prieto (2006) and Helmer et al. (2002) ..........ccooviieiiieieieneee s 45
Figure 3-6 Land Use classification of the Mayagliez Bay Watershed............c...cccceeueee. 46
Figure 3-7 TBSW location within the 4 km by 4 km NEXRAD pixel and rain gauge
NEIWOTK. <.ttt ettt bbb bbb e e st et e bbbt nreenes 47
Figure 4-1 Fow accumulation and stream definition for Rio Grande de Afiasco, Rio
Guanajibo and Yaguez basin model. ... 52
Figure 4-2 Cross Sections Surveyed and interpolated for Mayagliez Bay Model............. 54
Figure 4-3 Cross section measured at the instrumentation place and rating curve to full
DANK CONTITION. ... ittt sre e enee e 56
Figure 4-4 Photos of principal channel bed at TBSW (right) and location of the pressure
TrANSAUCET (1EL) ... 56
Figure 4-5. TBSW hydrologic model configured in Vflo and identification of the river
=T 0 TSR 57
Figure 4-6. Sub Watersheds map belonging to MBDB ...........ccccccecvivieviccc e 58
Figure 4-7 Land Surface slope map for the TBSW, slope values are given in percent.... 61
Figure 4-8 Slope calculated for TBSW using different resample techniques.................. 61

Figure 4-9 Slope box plots (quartiles 25 and 75) for the MBDB study area calculated
with Method 1 and nearest neighbor resample technique, mean slope (dashed lines),

quartiles 5 and 95 (solid lines) and outliers (dOtS) ........cccevvrieereeirnieene e 62
Figure 4-10 Visual comparison between resample methods at 200 m resolution for the
MBDB model By Method 1 .........oooiiiiiiiiiiee e 63
Figure 4-11 Visual comparison between resample methods at 200 m resolution for the
MBDB model By Method 2 .........cooooiiiiiiiieee e 63
Figure 4-12 Land Use general reclassification from Land Sat™", 2004, PRWRERI (2004)
................................................................................................................................... 72
Figure 4-13 Land use classification for the TBSW extracted from Figure 4-13 .............. 74
Figure 4-14 Photos describing the land use of the TBSW..........ccoovviiiiiininc i 75

Xiii



Figure 4-15 Potential Evapotranspiration with Hargreaves-Samani relationship for
observed Tmax, Tmin, Tave, SOlar radiation, extraterrestrial radiation; and temperatures
predicted by Goyal relationships at TARS Station.............cccooveveiiieneeni s 79

Figure 4-16 Potential Evapotranspiration with Hargreaves-Samani relationship for
observed Tmax, Tmin, Tave, SOlar radiation, and extraterrestrial radiation; and

temperatures predicted by Goyal relationships at Maricao Forest station................. 79
Figure 5-1 Rain gauge distribution and location within the HE pixel; TBSW location and
Euclidean Distance between the StationS ...........ccooeiieieiiieresie e 83
Figure 5-2 Coverage gap between terrain elevation and radar bean of 0.35 degrees with
the detail of blockage at mouNtaINOUS Ara...........ccoeieriiiirinieieieee e 88
Figure 5-3 Flow chart of the ensemble for predictability limits.............cccccooeiieincnnnn. 105
Figure 6-1 Total storm maps, (A) September, 1998; (B) November 2003; (C) September
2004ttt b et R et b e ettt nenre e 108
Figure 6-2 Spider plot for percentage change in peak flow due to rainfall multiplicative
factors at 3 USGS Station OULPULS ........ecveieeiiieieiicse e 109
Figure 6-3 Spider plots for percentage change in runoff depth due to rainfall
multiplicative factors at 3 USGS station OULPULS..........cceeveeieieeie i 110

Figure 6-4 Spider plots for changes in peak flow due to parameters multiplicative factors
evaluated at USGS stations and 3 events. Parameters: A) Initial Saturation, B) Soil
Depth, C) Channel Roughness, D) Overland Roughness, E) Channel hydraulic
conductivity, F) Overland hydraulic conductiVvity. .........ccccccevvviiiiveiciicsece e 111

Figure 6-5 Spider plots for changes in runoff depth due to parameter multiplicative
factors evaluated at USGS stations and 3 events. Parameters: A) Initial Saturation, B)
Soil Depth, C) Channel Roughness, D) Overland Roughness, E) Channel hydraulic
conductivity, F) Overland hydraulic conductiVity. .........c.ccccooevvieiieiciicsece e 113

Figure 6-8 Total Storm Rainfall Maps at Mayagiiez Bay Drainage Basin for November
11-16, 2003 using Interpolation Methods: (A) Exponential Weighted; (B) Inverse
Distance Weighted; and Radar data (C).........ccouiriirininineniseicee e 118

Figure 6-9 Radar Bias correction for storm total, November 11-16, 2003..................... 119

Figure 7-1 HE pixel (red box) and MPE pixels (black and colored boxes) (left) and
Hourly Rainfall Product (N1P) from NEXRAD level 3 (right) orientated in shapefile

L0 I Y (T g (0] 0o USRS 122
Figure 7-2 Rainfall accumulation over the time for the MPE pixels............cccccvenenn. 122
Figure 7-3 Monthly Total Rainfall calculation for the rain gauge stations belonging to

MPE Pixel 1, fOr 2007. ....coviieieieiese et 123
Figure 7-4 Hourly average and standard deviation rainfall for the rain gauge network

corresponding to MPE pixel 1 for 2007.........ccceiiiiiiiiiecie e 124

Xiv



Figure 7-5 Hourly average and standard deviation rainfall for rain gauge network for

2007 ettt et b r e R e Rt R e e r e et et et e bentenrenneeres 125
Figure 7-6 Average rain gauge rainfall vs. MPE radar rainfall within HE pixel at hourly
I8 SEPD. ettt bbb 125
Figure 7-7 Hourly False Alarm Time Series for the MPE Pixel 1 for 2007................... 128
Figure 7-8 Hourly False Alarm Time Series for the MPE Pixels within a HE Pixel for
JUNE 10 DECEMDET 2007......cuiiieiiieiesie et 129
Figure 7-9 Hourly Mean Field Bias for the MPE Pixel 1 during 2007............cccccvvneneee. 130
Figure 7-10 Hourly Mean Field Bias for the four MPE Pixels during 2007 within a HE
PIXEL e e 131
Figure 7-11. Hourly Mean Field Bias for the overall MPE Pixels within a HE Pixel for
January to December, 2007 .........coiieiieeiie e 133
Figure 7-12 Probability plots for daily rainfall bias between rain gauges and MPE product
................................................................................................................................. 135
Figure 8-1 Observed flows for the events studied. ...........cccccveveiiieviiic i 141
Figure 8-2 Hyetographs extracted from two cell (100 m resolution) for September 3, 2008
................................................................................................................................. 145
Figure 8-3 Box plots of Peak flows for events on: (A) October 22, 2007; (B) May 2, 2008
................................................................................................................................. 148
Figure 8-4 Box plots of Peak flows for events on: (A) June 5, 2008; (B) August 28, 2008
................................................................................................................................. 150
Figure 8-5 Box plots of Peak flows for September 3, 2008 event..........cccocevvreninnnnnns 151
Figure 8-6 Box plots for runoff depth: (A) October 22, 2007; (B) May 2, 2008 ........... 152
Figure 8-7 Box plots for runoff depth: (A) August 28, 2008; (B) September 3, 2008... 153
Figure 8-8 Box plots for runoff depth for September 3, 2008.............ccccoveviiieiieineennenn, 154
Figure 8-9 Box Plot of time to peak for (A) October 22, 2007; (B) May 2, 2008.......... 155
Figure 8-10 Box Plot of time to peak for (A) June 5, 2008; (B) August 28, 2008......... 156
Figure 8-11 Box Plot of time to peak for September 3, 2008...........ccccoeiireniiinininnnns 157

Figure 8-12 Probability plots for (A) Rain ensembles for peak flow, (B) Hydrologic
model ensembles for peak flow, (C) Rain Ensembles for discharge depth volume, (D)
Hydrologic Model ensembles for discharge depth volume. October 22, 2007 ...... 159
Figure 8-13 Probability plots for (A) Rain ensembles for peak flow, (B) Hydrologic
model ensembles for peak flow, (C) Rain Ensembles for discharge depth volume, (D)
Hydrologic Model ensembles for discharge depth volume. May 2, 2008.............. 160
Figure 8-14 Box and probability plots for (A) Rain ensembles for peak flow, (B)
Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge depth
volume, (D) Hydrologic Model ensembles for discharge depth volume. June 5, 2008
................................................................................................................................. 161
Figure 8-15 Box and probability plots: (A)Rain ensembles for peak flow, (B) Hydrologic
model ensembles for peak flow, (C) Rain Ensembles for discharge depth volume, (D)
Hydrologic Model ensembles for discharge depth volume. August 28, 2008........ 162

XV



Figure 8-16 Box and probability plots: (A) Rain ensembles for peak flow, (B) Hydrologic
model ensembles for peak flow, (C) Rain Ensembles for discharge depth volume, (D)
Hydrologic Model ensembles for discharge depth volume. September 3, 2008 .... 163

Figure 9-1 Daily stream flow and baseflow computation for 3 USGS stations, 2003.... 176

Figure 9-2 Runoff depth accumulated for the USGS stations for 2003 year .................. 177

Figure 9-3 Comparison between observed and simulated discharge for 2003 at hourly
time step for: (A) Rio Grande de Afiasco near San Sebastian and (B) Rio Rosario

near HOrmMiguUEroS STATIONS. .......c.oiiiiiiiiiie ettt 178
Figure 9-4 Maximum, minimum and observed runoff for Afiasco river (A) and Rosario
river (B) outlet points for selected eVeNtS..........cccovevieiieni i 179

XVi



A

a,b
AMS
ArcGIS
ASCII
Bias

C
CASA
CASC2D
CDA
cdf
cms
COEM
CREST
CRIM

CRR
DB
dBZ
DEM
DHSVM
€a

€s

ET
ET,
EW
FAR
FAS
FEM
FEMA
FIS

G

GIS
GLUE
GPD

h

h

H

HE

GLOSSARY OF TERMS

flow area

coefficients in the radar rain rate equation

Annual Maximum Series

Arc Geographical Information Systems

data file in text format

bias

Celsius

Collaborative Adaptive Sensing of the Atmosphere
CASCade 2 Dimensional Sediment

Contributing drainage area

cumulative distribution function

cubic meters per second

Centro Residencial de Oportunidades Educativas de Mayaguez
Cooperative Remote Sensing Science and Technology Center
“Centro de Recaudacién de Impuestos Municipales”, Center for Municipal
Tax Revenues of Puerto Rico

Conceptual Rainfall-Runoff

discrete bias

decibels

digital elevation map

Distributed Hydrology Soils and Vegetation Model
actual vapor pressure

saturated vapor pressure

evapotranspiration

reference evapotranspiration

exponential weighted

false alarm rate

Flood Alarm System

finite element method

Federal Emergency Management Agency

Flood Insurance Study

soil heat flux density

geographical information system

generalized likelihood uncertainty estimation
generalized Pareto distribution

hour

flow depth

hit rate

Hydro-Estimator

XVii



HEC
HEC-RAS
HMS
HRAP
IDW

J

Ke

km
kPa

Ks
KWA
MAE
MAR
MBDB
MPE

n

NAD
N1P
NEXRAD
Ni
NOAA
0]

Op.p @and O;_

0j

OPPA
P

PBD

PDF

PDS

PET

POD

PR-1
PRWRA
PRWRERI
Px(X)

Q

QPE

Hydrologic Engineering Center

Hydrologic Engineering Center-River Analysis System
Hydrologic Modeling System

Hydrologic Rainfall Analysis Project

inverse distance weighting

number of categories and therefore also the number of probabilities
included in each forecast

evapotranspiration crop coefficient

kilometer

kilopascal

saturated hydraulic conductivity

kinematic wave analogy

mean absolute error

mean annual rainfall

Mayaguez Bay Drainage Basin

Multisensor Precipitation Estimation

Manning’s roughness factor

North American Datum

precipitation radar product

Next Generation Radar

adjustment factor

National Oceanic and Atmospheric Administration
model output with input parameters set at base values

.« are model outputs with the input parameter plus or minus a specified

Percentage

cumulative probability of the observation in the i™ category or vector
component

Ordered Physics-based Parameter Adjustment

value of input parameter

physically-based distributed

probability distribution function

partial duration series

potential or reference evapotranspiration

probability of detection

CASA Student Testbed area 1

Puerto Rico Water Resources Authority

Puerto Rico Water Resources and Environmental Research Insitute
Gaussian or normal distribution function

stream volumetric discharge

Quantitative Precipitation Estimation

Xviii



QPe-SUMS

RQ

Quantitative Precipitation Estimation and Segregation Using Multiple
Sensors

quantitative precipitation forecast

rain rate

Pearson correlation coefficient or coefficient of determination
extraterrestrial radiation

root mean squared error

net radiation

ranked probability score

research question

S22, S23, S24 CASA projects

SCAN
SHE
So

Sr
SSURGO
STD

t
TARS
Tave
TBSW
™

Yj
Y, and O,
yr

= Q. >TE N

Soil Climate Analysis Network

Systeme Hydrologique European

channel bed slope

relative sensitivity coefficient

refers to the Soil Survey Geographic Database |

standard deviation

time

Tropical Agriculture Research Station

average air temperature

Testbed Subwatershed

Thermatic Mapper

maximum air temperature

minimum air temperature

Tropical Rainfall Measuring Mission

channel velocity

wind velocity at 2 m height

U.S. Army Corps of Engineers

United Stated Department of Agriculture

U.S. Geological Survey

physically-based hydrologic developed by Vieux and Associates, Inc.
generic variables on a probability plot

prediction from the k™ simulation for Time, Peak and volume
cumulative probability assigned o the category or vector component
cumulative forecast and observation

year

reflectivity

mean

slope of the vapor pressure curve in Penman Monteith equation or change

variance
psychrometric constant in Penman Monteith equation

XiX



CHAPTER1
1 INTRODUCTION

Due to the complex terrain and the tropical climate influence, Puerto Rico is
characterized by small watersheds, high rainfall intensity and spatial variability. The
rainfall anomalies are produced by tropical waves, low pressure depressions, tropical
storms, and hurricanes capable of producing flash flood in susceptible areas. As part of
the model configuration, rainfall must be distributed over the model domain. Different
theoretical methods are available to spatially distribute rainfall over a watershed, however,
there is not typically enough rain gauge density to calculate the associated bias, and to
obtain spatial variability of point rainfall at scales below the typical resolution of the
radar-based products (2 x 2 kilometers), archived with the Next Generation Radar
(NEXRAD) level 3.

New emerging radar technologies are being developed by the Student Test Bed of
the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA, 2006) in
Puerto Rico and will be available for flash flood predictions. This new radar technology
promises to revolutionize the way rainfall is detected, monitored and predicted, creating a
dense sensor network of low-powered radars that overcome curvature blockage and
significantly enhance resolution. This network will monitor the lower atmosphere where
the principal atmospheric phenomena occur. The first step in the technology development

has been the PR-1 radar located on the Stefani building at University of Puerto Rico,
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Mayagiiez Campus. The PR-1 radar is a marine radar adapted to sense reflectivity with an
average pixel size of 150 m and the maximum coverage range of 25 km.

An important step for the hydrologic community and Puerto Rico in general will be
the use of these advanced technologies as input to real-time flash flood prediction
systems. Real-time flash flood estimates can allow decision makers to implement
emergency plans only when it is necessary, since unnecessary preparations and
evacuations are very costly. The technique also allows decision makers to better focus
their emergency measures due to the variable rainfall patterns, since in the tropical region
the locations where flood waters concentrate tend to vary in time and space. Rain gauge
density is generally not sufficient to capture spatial variability at the NEXRAD radar sub-
pixel scale and the new radar technology will help to fill gaps between rain gauges. Some
methods for removing the systematic bias between radar and rain gauges are applied
today. However, it is not known how much the intrinsic error due to spatial variability at
the radar sub-pixel scale limit the reliability of the data for use in hydrologic models.
Some scientific questions arise where complex terrain and climatological conditions
increase the spatially dependent bias.

How does rainfall spatial distribution affect the hydrologic response in small
subwatersheds? How can adjustments be made to radar rainfall estimates when there are
not sufficient numbers of rain gauges within the network? Under these conditions, how
can we produce reliable hydrologic estimates in small areas where high spatial variability

exists? These questions are essential when using fully physics-based distributed
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hydrologic models because the goal of their use is to produce accurate flood predictions
at any location upstream of the watershed outlet.

Few studies have been conducted in Puerto Rico to forecast real-time rainfall runoff.
In 1996 the US Geological Survey (USGS) developed a real time rainfall runoff
simulation for Carraizo reservoir basin allowing the estimation of water volumes at the
reservoir from the rainfall and discharge data that is being obtained from the network
stations inside the basin (Sepulveda et al., 1996).

The National Weather Service (NWS) establishes Flash Flood Guidance estimates in
real time based on the Sacramento soil moisture accounting model. Flash Flood Guidance
is performed by region or River Forecast Center, and Puerto Rico belongs to the
Southeast River Forecast Center. The analysis allows for the development of the curves
that relate threshold runoff to flash flooding of a given duration as a function of soil
moisture deficit (Sweeney, 1992; Georgakakos, 2006a; Smith et al., 2004; Reed et al.,
2004). Vieux and Vieux (2006) tested a physics-based distributed model in the Loiza
basin of Puerto Rico. A long term and event-based simulation were conducted to calibrate
the streamflow volume. The soil moisture values calculated in the long term model were
fed back into the event-based simulation to enhance the calibration for several individual
storm events. A sensitivity analysis to initial soil moisture showed some persistence in
antecedent soil conditions, with about one year of warm up the model to obtain stable

results.



To establish a flood alarm system in Puerto Rico, first it is imperative to know how
the watershed behaves under different environmental conditions, parameter spatial
variability, input aggregation and associated biases and how these differences are
propagated to the solution. This knowledge enhances the forecast skills using distributed
models such as Wechsler (2006); Vieux, et al. (2004), Viglione et al. (2010), Mdller et al.
(2005) and Bloschl, et al. (2008).

Hydrologic parameters play an important role in the hydrologic prediction where high
slope exist, and where soil as well as land use characteristics change over short distances.
Hydrologic models average the hydrologic parameters and topographic characteristics in
lumped, semi-distributed and distributed models to simplify or reduce computational time.
In addition, calibrations are usually limited to the watershed outlet, hence, not producing
accurate flood prediction within the sub-watershed’s internal outlets.

Loss of accuracy occurs in flood prediction with topographic and parameters
aggregation, however, how much loss of accuracy can we expect? Limited number of
studies have evaluated the effects of grid size on basin response and the prediction of
discharge in tropical environments and complex topography (e.g., Bormann, 2006;
Shrestha et al., 2002; Vieux, 1993; Wechsler, 2006; Western et al. 2004). Therefore, this
research will investigate these aspects as they are related to model calibration and flood
prediction.

The hydrologic model used in this research is Vflo™ (for convenience in this

dissertation Vflo™ will be referred to as Vflo), a fully distributed hydrologic model
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(Vieux and Vieux, 2002; and Vieux et al. 2003). Vflo uses the finite element numerical
method to resolve overland and channel flow. The Green Ampt equation is used to
represent rainfall infiltration through the soil (Rawls et al., 1983). The digital revolution
in geospatial data has helped to promote the development of physically-based models
capable of producing excellent results in flood prediction at internal basin points.

To understand the system predictability we will conduct various experiments within a
small sub-watershed laboratory (test-bed) covering a 4 km x 4 km Geostationary
Operational Environmental Satellite (GOES) pixel. This “real world” laboratory has a
rain gauge network with a resolution well below that of the NWS radar products; a stage
elevation station at the outlet; high topography resolution information (Digital Elevation
Model raster map, DEM 10 x 10 m), remotely sensed data (e.g., LandSat Thematic M)
and several field measurements to represent the channel geometry. The test-bed sub-
watershed is located in Western Puerto Rico and belongs to the Rio Grande de Afasco
watershed. To establish a flood alarm system in the region of the study area, it is
necessary to know the performance and the prediction limits associated with the small

sub-watersheds.



1.1 Justification

A study which considers different input (rainfall) resolutions, parameter aggregation
effects and hydrologic model resolutions, at scales lower than the current radar products,
has not been conducted in Puerto Rico or anywhere as of the writing of this thesis. With
the new emergent radar technologies it is necessary to recommend to the hydrology
community which grid size is necessary to capture the spatial variability of rainfall and
hydrologic model that generate reliable flood prediction. The prediction limits related to
this input grid size and, at the same time have a cell size that minimizes the

computational time for real-time applications.

The grid size and the watershed response are interrelated. Therefore, it is imperative
to know the combination of grid sizes needed to produce reliable results within the study
area and to know the probabilistic distribution function (PDF) of flow peaks, time to peak
and runoff volume associated with each resolution. The optimal grid size is defined as the
largest grid size which will produce reliable results, beyond which flood prediction

accuracy degrades.

The time required to run the model in real-time operation mode is critical. Therefore,
the grid size should be courser to decrease the computational time, while maintaining
sufficiently accurate results. An up-scaling evaluation of rainfall and hydrologic
parameters consist in the creation of a high resolution hydrologic model, mentioned

above, and then increasing the grid size to produce incrementally coarser resolution maps
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of each parameter and input, resulting in different output responses. These hydrologic
responses will be compared in terms of their probability distribution functions (PDFs) to
observed values. A decision can be made in terms of which aggregation technique should
be used to aggregate the data and which parameters will be used in the evaluation at small

scales.

1.2 Research Questions and Objectives

Real time hydrologic predictions require estimation of stream stage, peak flow, time
to peak, and storm volume with high reliability. To obtain reliable estimates it is
necessary to know and understand the predictability and prediction limitations of the
system.

The general objective of this research was to evaluate the hydrologic predictability of
flood predictions in complex terrain located at Mayagiliez Bay drainage basins due to
rainfall inputs and hydrologic model resolutions. To identified representative parameters
at each scale that will enhance the flood prediction when the modeler uses different grid
size resolution inputs within the distributed hydrologic models.

Three basic research questions (RQ) addressed in this research are summarized below
and were based on a Workshop on Predictability and Limits to Prediction in Hydrologic
Systems by the National Research Council (Entekahbi et al., 2002) and suggestions made
by several investigators in the field (e.g., Vieux et al., 2004, 2005, 2006; Georgakakos,

2006a, 2006b).



RQL. How flow prediction is affected by the spatial variability of point

rainfall at scales below that of the typical resolution of radar-based products?

The error propagation due a rainfall spatial resolution in the distributed models has
been a goal in the hydrologic community in recent years. Different studies that have been
conducted have been done at scales courser or same than resolution of the radar rainfall
products using distributed models (Gourley and Vieux, 2005 and 2006; Vieux and
Farajalla, 1996 or Cole and Moore, 2009) or using lumped model (Bell and Moore, 2000).

The accuracy of current precipitation estimates over a basin must be known; and
moreover, the accuracy of these estimates must be improved before the uncertainty in
hydrologic forecasts can be quantified and ultimately reduced. As pointed out in
Droegemeier and Smith (2000), hydrologic forecast uncertainty cannot be reasonably
assessed until the uncertainty in the rainfall observations has been determined a priori.
Entekahbi et al. (2002) identified the uncertainty in model inputs as one of the major
limitations to improved hydrologic predictability.

One important contribution will be to find the current rainfall product uncertainty
over small watersheds. Also, evaluate how uncertainties due to quantitative precipitation
estimates at different resolutions (below 2 km) from point rainfall are propagated through
the hydrologic solution. By this means we can determine which rainfall resolution is
required to encompass the rainfall variability and produce the least uncertainty and
highest accuracy for flood predictions at scales below radar products and small

subwatersheds.



The Collaborative Adaptive Sensing of the Atmosphere (CASA) project has
instrumented a 4 km by 4 km area with a network of 28 rain gauges, producing high
spatial rainfall resolution with the objective to test and validate CASA radars. Inside the
pixel a small sub-watershed was delineated and instrumented with a pressure transducer
to measure stage at a determined cross section. The small area was named Test Bed
Subwatershed (TBSW) and serves as a field laboratory to test how the uncertainty due to
rainfall resolution input propagates through the distributed hydrological model to the
streamflow prediction.

RQ2. How does parameter and hydrological model resolution affect the

model’s predictive capabilities and the errors of the hydrologic system?

To develop a real time hydrologic model, a coarse grid size resolution is desirable in
order to minimize computational time. However, this choice could have an important
impact on the hydrologic simulation, because the calibration is grid-cell size dependent.
The effects observed in the grid size aggregation are flattening of the slope and
shortening of the drainage length, changes in flow direction, channel and overland cells
and smoothness of the soil parameters and roughness. Both effects can be compensated
for or reduced depending on the topographic characteristics of the basin and the methods
used to calculate them (Brasington and Richards, 1998; Quinn et al., 1991; Tarboton et al.,
1991; Vieux, 1993).

Mountainous areas with large slopes are more sensitive to digital elevation model

resolution. The resolution of the terrain model needed to capture the basin properties is
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the same for slope as it is for other parameters such as hydraulic roughness derived from
land use obtained from satellite remote sensing and soil properties. Understanding the
influence of resolution and parameter aggregation on the hydrologic model would
enhance the model prediction. This will be accomplished using the highest resolution
data available and then producing coarser resolution maps of each parameter through up-
scaling (various methods could be tested here), and evaluate how the coarser resolution
degrades the solution obtained at the finest resolution. We suggest, as an hypothesis, that
the finer hydrologic model resolution ensemble will have the best flow prediction
behavior. However, this model is not operational for future flash flood forecasting. The
goal is to find a practical grid size resolution for real time applications and address
reliable results at small watersheds.

RQ3. Would the assumptions developed for the small scale enhance the

hydrologic predictability at larger scales?

The hypothesis formulated is that if we can enhance the flood forecasting in small
sub-watersheds we can enhance the flood forecasting at larger scales where all major
mountainous basins are a composite of similar sub-watersheds that have similar slope
conditions, land use coverage and soil properties. Lessons learned in this study about the
small watershed’s behavior could be applied to watersheds of major sizes where the cost
of using high resolution data could result in better flood forecasting. However, if it is
necessary to apply coarse resolution data to large scale, real time applications, the

predictability limits could be known a priori. Recommendations related to which terrain
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and rainfall grid sizes and parameter estimations to use in the distributed hydrologic
model will be available, and will be tested in watersheds of major size. Only a few rain
gauges and NEXRAD rainfall estimates are provided to major areas.

The specific objectives of this study, required for the achievement of the major

research goal and the research questions are:

1. Configure a hydrologic distributed model for the Mayagiiez Bay Drainage Basin
(MBDB) and extract a small subwatershed (TBSW) having similar slope
characteristics to the MBDB subwatersheds, for the purpose of performing
detailed studies. (Chapter 5)

2. Analyze the MBDB hydrologic model sensitivity in the flow response due to
propagation of parameter and rainfall perturbations using spider plots and relative
sensitivity analyses. (Chapter 6)

3. Quantification of MBDB hydrologic model flow response due to two rainfall
interpolation methods and radar sources. (Chapter 6)

4. Evaluate the rainfall detection accuracy of the current radar product (multisensor
precipitation estimator, “MPE”) at scales below 2 km using a high density rainfall
network. (Chapter 7)

5. Evaluate ensemble behavior for rainfall resolutions exposed to uncertainties in
parameter quantifications and hydrologic model resolutions. (Chapter 8)

6. Evaluate ensemble behavior of hydrologic model resolutions due to propagation

of parameter uncertainties and rainfall resolutions. (Chapter 8)
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CHAPTER 2
2 THEORETICAL BACKGROUND

2.1 Quantitative Precipitation Estimates

A major source of error in hydrologic models is the poor quantification of the areal
distribution of rainfall, typically due to the low density of rain gauges. A rain gauge
located at a single point may not represent an extensive area, with only one value. The
spatial distribution of rainfall can have a major influence on the corresponding runoff
hydrograph, errors may occur in the resulting hydrograph when the spatial pattern of the
rainfall is not preserved. These errors will be magnified for intense, short duration and
localized events especially in areas of high topographic variability subject to convective
storms (Wilson and Brandes, 1979).

Rain gauges themselves may produce errors, a major source of error being from
turbulence and increased winds around the gauge, affecting precipitation quantification in
events where the wind is an important factor (e.g., hurricanes). Nevertheless, the rainfall
measured in a gauge station is generally assumed to be the most reliable measurement of
rainfall, but when measurements are extrapolated to the entire basin for hydrologic
models, the rainfall has a great uncertainty and can affect the watershed response. Bevan
and Hornberger (1982) have stated, ““... an accurate portrayal of spatial variation in
rainfall is a prerequisite for accurate simulation of streamflows”.

