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A B S T R A C T

The structure tensor for vector valued images is most often defined as the average of

the scalar structure tensors in each band. The problem with this definition is the as-

sumption that all bands provide the same amount of edge information giving them

the same weights. As a result non-edge pixels can be reinforced and edges can be

weakened resulting in a poor performance by processes that depend on the struc-

ture tensor. Iterative processes, in particular, are vulnerable to this phenomenon.

In this work, a structure tensor for Hyperspectral Images (HSI) is proposed. The

initial matrix field is calculated using a weighted smoothed gradient. The weights

are based on the Heat Operator. This definition is motivated by the fact that in

HSI, neighboring spectral bands are highly correlated, as are the bands of its gradi-

ent. To use the heat operator, the smoothed gradient is modeled as the initial heat

distribution on a compact manifold M. A Tensor Anisotropic Nonlinear Diffusion

(TAND) method using the spectrally weighted structure tensor is proposed to do

two kind of processing: Image regularization known as Edge Enhancing Diffusion

(EED) and structure enhancement known as Coherence Enhancing Diffusion (CED).

Diffusion tensor and a stopping criteria were also developed in this work. Compar-

isons between methods show that the structure tensor with weights based on the
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heat operator better discriminates edges that need to be persistent during the iter-

ative process with EED and produces more complete edges with CED. Remotely

sensed and biological HSI are used in the experiments.
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R E S U M E N

El tensor de estructura para imágenes vectoriales es comúnmente definido como

el promedio de los tensores de estructura que ha sido previamente calculado para

cada banda de la imagen. El problema con esta definición es que ella asume que

todas las bandas proveen la misma cantidad de información de los bordes. Por

lo tanto le da el mismo peso a cada una de las bandas. Como resultado, pixe-

les que no son bordes son reforzados y los bordes pueden ser debilitados. Esto

hace que otros procesos que dependan del tensor de estructura den resultados

mediocres. Los procesos iterativos son los más vulnerables a este fenómeno. En

este trabajo se propone un tensor de estructura para imágenes HiperEspectrales

(IHE). El campo matricial inicial es calculado usando un gradiente suavizado pon-

derado. Los pesos son basados en el operador de calor. Esta definición es motivada

por una propiedad de las IHE y de su gradiente. Esta es: las bandas espectrales

que están cercanas son altamente correlacionadas. Para poder hacer uso del op-

erador del calor, el gradiente suavizado es modelado como la distribucion inicial

de calor en una variedad compacta denotada por M. Este tensor de estructura

será aplicado a la Difusión Anisotrópica No Lineal basada en Tensores (DANT)
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para hacer Difusión que Preserva Bordes (DPB) y Difusión que Realza Coherencia

(DRC). Comparación entre los métodos muestran que el tensor de estructura pon-

derado con pesos basados en el operador de calor discrimina mejor los bordes con

DPB y produce bordes mas completos con DRC. Estos métodos han sido aplicados

a IHE sensadas remotamente como tambien imágenes biológicas adquiridas con

microscopios hiperespectrales.
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1
B A C K G R O U N D

1.1 introduction

During the last three decades, hyperspectral remote sensing has been studied and

developed as a powerful and versatile field. Hyperspectral remote sensors, collect

image data simultaneously in hundreds of narrow, adjacent spectral bands. Hy-

perspectral images (HSI) are used to monitor different types of ecosystems, detect

and identify objects such as minerals, terrestrial vegetation, man-made materials

and backgrounds. The main advantage of this technology is that it provides a con-

tinuous and complete record of spectral responses of materials over a wavelength-

interval of the electromagnetic spectrum. However, this same advantage leads to

complexity in terms of processing and analysis. In addition, the capability of detec-

tion and identification of objects is reduced by physical and/or chemical variability

of the material spectra, and noise and degradation produced by the sensing system.

Hyperspectral images (HSI) contain a wealth of information. The high dimension

of this kind of data makes it difficult to apply methods used in pattern recognition

or computer vision without model adaptation or extension. Even methods used

in the study of Multispectral images (MSI) may not produce good results when

applied to HSI directly.

Spectral methods used in vector-valued images such as MSI can be extended to

HSI. Usually the extension is done by seeing HSI as a set of spectral signatures of

the material in the scene. Then vector methods to process spectra are used. For

1
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example, Spectral Angle Mapper (SAM) and statistical methods in which each pixel

(a vector) is seen as a random variable. Usually those methods do not care about

the spatial position of the pixels and do not have into account its neighbors. As

consequence of ignoring the spatial information those methods perform poorly [1].

One can think in another way of processing HSI by seeing them as a set of gray

value images (or bands), each of them showing different features of the same scene.

Then, extend computer vision methods used in gray images by processing them

in a band by band mode. There are several problems with this kind of processing:

(i) it ignores the physics involved in capturing the spectrum of each pixel and its

local correlation. (ii) Given an object in the scene, some bands will show the whole

object, some others will show part of its features and in other bands, the object will

not appear at all. So, processing the bands independently will process the object

differently in each band producing unwanted discontinuities and artifacts [2, 3].

To obtain good results processing HSI it is necessary to include the spectral and

spatial information on the processing [4, 5].

The most stable and reliable descriptor of the spatial local structure of an image

is the Structure Tensor (ST) [6]. The structure tensor is based on the outer product

of the spatial gradient. This tensor is a symmetric positive semi-definite matrix,

that at each pixel determine the orientation of minimum and maximum fluctuation

of gray values in a neighborhood of the pixel. In the case of two dimensional (2-

D) images, the eigen-decomposition of the structure tensor can be written as the

sum of two expression that describe two basic local structures: linear and isotropic

structures. This is possible since it provides the main directions of the gradient in a

specified spatial neighborhood of a point. In addition, information on how strongly

the gradient is biased towards a particular direction, known as coherence, can be

extracted. Therefore, it can be used for both orientation estimation and analysis

of image structure [7]. It has proven its usefulness in many applications for gray
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value and color images such as corner detection [8], texture analysis [9, 10, 2, 11],

diffusion filtering [2, 12] and optic flow estimation [10, 13, 14]. It is also used to

define edge detectors [15, 16, 17], and to find the local structure [18, 19, 20, 21] and

the structure inside patches [22] in several processes used to spatially regularize

such images.

The structure tensor is used in a divergence-driven Partial Differential Equa-

tion (PDE)-based anisotropic diffusion method using a tensor, known as Tensor

Anisotropic Nonlinear Diffusion (TAND). The eigen-decomposition of the struc-

ture tensor for 2D-images produce linear and isotropic structures that can be used

to design filters for image regularization and structure enhancement in images.

Image regularization processes consist in smoothing the image preserving its edges.

Structure Enhancement processes consist in the enhancement of only some features in

the images leaving the rest of the image almost intact. In the case of 2D images,

flow-like structures can be distinguished from the linear structures found using

the structure tensor. They are present in clouds, wakes, plumes, grass fields, fluids

inside cells and so on. These structures can be found by looking to the orientation

of lowest fluctuation of gray value in an image, which is known as coherence ori-

entation; and it is determined by the eigenvector of the structure tensor with the

smallest eigenvalue. The structure enhancement process in the coherence orienta-

tion is known as coherence enhancement; informally speaking, it is also known as

enhancing flow-like structures or completing interrupted lines. To the best of our

knowledge, this process have never been used to enhance HSI. Coherence enhance-

ment have been studied in the context of gray and color images [23] by pattern

recognition and computer vision fields and used for automatic grading of fabrics

or wood surfaces [20], segmenting two-photon laser scanning microscopy images

[24], enhancing gray level fingerprint images [6], enhancing corners [25] and three
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dimensional (3-D) medical imaging [20, 26]. But little has been done with vector-

valued data such as MSI or HSI.

On the other hand, image regularization using the structure tensor in a divergence-

driven PDE setting have not been applied to HSI. The closest method [5] which

consists in smoothing along the edges and inhibit the diffusing across it using a

scalar diffusivity function works very well for high contrast edges otherwise fail

(see Chapter IV). Since this method does not find the directions of change in the

gradient it only can be used it for image regularization and not for structure en-

hancement. TAND is a method designed to process color images. In this work it

will be presented an extension for HSI.

1.2 hyperspectral remote sensing

Remote sensing is the field of study associated with extracting information about

an object without coming into physical contact with it [27]. This is a broad defi-

nition that includes vision, astronomy, space probes, most medical devices, sonar

and many other areas. For the interest of this work, this definition is restricted

to the objects observed on the Earth’s surface. The data consist in sensing and

recording reflected or emitted electromagnetic (EM) radiation from the objects and

it is acquired by aircraft and satellite [28, 27]. There are two main types of remote

sensing: passive remote sensing and active remote sensing. Passive remote sensing

uses sensors that collect energy that is either emitted directly by the objects such

as thermal self emission or reflected from natural sources, such as the sun. While

active ones emits energy in order to scan objects and areas whereupon a sensor

then detects and measures the radiation that is reflected or back scattered from the

target [27].
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Figure 1.2.1: Remote sensing acquisition and spectral sampling. (a) Remote Sensing and
EMR. (b) Types of spectral sampling in spectral imaging, taken from (Resmini
[30])

Hyperspectral Remote Sensing belong to the passive aerospace remote sensing

of the earth with emphasis on the 0.4 − 12 μm interval in the EM spectrum. Hy-

perspectral Remote sensing is based in the fact that materials reflect, absorb, and

emit ElectroMagnetic Radiation (EMR) at specific wavelengths, see Figure 1.2.1(a).

A hyperspectral image (HSI) is one in which the spectral signature from each pixel

is measured at many narrow, contiguous wavelength intervals. Such an image

provides for every pixel high resolution spectral signatures, which gives informa-

tion about the energy-matter interaction ([29]). Multispectral sensors, on the other

hand, acquire images simultaneously but at separate non-contiguous and broad

wavelength intervals or bands in the electromagnetic spectrum. They typically

record tens of bands. The most simple sensor is the one that produces a panchro-

matic image, this is one very broad band in the visual wavelength range rendered

in black and white, see Figure 1.2.1(b).

The quality of remote sensing data consists of its spatial, spectral, radiometric

and temporal resolutions. Spatial resolution refers to the area that the size of a pixel
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may correspond to. Usually square areas ranging in side length from 1 to 1,000

meters (3.3 to 3,300 ft). Spectral resolution refers to the wavelength width of the

different frequency bands recorded and the number of frequency bands recorded

by the platform. For example, the Hyperion sensor on Earth Observing-1 has

higher spectral resolution than Landsat TM. Hyperion resolves 220 bands from 0.4

to 2.5 �m, with a spectral resolution of � 10 to 11 nm per band, while Landsat TM

resolves seven bands, including several in the infra-red spectrum, ranging from a

spectral resolution of 0.07 to 2.1 �m. Radiometric resolution refers to the number of

different intensities of radiation the sensor is able to distinguish. Typically, this

ranges from 8 to 14 bits, corresponding to 256 levels of the gray scale and up

to 16,384 intensities or "shades" of color, in each band. It also depends on the

instrument noise. Temporal resolution refers to the frequency of flyovers by the

satellite or plane. In general, this is relevant in time-series studies or studies that

requires an averaged or mosaic image for monitoring conditions on the ground

[28].

Figure 1.2.2 illustrates how spatial and spectral information is represented by a

cube whose base is the spatial coordinates row and column, and the depth is spec-

tral information (bands or channels).With the spectral signatures provided in HSIs,

it is possible to discriminate between materials or identify different objects based

on spectroscopic techniques. Few materials can be distinguished using spectral

features with multispectral imagery and none with panchromatic imagery. The

discriminatory capability of HSIs, advances in analysis and development of fast

methods for processing make this technology suitable to be used in fields such as

environmental monitoring [31], precision farming [32], insurance and car naviga-

tion at global and local scales. More recently, Hyperspectral imaging technology

has found applications beyond earth remote sensing in agriculture[33], medical

diagnosis[34, 35], biology [36], pharmaceutical industry [37], forensics medicine
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Figure 1.2.2: Hyperspectral remote sensing Acquisition.

[38], food quality and control [39], image segmentation [40], archeology[41], just to

name a few.

Digital Image Processing (DIP) refers to the usage of a digital computer to pro-

cess digital images. Such process can be characterized by its input-output, DIP

includes processes whose inputs and outputs are images, in addition, it includes

processes that extract attributes from images, up to and including the recognition

of individual objects ([42]). According to these authors there is a paradigm that con-

siders three types of computerized processes: low-, mid-, and high-level processes.

A low-level process is characterized by the fact that both its inputs and outputs are

images. This process involves primitive operations such as image pre-processing

to reduce noise, contrast enhancement, and image sharpening. A mid-level pro-

cess is characterized by the fact that its inputs generally are images, but its outputs

are attributes extracted from those images (e.g., edges, contours, or, the identity of

individual objects). Some tasks in this processing are segmentation and classifica-

tion. And finally, higher-level processing involves interpretation of the recognized

objects, as in image analysis, and, at the far end, computer vision, performing
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the cognitive functions normally associated with vision. DIP overlaps with image

analysis in the area of recognition of individual regions or objects in an image

[42]. Therefore, in this paradigm, this thesis belong to a low-level image processing

that will aid mid-level image processes as part of a system that its main goal is

information extraction with the aid of computer algorithms.

In this work, low-level image processing such as image enhancement and regu-

larization methods will be proposed so higher level processes such as classification,

anomaly detection, and target detection can be improved. Classification of pixels in

a scene is the process of assigning a class to each pixel. On the other hand, given

a target material of known spectral composition target detection attempts to locate

pixels in the scene that are similar in spectrum to the target. Anomaly detection in a

scene tries to locate pixels that are different from all other pixels around it, usually

is used when the target model is unknown. Some practical difficulties in target de-

tection are: (i) target spectra is mixed with its surrounding spectra and (ii) classical

algorithms based on Principal Components Analysis (PCA) may not work. Due

to first problem, the brute force algorithm of comparing each pixel in the image

with our spectral library signature can be fruitless, producing high rate of false

alarms 1 or it will miss the target. The second problem arises because in many

cases the target compresses few pixels in the image compared to its background,

then a method such as Principal Components Analysis (PCA) will put the target

signal in the smallest variance bands which frequently are not taken into account

for having unwanted signals. So naive and classical approaches do not help in this

problem. Given all the aforementioned applications, it is a necessity to perform

target detection in an accurate and timely manner. There are many different types

of target detection algorithms used in HSI (for a review see [29, 43]). Many of

them can be classified either as geometrical or statistical models. Both models try

1 This is, when a pixel is classified as target when it is not
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to suppress the background or clutter and enhance the contrast of potential targets.

The geometrical models use structured backgrounds and the statistical models do

not make any assumptions on the background and use statistical distributions to

characterize it.

Image regularization or restoration refers to a set of methods in which the noisy

image I is seen as a surface. Then, regularizing the image I is equivalent to to

find a smooth surface similar enough to the original noisy one [3]. Figure 1.2.3(a)

shows band 2 of the HSI Indian Pines (see Section 5.1.1), Figure 1.2.3(b) shows its

surface. The surface is plotted by making the z− axis equal to the intensity of

each spatial position of the band. Figure 1.2.3(c) shows a regularized version of (a)

using TAND for Edge Enhancing Diffusion (EED) after two iterations. Note that

the majority of edges are preserved and denoised while the homogeneous regions

have been smoothed. This is also observable in Figure 1.2.3(d).

Structure Enhancement is a set of methods that look for a surface close to I but only

some local features are smoothed [44]2. Figure 1.2.4 shows the band 2 of a thyroid

tissue HSI in (a). (b) shows its respective noisy surface. Figure 1.2.4(b) show the

same band after 30 iterations of the proposed TAND for Coherence Enhancement

Diffusion (CED) and (c) its surface. Comparing the numbered regions from 1 to

4 in the images it can be seen that there is almost no smoothing on those regions.

While in the edges of the cells (showed in blue) have been smoothed. In this case

the image have been enhanced and not regularized since there are big regions that

have not been smoothed.

This thesis is focused on developing image regularization and structure enhance-

ment methods to preprocess HSI, such that higher level processes can be improved.

2 This definition is suggested in §3.4
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Figure 1.2.3: Image regularization, treated as the evolution of a surface.(a) Original Image.
(b) Noisy surface of (a). (c) Smoothed image (d) regularized surface of (c). (b)
and (c) where processed using the proposed TAND-EED in Chapter IV.
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Figure 1.2.4: Structure Enhancement. (a) Original image. (b) Surface of the original image.
(c) Original image after 30 iterations of the proposed TAND-CED as structure
enhancement method. (d) Surface of the image in (d).
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1.3 problem statement

The structure tensor for vector valued images is most often defined as the average

of the scalar structure tensors in each band. The problem with this definition

is the assumption that all bands provide the same amount of edge information

giving them the same weights. As a result non-edge pixels can be reinforced and

edges can be weakened resulting in poor performance by processes that depend

on the structure tensor. Iterative processes, in particular, are vulnerable to this

phenomenon. As mentioned in the last section the Structure Tensor (ST) is a tool

used to aid in the solution of a variety of image processing problems, applied in

the majority of cases to gray value and color images. So it is necessary to find a

way to adapt this tool to vector valued images. In particular, the class of vector

valued images in which their values are highly correlated in a local neighborhood

of its spectral dimension. The classical definition of the structure tensor is based

on spatial information.

One research question that this work is focus on is:

• How the spectral information of vector valued images can be included in the

definition of a structure tensor for such images? So the structure tensor can

distinguish between the interesting features that need to be preserved, while

removing the unimportant ones.

Several Geometric PDE-based local diffusion methods depend on the structure ten-

sor. One of them is known as Tensor Anisotropic Nonlinear Diffusion (TAND)

for Edge Enhancing diffusion (EED) and Coherence Enhancing Diffusion (CED).

Therefore, another research question presented in this thesis is:
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• How TAND will be affected with a structure tensor that includes the spec-

tral information? Does TAND need modifications to take advantage of the

information produced by this structure tensor?

Geometric PDE-based local diffusion methods for image processing are highly ef-

fective [12, 2]. After the discretization of the PDE, the best way to solve them, in

terms of time to compute the desired diffusion, accuracy and quality of the so-

lution, is by using semi-implicit methods [45, 46]. The price paid is that those

methods produce linear systems that need to be solved at each iteration. Depend-

ing on the size of the neighborhood used to discretize the derivatives, these linear

systems have special structures. For vector valued images, A can be five-diagonal if

4-neighbors are used and nine-diagonal if eight neighbors are used. Nine-diagonal

linear systems also result if the discretization includes mixed derivatives as is the

case of TAND. When A is five diagonal, there are methods, such as the Thomas

algorithm also known as forward and backward substitution, that solve those problems

in O(n) time [45]. There are no known efficient methods to solve a linear system

when A is nine-diagonal. So, the idea is to find a method that helps the linear

system to converge quicker, to find the desired diffusion. Then another question

that this work will try to answer is:

• How to accelerate the convergence of a nine diagonal linear system coming

from the discretization of a Geometrical PDE applied to vector valued images.

1.4 technical approach

This thesis presents a method to incorporate the spectral information inherent on

a HSI in the ST. The initial matrix field (see Section 2.3.5) is calculated using a

weighted smoothed gradient. The spectral weights to fuse the data from each band

of the structure tensor are proposed. The weights will be defined using the heat
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Figure 1.4.1: Main steps used to calculate the proposed Structure Tensor.

operator acting on the spectrum of each pixel of the smoothed gradient. To use the

heat operator, the smoothed gradient is modeled as the initial heat distribution on a

compact manifold M. This model is motivated by the fact that in HSIs, neighboring

spectral bands are highly correlated, as are the bands of its gradient. Hence, instead

of weighting each smoothed gradient pixel using a uniform distribution, as in the

classic definition, the heat operator acting on each pixel is used. Figure 1.4.1 shows

a flow chart of the main step used to calculate the proposed structure tensor.

Using the spectrally adapted structure tensor proposed in this thesis a Tensor

Anisotropic Nonlinear Diffusion (TAND) method is proposed and studied. The

diffusion tensors are modified so TAND take full advantage of the information

produced by the structure tensor. Diffusion tensors were proposed for TAND

for Edge Enhancement Diffusion (EED) and for Coherence Enhancement Diffu-
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sion (CED). Those proposed diffusion tensors used the orientation and eigenvalues

of heat weighted structure tensor developed in Chapter 4. This structure tensor

make TAND adaptive to the spectral characteristics of HSI. This structure tensor is

presented in the linear framework since it is linear in the first iteration. However,

in succeeding iterations, TAND finds the structure tensor of the smoothed image

of the former iteration and the iterative process results in a non-linear structure

tensor. The diffusion tensor proposed for TAND-EED produced less blurred edges

than using Weickert’s diffusion tensor. This was achieved by adapting the small-

est eigenvalue to the features in the images. The proposed diffusion tensor for

TAND-CED is more sensitive to the values of the contrast parameter used to define

the edges, while Weickert’s one is sensitive to its square. The experiments in this

thesis show that using the heat weighted structure tensor help the diffusion tensor

TAND-EED to better discriminate which edges to keep longer as TAND-EED iter-

ate. It also help TAND-CED to produce less broken edges and to obtain a better

structure enhancement than using the classical structure tensor. Figure 1.4.2 shows

a flow chart of the steps need for TAND.

All aspects of TAND implementation have been studied. After implementing

three methods to discretize the derivatives, the standard central difference scheme

used to discretize the mixed derivatives ∂xy, ∂yx, and the standard central differ-

ence scheme applied to half distances to discretize ∂2
x and ∂2

y obtained good results

in term of interpolations, less computational time and good results. The perfor-

mance of two methods to solve non-symmetric linear systems was studied to solve

the linear system, BiCGStab and GMRES. BiCGStab was chosen since it needed less

iterations and less time to find a solution. A preconditioner is proposed. To study

which is the best preconditioning method to accelerate the solution of TAND’s lin-

ear system comparison with standard preconditioning methods, ILU(0) and the
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Figure 1.4.2: TAND Flow chart .

Jacobi explicit diagonalization is carry out. The ILU(0) need less iterations and less

time to find the solution.

1.5 thesis contributions

The Main contributions of this thesis is:

• A framework for the spectrally adapted structure tensor for vector-valued

images.

Since the structure tensor is a tool that can be used for so many image processing

tasks, it is of great importance to have a framework that adapt this kind of tool to

vector-valued data by taking into account their spectral information. Having that

in mind, this thesis also presents the following important contributions that deal
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with the practical aspects and applications of proposing a spectrally adapted ST in

particular to hyperspectral images:

• An spectrally adapted structure tensor is proposed for vector-valued images

that locally are highly correlated in its spectral dimension.

• Diffusion tensors for Tensor Anisotropic Nonlinear Diffusion Method are pro-

posed and studied.

This thesis belong to the sub-field of Computational Signal and Image Processing

in the Computer Science and Engineering specialty of the Computing and Informa-

tion Sciences and Engineering (CISE) Ph.D program. The engineering component

of this work is represented by the models used to develop the framework and

the design of the filters used. The computational component is represented by

the design and implementation of the algorithms used. The representation of the

edge information of HSI encoded by the proposed structure tensor and its part in

the transformation of the images using TAND summarize the information science

component of this work.

1.6 thesis overview

This thesis is organized as follows: Chapter 1 presents mathematical definitions

and notation. Chapter 2 presents an overview of the classical structure tensor and

several variants. It also give an overview of the state of the art of the Divergence-

based PDE diffusion and of Tensor Anisotropic Nonlinear Diffusion (TAND). Chap-

ter III presents the proposed Structure Tensor. Chapter IV introduces the proposed

diffusion tensors for TAND. Chapter V presents the experimental results show-

ing the effectiveness of the structure tensor and comparing the proposed spectrally

adapted TAND with the state of the art. Chapter VI will discuss some ethical issues
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on the public access to remote sensing imagery. Chapter VII presents conclusions

and future work.



2
L I T E R AT U R E R E V I E W A N D D E F I N I T I O N S

2.1 mathematical notation

2.1.1 Definition of Images

In this digital era, digital images are stored in computers using discrete represen-

tations of the data, such as vectors, matrices, etc. Recently a Discrete Exterior

Calculus theory [47] have been developed due to the necessity of such a theory

and also due to the fact that historically the discrete setting have always existed. In

Discrete Calculus the discrete domain is treated as entirely its own domain and not

as a sampling of a continuous counterpart. This theory found equivalences to the

main results of Continuous Calculus using topological properties of many of those

results. However, in this work this setting is not used. Instead of a discrete theory,

here it is used discretization methods to approximate continuous solutions. It is

assumed that the images as discrete signals can be approximated by continuous

mathematical functions, or at least piecewise continuous. This hypothesis implic-

itly assumes that the spatial discretization is fine enough, that is, the sampling step

between values is small enough [12]. This assumption is not accepted in all circles.

Some discussion can be found in [48] but still the application of classical mathe-

matical tools and continuous models in image processing has proved to be really

useful to solve many problems and in this work it is used when needed.

19
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Let Ω ⊂ Rd be a closed spatial domain of dimension d ∈ N+. For 2D images,

d = 2, for 3D images, that is volumes, d = 3 and for functions defined on a subset

of R, d = 1. A functional definition of scalar and vector valued images will be

given.

A scalar image is defined as:

I :

∣∣∣∣∣∣∣
Ω ⊂ Rd → R

x → I(x)

If d = 1 then x = x , if d = 2 then x = (x, y) and x = (x, y, z) when d = 3. Note

that it is assumed that I(x) takes values in the continuous space R, even if pixel

values of digital images are discrete and bounded. Scalar images produce one

single intensity/radiance value per pixel representing what it is known as gray-

level images and some volumes. On the other hand, a vector valued image at each

position x produces a vector of dimension m ∈ N+, that is:

I :

∣∣∣∣∣∣∣
Ω ⊂ Rd → Rm

x → I(x)

Therefore, in color images, that correspond to m = 3, a pixel at position x will be

a 3-entry vector . Vector-valued images can be represented using scalar images as

follows:

∀x ∈ Ω, I (x) = (I1 (x) , ..., Im (x))T

where Ii : Ω → R is a scalar image, 1 ≤ i ≤ m and the superscript T indicates

the matrix transpose operation. Each scalar image is known as a band or channel.

Generally, multi-valued variables will be denoted by bold letters. This includes

vector-valued as well as matrix-valued images (i.e when I : Ω → Rd×e, d, e ∈ N).
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Figure 2.1.1: Convolution. (a) Convolution of a small image I and a "flipped" kernel, K. The
labels within each grid square are used to identify the position of the pixels.
(b) The kernel is "flipped" to calculate the convolution.

2.1.2 Convolution

Convolution denoted by ∗ is a simple mathematical operation used to combine two

signals, f and g to form a third one. The combination is done by calculating the

amount of overlap of f as it is shifted over g. Convolution of two functions over a

finite range [0, t], for gray level images t = 255. For an J × L image the convolution

is given by:

[ f ∗ g] (v, w) =
1
JL

J,L

∑
j,l=0

f [v − j, w − l]g[j, l]

In Image Processing convolution can be used to implement operators whose

output pixel values are simple linear combinations of certain input pixel values.

It provides a way to combine two arrays of numbers, generally of different sizes,

but of the same dimensionality, to produce a third array of numbers of the same

dimensionality. As shown in Figure 2.1.1, one of the input arrays can be a 2D

image I, the second array is usually much smaller and two-dimensional although
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it may be just a single pixel thick, and is known as the kernel. Note that this

kernel has been rotated 180ocounterclockwise. The convolution is performed by

sliding the kernel over the image, generally starting at the top left corner. In the

strict definition of convolution, the kernel is moved through all the positions where

its fits entirely within the boundaries of the image. In practice, this restriction is

relaxed by extending the domain Ω, so the borders of the image I can be included

in the convolution, this process is known as boundary conditions. There are different

ways to do the extension of Ω:

• Neumann: symmetrically mirroring the pixels at the border of I.

• Dirichlet: everything outside of I is set to zero.

• Periodic: the plane is tiled with copies of I

• Reflective: the plane is tiled with copies of I, which are mirrored at each

boundary. In this thesis the Neumann boundary condition will be used.

2.1.3 Image Derivatives

The derivative of an image I with respect to a variable w, denoted by, Iw = ∂I
∂w ,

produces an image of the same size as I but with the changes of intensity in the

direction w.

For a vector valued image I, its derivative with respect to a variable w at position

p = (xi, yj), Iw (p) ∈ Rm is defined as:

Iw =

(
∂I1

∂w
, ...,

∂Im

∂w

)T
.

The image gradient is the derivative of a scalar image with respect to its spatial

coordinates x, it is denoted by: ∇I : Ω → Rdand defined as:
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∇I =
[
Ix, Iy

]T f or d = 2

∇I forms a vector valued field representing the direction and magnitude of max-

imum variations in the image. The norm of the gradient, ‖∇I‖ is defined as :

‖∇I‖ =
√

I2
x + I2

y f or d = 2.

‖∇I‖ is an image that gives a scalar and point-wise measure of the image varia-

tions.

2.1.4 Some basic kernels

2.1.4.1 The mean Kernel

The mean kernel is a simple, intuitive and easy to implement method of smoothing

images. It is often used to reduce noise in images. A 3 × 3 mean filter is given by:

K =
1
9

⎡
⎢⎣ 1 1 1

1 1 1
1 1 1

⎤
⎥⎦

2.1.4.2 The Median Filter

The median kernel is another method of smoothing images and reduce noise. It

is particularly very effective with salt and pepper noise. The median filter does

not create a weighted average as the mean kernel. Instead, it checks the n × n

neighborhood around each pixel in the image and decides whether or not it is

representative of its surroundings. In the median filter, the pixel value is replaced

by the median of the values of its n × n neighborhood .
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2.1.4.3 The Gaussian Kernel.

This kernel is based on the zero mean Gaussian distribution with standard devia-

tion σ:

Gσ (x, y) =
1

2πσ
e−

x2+y2

2σ2 = Gσ(x)Gσ(y). (2.1.1)

This is a 2D convolution operator that in image processing it is used to "blur"

images, and remove detail and noise. The operator in (2.1.1) has a special property

that it is separable, that is, it can be expressed as the convolution of two 1-D ker-

nels. Thus, the 2-D convolution can be performed by first convolving the image

with a 1-D Gaussian in the x direction, and then convolving with the trasposed

1-D Gaussian in the y direction. In theory, the Gaussian distribution is non-zero

everywhere, which would require an infinitely large convolution kernel, but in

practice the kernel is effectively zero more than about six standard deviations from

the mean, and so it is truncated at this point [42]. An alternative is to truncate it

using a threshold, a small value as 0.0001 or less is used, see Figure 2.1.2. Those

kernels are normalized by the sum of the absolute vale of its entries so the kernel

sum to one.

2.1.4.4 Derivative of a Gaussian kernel

The derivatives of the Gaussian kernel in the x and y−direction are calculated

based on the derivative of the continuous Gaussian distribution. The derivative of

the Gaussian kernel in the x and y−direction will be denoted for simplicity by Gx

and Gy instead of (Gσ)x and (Gσ)y. They are defined as follows:

Gx (x, y) = − x
2πσ3 e−

x2+y2

2σ2 = − x
σ2 G (x, y)

and
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Figure 2.1.2: Gaussian distribution Gσ and its discrete approximation. (a) Gaussian dis-
tribution Gσwith standard variation σ = 1. Approximation obtained after
truncating Gσ at 1 × 10−4, producing a 9 × 9 Gaussian kernel Kσ for σ = 1.

Gy (x, y) = − y
2πσ3 e−

x2+y2

2σ2 = − y
σ2 G (x, y)

Its second derivatives are given by:

Gxx (x, y) =
(
x2 − σ2)

σ4 G (x, y) , Gyy (x, y) =
(
y2 − σ2)

σ4 G (x, y)

and

Gxy (x, y) =
xy
σ4 G (x, y)

As with the Gaussian convolution, these filters are also truncated. They are

separable and symmetric. So, to calculate the derivatives of the Gaussian filter in

direction x and y, it is sufficient to calculate one. The other derivative is calculated

as the transpose of the one calculated
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Figure 2.1.3: Derivatives of the Gaussian kernel in x and y−direction. (a) Plot of the
x−derivative of the Gaussian distribution; (b) 2D Gx, the x−derivative of the
Gaussian kernel. (c)Plot of the y−derivative of the Gaussian distribution; (b)
2D Gy, the y−derivative of the Gaussian kernel.

2.1.4.5 The smoothed gradient.

The smoothed gradient of a scalar image I is defined as :

∇Iσ = ∇ (Gσ ∗ I) = ∇Gσ ∗ I (2.1.2)

This definition is possible since the gradient is linear and translation invariant so

it can be represented by a convolution. Then the associativity property of convolu-

tion can be used.

2.2 definition of tensor

In this thesis, the term tensor will be used to designate a symmetric and positive

semi-definite matrix. In image processing, these particular matrices take this name

for their association to the diffusion tensor [12]. It is important not to confuse them

with the multidimensional arrays from multi-linear algebra [49]. They can also be

classified as a symmetric second order tensor in Tensor Analysis. For more details

see [50]. The definition of a tensor has some important properties. Symmetry guar-
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antees invariance to rotations and at the same time assures that all the eigenvalues

of the matrix are real valued. The positive semi definiteness guarantees that all

of them are non-negative. Mathematically they are summarized in the following

definition:

Definition 1. Let Sd
+the space of all d × d tensors, this is, symmetric, positive semi-

definite matrices. T =
(
tij
) ∈ Sd

+then,

T is symmetric if and only if for all i, j ∈ [1, d], tij = tji

T is positive semi-definite if and only if for all a ∈ Rd, aTTa ≥ 0.

The definition of tensor provides special properties for the eigenvalues μk and

eigenvectors vk of T, such as:

T is real and symmetric if and only if vk form an orthonormal vector basis in Rd. This

means that for all k, l ∈ [1, d],

vk · vl = δkl =

⎧⎪⎨
⎪⎩

1 i f k = l

0 i f k �= l

T is positive semi-definite if and only if for all k ∈ [1, d], vk ≥ 0.

Therefore T may be written as:

T = RDRT (2.2.1)

where D ∈ Rd×dis a diagonal matrix of the eigenvalues μk,

D = diag (μ1, ..., μd) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1 0 · · · 0

0 . . . . . . ...

... . . . μd−1 0

0 · · · 0 μd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 2.2.1: Ellipsoidal representation of a 3D tensor. Ellipsoid with axis (a) μ1 � μ2 > μ3
(b) μ1 ≈ μ2 � μ3 (c) μ1 � μ2 ≈ μ3 (d) μ1 ≈ μ2 ≈ μ3. Taken from [52]

and it has determinant, det (R) = 1. R provides the orientation and D the diffusivities

of the tensor T. Note that this decomposition is known as principal component

analysis

2.2.1 Some Geometrical interpretations

From (2.2.1) T can be expressed using its eigen-decomposition as:

T =
d

∑
k=1

μkvkvT
k (2.2.2)

μi are the eigenvalues providing the average contrast along the eigenvectors, vi for

i = 1, ..., m. Note that the eigenvalues μk of T, and the corresponding eigenvec-

tors vk, k = 1, ..., m summarize the distribution of gradient directions within the

neighborhood of a pixel p [51].
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2.2.1.1 Tensor as ellipsoids

A simple geometrical interpretation of the eigen-decomposition (2.2.2) of tensor T

is as an ellipsoid where the semi-axes are equal to the eigenvalues and directed

along their corresponding eigenvectors [53].

2.2.1.2 Tensor as a sum of weighted elementary orthogonal tensors

An interpretation, see [12], of the eigen-decomposition (2.2.2) is that T can be con-

sidered as the sum of weighted elementary orthogonal tensors
(
vkvT

k
)
[12]. Since the vk

are an orthonormal basis, then the d eigenvalues of
(
vkvT

k
)

are : 1 for some eigen-

vector vk and 0 for the other d− 1 eigenvectors perpendicular to vk. The elementary

tensors
(
vkvT

k
)

can be viewed as thin ellipsoids with one axis of length 1 and the

others of length 0. In that form they represent the orientation of the tensor. A whole

tensor T is simply a combination of these (weighted) orthogonal orientations [12].

If for all k ∈ [1, d] the eigenvalues μk of T are equal to a constant μ then:

T =
d

∑
k=1

μvkvT
k = μIdd.

where Idd is the d × d identity matrix. in this case, T does not have a preferred

diffusion direction and it is independent of the orientation. So, T describes isotropic

structures and it is visualized as a sphere with a radius μ. The corresponding diffu-

sion process is done with the same weight in all the directions of the space.

2.2.1.3 Tensor as encoder of the local structure-Case 2-D and 3-D

Another way to visualize the geometrical representation of the eigen-decomposition

(2.2.2) of T is known as glyphs developed by Wiklund in [54]. Glyphs depict tensor

variables by mapping the tensor eigenvectors and eigenvalues to the orientation

and shape of a geometric primitive, such as a cuboid or ellipsoid [55]. They are



2.2 definition of tensor 30

Figure 2.2.2: Representation of basic local structures of a tensor T ∈ R2×2, using ten-
sor glyphs. (a) Linear structure when T1 is dominant, vectors v1, v2 are
the eigenvectors to the eigenvalues μ1 = 1, μ2 = 0.1 respectively. Right:
Isotropic structure when T2 is dominant, for this case the eigenvalues are
μ1 = 0.67, μ2 = 0.63 and have the same eigenvalues as in (a). This figure was
rendered using the tensor visualization tool T-FLASH [54].

commonly used to represent the state of a tensor field point-wise and their col-

lective behavior, when e.g. arranged in a grid, help to gain an intuition on the

change of shape and orientation of the tensors [56]. Ellipses are used for d = 2

or d-dimensional ellipsoids for d > 2. The eigenvectors becomes the axis of the

ellipsoids and the eigenvalues its magnitude, see Figure2.2.2. The difference with

the other ellipsoid representation is that the structures for all eigenvectors are color

coded. So in one representation it is depicted the behavior of all eigenvalues and

eigenvectors independently and in the same ellipsoid.

When the dimension of the tensor is d = 2, then from (2.2.2) the tensor T can be

written as:

T = μ1v1vT
1 + μ2v2vT

2 , μ1 ≥ μ2 (2.2.3)
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After some algebra manipulations,T can be decomposed into two parts: A linear

part T1 and the isotropic part T2 as

T = T1 + T2,

where

T1 = (μ1 − μ2)v1vT
1 , (2.2.4)

T2 = μ2(v1vT
1 + v2vT

2 ). (2.2.5)

This decomposition help us interpret and visualize the relative contributions of

the basic local structures: Linear and isotropic [54]. Figure 2.2.2 shows the tensor

glyph for each case. Figure 2.2.2(a) shows a tensor T where the linear local part,

T1, is dominant. T1 is visualized as a red spear whose length is proportional to the

magnitude of T1, see (2.2.4). The yellow circle shows the isotropic part, T2. Figure

2.2.2(b) shows T when T2 is dominant μ1 ≈ μ2 and it is visualized as a yellow circle

with radius μ = μ2. In this case the linear part T1has magnitude μ1.

For the three dimensional case d = 3, T is decomposed as:

T = μ1v1vT
1 + μ2v2vT

2 + μ3v3vT
3 , μ1 ≥ μ2 ≥ μ3 (2.2.6)

In the same way as for the 2D case, T can be decomposed as the contribution of

three basic local structures, this is:

T = T1 + T2 + T3

T1 describe the linear structures, T2 the planar structures and, T3 the isotropic

structures. They are defined as [54]:
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Figure 2.2.3: Representation of basic local structures of a tensor T ∈ R3×3, using tensor
glyphs.

Eigenvectors in this example are taken as the canonical base for R3, e1, e2, e3(a)
T1 is dominant, the eigenvalues are μ1 = 0.95, μ2 = 0.5, and ¯3 = 0.1. (b) T2 is
dominant, for this case the eigenvalues are μ1 = 0.95, μ2 = 0.85, and ¯3 = 0.3. (c)
T3 is dominant, μ1 = 0.68, μ2 = 0.65, and ¯2 = 0.6. This figure was rendered using
the tensor visualization tool T-FLASH [54].