12



Investigators have used mean areal precipitation as calculated by, for example
Thiessen polygons, (Wilson and Brandes et al. 1979; Viessman and Lewis, 1996), and
interpolation methods, such as Spline, Inverse Distance Weights, and Krigging and
polynomial surface. But all of these methods are limited by the number of rain gauges.

Ball and Luk (1998) present the results of a study investigating the accuracy and
reliability of hydroinformatic tools (e.g. GIS) for modeling the spatial and temporal
distribution of rainfall over a catchment. It was found that using spline surfaces with a
geographic information system produced robust and accurate estimates of rainfall and
enable real-time estimation of spatially distributed patterns.

Currently, sophisticated methods attempt to fill gaps between rain gauges, by sensing
the atmosphere with remote sensors like the space-borne Tropical Rainfall Measuring
Mission (TRMM), the U.S. National Weather Service’s (NWS) Next Generation Radar
(NEXRAD), the National Oceanic and Atmospheric Administration’s (NOAA) Hydro-
Estimator (HE) algorithm (Scofield and Kuligowski, 2003), the satellite precipitation
estimation /radar rainfall merging algorithm of the NOAA-CREST Group at City
University of New York (Mahani and Khanbilvardi, 2009), and the MPE (Seo, 1998;
Lawrence, et al., 2003; Kondragunta, et al., 2005). The HE utilizes data from the GOES
geostationary satellite to estimate rainfall, and has, for example, an approximate pixel
size of 4km x 4km.

These quantitative precipitation estimation (QPE) techniques are evaluated and

adjusted or calibrated using existing rain gauges, however, these adjustments depend on
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the rain gauge density and their spatial distribution (Harmsen et al., 2008). Studies that
have compared radar and rain gauge—derived rainfall documented large discrepancies
between them (e.g., Baeck et al., 1998; McGregor et al., 1995; Woodley et al., 1975).

In order to address the need to obtain more rainfall estimates for basin analysis, in
1997 The National Weather Service (NWS) put into operation the WSR-88D Next
Generation Radar (NEXRAD) in the United States of America. NEXRAD radar
enhances covertures with a 1 degree x 1 km base resolution. Since 1999, NEXRAD has
been used by the NWS to estimate rainfall in Puerto Rico. The NEXRAD facility is
located near the City of Cayey at 860 m above mean sea level and at approximately 120
km from Mayagliez. The radar measures reflectivity in decibel, or dBZ, and uses
empirically derived Z-R relationships to transform reflectivity to rain rate. The Marshal
and Palmer (1948) equation is the default Z/R relationship employed by the WSR-88D

and is described by the empirical power law which can be expressed as:

Z=aR" (2-1)
where Z is the reflectivity in decibels (dBZ) and R is the rain rate in mm/hr; “a” and “b”
are coefficients and their respective values depend on the type of precipitation.

The coefficients depend on location, season, rain type, drop size distribution, and are
event dependent. Battan (1973) presents more than 50 Z/R relationships. At this time
there exist at least five different relationships depending on climatological zones

approved by the NWS. For example for a convective rainfall “a” and “b” values are 300
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and 1.4, respectively. Similarly, for a tropical condition, values of 250 and 1.2,

respectively, are used and for a warm stratiform rainfall values of 200 and 1.6 are used.

The default Z-R relationship used in Puerto Rico is the convective one and is not
representative of tropical rain events due to the drop size distribution (smaller rain drops
than convective with fewer and larger rain drops). It is necessary to define a maximum
precipitation rate threshold for decibels above 51, because equation 2-1 with the tropical
coefficients can produce nonsensical rain rates. High dBZ are due to possible hail
formations or, very heavy precipitation or extreme winds, which also may be produced
by thunder and lightning, and wet ground returns. The radar default setting is 4.09 in/hr
and if rainfall rates are greater, a deep warm could layer exists. Therefore, warm rain
processes govern, which is typical of tropical events (Maddox et al., 1978). Operationally
the Z/R relationship should be changed to the tropical equation and the maximum

precipitation rate threshold changed to 6.00 in/hr.

Vieux and Bedient (1998) found an improved Z-R relationship comparing slopes of
the best fit regression lines of each Z-R relationship to daily rain gauge accumulation.
With the current Z-R relationship used in Puerto Rico, NOAA has reported low estimates
of accumulated rainfall by the radar as compared to gauge accumulations.

The MPE algorithm is a product of NEXRAD, and recently has been used to improve
quantitative precipitation estimates (Kondragunta and Shrestha, 2006; Mahani and
Khanbilvardi, 2009). MPE is based on the Digital Precipitation Array (DPA) product

(hourly and 4km x 4km resolution) and performs a mean field bias correction over the
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entire radar coverage area, based on (near) real-time hourly rain gauge data (Seo et al.,
1999). The MPE is mapped onto a polar stereographic projection called the Hydrologic
Rainfall Analysis Project (HRAP) grid. This data is often used in hydrologic modeling,
availing the bias correction made by the MPE algorithm. Nevertheless, in long term
hydrologic simulations and watersheds with small numbers of rain gauges, a bias
verification would be evaluated, because the bias quantification has a high variability
over the radar coverage area and time (Harmsen et al., 2008; Ramirez-Beltran at al.,
2008a and 2008b) affecting the hydrologic calibration and validation.

Gourley and Vieux (2005) developed a method for evaluating the accuracy of
Quantitative Precipitation Estimates (QPE) for isolated events. A hydrologic approach to
QPE evaluation may also become complicated because model parameters can be
judiciously adjusted or calibrated to account for errors in model inputs. Systematic biases,
which are originally present in the model inputs, can be mitigated or corrected in order to
yield accurate streamflow forecasts.

Probabilistic calibration methods exist, such as the generalized likelihood uncertainty
estimation (GLUE) used by Beven and Binley (1992), to compute the probability that a
given parameter set adequately simulates the observed system behavior. Furthermore, it
was suggested in Freer et al. (1996) that the GLUE technique should be expanded to
include the uncertainties associated with different rainfall inputs. Extension of the GLUE
provides a consistent methodology to independently evaluate the hydrologic response to

each input.
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Georgakakos (2006b) expressed the need of future research in the context of short
term hydrologic forecasting with QPF driven distributed hydrologic models which
include:

« Development of high resolution reliable QPF, especially in mountainous areas.

« Sensitivity analysis of distributed models with operational data to assess the

relative importance of parameter uncertainty and QPF hydrologic models that

include characterization of the errors in distributed QPFs.

2.2 Physically-based distributed hydrologic models

Vieux and Moreda (2003) explain that the goal of distributed modeling of streamflow
is to better represent the spatial-temporal characteristics of a watershed governing the
transformation of rainfall into runoff that relies on conservation equations for the routing
of runoff through a distributed representation of a watershed.

The term physics-based or physically-based distributed (PBD) models, includes such
models as Vflo (Vieux and Vieux, 2002); r.water.fea (Vieux and Gauer, 1994; Vieux,
2001), CASC2D (Julien and Saghafian, 1991; Ogden and Julien, 1994; Julien, et al.,
1995), Systeme Hydrologique European (SHE) (Abbott et al.,, 1986a,b) and the
Distributed Hydrology Soil Vegetation Model (DHSVM) (Wigmosta, et al., 1994). PBD
models are well suited to simulating specific events at locations where streamflow

records may not exist.
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Conceptual rainfall-runoff (CRR) models simulate runoff generation by a variety of
conceptual parameters and route the runoff using unit hydrographs to an outlet. CRR
models are inherently non-physics based and lump parameters at the basin or sub-basin
level. CRR models include Precipitation-Runoff Modeling System (PRMS) by
Leavesley et al. (1983), the Sacramento Soil Moisture Accounting Model (SAC-SMA)
(Burnash, et al. 1973), and the HEC-HMS model (Hydrologic Engineering Center, 2006).
CRR models differ from event-based models, simulating continuous cycles of rainfall and
runoff. The CRR models breakdown the hydrologic cycle into a series of reservoirs that
represent physical phenomena such as infiltration, runoff, etc. (Vieux and Moreda, 2003).

Physics-based models use conservation of mass, momentum, and energy equations to
represent hydrologic processes, whereas conceptual models use empirical relationships
together with buckets to represent component processes. Moore and Grayson, (1991)
describe an array of physics-based models that capitalize on digital models of elevation,
GIS and remotely sensed (GIS/RS) geospatial data. The term physics-based model means
that conservation of mass in combination with momentum and/or energy is employed to
compute hydrologic fluxes.

The model used in this research is a fully-distributed, physics-based hydrologic model
named Vflo (Vieux, 2002 and 2004) that derives its parameters from soil properties, land
use/cover, topography, and can obtain input from radar or multi-sensor precipitation
estimates. Vflo incorporates routing of unsteady flow through channel and overland

elements comprising a drainage network.

18



The following Vflo description and mathematical formulation was obtained (in some
cases verbatim) from Vieux and Vieux (2002) and states that the model uses the
kinematic wave analogy (KWA). The KWA has better applicability where the principal
gradient is the land surface slope. Thus in almost all watersheds except for very flat areas,
the KWA may be used. The simplified momentum equation and the continuity equation
comprise the KWA. One-dimensional continuity for overland flow resulting from rainfall

excess is expressed by:

oh  o(uh) _

R-1 .
X OX (2-2)

where R is rainfall rate; | is infiltration rate; h is flow depth; u is overland flow
velocity; t is the time and x is the distance. In the KWA, the bed slope is equated with the
friction gradient. In open channel hydraulics, this amounts to the uniform flow
assumption. Using this fact together with an appropriate relation between velocity, u
(m/s), and flow depth, h (m), such as the Manning equation, we obtain the velocity for

very wide open channel and metric system:

%o
u =S%h5 (2-3)

where S, (m/m) is the bed slope or principal land surface slope, and n is the hydraulic
roughness as expressed by the Manning’s coefficient. Velocity and flow depth depend on

the land surface slope and the friction induced by the hydraulic roughness. For
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channelized flow, Eq. 2-2 is written with the cross-sectional area A instead of the flow

depth h:

oA X
— == 2-4
FRraa (2-4)

where Q (m®/s) is the discharge or flow rate in the channel, and q is the rate of lateral
inflow per unit length in the channel.

Combining equations 2-3 and 2-4 results in:

AL Ral (2-5)

where the three scalars «, y and £ are the multipliers for the values contained in the
spatially variable parameter maps according to the Ordered Physics-based Parameter
Adjustment (OPPA) calibration method. Differential application of the roughness scalars
(Bn) to channel and overland are used (fc for channel and So for overland).

Overland flow is modeled with equations 2-2 and 2-3, and channels with equation 2-4
and appropriate form of the Manning uniform flow relation in Eq. 2-4 using the finite
element method.

Digital maps of soils, land use, topography and rainfall rates are used to compute and
route rainfall excess through a network formulation based on the Finite Element Method
(FEM) computational scheme described by Vieux (1988) and Vieux et al. (1990). Special

treatment is required to achieve a FEM solution to the KWA over a surface with spatially
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varying roughness, slope, or other parameters. Vieux et al. (1990) presented such a
solution using nodal values of parameters in a finite element solution. This method
effectively treats changes in parameter values by interpolating nodal values across finite
elements.

Vieux (2001) and Vieux and Gauer (1994) describe the development of a rainfall-
runoff model based on a drainage network comprised of finite elements. The advantage
of this approach is that the kinematic wave analogy can be applied to a spatially variable
surface without numerical difficulty introduced by the shocks caused by non-continuous
parameter variation that would otherwise propagate through the system. The finite
element methodology results in execution times that are fast enough to allow real-time
computation before the next radar update.

Accounting for unsteady flow in mild slopes, Vflo allows a looped rating curve for
channel elements. Essentially, the acceleration (deceleration) induced by the rising
(falling) limb of the hydrograph is accounted for through the Jones Formula (Henderson,
1966). In mild slope hydraulic conditions, looped rating curves may cause important
effects when maximum flow rate is observed. Vflo incorporates both distributed runoff
generation, and routing of unsteady flow through channel and overland elements (Vieux,
and Vieux, 2002).

Vieux and Bedient (2004) used spatial resolution of radar rainfall as input to a
distributed model which affected prediction error. Also, Vieux and Imgarten (2012)

studied the scale-dependent propagation of hydrologic uncertainty using high-resolution
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X-band radar rainfall estimates for watershed areas less than about 20 km?. Results of
experiments using historical radar events, including the tropical storm Allison, indicate
that accurate rainfall-runoff predictions in real time are possible and useful for site-
specific forecast in Houston, TX. They found that the achievable model accuracy with
radar bias correction was approximately a mean absolute percentage error of 11.8% in
peak discharge, 11.1% in runoff depth and average difference in arrival times of 12 min
at the Main Street gauge with a drainage area of 260 km?.

The complex interaction of input with drainage network presents challenges to the
design of storm-water drainage infrastructure, the management of flooding, flood
mitigation, and real-time forecasting of multi-scale urban drainage systems with multi-

scale inputs (Vieux and Vieux, 2005).

2.3 Calibration Process

2.3.1 Sensitivity Analysis

The classification of the sensitivity analysis methods refers to the way that the
parameters are treated. Local techniques concentrate on estimating the local impact of a
parameter on the model output. This approach means that the analysis focuses on the
impact of changes in a certain parameter value (mean, default or optimum value).
Opposed to this, global techniques analyze the whole parameter space at once. Global

sampling methods scan in a random or systematic way the entire range of possible
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parameter values and possible parameter sets. The sampled parameter sets can give the
user a good idea of the importance of each parameter. These in turn can be used to

quantify the global parameter sensitivity or the uncertainty of parameters and outputs.

2.3.2 Calibration of distributed models

Vieux and Moreda (2003) developed an OPPA procedure for a distributed model. The
OPPA calibration process involves estimating the spatially distributed parameters from
physical properties, assign channel hydraulic properties based on measured cross-sections,
study the sensitivity of each parameter, and find the optimum parameter set that
minimizes the respective objective function. Runoff depth should be adjusted first,
followed by timing and peak flow and re-adjust hydraulic conductivity if necessary to
account for changes in infiltration opportunity time. The Vflo model does not simulate
base flow directly, only direct runoff. It can be taken in account by assigning a fixed
value to channel cells for one simulated event. For long term analyses it is necessary to
quantify the base flow using known methodologies (Gupta, 1989; Sepulveda, et al., 1996)
and subtract it from the observed hydrograph to compare with direct runoff simulated by
the Vflo model.

The agreement between the observed and simulated runoff depth, time to peak and
peak flow may be expressed in terms of a bias or spread. The bias indicates systematic

over or under prediction. The departure, whether expressed as an average difference,
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percentage error, coefficient of determination, or as a root-mean-square error, serves as a
measure of the prediction accuracy.

McMichael, et al., (2005) calibrated a distributed physically based hydrologic model
(MIKE-SHE) in California and estimated uncertainty. They used the GLUE methodology
for model calibration, testing and predictive uncertainty for estimating monthly
streamflow. The catchment in Central California was 34 km? in area and the model grid
size was fixed at 270 m x 270 m. A Monte Carlo simulation was used to randomly
generate one thousand parameters sets for a 20 yr calibration period encompassing
variable climatic and wildfire conditions. Many studies have demonstrated the difficulties
that arise in identifying, calibrating and validating physically-based hydrologic models.
Such difficulties stem from uncertainties in model structure, boundary conditions, and
catchment parameterization, as well as errors in inputs and observed variables.

The GLUE methodology (Binley and Beven, 1991; Beven and Binley, 1992)
explicitly recognizes the coexistence of alternative parameter set and models and it
provides a suitable framework for model calibration and uncertainty estimation under
non-uniqueness. The non-uniqueness recognizes the existence of several set of
parameters and structures that would produce good agreement with the observed data,
and satisfy the calibration. With the limited measurements available and the application
of a distributed hydrological model it may not be possible to identify an optimal model.
Implementing GLUE requires making Monte Carlo simulations using a large number of

parameter sets, assessing the relative performance of each set by comparing model
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estimates with observed data, and retaining only those parameter sets that provide
behavioral (acceptable) predictions. The relative performance of each parameter set is
evaluated on the basis of a likelihood measure calculated by comparing model predictions
with observed data. A parameter set is classified as behavioral if the corresponding
likelihood value is equal to or greater than a specified threshold value. Parameters sets
that do not meet this criterion are rejected as non-behavioral.

The final step in the GLUE procedure is to establish predictive uncertainty bounds for
comparison with observed values. First, the set of behavioral likelihood values is rescaled
to archive a cumulative sum of unity by dividing each value by the sum of the likelihood
values. Next, behavioral model predictions for each time step are ranked in ascending
order and each prediction is assigned to a user-specified bin. The rescaled likelihood
values associated with the ranked predictions in each bin are summed to calculate the
height of the corresponding bar in the density plot. A cumulative density plot is
constructed by graphing the cumulative sum of the likelihood values versus the ranked
model predictions. Typically, the 5th and 95th percentiles calculated at each time step are
used to calculate the predictive uncertainty bounds over the period of observations. The
GLUE based prediction limits the capture of uncertainly in model output associated with
uncertainly in model parameterization.

GLUE provides a useful modeling approach for advancing beyond globally optimized,

unique, parameter sets. Working within a framework of Monte Carlo-generated
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parameters sets allows modelers to explicitly recognize and quantify the effects of
uncertainties on model prediction (McMichael et al., 2005).

Sahho et al., (2006) performed a calibration and validation of MIKE SHE in a flashy
mountainous Hawaii stream. The model was calibrated with a single hydraulic
conductivity value and produced consistent results with correlation coefficients greater
than 0.7. In the sensitive analysis the Manning’s roughness coefficient and the hydraulic
conductivities (vertical and horizontal) of the saturated zone had the most pronounced
effects in determining the shape of the flood's peaks.

Griensven, et al. (2006) made a global sensitivity analysis tool for the parameters of
multi-variable catchment models. An analysis of Monte Carlo simulations was conducted
with statistical methods such as Kolmogorov—Smirnov (K-S) test (Stephens, 1970) or
with the computation of regression and correlation based sensitivity measures to define
whether a parameter is sensitive (Spear and Hornberger, 1980). An advantage of the
method is the logical combination of calibration, identifiable analysis, and sensitivity and
uncertainty analysis within a single modeling framework (Van der Perk and Bierkens,
1997). The method can be applied to problems with absolutely no probabilistic content as
well as to those with inherent probabilistic structure. It has been widely used in
catchment modeling, for assessing parameter uncertainty and input uncertainty, e.g. for
rainfall variability (Krajewski et al., 1991).

The Monte Carlo method provides approximate solutions to a variety of mathematical

problems by performing statistical sampling experiments on a computer (Fishman, 1996).
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This method performs sampling from a possible range of the input parameter values
followed by model evaluations for the sampled values. An essential component of every
Monte Carlo experiment is the generation of random samples. Techniques, such as the
latin-hypercube methodology, are also available for minimizing the number of required
runs to reproduce the selected probability distributions of the input datasets (Harmsen,
1991). These generating methods produce samples drawn from a specified distribution
(typically a uniform distribution). The random numbers from this distribution are then
used to transform model parameters according to some predetermined transformation

equation.

2.4 Flood Prediction

In an attempt to determine flood occurrence, Birikundavyi et al. (1997) used two
approaches commonly used for the probabilistic analysis of extreme flood magnitudes
that are based on the annual maximum series (AMS) and the partial duration series (PDS).
In the AMS approach the highest flood peak in the year is used, while in the PDS
approach all those events that exceed a specified value are used. In the study, the Poisson
distribution and generalized Pareto distribution (GPD) were used to describe the
occurrence of flood and the flood magnitudes. Two neighboring flood peaks were
independent if (1) they are separated by at least seven days and (2) the flow between

them drops below 50% of the smaller peak.
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In the Brays Bayou watershed (334 km?) in southwest Houston Texas, Bedient et al.
(2000) developed a flood warning system using radar-based rainfall (NEXRAD) and
delivery systems on the internet. In 1950-1960 the Army Corps of Engineers constructed
a concrete and rip-rap lined channel to contain a greater than 100-years storm event with
bankfull capacity, currently the same channel only can contain the 10 year design level
due to increased urbanization. In this system HEC-1 is used to predict the flow at
different interest points with known rainfall distribution and the results are modeled in
HEC-2 to determine the maximum height of water in the channel. These two models are
often used together for flood prediction and are the basis for calculating the Flood Alert
System nonograph used to translate rainfall rates into peak flow and levels. After,
generating the system nonograph, calibration was conducted with hypothetical storms.

The HCOEM ALERT (Harris County Office of Emergency Management Automated
Local Evaluation in Real-Time) exists within the Brays Bayou watershed with a high
density of rainfall and flow gauges available real time via the internet (HCFCD, 1984 and
Bedient et al., 2000 and 2004). Data received from these gauges can be used to predict
possible flooding conditions and were used to calibrate the watershed HEC-1 model.

NEXRAD used with GIS can calculate the rainfall rates within the sub-watersheds
and to estimate rainfall rates from approaching storms and visualize the development of
the storm. These are powerful tools for storm prediction and flood alert. Bedient et al.
(2000) reported an excellent accuracy using HEC-1 and NEXRAD in several storms.

However the NEXRAD data is only used to track the storm.
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Currently, the next generation flood alert system (FAS2) started its operation in 2004
with more than 30 storm events (Fang and Bedient, 2007). FAS2 utilizes available radar
(NEXRAD) data coupled with real-time hydrologic modeling, and provides visual and
quantitative identification of severe storms producing heavy rainfall, as well as a linkage
between the rainfall and likelihood of flooding. The accuracy of the current FAS2 is
adequate for regional events over a large basin (129 mi?), but is lacking for events where
the regional/local scale interactions, local scale precipitation, infiltration losses, or local
hydraulics are important.

In the CASA Annual Report; year 3, Volume 11, (2006), three projects were cited that
are in development which are employing state of the art techniques. In the S22 project
uses rainfall data derived from radar images to run real-time, physically-based distributed
models for flood prediction and generation of flooding maps. This project explores the
drainage density in an urban area, because it has been demonstrated in FAS that a small
urban watershed could not predict flow with sufficient accuracy with the current Vflo
model, when the area was classified as overland flow.

Project S23 is concerned with testing different QPE resolutions derived from radar
and the impact in flow at different basin scales with the same grid size resolution. Project
S24 is developing a Vflo model that incorporates a secondary drainage system and
evaluating the methodology in Harris Gully (FAS’s urbanized watershed). A distributed

pipe network linked to topography is a unique combination of new urban hydrologic
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models. All these projects are guided to enhance the accuracy in flood prediction
especially at small watershed scales.

Making predictions in real-time with a hydraulic model is difficult because of
inaccuracies in model parameters, rainfall input inaccuracy, or unknown upstream flow
rates. Real-time systems for mapping expected areas of inundation require input of flow
rates from other sources to generate inundated areas using sophisticated 2-D
hydrodynamic models. Even the inflow between river gauging stations requires some
model estimation of watershed response in the intervening areas. Upstream gauging
points and rainfall-runoff models are viable sources of real-time flow information. Both
lumped and physics-based distributed rainfall-runoff models may be used for this purpose
(Bedient, et al., 2004).

Georgakakos (2006a) studied the theoretical basis of developing operational flash
flood guidance systems using analytical methods. The Sacramento soil moisture
accounting model is used operationally in the United States to produce flash flood
guidance estimates of a given duration from threshold runoff estimates. The study
attempted to: (a) Shed light on the properties of this model’s short term surface runoff
predictions under substantial rainfall forcing. (b) Facilitate flash flood computations in
real time.

Various characteristics of the flash flood guidance to threshold runoff relationship are
discussed and considerations for real-time application are offered. Uncertainty analysis of

the threshold runoff to flash flood guidance transformation is also performed.
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Vieux et al. (2003) in collaboration with Taiwan government agencies and the United
States Government began a program initiative for the research and development of a
flood alert and water resources management system to unify monitoring and prediction of
floods within a single system in Taiwan. Enhancing the accuracy and efficiency of
information disseminated from the central government to the public, and to regional and
local water management and emergency response agencies is the major goal of this
project. A limited sensitivity analysis was conducted. Knowing which parameters cause
the most response in stage or discharge, helps to identify where efforts should be
expended to improve parameter specification.

Vieux et al. (2002) developed a proposal for Arizona to utilize a sophisticated
hydrologic modeling approach coupled with QPe-SUMS. This model will help 1) manage
reservoir operations, 2) minimize losses through spills, and 3) predict flood levels in
selected basins. The authors emphasize the need to perform a flood hazard analysis a
priori to the modeling.

The U.S. Army Corps of Engineers (USACE, 1996) define the “maximum potential
warning time”, as the response time after initiation of the flood-producing rainfall and is
related to the arrival time of the peak stage or discharge, and is the interval during which
mitigating responses can reduce property damage, loss of life, or business interruption.

In this chapter, various studies related to flood prediction and uncertainty were
reviewed. In the next chapter the study area in which this research was conducted is

described.
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CHAPTER 3
3 STUDY AREA

This investigation considered two study areas, the Mayagiiez Bay Drainage Basin
model (MBDB) and the Test Bed Sub Watershed (TBSW). A description of the two

study areas is given below.

3.1 Mayaguez Bay Drainage Basin Study Area

3.1.1 General description and stations in the area

The study area is over the region of western Puerto Rico and has 819.1 km?. The area
includes three principal courses: Rio Grande de Afasco, Rio Guanajibo and Rio Yaguez.
Numerous hydrologic and hydraulic studies by the US Geological Survey (USGS) and
the University of Puerto Rico have been conducted in this area (Prieto, 2006; Villalta,
2004; Rojas, 2004; Sepulveda et al., 1996). The area encampases the municipalities of
Mayaguez, Afasco, Las Marias, San Sebastian, Lares, Maricao, Yauco, Adjuntas, Sabana
Grande, Cabo Rojo, San German and Hormigueros. Of these municipalities, Mayagliez
has the highest population (89,080 habitants), followed by Cabo Rojo (50,917 habitants).
The lowest population density is for Maricao with 6,276 habitants, according to the U.S.

Census Bureau, 2010. Changes in elevation vary from zero meters mean sea level in the
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coastal areas to 960 m in the mountainous areas, producing abrupt slope changes in short

distances (Figure 3-1).
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Figure 3-1 Digital Elevation Model and Rio Guanajibo, Yaguez, and Grande
de Afasco watersheds, rain gauges and flow gauging stations.
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The Rio Grande de Afiasco basin (Figure 3-1) has an area of 370.36 km?, including
the reservoir lakes, tributary areas and river, which has a length of 64 km. Lakes
Yahuecas, Prieto, Guayo and Toro were constructed by the Puerto Rico Water Resources
Authority (PRWRA), presently the Puerto Rico Electric Power Authority, during the
decade of the 50’s. These were constructed to supply water to the Luchetti Lake for
energy production and irrigation. According to Figueroa et al. (2006), the area above
Lago Guayo, Lago Yahuecas, and Lago Prieto dams contributes flow to the Rio Grande
de Anasco only during high floods. For the purpose of the present study it was assumed
that the contribution of water from the Lago Guayo, Lago Yahuecas, and Lago Prieto sub
watersheds to the Afasco watershed downstream of the lakes is not significant for
regional water budget estimation (Prieto, 2006). Therefore, those subwatersheds were not
included as part of the Afiasco watershed in this study. The total lake drainage area is

about 116.55 km? and was used as a boundary condition in the model.

The coastal plain associated with Rio Grande de Afiasco basin is characterized by an
alluvial fan having an area of 41.5 km? and 0.08% average slope. The alluvial fan has a

length of 15.6 km reaching a width of 8.8 kilometers at the coast shore (Rojas, 2004).

According to FEMA (2009), the estimated 100 years return period flood flows was
5,130 m*/s (cms) and 3,797 cms for 50 years return period at the river’s mouth and at
USGS Gage No. 50144000 Rio Grande de Afasco near San Sebastian were reported to
be 4,078 cms for 100 years and 3,278 cms for 50 years return period. The major flood

measured in that station was for Hurricane Georges in September 22, 1998, reporting a
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stage of 10.52 m (34.5 ft) and peak flow of 4,587 cms, followed by Hurricane Eloise in

September 16, 1975 with a stage of 10.33 m (33.9 ft) and peak flow of 3,964 cms.

The station has different flood categories; the flood stage is 3.35 m (11 feet), a stage
greater than 4.27 m (14 ft) is a moderate flood and stages greater than 5.59 m (19 ft) are
categorized as major floods. The station shows that the river had been flooded in thirty

one times from 1963 according to the records (NOAA, No date).

The Federal Emergency Management Agency (FEMA) performed a Flood Insurance
Study (FIS) for the Commonwealth of Puerto Rico (FEMA, 2009) in which regulatory
peak flow values for the study basins were established. The Rio Grande de Afasco FIS
presents the magnitude and frequency of floods in accordance with the application of the
U.S. Geological Service (USGS) regression equations for estimating peak flow on stream
in Puerto Rico (USGS, 1999). This report presented regression equations developed from
gages sites having 10 to 43 years of records that can be used to estimate peak flows at
ungagged sites or gaged sites with short periods of records. The equations utilized the
mean annual rainfall (MAR), the contributing drainage area (CDA) and the depth to rock
(DR), as variables that govern the peak streamflow. The MAR was obtained from the
Puerto Rico 1971-2000 Mean Annual Precipitation map developed by NOAA (2006) ,

with the variations of rainfall across Puerto Rico calculated.

The Rio Guanajibo basin (see Figure 3-1) has an area of 328.9 km? and 38 km river

length. The topography of the area is diverse, including mountains, foothills, and valleys.
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The predominant rocks in this area are serpentine and volcanic-related. The main
tributaries are Rio Rosario, Rio Daguey, Rio Cain, Rio Cupeyes, Rio Cruces, Rio Loco,
and Rio Viejo, and to the south exists relatively small tributaries. Major floods have been
monitored in this basin since 1974, with the largest flood registered occurring in
September 16, 1975 (Hurricane Eloise) with a reported peak flow of 3,625 cms and 8.7 m
(28.54 ft) stage elevation at the USGS 50138000 Rio Guanajibo near Hormigueros
station. In this location FEMA calculated a flow of 5,343 cms and 5,745 cms at the
river’s mouth for the 100 year return period. The 50 years return period flows were 3,637

at USGS station (50138000) and 3,896 cms at mouth (FEMA, 2009).

The station has different flood categories; flood stage greater than 7.93 m (26 ft) is
categorized as a major flood, 6.7 m (22 ft) is a moderate flood stage, 6.1 m (20ft) is the
flood stage and at 4.88 m (16 ft) is the stage at which action is required. The area had
been flooded twenty-four times from 1974 according to the records (NOAA, No date).
The percent annual chance recurrence intervals were developed using rainfall-frequency
relationships presented in Technical Paper 42 (U.S. Department of Commerce, 1961) and

an unit hydrograph was carried out using the HEC-1 computer program (USACE, 1990).

The Rio Rosario is a tributary of the Rio Guanajibo and the subwatershed in this
study is defined by the outlet point defined at the USGS 50136400 Rio Rosario near

Hormigueros station.
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The Rio Yagiez basin (see Figure 3-1) has an area of 35.48 km?, a river length of 20
km with average slope from 0.004 % to 0.025 % for the channelized river section at city
of Mayaguez. Rio Yaguez originates in the western slopes of the Cordillera Central and
flows westerly into the Mayagiiez Bay. The drainage basin is narrow, having a length-
width ratio of approximately 10 to 1. In 1968, a flood protection project for the City of
Mayaguez was initiated and the lower reach of the river was channelized to protect the
city from floods. The channel has a capacity of 326 cms, but the maximum capacity of
the channel at the PR Highway 2 Bridge is approximately 425 cms. To determine the
discharges for the different percent annual chance floods in the basin reported in the FIS
(FEMA, 2009), a regional flood-frequency analysis (USGS, 1977) was used based on
log-Pearson Type Il analyses of individual station records and regionalization using
multiple regression techniques. The 100, 50 and 10 year return period flows at the mouth

were estimated to be 770 cms, 595 cms and 292 cms, respectively (FEMA, 2009).

Nine flow gauge stations operated by the United States Geological Survey (USGS), 3
NOAA rain gauge stations, 2 Soil Climate Analysis Network (SCAN) sites from the
United States Department of Agriculture (USDA) Natural Resources Conservation
Service (NRCS), and 4 owner stations published at the Wunderground web page

(http://www.wunderground.com/US/PR/), 2009, exist within the study area (see Figure 3-

1), . Currently there are only 4 flow gauge stations with precipitation data and 2 river
stage measurements; see Error! Reference source not found. for the source and data

type details.
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Table 3-1 Climatic and river flow stations located within the study area

Elev.
Source ID Station Station Name Lat. Long. (rr‘i;, Data
NOAA Maricao 2 SSW 18.15 | -66.98 863.4 | Meteorological
NOAA Hacienda Constanza 18.11 [ -67.05 146.3 Rain
NOAA Mayagiliez Airport 18.25 | -67.13 11.6 Meteorological
NOAA Maricao Fish Hatchery 18.16 | -66.98 457.3 Rain
NOAA Mayagtez City 18.18 | -67.13 22.6 Rain, Temp
USGS 50131990 | Rio Guanajibo at Hwy 18.09 | -67.03 | 45.0 Rain, Stage
119 at San German
USGS | 50136400 | RioRosarionear 1817 | -67.07 | 50.0 Rain, Stage,
Hormigueros Flow
USGS 50138000 | Rio Guanajibo near 18.14 | -67.15 | 2.2 Rain, Stage,
Hormigeros Flow
USGS | 50141500 | @80 GuayoatDamsite | yg.. | goa3 | 4268 | Rain, Stage
near Castaner
USGS | 50142500 | L@go Prietonear 1819 | -66.86 | 600.2 Rain, Stage
Adjuntas
USGS 50146073 | 280 Dagueyabove 18.301 | -67.13 |  40.0 Rain, Stage
Afasco
USGS 50141100 | 280 Yahuecas near 18.22 | -66.82 | 4268 Rain, Stage
Adjuntas
USGS 50143930 | RioGrandedeAfascoat | 1g.0 | c705 | 649 Rain, Stage
Bo. Guacio
USGS | 50144000 | RioGrandedeAfasco 18.285 | -67.05 | 316 Rain, Stage,
Near San Sebastian Flow
USGS | 50145395 | RioCaseyabove 1825 | -67.08 | 75.0 Rain, Stage,
Hacienda Casei Flow
NRCS Mayagiiez TARS 18.217 | 67.13 13.7 Meteorological
NRCS Maricao Forest 18.15 67 747.0 | Meteorological
Wunder | 1y 1G7pa 18.218 | -67.16 0 Meteorological
ground
‘;vr‘:::g KPRMAYAGS | Miradero Mayagiiez 1823 | -67.14 | 232 | Meteorological
Wunder . .
KPRMAYAG7 | Mayagiiez 18.211 | -67.14 0 Meteorological
ground
Wunder '
KPRMAYAG3 18.168 | -67.15 48.8 Meteorological
ground
Wunder L .
KPRSANGE3 | Vivoni 18.083 | -67.04 47 Meteorological
ground
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The climate in the area is tropical, with moderate temperatures year round, and the

mean high annual temperatures are 26.4 C in the mountains (Maricao 2SSW station) and

31.4 C in Mayaguez City station (Table 3-2)

Table 3-2 Temperature and Precipitation Normals for NOAA stations within the

study area (NOAA, 2006).

Station
Name

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Annual

Mayaguez
City

High
Temp
©

30.1

30.2

30.7

31.7

32.6

32.6

32.7

32.5

32.2

31.4

30.3

314

Low
Temp

©)

17.9

17.7

18.1

19.2

20.3

20.9

21.0

21.2

20.2

19.1

19.8

Rain
(mm)

40.4

64.0

77.5

102.6

184.4

160.5

220.5

232.7

269.2

226.8

119.4

45.7

17440

Days
with
Rain

6.7

6.7

8.3

10.9

14.2

13.6

15.6

17.2

17.1

16.1

11.8

7.9

146.1

Hacienda
Constanza

Rain
(mm)

48.5

67.1

80.3

120.7

200.2

195.6

2471

253.7

279.4

242.6

138.4

34.0

1908.3

Days
with
Rain

24

24

2.9

53

8.4

7.1

8.7

9.3

9.6

9.2

4.9

1.7

71.9

Maricao
2SSW

High
Temp
©

24.8

25.2

25.7

26.2

26.7

27.8

27.6

27.8

274

26.8

26.2

24.8

26.4

Low
Temp
(©)

16.4

16.2

16.2

16.8

17.9

18.8

18.9

19.2

19.0

18.9

18.2

16.9

17.8

Rain
(mm)

76.5

95.3

134.1

172.5

239.5

159.5

216.4

287.0

348.0

378.5

236.0

86.6

2428.2

Days
with
Rain

10.2

9.4

10.1

135

10.6

13.4

14.8

155

17.1

13.7

10.8

151

Mayaguez
Airport

Rain
(mm)

41.4

51.1

71.4

191.3

178.1

2375

251.0

266.7

2235

123.2

37.8

1771.4

Days
with
Rain

6.9

6.4

8.4

16.6

155

17.4

19.3

18.7

18

12.2

8.4

159.3

Maricao
Fish
Hatchery

Rain
(mm)

67.8

80.8

124.5

178.6

243.8

204.0

228.1

294.6

391.2

365.8

215.1

70.4

2463.8

Days
with
Rain

55

5.3

6.9

10.2

11.3

85

11

133

15.4

15.7

10.5

120.6

Table 3-2 presents a

rainfall for five locations within the study area.

summary of the mean
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distribution in the wet season from April to November, with drier conditions in June and

July (Capiel and Calvesbert, 1976); and a dry season from December to March.

The mean annual precipitation varies greatly across the study area due to the abrupt
changes in elevation by the mountains causing wide variation in local wind speed and
direction, which results in a sea breeze effect in the western area. Table 3-2 presents
annual rainfall accumulations from 2463.8 mm for Maricao Fish and 1743.96 mm for

Mayaguez City stations.

3.1.2 Soils Classification

A soil map describing the textural or soil class distribution is necessary to assign the
values of the Green-Ampt infiltration parameters. The soil map was obtained from the
Soil Survey Geographic (SSURGO) database for the Arecibo, Mayaguez, Lajas Valley
and Ponce areas (USDA, 2006a; 2006b; 2006c; 2006d) provided by the NRCS. Figure

3-2 and Figure 3-3 depict the soil and textural classes occurring within the study area.

The soil textures present are clay with 558.68 km? area, loam with 176.84 km?, clay
loam with 53.88 km?, sand with 14.28 km? rock with 10.32 km? and gravel with 4.72
km?® The SSURGO data base provides additional information for each soil type, for

example, bulk density, percent of sand and clay and soil depth.

The soils series with a major presence in the area are Consumo (184.4 km?), Humatas

(132.9 km?) and Mucara (78.9 km?). The three soil types are classified clays for texture
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class, but have different infiltration capacities. Therefore, they are classified in the

Hydrologic Soil Group as B for Consumo, C for Humatas and D for Mucara.

KaF
L LI meters
0 4,050 8,100 18,200
Legend
Soils Name Coloso Guanajibo Bl Malaya I Nipe I serpentinite outcr
Aguilita I Consumo I Humatas I riani Paimarejo [ Soil not surveyed
Aibonito I Corcega Igualdad I Maraguez [ Quebrada [ Talante
Alluvial land ™58 Cuchillas Jacana Maresua N Reilly I Tidal swamp
Alonso I Daguey I Lares [0 Mariana I Riverwash [l Toa
Anones Delicias I Leveled clayey lan I Maricao [0 Rosario I voladora
Bajura Il Descalabrado Limestone outcrop Il Montegrande Il San German Yolcanic rock land
Caguabo MM Dique [ Los Guineos [ Morado [0 sandy Land [ Water
Catano [ Gravel Pits quarri B Mabi Mucara I santa Marta

Figure 3-2 Soil Map distribution for the study area. Source: SSURGO data
base, (USDA, 20064, b, c, d).

3.1.3 Land Use Classification

To conceptualize the hydrologic model it is necessary to obtain land use or land cover
classes to assign roughness values and crop coefficients according to the classes. A

digital map of the forest type and land cover was developed for Puerto Rico using
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LandSat enhanced Thematic images at 30 m resolution (Helmer et al., 2002), applying a
supervised classification approach. In total, twenty-five classes were obtained from
supervised classification (Figure 3-4). Prieto (2006) reclassified the detailed classification
into six major categories, grouping similar categories such as different forest types, shrub

land, wood land or shade coffee.

Soil Texture
SSURGO Map

Soil Texture

N clay
[l Clay Loam
Il Gravel
I Loam
I Rock
I sand

2,000 4,000

Figure 3-3 Soil Texture for the study area, SSURGO map (USDA, 2006a, b,
c, d)
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The final land use classification is shown in Figure 3-5 and exhibits the predominant
land use classification of forest, shrub, wood land and shade coffee with an area of
529.16 km?, followed by pastures with an area of 172.84 km? and Urban and barren land
with 60.02 km?. Preliminary, hydrologic model for the Mayagiiez Bay basin area was
configured using the Land use classification of Figure 3-5, provided by Prieto, 2006 and
some analysis were developed using this data. In the upcoming sections will be indicated
which land use classification was used, because new information was collected for land

use.
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Forest and shrubland - Dry and Dry/Moist
B 1o+)20d dry semideciduous forest
] Lowland dry semidecidnous woodland/shrubland

[ Lowland dry/molst wixed evergr. drought-decid. shrubland with succulents

B Lowland dry and moist, mixed seasonal evergreen sclerophyllous forest
Forest and shrubland - Moist and Moist/Wet

[ Lowland moist cvergreen hemi-selerophyllous shrubland

- Lawland moist seasonal evergreen forest

T.owland moist sewsonal evergreen forestishrub

D Lowland moist coconul palm forest

- Towland moist semi-deciduons forest

- Lowland moist semi-deciduous forest/shrub

I 1o 1and moist and wet seasonal evergreen and semi-deciduons forest

D Lowland moist and wet seasonal evergreen und semi-deciduous forest/shrub

Forest - Flooded
B Tically and semi-permanently flooded evergreen sclerophyllous forest
[ s<asonally Nlooded evergreen forest

Forest - Wet, Rain, Lower montane Wet/Rain

Submontane and lower montane wet evergreen sclerophyllous forest
[ Submontane and lower montane wet evergreen sclerophylious forest/shrub
I Suboontane wet evergreen forest

] Active sunfshade coffee, sub-flower montane wet forest/shrab, other agric.
] Sub-flower montaae wet evergr. forest/shrub, active/abandoned shade coffee
- Lower muntane wet evergreen forest - tall cloud forest

E Lower montane wet evergreen forest - mixed palm and elfin cloud forest
[ 1over montane wet evergreen forest - elfin cloud forest

Emergent Wetlands

] midalty floaded evergreen dwarf-shrubland and forh vegetation

] Other emergent wetlands (including ally flooded pasture)

[ salt and mud flats

Apgriculture and non-vegetated

[ pasture [ Quarrics and xalt mining
[ Asriculture/mayfpasture [ water

B Urban and barren [ sand and rock

Figure 3-4 Map of Puerto Rico natural vegetation and land cover. Source: Helmer, E.H. et al., 2002



fi} Legend

N Land Use
I ~oriculture
w E Agricultureihay
I Forest, shrub, woodland and shade coffee
s I Cther emergent wetlands
Kilometers Pasture
0o 2 4 8 12 16 Ml Cuarries, sand and rock

I Urbzn and barren

Figure 3-5 Land Use Classification at 30 m resolution from LandSat ETM,
2000. Source: Prieto (2006) and Helmer et al. (2002)

The second source of land use classification was provided by Puerto Rico Water
Resources and Environmental Research Institute (PRWRERI, 2004), who developed the
project titled Land Use Classification of the Mayagiiez Bay Watershed, (Rio Grande de
Afasco, Rio Yaguez, and Rio Guanajibo Watersheds), supported by the Puerto Rico
Environmental Quality Board (Figure 3-6). The sensor used for this classification was
LANDSAT 7 TM satellite image from 2004 with 30 m resolution for a general land use

classification with field visits verification as needed. Thirty five classes were found in
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this product where the most important area is cover by Forest low density (274.68 km?),
fallow by Shrub and brush rangeland (253.05 km?), Forest high density (183.20 km?) and

Urban or built-up land (103.71 km?).

Land Use Classification of the Mayagiiez Bay Watershed

L IKm

: 15 20
Legend

E Study Area - Dairy Farm or dairy cow feeding - Orange, coffee - Shade coffee plantation

Land Use Classes - Forest high density Orange, plantain/banana - Shrub and brush rangeland
Avocado Forest low density [ orange, plantain/banana, coffee [l Streams and canals

I Bare exposed rock "] Forested Wetland I Pasture I Transition area

I Baren tand [ General agriculture Plantain/banana [ Transportation, communicat

- Coffes - Gravel pit - Plantain/banana, coffee - Urban or built-up land
Coffee, orange [ Native pastures o i coffee, I Waste disposal areas

- Coffee, orange, N

Plantain/banana, orange

- Coffee, plantain/banana - Nurseries & Ornamental Horticult - Pond
Coffee, plantain/banana, oranges - Orange

Reservoirs

Figure 3-6 Land Use classification of the Mayagtiez Bay Watershed
Source: PRWRERI, 2004.

3.2 Test Bed Sub-Watershed
The “test-bed sub-watershed” (TBSW) study area is located within the Rio Grande de
Afasco Basin, more specifically in the Rio Cafas sub-watershed (Figure 4-6). In this

study, the TBSW, with an area of 3.55 km?, is characterized and used for analysis
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purposes as a “field laboratory” to test the scale influence in the hydrologic prediction.
The terrain elevation within the TBSW varies from 25.4 m (above mean sea level [amsl])
to 305.7 m amsl., (CRIM, 1998) (Figure 3-7). The area is characterized with large terrain
elevation changes over small distances, with slopes varying from 0.265 % to 91.96%
(39.03% average slope). Therefore, the study area is classified as a mountainous sub
watershed which is very typical of the Puerto Rican upland sub watersheds. Prior to this
investigation, no rain or flow gauges were present within the area. Figure 3-7 shows the
TBSW location within the Mayagtiez Bay model, the color contoured terrain map and the
rain gauge network installed and used in the study area for this research, a detailed

description is addressed in the next chapters.

Test Bed Sub Watershed Location

Legend

RAINGAUGE NETWORK
Flow Station
A 1

I: Pixel_2Km_radar

River_CRIM_TBSW

Elevation (m)

P High : 305.71

Low : 25.41

036 12 18 24
1 Km

Figure 3-7 TBSW location within the 4 km by 4 km NEXRAD pixel and rain
gauge network.

47



CHAPTER 4

4 HYDROLOGIC MODEL CONFIGURATION
AND SLOPE ANALYSIS

A detailed description of the components of a hydrologically distributed model is
presented in Section 4.1. The configuration for the MBDB model was developed using
available data for soils, land use, digital elevation models and field measurements. This
model will be used for uncertainty analysis, rainfall tests and posterior flood alarm
predictions (not addressed in this research). Therefore, the TBSW model set up was
conducted by extracting data from the MBDB model. A slope analysis was developed
according to an aggregation method to be used in the up-scaling experiment, without loss
of slope information for mountainous subwatersheds. Additionally, an evaluation
between different evapotranspiration methods was developed to quantify the uncertainty

associated with this term.

The hydrologic model used in this study is Vflo (Vieux and Associates, Inc., 2004),
which is capable of ingesting distributed radar rainfall data. Vflo is a finite element
model and the equations are used to solve overland and channel flow. A detailed

description of Vflo was presented in Chapter 2.
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The configuration of the proposed physically-based distributed model used in this
study was based on products described in Chapter 3 for the Mayagliez Bay Watershed
and TBSW as well, such as soils, land use and digital elevation model maps. Generally,
to create both high resolution models, it is necessary to derive the topographic
characteristics from a digital elevation model with high resolution. For this purposes we
used the digital elevation model quadrangles derived from the base map data of the
“Center for Municipal Tax Revenues of Puerto Rico” by its acronym in Spanish (CRIM,
1998): xyz mass points, ridgelines, road cuts, and hydrographic features. The CRIM data
were collected by AEROMETRIC, Inc. Ground control eastings, northings and elevations
were surveyed by RLDA Surveying & Mapping of San Juan, Puerto Rico. The elevation
maps were developed by phototriangulation with a root mean square error of ground-
control residuals of 0.6 m for vertical control elevation coordinates and root mean square
error of airborne-GPS exposure-station residuals of 0.184 m for vertical control elevation

coordinates.

Most of the input data for the Vflo model was prepared using ArcGIS 9.3 and Arc
Hydro Tools. The basin and river characteristics were extracted from the 7.5-Minutes
Series topographic maps from USGS, 30 m x 30 m digital elevation model (DEM)

quadrangles and from the digital elevation model at 10 m spatial resolution from CRIM.

The Green Ampt infiltration model is used by the distributed hydrological model to
calculate the initial abstractions due to infiltration and runoff produced by rainfall. The

parameters are derived from soil characteristics assigned to the SSURGO soil
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classification maps, digitally available (Figure 3-3). Values of soil suction at wetting
front (), saturated hydraulic conductivity (Ks), effective porosity, soil depth and initial
degree of soil saturation (¢) will be obtained from the literature (Vieux and Vieux, 2006;
Sepulveda, 1996), field measurements (USDA, 2006a; 2006b; 2006c; 2006d) and
computations using the percent of sand and clay, soil bulk density and percent of organic
matter in combination with the Soil Water Characteristics Hydraulic Properties

Calculator (Saxton and Rawls, 2006).

Vflo also requires soil depth (cm), initial abstraction (cm) and percentage of
impervious area. Required channel data include base flow, roughness (Manning’s n),
channel and side slopes, and the infiltration parameters mentioned above. Overland flow

properties include flow direction, overland slope and infiltration parameters.

4.1 Flow direction and stream definition

For MBDB, the model comprises the Rio Grande de Afiasco, Rio Guanajibo and Rio
Yaguez watersheds. Overland slope, flow direction, and stream locations were
determined from the USGS 30 m x 30 m digital elevation model (DEM) quadrangles and
resized to 200 m spatial resolution. During this step the streams were “burned” into the
model grid using a multi-step process in ArcGIS, in which the flow direction is forced to
follow the rivers. This step is necessary because the flow direction calculation tends not

to be accurate in low slope areas (e.g., floodplains of the rivers). The final resized digital
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elevation model has correct flow direction based on the hydrological maps of the

topographic quadrangles.

The flow direction and subsequent products were calculated with Arc Hydro Tools
and ArcGIS 9.3. A flow direction map is necessary to calculate the flow accumulation
map and create the stream network map. The flow accumulation is an accounting of cells
contributing flow to a selected observation point, increasing the contributory area for
observation points located further downstream. A cell located at the watershed outlet has
the total cell number that drain to this point. The stream definition required 90 cells of
flow accumulation to begin a channel. The river grid generated was utilized to define the

channel cells in Vflo (Figure 4-1).

The TBSW model was developed using the same procedure described above but
using the 10 m DEM (CRIM, 1998). The flow direction and stream definition were used
to define the overland and channel cells respectively; based on the sub watershed

delineation and river definition shown in Figure 3-7.
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Low : -13.8397

Figure 4-1 Fow accumulation and stream definition for Rio Grande de
Afasco, Rio Guanajibo and Yaguez basin model.

4.2 Channel geometry

Channel geometry in the hydrologic model is necessary for the channel cells or cross
section cells in the model and includes the sides slopes, cross sectional data or base width
for trapezoidal assumption and channel slope. The geometry would affect the flow
response, increasing the stages for narrow rivers and decreasing stages for wide rivers,
principally due to the storage. MBDB is not characterized by large width variations over

short distances; typically widths are within the range of 3-5 m for upland rivers and
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creeks and up to 32 m for low lands according to measurement samples in aerial photos

taken December, 2006 (Google Earth) over the study area.

The channel slide slopes were assumed to be 1:1 for the streams where no cross
section information was available. The stream geometry was defined with data collected
in 2002 by the PRWRERI (Villalta, 2004). At Rio Grande de Afasco, 25 cross sections
were measured along the river; 10 cross sections were surveyed in Rio Guanajibo, located
downstream of PR-114 and in Rio Yaguez only four cross sections were measured
upstream of the channelized section. To define the flood plain within the cross sections,
an extending process was made using the digital terrain model (10 m resolution) and
creating interpolation lines to extract the entire cross section and new cross sections.
Additional cross sections were extracted from DEM (10 m resolution) to characterize the
flood plain where no field cross sections were surveyed and a simple trapezoidal river
section was used measuring the river width from 2006 aerial photos of Google Earth,
2006 and the side slope set to 1:1. Figure 4-2 shows the locations of cross sections
extracted from the DEM for the Rio Guanajibo and Rio Grande de Afiasco. The channel
slope was determined using the stream definition raster layer (Figure 4-1) and the slope
map calculated with the DEM at 10 m resolution for the stream reaches where no survey

data was available.

The stream map generated with the DEM at 10 m resolution was utilized to define the
channel cells in Vflo for the TBSW model; channel side slopes were assumed to be 1:1;

and bed channel width was set to 5 m. In most of the river sections (measured from
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Google Earth), the channel width is about 5 to 10m, supposing bed width is about 4 to 8
m. Streamflow and flow volume are not sensitive to bed width; however, the stream

stage is sensitive to bed width according to some tests realized.

Cross Sections Interpolated]|

S vu |
.| & Cross Sections Surveyed
' levation

v
‘ High : 1199.31

Low :-13.8397

Figure 4-2 Cross Sections Surveyed and interpolated for Mayagiiez Bay
Model

4.3 Stage and Rating Curve for the TBSW creek

A pressure transducer was installed at the TBSW outlet to collect flow stage
measurements every 5 minutes from October 20, 2007 to May 2009. The instrument was

located at 18.232667° latitude; -67.119533° longitude and elevation of 25 m amsl (see
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Figure 4-4). Daily minimum barometric pressures were used to correct the factory
calibrated stage measurements using the Miradero KPRMAYAG1 weather station (18.2°
north latitude, 67.13° west longitude and elevation of 22.86 meter above mean sea level),

available at www.weatherunderground.com. The average adjusted stage value was

calculated in 0.847 m with 0.0225 m standard deviation. This value was using the

minimum pressure measured at Miradero KPRMAYAGL.

Stream cross sections and bed slopes were measured in the field (Figure 4-3) and the
rating curve was generated using HEC-RAS 4.0 hydraulic model (Hydrologic
Engineering Center, 2006) with 3 cross sections and slopes observed. The downstream
boundary condition was assigned as critical depth and flows were assigned with
subcritical flow condition. The full bank stream rating curve was fitted to the following
third order polynomial equation (Equation 4-1) with a regression coefficient of 1, where
flow is in cubic meters per second and stage in meters. Equation 4-1 was used to convert

stage elevations to flow discharge for the events.

Flow = —0.6331stage? + 5.33stage? + 0.003stage — 0.061 (4-1)

To setup the distributed model at TBSW, information was assigned to selected model
cells corresponding to the principal stream channel. The bed channel slopes for the
TBSW model were assigned by segments using the average longitudinal slope between
cross sections digitized from the DEM (10 m) and corroborated with field measurements.

Figure 4-4 shows pictures of the outlet section and the pressure transducer location. The
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TBSW creek was divided in three creeks (Figure 4-5), the Lower Creek has a
longitudinal average slope of 1.25%. The Upper Creek has 2.22% slope. Upper Creek2
shown in Figure 4-5 was divided into two segments, the upstream segment shows a slope
of 11.27% and the downstream segment is 3.27%. Figure 4-5 shows the Vflo model with

the channel and overland cells at 10 m resolution and the locations of the creeks named

above.
Cross Section » Flow-Stage Curve
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Figure 4-3 Cross section measured at the instrumentation place and rating
curve to full bank condition

Figure 4-4 Photos of principal channel bed at TBSW (right) and location of
the pressure transducer (left)
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Figure 4-5. TBSW hydrologic model configured in Vflo and identification of
the river reaches

4.4 Slope Analysis

Land surface slope is another important source of uncertainty in hydrologic modeling.

High (low) slopes affect the time to peak producing early (retarded) peaks, less (more)

infiltration, increasing (decreasing) discharge volume and increasing (decreasing) peaks.

The average and standard deviation of the slope for Rio Grande de Afasco basin were

34.6 % and 21.7% respectively; for Rio Guanajibo basin 28.2% and 22.4 %, respectively;

for Rio Yagliez 29.8% and 18.0%, respectively; and for TBSW were 31.0% and 14.9%,

respectively, calculated with the DEM at 10 m resolution. Figure 4-6 and Table 4-1 show
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the subwatershed map and the average land surface slope values and standard deviation
for each watershed and subwatersheds for MBDB area. In total, 24 subwatershed were
identified for the most important tributary rivers and coastal areas, the majority of those
exhibiting high slopes and similar conditions to the TBSW, indicating that the TBSW

could be a representative sample of the MBDB, in terms of the slope parameter.