T1 =(μ1 − μ2)v1vT
1 (2.2.7)

T2 =(μ2 − μ3)(v1vT
1 + v2vT

2 ) (2.2.8)

T3 =μ3(v1vT
1 + v2vT

2 + v3vT
3 ) (2.2.9)

Figure 2.2.3 shows the glyph representations of a tensor T with its decomposi-

tion. T1 is represented with the red spear, T2 is represented by the yellow sections,

and T3 is represented by the green regions in the glyph. Figure 2.2.3(a) shows

when T1 is dominant with eigenvalues μ1 = 0.95, μ2 = 0.5, and μ3 = 0.1. Fig-

ure 2.2.3(b) shows when T2 is dominant, for this case the eigenvalues are μ1 =

0.95, μ2 = 0.85, and μ3 = 0.3. Figure 2.2.3(c) shows when T3 is dominant, with

μ1 = 0.68, μ2 = 0.65, and μ3 = 0.6.
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2.2.2 Classification of local neighborhoods

The classification of the eigenvalues of the structure tensor produce very valuable

information. The following classification will be based on the rank of the matrix of

eigenvalues.

2.2.2.1 Classification of local neighborhoods: 2-D Case

The classification of local neighborhoods is done by finding the null space, that is,

by looking for eigenvalues that are zero. If the gray values in the direction of an

eigenvector vk do not change then μk = 0. The analysis of the eigenvalues for two

dimensional and 3 dimensional cases will be presented and aided with results in

Section 2.2.1.3. T1 and T2 are defined as in (2.2.4) and (2.2.5) respectively.

1. μ1 = μ2 = 0, rank 0 tensor. This is the null tensor, T = 0. The square Frobe-

nious norm of the gradient μ2
1 +μ2

2 is zero. In this case, the local neighborhood

has constant values. It belongs to an object with a homogeneous feature;

2. μ1 > μ2 = 0, rank 1 tensor. In this case, T2 = 0 and T1 is dominant, so this

tensor describes linear structures. In an image that could either be the ideal

edge (without noise) of an object or an oriented texture;

3. μ1 ≥ μ2 > 0, rank 2 tensor. There are several distinctive sub-cases to this case.

• μ1 = μ2, In this case T1 = 0 and T2 is dominant, so this tensor describes

an isotropic structure, i.e., it changes equally in all directions, see Figure

2.2.2(b).

• μ1 � μ2 ≈ 0. This is still a rank 2 tensor. This case describe a noisy edge

or a noisy oriented texture, as shown in Figure 2.2.2(a). This is the most

common case of edges on images extracted from sensors.
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2.2.2.2 Classification of local neighborhoods: 3-D Case

To describe the analysis of the classification of the eigenvalues in three dimensions,

T1, T2 and T3 will be used and defined as in (2.2.7), (2.2.8) and (2.2.9) respectively.

Some of the neighborhoods are extension of the two dimensional case.

1. μ1 = μ2 = μ3 = 0, rank 0 tensor. There is neither a preferred orientation of

signal variation nor significant variation, which corresponds to homogeneous

regions [57].

2. μ1 > μ2 = μ3 = 0, rank 1 tensor. T1 is dominant with coefficient equal to μ1,

T2 and T3 are equal to zero. The signal values change only in the direction

of v1. The neighborhood includes a boundary between two objects (surface)

or a layered texture [58]. Using the glyph representation, this will look like

Figure 2.2.2(a) but in 3D ;

3. μ1 ≥ μ2 > μ3 = 0, rank 2 tensor. In the general case, The signal values, i.e.,

gray values in the image, change in two directions which generate a plane,

and are constant in a third. v3 gives the direction of the constant gray values.

Using the glyph representation this will look like Figure 2.2.3(a) but without

the green region ;

• μ1 ≈ μ2 > μ3 = 0, T1 ≈ 0, T3 = 0 and T2 is dominant with coefficient

equal to μ2. This happens at the edge of a three-dimensional object in a

volumetric image [58]. Using the glyph representation this will look like

Figure 2.2.3(b) but without the green region.

4. μ1 ≥ μ2 ≥ μ3 > 0, rank 3 tensor. There is no preferred orientation of signal

variation. This is, the gray values change in all three directions. In the general

case, the glyph representation this will range from Figure 2.2.3(a) to (c) any

of those cases can happens. An special case to that is:
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• μ1 ≈ μ2 ≈ μ3 > 0, T3 is dominant with coefficient equal to μ3. The

signal variation is equal in all directions. This case represents a corner

or a junction in 3D or a region with isotropic noise [57, 58]. The glyph

representation is given by Figure 2.2.3(c).

In practice, it will not be checked whether the eigenvalues are zero but below

a critical threshold that is determined by the noise level in the image. Note that

this tensor is suitable to distinguish very well structures that result from signal

variation in one direction.

2.3 structure tensor

The structure tensor in this work will refer to the local structure tensor, that is, the

structure tensor defined in a neighborhood. In images, tensors are better suited

to find structures inside of a neighborhood in which the gray value only changes

in one direction, known as simple local neighborhood [59]. In these neighborhoods,

oriented structures are formed since the gray values are constant along lines. This

property of a neighborhood is known as local orientation [58].

2.3.1 Directions vs. orientation

The direction is defined over the full angle range of 2π (360°). Orientation will

be used where the angles has range of π (180°). This distinction is done since

two patterns that differ by an angle of π are indistinguishable inside a simple

neighborhood. On the other hand, two vectors that point in opposite directions,

i.e., differ by 180°, are different. An example of this is the gradient vector that
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always points in the direction where the gray values are increasing. Thus, the

direction of a simple neighborhood is different from the direction of a gradient.

2.3.2 Estimation of the Local Structure Tensor

The methods used to estimate the local structure tensor can be classified as:

• Gradient methods: These methods use the spatial gradient to determine the

signal orientation [11, 10, 8, 60].

• Local-energy method: This tries to find a representation of the orientation

based on the local energy method. The energy of the signal is quantified using

quadrature filters then the local structure is determined. These methods are

less related to our work and will not be presented here. They are based on

the work of Knutsson and his group [59, 61, 62, 63, 64].

2.3.3 Structure Tensor: The development of Gradient Based methods

The development of the structure tensor in image processing was driven by the

problem of finding the optimal local orientation in a neighborhood [58, 65, 66] and

the problem of defining an edge in multichannel images [67].

2.3.3.1 Optimization Problem

In this framework [58, 65, 66], The structure tensor results from the solution of an

optimization strategy to determine the orientation of a neighborhood; to find the

orientation that shows the least deviation from the directions of the gradient. Then

the idea is to maximize the squared scalar product between the gradient vector
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g = ∇I (p′) and the unit vector representing the local orientation, r, of an image

patch centered at location p:

maximize
(

gTr
)2

= max
θ

[∣∣∣gT
∣∣∣2 cos2 (θ)

]
, θ = ∠ (g, r) . (2.3.1)

The maximum in (2.3.1) is found where g and r are parallel or anti-parallel, θ = 0◦

or θ = 180◦ respectively. The following integral is maximized in a local neighbor-

hood of a point p, denoted by N (p), where p ∈ Ω :

max
p′∈N (p)

ˆ
w
(

p − p′
) (

gTr
)2

dp′ (2.3.2)

where the window function w determines the size and shape of the neighborhood

around a point p in which the orientation is averaged. The maximization problem

must be solved for each point p. In vector notation, (2.3.2) is:

max
(

rT Jr
)

(2.3.3)

with

J =
ˆ ∞

−∞
w
(

p − p′
) (

g
(

p′
)

g
(

p′
)T
)

dp′.

Note that J is the convolution of the window function w with the outer product of

the gradient

g
(

p′
)
= ∇I

(
p′
)
= [Ix1 , · · · , Ixd ],

where Ixi =
∂I
∂xi

, for i = 1, ..., d and d is the dimension of the neighborhood, then J

can be expressed as:

J = w ∗ (∇I
(

p′
)∇I

(
p′
))

(p) .

In matrix representation, this is:
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J =

⎡
⎢⎢⎢⎢⎢⎣

(
w ∗ I2

x1

)
(p) · · · (w ∗ Ix1 Ixd) (p)

... . . . ...

(w ∗ Ixd Ix1) (p) · · ·
(

w ∗ I2
xd

)
(p)

⎤
⎥⎥⎥⎥⎥⎦ . (2.3.4)

It is straightforward to extend the tensor for multichannel signals as:

J =
m

∑
i=1

⎡
⎢⎢⎢⎢⎢⎣

(
wi ∗ I2

x1,i

)
(p) · · · (wi ∗ Ix1,i Ixd,i

)
(p)

... . . . ...(
wi ∗ Ixd,i Ix1,i

)
(p) · · ·

(
wi ∗ I2

xd,i

)
(p)

⎤
⎥⎥⎥⎥⎥⎦ .

The weighting function w might be different for each channel in order to consider

the significance and spatial resolution of a certain channel [58]. A tensor is an

adequate first-order representation of a local neighborhood since it only involves

first-order derivatives. It is important to note that this tensor only analyzes in

which direction(s) the signal variations occur. This is, where the gray values change.

More complex structures such as structures with multiple orientations cannot be

distinguished.

The problem of maximize (2.3.3), subject to rTr = 1, can be solved by using a

Lagrange multiplier μ and finding the extremes of

μ
(

1 − rTr
)
+ rT Jr. (2.3.5)

Differentiating with respect to r, and setting the derivative equal to zero results in

an eigenvalue problem.

Jr = μr (2.3.6)
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This is the problem of finding for which values of μ (2.3.6) has a nonzero solution,

i.e., the eigenvalues of J. Substitution in (2.3.5) shows that the solution is the

eigenvector corresponding to the largest eigenvalue, μ1. Then the structure tensor

is J with the window function defined by the Gaussian distribution in (2.1.1) and

standard deviation ρ. For the discrete case, a Gaussian kernel it is used, see Section

2.1.4.3.

2.3.3.2 Structure tensor as a covariance matrix

From a statistical point of view, when signals are regarded as random fields an

interesting relationship can be established between the local structure tensor and

the covariance matrix Cov.

Cov = J − E {∇I (p)} E
{
∇I (p)T

}

where E {·} is the expectation operator and J and ∇I (p) are defined as in Section

2.3.3.1. Cov and J are equal when E {∇I (p)} = 0. For example on homogeneous

areas such as in neighborhood with planes or lines shape, E {∇I (p)} = 0, i.e.,

E {Ix1} = 0 and E {Ix2} = 0. In those areas, if the dimension of the image is d = 2

(scalar or vector valued) and the window function w in (2.3.4) is Gσ a Gaussian

with variance σ2 then the structure tensor can be modeled as the joint distribution

of the two partial derivatives, Ix1 and Ix2 . This is,

J =

⎡
⎢⎣ Gρ ∗

(
I2
x1

)
Gρ ∗ (Ix1 Ix2)

Gρ ∗ (Ix1 Ix2) Gρ ∗
(

I2
x2

)
⎤
⎥⎦ =

⎡
⎢⎣ E

{
I2
x1

}
E {Ix1 Ix2}

E {Ix1 Ix2} E
{

I2
x2

}
⎤
⎥⎦ = Cov (Ix1 , Ix2)

The convolution corresponds to computing the expectation value with regard to a

weighting of the derivatives according to their distance from p.
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2.3.3.3 Using Differential Geometry

This definition is motivated by finding a definition for an edge in a vector valued

image. This framework was presented by Di Zenzo in [67]. The idea is to define

a gradient based edge detector for vector-valued images such that the edge infor-

mation along a given direction in one channel reinforces the edge evidence of the

other channels. This is not the only way to do this extension and another definition

can lead us to a different framework. Given two pixels p and q in the image f

with f (p) and f (q) ∈ Rm. d f = f (p)− f (q) approximates the arc length when

dist(p, q) → 0, where dist is the Euclidean distance. Therefore,

d f =
2

∑
i=1

∂ f
∂xi

dxi (2.3.7)

and its square Euclidean norm is given by

‖d f ‖2 =
2

∑
i,j=1

∂ f
∂xi

∂ f
∂xj

dxidxj = dxT

(
∑

l
∇ fl∇ f T

l

)
dx (2.3.8)

‖d f ‖2 describes the rate of change of the values (i.e.,intensity or radiance) in the

image. Its extremes are along the direction given by the eigenvectors of maximum

and minimum change, v1, v2 respectively, of the tensor

J = ∑
j
∇ f j∇ f T

j . (2.3.9)

The magnitude of the extremes are given by μ1 and μ2, the largest and smallest

eigenvalues of J respectively.
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Figure 2.3.1: Smoothed Gradient vs. Structure Tensor. Fingerprint image of size 227 × 227.
(a) Original image. (b) Gradient orientation �� = 0.5. (c) Gradient orientation
�� = 2.5. (d) Structure Tensor Orientation given by ω2 with �� = 0.5, � = 4.

2.3.4 Scalar structure tensor

Finding the local structure of each pixel requires considering the data of its neigh-

borhood [13], which introduces the concept of the structure tensor. The task of

knowing if a pixel is part of an edge or a corner cannot be accomplished with only

its gradient information. There is a need to know if the pixel is similar to its neigh-

bors or not and in which direction. Therefore, the incorporation of its neighbors’

gradient information is required.

The local spatial neighborhood information becomes more important when the

data is corrupted by noise since the structure has to be estimated in the presence of

unreliable data. To incorporate the information within a neighborhood of a pixel,

Gaussian convolution with variance ��
2, see Section 2.1.4.3, is used on the original

image producing a smoothed image, i.e.,

Iσ = Gσ ∗ I. (2.3.10)

This convolution is used to weight the structure information of each pixel’s neigh-

bors. It is also used to regularize the structure tensor and make it robust to noise.



2.3 structure tensor 42

For simplicity in notation, Ix and Iy will be used though this work instead of (Iσ)x

and (Iσ)x as the horizontal and vertical derivatives of the smoothed image, Iσ, re-

spectively. The problem with the smoothed gradient, ∇Iσ = [ Ix Iy ]T, is that it

can suffer cancellation effects. Figure 2.3.1(b)-(c) illustrates the gradient orientation

using gray values where vertical gradients are depicted in black and horizontal

ones in white. The gradient orientation is defined as tan−1 (Iy/Ix
)
. If �� is small as

in (b), then high fluctuation of the orientations remains. As �� gets larger, as in (c),

then it becomes useless since neighboring gradients with the same orientation but

with opposite signs (direction) cancel one another. To avoid that effect, the outer

product of the smoothed gradient, which is a symmetric, positive semi-definite

matrix, is considered in the structure tensor and known as the initial matrix field

[66]:

J0 = ∇Iσ∇IT
σ =

⎡
⎢⎣ I2

x Ix Iy

Ix Iy I2
y

⎤
⎥⎦ . (2.3.11)

Its eigenvalue decomposition is given by:

J0 =

[
ω1 ω2

] ⎡⎢⎣ μ1 0

0 μ2

⎤
⎥⎦ [ ω1 ω2

]T

where ω1 ‖ ∇Iσ and ω2 ⊥ ∇Iσ. It is important to note that ∇Iσ �= ∇I for σ > 0.

So, ω1 ∦ ∇I. μ1 = |∇Iσ|2 = Ix and μ2 = 0.

Then the structure tensor for a neighborhood of scale ρ is computed with a smooth-

ing step performed by a convolution of the components of with a Gaussian kernel

Gρ , which is known as the local integration step, as follows

Jρ = Gρ ∗ J0 =

⎡
⎢⎣ Gρ ∗ J011 Gρ ∗ J012

Gρ ∗ J021 Gρ ∗ J022

⎤
⎥⎦ =

⎡
⎢⎣ a b

b c

⎤
⎥⎦ (2.3.12)
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Its eigen-decomposition is given by:

Jρ =

[
v1 v2

] ⎡⎢⎣ μ1 0

0 μ2

⎤
⎥⎦ [ v1 v2

]T
,

where

v1 ‖

⎛
⎜⎝ 2b

c − a +
√
(a − c)2 + 4b2

⎞
⎟⎠ and v2 ⊥ v1

and the corresponding eigenvalues μ1 and μ2 given by

μ1 =
a + c +

√
(a − c)2 + 4b2

2
and μ2 =

a + c −
√
(a − c)2 + 4b2

2

Figure 2.3.1(d) shows eigenvector v2, which defines the coherence orientation or

the structure tensor orientation for the fingerprint image. Figure 2.3.1(d) is the

desired average orientation of the lines (compare with Figure 2.3.1(b)). In Figure

2.3.1(d) the fingerprint singularity (minutiae) is well described.

2.3.5 Vector-Valued Structure Tensor

For the vector-valued image with m bands, the structural information from all

channels, encoded in the initial matrix field, is coupled with a fusion step, which is

usually a sum over all channels. To make the structure tensor independent of the

number of channels, an average is calculated, i.e., all channels are weighted equally.

In this case, the initial matrix field for the vector valued case is given by:

J0 =
1
m

m

∑
i=1

J0i =
1
m

⎡
⎢⎢⎢⎣

m

∑
i=1

I2
x,i

m

∑
i=1

Ix,i Iy,i

m

∑
i=1

Ix,i Iy,i

m

∑
i=1

I2
y,i

⎤
⎥⎥⎥⎦ (2.3.13)
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Then the structure tensor for a neighborhood of scale ρ is computed as in the

scalar case, Gρ is a Gaussian of variance ρ

Jρ = Gρ ∗ J0. (2.3.14)

and its eigen-decomposition is given by:

Jρ =

[
ω1 ω2

] ⎡⎢⎣ μ1 0

0 μ2

⎤
⎥⎦ [ ω1 ω2

]T
. (2.3.15)

2.4 image processing using geometrical pdes

A general review of main contributions in image processing using Partial Differen-

tial Equations (PDEs) in vector valued images and a review of anisotropic process-

ing of images using divergence-driven PDEs are presented.

PDEs in image processing have been researched and used since 1960 [68]. But

around 1990, as a result of a huge interest from scientists around the world, well

founded mathematical and numerical methods for PDEs applied to image process-

ing, in particular gray level images, were developed. As a consequence, many

faster and efficient algorithms emerged. Processing vector-valued data has become

an active research area because of the wider use of instruments that produce vector-

valued data and its usage in many fields and applications. Also cheaper computer

memory and some new computer architectures have helped to adapt, modify and

create new algorithms and methods for this particular kind of data. Some advan-

tages of using PDEs in processing vector-valued Images are [2]:

• A wide and robust mathematical theory of PDEs.

• Efficient and reliable numerical methods to solve PDEs.
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• Theory and methods are generalizable to higher dimensions.

• Many of these methods are related to well known physical phenomena such

as conservation, diffusion, etc.

Images, in general, result from a uniform sampling of a 2D or 3D signal done by

sensors so they are discontinuous by nature. On the other hand, PDE-based image

processing theory is developed primarily assuming continuity. Therefore, there is

a need for discretization techniques to approximate a solution of the PDEs in this

kind of data. The discretization uses a mesh that subdivides the image domain to

numerically integrate over each element in the mesh. Since the mesh is determined

by the sampling of the pixels in the image, the discretization is restricted to use a

structured rectangular mesh without refinement.

2.4.1 Physical background of diffusion

The physical concept of diffusion can be found in electromagnetic theory, fluid

dynamics, quantum mechanics, and so on. It will be presented in this section in

the context of the physical phenomenon of mass transport. Diffusion can be seen

as the process that equilibrates concentration of differences without creating or

destroying the mass [69]. This equilibrium property is given by Fick’s first law:

j = −D · ∇u.

The flux j compensates for a concentration gradient ∇u. The relation of j and ∇u

is given by the diffusion tensor D, which is a symmetric positive definite matrix. The

term tensor in this case is used to describe those kinds of matrices, not in the wider

sense as in Physics [3]. Isotropic diffusion is known as the case where j and ∇u are
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parallel and anisotropic diffusion if j and ∇u are not. This is the definition adopted

by Weickert [2].

Since diffusion only transports mass without destroying it or creating new mass,

dm
dt = 0, where t denotes time. Application of Reynolds’ transport theorem and

Gauss’ divergence theorem leads to a differential coordinate-free form of the conti-

nuity equation

∂tu + div(j) =
dm
dt

= 0.

To adapt this form to a specific coordinate system, just provide a expression of

the divergence operator in that particular coordinate system. Then by substituting

Fick’s flux into the continuity equation, the diffusion equation [69, 70] is obtained .

∂tu = div(D · ∇u). (2.4.1)

Equation (2.4.1) is a conservation law that appears when modeling many physical

transport phenomena. In general, these processes involve mass or energy transport

in a conductive media, without sources or sinks [69]. In the context of image pro-

cessing, the mass concentration is interpreted as the intensity of the image signal at

a certain location. The diffusion direction will change depending on the diffusion

tensor D. If D is constant in the whole image domain is known as Homogeneous

diffusion and a space-dependent filtering is called inhomogeneous. A diffusion filter

is called nonlinear if the diffusion tensor is a function of the differential structure of

the evolving image itself, and linear diffusion if it does not depend on it [70].

In image processing, there is no real evolution in time, the variable n is a dummy

variable that simulates an iterative process as n is gradually increases from n = 0

in which ui(x, 0) = fi(x) is the original image. Some diffusion processes produce a

family {Tt f |t ≥ 0} of gradually smoother versions of f which is known as scale-

space, see Figure 2.4.1. For a study on scale spaces see [45, 71, 72] and references
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Figure 2.4.1: Scale-space produced by coherence-enhancing diffusion in a thyroid tissue.
σ = 0.5, ρ = 4, Ω = (0, 252)2 k = 0.1.(a) Original Image (b)n = 10; (c) n = 15;
(d) n = 20; (e) n = 30; (f) n = 40; (g) n = 50; (h) n = 100; (i) n = 200.
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therein. This concept is known from linear diffusion but this filtering dislocates

edges when moving from finer to coarser scales. So an edge found in a coarse scale

does not match the position of the same edge in the original image. This problem is

known as the correspondence problem. Restricting the scale-space idea to be linear

leaves only one solution, Gaussian smoothing. Nonlinear diffusion was initially

proposed to modify the linear process in order to better capture the geometry of

the image itself.

2.5 divergence-based diffusion

In this section, the vector-valued version of the Divergence-based diffusion equa-

tions will be presented. The filtered version u(x, t) of an image f (x) ∈ L∞(Ω) is the

solution to the following initial boundary value problem for the divergence-based

diffusion equation with f as the initial condition :

∂tui = div (D∇ui) i = 1, ..., m, in Ω × T, (2.5.1)

ui(x, 0) = fi(x), in Ω, (2.5.2)

〈D∇u,−→n 〉 = 0, on ∂Ω × T (2.5.3)

where Ω is the domain of image f , T := (0, ∞) is the time interval in the evolution

of dummy variable t, −→n denotes the outer normal unit vector to boundary ∂Ω,

and 〈·, ·〉 is the Euclidean scalar product on Rn. The last equation is a Neumann

boundary condition which means that the flux is zero outside the boundary. From

now on, all diffusion methods are assumed to have the same initial value (2.5.2)

and boundary condition (2.5.3) and Equations (2.5.2) to (2.5.3) will be called P1.
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2.5.1 Linear diffusion

The differences between divergence-based methods is D. If D is a constant, then

2.5.1 is:

∂tui = Δui i = 1, ..., m, in Ω × T,

the solution using the homogeneous diffusion process is [68]:

ui(x, t) =

⎧⎪⎨
⎪⎩

fi(x) t = 0(
G√

2t ∗ f
)
(x) t > 0

which is the convolution of the image with the Gaussian filter G√
2t.

2.5.2 Perona and Malik Isotropic nonlinear diffusion

Perona and Malik [73] in 1990 presented the first nonlinear diffusion method that

work in images. For that reason, it is considered as a historical work. This was the

first adaptive smoothing method, which is based on the idea of applying a process

which itself depends on local properties of the image. This process is given by

(2.5.1) in which D is the diffusivity function g given by:

g(s2) =
1

1 + s2/λ
, λ > 0. (2.5.4)

with s2 =
1

m ∑j
∥∥∇uj

∥∥2 j = 1, ..., m, λ can be set as a percentile P of the image

gradient magnitudes at each iteration. Perona and Malik recommended the value

P = 90% [73]. Equation (2.5.1) is solved using a finite difference discretization

scheme. This filter was motivated by the idea of adapting the diffusivity g to the
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gradient of the actual image u(x, t) instead of the original image f (x) introducing

feedback in the process which leads to nonlinear diffusion. In 1993, Alvarez [74]

showed that there exist PDEs with the original image as the initial condition that

govern scale-spaces which satisfy some architectural, information-reducing, and

invariance properties. They showed that Perona-Malik diffusion was ill-posed and

produced sharpening of edges if the gradient is larger than λ. In practice, the

method behaves better than predicted by theory. Latter was shown in [70] that the

standard finite difference scheme brought some regularization and that was part of

the reason it worked. In 1993, Catte et al [72] showed in an elegant mathematical

formulation that the Perona-Malik model could be regularized by replacing the

diffusivity g

⎛
⎜⎝ 1

m ∑j
∥∥∇uj

∥∥2

⎞
⎟⎠ by g

⎛
⎜⎝ 1

m ∑j
∥∥∇uσ,j

∥∥2

⎞
⎟⎠ with

uσ,j := Gσ ∗ uj, for j = 1, ..., m

where Gσ(x) is defined as in Section 2.1.4. They also showed existence, unique-

ness, and regularity of a solution to the initial and boundary value problem. This

regularization worked in part since Gaussian smoothing is a low-pass filter that

attenuates, in a monotone way, high frequencies. So (2.5.1) becomes

∂tui = div

⎛
⎜⎝g

⎛
⎜⎝ 1

m ∑
j

∥∥∇uσ,j
∥∥2

⎞
⎟⎠∇ui

⎞
⎟⎠ , for i = 1, ..., m. (2.5.5)

σ will take care of the case when high oscillation in the data can be misinterpreted

as edges, and it is viewed as a noise parameter. The diffusivity g(s2) is a mono-

tonically decreasing function of its argument and the flux Φ = g(s2)s is mono-

tonically non-decreasing in s. This last condition is required in order to ensure

well-posedness in the nonlinear setting using classical frameworks [21].
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2.5.3 Tensor Anisotropic nonlinear diffusion

Nonlinear isotropic diffusion uses a scalar diffusivity g which is adapted to the

geometry of the image. Anisotropic diffusion uses a diffusion tensor D. The ad-

vantage of using this tensor is that diffusion can be directed to any of its (maximum

or minimum) directions. The structure tensor when written in its eigenvalue de-

composition, see (2.3.15), can be decomposed as the sum of two expressions that

describe two basic local structures: linear and isotropic structures, see (2.2.4)-(2.2.5).

From the linear structures found using the eigenvector corresponding to the small-

est eigenvalue, oriented flow-like structures can be distinguished and enhanced

using coherence enhancement. On the other hand, regularization that preserves

edges, which consist in smoothing along edges inhibiting the diffusing across them

is done by finding the eigenvector corresponding to the largest eigenvalue of the

structure tensor.

In this section, the three most used divergence-based anisotropic diffusion meth-

ods are presented. The first model will be motivated by the extension of the dif-

fusivity function g from a scalar function to a tensor. It also gives an intuition on

how to extend this concept to design filters to enhance 1D features and denoise

preserving the edges. The second one is motivated by the necessity, in some appli-

cations, to rotate the flux towards the orientation of features of interest. A case for

this kind of filtering is the Coherence-Enhancing Diffusion (CED). This one is adapted

to process 1-D features such as lines and flow-like structures. The third one is moti-

vated as an extension to anisotropic diffusion of the Perona-Malik model. Since this

method removes noise from edges it is known as Edge-Enhancing Diffusion (EED).

CED and EED will be objects of further study.
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2.5.3.1 Anisotropic extension of the isotropic model based on scalar diffusivity

An extension of a scalar valued function g(s2) by a tensor g(J) is given by:

g(J) =
[

θ+ θ−

] ⎡⎢⎣g(μ2
+) 0

0 g(μ2−)

⎤
⎥⎦
⎡
⎢⎣θ+

θ−

⎤
⎥⎦ (2.5.6)

where μ−, μ+ are the smallest and largest eigenvalues of J and θ−, θ+ its respective

eigenvectors. In this case, J = J0, the initial matrix field for vector valued images,

is a natural choice. Using the same diffusivity or diffusion tensor for all bands

ensures that the evolution is synchronized. g(J) will be constructed using the

process described before. An example of a diffusivity function g is given by [75]:

g(s2) = α +
1√

β2 + s2
. (2.5.7)

So, D = g(J) for (2.5.1). As a consequence, linear and nonlinear isotropic mod-

els can be characterized by their diffusivities g
(

∑j ∇ f T
j ∇ f j

)
and g

(
∑j ∇uT

j ∇uj

)
respectively, while its anisotropic counterparts are given by g(∑j ∇ f j∇ f T

j ) and

g(∑j ∇uj∇uT
j ), j = 1, ..., m.

2.5.3.2 Coherence-Enhancing Diffusion

The basic ingredients of Coherence Enhancing Diffusion (CED) are:

• Diffusion is done in the direction of smallest variation of the structure tensor.

• A shape-adapted Gaussian smoothing in a small neighborhood around that

direction is used.

In 1993, Catte et al. [76] presented a reaction-diffusion model where the diffusion

was along the eigenvector corresponding to the smallest eigenvalue of its diffusion

tensor defined as: κ2 = g(|∇uσ|2). But this model did not produce a scale-space,
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and its diffusion tensor D had eigen-directions adapted to ∇uσ,i which make them

sensible to changes in σ, see Section 2.3.4. In 1998, Weickert [2] presented an

approach that is a semi-local analysis by means of the structure tensor combined

with 1-D diffusion along one of its eigenvectors which is presented in this section.

CED is basically a 1-D diffusion, where a minimal amount of isotropic smoothing

is added for regularization purposes. For this case, D is built upon the structure

tensor Jρ defined for vector-valued images as in (2.3.14). μ = (μ1 − μ2) is a measure

of local coherence [23]. μ2 is large for anisotropic structures and tend to zero for

isotropic ones. Constant areas are characterized by μ1 = μ2 = 0, straight edges by

μ1 � μ2 = 0, and corners by μ1 > μ2 � 0 [77].

D

(
1
m

m

∑
i=1

Jρ,i

)
:=

⎡
⎢⎣λ β

β ν

⎤
⎥⎦ =

[
v1 v2

] ⎡⎢⎣κ1 0

0 κ1

⎤
⎥⎦
⎡
⎢⎣vT

1

vT
2

⎤
⎥⎦ . (2.5.8)

In (2.5.8) D(·) is the diffusion tensor written as a function to emphasize its depen-

dency on the expression inside the parenthesis. To enhance coherence structures,

the process should smooth mainly along the coherence direction v2. So κ2 increases

with μ2. Using [20] functions, κ1, κ2 are given by :

κ1 = α, α ∈ (0, 1), α � 1,

κ2 = g(μ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α, if μ1 = μ2,

α + (1 − α) exp
(
−C
μ2

)
, C > 0 else.
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Note that by definition κ2 ∈ (0, 1). α = 10−3 is the most common value used in the

literature. α guarantees that the process never stops, and keeps the diffusion tensor

uniformly positive definite [23]. C is a threshold parameter;

if μ2 � C then κ2 ≈ 1, (2.5.9)

if μ2 � C then κ2 ≈ α. (2.5.10)

In addition, D satisfies smoothness, symmetry and uniform positive definiteness

properties [2]. The smoothness of D come from the convolution with Gσ and Gρ,

which guarantees that the elements of D are C1 functions [77].

2.5.3.3 Edge Preserving Diffusion

In this context, edge-diffusion is presented as special case of coherence-enhancing

diffusion in which the integration parameter ρ = 0. In (2.5.1), diffusion at the edges

is inhibited and as a consequence noise in the edges cannot be eliminated. To solve

this problem, the diffusion should be parallel to the edges instead of perpendicular

to them. To that end, the diffusion tensor D will depend on ∑m
i=1 J0i and eigenvalues

κ1, κ2 defined as:

D

(
m

∑
i=1

J0i

)
:=
[

v1 v2

] ⎡⎢⎣κ1 0

0 κ1

⎤
⎥⎦
⎡
⎢⎣v1

v2

⎤
⎥⎦ (2.5.11)

and

κ1 := g

(
∑

i
|∇uσ,i|2

)
,

κ2 := 1
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Figure 2.5.1: Comparison between EED and CED. (a) Original image by Monet [78]. (b)
Original image after CED n = 10, σ = 0.5, ρ = 3, ψ = 50th percentile. (c)
Original image after EED,n = 10, σ = 1, ψ = 50th percentile.

If σ tends to zero, the isotropic Perona-Malik process is obtained. Many of the

edge enhancing diffusion models differ in the function g, the following function

was proposed by Weickert [2]:

g(s) :=

⎧⎪⎨
⎪⎩

1, s ≤ 0;

1 − exp
(

−Cm
(s/λ)m

)
, s > 0.

(2.5.12)

The exponential function is chosen to enforce smoothness. D is positive definite

since ∇uσ,i is bounded on Ω × I and |∇uσ,i|2 > 0. Cm is calculated such that the

flux Φ(s) = g(s) · s increases for s ∈ [0, λ] and decreases for s ∈ (λ, ∞). Then the

values used are m = 4, Cm = 3.31488. Therefore, this diffusion can be viewed as an

anisotropic regularization of the Perona-Malik model [2].
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Figure 2.6.1: Spatial grid of the 3 × 3 neighborhood of a pixel P. The red circles indicates the
pixels which belong to the 3 × 3 neighborhood of the vertex (or pixel) P = (i, j).
N, S, E W, NW, NE, SW, SE corresponds to the geographical coordinates of the
3 × 3 neighborhood around P.

2.5.3.4 Difference between EED and CED

The difference between EED and CED is illustrated in Figure 2.5.1. Figure 2.5.1(a)

shows Monet’s painting “Woman with parasol looking left” [78]. Figure 2.5.1(b)

and (c) shows the resulting image after CED and EED processing respectively using

the classical structure tensor. The aim of edge enhancement diffusion is to preserve

edges while smoothing the inner regions they enclose as shown in the clouds of

Figure 2.5.1(c). Coherence enhancing diffusion tries to enhance the 1-D features

along 2, the direction of minimum change in the structure tensor (see (2.3.15) )

which produces the effect of closing lines as seen in the grass and clouds of Figure

2.5.1(b).
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2.6 finite difference schemes in images

Finite difference methods use the strong or differential form of the governing equa-

tions (2.5.1 - 2.5.3), they approximate the solution of differential equations by re-

placing derivative expressions with approximately equivalent difference quotients,

which are obtained from an expansion of the function (u in our case) using Taylor

polynomials.

For images, it is customary to assume that the pixel size in the x and y direction

are 1. So the grid spacing in the x and y directions is equal and Δx = Δy = 1.

Figure 2.6.1 shows the grid used in this work. The grid is aligned with the matrix

used to represent the image, where the y−axis is inverted. Depending on the

convention used for the y−axis, the values of the indexes can change. To avoid

ambiguities, the geographical labels N, S, E W, NW, NE, SW, SE, corresponding to

North, South, East, West, etc, are presented for the pixels belonging to the 3 × 3

neighborhood of pixel P = (i, j), see Figure 2.6.1. The majority of results in this

work will be given using the geographical labels.

Let un
p denotes the approximation of u at pixel p = (i, j) at time tn = nτ. The ap-

proximation δxu of the derivative ∂xu can be approximated using different schemes

such as:

δ+x ui,j = un
i+1,j − un

i,j forward scheme

∂xu
∣∣i,j ≈ δxui,j =

1
2

(
un

i+1,j − un
i−1,j

)
central scheme (2.6.1)

δ−x ui,j = un
i,j − un

i−1,j backward scheme
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Figure 2.6.2: Rotational invariant property. Example of binary image representing a ver-
tical edge and the same image after a rotation of π/4 radians. Rotationally
invariant operators estimated at the point (i, j) in the middle (indicated by the
arrow) should yield the same value in both situations. Taken from [68].

The same is done for ∂yu, in which i is constant and j changes. From these schemes,

the one that is symmetric is the central scheme so it is the most used scheme to

approximate ∂xu. Those approximations are extensions of the one dimensional

case.

It is desired that the discretization of ∂xu and ∂yu is rotationally invariant. Since

the norm of the gradient, ‖∇u‖, is invariant under rotation. That means, if a

rotation with center in (i, j) is applied to the image u with any angle θ ∈ [0, 2π[,

then ‖∇u‖ keeps constant for all θ. So the discretization should do the same too

[68]. Since this is a discrete setting, it is desirable that ‖∇u‖ ∣∣i,j keeps constant

under rotations of π/4 as shown in Figure 2.6.2.

It is easy to see that using the central difference scheme in (2.6.1) for the two cases

depicted in Figure 2.6.2 ‖∇u‖ ∣∣i,j = 1/2 for (a) and
√

2/2 for (b). A rotationally

invariant scheme is proposed in [68] where the derivative is approximated using

the following scheme:

∂xu
∣∣i,j ≈ a

2

(
un

i+1,j − un
i−1,j

)
+

1 − a
4

[(
un

i+1,j+1 − un
i−1,j+1

)
+
(

un
i+1,j−1 − un

i−1,j−1

)]
(2.6.2)

≈ a
2
(un

E − un
W) +

1 − a
4

[(un
SE − un

SW) + (un
NE − un

NW)]
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Figure 2.6.3: Pixels involved in the the finite difference schemes.

where a =
√

2 − 1 is chosen after applying this derivative to the two cases shown

in Figure 2.6.2 and making them equal. Figure 2.6.3 shows the grid pixels used in

both schemes.

The usage of this rotational invariant scheme has computational disadvantages in

the sense that they require three times the amount of operations per pixel than the

classical central difference scheme, which can be an issue with high dimensional

images such as vector-valued ones.



3
T H E S P E C T R A L LY W E I G H T E D S T R U C T U R E T E N S O R

3.1 structure tensor

An extension of the structure tensor for vector–valued images, such as color im-

ages, was presented by Di Zenzo [67]. His idea was to have one edge descriptor

for all bands, so any process following the edges found by the structure tensor will

behave the same way in each channel and have the information from all channels.

Processing each channel independently has several drawbacks such as edge dislo-

cation and unwanted discontinuities [71]. Di Zenzo’s structure tensor is based on

the idea that edge information along a given direction in one channel must rein-

force edge evidence in the other channels. Hence, all edge information can be fused

by using pixel-based averaging along the spectral values of its initial matrix field.

Di Zenzo’s method assumes that each band provides the same amount of edge

information and gives each band the same weight [67]. This may work well with

RGB images that only have three bands, but in the case of an HSI with hundreds of

bands, edge information may not appear in all bands. Depending on the spectrum

interval being sampled and the object’s materials composition, some bands of an

HSI will show all or parts of its edges and some will not. Therefore, weighting the

spectra depending on the amount of edge information they provide may prove a

more effective extension of the structure tensor to HSI’s than simple averaging.

Structure tensors are classified as linear and nonlinear. Linear structure tensors

are defined formally in Section 3.1.2. Nonlinear structure tensors are usually used

60
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in iterative processes where the structure tensor output from iteration n is used as

the input for iteration n + 1. The weighting scheme proposed in this work can be

used with both linear and nonlinear structure tensors that are applied to vector-

valued data. As with all Di Zenzo’s structure tensors, there is a caveat, the range of

the data in each channel has to be similar. If not, it is necessary to rescale the data.

In HSI images, the structure tensor can be weighted in the spatial dimensions or

the spectral dimensions. Spatially weighted structure tensors have been proposed

in [65, 66] mainly to make the structure tensor spatially data-adaptive while a

spectrally weighted structure tensor [79] is used to fuse the scalar structure tensor

information from many bands. The method proposed in this research belongs to

the latter with the added capability to be data–adaptive in the spectral direction.

Structure tensors based on robust statistics are one of the most important spatial

weighting techniques since the structure tensor is nonlinear and the weights are

based on the data. They were proposed by [65] and further developed in [66, 80, 81].

The structure tensors based on nonlinear diffusion, introduced by [21] and [82],

belong to the data-adaptive methods, i.e, methods that try to adapt the structure

tensor to the information in a neighborhood. Structure tensors based on robust

statistical methods avoid the data adaptive processing by estimating the orientation

in a neighborhood using robust error measures.