]

SUB WATERSHEDS

[ Cano La Puente Il Rio Grande

[ ] Coastal Watersheds North and South of Rio Guanajibo mouth [T77] Rio Grande de Anasco at mouth
[ Coastal Watersheds of Rio Grande de Anasco mouth [ ]Rio Guaba

[ ] Quebrada del Oro I Rio Guanajibo at mouth

Bl Rio Arenas [ Rio Hondo

I Rio Blanco Il Rio Humata

] Ric Cain I Rio Mayaguecillo

I Ric Canas I Rio Prieto below Dam

|7 Rio Casey [ | Rio Rosario

I Rio Cruces I Rio Viejo

[ ] Rio Cupeyes I Rio Yaguez

[ | Rio Duey I Unnamed Coastal Watersheds West of Cano La Puente mouth

Figure 4-6. Sub Watersheds map belonging to MBDB
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Table 4-1. Mean land surface slope and standard deviation for the sub-
watersheds.

Watershed Area Mean Staqda}rd
Name Sub Watershed Name , Slope | Deviation

(km%) (%) (%)

Unnamed Coastal Watersheds West
of Cano La Puente mouth 28.78 28.70 21.70
Rio Humata 12.65 35.75 17.79
Cano La Puente 28.37 20.11 25.65
Rio Grande de Afasco at mouth 101.91 32.30 20.85
Rio Arenas 15.41 28.72 14.57
Rio Casey 29.64 37.11 18.87
Rio Grande de | Rio Blanco 31.45 44.09 20.17
ARfasco (Cj:oas'EaI Watersheds of Rio Grande 18.13 739 10.69

e Afasco mouth
Rio Mayaguecillo 18.11 37.81 17.75
Rio Cafias: 38.00 26.72 16.10
Test Bed Sub-Watershed 3.56 31.03 14.93
Rio Guaba 83.20 46.06 19.38
Rio Prieto below Dam 43.31 4151 18.43
Total area and average slope 448.95 34.60 21.67
Quebrada del Oro 6.74 19.76 16.56
Rio Yaguez Rio Yagiez 35.24 31.67 17.69
Total area and average slope 41.98 29.76 18.05
Rio Rosario 62.15 38.02 20.59
Coastal Watersheds North and

South of Rio Guanajibo mouth 21.03 11.92 1583
Rio Hondo 12.52 25.49 17.06
Rio Guanajibo at mouth 81.35 17.81 17.07
Rio Guanajibo Rio Du_ey 35.70 37.25 19.06
Rio Cain 21.13 39.02 17.99
Rio Grande 25.41 47.21 23.64
Rio Cruces 19.55 38.39 22.83
Rio Cupeyes 11.03 39.55 19.14
Rio Viejo 60.65 15.71 18.37
Total area and average slope 350.52 28.17 22.38
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Maintaining the land surface slope values when resampling techniques are used
would improve the flow prediction at larger terrain scales. A method to calculate slope at
different grid size resolutions was investigated without decreasing of slope. Different
methods can be applied to calculate the resampled slope while the up scaling is being
done. The slope up-scaling was performed using 2 methods and 3 resample techniques
for the TBSW model using ArcGIS 9.3. The TBSW presents an average slope of 31.03%

with a standard deviation of 14.93 %.

Figure 4-7 presents the slope map for the TBSW and the base slopes for the
resampling analysis derived from the DEM at 10 m resolution. The resample techniques
used were Bilinear, Cubic and Nearest Neighbor Methods. The up-scaling methods used

to achieve an adequate slope were:

1. Use the DEM at 10 m and resample it to the desire resolution and then calculate the

slope from the resample DEM.

2. Use the DEM at 10 m, calculate the slope at 10 m and resample the slope product

to the desire resolution.

The worst method was found to be up-scaling the DEM to the required resolution and
then calculating the mean land surface slope, (Method 1, brown line in Figure 4-8). The
original slope was more or less preserved when the slope was calculated to 10 m
resolution and the slope was up scaled to the required resolution. Negligible differences

were found between the three techniques used, (Figure 4-8). From these findings the
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method chosen to resample the digital elevation information was Method 2 described

above using cubic interpolation.

Legend
Slope_10m
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P High : 91.96
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Figure 4-7 Land Surface slope map for the TBSW, slope values are given in

percent
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Figure 4-8 Slope calculated for TBSW using different resample techniques
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To verify the results and obtain a box plot of the change and degradation in slope
using Method 1, a slope analysis was developed for the MBDB model, which included
the sub-watersheds presented in Figure 4-6. The results show the same degradation of
the mean slope (dashed lines Figure 4-9) using Method 1 and the nearest neighbor

resampling technique for DEM resolutions of 30, 50, 100, 150, 200, 300, 500 and 1000 m.

Figure 4-9 Slope box plots (quartiles 25 and 75) for the MBDB study area
calculated with Method 1 and nearest neighbor resample technique, mean

slope (dashed lines), quartiles 5 and 95 (solid lines) and outliers (dots)
Figure 4-9 presents slope degradation in terms of the interquartile 25-95 (solid boxes),
interquartile 5-95 (solid lines) and outliers (dots). Figure 4-10 and Figure 4-11 present a

spatial graphical representation of the slope degradation using the two methods described

above. The same interval classes were chosen to represent the slope, Method 2 in Figure
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4-11 presents much more area in red color than Method 1 in Figure 4-10, because it
presents more areas without degradation and slope values greater than 16%. Therefore,
Method 2 is the recommended for up-scaling both the slope of TBSW and Mayaglez

Basin model.
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Figure 4-10 Visual comparison between resample methods at 200 m
resolution for the MBDB model by Method 1
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Figure 4-11 Visual comparison between resample methods at 200 m
resolution for the MBDB model by Method 2
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4.5 Green Ampt infiltration parameters assignment

The abstractions in the distributed hydrologic model are calculated with the Green
Ampt infiltration model. The principal parameters are: saturated hydraulic conductivity;
effective porosity, soil depth, and wetting front. Parameter values were assigned using the
SSURGO maps and data base from the USDA (2006 a,b,c,d), which contains the soil
classes for Puerto Rico. Initially, the soil map was classified into 6 basic textures (Figure
3-3) and the hydraulic conductivity, wetting front and effective porosity values were
assigned from literature as shown in Table 4-2, (Vieux, 2004, Bear, 1972; Freeze and
Cherry, 1979, McWhorter and Sunada, 1977). Using the Book Reference values of
infiltration parameters from Table 4-2, average parameter values were calculated for the

tributary area at the streamflow gauge stations, located in the watersheds.

At Rio Grande de Afasco near San Sebastian for example, the average hydraulic
conductivity is 0.05 cm/hr, the wetting front is 28.29 cm, the effective porosity is 0.364,
and the soil depth assigned uniformly to the basin area was 20 cm. Average parameter
values in several flow meter stations are found in Table 4-2. A preliminary study was
developed with the infiltration values shown in Table 4-2 using the Vflo model and

different events.
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Table 4-2 Summary of the infiltration values for the Green Ampt Model

_ Effective Wetting Hydrau_li_c
Basin Texture Porosity Front Conductivity
(cm) (cm/h)
Sand 0.42 4.95 11.78
Loam 0.43 8.89 0.34
Book Clay Loam 0.31 20.88 0.10
Reference Clay 0.39 31.63 0.03
Gravel 0.24 1.5 2.27
Rock 0.17 1 0.036
Average Values over the Watersheds
Afasco near
San Sebastian -- 0.364 28.29 0.05
Guanajibo near . 0.33 295 0.1
Hormigueros
Rio Rosario -- 0.328 25.2 0.03
TBSW -- 0382 31.21 0.03
Rio Casey -- 0.376 30.41 0.03
New Average Infiltration Values
Afasco near
San Sebastian -- 0.412 28.61 0.75
Guanajibo near - 0.363 22.85 6.35
Hormigueros
Rio Rosario --
TBSW -- 0.43 31.57 0.69
Rio Casey -- 0.418 30.41 0.64
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The volume calculated was over predicted in almost all cases; therefore an exhaustive
analysis was conducted to enhance the infiltration parameter values since the literature
shows low hydraulic conductivity values for the texture classes approach. In Puerto Rico,
the soils present high organic matter content and some clays are well drained, and are
considered as hydrologic group B, for example Alonso, Consumo, Delicias and Maricao

soils (SSURGO, 200643, b, c, d). New values for hydraulic conductivity, total porosity and




effective porosity were obtained using the percentage of sand, silt and clay and average
bulk density from the SSURGO database and Rosseta Lite program (Schaap et al., 2001,
Schaap, 2003) from HYDRUS-1D, (Simunek et al., 2005). Rosetta implements
pedotransfer functions to predict van Genuchten (1980) water retention parameters and
saturated hydraulic conductivity (Ks) by using textural class, textural distribution, bulk
density and one or two water retention points as input. Rosetta follows a hierarchical
approach to estimate water retention and Ks values using limited or more extended sets of
input data (Schaap et al., 1998, Schaap and Leij, 1998a). The calibration data for Rosetta
has a set of 2134 samples for water retention and 1,306 samples for K (Schaap and Leij,
1998b) distributed in USA and some from Europe. The authors suggested that the usage
of Rosetta for other climate zones, and hence other pedogenic processes, could lead to

inaccurate predictions.

4.5.1 Assumptions for unclassified soil classes
Some soils did not have bulk density and percentage of sand, silt and clay. In these

cases assumptions were made for alluvial land, leveled clayed classification, limestone,
gravel, pits and quarries, serpentine rock, volcanic rock and limestone rock as described

below.
45.1.1 Alluvial land

Alluvial land has a variable profile, is a fine-grained fertile soil deposited by water
flowing over flood plains or in river beds. Clay or silt or gravel are carried by rushing

streams and deposited where the stream slows down. The Soil Conservation Service
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classified this soil in the hydrologic group D and reports that the alluvial land has 0-1
inches of ponding depth range, very long ponding duration and floods frequently during
the year, (USDA, 2006 a, b, c, d). Therefore, it is assigned a classification of Clay with an
effective porosity of 0.475, 31.63 cm suction head and 0.06 cm/hr saturated hydraulic

conductivity.
45.1.2 Leveled Clayed

Leveled Clayed presents a hydrologic group C. The hydraulic conductivity value
assigned to this classification was the average value between clay texture and hydrologic
group C and it was 1.225 cm/hr with a range between 0.801 and 2.789 cm/hr. The same
procedure as was used for alluvial land was used for leveled clay where the effective
porosity was assigned the average value of 0.427 and a value of 31.63 cm for suction

head, as recommended for clay.
4.5.1.3 Limestone

Limestone is a sedimentary rock composed largely of the mineral calcite (calcium
carbonate: CaCO3). The hydraulic conductivity was 570 cm/hr, taken from Freeze and
Cherry (1979), the range for this value varies from 0.11 to 1,142 cm/hr. The effective
porosity is 0.14, (McWorter and Sunada, 1977). The wetting front suction head was set to

1 centimeter, the minimum for sand reported by Vieux (2003).

4.5.1.4 Gravel, pits and quarries
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Gavel, pits and quarries have a hydrologic group A, assigned in SSURGO database
(USDA, 20064, b, ¢, d) meaning that they possess very good infiltration. The values
assumed for their classification was medium gravel with a moderate degree of sorting and
without silt content. For this material, the saturated hydraulic conductivity was assigned
a value of 297 cm/hr, (EPA, 1986) and an effective porosity of 0.24 (McWorter and
Sunada, 1977). The wetting front suction head was the minimum for sand reported by

Vieux (2003) of 1 cm.
4.5.1.5 Serpentine rock

According to Freeze and Cherry (1979), the saturated hydraulic conductivity (Ks) for
fractured metamorphic and igneous rocks is between 0.00114 and 11.4 cm/hr, the average
is 5.71 cm/hr. The effective porosity assigned was obtained from McWorter and Sunada

(1977) for metamorphic rock and is 0.26.
4.5.1.6 Volcanic rock

Volcanic rocks are usually fine-grained or aphanitic to glassy in texture and are
named according to both their chemical composition and texture. Basalt is a very
common volcanic rock with low silica content. For Basalt rock we assumed a total 0.17
(reported range of 0.03 to 0.35), effective porosity 0.1, and saturated hydraulic

conductivity 570 cm/hr for fractured basalt (10 to 10° m/yr).

The values assigned to “Soil not Surveed” classification were the average hydraulic

conductivity for clay texture in the whole study area: 1cm/hr; and the effective porosity
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and wetting front suction values correspond to clay as reported by Vieux (2003). For the
TBSW model, all the parameters were assigned to a grid model resolution of 10 m from
the MBDB model (Figure 3-3). Average infiltration parameters for the TBSW are
tabulated in Table 4-3 with detailed soil names and parameter values used. Bouwer
(1966) suggested multiplying the hydraulic conductivity by 0.5 for the saturated
hydraulic conductivity in Green-Ampt model. Therefore the average saturated hydraulic

conductivity for the TBSW is 0.69 cm/hr.

Table 4-3. Soil classification (SSURGO), hydrologic group and infiltration

parameters at TBSW
. Hydrologic | Area | Wetting Front K Depth | Effective
Soil Name | Texture Group (%) (cm) (cm/hr) | (cm) | Porosity
Consumo Clay B 59.85 31.63 1.273 300 0.415
Dagiey Clay C 15.11 31.63 1.266 300 0.451
Humatas Clay C 25.03 31.63 1.736 300 0.454
Serpentinite | . RO%K D 0.01 3.00 57 | 300 | 026
Serpentine
Toa | Sy Clay B 0.01 27.30 0.294 | 300 | 0377
Loam
Average 31.62 1.38 0.43
4.6 Soil Depth

The soil depth is a very important parameter to calculate the infiltration losses. The
USDA (2006 a, b, c, d) reports the soil depth for each soil when some restrictive layer or
lithic rocks exist at a shallow depth. In other cases a maximum soil depth is assigned a
value of 152 cm (60 inches), corresponding to the depth surveyed. Lithic is a continuous
hard rock and less permeable, in some cases it is encountered at as small a depth as 10 cm

from the soil surface. For some soils a paralithic rock is present under the layered soil.
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The paralithic rock is a broken rock in contact with fissures less than 10 cm apart, which
allow roots to penetrate the underlying rock. Major hydraulic conductivity is allowed, and
works like fractured rock. Soils that present this condition are allowed to increase the soil
depth to 600 cm indicating no depth restriction, and other soils without any restrictive
layer or lithic rock were set to 300 cm, almost double that of the survey. In this way the
soil depth assigned to the soil map will be the maximum possible and reductions would
be considered for calibration proposes. Values assigned for the TBSW area are shown in
Table 4-3.
4.7 Overland Roughness, Impervious and Crop Coefficient
Assignment

Overland roughness is an input parameter in hydrologic models; this parameter
affects principally the peak flow in a hydrograph. Two sources were analyzed to
determine the land use in the area. One source was obtained from Land Use/ Land Cover
map for Puerto Rico (Figure 3-4, Helmer et al. (2002)), which was reclassified by Prieto,
2006 (Figure 3-5) into 6 Land Use classes, and appropriate Manning’s and impervious
values were assigned to each class at 30 m resolution (Table 4-4). A resize from 30 m to
200 m changed the area distribution of some land use would affect the flow response (e.g.,
flow volume). The land class most affected by resizing is the urban area showing a
decrease in area of 1.33 km?, followed by an increase in Agriculture by a 0.99 km?, areas

of special interest in terms of flooding, (Table 4-4).
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Table 4-4 Resized Grid Area for the land use map.

Mannin Area Area with

g Impervious | with 30 A Area
Re-class Name Roughness 200 m 2

% m 2 (Km"?)

(n) (sz) (Km )
Agriculture 0.166 5 54.93 55.92 0.99
Agriculture /hay 0.190 4 0.13 0.12 -0.01
Forest, shrub, woodland

and shade coffee 0.191 2 529.16 529.12 -0.04
Other emergent wetlands 0.050 1 1.26 1.24 -0.02
Pasture 0.225 5 172.84 173.2 0.36
Quarries, sand and rock 0.020 95 0.75 0.56 -0.19
Urban and barren 0.080 81 60.02 58.68 -1.33

The sum of the land use map areas between 30 m and 200 m are different due to pixel

sizes; 200 m is rougher and covers more area, while the 30 m pixel can adjust much

better to the basin form.

The second land use source was from remote sensing classification and field
verification from PRWRERI (2004) shown in Figure 3-6, with thirty five classes. The
land use classification was reclassified into 13 classes and is shown in Figure 4-12. The
roughness values were specified for each class according to literature and expertise and

shown in Table 4-4. A value of 0.118 is the average roughness value for the MBDB

model and 0.12 for the TBSW.
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Land Use Classification .
Agricultural Land [0 Forested Wetland Range Land N waten
Barren Land [0 Native pastures B Rocks "%E
Forest high density [l Non-Forested Wetland [l Transition area s
Forest low density Pasture I Urban or Built-Up

Figure 4-12 Land Use general reclassification from Land Sat®", 2004,
PRWRERI (2004)

Another parameter that is contingent upon the land use classification is the crop
coefficient. Its coverage was determined using the land use classes derived in Figure 4-12
at 30 m resolution; values of K. (mid-season crop stage) were assigned from Allen et al.
(1998) and are shown in Table 4.5. Allen et al. (1998) did not present K values for forest
land use. Therefore, an apples tree with active ground cover class value was assumed (for
possible representation of forest), with a maximum of 1.2 K.. The TBSW exhibits a
predominant forest land use (see Figure 4-13, 30 m resolution) of low density with 39.36 %
of the area; brush rangeland with 38.17 % of the area and 14.51 % urban land use,
respectively (Table 4-6). The Figure 4-14 shows some pictures taken for the forest

representation and urban area.
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Table 4-5 Land Use Classification with the Manning Roughness values and
crop coefficient (K;) for MBDB

Manning Area
Classes Re-classification Roughness K 2
") (m%)
Coffee 0.080 1.100 15.76
Coffee, orange 0.080 1.000 0.01
Coffee, orange, plantain/banana 0.080 1.000 0.01
Coffee, plantain/banana 0.080 1.100 12.73
Coffee, plantain/banana, oranges 0.080 1.025 0.33
Dairy Farm or dairy cow feeding 0.050 0.400 0.03
General agriculture 0.080 1.000 1.17
Nurseries & Ornamental
Horticulture 0.080 1.000 0.39
Orange Agricultural Land 0.080 0.850 0.66
Orange, coffee 0.080 0.950 0.64
Orange, plantain/banana 0.080 0.900 0.29
Orange, plantain/banana, coffee 0.080 1.000 0.02
Plantain/banana 0.080 1.200 7.21
Plantain/banana, coffee 0.080 1.150 0.06
Plantain/banana, coffee, oranges 0.080 1.200 0.49
Plantain/banana, orange 0.080 1.025 0.11
Shade coffee plantation 0.080 1.100 0.06
SUB-TOTAL 0.078 0.992 39.99
Barren land Barren Land 0.015 0.300 10.18
Forest high density Forest high density 0.150 1.200 | 156.19
Forest low density Forest low density 0.150 1.100 | 234.31
Forested Wetland Forested Wetland 0.070 1.200 2.83
Native pastures Native pastures 0.045 0.850 6.73
Non-Forested Wetland Non-Forested Wetland 0.050 1.100 2.16
Pasture Pasture 0.035 0.950 1.50
Shrub and brush rangeland Range Land 0.130 1.000 | 248.92
Bare exposed rock Rocks 0.015 0.100 0.04
Gravel pit 0.015 0.100 2.07
Transition area Transition area 0.050 0.300 0.79
Transportation, communication 0.015 0.300 11.78
Urban or built-up land Urban or Built-Up 0.015 0.300 97.40
Waste disposal areas 0.015 0.300 0.44
Pond Water 0.030 1.050 0.24
Streams and canals 0.030 1.050 2.97
TOTAL 0.188 0.966 | 818.53

Source: PRWRERI,2004 for classes and Allen et al.(1998) for K,

73




Table 4-6 Land use classification, Manning Roughness (n) values and K. for
Evapotranspiration quantification in the TBSW

Land use Classification Manning K Area Area
Roughness (km?) | Percent
n

Forest low density 0.&5)00 1.100 | 1.3994 | 39.36
Shrub and brush rangeland 0.1300 1.000 | 1.3570 | 38.17
Urban or built-up land 0.0150 0.300 | 0.5157 14.51
Forest high density 0.1500 1.200 | 0.2083 5.86
Baren land 0.0150 | 0.300 | 0.0378 1.06
Transition area 0.0500 0.300 | 0.0216 0.61
Transportation, communication 0.0150 0.300 | 0.0083 0.23
Streams and canals 0.0300 1.050 | 0.0045 0.13
Gravel pit 0.0150 |0.100 | 0.0018 0.05
Native pastures 0.0450 0.850 | 0.0009 0.03

Land Use Classification

Legend

Il River
Land Use
I Baren land
[ Forest high density
I Forest low density
I Gravel pit

[ Native pastures
[0 Shrub and brush rangeland
I Streams and canals s
I Transition area

[ Transportation, communicat
I Urban or built-up land

0 025 05 1

Figure 4-13 Land use classification for the TBSW extracted from Figure 4-12
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Figure 4-14 Photos describing the land use of the TBSW

4.8 Evapotranspiration

The hydrologic model requires potential or reference evapotranspiration as input to
dry the soil in a long term simulation. This section identifies the uncertainties associated
with the evapotranspiration quantification, because this parameter is time and scale
dependent and is related to the meteorological stations located within the area of interest.
Reference evapotranspiration can be calculated by the Penman-Monteith method (Allen
et al., 1998, Equation 4-2) and the Hargreaves Samani method (Equation 4-3) using data
from the NRCS Soil Climate Analysis Network (SCAN) weather stations located in
western and southern Puerto Rico. Two stations are located within the MBDB and
relatively close to the TBSW (i.e., the USDA Tropical Agricultural Research Station

(TARS) at Mayagiiez and Maricao Forest, PR). Penman Monteith and Hargreaves
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Samani methods were compared at the stations mentioned with a daily time step from
October, 2007 to October 2009. The FAO56 Penman Monteith evaporation equation is

presented below (Allen et al., 1998):

0.408-A-(Rn — G) + v -(T 30273)“2'(85 N

A+ y-(l + 0.34-u2)

ETo =
(4-2)

where ET, is reference evapotranspiration (mm/day), A is slope of the vapor pressure
curve (kPa/°C), R, is net radiation (MJ/m?day’, G is soil heat flux density (MJ/m3day’, v is
psychrometric constant (kPa/°C), T is mean daily air temperature at 2 m height (°C), u, is
wind speed at 2 m height (m/s), es is the saturated vapor pressure and e, is the actual
vapor pressure (kPa). Equation 4-2 applies specifically to a hypothetical reference crop
with an assumed crop height of 0.12 m, a fixed surface resistance of 70 sec/m and an
albedo of 0.23.

The Hargreaves-Samani equation for reference or potential evapotranspiration is
given below (Hargreaves and Samani, 1985):

PET = 0.0135 * R, * (Tgpe + 17.8) 4-3)

where R is solar radiation in units of mm/day and Ta. iS average air temperature (°C). R
is readily converted from units of MJ/m?day to equivalent depth of water in mm/day by

dividing by the latent heat of vaporization (2.45 MJ/m?day).
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The Pearson correlation coefficient (R?) between Equations 4-2 and 4-3 was 0.9375
and the bias was 0.956 for this period, indicating that the Hargreaves Samani constant
(0.0135) presented in Equation 4-3 could be corrected by a factor of 0.956 for the current
study area using a more simplistic formula than FAO-Penman-Monteith equation

(Equation 4-2).

Goyal et al. (1988) developed monthly linear regression equations for air temperature
(mean temperature (Tave), maximum temperature (Tmax) and minimum temperature (Tmin)
for Puerto Rico, which depend on the surface elevation (m). PET can be calculated using
these linear regressions (Goyal et al., 1988) and Hargreaves Samani equation extended

(Equation 4-4) for places where no solar radiation data is measured.

PET = 0.0023 = R, * (Tqve + 17.8) (Tipax — Tmin)o'5 4-4
where PET is potential or reference evapotranspiriation (mm/day) and R, is the

extraterrestrial radiation (mm/day).

Solar radiation is highly spatially variable in Puerto Rico (Harmsen et al., 2009 and
2010), therefore, the effectiveness of Equations 4-3 and 4-4 to estimate PET using the
temperature versus elevation relationships developed by Goyal at short time scales (daily)
was evaluated in the current study. Constants in Goyal’s monthly linear regressions were
interpolated to daily constants. All input parameters needed in the Hargreaves-Samani

methods (Equations 4-3 and 4-4) are measured by the SCAN stations.
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The elevation in the TARS is 13.72 amsl with an average temperature (Taye) 0f 23.9 C
for the period of analysis (October, 2007 to October, 2009); and in Maricao Forest the
elevation is 747 m with T, 19.7 C. The results show that the Goyal regressions at a daily
time step predict the Tae With a coefficient of determination R? of 0.46 for TARS and
0.62 for Maricao. However, if PET is calculated with the solar radiation measured at the
stations along with the Tae derived from the Goyal regressions, the improved R? of 0.987
and 0.992 are obtained at TARS (Figure 4-15) and Maricao Forest (Figure 4-16),
respectively. Values of R? of 0.2145 for TARS and 0.0013 for Maricao were obtained
using Goyal’s elevation model and Equation 4-4. The R? is increased to 0.2254 for the
Maricao station if the PET is calculated using the T, from the Goyal equations and the
solar radiation is assumed to be equal to the TARS solar radiation (Figure 4-15). These
results show that solar radiation is a spatially sensitive parameter in the PET calculation
and that solar radiation cannot be assumed equal at locations distant from each other.
Remotely sensed satellite measurements are suggested for a better spatially distributed
solar radiation dataset, such as the method used by Harmsen et al. (2009 and 2010). For a
long term hydrologic model, simulations for the TBSW, we used the PET calculated
using Equation 4-3 and assuming that the solar radiation is the same as TARS, due to its
relatively close proximity to the TBSW, around 2.5 km, compared to 16.3 km between
the TBSW and Maricao Forest stations. Although not used in this study, another option
would have been to use the daily operational solar radiation data described by Harmsen et

al. (2009) for Puerto Rico (http://pragwater.com/solar-radiation-data-for-pr-dr-and-haiti/ ).
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Hargreaves and Samani Relationship at TARS
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Figure 4-15 Potential Evapotranspiration with Hargreaves-Samani
relationship for observed Tmax, Tmin, Tave, SOlar radiation, extraterrestrial
radiation; and temperatures predicted by Goyal relationships at TARS
station.
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Figure 4-16 Potential Evapotranspiration with Hargreaves-Samani
relationship for observed Tmax, Tmin, Tave, SOlar radiation, and extraterrestrial
radiation; and temperatures predicted by Goyal relationships at Maricao
Forest station.
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CHAPTER5
5 METHODOLOGY

This chapter presents the technical methodologies used in this research to address the
research questions presented in Chapter 1. A determination of parameter sensitivity in
the MBDB model is described in Section 5.1, where various parameters were first
perturbed by multiplication factors to generate spider plots, and then the factors 0.5 and
1.5 (representing +50%) were used to calculate the relative sensitivity (Sr) for different
variables and events. Using the TBSW model, in Section 5.2, some parameter
aggregation techniques are evaluated for later use in the up-scaling experiment. Section
5.3 presents the evaluation of uncertainties in Quantitative Precipitation estimates from
MPE by comparison with a high density rain gauge network. In Section 5.4 a
methodology to evaluate uncertainty due to hydrologic model (grid spacing) and rainfall

resolution were addressed.

To establish a flood alarm system in the MBDB, first, we need to know the likelihood
and uncertainty associated with a prediction due to the inputs and parameters variations.
Some initial sensitivity tests were developed in the Mayagtiez Bay model to understand
how some parameters and inputs affect the flow prediction. The major sources of
uncertainties are associated with inputs such as rainfall estimation, terrain slope,

parameter values and initial conditions; and all these sources of uncertainty are
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resolution-dependent. How much rainfall variation is there at scales below the radar pixel
size and how much does rainfall variation and DEM resolution affect predictability?

These questions will be addressed in the TBSW analysis.

The TBSW is useful for research purposes and represents a “real world” laboratory to
study the predictability limits due to aggregation of high resolution inputs in a hydrologic
model. In the TBSW (Figure 3-7) a dense rain gauge network was installed as part of this
investigation and a pressure transducer for water level measurements. Other high
resolution data exists for the TBSW including topography (digital elevation model,
CRIM, 1998); soils and land use maps, etc. These sets of information are ideal to define
how much detail is necessary in the physical modeling process and the value of
increasing the rainfall resolution, as well as the hydrologic model grid resolution within
small watersheds. Carpenter (2004) mentioned that the uncertainty in the model output is
inversely proportional to the watershed area. In other words, for a small hydrologic
model, a large degree of uncertain exists at the subwatershed scale. Therefore, the
magnitude and behavioral impact of the rainfall errors in the hydrologic forecasts help to
define the precision and accuracy necessary in new rainfall algorithms and radar
technologies. New radar technologies are being developed on the CASA project at
UPRM and are available for western Puerto Rico, promising higher resolution than
NEXRAD, and will be a critical component in the flood alarm system. Evaluating
possible CASA radar resolution in this study with the rain gauges information, we will

determine the predictability and quantify the uncertainty due to terrain and rainfall grid
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size resolution at scales below the typical radar resolution (2 by 2 km cell size) in small

subwatersheds.

After finding the predictability limits and assessing the predictability in the TBSW,
we will formulate recommendations to initialize the larger model (MBDB) and enhance
the flood prediction in mountainous basins. All statistical analyses in this research were

performed using Minitab 16 (Minitab, Inc., 2010).

In the following sections, we will describe the methodology and activities required to
achieve a successful investigation and to address the research questions presented before

in Section 01.2. For convenience, a summary of the research questions are listed here:

1. How flood prediction is affected by the spatial variability of point rainfall at
scales below that of the typical resolution of radar-based products?

2. How does the DEM and parameter aggregation affect the model’s predictive
capabilities and the errors of the hydrologic system?

3. Would the assumptions developed for the small scale enhance the hydrologic

predictability at larger scales?

5.1 Additional Field Measurements

A dense network of rain gauges (28 tipping bucket rain gauges with data loggers)
were installed within a single GOES Satellite Hydro-Estimator (HE) pixel (4 km x 4 km)
and 64% of the rain gauges are within TBSW with the objective to obtain high resolution
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rainfall within the area. Complete records were collected since June, 2007 when the last
12 rain gauges were installed within the TBSW (Harmsen, et al., 2008) with a temporal
resolution of 5 minutes. The Euclidian distance was calculated between rain gauges
within the TBSW, exhibiting a maximum range distance of 563.2 m and the mean
distance was 218 m with a standard deviation of 99.5 m. The calculated mean Euclidian
distance within the Hydro-Estimator pixel was estimated to be 334 m with a standard
deviation of 171 m, Figure 3-7 showed the location of the rain gauges network within the
Hydro-Estimator pixel. Figure 5.1 shows the rain gauge network, the TBSW outline and

the distance between rain gauges.

Legend
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Figure 5-1 Rain gauge distribution and location within the HE pixel; TBSW
location and Euclidean Distance between the stations
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Additionally, a pressure transducer was installed at the TBSW outlet, which measured

stage elevation data since October 2007 to May 2009 at 5 minutes temporal resolution.

5.2 Evaluation of Parameter Aggregation Techniques
within the TBSW

To develop the up-scaling experiment or set up any hydrologic model is necessary to
evaluate which methodology will be addressed to create the hydrologic models at
different resolutions. Several aggregation techniques are used in GIS to develop the
parameters up-scaling. The aggregation consists of using data from the cells that will fall
within the larger up-scaled cells and then applying to them mathematical operations to
calculate a new aggregated cell value. All these aggregation techniques produce different
results which can affect the hydrologic response. Also, the order in which the slope is
generated can alter the results. Two different orders would be developed using different

techniques and they are listed below:

1. Aggregate the terrain to a new resolution and calculate the slope for this

resolution; or

2. Calculate the slope from high resolution terrain model and then aggregate it to a

new resolution.

The aggregation techniques and the order to derive slope were tested in the TBSW
using Arc GIS tools. The tested resolutions were 10, 50, 100, 175, 250, 500 m, which
generated graphs of how the slope has been degraded. A decision was taken as to which
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aggregation technique is best for the purposes of this research. Additionally the

methodology was tested to see the degradation slope degree in the MBDB Model.

5.3 Determination of hydrologic model sensitivity due to
parameters and rainfall perturbations for the MBDB
Model

To develop a distributed hydrologic model it is necessary to create an ensemble of
different layers that represent the physical characteristics of the basin. Uncertainties
associated with the model parameter values and their scales can be quantified by

evaluating the hydrologic response given a range of parameter and rainfall perturbations.

The objective of this evaluation was to determine which parameters and rainfall are
most sensitive in the mountainous areas, of the physical conditions present in Western
Puerto Rico. Then these parameters were evaluated in the up scaling analysis presented in
Section 5.5. For this purpose we used the MBDB model at 200 m by 200 m cell
resolution with three outlet points, summarizing different watershed characteristics in

terms of area, shape and slopes.

The sensitivity analysis considered parameter and input perturbations by changing the
magnitude of the parameter value, but not its spatial distribution. The multiplicative
factors used to perturb the model and input (rainfall) were 0.5, 1.0, 1.5 and 2.0. The
parameters used in the analysis were: overland and channel Manning roughness

coefficient, the overland and channel saturated hydraulic conductivity, soil depth, and
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initial fraction of soil saturation. By demonstration in other studies, hydrologic models
have been found to be sensitive to these parameters (Moreda and Vieux, 2003). In this
study, for completeness, we additionally evaluated the model response to variations in

land slope.

Three important events that produced flash flooding in Puerto Rico were evaluated.
The most important event with a recurrence greater than 100 year return period for Rio
Grande de Afasco River was Hurricane Georges in September 21-23, 1998. FEMA,
(2009) estimated 4,078 cms at Rio Grande de Afiasco near San Sebastian for 100 yr
return period and the measured event had a peak of 4,587 cms. Other important events
analyzed were November 11-16, 2003; and the Tropical Storm Jeanne in September 14-
17, 2004. Interpolations of the rainfall amounts each time step (15 minutes) using the
USGS rainfall stations available for each event in the MBDB area were made to obtain a
distributed rainfall over the basins. The interpolation method used was the Exponential

Weighted method.

The parameter and rainfall perturbations were evaluated at three basin outlets, which
are: USGS 50144000 Rio Grande de Afasco near San Sebastian, USGS 50136400 Rio

Rosario near Hormigueros and USGS 50138000 Rio Guanajibo near Hormigueros.

Spider plots were used to evaluate the model response to the entire range of the

parameters and to determine if there is a portion of the parameter range that yields
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unrealistic results. Spider plots for runoff depth and peak flow show the percent change

in model output variable versus parameter value change (perturbation) by a given factor.

The Relative Sensitivity Coefficient (Sr) is defined as the ratio of the difference in the
model output to the value of the output when the input parameters are set to their base
values, divided by the ratio of change in the input parameter to the initial value of the

input parameter as shown in Eq. (4-1).

(OP+AP — OP—AP )

0
= 2ap (5-1)

P
where, O is model output with input parameters set at base values, P is the value of the

input parameter, O, ,, and O,_,, are model outputs with the input parameter plus or

minus a specified perturbation (in this case £50%).

The behavior of the relative sensitivity coefficient was evaluated using two variables:

discharge volume in millimeters and peak discharge in cubic meters per second.

5.4 Evaluation of current Quantitative Precipitation
Estimates

The NEXRAD radar is located near the City of Cayey at 860 m mean sea level and
approximately at 120-130 kilometers from Mayaguez city. It has been operational since
1999. Some errors exist associated with radar measurements due to factors such as

distance from radar to the study area; the coverage gap between the terrain and radar
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beam (at western flood plains with a radar beam of 0.5 degrees a coverage gap between
1.8 to 2 km was found); and Z-R relationship applied. Mountain blockage at lower beam
angles (0.35 to 0.45 degrees) affects the reflectivity received from some locations within
the Afasco and Mayaguez flood plains. Figure 5-2 shows the detail of mountain blockage

at beam angle of 0.35 degrees; for 0.5 degrees and higher blockage does not occur.
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Figure 5-2 Coverage gap between terrain elevation and radar bean of 0.35
degrees with the detail of blockage at mountainous area

The NEXRAD radar resolution gives a spatial rainfall variability that fills the gaps

between rain gauges enhancing the spatial rainfall quantification. However, it is

necessary to remove some bias between radar and rain gauges due to radar errors and rain
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rate quantification. Nevertheless, we don’t know the rainfall variations at scales below
the actual radar products (2 km x 2 km or 4 km x 4 km), because rain gauge networks do

not exist at these scales within the island.

5.4.1 Evaluating rainfall detection accuracy and long term Bias
guantification

Obtaining a long term bias quantification between the radar and rain gauge network is
an essential part of the uncertainty quantification. It is possible to observe and quantify
how much the bias changes in time and magnitude. An evaluation of the MPE rainfall
product and bias performance at hourly and daily temporal scales is evaluated within the
Hydro-Estimator pixel for the year 2007 using the rain gauge network located in western
Puerto Rico near the University of Puerto Rico — Mayagiiez Campus, where the TBSW is
located (described Section 5.1). Some rain gauges were not operating during some
periods owing to gauge damage or low logger batteries, these data were eliminated from
the analysis. Five-minute rain gauge data was accumulated to 1-hour and 1-day intervals,
with the intention of comparing data with the original MPE temporal resolution and daily

accumulations.

MPE pixels are based on a HRAP (Hydrologic Rainfall Analysis Project) grid
projection. Therefore, a geographic coordinate transformation from Stereographic North
Pole to NAD 1983 State Plane Puerto Rico and Virgin Islands was performed for each
hour using the ArcGIS project raster tool. The re-sampling technique algorithm used was

the nearest neighbor assignment at 4 x 4 km resolution.
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The N1P rainfall product is calculated from NEXRAD as a rainfall rate every 5 or 6
minutes when the radar detects rainfall, and a 10 minutes N1P product is archived when
no rainfall is detected. The N1P NEXRAD product originally has a polar geographic
coordinate system (GCS) and using the NOAA Weather and Climate Toolkit program
(NOAA National Climatic Data Center available at http://www.ncdc.noaa.gov) it is
possible to transform the coordinates to GCS_WGS 1984. Different formats are
available to export the data. The GIS shapefiles maintain the original orientation;
however, in a distributed hydrologic model it is necessary to use raster or ASCII files to
represent the spatial rainfall variation in the model. Due to raster characteristics it is not

possible to maintain the original orientation.

The study was made with the projected and raster pixels, with the aforementioned in
mind, 4 MPE pixels were obtained around the HE pixel. Area weights were calculated for
intersecting areas between the MPE pixels and the HE pixel which are 0.281, 0.344,
0.169 and 0.206, respectively. These area weights are used to calculate an average map
precipitation for each time step. Weights for the N1P radar product were also estimated

for 9 partial N1P pixels within the HE pixel.

Long term continuous validation between sensor rainfall estimates and rain gauge
observations should be evaluated. The accuracy of rainfall estimates can be measured by
decomposing the rainfall process into sequences of discrete and continuous random

variables (Ramirez-Beltran et al., 2008a;b, Wilks, 1995).
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The discrete variables were evaluated with contingency tables, where the rain gauges
are the “ground truth” values and the MPE are the estimated values. In this way, the
accuracy of the rainfall detection in terms of hit rate “H”, probability of detection “POD”,

false-alarm rate “FAR” and discrete bias “DB” can be evaluated.

Error! Reference source not found. shows an example of a two-way contingency
table. The variable “a” is the number of times that the rain gauge identifies a rainfall
event and the estimator also correctly identifies a rainfall event at the same time and
space. The variable “d” represents the number of times the rain gauge does not observe a
rainfall event and the estimator correctly determines that there is no rainfall event. The
variable “b” indicates the number of times the rain gauge does not observe a rainfall
event but the estimator incorrectly indicates that there is a rainfall event. The variable “c”
shows the number of times that the rain gauge detects a rainfall event but the estimator

fails to detect the rainfall event (Ramirez-Beltran et al., 2008a).

Table 5-1 Two-way contingency table

Observed Rainfall
(Rain gauges)

Yes No
Estimated MPE Rainfall Yes a b
No c c

Hit rate (H) is the fraction of the estimating occasions when the categorical estimation
correctly determines the occurrence of rainfall event or nonevent. Probability of

detection (POD) is the likelihood that the event would be estimated, given that it
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occurred. The false-alarm rate (FAR) is the proportion of estimated rainfall events that
fail to materialize. Bias is the ratio of the number of estimated rainfall events to the

number of observed events (Wilks, 1995).

The typical scores that measure the accuracy of categorical estimation are:

h-2a+td (5-2)
nO
POD =2 (5-3)
a+cC
FAR =2 (5-4)
a+b
pg=2*P (5-5)
a+cCc

where n, =a+b+c+d. The mean field bias (Bias) is used to remove systematic

error from radar estimates and used to correct the radar quantifications in the hydrologic
simulation. The mean field bias is defined as the ratio of the “true” mean areal rain gauge
rainfall to the corresponding radar rainfall accumulations (Casale and Margottini, 2004;
Vieux, 2004). The average of the rain gauge network is evaluated each time step with an
arithmetic mean, because the area weights change in time according to malfunctions
errors in some gauges. The mean MPE rainfall at each time step is calculated using the

area weights as stated above.

The indicators to evaluate the accuracy of MPE rainfall estimations over the HE pixel

at different temporal scales are the Bias and root mean square error (RMSE).
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= (5-6)

(5-7)

where N; is the number of hours, G; is the areal mean rain gauge-based rain rate value at

time “i”, and R; is the corresponding areal mean radar rain rate value.

For MPE Pixel 1, the associated rain gauges are: C01, C02, C03, C06, C07 C11, LO01,
L02, LO5, L06 and L09, and for MPE Pixel 2 the associated rain gauges are: C04, CO05,
C08, C09, C10, C12, LO3, L04, LO7, L08, L10, L11. A mean field bias was calculated at
1 hour time resolution. Percentage of rainfall detection by rain gauges and MPE were

calculated, and divided into three categories:
1) Rainfall not detected by MPE in percent, referred to as “No Radar Detection” or
“c”.
2) Rainfall not detected by rain gauges in percent, referred as “No Rain gauge
Detection” or “b”.

3) Rainfall detected by both sensors in percent, referred as “Coincident” or “a”.

The gauges L06 and LO8 showed systematic errors in the records and, therefore, were
ignored in the calculations. In addition to the statistics computed in the MPE Pixel 1 and
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MPE Pixel 2, calculations were made using the 4 MPE pixels and the 26 rain gauges for
hourly, daily and monthly data accumulations. The PDF was calculated to represent the
probability distribution of the daily bias which represents the average total storm

correction along one year.

5.4.2 Evaluation of flow response to Rainfall interpolation Methods
Different interpolation methods can be used to predict areal rainfall between rain
gauges or areas where non-areal rainfall information exists. It’s important to evaluate

how different sources and interpolation methods affect the hydrologic response.

Two interpolation methods are analyzed and compared to produce aerial rainfall from
existing rain gauges, which are exponential weighted (EW) and inverse distance weighted
(IDW) methods. Additionally, NEXRAD rainfall product level 3 was compared with
them. The events analyzed were the Tropical Storm Jean, passing over northern Puerto

Rico on November 11-16, 2003.

The interpolations between USGS rain gauges were realized at 200 by 200 m cell
resolution and 15 minutes temporal resolution for each event using the ArcGIS tools. The
Hydrologic model (Vflo) with the prepared rainfall information and the MBDB model
configuration described in Chapter 4 and aggregated to 200 by 200 m cell resolution was

run with each rainfall product at the same resolution.

Analysis of bias quantification (Eq. 5-5) between rain gauges and radar were
generated for each event and graphical comparisons between scenarios were generated.

94



5.5 Evaluation of predictability due to hydrologic model
parameters and inputs resolutions at TBSW

The previous sections describe which parameters, inputs and initial conditions, up-
scaling and interpolation methods can be expected to affect runoff prediction and a
hydrologic distributed model in mountainous tropical sub-watersheds. With the evolution
of instruments to sense the atmosphere (CASA radars, NEXRAD, HE and others), as well
as distributed hydrologic models that can predict runoff at even smaller scales, it is
necessary to evaluate how the combined effect of model inputs and parameter
uncertainties at different scales are spread through the hydrologic model and its impact

on reliable operational flood prediction.

The hydrologic evaluation methodology must be objective and unbiased towards a
given rainfall input or hydrologic model resolution. Global optimization methods in
model calibration seek a unique parameter set that best simulate the observed behavior
and if the rainfall resolution or rainfall source is changed, Gourley and Vieux (2005)
indicate that the model needs to be recalibrated. They proposed a methodology to
evaluate the accuracy of the inputs at the hydrologic scale using a hydrologic ensemble.
Computing probabilities by examination of the allowable parameter space for each
quantitative precipitation estimation algorithm, independently and thus remain unbiased
towards a given rainfall source. Model parameter ensembles are created for each rainfall
input, the spread and accuracy of the compilation of individual simulations are

determined based on comparisons with observed streamflow.
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An extension of this methodology will be addressed in this research to include the
uncertainties associated with the parameter scale-dependence, in order to determine the
accuracy of a given hydrologic model resolution. The combined effect of model
parameters, rainfall and model resolution uncertainties are evaluated to produce the
predictability limits, computing probabilities by examination of the allowable parameter
space for each hydrologic scale and rainfall resolution in combination using ensemble
predictions. The TBSW is the ideal scenario to evaluate the predictability limits where a
network of rainfall sensors and a flow meter were installed in order to produce rainfall
estimates at different scales and then compare the hydrologic prediction to observations

for this research.

5.5.1 Estimation of Uncertainty due to hydrologic model at TBSW

Distributed hydrologic model configurations evaluated in this study are applied to
represent the real world without any acknowledgment of how they affect the hydrologic
prediction and how these uncertainties are propagated in the model at small upland
watersheds. Previous evaluation in Section 5.3 at MBDA indicates input and parameters

most sensitive in the model, which were used to be tested at the TBSW.

The DEM-derived parameters are well defined for each configuration and are scale-
dependent, because they are mainly related to scale issues and aggregation techniques.
This type of parameter include: flow accumulation; flow direction; slope; and stream

definition indicating implicitly the stream density (as channel cells and overland cells).
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The infiltration parameters depend on field measurements of soils and are treated as
polygons representations on a map. The soil maps are available for Puerto Rico (USDA,
2006 a,b,c,d) and infiltration point measurements are attached to the polygons with the
most probable realistic value to represent the area. The polygons are converted to
gridded information and, therefore, become scale-depend. The same applies to the
roughness map which is, related to the uncertainties associated with the remote sensing
techniques, and a probable “realistic roughness value” is used to represent the land use.
An up-scaling to the hydrologic model resolution will be addressed to evaluate the effect

of parameter uncertainties due to scale.

The effect of slope degradation in the flow quantification was not evaluated. Instead,
the aggregation methodology (determined in the Section Error! Reference source not
found.) was used to preserve the average slope in the model and decrease the uncertainty

and errors due to slope reduction.

The hydrologic evaluation of the resolution models was addressed using parameters
ensembles at different resolutions. Every hydrologic parameter was calculated to 50 x 50
m, 100 x 100 m, 200 x 200 m and 400 x 400 m resolution from the high resolution
hydrologic model at 10x 10 m. The hydrologic evaluation consists of making multiple
runs using sets of parameters tested within their distribution’s physical bounds and the
combinations of inputs for each hydrologic model. Some parameters, such as saturated

hydraulic conductivity (Ks), Manning roughness coefficient (n) and initial degree of soil
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saturation (¢) will be perturbed within their known space, while preserving the spatial

variability at a determined scale.

The hydrologically distributed model (Vflo), controls this sampling space by
multiplicative factors as illustrated by Moreda and Vieux(2003) in the OPPA method
used to calibrate a distributed model. When no information is known a priori about the
parameter distributions, an uniform distribution can and will be assumed. The scalar
factors used to perturb the parameter maps (saturated hydraulic conductivity, Manning
roughness coefficient are determined by the following function and are different from the
values used at Section 5.3, which permits computation of probabilities by examination of

the allowable parameter space:

(5-8)

i=0,2,3,4

N, :%(2+3i)\

where Ni is the adjustment factor, (Moreda and Vieux, 2003).

The initial saturation parameter was tested with factor values of 0.25% (dry), 0.4, 0.6,
0.8 and 0.95% (almost fully saturated) covering a sample of the possible parameter space.
Vieux and Vieux (2006) tested a long term distributed model at Loiza, Puerto Rico and
found initial saturation factors around 0.75 in the uncalibrated model and 0.9 in the
calibrated model. Additionally the initial soil saturation did not fall below 0.25 in the run

time.
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Each initial condition (rainfall event and one hydrologic setting resolution) and
parameter perturbation was run in the hydrologic model (\Vflo) producing a deterministic
prediction called “ensemble member”, which are treated collectively and are samples of
the PDF, representing the true initial state distribution. The three parameter perturbation
in combination with one determined hydrologic and rainfall resolution event will produce
a hydrologic ensemble. Each ensemble required 125 Vflo runs or ensemble members
obtaining a simulation sample space for each hydrologic resolution model and rainfall

are stored in a separate folder.

Results of each simulation are compared to the observed streamflow at the TBSW
outlet. Three variables are important to evaluate in a flash flood forecasting, providing
information of the flood magnitude (peak to flood), spread (volume normalized by the
area) and lead time (time to peak) for the emergency management agencies. Box plots of
each ensemble permit visualization of the spread of the solution due to parameters

perturbations at each rainfall and model scale.

The estimation of uncertainty due to hydrologic model up-scaling was performed re-
grouping the ensembles mentioned. The ensembles here are formed by the perturbations
of the parameters and rainfall resolutions. Then, a hydrologic model resolution is
evaluated according its size and is not dependent on rainfall resolution, because, it is
tested with all rainfall resolutions. An important tool for the modeler is to understand the
implications of using one specific hydrologic model resolution to estimate the flow

discharge reliably.
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Different objective functions exist, such as the least square error or maximum
likelihood, to evaluate the variables in a verification step. The least square error is
computed for each streamflow prediction giving a better understanding of the shape of

the hydrograph.

The forecast or prediction verification method of an ensemble is the process of
assessing the quality of the prediction with the corresponding observation. The
quantitative statistics provide a simple way to evaluate the quality of an ensemble. To
average the members of the ensemble to obtain a single prediction, provide a prediction
that is more accurate than the single prediction initialized with the best estimate of the
initial state of the hydrologic parameters. The mean ensemble is an overall indicator of

the ensemble’s behavior and is considered to be the best estimate (Stensrud et al. 2000)

The spread skill relationship for a collection of ensemble forecasts often is
characterized by the correlation between the variance or the square of the standard
deviation of the ensembles members around their ensemble mean. The accuracy is often

characterized using the mean squared error.

The mean Time, Peak and VVolume of each ensemble is computed and compared with
observations. Additionally, the following statistics were used: Bias, Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE). Their definitions are formulated below:
Bias = E[y; ]/0 5-9

MAE =~3%_,|y; — O] 5-10
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RMSE = J%z;ﬂ(yk — 0)2 5-11

where y represents the prediction from the kth simulation for Time, Peak and VVolume,
and O is the observation. The Bias measures the correspondence between the average
forecast and the average observed value of the predictand. The MAE is the arithmetic
average of the absolute values of the differences between the members of each pair. The
MAE and RMSE values near to zero are desirable while Bias near to one are expected.
Another diagnostic variable for representing runoff generation is the runoff coefficient
defined as observed discharge volume divided by the basin-average rainfall event. These
spread skill correlations have been found to be fairly modest, accounting for 25% or less
of the accuracy variations (Atger, 1999; Gritmit and Mass, 2002; Hamill et al. 2004).
Alternative approaches to the spread skill problem using probability distributions for
forecast skill, conditional on ensemble spread were analyzed by Moore and Kleeman
(1998). The conditional PDF are a statistical tool more robust than a simple ensemble
mean to compare to an observation. PDF’s were calculated for Time to Peak, VVolume and
Peak flow using the 625 ensemble members for the combination of hydrologic resolution
model and rainfall event. The most widely used and important continuous probability

distribution is the Gaussian or normal distribution described as:

2
12 () 5-12

Dx (x) =

q
)
N

2
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where p and ¢ the mean and the variance of X, respectively. Thus, the normal

distribution is a 2 parameter distribution which is bell-shaped, continuous, and

symmetrical about the mean.

With the PDF, measures of the central tendency, prediction spread, limits and skill
can be estimated. The central tendency is represented by the 50% simulation limit, or
median, corresponding to 0.5 on the cumulative distribution function (CDF). The spread
of the forecast represents the forecast uncertainty due to uncertain initial conditions,
rainfall inputs, slopes and scale dependent parameters, etc; by determining the distance

between the 5% and 95% confident limit simulation bounds.

The ensemble skill is assessed using the ranked probability score or RPS (Epstein,
1969; Murphy, 1971) which is capable of penalizing forecasts increasingly as more
probability is assigned to event categories further removed from the actual outcome and
the ensemble are encouraged to report their “true beliefs” (Wilks, 1995). Brier scores
and reliability diagrams are used to evaluate each of the derived binary forecasting
situations, but the RPS is an option for verification forecasts for multi category ordinal

predictants.

The ranked probability score is the sum of squared differences between the

components of the cumulative forecast and observation vectors as:

RPS =Y _ (Yp —0,)? 5-13
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RPS = 3, _i[(Zm ;) - (51 0)]° 5-14

where Y,, and 0, are the cumulative forecast and observation, respectively, y; is
the cumulative probability assigned to the category or vector component, o; is the
cumulative probability of the observation in the ith category or vector component and J is
the number of categories and therefore also the number of probabilities included in each

forecast. The sum of Y, and O, are always both equal to one by definition.

The PDFs statistics and RPS generated for each grid size will contain the
predictability limits for small watersheds and will be useful information that can help the
modeler to decide which grid size resolution is appropriate for larger watersheds where it

is important to quantify flash flooding at upstream and ungauged sites.

The Figure 5-3 summarizes the evaluation of uncertainty propagation through flow
prediction. The flow chart used a combination of hydrologic parameter perturbations

within the physical bounds, rainfall input and model resolution or structure set up.

Knowing the uncertainty at the small scale and associated with the resolution
selection, it will produce more realistic parameter estimations and flood quantification for
the larger scale model. In other words, if the small scale, high resolution model, is
characterized by a degree of uncertainty, then the goal of the modeler is to up-scale the
resolutions, while maintaining a similar degree of uncertainty. In this way, the modeler

hopes to maintain accuracy at the subwatershed scale.
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5.5.2 Estimation of Uncertainty due to Rainfall up-scaling and temporal
variations

The same methodology described in the previous section (5.5.1) was used to calculate
the uncertainty due to rainfall up-scaling and temporal variations. The amounts of rainfall
measured by the rain gauge network within the TBSW are assumed to represent the “true”
rainfall. The rain gauges are the most reliable method to sense precipitation and are
widely used to correct other sensors methods (eg., radar, satellite and laser sensors) and

remove sensor bias.

By interpolating to various resolutions, it is possible to measure the importance of
spatial rainfall variation in hydrologic prediction while the average rainfall falling on the
watershed is maintained, taking into account that the average distance between the rain

gauges is approximately 218 m with a standard deviations of 100 m.

Precipitation total variations between rain gauges were calculated and presented for
each event, demonstrating the high rainfall variability at small scales due to orographic
effects in mountainous subwatersheds. The rainfall events were interpolated to the
following resolutions: 100 m, 200 m, 400 m, 1000 m, and 2000 m to compare them in a
probabilistic and deterministic sense. The interpolation method used was the inverse
distance method. Each ensemble had 625 runs or ensemble members. These were the
combination of parameter perturbations described in Section 5.5.1; (125 runs), model
structures (5 different model resolutions) and one rainfall event (Figure 5-3). Observed

and simulated values are compared by using objective functions. The compared variables
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were time to peak, peak flows and volume. In addition, PDFs are computed using the
Gaussian kernel density estimation technique and computation of non-parametric
statistics provided information for the 0.05, 0.5 and 0.95 quartiles, given the central
tendency and spread of the ensemble. The PDFs are treated as conditional probabilities
and not as the true probability distribution. RPS’s were calculated to compare the skill of
each rainfall input. Rainfall events were tested through the year using different
antecedent soil moisture conditions and temporal patterns. The dates tested were: October
22, 2007; May 2, 2008; June 5, 2008; August 28, 2008 and September 3, 2008.
Performing the statistics previously described for each rainfall configuration ensemble, it
was possible to evaluate the reliability of one rainfall resolution and compare them event

by event and assess if there exists variations between events.

105



Figure 5-3 Flow chart of the ensemble for predictability limits

CHAPTER 6

6 SENSITIVITY ANALYSIS RESULTS

Chapter 6 includes results for the sensitivity analysis performed in the MBDB
(Section 6.1) for different hydrologic parameters and rainfall input. Spider plots for

percentage changes in peak flow and runoff depth versus scalar factors (0.5, 1, 2.5 and 2)
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were plotted. Additionally, relative sensitivity coefficient analysis was addressed for +
50 % of parameter and input change (or 0.5 and 1.5 multiplicative factors). The most
sensitivity parameters found were used in the up-scaling experiment to be perturbed in
the TBSW. Section 6.2 describes the methods to fill the gaps between rain gauges and

radar data in the MBDB.