Spectrally weighted structure tensors have been studied less since much of the

structure tensor work focuses on color images with only three bands. Averag-

ing three bands is simple, computationally inexpensive and produces good results.

There is, however, a spectrally weighted structure tensor for color images proposed

by [79]. In this case, a-priori knowledge of the reliability and noise level in each

channel is required, which limits its use. Recently, a weighted zero mean structure

tensor for vector valued images has been proposed by [83] using weights based on

the median of the data. But it suffers from artifacts if the mean is in the data. In
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the following Sections, the classical structure tensor for vector valued images will

be defined and some of the best known variants will be described. The spectrally

weighted structure tensor will be defined. A weighting process will be presented

for the case in which the spectrum of the images are locally highly correlated.

3.1.1 Di Zenzo Structure Tensor

Di Zenzo [67] presented a definition of the gradient that uses concepts from classic

differential geometry, see (2.3.3.3) given by:

J = ∑
j
∇ f j∇ f T

j

for an image f in a neighborhood of a pixel at p. The edge strength can be defined

as a function g of the maximum and minimum eigenvalues of J. For the case of 2D

images this will be μ1 ≥ μ2. Many functions have been proposed [45, 72, 84]. For

example,

g(μ1, μ2) = μ1 + μ2 =
m

∑
i
|∇ fi|2.

For the scalar case where m = 1, g reduces to |∇ fi|2, which is the measure of edge

strength for scalar images. For the nonlinear case, the solution u is used instead of

f in each iteration n, where for n = 0, u = f . The following tensor is known as Di

Zenzo’s structure tensor

J0 =
m

∑
j=1

∇uj∇uT
j . (3.1.1)
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3.1.2 Classical structure tensor

This section will recall some definitions presented in Section 2.3.5 so there is an

easier flow of ideas. The extension of the structure tensor to vector valued images

is done using Di Zenzo’s structure tensor :

J0 =
m

∑
i=1

∇uσ,i∇uT
σ,i. (3.1.2)

where ∇uσ,i is the smoothed gradient of band i defined in (2.1.2). The fusion of

the edge information in each channel is done by averaging Di Zenzo’s structure

tensor along the spectral direction. Following the notation in Section 2.3.5 the

initial matrix field for the vector valued images is obtained by :

J0 =
1
m

m

∑
i=1

J0i =
1
m

⎡
⎢⎢⎢⎣

m

∑
i=1

I2
x,i

m

∑
i=1

Ix,i Iy,i

m

∑
i=1

Ix,i Iy,i

m

∑
i=1

I2
y,i

⎤
⎥⎥⎥⎦ (3.1.3)

Then the structure tensor for a neighborhood of scale ρ is computed as:

Jρ = Gρ ∗ J0 =

⎡
⎢⎣ Gρ ∗ J011 Gρ ∗ J012

Gρ ∗ J012 Gρ ∗ J022

⎤
⎥⎦ =

⎡
⎢⎣ a b

b c

⎤
⎥⎦ ρ > 0. (3.1.4)

Since Jρ is symmetric positive definite, then it is possible to find an eigen-decomposition

with orthonormal eigenvectors ω1, ω2 given by:

Jρ =

[
ω1 ω2

] ⎡⎢⎣ μ1 0

0 μ2

⎤
⎥⎦ [ ω1 ω2

]T
ρ ≥ 0, (3.1.5)
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where

ω1 ‖

⎡
⎢⎣ 2b

c − a +
√
(a − c)2 + 4b2

⎤
⎥⎦ and ω2 ‖

⎡
⎢⎣ a − c −

√
(a − c)2 + 4b2

2b

⎤
⎥⎦ (3.1.6)

the symbol ‖ means ‘parallel to’ and the corresponding eigenvalues μ1 and μ2 are

given by

μ1 =
a + c +

√
(a − c)2 + 4b2

2
and μ2 =

a + c −
√
(a − c)2 + 4b2

2
.

Jρ is the average of the gradient orientations in a neighborhood of size O(ρ). Its

eigenvalues measure the average contrast, i.e., the gray value fluctuation for all

bands along the eigen-directions within the integration scale ρ. If μ1 > μ2, then

ω1 is the direction of higher average contrast, and ω2 gives the preferred local

orientation or coherence orientation [20]. The structure tensor defined in (3.1.4) has

two advantages: (i) robustness under noise as a result of smoothing the resulting

matrix field, and (ii) additional information is created by averaging the local orien-

tation. It then becomes possible to distinguish areas where structures are oriented

uniformly like in the regions between edges. This effect allows estimation of the

dominant orientation on those points in the image where the gradient is close to

zero [66]. Its major drawback is that it can lead to inaccurate estimation when

the local neighborhood is not homogeneous like near the boundary between two

different textures or two different moving objects [66], see Section 2.2.2.

3.1.3 Methods to Enhance the Local Orientation

The problem of enhancing the local orientation estimation using the structure ten-

sor has been approached from two perspectives:
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1. Adapt the neighborhood to the data (i.e., to the image’s local geometry) or

2. Choose one of the ambiguous orientations keeping the non-adaptive window

[66].

In order to adapt the neighborhood to the data, several methods have been pro-

posed such as those using Kuwahara-Nagao operator [85, 86, 87, 88], adaptive

Gaussian filters [89, 90, 91, 92], and nonlinear diffusion [21, 82]. In the last method,

the structure tensor is part of an iterative process that instead of applying a Gaus-

sian convolution, as in (2.3.14), applies nonlinear diffusion. The Gaussian convolu-

tion is used for the integration step so neighborhoods become data-adaptive. While

Gaussian smoothing is equivalent to diffusion with constant diffusivity, nonlinear

diffusion reduces the amount of smoothing in the presence of discontinuities in the

data, i.e., edges. The discontinuities are determined iteratively in the updated and

smoothed data, and therefore, one can integrate data from an arbitrarily shaped

neighborhood [66].

The other framework uses robust statistics to estimate one of the ambiguous ori-

entations, so it is not necessary to find an adaptive window [65, 66, 80]. Structure

tensors based on robust statistics are motivated by a result from [65] that shows

that least squares estimation procedures for local orientation reduce to solving an

eigenvalue problem for the initial matrix field smoothed by a Gaussian kernel , i.e.,

the structure tensor, see Section 2.3.3.1. Least squares estimation procedures use a

quadratic error measure which is very sensitive to outliers. In [65], the quadratic er-

ror measure is changed for a more robust one which imposes smaller penalties on

outliers to reduce their influence in the error measure. Robust error measures like

Gaussian robust error [65] or Geman-McClure [80] ‘clamp’ the influence of large

outliers to a maximum of one. Then an iterative approach is required to solve for

a robust structure-tensor matrix as it becomes non-linearly dependent on the local

orientation of the neighborhood.
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The next section will present a general definition of the weighted structure tensor.

Section 3.2.1 describes weights based on the median.

3.2 the spectrally weighted structure tensor

The initial matrix field in Equation (3.1.4) describes the fusion step in the classical

structure tensor. The proposed method modifies this step. Instead of using the

uniform distribution and assigning the same weight to each band, a weighted initial

matrix field in each channel will be defined as the scalar tensor product:

Jok = [Wk ◦ ∇uσ,k] [Wk ◦ ∇uσ,k]
T

where Wk = [wx,k, wy,k]
T are the weights for band k. The initial matrix field for the

vector-valued case with weights wx, wy, and wxy = wxwy is calculated as

J0 =
m

∑
k=1

J0k =

⎡
⎢⎢⎢⎣

m

∑
k=1

w2
x,k ◦ u2

x,i

m

∑
k=1

w2
xy,k ◦ ux,iuy,i

m

∑
k=1

w2
xy,k ◦ ux,iuy,i

m

∑
k=1

w2
y,k ◦ u2

y,i

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣ A B

B C

⎤
⎥⎦ , (3.2.1)

The structure tensor, Jρ will be calculated as in (3.1.4). Jρ for ρ ≥ 0 is still a

tensor as it is a symmetric, positive semi-definite matrix therefore it has the same

eigen-decomposition as in (2.3.15).

3.2.1 Weights Based on the Median.

The weights presented in this section are taken from [83]. This was the first try to

make the structure tensor adaptive in the spectral dimension. These weights are
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used on a zero mean smoothed gradient. Let Ix, and Iy be the mean of Ix and Iy

respectively, then the components of the zero mean smoothed gradient, [Ix, Iy]T,

are given by: Ix = Ix − Ix and Iy = Iy − Iy. Let p ∈ Rm be a pixel belogning to the

gradient. The weights at p, denoted by Wp, are calculated as follows:

Step 1. Wp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p |median (p)| < 1

1
|median(p)| |median (p)| > 1

. (3.2.2)

In (3.2.2), a threshold of 1 was chosen to avoid division by small numbers. Next

Wp is normalized as follows:

Step 2. Wp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Wp
∣∣max

(
Wp
)∣∣ < 1

Wp

|max(Wp)|
∣∣max

(
Wp
)∣∣ > 1

Step 3. Wp,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 Wp,i < a

Wp,i Wp,i > a

f or a < 0, i = 1, ..., m

Absolute values are used since the gradient may have negative values. The thresh-

old a is chosen by finding the histogram of Wp and clipping its minimum value

at the first bin in the tail with height ∼ 1% of the total of pixels. The idea of the

median as a better descriptor of non-symmetric data is behind the definition of

these weights. A problem with using zero mean smoothed gradients is that it can

produce artifacts in the structure tensor if the mean is part of the data.
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3.3 spectrally weighted structure tensor based on the heat oper-

ator

In this section, the adaptive spectrally weighted structure tensor is presented. The

classical structure tensor is adaptive to the spatial features in the image. The adap-

tivity of the structure tensor presented here is in the spectral dimension. This is

done by defining weights for each channel of the initial matrix field. The weights

will be defined using the heat operator.

3.3.1 Motivation

Figure 3.3.1 is used to motivate the proposed spectral weights. It presents scatter

plots among several bands of the Indian Pines image (see Section 5.1.1). It also

shows that the same correlation holds among the bands of the gradient component

Ix. The first row shows gray level images of bands 15, 50, 51, 60, and 110 corre-

sponding to 567.38 nm, 879.53 nm, 889.14 nm, 985.27 nm and 1541.59 nm. Band 45,

centered at 831.41 nm, is not shown but looks very similar to band 50. For visualiza-

tion purposes, all images have been contrast stretched so that the minimum value

in the band is black, and the maximum value is white. Note that Figures 3.3.1 (b),

(c) and (d) are visually similar. Note that the edges inside the red square do not

appear in all bands. The second row of Figure 3.3.1 from left to right shows scatter

plots between band 50 and (a) band 15, (b) band 45, (c) band 51, (d) band 60, (e)

band 110. The same range [0, 255] is used for the x-axis and y-axis in all scatter

plots. As expected, the scatter plots showing the highest correlation are (b), (c) and

(d) which correspond to the bands closer to band 50. The scatter plots with bands

farther away from band 50 may not show such a correlation as shown in Figures

3.3.1 (a) and (e). The third row of Figure 3.3.1 shows Ix’s for the bands in the first



3.3 spectrally weighted structure tensor based on the heat operator 69

Figure 3.3.1: Bands of the same HSI compared to the respective bands of its gradient com-
ponent Ix. FIRST ROW (left to right): Indian Pines’ bands (a) 15, (b) 50, (c) 51,
(d) 60, (e) 110. SECOND ROW: Scatter plots between Indian Pines’ band 50
and (left to right) (a) band 15, (b) band 45, (c) band 51, (d) band 60 (e) band
110. THIRD ROW (left to right): Ix’s bands (a) 15, (b) 50, (c) 51, (d) 60, (e) 110.
FOURTH ROW: Scatter plots between gradient component Ix’s band 50 and
(left to right) (a) bands 15,( b) band 45, (c) band 51, (d) band 60 (e) band 110.
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row of Figure 3.3.1. Visual inspection shows that in the third row band 50 in (b) is

very similar to band 51 in (c) and band 60 in (d). The fourth row shows the scatter

plots for Ix that correspond to the same bands as the second row. The axes of the

scatter plot are equal and set to [ai, bi], where ai = min[min(band 50), min(band i)]

for i = 15, 45, 51, 60, 110 and bi is defined the same using max instead of min.

As with the original image, there is a linear correlation between nearby bands and

that relation does not hold for bands that are farther away. Similar results can be

obtained using Iy (not shown).

Figure 3.3.1 shows that even though ∇Iσ does not provide direct information

on the change of the intensity along the spectral dimension, it preserves the cor-

relation between bands. This result is not surprising since spatial derivatives are

implemented as derivatives of a Gaussian which are transformations that preserve

correlation. The fusion step must weight these local correlations by taking the val-

ues of the neighbor spectra into account. So, pixels with similar responses will have

similar weights and preserve the differences with other non-similar pixels. An op-

erator that preserves these kinds of local relationships is the heat operator [93]. To

use the heat operator, the smoothed gradient is modeled as the initial heat distri-

bution on a compact manifold M in which each point x in M is an m−dimensional

vector.

The next section will present a short overview of the mathematical background

for the heat operator and Section 3.3.3 presents the proposed weights.

3.3.2 The Heat Operator

The heat operator is used as part of the heat kernel which in turn is used as part

of a structure preserving map that finds intrinsic symmetries between shapes [94].

Here it is used as the operator that acts on the spectral signature of each pixel
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of the gradient components producing the weights. This section presents a brief

introduction to it.

Let M be a compact Riemannian manifold without boundary. Let Rm
+ be the

positive section of the m−dimensional Euclidean space, Rm. Let the amount of

heat at a point p ∈ M at time s for some initial heat distribution f : M → Rm
+ at

s = 0 be defined as h(p, s) : M × R+ → Rm
+, where h (p, s) is a solution to the heat

equation

∂sh = −ΔMh, and lim
s→0

h (p, s) = f (p) ,

and ΔMis the Laplace-Beltrami operator of M, for an introduction of this operator

see [95]. The solution of the heat equation at time s given f , can be computed

through the heat operator Hs : L2 → L2, where L2 is the space of all smooth, square

integrable functions on M:

h (p, s) = (Hs f ) (p) =
(

e−sΔM f
)
(p) (3.3.1)

These results can be found in [93]. Information about properties and applications

of (3.3.1) can be found in [93, 96, 94].

3.3.3 Weights Based on the Heat Operator

This section presents the proposed weighting process applied to the classical struc-

ture tensor. From Section 3.3.2, M can be thought of as an abstract space general-

ization that locally behaves as the Euclidean space and where ∇Iσ resides. Let p
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be a pixel on the smoothed original image Iσ. The weights are given by h(p, s) in

(3.3.1) with initial heat distribution

f (p) = ∇I∗σ (p) =

⎡
⎢⎣ I∗x (p)

I∗y (p)

⎤
⎥⎦

where I∗x (p) is Ix (p) after a convolution with a [1× 3] mean filter used to regularize

the weighting process. I∗y (p) is obtained in the same manner. The weights at p

denoted as Wp will be called heat weights. Their definition is based on Hs in (3.3.1),

but the absolute value of the Laplace-Beltrami operator is used to capture the size

of variations independent of their sign. Wp is given as:

Wp =

⎡
⎢⎣ wpx

wpy

⎤
⎥⎦ =

⎡
⎢⎣ e−s|ΔI∗x(p)|

e−s|ΔI∗y(p)|

⎤
⎥⎦ . (3.3.2)

Since I∗x (p) is an m−dimensional vector, its Laplace-Beltrami operator is its second

derivative. The same is true for I∗y (p). wpx, wpy ∈ Rm are normalized by their

respective sums so that sum(Wp) = [1, 1]T. In all experiments, s = 1 was used.

Higher values of s can dominate Wp’s behavior, corrupting the information pro-

duced by the Laplace-Beltrami operator (see Section 5.3.). This weighting process

takes into account the correlation between bands in two ways: (i) using the mean

filter and (ii) approximating the Laplace-Beltrami operator using the standard cen-

tral difference scheme. The spectrally weighted structure tensor with weights based

on the heat operator will be called the heat weighted structure tensor.

Figure 3.3.2 shows how the weights affect the spectral signatures of the gradient

component Ix and how the relations between pixels of the same class are preserved

in a HSI. There are two scenarios depicted in Figure 3.3.2 both with pixels in the

same class, as shown in (b) and (f). The first scenario, depicted in the left column,
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Figure 3.3.2: Weighting effect in pixels on heterogeneous and homogeneous regions of In-
dian Pines. TOP ROW left to right: (a) Portion of Indian Pines image with a
pixel on an edge and a second pixel on an homogeneous region. (b) Spectra of
the pixels marked in (a). (c) Ix’s signature of the pixels marked in (a) using the
uniform weights (d) Ix’s initial signature of the pixels marked in (a) using the
heat weights. BOTTOM ROW left to right: (e) Portion of Indian Pines image
with both pixels in a homogeneous region. (f) Spectra of the pixels marked in
(e). (g) Ix’s signature of the pixels marked in (e) using the uniform weights (h)
Ix’s signature of the pixels marked in (e) using the heat weights.
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is the comparison of an edge pixel (red) and a pixel from the inside region (blue).

The second scenario, shown in the right column, compares two pixels inside region.

Figure 3(c) and (d) show Ix’s signature from pixels in the same spatial position as

in (a). As in (b), the signature of the edge pixel is plotted in red and the non-edge

in blue. It can be seen in (c) and (d) that the two signatures are very different as

not all spatial neighbors of the edge pixel belong to the same class. In addition, the

signature of the edge pixel tends to zero along the spectra. This is expected since

it is a horizontal edge and the signature belongs to its horizontal derivative Ix. On

the other hand, when the two pixels are on the inside region, their signatures are

highly similar, as shown in Figures 3.3.2 (f)–(h). Figures 3.3.2 (c) and (g) show the

signature of the pixels on Ix using the uniform weights on both scenarios. Figures

3.3.2 (d) and (h) show the signatures of pixels on Ix using the heat weights. For

this example, a comparison of the angle between the signatures produced with the

uniform weights, θu, and the angle between the signatures produced with the heat

weights, θh, is done using the relative difference measure given by:

% Dif =
|θh − θu|

max (|θh| , |θu|) × 100.

In the first case, Figures 3.3.2 (c) and (d), θh in (d) is 0.47% larger than θu in (c).

In the second case, Figures 3.3.2 (g) and (h), θh in (h) is 4.15% smaller than θu in

(g). These results suggest that the heat weights, not only produce smoothing, but

they also reduce the variability between similar signatures, while maintaining the

difference between dissimilar pixels.

From Figure 3.3.2 it is clear that the proposed weighting process produce a

smoothing in the spectral response of each pixel of the spatial gradient images.

Intuitively the heat operator penalize large abrupt changes in the spectral response

of the pixel. In the case of a pixel p = [p1, ..., pm] on I∗x , the x−component of the
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spatial gradient, the entry pi for band i identify the existence or nonexistence of

vertical spatial edges in that band. The heat operator applied to p will penalize

large changes in the rate of change of the existence of the spatial edges along the

bands at pixel p.

3.3.4 Parameters used for the Structure Tensor.

Two parameters for the structure tensor, Jρ, with ρ > 0 were defined in Section

2.3.5. One is known as the noise scale σ, since the smoothed gradient ∇Iσ ,which is

an edge detector, ignores details smaller than O(σ) [20]. The parameter σ is image

dependent, but our experience with several HSIs is that a value of σ ∈ [0.5, 1.5]

is enough to regularize the process. For degraded images, larger values of σ are

needed [46]. Figure 3.3.3(a) shows the red band of Van Gogh’s painting “Road

with Cypress and Star” [97]. Figures 3.3.3(b) and (c) are the original image after

being processed with TAND-CED (see Section 4.2.2) using the classical structure

tensor. To show the impact of the integration scale ρ parameter, all values are

kept equal except ρ. When ρ = 1 in Figure 3.3.3(b), the filter produces artifacts,

while increasing it to ρ = 4 in Figure 3.3.3(c) produces flow-like structures that

look like completed lines since this larger neighborhood captures the coherence

orientation. Increasing it to ρ = 6, see Figure 3.3.3(d), produces very similar results

to ρ = 4. It is important to note that underestimation of ρ is far more critical than

overestimation, so it is not difficult to find an estimate that works for the whole

image domain [46].
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Figure 3.3.3: Integration scale on CED. �� = 0.5, n = 4. Image size is 254 × 200. (a) original
image. (b) After CED with ρ = 1. (c) After CED with ρ = 4. (d) After CED
with ρ = 6.
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3.4 implementation details

The Gaussian derivatives for an n1 × n2 ×m image I are implemented by truncating

the uni-variate Gaussian distribution with variance σ2 when the smallest values is

less than 1 × 10−4. This produces a kernel Gσ. Then the derivatives Ix, Iy are

implemented using separable kernels. Note that Ix and Iy are of the same size as I.