6.1 Parameters and Input Sensitivity Results

To identify the parameters for which the MBDB model is most sensitive for the
mountainous condition considered, a sensitivity analysis was conducted. Uncertainties
associated with the model parameters and inputs can be quantified by evaluating the
hydrologic response given a range of parameter and input perturbations at 0.5, 1, 1.5 and
2 multiplicative factors or scalars. Within the study area, 3 USGS flow stations were
identified, Rio Grande de Afiasco near San Sebastian, Rio Guanajibo near Hormigueros
and Rio Rosario near Hormigueros. The parameters within the drainage area upstream of
the USGS flow stations were perturbed by the multiplicative factors conserving the
spatial distribution. Sets of parameter used in the hydrologic model were shown in Table
4-2 and Table 4-4 as well as very shallow soil depth (20 cm) and initial saturation
fraction of 0.5 was selected as a preliminary hydrologic model configuration at 200 m

resolution.

The rainfall was created using additional USGS stations upon availability for each

event. The point rainfall estimates at 15 minutes were interpolated at 200 m resolution
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using the exponential weighted interpolation. For hurricane Georges (September 21 to 23,
1998) only three USGS stations mentioned above were working. For November 11 to 16,
2003 event, eight USGS station were interpolated and for September 14 to 17, 2004
seven stations. Figure 6-1 shows the storm total maps for the interpolations performed for
each rainfall event at 200 m resolution using the stations available; the dots within each
figure are the station locations with data each 15 minutes. The maximum rainfall
accumulation during each event was 566.5 mm for September 1998 (red color in Figure
6-1 A), 291.6 mm for November, 2003 (Figure 6-1 B) and 156.2 mm for September,

2004 (Figure 6-1 C).

Spider plots were drawn for the parameters and rainfall perturbed additionally,
relative sensitivity coefficients (Sr) (Equation 4.1) were calculated with changes of £50%

using the hydrologic distributed model for 3 events mentioned and 3 outlet points;

considering the behavior of 2 output variables (runoff depth and peak discharge).
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Figure 6-1 Total storm maps, (A) September, 1998; (B) November 2003; (C)
September 2004.

Spider plots are used to evaluate the model response to the entire range of the
parameter and determine if there is a portion of the parameter range that yields unrealistic
results. Figure 6-1,Error! Reference source not found. presents the spider plots for
peak flow as percent change in the model output variable versus change in rainfall value
by a multiplicative given factor. Variations in the hydrologic response are linear;
doubling the rainfall input increase the peak flow from 131.7% to 203.2% for Rio
Guanajibo near Hormigueros depending on the rainfall event. In the case of Rio Grande
de Afasco near San Sebastian the range is between 135.3 % and 168.5% and for Rio

Rosario near Hormigueros is between 127.7% and 145.3%.
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Figure 6-2 Spider plot for percentage change in peak flow due to rainfall
multiplicative factors at 3 USGS station outputs

Error! Reference source not found. present the spider plot for runoff depth where
the linearity between rainfall perturbations and hydrologic response was not conserved.
For example doubling rainfall generates a runoff depth change between 111.5% and 145%
for Guanajibo and for Afasco 131.4 % and 135.0 %; and for Rosario between 112.4 %
and 120.6%. These results indicate that the infiltration is decreased with increasing the
rainfall intensity providing the volume to the runoff that could not be infiltrated.
Decreasing the rainfall intensity by 0.5 multiplicative factor, favors infiltration and
decreases the runoff depth with percent changes between 25.5% and 64.8%. Lower
percentages are presented for September 2004 (25.5% - 31.8%), which has a rainfall

pattern different from the others (Figure 6-1 C). This event is characterized by high
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rainfall intensity (red color) in the upland and lower in the flood plains. Minor percent
variations occur with the peak flow for Afasco and Rosario discharge points (61.9% to

69.1%) compared with Guanajibo (50 % to 74%).
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Figure 6-3 Spider plots for percentage change in runoff depth due to rainfall
multiplicative factors at 3 USGS station outputs

Increasing channel roughness decreased the peak flow (Figure 6-4C), while
increasing initial soil saturation increased the peak flow (Figure 6-4A), especially in Rio
Guanajibo near Hormigueros outlet point, for September, 2004. Low variations were
founded in peak flow with variations of soil depth and hydraulic conductivity for all

events (Figure 6-4B, E, F).
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Figure 6-4 Spider plots for changes in peak flow due to parameters
multiplicative factors evaluated at USGS stations and 3 events. Parameters:
A) Initial Saturation, B) Soil Depth, C) Channel Roughness, D) Overland
Roughness, E) Channel hydraulic conductivity, F) Overland hydraulic

conductivity.
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Additionally, spider plots graphs for runoff depth changes were calculated and
presented in Figure 6-5 for each parameter evaluated. As for peak flow, the spider plot
percent changes were graphed for different events and outlet points. The parameter that
produced the greatest percentage change in runoff depth was the initial soil saturation
(Figure 6-5A), for Afasco near San Sebastian outlet point for November 2003 and
September 1998 and Guanajibo near Hormigueros for September, 2004. Generating a
change between 30% and 40% in runoff depth due to doubling in the initial soil
saturation, where the baseline was 0.5 and doubling produced a value of 1 (i.e., saturated
conditions). Low variations were found with changes of the other parameters (Figure 6-5,
B, C, D, E, F). The magnitude of change varied with the event indicating that the rainfall
spatial distribution and intensity are important aspects for quantification of initial

parameters.
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Figure 6-5 Spider plots for changes in runoff depth due to parameter
multiplicative factors evaluated at USGS stations and 3 events. Parameters:
A) Initial Saturation, B) Soil Depth, C) Channel Roughness, D) Overland
Roughness, E) Channel hydraulic conductivity, F) Overland hydraulic

conductivity.
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Relative sensitivity coefficients were calculated for parameters and rainfall input
using each event and outlet point. Results are presented in Table 6-1 for the peak flows

and Table 6-2 for runoff depth as well as averages and standard deviations.

Results given below indicate that variations for both output variables (peak flow and
runoff depth) are most sensitive to the rainfall input with a Sr of 69.1 and 56.5,
respectively. Runoff depth was affected by initial saturation, increases in this parameter
increased the runoff and a Sr value of 8.2 was obtained. Followed by overland hydraulic
conductivity with a Sr of -5.5, increase in this parameter decreased the runoff depth; and
increasing soil depth produced a decrease in peak flows (Sr of -4.4). Low variations were
observed when soil depth was doubled, indicating that soil depths greater than 40 cm will

produce little runoff depth changes (Figure 6-4 B).

The peak discharge was affected by roughness with a Sr of -13.4 for channel cells and
Sr of -10.6 for overland cells; increases in roughness parameter decreased the peak flows
and retarded the time to peak. The slope-distributed map produced a Sr of 12.6,
increasing this parameter increased peak flow. The initial soil saturation parameter
produced a Sr of 5.2 and is placed in the fifth place. Average relative sensitivities
coefficients were plotted in Figure 6-6 and Figure 6-7 with observed variations in terms

of basin outlet points or events.
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Table 6-1 Relative sensitivity analysis for peak flow evaluating 3 events and 3 USGS station outlet points for peak

flow
Rosario ARasco Guanajibo Average
] Sep Sep Nov | Sep | Sep Nov | Sep | Sep STD
Nov-03 04 08 Mean | s 04 og | Mean | "o 04 og | Mean Sr

Rainfall 66.85 66.86 63.87 | 659 | 753 | 704 | 66.7 | 70.8 | 63.8 | 86.1 | 62.1 | 70.7 69.1 7.5

Rough Ch -5.07 -8.13 -9.14 -74 | -143 | -173 | 98 | -13.8 | -15.0 | -26.9 | -15.2 | -19.0 -13.4 6.4

Slope 10.76 10.20 11.85 | 109 | 131 | 119 | 105 | 118 | 127 | 206 | 119 | 151 12.6 3.1

Rough over | -15.47 | -1255 | -13.07 | -13.7 | -11.1 | -53 | 9.0 -8.5 -8.1 | -13.7 | -6.8 -9.5 -10.6 3.4

IS 4.42 2.75 1.18 2.8 8.3 6.4 5.1 6.6 59 | 101 | 23 6.1 5.2 2.9

Ks Over -3.52 -4.55 -1.89 -33 | 68 | -6.3 | -53 -6.1 34 | -7.0 | -1.7 -4.0 -4.5 1.9
Soil Depth | -0.10 0.00 -0.03 0.0 -25 | 86 | -31 -3.0 -6.5 | -26 | -15 -3.6 -2.2 2.1
Ks Chan -0.97 -1.07 -0.44 -08 | 25 | 21 | -14 -2.0 -09 | -39 | -0.8 -1.9 -15 11

Table 6-2 Relative sensitivity analysis for 3 events and 3 USGS station outlet points for runoff depth

Rosario ARasco Guanajibo

Nov- | Sep- | Sep- Nov- | Sep- | Sep- Average | STD

Nov-03 | Sep-04 | Sep-98 | Mean 03 02 95 Mean 03 02 9§ Mean g
Rainfall 60.00 49.22 55.82 55.0 | 67.5 | 49.2 | 64.1 60.3 58.6 | 48.7 | 55,5 | 54.3 56.5 6.74
IS 8.75 7.55 3.18 6.5 13.8 | 9.9 8.0 10.6 70 | 119 | 35 75 8.2 3.50
Ks Over -5.57 -6.42 -3.04 -3.9 81 | -74 | -6.7 -7.4 31| 7.2 | 22 -4.2 55 2.20
S Depth -6.04 -0.86 -0.28 -2.4 -81 | 53| -2.6 -5.3 -82 | -5.8 | -2.3 5.4 -4.4 2.98
Ks Chan -2.28 -2.57 1.24 -1.6 34 | -3.0 | -2.7 -3.0 12 | 41| -1.2 2.2 -2.4 1.30
Slope 0.39 0.88 0.28 0.5 1.4 2.2 1.0 15 0.9 3.9 0.9 1.9 1.3 1.12
Rough over -0.37 -1.06 -0.35 -0.5 -0.7 -15 -1.1 -1.1 -05 | -25 -0.8 -1.3 -1.0 0.67
Rough Ch -0.09 -0.15 -0.05 -0.1 -06 | -1.2 | -0.6 -0.8 -06 | -25 | -04 -1.2 -0.7 0.77

Legend: IS= initial saturation, Ks Over = overland hydraulic conductivity; Ks Chan = channel hydraulic conductivity; Rough Ch =
channel roughness; Rough over = overland roughness; S Depth = soil depth.
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6.2 Sensitivity due to quantitative precipitation estimation
within gap areas

The Vflo model has the capability to support distributed rainfall and rain gauge data

in real time, ideal for a flood alarm system. However, rainfall itself is the principal source

of uncertainty in the model as observed in the previous section. The number of rain

gauges in a basin are frequently sparse and therefore do not capture the spatial variability.

Two interpolation methods, exponential weighted (EW, Figure 6-8Error! Reference
source not found.A), and inverse distance weighted (IDW, Figure 6-8Error! Reference
source not found.B), were compared with radar rainfall from NEXRAD level 3 as seen
in Figure 6-8Error! Reference source not found.C, for the November 11-16, 2003
period. The average total storm rainfall calculated at an outlet point is different between
interpolation methods and radar source. For example for the USGS station Rio Grande de
Afasco near San Sebastian the precipitation average depth is 122.8 mm for IDW, 114.8
mm and for EW and 77.8 mm for radar. In the USGS station at Rio Guanajibo near
Hormigueros, the total storm was 230.6 mm with IDW, 237.1 mm and for EW and 199.8
mm for radar. It should be noted that the radar is partially dependent on the rain gauge
data and number of stations. Furthermore, when we use radar, it is necessary to remove
systematic error by applying a calculated correction factor or bias (Vieux, 2004) for the
event, which is the relationship between rain gauges and the radar data. For November,
2003 event, the bias calculated for the whole area was 1.3 (Equation 5-6). Figure
6-9Error! Reference source not found. displays the scatter plot of radar and rain gauges

and the adjusted line.
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Figure 6-8 Total Storm Rainfall Maps at Mayagtiez Bay Drainage Basin for
November 11-16, 2003 using Interpolation Methods: (A) Exponential
Weighted; (B) Inverse Distance Weighted; and Radar data (C)
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Figure 6-9 Radar Bias correction for storm total, November 11-16, 2003

Variations between methods to fill the gaps between rain gauges produce different
responses in flow prediction. For example for the MBDB model we performed
hydrologic simulations using the EW and IDW interpolation methods at 200 m resolution
and NEXRAD radar level 3 at 2 km spatial resolution with a nominal resolution of 500 m.
The results were compared at Rio Grande de Afasco near San Sebastian and Guanajibo
near Hormigueros stations generating differences in peak flow runoff depth and average
total rainfall (Table 6-3). The EW method produced greater peaks (2.4%) and runoff
depth (2.5%) at Guanajibo outlet point, with a decrease in rainfall total storm (2.9 %)

than IDW. The reverse effect was observed at Rio Grande de Afiasco where decreasing
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the rainfall total rainfall (-6.5%) generated proportional decrease in peak flow (-7.1%)
and runoff depth (-6.8%). The radar rainfall quantification is -12.9 % and -36.7 % lower
than IDW for Guanajibo and Afasco respectively, however the reduction in peak flow

was not in the same proportion indicating that the rainfall intensity was maintained.

Table 6-3 Comparison of hydrologic results and rainfall interpolation
methods and radar

Rio Guanajibo near Hormigueros
Peak Flow Runoff depth Rainfall

cm | G | om [ T [ em [ O
IDW 394.1 reference 145.9 reference 230.6 reference
EW 403.4 24 149.6 2.5 237.1 2.9
Radar 376.6 -4.4 128.5 -11.9 200.9 -12.9

Rio Grande de Afiasco near San Sebastian

IDW 668.4 reference 117.6 reference 122.8 reference
EW 620.9 -7.1 109.6 -6.8 114.8 -6.5
Radar 642.8 -3.8 72.4 -38.5 77.8 -36.7
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CHAPTER 7

7 BIAS ESTIMATION IN RADAR
PRECIPITATION PRODUCT

In this chapter, an analysis of the rainfall spatial variability in a small area with a high
density rain gauge network is described. Radar rainfall estimations were compared and
evaluated with the rain gauge data. Statistical measurements of discrete and continuous
validation scores were calculated for the radar estimates at hourly and daily time step.
PDFs were calculated for the Bias with the purpose of knowing the rainfall uncertainty

over a small area.

To compare the Multisensor Precipitation Estimates (MPE) with the rain gauge
network rainfall accumulation time series, it is necessary to convert the MPE HRAP grid
projection to a State Plane raster product, which will be used in the hydrological model.
Due to changes in coordinates and raster conversions, the original pixels (HRAP
projection) oriented with a certain angle, were reoriented horizontally (raster). Figure 7-1
displays the change in the orientation, including the MPE pixels (left) and Hourly
Rainfall Product (N1P) from NEXRAD level 3 (right). The left image shows four square
black boxes corresponding to the MPE raster-projected pixels, the colored pixels are the
original raster with HRAP coordinates at 4 km x 4 km spatial resolution, and the red box

corresponds to the Hydro-Estimator pixel at the same resolution as the MPE product.
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Figure 7-1 HE pixel (red box) and MPE pixels (black and colored boxes)

(left) and Hourly Rainfall Product (N1P) from NEXRAD level 3 (right)
orientated in shapefile and raster formats.

The annual 2007 rainfall accumulations for the 4 MPE pixels were 1546.2, 2212.1,

1949.8 and 2088.6 mm, with an annual standard deviation of 289.3 mm between them.

Figure 7-2 shows the temporal variations in the cumulative rainfall during the year for

each MPE Pixel. Large differences are found between Pixel 1 and Pixel 2.

Rainfall Accumulation
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Figure 7-2 Rainfall accumulation over the time for the MPE pixels.
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To show how variable the rainfall distribution within a specific pixel can be, we took
the MPE Pixel numbers 1 and 2 and determined the rain gauges associated with each
pixel. A plot of the monthly cumulative rainfall for MPE Pixel 1 and rain gauges are

displayed in Figure 7-3.

The cumulative rainfall for the months of April and May are not representative of
those months because we had missing rain gauge data for 11 days for April and 9 days
for May, therefore, the computations were made with only the available data for these
months. For the case of July, Figure 7-3 shows that only the C06 station reported an
amount of rainfall (206.9 mm) that was similar to the MPE Pixel 1 rainfall (259.15 mm),
and for almost all months, note that the MPE Pixel 1 underestimated the rainfall value

with respect to rain gauges, except for the months of January, June and July.

Rainfall Totals per month in the MPE Pixel 1
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Figure 7-3 Monthly Total Rainfall calculation for the rain gauge stations
belonging to MPE Pixel 1, for 2007.
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Figure 7-4 displays the average rain gauge network rainfall in MPE Pixel 1 versus the
standard deviation for 1-hour time step for 2007. The slope between standard deviation
and mean rainfall is equivalent to the coefficient of variation (CV), and is a measure of
the dispersion of the probability distribution. From the regression analysis, a R? of 0.6627
and a CV of 0.3766 were obtained, indicating high rainfall variability in the MPE pixel 1,

which cover an area of 4.5 km?.
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Figure 7-4 Hourly average and standard deviation rainfall for the rain gauge
network corresponding to MPE pixel 1 for 2007

The rain gauge network covering an area of 16 km? shows that the relationship
between mean rainfall and standard deviation has the trend of an increase in rainfall depth
will produce an increase in standard deviation. The linear regression indicates a R? of
0.78 and a slope of 0.45 (Figure 7-5). An increase in CV exists between Figure 7-5 and

Figure 7-6, related to an expansion of the rain gauge area from 4.5 km? to 16 km?
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indicating an increase in dispersion of the data. Therefore, the coefficient of
determination increases, indicating that the standard deviation of a sample of mean

rainfall can be obtained with more accuracy than in small areas.
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Figure 7-5 Hourly average and standard deviation rainfall for rain gauge

network for 2007
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Figure 7-6 Average rain gauge rainfall vs. MPE radar rainfall within HE
pixel at hourly time step.
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Mean rain gauge network data and mean weighted MPE rainfall were graphed at the
hourly time step and a linear regression equation was calculated (Figure 7-6) obtaining a
slope line of 0.848 and a R? of 0.43. The slope represents the Bias between the rainfall
from the gauge network and the MPE radar product, and this value can be applied to the
hourly MPE measurements as a correction. The MPE in general is overestimating
precipitation with a coefficient of determination of 0.4307. The MPE exhibits problems

of detection at low rainfall measurements principally (Figure 7-6).

The contingency tables and scores (Error! Reference source not found. and Error!
Reference source not found., respectively) were calculated to evaluate the Pixel 1, Pixel
2 and total 4 MPE pixels for hourly time step and daily rainfall accumulations for the four
MPE pixels within the HE pixel. The number of estimated rainfall events were
overestimated according to the discrete bias (DB) in the MPE pixel 1 (1.24) comparing
with the Pixel 2 and the 4 MPE pixels, which have a values close to 1. For daily data the

DB is underestimated by a factor of 0.956.

The hit rate (H) indicates the occasions when the categorical estimation correctly
determined the occurrence of rainfall event or nonevent and was around 0.82 and 0.89;
non-significant differences were found between hourly and daily accumulations at the 4

pixels.

Moreover, the probability of detection (POD) is the likelihood that the event would be
estimated by the radar, increasing with the time step, with 0.833 for the daily data. Daily

estimates eliminate the influence of light rainfalls that the radar cannot detect. For the
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hourly time step, the Pixel 1 POD was higher than the POD for Pixel 2 and the average of

4 MPE pixels.

Table 7-1 Contingency tables for the MPE pixels.

Observed Rainfall

Hourly Data i
MPE Pixel 1 (Rain gauges)
Yes No
_ ) Yes 638 653
Estimated MPE Rainfall No 400 6581

Observed Rainfall

Hourly Data .
MPE Pixel 2 (Rain gauges)
Yes No
. . Yes 630 464
Estimated MPE Rainfall No 449 5729
Hourly Data Observed Rainfall
4 MPE Pixels (Rain gauges)
Yes No
. . Yes 915 756
Estimated MPE Rainfall No 693 5910
Observed Rainfall
Daily Data :
4 MPE Pixel (Rain gauges)
Yes No
] ) Yes 225 33
Estimated MPE Rainfall NG 45 341

Table 7-2 Discrete validation scores for the MPE pixels and time scales.

Hourly Data Daily Data
MPE Pixel 1 | MPE Pixel 2 | 4 MPE pixels | 4 MPE pixels
POD 0.62 0.58 0.57 0.833
FAR 0.51 0.42 0.45 0.128
DB 1.24 1.01 1.04 0.956
H 0.87 0.89 0.82 0.879
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False alarm rates or portion of estimated rainfall events that fail to materialize are
similar in Pixels 1, 2 (0.50 and 0.42, respectively) and the four pixels average (0.45). For
the daily time step there was a considerable reduction in the FAR (0.128). Figure 7-7 and
Figure 7-8 show the distribution of false alarms and the probability of no detection by the
radar during 2007. Events in which the radar did not detect rainfall and the rain gauges
did measure rainfall (c) were assigned a value of 1 in the graph. Events in which the radar
did detected rainfall and the gauges did not measure rainfall (b) were assigned a value of
2. Differences in time when false alarms and probability of no detection quantities
occurred can be observed in the graphs, and detailed statistics are presented in Error!

Reference source not found. and Error! Reference source not found..
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Figure 7-7 Hourly False Alarm Time Series for the MPE Pixel 1 for 2007.
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False Alarm at HE pixel
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Figure 7-8 Hourly False Alarm Time Series for the MPE Pixels within a HE
Pixel for June to December 2007.

Table 7-3 Continuous validation scores for the MPE pixels and time scales.

Mean Hourly Daily Data
MPE MPE 4 MPE | 4 MPE pixels 4 MPE
Pixel 1 | Pixel 2 pixels | Rainz 0.3mm pixels
RMSE - - 0.012 - 0.368
Bias 3.85 1.58 2.77 1.55 1.23
STD Bias | 4.21 2.73 8.18 2.14 1.65

A mean field bias (Bias) was calculated for the MPE Pixel 1, 2 and overall 4
pixels, as the ratio of the average of the rain gauge rainfall and the mean rainfall sensed
for the MPE pixels using the area weights for each time step (hourly, daily, monthly and

annually accumulations). Hourly mean field bias time series during the 2007 are
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displayed in the Figure 7-9 for the MPE Pixel 1 only and Figure 7-10 for the mean four

MPE pixels within the HE pixel.

Large biases were found at the hourly time step and are associated with small
radar rainfall and rain gauge detections (Figure 7-9). The possible effect is that the radar
minimum precipitation depth capable of being detected is 0.01 inches or 0.254 mm; while
our rain gauge network has a rainfall depth resolution of 0.1 mm. In addition, the
NEXRAD in Puerto Rico is located about 100 km from the study area in Cayey at a site
elevation of 850 meters msl. Due to the earth curvature, the beam has an elevation of 600

m above the study site at Mayagiiez, affecting the cloud’s measurement in the lower

troposphere.
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Figure 7-9 Hourly Mean Field Bias for the MPE Pixel 1 during 2007
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Mean Field Bias at HE pixel
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Figure 7-10 Hourly Mean Field Bias for the four MPE Pixels during 2007

within a HE Pixel.

To neutralize the noise effect of small rainfall quantifications in the hourly bias
computation, rainfall depths less that 0.3 mm were eliminated. A considerable hourly
bias reduction was observed in time (Figure 7-11) and in the average and standard
deviation computation across the year as well as monthly (Error! Reference source not

found. and Error! Reference source not found.).

The continuous validation scores for MPE rainfall validation (Error! Reference
source not found.) show a root mean square error is greater (0.368 mm) in daily
accumulations than in hourly (0.012 mm). The mean field bias average for 2007 in Pixel

1 is 3.85 with a standard deviation average of 4.21. The four MPE pixels present a lower
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Bias (2.77) but a large standard deviation (8.18). The annual average Bias is improved
after eliminating rainfall depths less that 0.3 mm, diminishing to 1.55 and a standard

deviation of 2.14 for the four MPE pixels with rainfall greater than 0.3 mm.

In the months of April and May some data in the rain gauge network were
missing, and as a consequence, the mean field bias was calculated only for the existing
data. In addition, the MPE Pixels present the complete accumulations for these months
while the rain gauge column showed only the existing data. The MPE total
accumulations are 120.9 and 187 mm for April and May (Table 7-4), but the MPE
accumulations only for the time window that correspond to the rain gauge data are 22.41
mm and 143.61 mm for April and May, respectively and these data was not considered in

the computations of Bias.

The mean field bias tended to decrease when the calculation was performed for
the whole HE pixel area (16 km?). Therefore, when the MPE is accumulated (e.g., over
several hours or days) the bias is reduced and the standard deviation as well. Table 7-4

provides detailed bias computations for year 2007 results.
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Mean Field Bias at HE pixel without rain less than 0.3mm
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Figure 7-11. Hourly Mean Field Bias for the overall MPE Pixels within a HE
Pixel for January to December, 2007.

The results indicate that the month with largest hourly bias was December (5.68),
which also had the highest variability (STD =12.92). These results are decreased to 1.53
and 2.52 respectively, when the average rainfall less than 0.3 mm in radar and rain
gauges were eliminated (Table 7.4). The greatest daily Bias occurred in November with
2.24 and a standard deviation (STD) of 2.6. The months with Bias close to 1 are June,
July, August and September but only August and September maintain the value close to

one in monthly accumulations.
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Table 7-4 Total rainfall in the MPE pixels and mean field daily bias calculation for year 2007.

MPE Pixel Rainfall MPE Statistics | Rain | Month | Daily Bias Hourly Bias Hourly Bias
Gauge Rain>0.3mm
1 2 3 4 Mean | STD | Total Bias | Mean | STD | Mean | STD | Mean STD
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (Mm)
Jan 45.3 77.3| 1104 | 179.2 949 | 57.3| 15.51 0.16 | 1.43| 181 | 2.47| 4.77 0.60 2.02
Feb 39.9 72.6 53.0 54.9 56.5 134 | 71.50 1.27 1.20| 191 289 9.11 2.57 2.80
Mar 59.5| 106.7 56.6 74.8 784 | 23.0| 94.62 1.21| 136| 1.38| 1.48| 1.89 2.18 1.98
Apr 91.6| 1295 1284 | 140.7| 1209| 21.3 - - - - - - - -
May | 1428 | 203.2 | 182.7| 223.7| 187.0| 345 - - - - - - - -
Jun | 2205 | 283.3| 196.0| 206.0| 235.0| 39.2|192.01 0.82| 1.02| 0.85| 3.25|10.59 1.26 1.44
Jul 259.2 | 430.3| 245.7| 2635| 316.6| 87.4| 82.22 0.26| 097| 151| 1.04| 2.68 0.39 0.88
Aug | 2004 | 268.2| 195.9| 252.6 | 233.7| 36.5]|223.69 096| 093| 160| 1.98| 5.45 1.66 2.44
Sept | 164.4| 3124 | 277.9| 227.1| 2474 | 64.4|241.45 0.98| 1.08| 150| 1.49| 3.01 1.61 1.58
Oct | 177.2| 1879 | 2619 | 239.2| 208.0| 40.6|204.23 0.98| 0.72| 050| 1.14| 1.74 1.19 0.99
Nov 89.2 722 1244 | 117.4 95.1 24.4 | 162.49 1.71 224 2.60 3.92| 8.16 2.92 455
Dec 55.7 68.0 | 111.7| 104.0 79.4 | 27.2 | 109.86 1.38| 1.72| 2.38| 5.68| 12.92 1.53 2.52
Igf; 1545.7 | 2211.4 | 1944.4 | 2083.2 | 1952.7 | 249.8 | 1542.3
Aver 0.85| 1.24| 165| 277| 8.14 1.55 2.14

Note: (-) No data values, Rain gauge total = rain gauge average for the months including the available network.
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Different probability distributions were tested with a 95% of confidence to determine
which particular distribution fits to the daily rainfall bias. The null hypothesis is that the
data follow the distribution selected if P-value is greater than 0.05. The normal
distribution with Box-crox transformation (lambda =0.15) was the probability
distribution that obtain a better fit to the data. Goodness of fit was evaluated using the
Anderson Darling (AD) test (0.677) (Anderson and Darling, 1954) and P-value equal to
0.677. Additionally the exponential, lognormal and Weibull distributions were tested
(Figure 7-12), but obtained P-values less than 0.05 and the hypothesis was rejected,

although Anderson Darling values were small.

Probability Plot for Daily Bias: Rain/ MPE
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Figure 7-122 Probability plots for daily rainfall bias between rain gauges and
MPE product
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CHAPTER 8

8 PREDICTABILITY LIMITS DUE TO UP-
SCALING

Chapter 8, analyzes the uncertainty propagation through the model. Comparisons
between rainfall resolutions and hydrologic model resolutions serve as a guide for
modelers and radar developers to know how much detail is necessary to archive a reliable

solution in small watersheds in terms of flow prediction using ensembles.

8.1 Parameter uncertainty propagation due to rainfall
spatial variability and hydrologic model
configurations

Hydrologic evaluation was performed at the TBSW to evaluate the uncertainty due to
spatial rainfall variations. A most comprehensive methodology was used than in Section
Error! Reference source not found., where different interpolation methods represent
rainfall coverage over MBDB model.

The ensemble forecast procedure in principle draws a finite sample from the
probability distribution describing the uncertainty of the initial state of the atmosphere
(rainfall) or hydrologic model. Each input, parameter or model configuration combination
is called the ensembles of initial condition, and each one represents a possible initial state
consistent with the uncertainties in observation and analysis. Using a deterministic model,
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it is possible to evaluate the propagation of the entire initial state probability distribution
by the governing physical laws. The evaluation would bring information reliable to a
determined initial state and would be a decision support to evaluate procedures that
would be applied to obtain goodness of fit models at different resolutions or selecting a
rainfall cell size when rainfall information is available at scales below NEXRAD
resolutions. Here, the word “probability” is treated as conditional, because parameters
were perturbed in their physical bounds, using scalar factors, selection of possible
hydrologic configuration and input resolution without giving any spatial weight.

Monte-Carlo method approximation is based on a large number of possible initial
hydrologic states drawn up randomly from the PDF of initial-condition uncertainty in the
phase space. The stochastic dynamic simulation is constructed by a substantial amount of
hydrologic simulations, repeatedly running the model is where the knowledge of the real
PDF's are required. It is important that the initial ensemble member be chosen well, their
selection is further complicated by the fact that initial condition PDF in space required for
a distributed model is unknown and it changes from day to day, so that the ideal of simple
random samples from this distribution cannot be achieved in practice. As a practical
manner, computing time is a limiting factor at operational flood forecast centers. The
modeler must make a subjective judgment balancing the number of ensemble members to
include in relation to the spatial resolution of the hydrologic model used taking into
consideration their physical bounds.

Using methods to resample parameters was possible to reduce the uncertainty due to

slope degradation that result in lowest peaks and volumes retarding the runoff and

138



smoothing the hydrograph. Five hydrologic model configurations at different scales were
tested with a distributed model, computation of the parameter statistics are showed in
Table 8-1.

Table 8-1 Descriptive variables and statistical quantification for hydrologic
model resolution TBSW configuration

Variable RESOLUTION MODEL (m)
10 50| 100| 200 | 400
Area (km?®) 356 | 3.64| 3.72| 3.76| 3.84
Cells Number 35235 | 1393 | 342 82 18
Channel Cells Number 318 61 30 12 6
Channel Cells Ratio (%) 090 | 4.38| 8.77 | 14.63 | 33.33
Minimum 0.02| 0.02| 0.02| 0.02| 0.02
Roughness Average 012 011] 011] 0.10| 0.10

Maximum 0.15| 0.15| 0.15| 0.15| 0.15
Minimum | 27.00 | 10.00 [ 10.00 | 0.10 | 1.25
Slope (%) Average 30.98 | 29.83 | 27.69 | 26.21 | 24.63
Maximum | 97.00 | 87.54 | 86.10 | 70.84 | 60.28
Minimum 0.15| 0.64| 0.64| 0.64| 0.64
Hyd. Conductivity (cm/h) | Average 069| 069| 069| 0.69| 0.70
Maximum 284 | 086| 0.86| 0.86| 0.86
Wetting Front (cm) Average 31.62 | 31.62 | 31.62 | 31.62 | 31.62
Minimum 026 | 0.42| 042| 042 | 042

Effective Porosity Average 043 | 043| 043| 043| 0.43
Maximum 045| 045| 045| 045| 045

Minimum 0 0 0 0 0

Impervious Average 0.02| 0.02| 0.03| 0.03| 0.02

Maximum 0.63| 0.63| 058 | 0.46| 0.30
Minimum 0.08| 0.00| 0.15| 0.15| 0.15
Abstraction (cm) Average 0.80| 0.80| 0.78| 0.80| 0.84
Maximum 125| 125| 125| 1.25| 125
Channel Width (m) Average 500| 5.00| 5.00| 5.00| 5.00

Grid scales are from 10 m to 400 m, with changes in total area through 3.56 km? for a

high resolution model (10 m) to 3.84 km? for coarser resolution (400 m). Average
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parameter values were maintained through the up-scaling at the TBSW. Terrain slope is
reduced from 30.98 percent to 24.63 percent for average values and from 97% to 60.28 %
for maximum slopes. The most important change was due to channels cells ratio, because
to increase the grid size the number of cells that represent overland and river cells are
reduced. In the high resolution model the total cells were 35,235 in which 318 cells were
attributed to channel representation with a ratio of 0.9%. For coarser model resolutions
up to 400 m, 18 cells were dedicated to overland process, and 6 cells for channel
processes.

Additionally, rainfall and stage information are necessary to feed and validate the
model. Five important events were selected from the monitoring time period (October
2007 to May 2009) for stage and rainfall. Section 4.2 describes the methodology used to
transform the pressure measurements of transducer installed at the outlet of the TBSW to
stage measurements and posterior flow-stage curve generation. Error! Not a valid
bookmark self-reference. shows important information for the selected events, as time
to peak; peak flow and average runoff depth over the TBSW. These variables compared
to observed data give more descriptive information of the hydrograph shape than
statistics based on error variances. The observed hydrograph for each event are displayed
in Figure 8-1. The base flow was removed as a constant value from the observations
because this creek has a very short concentration time due its size and high slopes.

Events over the year represent different initial states of the parameters and
atmospheric characteristics. Antecedent soil moisture represented by initial saturation in
the model is a spatially distributed parameter and it is time dependent, affecting
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principally the runoff depth. Low initial saturation values increase the infiltration
capacity due to soil moisture and reduce the runoff depth. Rainfall information was
collected from the rain gauge network described in Section Error! Reference source not
found. and Section 7 for the events selected. Some rain gauges produced erroneous
results or malfunctioned and were eliminated from the analysis. The minimum number
of rain gauges used to produce a time step rainfall map were: 15 for May 2, 2008 and a
maximum number of 18 rain gauges for October 22, 2007.

Table 8-2 Inventory of observed events

Events | Observed Peak flow | Observed runoff depth | Observed Time to peak
(m*/s) (mm) (hr)
22-0ct-07 10.13 16.6 15:15
2-May-08 9.38 34.6 15:30
5-Jun-08 5.2 6.51 18:15
28-Aug-08 6.69 10.34 16:00
3-Sep-08 21.2 54.6 3:45

Table 8-3 presents storm totals for each rain gage, average storm total for all gauges
and standard deviations. May 2 and September 3, 2008 events present the highest rainfall
variability with a standard deviation of 24.3 mm and 20.8 mm between rain gauges; and
totals rainfall of 80.4 mm and 95.7 mm respectively. Additionally, standard deviation at
each rain gauge through the events were calculated at 10 minutes time step; presenting a
maximum value of 3.29 mm, 4.29 mm, 3.23 mm, 2.88 mm and 2.59 mm for October 22,
2007; June 5, September 3, May 2, and August 28, 2008 respectively. The standard
deviation calculated for both: partial and total storms reflect the spatial variability with a

4 by 4 km pixel (Table 8-3).
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Figure 8-1 Observed flows for the events studied.
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Table 8-3 Total rainfall event measured in rain gauges network over 4 km x 4

km area

Gauge Station Total Rainfall (mm)

22-Oct-07 | 2-May-08 | 5-Jun-08 | 28-Aug-08 | 3-Sep-08

Co1 32.4 57.5 51.7 35.7 105.3
C02 38.1 - 46.7 32.6 105.4
C03 47.8 83.8 52.2 345 117.5
Co04 40.4 86.7 51 - -
C05 42.4 101.1 49.5 44 112.2
C06 42.7 55.7 40 315 -
Cco7 49.5 70.3 - 23.6 107.6
Co08 48.6 83.3 48.8 29.9 90.2
C09 51.7 96.3 43.5 30.5 97.3
C10 43.0 94.3 - - -
Cil1 48.6 - - 28.1 108.9
Ci12 45.4 82.6 34.1 14.2 97
L02 - - - 33.2 94.3
L03 - 40.6 - 49.9 60.3
LO4 - - 52.3 - -
LO5 32.7 - - 11.6 38.1
L06 - - 18.5 - -
LO7 40.1 86.8 47 37.6 82.8
L08 - - - - -
L09 - - 44.1 49.2 116.5
L11 - - 40.2 - -
L13 48.5 85.3 49.5 - 100.2
L14 28.1 - - - -
L15 22.5 44.9 18.6 - -
L16 64.0 136.7 39.8 45.3 97.9
Average (mm) 42.58 80.39 42.79 33.21 95.72
STD (mm) 9.63 24.28 10.49 10.93 20.79
Antecedent rainfall,
Average total rainfall 51.61 64.27 2.66 24.06 4.41

previous 5 days (mm)
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Antecedent rainfall defines how much runoff will be produced and is an indicator of
the antecedent soil moisture condition 5 days before the event occurred. The May 2
antecedent rainfall was 64.27 mm, while September 3 antecedent rainfall was only 4.41
mm. Therefore, initial soil moisture will be different for both events. Combinations of
important smaller rainfall events with low and high antecedent rainfall accumulation
were analyzed in this work.

Precipitation was interpolated using ArcGIS 9.3 software with the inverse distance
weighted method at 10 minutes time steps. The method is a commonly used technique
for generating weighted averaged surfaces of scatter points, and which places more
weight (influence) by nearby points and less by distant points. The average storm for
each event is shown in Table 8-3.

Convective and orographic rainfalls are the most common in western Puerto Rico and
can occur daily during the wet season. In orographic events along the western coast of
Puerto Rico, masses of wet air are transported by a sea breeze mechanism towards the
east where it converges with the easterly trade wind over the mountains of western Puerto
Rico. This, combined with the heating of the land causes the wet air to move vertically
upward forming convective cloud, within which the air is cooled and moisture is
condensed causing precipitation. Convective precipitation falls over a certain area for a
relative short time with a limited horizontal extent and variable intensity, forming rainfall
cells over limited areas. Figure 8-2 shows the temporal variation between two selected

cells after interpolation was made at 10 minutes time scale. Table 8-4 indicates the total
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storm rainfall averaged over the TBSW area, where the storm total is slightly different for

each interpolation resolution.

Table 8-4 Storm Total produced for different resolutions

Total Rain (mm)

Model Rainfall Rain Grid Size Average | Standard

Resolution Event (meter) Deviation
(m) 100 | 200 | 400 | 1000 | 2000 (mm) (mm)

2-May-08 | 80.1| 80.1| 80.0| 81.2 77.4 79.8 1.4

3-Sep-08 | 100.5 | 100.6 | 100.4 | 97.5| 101.3 100.1 1.5

Grid 10 22-Oct-07 | 449 | 449| 448| 441 44.4 44.6 0.3

28-Aug-08 | 30.2| 30.3| 30.3| 302 34.6 31.1 2.0

5-Jun-08 | 423 | 423| 425| 422 44.6 42.8 1.0

2-May-08 | 79.9| 799| 798| 811 77.6 79.7 1.3

3-Sep-08 | 100.5 | 1005 | 100.4 | 97.2| 101.2 100.0 1.6

Grid 50 22-Oct-07 | 45.0 | 450| 449| 442 40.5 43.9 1.9

28-Aug-08 | 30.0| 30.0| 300| 2938 34.4 30.9 2.0

5-Jun-08 | 422 | 422 | 424| 421 44.4 42.7 1.0

2-May-08 | 80.6| 80.6| 80.5| 815 77.7 80.2 1.5

3-Sep-08 | 100.7 | 100.7 | 100.6 | 98.1| 1015 100.3 1.3

Grid 100 22-Oct-07 | 448 | 448| 448| 441 40.4 43.8 1.9

28-Aug-08 | 30.8| 30.8| 30.8| 308 34.9 31.6 1.8

5-Jun-08 | 425 | 425| 426| 433 44.8 43.1 1.0

2-May-08 | 80.2| 79.6| 795| 808 76.9 79.4 15

3-Sep-08 | 100.5| 100.3 | 100.1| 96.6| 101.4 99.8 1.9

Grid 200 22-Oct-07 | 45.0 | 44.7| 446| 439 40.2 43.7 2.0

28-Aug-08 | 30.3| 304 | 317| 300 34.7 31.4 1.9

5-Jun-08 | 422 | 424 425| 423| 448 42.8 1.1

2-May-08 | 78.7| 79.1| 804 | 805 77.0 79.1 1.4

3-Sep-08 | 100.3 | 100.4 | 100.7 | 94.0| 1015 99.4 3.0

Grid 400 22-Oct-07 | 447 | 449| 447| 435| 403 43.6 1.9

28-Aug-08 | 29.9| 29.7| 309| 292 34.8 30.9 2.3

5-Jun-08 | 44.0 | 423 | 424| 423| 446 43.3 1.2
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Additionally small differences across model resolutions are due to changes in area, where
the grid is intended to represent the shape of the basin.

Ogden and Julien (1994) discussed the appropriateness of the correlation length as
indicator of spatial structure and obtained an inter-gage distance of 2.5 km. Distances
greater than this value will not capture the true rainfall spatial variability. With the
existing average distance between the TBSW rain gauges network of 200 m, this work

ensures to capture the real spatial variability for each time step through the event.

Hyetographs for individual cells

Interpolation at 100 m.
80

70 +

o

50

——Cell 20,19
- ----Cell 36,21

Rainfall (mm)

30

T
—
s

20

S WLV e e

.00 . .50 ; .A0 .20 ; 26 . . ; ; ;
B e R R

T

Time

Figure 8-2 Hyetographs extracted from two cell (100 m resolution) for
September 3, 2008

8.1.1 Evaluating predictability limits
The predictability analysis due to rainfall inputs and hydrologic models resolution

was performed using a total of 15,625 runs with combinations of five parameter
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perturbations to roughness, hydraulic conductivity and initial saturation; five hydrologic
model configuration resolutions (10 m, 50 m, 100 m, 200 m, and 400 m); five rainfall
resolutions (100 m, 200 m, 400 m, 1000 m and 2000 m) and five events presented in
Table 8-3. The events were tested to evaluate temporal or season dependence and cover
different mechanisms of rainfall generation as convective or orographic movements.

The total number of runs was reclassified in different ways depending on the type of
analysis. Box plots summarize information about the shape, dispersion (confident levels
of the ensemble at 5 and 95 quartiles), center of the data and outliers ; also are presented
as exploratory measures A total of 125 runs that describes the dispersion of hydrologic
predictions due to parameter perturbation were grouped, for each combination of model
and rainfall resolution, where peak flows, runoff depth and times to peak were compared
with observed data. In box plot graphs, the horizontal line represent the median of the
data, the vertical lines extending from the box are called whiskers. The whiskers extend
outward to indicate the lowest and highest values in the data, excluding outliers. Extreme
values or outliers are represented by asterisks (*).

The event of October 22, 2007 was one of the largest flows measured at the flow
gauge during the testing period, with a discharge runoff depth of 16.6 mm and peak flow
of 10.11 cms, and a runoff-rainfall ratio of 0.37 (Table 8-2). October 22, 2007 ensembles
show a tendency almost constant between rain resolutions, with a slight decrease of mean
peak flows with increase of the rainfall resolution. Additionally, hydrologic model results
are shown in the different panels for 10 m, 50 m, 100 m, 200 m and 400 m resolution

(Figure 8-3-A). The averages are around the observed peak flow (red line), and
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hydrologic model 50 m and 100 m present outliers for high peaks in all rain gauge
resolutions. In the case of runoff depth Figure 8-6-A, the average ensembles are around
the observed volume (red line) with a tendency to overestimate at 10 m hydrologic model
and underestimate the observed volume for the others hydrologic model resolutions in all
rainfall maps. No outliers were present in runoff depth box plots. The time to peak
graphs (Figure 8-9-A) indicate low dispersions in modeled values for the 10, 100 and 200
m hydrologic models.

The event of May 2, 2008 with a discharge depth volume of 34.6 mm, and peak flow
of 9.38 cms, and a runoff-rainfall ratio of 0.43 shows a tendency almost constant for the
peaks through rain sizes and hydrologic models, with a slight decrease of mean peak
flows with increase in the rainfall resolution, (Figure 8-3-,B). The average ensembles are
around the observed peak flow, and hydrologic model 200 m presents some outliers for
high peaks in all rain gauges sizes. In the case of runoff depth Figure 8-6-B, the average
ensembles underestimate the runoff depth except for the 10 m hydrologic model with 100
m rainfall size. The average ensemble for runoff depth decreases with increasing of
rainfall resolution and hydrologic model resolution. No outliers were present in runoff
depth box plots. Figure 8-9-B shows the time to peak modeled where the average
ensemble values are around the observed and low dispersions were found.

Box plots for June 5, 2008 are shown in Figure 8-4-A for peak flow and Figure 8-7-A
for runoff depth. The event had a discharge volume of 6.51 mm and 5.2 cms flow, and a

runoff-rainfall ratio of 0.154.
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October 22, 2007

Hydrologic Model (m) = 10

Hydrologic Model (m) = 50

Hydrologic Model (m) = 100

30
20+
101

0-

5

10.11

Hydrologic Model (m) = 200

Hydrologic Model (m) = 400

Peak Aow (cms)

5

30

20
10
0_

T T T T T
100 200 400 1000 2000

T T T T T
100 200 400 1000 2000
Rain Resolution (m)

T T T T T
100 200 400 1000 2000

10.11

A
May 2, 2008

30 Hydrologic Model (m) = 10 Hydrologic Model (m) = 50 Hydrologic Model (m) = 100

20
~ 10+
;
o 0_
; T T T T T
o) 100 200 400 1000 2000
[ Hydrologic Model (m) = 200 Hydrologic Model (m) = 400
L2
8

9.38
T

T T T T T
100 200 400 1000 2000

T T T T
100 200 400 1000 2000
Rain Size (m)

Figure 8-3 Box plots of Peak flows for events on: (A) October 22, 2007; (B)

May 2, 2008

B

149




The average ensembles tended to overestimate peaks and volumes as well, therefore,
showing a tendency almost constant for the peak average through rain sizes and
hydrologic models, with an increase of mean peak flows with increase rainfall resolution,
(Figure 8-4-A) for the 400 m hydrologic model. Hydrologic models presented some
outliers for high peaks in all rain gauges sizes, except for the 10 m hydrologic model. In
the case of runoff depth, Figure 8-7-A, the simulations for 10 m resolution model were
out of the observed volume and the others ones ensembles slightly covering the observed
volume. The average resemble of runoff depth decrease to increase the rainfall
resolutions and hydrologic model resolution. No outliers are presented in runoff depth
box plots. Time to peak ensemble means presented in Figure 8-10-A are within the
observed value of 18:15 min for June 5, 2008 with underestimation in hydrologic models
greater than 50 m. For hydrologic models 200 and 400 m the quartile 95 are below the

observed value.
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June 5, 2008
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September 3, 2008
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Figure 8-5 Box plots of Peak flows for September 3, 2008 event

The event of August 28, 2008 has a discharge depth volume of 10.34 mm, 6.69 cms
peak flow, and a runoff-rainfall ratio of 0.34. It shows a tendency almost constant
between rain sizes, with a slighter increase of mean peak flows with increase of the
rainfall resolution, additionally the range between quartiles 5 and 95 is increased as well,
Figure 8-4B. The average ensembles are below the observed peak flows, and all
hydrologic models present outliers for high peaks in all rain gauges resolutions. In the
case of runoff depth, Figure 8-7-B, the average ensembles are below the observed volume
with a tendency to underestimate, except for 10 m hydrologic model and rainfall
resolution of 2000 m. Therefore, for some ensembles the quartiles 95 are very close to the
observed volume. No outliers were present in runoff depth box plots.

The reason is that computations with very low initial saturation (0.25) did not

represent the antecedent soil moisture and high hydraulic conductivities. Figure 8-10-B
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shows the time to peak box plots showing values around the observed (August 28 16:00)

with low dispersion for the hydrologic model of 100 m resolution. The hydrologic models

with more dispersion are 50 and 400 m resolution.
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June 5, 2008
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September, 2008
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Figure 8-8 Box plots for runoff depth for September 3, 2008

The event of September 3, 2008 was the largest peak flow measured at the flow gauge
in the studied period, with a discharge depth volume of 54.6 mm, 21.2 cms peak flow,
and a runoff-rainfall ratio of 0.5. September 3, 2008 shows a tendency almost constant
between rain sizes, with slight changes of mean ensemble peak flows (Figure 8-5). The
ensemble averages are underestimating the observed peak flow, the 10 m hydrologic
model results are closer to the observed values as is the 400 m resolution hydrologic
model as well. Hydrologic model 50 m 100 m and 200 m present outliers for high peaks
in all rain gauge resolutions. In the case of runoff depth Figure 8-8, the average
ensembles at 10 m hydrologic model are around the observed depth volume with a

tendency to underestimate the observed depth volume. The observed runoff depth volume
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is near to the quartile 95 for 50, 100, 200 and 400 m hydrologic model resolutions. No

outliers were present in volume depth runoff box plots.
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June 5, 2008

Time to Peak

6/05/2008 22:00 Hydrologic Model (m) = 10 Hydrologic Model (m) = 50 Hydrologic Model (m) = 100
6/05/2008 20:00 -
% 6/05/2008 18:00 TS B
(]
n T T T T T
3 100 200 400 1000 2000
g 6/05/2008 22:00 Hydrologic Model (m) = 200 Hydrologic Model (m) = 400
=
6/05/2008 20:00 -
| | | | | | | | 6/05/2008 18:15
6/05/2008 18:00 E Q E H E Q Q é
=
T T T T T T T T T T
100 200 400 1000 2000 100 200 400 1000 2000
Rain Resolution (m)
August 28, 2008
Hydrologic Model (m) = 10 Hydrologic Model (m) = 50 Hydrologic Model (m) = 100
8/29/2008 08:00 -
8/29/2008 00:00 -
8/28/2008 16:00 —M—g—é— -d—&—dh—ag—d— 8/28/2008 15:55
8/28/2008 08:00

T T T T T
100 200 400 1000 2000

Hydrologic Model (m) = 200 Hydrologic Model (m) = 400

8/29/2008 08:00 -

8/29/2008 00:00 -

8/28/2008 08:00

10IO ZOIO 460 10I00 ZO(I)O 10IO 260 4OIO 10(I)0 ZOIOO
Rain Resolution (m)

B

Figure 8-10 Box Plot of time to peak for (A) June 5, 2008; (B) August 28,
2008
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September 3, 2008
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Figure 8-11 Box Plot of time to peak for September 3, 2008
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Figure 8-11 indicated high dispersions for the 50, 100, 200 and 400 m hydrologic

models resolutions and a tendency to overestimate the observed time to peak (September

3, was 3:35). The significant dispersions are due to the form of the observed hydrograph

that consist in three limbs. With low initial saturations and high hydraulic conductivities

the first jump is absorbed and peaks are greater in the second or third limb.

In general the average ensembles were underestimating the peak flow and runoff

depth for the analyzed events, except for June 5, 2008 where the contrary situation was

obtained. This event is characterized by an antecedent dry period and medium rainfall in

a short time, revealing an anomaly for dry periods and lighter rainfall events.
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8.1.2 Evaluating hydrologic models resolutions and rainfall resolutions

The 15,625 runs were grouped in a different way that helps to explain differences
between rainfall resolutions and hydrologic model resolutions as well. Probability with
normal distribution and confident levels (5-95) were calculated and plotted for ensemble
with observed values in Figure 8-12, Figure 8-13, Figure 8-14,

Figure 8-15 and Figure 8-16. The ensembles for example consist of 625 runs for each
hydrologic model including the perturbation parameters and variations in rainfall sizes.
Goodness of fit statistics were calculated to compare the data to probability distribution.

The Pearson correlation coefficient measures the strength of the linear relationship
between the X and Y variables on a probability plot (a value close to 1 indicates that the
relationship is highly linear). Almost all graphs present Pearson correlation coefficient
values above 0.93. The event that presents the lowest was August 28, 2008 (Figure 8-15A)
for peak flows with 0.875 coefficient of determination. Additional information such as
mean and standard deviation of the ensemble are shown in Figure 8-12, Figure 8-13,
Figure 8-14,

Figure 8-15 and Figure 8-16. The lowest extreme values in peak and runoff depth did
not have good agreement with the PDF, and was produced by low initial soil saturation
values (0.25) in combination with high hydraulic conductivities. In general, the ensemble
means and standard deviation decreased with increasing rain resolution input or increase

of model resolution.
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Figure 8-12 Probability plots for (A) Rain ensembles for peak flow, (B)
Hydrologic model ensembles for peak flow, (C) Rain Ensembles for
discharge depth volume, (D) Hydrologic Model ensembles for discharge
depth volume. October 22, 2007
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Figure 8-13 Probability plots for (A) Rain ensembles for peak flow, (B)
Hydrologic model ensembles for peak flow, (C) Rain Ensembles for
discharge depth volume, (D) Hydrologic Model ensembles for discharge

depth volume. May 2, 2008
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Figure 8-14 Box and probability plots for (A) Rain ensembles for peak flow,
(B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for
discharge depth volume, (D) Hydrologic Model ensembles for discharge
depth volume. June 5, 2008
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Figure 8-15 Box and probability plots: (A)Rain ensembles for peak flow, (B)
Hydrologic model ensembles for peak flow, (C) Rain Ensembles for
discharge depth volume, (D) Hydrologic Model ensembles for discharge
depth volume. August 28, 2008
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Figure 8-16 Box and probability plots: (A) Rain ensembles for peak flow, (B)
Hydrologic model ensembles for peak flow, (C) Rain Ensembles for
discharge depth volume, (D) Hydrologic Model ensembles for discharge

depth volume. September 3, 2008

The statistical measures Bias, MSE, RMSE and the RPS were calculated for the 625
members for each ensemble explained above. The RPS compares each category with
observed values; 12 categories were selected for the RPS computation. Table 8-5 the
statistics calculated for October 22, 2007 where the lowest RPS for peak flow variable

and different rainfall resolutions are for rainfalls of 100 m (0.79) and 400 m (0.79) with
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similar RMSE (8.09 mm and 8.05 mm respectively); and 100 m (RPS: 0.7) follow by 200
m (RPS: 0.77) and 400 m (RPS: 0.77) for runoff depth. Therefore, the lowest RMSE
(9.23 mm) is for 400 m rainfall resolution. The time to peak presents the best RPS (0.43)
for 400 m rainfall with the lowest RMSE (49 minutes) and the Bias is close to one. When
the ensembles grouped by hydrologic model were analyzed, the best RPS for peak flow
are 0.78 and 0.79 for the 400 m and 200 m hydrologic models respectively. The best
lowest RMSE, 6.91 cms is for 400 m and 7.52 cms for 200 m. Analyzing the runoff depth
volume variable, the 10 m hydrologic model obtained a good RPS (0.75) as did the 50 m
(RPS: 0.83) and 100 m (RPS: 0.83) m hydrologic model.

Table 8-5 Ensemble statistics and skill of prediction according to rainfall
resolution and hydrologic model resolution for October 22, 2007
Peak

Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 10 50| 100 | 200 400
Bias 091| 091| 091| 092| 0.88| 0.71| 1.21| 0.67| 0.73| 0.77
MAE 6.74| 6.74| 6.73| 6.78| 6.79| 699 | 836| 6.64| 6.40| 5.93
RMSE | 809 | 809 | 805| 813| 808 | 8091016 | 7.71| 752 | 6.91
RPS 0.79| 080| 0.79| 083| 1.08| 086| 1.10| 0.95| 0.79| 0.78
Volume
Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 10 50 100 | 200 | 400
Bias 150| 141 | 141 134| 123| 205| 129| 128| 122 | 115
MAE 832 | 792| 794 | 805| 824 | 899 | 805| 8.07| 812| 8.32
RMSE | 10.02 | 9.21| 923 | 932| 9811124 | 935| 9.38| 948 | 9.74
RPS 0.70| 0.77] 077 ] 0.85| 0.88| 0.75| 0.83| 0.83| 0.94| 1.03

Time

Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 10 50| 100 | 200 | 400
Bias 1.002 | 1.002 | 0.998 | 1.002 | 1.026 | 1.014 | 1.036 | 0.993 | 0.986 | 1.001
MAE 0:34| 0:34| 0:29| 0:35| 0:50| 0:24 | 0:51| 0:25| 0:29 | 0:54
RMSE | 1:09| 1:12| 0:49| 1:117| 1:45| 0:40 | 1:40| 0:34| 0:35| 2:04
RPS 047 | 045| 043 | 047| 0.72] 038 | 0.69| 041| 0.66| 0.94
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The hydrologic model that produced the best time to peak according to the RPS is 10
and 100 m resolution models with 0.38 and 0.41 RPS’s, additionally, these resolutions
present lower RMSE's of 40 and 34 minutes. Table 8-5 presents the ensemble statistics
and skill of the prediction according to rainfall resolution and hydrologic model
resolution for the event occurring on May 2, 2008. Evaluating peak flow and time to peak
due to rainfall variations the RPS’s do not clearly favor any resolutions. Therefore 100 m,
200 m and 400 m resolution obtain similar value of RPS. In the case of runoff depth
volume, the RPS favors rainfall resolutions of 100 m and 1000 m with RPS values of
1.28 and 1.36, respectively.