The weights are implemented by converting Ix and Iy to matrices in which each

row is a pixel. Each of those matrices are convolved with the 1 × 3 median fil-

ter and with the second derivative calculated using symmetric central differences.

Then (3.3.2) is calculated and converted back to a cube, producing Wx and Wy. The

weighted derivatives are calculated by Hadamard multiplications (Wx ◦ Ix) and
(
Wy ◦ Iy

)
,

denoted by the small circle (◦).
Since the derivative is calculated using local neighborhoods all the products used

to calculate the components

A =
m

∑
i
[(Wx ◦ Ix) ◦ (Wx ◦ Ix)]i , B =

m

∑
i
(Wx ◦ Ix)i ◦

(
Wy ◦ Iy

)
i and

C =
m

∑
i

(
Wy ◦ Iy

)
i ◦
(
Wy ◦ Iy

)
i

of the initial matrix field are Hadamard too. Each of those components produce a

n1 × n2 image with the edge information. Vertical edges are found using A. Diag-

onal edges are found using B and horizontal edges using C. Those A, B and C are

used for EED. A, B and C are convolved with Gρ a Gaussian of variance ρ to calcu-

late the integration step needed for CED’s structure tensor. Gρ is truncated in the

same way as Gσ. It is important to note that all the operations needed to implement

the structure tensor are pixel-wise, so a parallel implementation is possible. Figure

3.4.1 shows a flow chart of the steps need it to calculate the structure tensor. The
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pseudo-code to implement the proposed weighted structure tensor is described in

3.1.

Algorithm 3.1 Weighted Structure Tensor
Inputs : I, σ, ρ
Output: A, B, C

1. Calculate the Gaussian Kernel

• thr ← 0.0001; t ← 1 : 30

• width := f ind(exp
(−(t.2)/2σ2) > thr; x ← −width : width

• Gσ ← exp
(−(x ◦ x)/2σ2)

• Gσ ← Gσ/sum(Gσ)

2. Calculate Ix, Iy

• Ix ← (I ∗ (−x ◦ Gσ)) ∗ GT
σ

• Iy ←
(

I ∗ (−x ◦ Gσ)
T
)
∗ Gσ

3. Calculate (Wx ◦ Ix) and
(
Wy ◦ Iy

)
using (3.3.2).

4. Calculate A = ∑m
i [(Wx ◦ Ix) ◦ (Wx ◦ Ix)]i

5. Calculate B = ∑m
i (Wx ◦ Ix)i ◦

(
Wy ◦ Iy

)
i

6. Calculate C = ∑m
i
[(

Wy ◦ Iy
) ◦ (Wy ◦ Iy

)]
i

7. if ρ �= 0 % for CED

8. A ← A ∗ Gρ

9. B ← B ∗ Gρ

10. C ← C ∗ Gρ

11. endIf
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Figure 3.4.1: Flow chart describing the proposed Structure Tensor.
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3.5 concluding remarks

In this chapter a framework for the spectrally adapted structure tensor for vector-

valued images has been presented. This framework consist in a weighting process

that takes into account the spectral characteristics of those images. A spectrally

adapted structure tensor for the case in which the spectrum of the vector-valued

images is locally highly correlated have been developed. HSI are an example of

those images. The heat operator give the mathematical framework to use the spec-

tral characteristics of the images for the weighting process.



4
T E N S O R A N I S O T R O P I C N O N L I N E A R D I F F U S I O N

This chapter will describe the proposed TAND diffusion tensors. Those tensors are

build based on the structure tensor defined in Section 2.5.3. Extending TAND to

vector-valued images that are locally highly correlated in the spectral direction is

the main motivation to propose them. The diffusion tensors used in the proposed

TAND filters will use the eigenvectors of the spectrally adaptive structure tensor

proposed in the previous chapter. The eigenvalues will be defined so TAND will

take advantage of the edge information obtained by the heat weighted structure

tensor. Experimental results on the usage of the heat weighted structure tensor on

TAND and comparison of the proposed TAND with the state of the art proposed

by Weickert will be presented.

4.1 introduction

TAND is described by the partial differential equation (PDE):

∂u
∂t

−∇ · (D∇u) = 0, in Ω (4.1.1)

where u (the filtered version of image f (x) with domain �) is the solution of the

initial boundary value problem for the diffusion equation with f as the initial con-

81



4.2 eigenvalues of the proposed diffusion tensors 82

dition, and Neumann boundary conditions. D is a positive semi definite symmetric

matrix known as the diffusion tensor D is defined as:

D =

[
ω1 ω2

] ⎡⎢⎣ κ1 0

0 κ2

⎤
⎥⎦
⎡
⎢⎣ ω1

ω2

⎤
⎥⎦ =

⎡
⎢⎣ λ β

β ν

⎤
⎥⎦ (4.1.2)

where, ω1 = [ω11, ω12 ]
T ⊥ ω2 = [−ω12, ω11 ]

T are defined as in (3.1.5). κ1 and κ2

are functions on the largest and smallest eigenvalues of J�, μ1 and μ2 respectively.

λ, β and ν can be written in terms of the eigenvalues and eigenvectors of D as

follows:

λ =κ1ω2
11
+ κ2ω2

12
(4.1.3)

β = (κ1 − κ2)ω11ω12 (4.1.4)

ν =κ1ω2
12
+ κ2ω2

11
, (4.1.5)

when, ρ = 0, (3.1.3) is the structure tensor used for EED and when � > 0, (3.1.4)

is the structure tensor used for CED. J0 defined in (3.1.3) is used for the classical

structure tensor while J0 defined in (3.2.1) is used for the spectrally weighted tensor.

The next section will present the functions used to define the eigenvalues κ1 and κ2

of D for the proposed TAND.

4.2 eigenvalues of the proposed diffusion tensors

This section will give some motivation to define new diffusion tensors for TAND-

EED and TAND-CED that take advantage of the information produced by the heat

weighted structure tensor. A discussion on why the eigenvalues where defined

using those functions is provided.
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4.2.1 EED diffusion tensor

For EED, the diffusion is directed along the edges, avoiding diffusion across them

and on them. So, both κ1 and κ2 must get close to zero in the presence of an edge

and be maximal in homogeneous regions. There are several functions proposed in

the literature used for the eigenvalues κ1 and κ2. A review of them can be found in

[45]. The proposed κ1 and κ2 are given by :

κ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 μ1 = 0

1 − exp
(

−Cr
(μ1/ψ)r

)
μ1 > 0

(4.2.1)

κ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 μ1 ≤ ψ

1
ξ(κ1

1)
4
+1

μ1 > ψ

(4.2.2)

κ1 is defined as the one proposed for EED by Weickert in [45] with r = 4, Cr = 3.315

(see [2] §5.1), where 1 = exp(–Cr)(1+ 2Cr · r) and ψ is a contrast parameter. For the

edges (μ1 > ψ), κ2 is a constant defined in terms of the entropy of κ1 at iteration

n = 1, ξ
(
κ1

1
)

and 1 otherwise. κ1
1 is κ1 calculated using the original image. The

entropy ξ (κ1) is defined as in [98]:

ξ = −
255

∑
i=1

qi log (qi)

where qi is the probability of that a pixel, belonging to κ1, has intensity i and

qi log (qi) = 0 if qi = 0, . In practice, qi is the histogram count of the ith bin of

κ1’s global intensity histogram. Weickert’s in [45] uses κ2 equal to 1. The problem

of letting κ2 = 1 is that it does not adapt to the structures in the image. The
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Figure 4.2.1: Comparison of the classical structure tensor using κ2 = 1 and κ2 defined as
in (4.2.2). (a) RGB composition of HSI Indian Pines after EED using clas-
sical structure tensor with κ2 = 1, n = 4 iterations; (b) same as (a) with
κ2 = 1/

[
ξ
(
κ1

1

)4
+ 1
]

, n = 4 for edges, otherwise 1; (c) λ−component of the
diffusion tensor in (a); (d) λ−component of the diffusion tensor in (b).
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same smoothing is applied in the direction of ω2 independently of the structures

present in the image. κ2 = 1 produces a strong smoothing in the edges as seen

in Figure 4.2.1(a). The value of κ2 in (4.2.2) will decrease in the presence of an

edge (μ1 > ψ), in which case κ1 ≈ 0 and κ2 ≈ 1/
[
ξ
(
κ1

1
)4

+ 1
]

. κ2 is maximal

in the interior of a region (μ1 ≤ ψ), in which case κ1 ≈ 1 and κ2 ≈ 1. This

definition mitigates the blurring effect in the edges, while keeping the smoothing

in the homogeneous regions as seen in Figure 4.2.1(b). Figure 4.2.1(c) shows the

λ−component of the diffusion tensor based on the classical structure tensor with

κ2 = 1. Clearly this component only preserves the vertical edges (dark edges

representing intensity values close to zero). There is a strong smoothing in all the

other edges (light gray edges). While, in Figure 4.2.1(d), where κ2 is defined as

in (4.2.2), edges are preserved. κ2 needs to have the same value for all edges to

prevent the same edge from having strong smoothing in some places and lesser in

others. So, κ2 was chosen to have a dependency on a global characteristic of κ1 that

does not depend directly on the intensity scale. So, the entropy of κ1 was a natural

choice. The entropy is calculated using the original image since the entropy of the

filtered image u decreases at each iteration, i.e., ξ
(
un+1) ≤ ξ (un) [46]. So, ξ

(
κ1

1
)

is

constant for all iterations n.

4.2.2 CED Diffusion tensor

When ρ > 0, the structure tensor Jρ is used to enhance one dimensional features in

the image. In this case, the eigenvalue κ1 is equal to a very small constant α used

to guarantee that the diffusion process never stops and to keep the diffusion tensor

uniformly positive definite [46]. κ2 will depend on the difference in the eigenvalues

of Jρ, i.e., μ = μ1 − μ2. The eigenvalues are defined as in [20]
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Figure 4.2.2: κ2 using (4.2.3). Components of the diffusion tensor using C = 1 in (4.2.3)
after n = 1 iterations.

κ1 =α 0 < α � 1

κ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α μ = 0

α + (1 − α) exp
(
−C
μ2

)
otherwise

(4.2.3)

C = 1 is used. This constant assignment does not work well. Figure 4.2.2 shows

the λ, β, and ν components of the diffusion tensor (see (4.1.2)) using κ2 as defined

in (4.2.3) with C = 1 of an AVIRIS image [99]. In this image, only part of the center

wake is enhanced. The idea of using TAND-CED in this image is to enhance the

wakes by eliminating the radial texture traversing them. If we let C be a variable

then C works as a contrast parameter of μ2 and not of μ as shown in Figure 4.2.4(b).

This can presents problems for images where the majority of the edges responses

in μ are less than one. So it will be better to define κ2 in term of the edges responses

of μ and not on μ2.
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Figure 4.2.3: Comparing κ2 using (4.2.3) and using (4.2.4). (a) Plot of κ2 in (4.2.4), varying
the value of ψ. (b) Plot of κ2 in (4.2.3), varying the value of C.

The eigenvalues of the diffusion tensor can also be defined using the following

expression [100] with ψ as in (4.2.1):

κ1 =α 0 < α � 1

κ2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α μ = 0

α + (1 − α) exp
(

−3.315
(μ/ψ)4

)
otherwise.

(4.2.4)

The value of the contrast parameter ψ in (4.2.4) defines low contrast regions as

regions where μ < ψ making κ2 ≈ α, and high contrast regions where μ > ψ

making κ2 ≈ 1 as shown in Figure 4.2.3(a). The threshold parameter ψ in (4.2.4) is

a contrast parameter of μ instead of μ2. Figure 4.2.4 shows the AVIRIS image [99],

see Section 5.1.2, processed with heat weighted structure tensor with n = 2, σ = 1.2

ρ = 2.5. That figure shows the components of the diffusion tensor, λ, β, and ν using

(4.2.4) as eigenvalue function for κ2 and its sensibility to changes in the value of

ψ for ψ = 70th, 92th and 98th percentile of μ. It is clear that varying ψ produces

enhancement in different features of the image. If C in (4.2.3) is taken as a contrast

parameter and the majority of the values of μ are greater than 1 then (4.2.3) and

(4.2.4) can produce very similar results. For all CED experiment presented in this
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Figure 4.2.4: Proposed diffusion tensor for CED and its sensibility to ψ. AVIRIS image [99]
was process with heat weighted structure tensor with n = 2, σ = 1.2 ρ = 2.5.
Components of the diffusion tensor, λ, β, and ν using (4.2.4) as eigenvalue
function for κ2 vs. ψ are shown. ψ = 70th, 92th and 98th percentile of μ.

work the eigenvalues of the diffusion tensor will be defined as in (4.2.4), otherwise

will be specified. For CED, the value of the noise scale σ needs to be set small

enough so the orientation information is not destroyed.

4.3 tand as an approximation to local diffusion

One of the most studied diffusion PDE-based methods is TAND [21, 2, 20, 46].

TAND was proposed by Weickert in [71]. This filter belongs to a family of regu-

larized anisotropic nonlinear filters that have many proved properties such as well-

posedness (existence and uniqueness of results), continuous dependence of the so-

lution on the initial image and scale space properties such as maximum–minimum
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principles, invariance, Lyapunov functionals, and convergence to a constant steady-

state. In addition, a scale space discrete theory has been developed [2].

Tschumperlé and Derriche in [18] found that the divergence operator in TAND

can be decomposed as a trace-base operator on the Hessian, H, plus a term that

appears connected to the spatial variation of the tensor field produced by D, i.e.,

div (D∇Ii) = trace (DHi) +∇IT
i
−→
div (D) i = 1, ...m (4.3.1)

where

−→
div (D) =

⎛
⎜⎜⎜⎜⎝

div

[(
λ β

)T
]

div

[(
β ν

)T
]
⎞
⎟⎟⎟⎟⎠

and λ, β and ν are the components of D, i = 1, . . . , m. This is because they see D in

(4.1.1) as a global operator (i.e., a tensor field on Ω), and not a local operator at a

neighborhood of a pixel p ∈ Ω as in (4.4.1). So, λ, β and ν are no longer constants

at p, they are now functions from Ω → R. Then, it is concluded in [12] that the

first term in (4.3.1) corresponds to local smoothing directed by the elements of D

and that the second term perturbs the smoothing behavior steered by D in the first

term. In this work, the second term in the right hand side of (4.3.1) will be called

the disturbance term. They express (4.3.1) as a sum of two trace terms. To show

all these calculations, they use the initial matrix in (3.1.3) ([12]§3.2-3.3). For the

general framework ([12]§3.4) based on a generalization of the operator trace(DHi),

they choose to use the structure tensor in (3.1.4).

All the examples presented in this framework [12, 3] were compared with TAND–CED.

This comparison appears to be a natural choice since this method uses an integra-

tion parameter ρ > 0, just as in TAND–CED. However, by observing how the eigen-

values of both methods are selected, it becomes clear that, for their diffusion tensor,

they are selected to do very different processes. Hence, a comparison of the two
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may not be appropriate. Perhaps a better comparison with Weickert’s TAND–EED.

This is also supported in the derivation of their unifying framework ([12] §3.3) since

they use the initial matrix field there. In addition, TAND–EED is designed with the

same purpose as the trace–based formulation. Both aim to preserve and produce

small enhancement on the edges with strong smoothing of the homogeneous ar-

eas. CED, on the other hand, aims to enhance the edges by completing them with

almost no smoothing of the homogeneous regions. To briefly explain this, both κ1

and κ2, in the trace-based formulation, use the decreasing functions given by [12]:

κ1 =
1

1 + (
√

μ1 + μ2)
2 , κ1 =

1√
1 + (

√
μ1 + μ2)

2
(4.3.2)

In the presence of a homogeneous region, μ1 ≈ μ2 ≈ 0, κ1 ≈ κ2 ≈ 1 produce a

strong smoothing. This is true for κ1 and κ2 in (4.3.2) for the trace based formulation

and also for κ1 in (4.2.1) and κ2 = 1 for Weickert’s TAND–EED. For TAND–CED,

κ1 ≈ κ2 ≈ α = 1 × 10−3, produces almost no smoothing. In the case of edges,

μ1 � μ2 ≈ 0, κ1 and κ2 in (4.3.2) vanish to zero. κ2 vanishes slower than κ1 ,

producing a very small enhancement along the edges. κ1 in (4.2.1) for TAND–EED

behaves similarly to κ1 in (4.3.2) and produces a small enhancement for edges

with intensity greater than ψ, and κ2 = 1. In TAND–CED, κ1 is a small constant,

α = 1 × 10−3, and κ2 reaches its maximum value of 1 for edges with intensity

greater than ψ. In general, the diffusion tensor for the trace–based operator behaves

more similar to TAND for EED than CED.

Empirically speaking, in the experience with TAND processing of HSIs, the in-

fluence of the second term in the RHS of (4.3.1) is not noticeable in the sense that

TAND will still enhance the features as expected, (see Section 5.5.1.2). Hence, the

experiments performed indicate that the computational cost justifies the orientation

and magnitude inaccuracies introduced by this term, if any is really introduced.
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However, further study comparing TAND–EED and the trace-based formulation

is needed as well as a study of the properties of this general trace based formula-

tion to see if the properties of TAND are extensible to this more general approach.

Neither are addressed in this thesis.

Computationally speaking, to calculate the trace-based operator, it is necessary

to calculate the gradient and Hessian at each pixel entry. There are two ways to

approximate the Hessian: (i) using a finite difference approach or (ii) using spa-

tially varying normalized Gaussian kernels. The approximation that gives results

comparable with TAND–EED using semi-implicit methods is the one using Gaus-

sian kernels. This approximation has a high computational cost since Gaussian

kernels need to be calculated at each pixel entry and then a local convolution is

performed. But it is accurate and this scheme guarantees that the trace–based for-

mulation preserves the maximum principle. The heat weighted structure tensor

can also be used in the trace-based formulation. TAND was chosen since two kind

of processing can be done with it, regularization and structure enhancement, and

given that HSI are large data sets, a tradeoff between accuracy and computational

cost is also necessary.
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4.4 discretization of the divergence-based diffusion equation us-

ing a tensor

The anisotropic diffusion filter in (4.1.1) can be written as

∂u
∂t

=div (D∇u)

∂u
∂t

∣∣∣N (p) =div

⎡
⎢⎣ λ∂xu + β∂yu

β∂yu + ν∂yu

⎤
⎥⎦

=∂x (λ∂xu) + ∂x
(

β∂yu
)
+ ∂y

(
β∂yu

)
+ ∂y

(
ν∂yu

)
(4.4.1)

where N (p) is a neighborhood around pixel p. Equation (4.4.1) cannot be solved

analytically. It needs to be approximated by numerical methods. Finite difference

methods are most commonly used, see (Section 2.6). They are easy to implement

and they work well with a regular rectangular pixel grid, such as those present in

digital images (see [101]).

For images, it is customary to assume that the pixel size in the x and y direction

is 1. Let τ be the time step size, and denote Un
i,j as the approximation of u at pixel

p = (i, j) at time tn = n�. A simple finite difference approximation to ∂tu at pixel p

for iteration n is given by:

∂tu =
Un+1

p − Un
p

τ
(4.4.2)

To include the neighbors in the 3 × 3 neighborhood and to produce a symmetric

derivative, the spatial derivatives are approximated as follows:

δ∗xUi,j = Un
i+ 1

2 ,j − Un
i− 1

2 ,j, and δ∗yUi,j = Un
i,j+ 1

2
− Un

i,j− 1
2
, (4.4.3)
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Figure 4.4.1: Pixels involved in the approximation of the divergence term for the classical
and rotational invariant difference schemes

which corresponds to the green dots in Figure 4.4.1(a). Then, the right hand side

of (4.4.1) is approximated as:

∂x (λ
n∂xun)

∣∣i,j ≈ (λn
i,jδ

∗
xUn

i,j

)
i+ 1

2 ,j
−
(

λn
i,jδ

∗
xUn

i,j

)
i− 1

2 ,j

≈λn
i+ 1

2 ,j

(
Un

i+ 1
2 ,j − Un

i− 1
2 ,j

)
i+ 1

2 ,j
− λn

i− 1
2 ,j

(
Un

i+ 1
2 ,j − Un

i− 1
2 ,j

)
i− 1

2 ,j

∂x (λ
n∂xun)

∣∣i,j ≈λn
E + λn

P
2

(UE − UP) +
λn

P + λn
W

2
(UW − UP) .

In an analogous form it is found that ∂y
(
ν∂yu

) ∣∣i,j given by:

∂y
(
νn∂yun) ∣∣i,j ≈ νn

S + νP

2
(US − UP) +

νn
P + νn

N
2

(UN − UP) .

For the mixed derivatives, there are several possibilities:

scheme 1. Using the standard central differences in (2.6.1) :
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Table 4.4.1: 3 × 3 averaging mask A
(

Un
i,j

)
for the case in which the mixed derivatives are

calculated using the standard central differences defined by δx in 2.6.1
βN+βW

4
νN+νP

2
βE+βN

4

λW+λP
2 −

⎛
⎜⎝

λE+λP
2 + λW+λP

2

νN+νP
2 + νS+νP

2

⎞
⎟⎠ λE+λP

2

βW+βS
4

νS+νP
2

βE+βS
4

∂x
(

βn∂yun) ∣∣i,j ≈
(

βn
i,jδyUn

i,j

)
i+1,j

−
(

βn
i,jδyUn

i,j

)
i−1,j

2

≈
βn

i+1,j

4

(
Un

i,j+1 − Un
i,j−1

)
i+1,j

−
βn

i−1,j

4

(
Un

i,j+1 − Un
i,j−1

)
i−1,j

≈
βn

i+1,j

4
Un

i+1,j+1 − Un
i+1,j−1 −

βn
i−1,j

4
Un

i−1,j+1 − Un
i−1,j−1

≈βn
E

4
(Un

SE − Un
NE) +

βn
W
4

(Un
NW − Un

SW)

In an analogous manner, the other mixed derivative is calculated

∂y (βn∂xu)
∣∣i,j ≈ βn

S
4

(Un
SE − Un

SW) +
βn

N
4

(Un
NW − Un

NE)

The preceding approximations lead to the scheme:

Un+1
P − Un

P
τ

=
λn

E + λn
P

2
(UE − UP) +

λn
P + λn

W
2

(UW − UP)

+
νn

S + νn
P

2
(US − UP) +

νn
P + νn

N
2

(UN − UP)

+
βn

E
4

(Un
SE − Un

NE) +
βn

W
4

(Un
NW − Un

SW)

+
βn

S
4

(Un
SE − Un

SW) +
βn

N
4

(Un
NW − Un

NE)



4.4 discretization of the divergence-based diffusion equation using a tensor 95

Table 4.4.2: 3 × 3 averaging mask A
(

Un
i,j

)
for the case in which the mixed derivatives are

calculated using the standard central differences defined by δ∗x in (4.4.3).

βW+βN+2βP
8

1
2 (νN + νP) +
1
8 (βW − βE)

βE+βN+2βP
8

1
2 (λW + λP) +

1
8 (βN − βS)

−
(

λE+λW
2 + λP

νN+νS
2 + νP

)
1
2 (λE + λP) +

1
8 (βS − βN)

βW+βS+2βP
8

1
2 (νS + νP) +
1
8 (βE − βW)

βE+βS+2βP
8

As a result, the unknown Un+1
P can be calculated explicitly as a weighted mean of

known values at level n. In stencil notation, the averaging mask is given by Table

4.4.1.

scheme 2. Using the central differences in (4.4.3):
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In an analogous manner, the other mixed derivative is calculated

∂y (βn∂xun)
∣∣i,j ≈βn

S + βn
P

8
(Un

E + Un
SE − Un

SW − Un
W)

+
βn

N + βn
P

8
(Un

W + Un
NW − Un

E − Un
NE)

Note that for this scheme, interpolations for β’s and U’s are necessary. To use this

scheme on the mixed derivatives, the values on the green dots in Figure 4.4.1(b)
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need to be interpolated. They are interpolated using all the neighbors of pixel P

and P itself, that is, the red dots in Figure 4.4.1(b). e.g.,

Un
i+ 1

2 ,j+ 1
2
=

1
4

(
Un

i,j + Un
i+1,j + Un

i+1,j+1 + Un
i,j+1

)
=

1
4
(Un

P + Un
E + Un

SE + Un
S)

For this scheme the averaging mask is given in Table 4.4.2.

scheme 3. Using the rotationally invariant scheme (2.6.2):

The inclusion of NW, SW, NE, SE neighbors of pixel P produces a grid shown in

Figure 4.4.1(b). The black dots are additional interpolations needed to calculate the

rotationally invariant scheme. The coefficients for the rotationally invariant scheme

were calculated using Matlab’s symbolic package. The expressions are too long to

be displayed here.

It was found, that Schemes 1 and 2 produced similar results. Scheme 3 that

includes the eight neighbors produced less blurry diagonal edges. But as TAND

iterates, some other important edges where smoothed, while the other schemes did

not produce such results. Therefore, due to less computational complexity, fewer

interpolations and the quality of the results Scheme 1 was chosen, i.e, the mixed

derivatives used the standard central difference scheme.

After solving all the spatial derivatives approximations, (4.4.2) can be expressed

as a product of Un
p and an averaging mask, A(Un

p), written as a function of Un
p (see

[2]). Equation (4.4.1) in matrix-vector notation becomes:

Un+1 = [Id + τA (Un)]Un,

where Id is the identity matrix. This scheme is known as the explicit scheme. The

problem with this scheme is that it is only experimentally stable for step sizes τ ≤ ¼
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which makes the discretization impractical [2]. There is another discretization of

(4.4.1) that is numerically stable for any size of τ since [Id − τA (Un)] is diagonal

dominant, known as semi implicit,

Un = [Id − τA (Un)]Un+1

The accuracy of the solution depends on the choice of τ. With a large τ, the solution

can be obtained within few iterations but the accuracy will suffer to the point that

is useless. A trade-off between the number of iterations n and τ’s size is necessary.

This semi-implicit finite-difference scheme produces a nine diagonal linear system

that is not symmetric and can be solved with any of the Krylov subspace methods

for non-symmetric sparse matrices[102]. The most used are Generalized Minimum

Residual Method (GMRES) or conjugated gradient stabilized method (BICGStab).

4.5 solver and preconditioner used

The 145× 145× 185 Indian Pines HSI was used in experiments to determine whether

to choose BiCGStab or GMRES. TAND was iterated until n = 8, the methods were

set to stop with a tolerance of 10−3 and the time step for the discretization was

τ = 2. As TAND iterates the number of iterations and time it needs to solve the

linear system was decreasing. The experiments where carried out with the three

discretization schemes described in the last section. BiCGStab without precondi-

tioning was three times faster than GMRES in all of them for the first iteration. For

all the other iterations it was at least 1.5 times faster than GMRES. So BiCGStab

was chosen as the solver. Scheme 3 has the best performance in terms of the time

taken to converge to a solution and with fewer iterations. But the discretization

step took 1.5 times longer than with any of the other schemes. Scheme 1 and 2 had
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similar performance, being Scheme 1 slightly better than Scheme 2. So Scheme 1

was chosen.

A preconditioner based on Peric’s direct method to solve nine - diagonal linear

systems [103] was developed. The details of this preconditioner are in Appendix

A.2. This preconditioner was compared with the ILU(0) preconditioner and the

Jacobi explicit diagonalization scheme. ILU was almost 2.8 times faster than Jacobi

diagonalization and 2.25 times faster than our proposed preconditioner. Those

times were calculated in the first iteration of TAND.

4.6 tand algorithm

TAND algorithm is depicted using a flow chart in Figure 4.6.1, its pseudo-code is

given by Algorithm 4.1.

4.7 concluding remarks

A Tensor Anisotropic Nonlinear Diffusion (TAND) have been proposed and stud-

ied. Diffusion tensors were proposed for TAND for Edge Enhancement Diffusion

(EED) and for Coherence Enhancement Diffusion (CED). Those proposed diffu-

sion tensors used the orientation and eigenvalues of heat weighted structure tensor

developed in Chapter 3. This structure tensor make TAND adaptive to the spec-

tral characteristics of HSI. The proposed diffusion tensor for TAND-CED is more

sensitive to the values of the contrast parameter used to define the edges, while

Weickert’s one is sensitive to its square.

All aspects of TAND implementation have been studied. After implementing

three methods to discretize the derivatives, the standard central difference scheme

used to discretize the mixed derivatives ∂xy, ∂yx, and the standard central differ-
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Figure 4.6.1: Flow chart of the TAND algorithm
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Algorithm 4.1 Tensor Anisotropic Nonlinear Diffusion
INPUT:

Image Un

Information from Un’s structure tensor to be used.

• Eignvectors of structure tensor ωn
1 ωn

2 .

• For EED: The largest eigenvalue, μn
1 .

• For CED The difference between the eigenvalues, μ = μn
1 − μn

2 .

Contrast parameter ψ

OUTPUT: Image Un+1

1. Calculate κ1, κ2

• For EED use (4.2.1) and (4.2.2)

• For CED use (4.2.4)

2. Calculate the components of the diffusion tensor λn, βn, νn using (4.1.3),
(4.1.4) and (4.1.5) respectively

3. Construct the averaging mask A using λ, β, ν. %See the section above

4. Apply boundary conditions

5. Solve the linear system AUn+1 = B
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ence scheme applied to half distances to discretize ∂2
x and ∂2

y obtained good results

in term of interpolations, less computational time and good results. To solve the lin-

ear system it was studied the performance of two methods to solve non-symmetric

linear systems, BiCGStab and GMRES. BiCGStab was chosen since it needed less

iterations and less time to find a solution. A preconditioner was developed and

tested against the ILU(0) and the Jacobi explicit diagonalization preconditioner.

The ILU(0) was choosen since it needed less iterations and less time to find the

solution.



5
E X P E R I M E N TA L R E S U LT S

This chapter presents the data used for the experiments, and an empirical guideline

to set the parameters used in TAND. Comparison between Nonlinear diffusion

and TAND is performed to see the importance of using a tensor. An experimental

comparison of the performance of the structure tensors using TAND is presented.

To that end, the proposed TAND for EED and CED are used and the comparison

is performed by only changing the structure tensor. The aim of these experiments

is to show how a weighted structure tensor improves the proposed TAND. Finally

a comparison of Weickert’s TAND with the proposed TAND is presented.

All methods were implemented in Matlab. The heat weighted structure tensor

was implemented as described in Algorithm 3.1. The classical structure tensor was

implemented as described in Subsection 3.1. TAND was implemented as described

in Algorithm 4.1. All HSIs bands were normalized to the [0, 255] range (8-bits).

The diffusion tensor for TAND–CED is defined using (4.2.4) and for TAND–EED

using (4.2.1) and (4.2.2). They will show comparisons with the classical structure

tensor. In all experiments, a semi-implicit scheme was used, which is solved using

BICGStab with a tolerance of 10−4 and the discretization time step was τ = 5, any

change on those parameters will be specified. For some images, those methods

were slow to converge. So, to accelerate the convergence the ILU(0) preconditioner

was used.

102
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5.1 data

5.1.1 Data for EED

For EED, the following HSI were used:

1. The Indian Pines image taken with the AVIRIS (Airborne Visible/Infrared

Imaging Spectrometer) sensor, flown by NASA/Ames on June 12, 1992 over

an area 6 miles west of West Lafayette, IN. This image contains 145 × 145 pix-

els at ∼ 20 m of spatial resolution and 220 spectral bands in the 400− 2500 nm

range, at ∼ 10 nm of spectral resolution, for which ground truth exists. Fifteen

bands were discarded following [5]. Therefore only 185 spectral bands of the

Indian Pines image were used in this work. A false color composite is shown

in Figure 5.1.1(a). Figure 5.1.1(b) shows its ground reference image[105]

2. A 120 × 120 × 145 region of interest (ROI) of the Forest Radiance I was col-

lected by the airborne imaging spectrometer HYDICE over a forest region at

the U.S. Army Aberdeen Proving Ground in 1995 by the HYMSMO (Hyper-

spectral MASINT Support to Military Operations) program. This ROI uses

145 of 224 spectral bands in the 400 − 2500 nm range. The sensor altitude was

5146.33 f t. Bands with low signal to noise ratio were rejected as in [106]. This

region of interest was used since targets are small and discriminating targets

edges are difficult because the image has a strong vertical texture. Ground

truth about target location and signatures is available. A false color composite

of this ROI is shown in Figure 5.1.1(d) with its ground reference image map

shown in Figure 5.1.1(e).

3. The A. P. Hill image captured over Fort. A. P. Hill, Virginia in September

2001 using AVIRIS sensor with ∼ 3.5 m spatial resolution, and 224 spectral
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Figure 5.1.1: Hyperspectral images used for EED and their classification maps.(a) False
color composite of AVIRIS Indian Pines image with bands [50, 25, 17].
(b) Ground reference map for the Indian Pines image (c) True color com-
posite of AISA Eagle Guanica dry forest 800 × 800 × 128 with bands
[54, 35, 15].(d) False color composite of HYDICE Forest Radiance image
with bands [75, 37, 18]. (e) Ground reference map for the Forest Radi-
ance image (f) False color composite of AVIRIS A. P. Hill image with bands
[45, 24, 12]. (g) Classification map for the Composite of Cuprite image with
bands [183, 119, 207]. (e)
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Figure 5.1.2: Cuprite image and its (a) RGB composition of AVIRIS Cuprite image with
bands [183, 193, 207] (b) Ground reference map of a ROI of (a) [104].
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bands in the 400 − 2500 nm range at ∼ 10 nm of spectral resolution. A false

color composite of a 512 × 540 × 224 ROI of this image is shown in Figure

5.1.1(f) and a classification map obtained by minimum distance classifier [107]

is shown in Figure 5.1.1(g)

4. The Cuprite image taken over the mining district, 2 km north of Cuprite,

Nevada, with the AVIRIS sensor, flown by NASA/Ames on June 19, 1997.

This image contains five scenes for a total of 640 × 2378 pixels and 224 bands

in the 370 − 2500 nm range. A ROI of the fourth scene of size 512 × 614 ×
224 pixels was selected, a composite of this ROI is shown in Figure 5.1.2(a).

A ground reference map created using the Tetracorder from USGS [104] is

shown in Figure 5.1.2(b).

5. Guanica dry forest images taken in the Southwestern Puerto Rico captured

with the AISA Eagle sensor. Figure 5.1.1(c) presents a true color composite of

a 800× 800× 128 ROI of a registered image composed by three pieces of flight

lines of AISA image. The registration was done using ENVI software. This

image was captured on December of 2007 with a spatial resolution of 1 meter

and 128 spectral bands from 397 nm to 995 nm with a spectral resolution of ∼
4.5 nm. Due to its size, this image will be used to test parameters and calculate

number of iterations of the solver. TAND-EED denoising performance will

not be tested with this image.

5.1.2 Data for CED

In this chapter, CED will be used to extract the chain of thyroid cells from a mi-

croscopy HSI and to extract ship wakes from an airborne HSI. All the images where
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Figure 5.1.3: Original Images used for CED. (a) True color of a ROI of a Thyroid cells image
with bands [13 8 3].(b) True color of a ROI of an AVIRIS image [99] with bands
[27 17 7].

processed using κ2 as in (4.2.4). The following two HSI have been used for this sec-

tion:

1. A ROI of a Thyroid cells image, shown in Figure 5.1.3(a), of size 395 × 398

pixels that was collected with a Citoviva hyperspectral microscope with range

from 420 − 720 nm with 16 bands each of 20 nm spectral resolution.

2. A ROI of an AVIRIS image [99], shown in Figure 5.1.3(b), of size 222 × 266

pixels with 224 bands or channels taken from the Deep Horizon Gulf Of

Mexico Oil Spill on May 17, 2010. This image was used in Chapter 4 to show

how the components of the proposed diffusion tensor for CED behave.

5.2 parameter selection

This section gives some empirical guidelines to select the parameters used in TAND

in both cases. The proposed TAND needs two parameters: 1. The contrast param-
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eter ψ; 2. The stoping time tn = nτ, related to the number of iterations, n and the

time step size τ.

1. Finding an “optimal” value for the contrast parameter ψ is usually problem

dependent. Perona-Malik [73] suggested using the cumulative histogram of

μ1 in (4.2.1) or μ in (4.2.4) and then setting ψ to a certain percentile. They

choose the 90th percentile, i.e., 90% of all gradients are smaller than ψ. In the

experiments carry out during this work, values close to the 50th percentile as

suggested by Weickert [20] produce better results.

2. It is important to note that the stopping time tn = nτ gains importance when

the diffusion process is a restoration method, as in EED. For CED, the evolu-

tion as the iterations of TAND increase is of most interest. In contrast with the

isotropic case where σ =
√

2tn [45], the smoothing in nonlinear diffusion in

general is non-uniform and the time tn is not directly related to a spatial scale.

Searching for a stopping criterion has been an active topic. For a review of

the latest techniques see [108, 109, 23]. For Semi-implicit methods, the size of

τ is only restricted by the quality of the solution [5]. Values of τ in [0.25, 10]

have been tried. τ = 5 produce good results with a relative residual error

tolerance of BiCGStab set to 10−4. Given that, the following stopping criteria

using the relative entropy of κ1, the ratio between κ1’s entropy at iteration n,

ξ(κn
1 ) and κ1’s entropy of the original image, ξ(κ1

1), is proposed:

ξ(κn
1 )

ξ(κ1
1)

≤ thr.

where thr is a user defined threshold. ξ(κn
1 )/ξ(κ1

1) decreases monotonically

from 1 to 0 during TAND-EED as seen in Figure 5.2.2. Figure 5.2.3 shows

the images resulting using the thresholds defined by the horizontal red lines

in Figure 5.2.2. Informally speaking, the processing in TAND-EED is driven
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by the ‘edge information’ encoded by κ1. So, a threshold thr based on the

desired reduction factor of the uncertainty associated with the ‘edge informa-

tion’ in κ1 with respect to that of the original image will be more appropri-

ated. In each iteration of TAND-EED, the uncertainty associated with κ1 is

reduced as shown in Figure 5.2.1. This behavior occurs independently of the

preconditioner used as shown in Figure 5.2.1(b), the time step size, τ and the

complexity of the features in the image as the images used have different com-

plexity. Figure 5.2.3 shows the original images and its stopped versions using

thr ≤ 0.5. The stopping criteria produce denoised images that preserving the

majority of the main features in them.