Ensembles grouped by hydrologic resolution provide RPS values that favor the 10
and 100 m resolution for peak flow, volume and time to peak.

Table 8-7 shows the statistics and skills of the prediction for June 5, 2008 where the
rainfall resolutions favor the 100 m, 200 m and 400 m hydrologic model for peak flow,
depth volume and time to peak with the lowest RPS values around 0.6, 1.7 and 0.77
respectively. Therefore, the RMSE are very similar between the resolutions. There was
no clarity in terms of the best hydrologic model resolution, because the peak flow favored
the 50 and 100 m resolution; runoff depth volume favored the 200 and 400 m and time to

peak favored the 10 and 50 m resolution model, respectively.
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Table 8-6 Ensemble statistics and skill of the prediction according to rainfall
resolution and hydrologic model for May 2, 2008

Peak
Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 | 10 50 100 | 200 | 400
Bias | 0.89 | 0.88 | 0.90 | 0.96 | 0.76 | 1.01 | 0.80 | 0.82 | 0.74 | 1.02
MAE | 557 | 551 | 558 | 575 | 538 | 520 | 538 | 558 | 548 | 6.15
RMSE | 6.49 | 640 | 651 | 6.72 | 6.22 | 6.16 | 6.18 | 6.41 | 6.34 | 7.21
RPS | 0.73 | 0.73 | 0.73 | 0.76 | 0.75 | 0.71 | 0.75 | 0.78 | 0.79 | 0.80
Volume
Rainfall Hydrologic Model

100 | 200 | 400 | 1000 | 2000 | 10 50 100 | 200 | 400

Bias | 250 | 230 | 232 | 238 | 211 | 3.02 | 224 | 226 | 212 | 1.96
MAE | 17.63 | 18.01 | 17.94 | 17.95 | 18.67 | 15.23 | 18.31 | 18.31 | 18.79 | 19.55
RMSE | 20.45 | 20.63 | 20.56 | 20.59 | 21.30 | 17.42 | 21.01 | 21.01 | 21.50 | 22.27
RPS | 128 | 145 | 146 | 1.36 | 1.69 | 095 | 1.49 | 147 | 164 | 1.84
Time
Time Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 | 10 50 100 | 200 | 400

Bias | 0.992 | 0.992 | 0.990 | 0.991 | 1.003 | 1.001 | 1.014 | 0.991 | 0.981 | 0.985
MAE | 0:30 | 0:29 | 0:29 | 0:32 | 0:46 | 0:22 | 0:41 | 0:27 | 0:29 | 0:46
RMSE | 0:44 | 0:42 | 0:41 | 0:57 | 1:55 | 0:33 | 1:09 | 0:36 | 0:34 | 1:56
RPS | 0.20 | 0.18 | 0.18 | 0.21 | 0.27 | 0.14 | 0.30 | 0.15 | 0.22 | 0.55

The August 28, 2008 event presented in
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Table 8-8 indicates the statistics and skills of the ensembles where the RPS favored
the rainfall resolution of 2000 m with 0.76 for peak flow and 1.11 for depth volume.
Time to peak did not present differences between 100 m, 200 m and 400 m rainfall
resolution. The skill ensemble by hydrologic models gave the lowest RPS for 50 m

resolution for peak flow and the second lowest value for time to peak.

Table 8-7 Ensemble statistics and skill of the prediction according to rainfall
resolution and hydrologic model for June 5, 2008

Peak

Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 10 50| 100 | 200 | 400
Bias 242 | 239 | 241 | 245| 314 | 3.13| 196| 213 | 242 | 3.16
MAE 886 | 875| 887 | 9.19|11.87|12.02| 6.95| 7.58| 8.61|12.38
RMSE | 12.14|12.01|12.16 | 12.63 | 15.74 | 15.45| 10.11 | 10.75 | 11.36 | 16.17
RPS 061| 0.60| 061| 0.63| 099 | 1.06| 0.49| 058 | 0.62| 1.19

Volume

Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 10 50| 100 | 200 | 400
Bias 3.34| 335| 337| 336| 386| 568 | 3.03| 3.03| 290 | 2.64
MAE 11.90 | 11.92 | 12.01 | 12.01 | 14.06 | 23.07 | 10.22 | 10.23 | 9.69 | 8.69
RMSE | 14.73|14.74 | 14.84 | 14.76 | 16.86 | 24.51 | 12.40 | 12.41 | 11.71 | 10.53
RPS 170 | 171 172 | 178| 226 | 486| 150| 149| 143]| 1.15

Time

Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 10 50| 100 | 200 | 400
Bias 0.978 | 0.978 | 0.978 | 0.978 | 0.971 | 0.991 | 0.984 | 0.976 | 0.966 | 0.963
MAE 0:30 | 0:29| 0:30| 0:32| 0:33 | 0:23| 0:25| 0:28 | 0:37 | 0:41
RMSE 0:33| 0:33| 0:34| 0:37| 0:36| 0:29| 0:32] 0:31| 0:39| 0:42
RPS 0.78| 0.77| 0.77| 082| 109| 036| 053] 0.82| 130 1.62
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The mean ensemble for peak and volume are underestimated for the event occurring
on September 3, 2008, where the RPS are similar between rainfall resolutions for peak
flow and the 10 m and 400 m hydrologic model are favored. The depth volume variable
and the time to peak favored the rainfall resolution of 2000 m and a hydrologic model of

10 m followed by 50 m.
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Table 8-8 Ensemble statistics and skill of the prediction according to rainfall
resolution and hydrologic model for August 28, 2008

Peak
Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 | 10 50 100 | 200 | 400

Bias | 0.36 | 0.36 | 0.37 | 0.38 | 0.62 | 0.51 | 0.30 | 0.33 | 0.38 | 0.58

MAE | 494 | 493 | 492 | 494 | 479 | 474 | 512 | 499 | 482 | 4.87

RMSE | 534 | 534 | 533 | 536 | 550 | 525 | 547 | 536 | 5.26 | 5.54

RPS | 1.07 | 1.07 | 1.06 | 1.05 | 0.76 | 0.87 | 1.20 | 1.13 | 1.02 | 0.78

Volume
Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 | 10 50 100 | 200 | 400

Bias | 0.82 | 0.82 | 0.83 | 084 | 1.31 | 1.73 | 0.76 | 0.79 | 0.70 | 0.65

MAE | 843 | 842 | 837 | 830 | 7.72 | 546 | 8.77 | 865 | 9.04 | 9.32

RMSE | 941 | 941 | 936 | 934 | 893 | 6.35 | 9.72 | 9.62 | 9.97 | 10.25

RPS | 173 | 1.73 | 1.68 | 1.67 | 1.11 | 0.66 | 1.95 | 1.91 | 1.96 | 2.07

Time
Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 | 10 50 100 | 200 | 400

Bias | 1.007 | 1.007 | 0.997 | 0.998 | 1.005 | 1.058 | 1.114 | 0.973 | 1.012 | 0.858

MAE | 1:31 | 1:30 | 1:16 | 1:33 | 1:08 | 1:03 | 2:03 | 0:31 | 0:46 | 2:34

RMSE | 2:47 | 2146 | 2:19 | 3:01 | 2:18 | 1:30 | 3:27 | 0:36 | 1:07 | 4:24

RPS | 0.36 | 0.36 | 0.38 | 0.37 | 0.40 | 0.21 | 0.49 | 0.57 | 042 | 0.92
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Table 8-9 Ensemble statistics and skill of the prediction according to rainfall
resolution and hydrologic model for September 3, 2008

Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 10 50| 100 | 200 | 400
Average | 13.72 | 13.67 | 13.80 | 13.48 | 13.34 | 17.18 | 10.74 | 11.62 | 11.89 | 16.58
Bias 0.65| 064 | 065| 064| 063| 081 | 051| 055| 056| 0.78
MAE 11.13 | 11.15|11.18 | 11.36 | 10.95 | 10.03 | 12.75 | 12.01 | 10.82 | 10.17
RMSE | 12.75 | 12.77 | 12.82 | 12.95 | 12.50 | 11.72 | 14.04 | 13.46 | 12.34 | 12.07
RPS 1.06| 107| 107| 111| 1.08| 0.78| 154 | 135| 124 | 0.77

Volume

Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 10 50| 100 | 200 | 400
Average | 36.80 | 35.64 | 36.23 | 36.28 | 38.11 | 47.47 | 34.52 | 34.62 | 33.93 | 32.53
Bias 174 168| 171| 171| 180| 224 | 163| 163 | 1.60| 1.53
MAE 22.40 | 22.85 | 22.90 | 22.80 | 22.14 | 17.75 | 23.47 | 23.45 | 23.80 | 24.62
RMSE | 26.94 | 27.31 | 27.30 | 27.23 | 26.63 | 20.93 | 27.97 | 27.96 | 28.40 | 29.29
RPS 120 128| 126| 125] 1.13| 0.79| 135| 133| 137] 154
Time

Rainfall Hydrologic Model
100 | 200 | 400 | 1000 | 2000 10 50| 100 | 200 | 400
Average | 4:30 | 4:29 | 4:25| 4:20| 458 | 3:58 | 4:47 | 4:37| 449 | 4:30
Bias 120 120| 118 | 1.16| 132| 1.06| 128 | 123 | 1.28| 1.20
MAE 0:30| 0:29| 0:29| 0:32| 0:46| 0:22 | 0:41 | 0:27 | 0:29 | 0:46
RMSE 0:44 | 042 | 0:41| 057 | 1:55| 0:33] 1:09| 0:36 | 0:34| 1:56
RPS 054 | 052| 051| 048] 050| 022| 032| 045| 0.88| 0.92

Beven (1991) has recognized that the non-uniqueness of a model, especially in
distributed models similar to the one used in this research, can produce results close to
the observed peak flow, runoff depth and time to peak, using different combination of
parameters and inputs. Our work also reveals the coexistence of alternative parameter
sets that provide a suitable framework for model calibration and uncertainty estimation.

The configuration ensemble that was out of the range around the peak flow, 5 and 95
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quartiles and minimum peak flow estimation, was the model at 10 m resolution with all
rainfall resolutions. This ensemble overestimates simulated flows and cannot reproduce
flows for June 5, 2008. For the time to peak the ensembles for hydrologic model 100 m
and 2000 m rainfall; 200 m hydrologic model and rains: 400m, 1000m and 2000 m; 400
m hydrologic with rains: 100 m, 200 m, 1000 m 2000 m are out of 95% confident level.
June 5, 2008 is characterized by dry conditions and low peak flow and volume.

The ensembles that can reproduce well the time to peak when the hydrographs
present 2 limbs (October 22, 2007); or 3 bumps (September 3, 2008) are the 10 m
hydrologic model for all rainfall resolution for September and the 10 m, 100 m and 200
m hydrologic models for all rainfall resolutions. For events with only one limb like
August 28 and May 2, 2008 the best models with low dispersions around the observed
time to peak were 10 m, 100 m and 200 m hydrologic models.

Based on the RPS calculated for the rainfall resolution ensembles in combination with
all models resolution (625 members for each event) and parameter perturbations the best
rainfalls simulations were observed at the 100 m for peak flow followed by 200 m and
400 m with RPS values very similar. For runoff depth the rainfall at 100 m gives the
better RPS for 3 events and the exceptions favor 2000 m for August 28 and September 3,
2008. The RPS for time to peak favored 200 m followed by 400 m rainfall resolution.
These findings reveal that the hypothesis that the 100 m rainfall resolution will produce
the best ensemble behavior for any event is rejected. The rainfall quantification due to
rainfall interpolation will produce similar hydrologic ensembles behavior. In the case of

the hydrologic model resolution, the hypothesis formulated was that the hydrologic
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model with high resolution (10 m) will generate the best ensemble behavior for the events
analyzed. This statement is true only for 2 events evaluating the peak flow variable. For
runoff depth, the 10 m hydrologic model did not produce the best RPS for dry conditions
and light rainfall event (June 5, 2008) with a storm total rainfall of 42.79 mm. the high
resolution model obtained the better behavior for time to peak. This resolution model is
not operationally practical for larger basins, and therefore an alternative has to be selected.
The RPS analysis favored the 200 m model resolution for time to peak (5 events), runoff
depth (4 events) and peak flow (3 events) followed by 400 m model resolution principally

for peak flow.

8.2 Selection of the Optimal Rainfall and Grid Resolution
for the MBDB Model

The goal of this project is to develop recommendations for rain and grid resolutions
that will provide equal accuracy with a 100 m and 10 m rainfall and grid resolution model,
respectively (i.e., the smallest resolutions evaluated). To achieve this objective, the RPS
values summarized in Table 8-10 were evaluated in a Two-Way ANOVA test. The RPS
data were determined to be normally distributed and have equal variances, which is a
requirement for the Two-Way ANOVA test.

The goal of the evaluation is to determine significant differences between the mean of
the RPS for the highest resolution (100 m rainfall resolution and 10 m grid resolution)
and the means for the other resolutions. If there is no significant difference between the

mean of the RSP for the finer resolution and a coarser resolution, then the model can be
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upscaled to the coarser resolution without loss of accuracy relative to the finer resolution.
A grey highlighted cell in Table 8-10 indicates that a significant difference exists
between that resolution and the highest resolution. For rainfall resolution, there is a
significant difference between the 100 m resolution and the 2000 m resolution. For the
grid resolution, there is a significant difference between the 10 m resolution and the 200
and 400 m resolutions. Therefore, based on the Two-Way ANOVA analysis of the RPS,
the recommended upscaled rainfall resolution, which will provide equivalent accuracy
with the 100 m rainfall resolution, is 1000 m, and the recommended upscaled grid

resolution, which will provide equivalent accuracy with the 10 m resolution, is 100 m.
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Table 8-10 Mean RPS values for Peak Flow, Volume and Time to Peak for 5 Storms, 5 Rainfall Resolutions and 5
Grid Resolutions

RAINFALL RESOLUTION GRID RESOLUTION
100m | 200m |400m |1000m [2000m [10m [50m |100m |200m |400m

STORM PEAK FLOW RPS PEAK FLOW RPS
3-5ep-2008 | 1.06] 1.07] 107 1.11 1.08| 078] 154 1.35 1.24 0.77
5Jun-2008 | 061| 060| 061 0.63 099| 1.06] 049 0.58 0.62 1.19
28-Aug2008 | 107 | 107 1.06 1.05 076 | 087 1.20 1.13 1.02 0.78
22-0ct-2008 | 079| 080 0.79 0.83 1.08| 086| 1.10 0.95 0.79 0.78
2-May-2008 | 073| 073| 073 0.76 075| 071] 0.5 0.78 0.79 0.80
MEAN 0.85| 085] o085 0.88 093] o086] 1.02 0.96 0.89 0.86

RUNOFF DEPTH RPS RUNOFF DEPTH RPS
3-5ep-2008 | 120] 1.28] 126 1.25 113 - 1.35 1.33 1.37 1.54
5Jun-2008 | 170 | 171 1.72 1.78 226 - 1.50 1.49 1.43 1.15
28-Aug2008 | 173 | 173 168 1.67 111 - 1.95 1.91 1.96 2.07
22-0ct-2008 | 070| 077 0.77 0.85 088 | - 0.83 0.83 0.94 1.03
2-May-2008 | 128 | 145| 1.46 1.36 169 | - 1.49 1.47 1.64 1.84
MEAN 132 139 138 1.38 141] - 1.42 141 1.47 1.52
TIME TO PEAK RPS TIME TO PEAK RPS

3-5ep-2008 | 054| 052] 051 0.48 050| 022] 032 0.45 0.88 0.92
5-Jun-2008 | 078| 077 0.77 0.82 1.09| 036| 053 0.82 1.30 1.62
28-Aug-2008 | 036 | 036 038 0.37 040 | 021 049 0.57 0.42 0.92
22-0ct-2008 | 047| 045| 043 0.47 072| 038 069 0.41 0.66 0.94
2-May-2008 | 020| 018] 0.8 0.21 027| 014 0.30 0.15 0.22 0.55
MEAN 047| 046] o045 0.47 059| 026 046 0.48 0.70 0.99
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CHAPTER 9

9 CALIBRATION/VALIDATION OF A
DISTRIBUTED HYDROLOGIC MODEL AT
MBDB

This section reveals findings in the previous sections applied to the MBDB using a
distributed model with a resolution of 200 m and radar information for 2003.
Predictability limits (maximum and minimum peak flows and runoff depths) were
calculated for the calibration developed at the basins. The hydrologic model of 100 m
was recommended in the previous section however the 200 m hydrologic model was
tested because not significance differences were found for peak flow and runoff depth,
variables analyzed here.

The rainfall source used to run one year simulation (2003) was the NWS MPE radar-
rainfall products. This source has a mean systematic error (Bias) correction for Puerto
Rico and in some places cannot remove the local bias, correctly, principally for small
areas. In Chapter 7 an evaluation of the efficiency in removing the local Bias from MPE
was conducted at the TBSW and additionally bias corrections need to be developed for
small subwatersheds.

At observed flow locations, the base flow must be removed to obtain runoff

observations. The PART computer program analyzes daily streamflow records and
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estimates a daily ground water discharge. The method designates groundwater discharge
to be equal to streamflow on days that fit a requirement of antecedent recession, linearly
interpolates groundwater discharge for other days, and is applied to a long period of
record to obtain an estimate of the mean rate of groundwater discharge and remove base
flow at daily a time step (Rutledge, 1998).

Table 9-1 shows the results for monthly base flow separation for 2003 at three USGS
stream flow stations obtained from the PART computer model (Figure 9-1-A-B-C for Rio
Guanajibo near Hormigueros, Rio Grande de Afiasco near San Sebastian and Rio Rosario
near Hormigueros, respectively). Additionally daily computations were obtained to add
them to the Vflo runoff results for comparison with the observed stream flow.

Table 9-1 Base flow separation at 3 USGS streamflow stations for 2003

Guanajibo near ARasco near San Rosario near Hormigueros
Hormigueros Sebastian
Stream | Base | Runoff | Stream | Base | Runoff | Stream | Base Runoff
flow flow | (mm) | flow flow (mm) | flow flow (mm)
(mm) (mm) (mm) (mm) (mm) (mm)
Jan 10.2 9.4 0.8 44.2 41.9 2.3 32.0 30.7 1.3
Feb 4.8 4.1 0.8 28.2 25.7 2.5 25.1 23.6 1.5
March 4.1 2.8 1.3 20.6 18.5 2.0 19.3 17.3 2.0
Ap 33.3| 147 18.5 59.9 30.0 30.0 45.0 26.7 18.3
May 28.2| 185 9.7 231.6 | 1394 92.2 97.3 70.4 26.9
Jun 8.9 7.6 1.3 90.4 70.6 19.8 66.5 48.5 18.0
Jul 9.7 6.9 2.8 46.5 37.8 8.6 57.7 41.4 16.3
Aug 12.2 8.4 3.8 97.3 53.3 43.9 59.9 42.7 17.3
Sep 45.7 | 254 20.3 136.7 68.6 68.1 99.1 61.5 37.6
Oct 1234 76.7 46.7 280.7 | 1427 137.9 234.4 167.4 67.1
Nov 235.0 [ 1229 | 112.0| 4542 | 2555 | 198.6 265.4 170.4 95.0
Dic 726 | 485 24.1 170.2 | 125.5 44.7 122.4 94.5 27.9
Total 588.0 | 345.9 | 242.1| 1660.4 | 1009.7 | 650.7 | 1124.2 795.0 | 329.2
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Figure 9-1 Daily stream flow and baseflow computation for 3 USGS stations,

2003.
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Figure 9-2 shows the simulated and observed accumulated runoff depth for the three
USGS stations for 2003. The percent of errors for runoff depth around these values were
1.81 %, 1.07% and 4.47% for Guanajibo, Afiasco and Rosario USGS outlet points.
Nash—Sutcliffe model efficiency coefficients calculated for these outlet points were 0.46,

0.10 and 0.02, respectively.
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Figure 9-2 Runoff depth accumulated for the USGS stations for 2003 year

Some systematic errors in the MPE rainfall product were revealed in the simulation
period, where the MPE sensed larger amounts of rainfall than actually occurred within
the study MBDB area. In this cases the observed discharges were lower than the
simulated (Figure 9-3-A-B) for Afiasco and Rosario rivers. Additionally, maximum and
minimum discharges were calculated perturbing the roughness and hydraulic
conductivity within their limits evaluated in previous sections (0.25 and 1.75,

respectively), while setting the initial saturation to 0.25 and 0.95, respectively. It is clear
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that, for certain rainfall events, large differences between the modeled and observed data
exist (Figure 9-4-A-B), indicating systematic errors due to MPE rainfall quantification,

and limiting flood predictability in western Puerto Rico using the MPE radar product.
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Figure 9-3 Comparison between observed and simulated discharge for 2003
at hourly time step for: (A) Rio Grande de Afasco near San Sebastian and
(B) Rio Rosario near Hormigueros stations.
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The stream flow examples shown in Figure 9-4 A and B, illustrate cases in which
the upscaled model could not reproduce the observed flow because the rainfall could not
be quantified accurately using the MPE product. Forcing the model to produce maximum
and minimum peak flows by judiciously parameterizing the model showed that the
predictability limits of the model were well above the magnitude of the observed flow.

The implications of this result are that a better rainfall product is needed within the
study area before accurate flood forecasts can be expected. It is hoped that the high
resolution CASA radar product, currently under development, may fulfill this important

need.
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CHAPTER 10

10 CONCLUSIONS AND FUTURE WORK

A hydrologic model was evaluated for its potential to perform real-time flood
forecasting within the Mayagiiez Bay drainage basin (819.1 km?), located in western
Puerto Rico. Minimal run times, enhanced prediction skill, parameterization of variables
and the understanding the dynamics of the system are issues that need to be faced to
enhance flood prediction. In distributed models, the parameter values are physically
based and the watershed is represented by grids, which approximates the parameter
distribution and the initial conditions of the system. The modeler assigns the grid size
resolution to the model, rainfall input scales and parameter values in a subjective way;
subjective because the modeler has to select among various methods available for
assigning grid point values (e.g., slope), and each method can influence the hydrologic
result of the model. Each parameter and input are spatially and temporally scale-
dependent, probability distributions are not known a priori, and the implications, in terms
of uncertainty propagation through the system, are well understood.

This research provides a guide for the modeler to develop a hydrologic model
knowing the implications of scale and parameter uncertainties on the flow response in
small watershed where the uncertainties affect more the prediction and answers several

important research questions. An objective of this research was to address the three
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research questions given in Chapter 1. For convenience, the three research questions are

restated below.

RQ1. How flood prediction is affected by the spatial variability of point rainfall at

scales below that of the typical resolution of radar-based products?

RQ2. How does parameter resolution affect the model’s predictive capabilities

and the errors of the hydrologic system?

RQ3. Would the assumptions developed for the small scale enhance the

hydrologic predictability at larger scales?

The main conclusions that can be drawn from this research are presented below:

Rainfall variability was measured in a mountainous area of 4 km by 4 km (16 km?)
using a high density rain gauge network. High spatial variability over short
distances was measured. The standard deviation increased with increasing rainfall
depth and the trend slope line (coefficient of variation) between average rainfall
and standard deviation increased with increasing area of coverage (from 4.5 km?
to 16 km?), [RQ1].

NOAA’s MPE (Multisensor Precipitation Estimation) product was evaluated in an
area of 16 km? using the rain gauge network at hourly and daily time steps. MPE
overestimated rainfall at the hourly time step and underestimated at the daily time

step. Non significances were found in the hit rate between time steps. The

probability of detection (POD) by the radar increased with the time step from 0.57
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(hourly) to 0.833 (daily). False alarm rates were reduced with the larger time step,
[RQ1].

Large biases were found in the hourly time step and are associated with small
rainfall detections and the resolution of both instruments. The bias between radar
and the rain gauge network was event and time dependent. It is a random variable

and follows a normal with box-crox distribution, [RQ1].

Hydrologic predictability was studied as influenced by rainfall resolution inputs
and hydrologic model resolutions, indicating their respective effects on flow
response. The May 2 and September 8, 2008 events produced the greatest total
average rainfalls and standard deviations, with high and low values of 5 days
antecedent rainfall, respectively. No significant changes in total storm rainfall
were observed with the interpolations at different scales, but produced important

differences in rainfall intensity changes cell to cell through time, [RQ1].

The slope map is an important input to the model. Decreases in the average slope
will delay the time to peak and reduce peak flows. Up-scaling methods were
tested to conserve the average slope and Method 2 was recommended to upscale a
slope map in mountainous basins with high elevation variability over short
distances, [RQ2].

Rio Rosario watershed was most sensitive to overland roughness with a Sr
average of -13.7 followed by channel roughness with -7.4,overland hydraulic

conductivity with -3.3 and initial soil moisture with 2.8 for peak flow. Sr for Rio
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Grande de Afiasco and Rio Guanajibo watersheds indicate that the most sensitive
parameters were channel roughness with -13.8 and -19.0, respectively, followed
by overland roughness with -8.5 and -10.6 and initial soil moisture with 6.6 and
6.1 respectively, [RQ2]

Rio Rosario, Grande de Afiasco and Guanajibo watersheds were most sensitive to
initial soil moisture followed by overland hydraulic conductivity and soil depth
for runoff depth, [RQ2].

Variations between events can change the ranking of the input parameters studied.
This was observed in the case of both variables (peak flow and runoff depth)
indicating time or event dependence in Sr computations related to antecedent soil
moisture, [RQ2]

Rainfall ensembles for different resolutions were evaluated and a guide was
presented in which the modeler can decide or to know the uncertainties associated
with each resolution. In general, the rainfall ensemble at 100 m, followed by 400
m and 200 m can represent very well the peak flow, volume and time to peak,
three variables that indicate a good agreement between the observed hydrograph

and the prediction, [RQ1, RQ2, RQ3].

Hydrographs that present various bumps during the event can be represented very
well with the hydrologic model at 10 m grid size spacing, locating the time to
peak with the corresponding peak flow. However, this grid size has problems with

volume computations for dry conditions. Another hydrologic model that can
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capture the bumps is the 100 m grid size spacing and can produce the results for

runoff depth very well, [RQ2, RQ3].

Based on the analyses presented in this research, the recommended upscaled
rainfall resolution, which will provide equivalent accuracy with the 100 m rainfall
resolution, is 1000 m, and the recommended upscaled grid resolution, which will
provide equivalent accuracy with the 10 m resolution, is 100 m, [RQ1, RQ2].

Another useful result, but not specifically related to any of the research questions,
pertains to the estimation of potential evapotranspiration (PET). The
temperature/elevation linear regression equations of Goyal et al. (1988) were
evaluated to calculate the PET at a daily time step using the Hargreaves-Samani
equation and the results showed similar regression coefficients between observed
and calculated Tmax, Tmin and Tave values with the temperature/elevation lineal
regression equations by Goyal. The most sensitive parameter is the solar radiation,
because the temperature model (Goyal et al., 1988) cannot represent the spatial
variability of this parameter using the daily interpolation for extraterrestrial
radiation and the Tyax and Trin calculated with the elevation model. Therefore, the
use of equation 5-3 is recommended with measured values of solar radiation and
temperature values either measured or estimated using the Goyal et al. (1988)

method.
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For future works is recommended to include more events in the analysis for the
TBSW, covering different event types, magnitudes and antecedent soil moisture
condition as was covered in this research, from dry to wet conditions. Including more
events would validate the findings in this research.

Include Bias as an additional perturbation parameter, using a normal with Box-crox
transformation (lambda =0.15) probability distribution function, to evaluate the
uncertainty propagation through the hydrologic model.

The methodology used in this research to evaluate the rainfall resolution impact on
hydrologic response using the bias corrected MPE product, could be reevaluated using
the CASA radar data (when available) with high resolution grid size to decide which
resolution is desirable from a hydrologic point of view.

Currently, a high density rain gauge network, extending over the MBDB area, which
could be used to validate the NEXRAD rainfall estimates, does not exist. In the near
future, it is hoped that this rainfall resolution gap will be filled by the CASA radars and

that the hydrologic model formulated can be tested.
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