5.3 about the weights

In the definition of the heat weights given in (3.3.2), there is a parameter s that is

fixed to a value of 1. Experiments were conducted on the heat weighted structure

tensor to see if varying the value of s with the number of iterations, n, of TAND,

will give some advantage over using a fixed value of 1. A value of n = 50 iterations

of TAND–EED was used for the Indian Pines image and n = 200 TAND–CED was

used for the thyroid tissue image. Figure (5.3.1)(a) and (b) show that varying s

with n for TAND–EED produces stronger diffusion without blurring some impor-

tant edges. In general, the results are not counterproductive. Figure 5.3.1(c) and (d)

shows TAND–CED after n = 200 iterations for s = 1 and varying s with n respec-

tively. From those figures, it is clear that varying s with n was counterproductive

as it changed the orientation of the structure tensor resulting in cells shaped like

rectangles.
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Figure 5.2.1: κ1’s Entropy vs. TAND iterations. (a) Evolution of κ1’s Entropy of Cuprite
image as TAND-EED iterate. ILU(0), the heat weighted structure tensor,
σ = 0.8, ψ = 40th percentile of μ1 and τ = 5 are used (b) Comparison of
the evolution of κ1’s Entropy of Indian Pines image using different precondi-
tioners to solve TAND-EED. The heat weighted structure tensor, σ = 0.8, ψ =
55th percentile of μ1 and τ = 2 are used. (c) Evolution of κ1’s Entropy of AP
Hill image as TAND-EED iterate. ILU(0), the heat weighted structure tensor,
σ = 1 ψ = 45th percentile of μ1 and τ = 5 are used. (d) Evolution of κ1’s
Entropy of Guanica 800 × 800 × 128 image as TAND-EED iterate. ILU(0), the
heat weighted structure tensor, σ = 1.5, ψ = 45th percentile of μ1 and τ = 5
are used.
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Figure 5.2.2: Relative entropy of κ1 of the curves in Figure 5.2.1. (a) Cuprite image (b)
Indian Pines; (c) A. P. Hill (c) Guanica 800 × 800 × 128. The red horizontal
lines are proposed thresholds for those images.
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Figure 5.2.3: Images produced with relative entropy of κ1as the stopping criteria with
thresholds defined with the horizontal red lines in Figure 5.2.2. (a) ξ(κ1

1) is
calculated using Indian Pines Original image ;(b) Indian Pines image after
TAND-EED stopped when ξ(κn

1 ) = 0.5 · ξ(κ1
1), n = 10 . (c) A.P. Hill original

image (d) same as (b) but using A.P. Hill image, n = 7 (e) Cuprite Original
image. (f) Cuprite after TAND-EED stopped when ξ(κn

1 ) = 0.4 · ξ(κ1
1), n = 10.

(g) Guanica original Image 800 × 800 × 128 (h) same as (b) but using A.P. Hill
image, n = 10.
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Figure 5.3.1: Varying s in (3.3.2) with TAND’s iterations n. (a) True color of AVIRIS Indian
Pines image after TAND–EED. with s = 1, n = 50 iterations (b) True color
of AVIRIS Indian Pines image after TAND–EED. Varying s with n, n = 50
iterations (c) True color of to the thyroid tissue after TAND–CED with s = 1,
n = 200 iterations (d) True color of to the thyroid tissue after TAND–CED
varying s with n, n = 200 iterations
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Figure 5.4.1: Comparison between nonlinear diffusion and tensor anisotropic nonlinear dif-
fusion. (a) Original HSI (b) ROI of (a). (c) Nonlinear diffusion as proposed in
[5]; n = 2, γ = 6.25 , ψ = 1.2 10−2 (d) TAND using the heat weighted structure
tensor, n = 2, σ = 1, ψ = 55th percentile of μ1.

5.4 nonlinear diffusion vs . tensor anisotropic diffusion

Figure 5.4.1 illustrates the difference between using nonlinear diffusion with a dif-

fusivity function [5] and using a diffusion tensor based on the heat weighted struc-

ture tensor. Figure 5.4.1(a) shows a RGB composite of a 640 × 640 HSI with 120

bands in the 400 − 900 nm range of a shirt with stains of oil and ketchup. This im-

age was taken with a SOC-700 hyperspectral imager from Surface Optics Company.
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Figure 5.4.1(b) shows the region of interest (ROI) inside of the orange square in

Figure 5.4.1(a) of size 184 × 225 where the stains are.

Figure 5.4.1(c) shows the ROI in Figure 5.4.1(b) after being denoised with the

PDE-based nonlinear diffusion proposed in [5]. This method uses the PDE in (2.4.1)

but instead of using a diffusion tensor D, it uses the diffusivity function in (4.2.1).

The PDE is discretized with a semi-implicit scheme that produces a five diagonal

linear system. This system is solved with a conjugate gradient method precondi-

tioned with incomplete Cholesky. The filtered image was produced with a Matlab

implementation provided by the authors of [5]. Figure 5.4.1(d) shows the denoised

image with TAND-EED using the heat weighted structure tensor. Figure 5.4.1(c)

used n = 2, γ = 6.25 , ψ = 1.2 × 10−2 and Figure 5.4.1(d) used n = 2, σ = 1,

ψ = 55th percentile of μ1.

Usually PDE-based nonlinear diffusion is very good at preserving high contrast

edges as in the regions highlighted with blue squares in Figure 5.4.1(c). But low

contrast edges such as the ones highlighted in red are not preserved. Both kinds

of edges are preserved with the proposed TAND and in general there is a more

natural look to the image which preserves some wrinkles as well. Nonlinear diffu-

sion is the PDE-based diffusion algorithm of choice since it is computationally less

expensive than TAND, but the extra cost of TAND is justified by the quality of the

results.
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5.5 comparison of the structure tensors using tand

5.5.1 TAND for Edge Enhancing Diffusion.

5.5.1.1 Experiments with A.P. Hill Image

Figure 5.5.1 shows the comparison of the structure tensors in TAND-EED using A.

P. Hill image with parametersσ = 1, τ = 5, ψ = μ′
1s 45 percentile. The left col-

umn shows the results using the heat weighted ST and the right column using the

classical structure tensor. Figure 5.5.1(a) shows the λ−component of the diffusion

tensor for iteration n = 1, Figure 5.5.1 (b) shows the same component for iteration

n = 35, and Figure 5.5.1(c) shows the A. P. Hill image resulting after TAND-EED

with n = 35 iterations using the heat weighted structure tensor. Figure 5.5.1(d), (e),

and (f) show same images as in (a), (b), and (c) respectively but using the classical

structure tensor. From Figure 5.5.1(a) to (b) and Figure 5.5.1(d) to (e) it is clear that

the λ−component of the diffusion tensor have been smoothed with both structure

tensors and both preserve main features in the image. The blue squares in Figure

5.5.1(b) show features that the heat weighted structure tensor preserves while the

classical one does not. The results are very similar for both structure tensors in the

vegetation but the zoomed section of Figure 5.5.1(b) and (c) shows that the heat

weighted structure tensor preserves the features of the road for more iterations

while the classical structure tensor, shown in Figure 5.5.1(e) and (f), does not.

5.5.1.2 Experiments with Indian Pines image

Figure 5.5.2 shows the results of using TAND–EED with the classical structure ten-

sor (top row) and the heat weighted structure tensor (bottom row) for iteration

n = 1 (left column) and n = 4 (right column). With n = 4, TAND produces an

over-smoothed image that helps to visualize the time evolution of the diffusion
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Figure 5.5.1: Comparison of the effect of the structure tensors in TAND-EED using A. P.
Hill image. σ = 1, τ = 5, ψ = μ′

1s 45 percentile (a) λ−component of the
diffusion tensor for iteration n = 1 using the heat weighted structure tensor.
(b) λ−component of the diffusion tensor for iteration n = 35 using the heat
weighted structure tensor. (c) A. P. Hill after TAND-EED n = 35. (d), (e), and
(f) same as (a), (b), and (c) respectively but using the classical structure tensor.
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Figure 5.5.2: False color of Indian Pines image after TAND-EED. σ = 0.8, ρ = 2, ψ =
μ′

1s 55th percentile; (a) with the classical structure tensor, n = 1. (b) with the
classical structure tensor, n = 4. (c) with the heat weighted structure tensor,
n = 1. (d) with the heat weighted structure tensor, n = 4.
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Figure 5.5.3: Comparison of the effect of the structure tensor using the time evolution after
iterations n of the λ –entry of the diffusion tensor of TAND-EED applied to
Indian Pines image. σ = 0.8, τ = 2, ψ = μ′

1s 55th percentile. (a) λ using
the classical structure tensor, n = 1. (b) λ using the classical structure tensor,
n = 4. (c) and (d) same as (a) and (b) using the heat weighted structure tensor.



5.5 comparison of the structure tensors using tand 120

Figure 5.5.4: Time evolution of the λ –entry of the diffusion tensor. σ = 0.8, τ = 2, ψ =
μ′

1s 55th percentile, n = 3. (a) λ using the classical structure tensor; (b) λ
using the heat weighted structure tensor; (c) original image with the mark up
sections.

tensor. From Figure 5.5.2, it can be seen that both methods produce a smoothing

preserving the majority of the main edges. To better observe that the heat weighted

structure tensor produces better discrimination of structures that need to be persis-

tent through the iterations than the classical tensor, the λ−entry of the diffusion

tensor using both structure tensors will be shown and analyzed. Figure 5.5.3 shows

the evolution of the λ−entry of the diffusion tensor (see (4.1.2)) using the classical

and the proposed structure tensor. Both diffusion tensors use σ = 0.8, ρ = 2,

ψ = 55th percentile of μ1, and the eigenvalues defined in (4.2.1) and (4.2.2). Figure

5.5.3(a) and (b) show results using the classical structure tensor with n = 1 and

n = 4 respectively. Figure 5.5.3(c) and (d) show results using the heat weighted

structure tensor with n = 1 and n = 4 respectively.

It can be concluded that as a result of the nonlinear nature of TAND, the λ−entry

of the diffusion tensor has been smoothed: preserving the most important edges

and eliminating small variations in the homogeneous regions, as well as showing

the nonlinear nature of the structure tensor. Figure 5.5.4 shows a comparison be-

tween the λ−entry of the diffusion tensor after n = 3 iterations using the classical

and the proposed structure tensor. In both diffusion tensors, the same parameters
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Figure 5.5.5: TAND–EED applied to FR1. σ = 0.5, τ = 1.2, ψ = μ′
1s 50th percentile, n = 1

(a) original image; (b) using the classical structure tensor; (c) using the heat
weighted structure tensor.

as in Figure 5.5.3 are used. Figure 5.5.4(a) shows λ using the classical structure

tensor. Figure 5.5.4(b) shows λ using the heat weighted structure tensor. Figure

5.5.4(c) shows the original image. The highlighted regions in the images corre-

spond in all three images. Highlighted regions in blue show that the diffusion ten-

sor using the heat weighted ST can preserve important structures longer, i.e., for

more iterations. Highlighted regions in green show several structures produced

by illumination changes preserved by λ using the classical structure tensor. Sev-

eral of those structures are still preserved in the next iteration; see Figure 5.5.3(b).

Highlighted regions in yellow show structures produced by illumination changes

preserved by λ using the heat weighted ST. Those pixels disappear in the next iter-

ation as can be seen in Figure 5.5.3(d). From Figure 5.5.4, it can be concluded that

the heat weighted structure tensor enhances the capabilities of the diffusion tensor

to discriminate which edges are more important to keep.

5.5.1.3 Experiments with Forest Radiance 1 Image

To process FR1, it is necessary to smooth the image, since there are vertical textures

from the grass. But the smoothing cannot be too strong or it will erase the sub-

pixel targets. Figure 5.5.5 shows false color images resulting from TAND for EED
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Figure 5.5.6: Forrest Radiance 1 detection results. (a) Original Image with pixels used to
estimate the target signature (blue) and the ground truth (blue+green). (b)
Comparison of ROC curves generated using the Matched Filter target detec-
tion method applied to images shown in Figure 5.5.5(b) using the classical
structure tensor, (red line) and Figure 5.5.5(c) the heat weighted structure ten-
sor, (blue line). (c) Difference plot between probabilities of detection using the
heat weighted structure tensor and the classical structure tensor.

using the classical and heat weighted structure tensor both with σ = 0.5, ψ =

μ′
1s 50th percentile, n = 1 . Figure 5.5.6(a) shows 26 target pixels (blue) from 84

pixels of the ground truth (green plus blue) used to generate the detection rules.

Target pixels were used to estimate the target spectra using the mean of the 26

pixels. Figure 5.5.6(b) shows a comparison of the ROC curves of the FR1 image after

one iteration of TAND for EED using the classical structure tensor (red line) and the

heat weighted structure tensor (blue line). Both cases used the matched filter target

detection rule for each of the images in Figure 5.5.5(b) and (c), and were compared

with the ground truth pixels. It is clear that the results are visually similar and

the detection performance is almost identical. From Figure 5.5.6(c), it can be seen

that the proposed heat weighted structure tensor improves the detection between

1 to 7 percent for certain probabilities of false alarm over the classical structure

tensor. In this case, the similarity of the results is due to the fact that the targets

are only 84 pixels from 21025 in total. This shows that, under this circumstance,

the heat weighted structure tensor is at least as good as the classic one in terms of

the ROC curve. The Matched Filter target detection method and the ROC curves
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values were generated using the ENVI software. The next section will show that

for a more challenging problem, the heat weighted structure tensor produces better

results than the classic structure tensor.

5.5.1.4 Experiment with Cuprite Image

Figure 5.5.7 shows the λ−component of the diffusion tensor for the Cuprite image.

Left column shows results of the proposed TAND-EED using the heat operator ST

and the right column shows results of the proposed TAND-EED using the classical

ST. Comparing for n = 1 in Figure 5.5.7 (a) and (d) the heat weighted structure

tensor helps the diffusion tensor to preserve the roads and other important features

while the classical ST does not. When the proposed TAND-EED using the heat

weighted ST iterates, as shown in Figure 5.5.7(b) for n = 5 and (d) for n = 15,

preserves the roads and the different materials smoothing its homogeneous regions

and not its edges. On the other hand, the proposed TAND-EED using the classical

structure tensor, shown in Figure 5.5.7(e) for n = 5 and (f) for n = 15 does not. This

fact is more notorious in the time evolution shown in Figure 5.5.8 where the results

of the proposed TAND-EED are shown for the same images as in Figure 5.5.7

5.5.2 TAND for Coherence Enhancing Diffusion.

5.5.2.1 Thyroid Cells Image.

To show the performance of CED with the heat weighted structure tensor for an

image with complex small structures, the thyroid tissue image is used. It is difficult

to evaluate this image by inspecting the diffusion entries of the diffusion tensor so

the evaluation will be done by studying its evolution through the iterations. Figure

5.5.9 shows the thyroid tissue image processed using the classical structure tensor

in the left column and the heat weighted structure tensor in the right column. The
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Figure 5.5.7: Comparison of the effect of the structure tensor using the time evolution of
the λ−entry of the diffusion tensor of TAND-EED applied to Cuprite image.
σ = 1, τ = 5, ψ = μ′

1s 45 percentile (a) n = 1 using the heat weighted
structure tensor. (b) n = 5 using the heat weighted structure tensor. (c) n = 15
using the heat weighted structure tensor. (d), (e), and (f), are the same as (a),
(b), and (c) respectively but using the classical structure tensor.
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Figure 5.5.8: Comparison of the effect of the structure tensor using the time evolution of
the resulting images of TAND-EED applied to Cuprite image. (a) n = 1 using
the heat weighted ST; (b) n = 5 using the heat weighted ST; (c) n = 10 using
the heat weighted ST; (d) n = 15 using the heat weighted ST; (e), (f), (g), and
(h) same as (a), (b), (c), and (d) respectively but using the classical ST.
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Figure 5.5.9: Time evolution of TAND-CED of the thyroid tissue image. σ = 0.5, ρ = 1.5
τ = 1.5, ψ = μ′s 45th percentile. (a) CED with classical structure tensor, n = 1.
(b) CED with heat weighted structure tensor, n = 1. (c) CED with classical
structure tensor, n = 30. (d) CED with heat weighted structure tensor, n =
30. e) I − u30where u30 is obtained by processing I with TAND-CED using
the classical structure tensor and n = 30. (f) Same as (e) but using the heat
weighted structure tensor.



5.5 comparison of the structure tensors using tand 127

first row shows results for iteration n = 1. The middle row shows results for n = 30.

Notice that, from n = 1 to n = 30, the edges of the cells have been thickened and

the homogeneous regions show a light smoothing. Subtracting the image resulting

from CED after n = 30 iterations, u30, from the original image I, produces an

image with 224 bands. This image is averaged over all bands, i.e., I − u30. Figure

5.5.9(e) shows it using the classical structure tensor and Figure 5.5.9(f) using the

heat weighted structure tensor. These images are displayed with the intensity range

set to [min I − u30, maxI − u30]. Figure 5.5.9(f) has higher contrast between cell

edges and dark regions. The next step is to use a threshold, φ, equal to a user

defined percentile of the intensity values of I − u30, i.e. for n = 30,

In,φ = I − un|φ . (5.5.1)

The results, using φ = 75th percentile, are the binary images shown in Figure

5.5.10. Figure 5.5.10(a) shows I30,75 using the classical structure tensor while Fig-

ure 14(c) shows it using the heat weighted structure tensor. Figure (5.5.10)(b) and

(d) show I30,75 after eliminating all the connected components with area less than

or equal to 15 pixels (called granules) using the morphological operator open in

the Matlab function bwareaopen. Figure 5.5.10(b) uses the classical structure tensor

and Figure 5.5.10(d) uses the heat weighted structure tensor. The images in Fig-

ure 5.5.10(b) and (d) show a better definition of the individual cells. Comparing

the values of I30,75 in Figure 5.5.10(a) and (c), it can be seen that I30,75 using the

heat weighted structure tensor (bottom row) has fewer granules, and the cells look

more complete. To quantify these observations, a test was designed in which I30,φ

is calculated with values of φ taken every second percentile from the 30th to the

98th percentile. Values of φ less than the 30th percentile show too much detail to ef-

fectively count the cells. For each value of φ, the number of connected components
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Figure 5.5.10: Edges enhanced by TAND–CED. (a) using the classical structure tensor, I30,75
as defined in (5.5.1). (b) Same as (a) after eliminating all granules of area 15
pixels. (c) Same as (a), but using the heat weighted structure tensor. (d) Same
as (b), but using the heat weighted structure tensor.
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Figure 5.5.11: Comparison of number of granules of I30,φ with area less than equal to 15 pix-
els found using the classical structure tensor vs. the heat weighted structure
tensor.

with an area of 15 pixels or less is counted. Then a ratio, r between the number

of granules found in I30,φ for the classical structure tensor, GC, and the number of

granules in I30,φ for the heat weighted structure tensor, GH, is calculated, i.e.,

r = GC/GH.

If GC = GH then r = 1; if GC > GH then r > 1, and if GC < GH then 0 < r < 1. The

results are shown in Figure 5.5.11.

After the 36th percentile, the number of granules for the classical structure tensor

is higher than the number of granules for the heat weighted structure tensor. At the

42nd percentile, the one based in the classical structure tensor has almost 2.5 times

the number of granules than the proposed method. This decreases to 1.4 times as

many at the 60th percentile before growing to almost 1.9 at the 86th percentile. Cell

counting is an important application for these images. To that end, φ in [70th, 85th]

percentile is one of the most critical intervals since In,φ will begin to show the cells

separating from each other. As the value of φ gets higher, many cells will look

incomplete and the resulting images are less critical.
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From Figure 5.5.11, it can be seen that between the 70th and 85th percentile, I30,φ

for the classical structure tensor has between 1.6 to 1.9 times the number of gran-

ules of the proposed method. Therefore, weighting the structure tensor using the

weights based on the heat operator helps TAND to make a better distinction be-

tween the cells edges and their surrounding features.

5.6 comparison between the spectrally adapted and weickert’s spa-

tial tand.

In the previous section, comparisons were done preserving the proposed TAND

and only changing the structure tensor. The idea was to study the performance

of the proposed structure tensor compared with the classical one. In this section,

TAND with the spectrally adapted structure tensor and the proposed diffusion

tensors will be compared to the state of the art TAND proposed by Weickert [2].

5.6.1 TAND for Edge Enhancing Diffusion

A time step τ = 5 and number of iteration, n = 4 will be used for EED. That is

equivalent to 80 iterations of the explicit scheme which is empirically stable for

time step size of at most τ = 0.25 [46]. Figure 5.6.1 shows the results of this

comparison. Figure 5.6.1(b), (d), (e) and (f) show results from Weickert’s TAND

and Figure 5.6.1(c), (g), (h) and (i) show the proposed TAND. Weickert’s TAND

shows a strong smoothing in the whole image preserving only the strongest edges.

The edges look blurry and the small features are hardly visible. In contrast, the

proposed TAND the edges are not blurred and the smoothing in the inside regions

is visually comparable to Weickert’s. The small features are still visible and remind

with the same color composition than in the original image. A shock filter to
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Figure 5.6.1: Comparison of the regularization from proposed TAND and Weickert’s TAND.
σ = 0.8, τ = 5, ψ = μ′

1s 55th percentile, n = 4. (a) RGB Indian Pines image (b)
after Weickert’s TAND (c) after proposed TAND; (d), (e) and (f) are λ, β, and ν
components of Weickert diffusion tensor. (g), (h) and (i) are the corresponding
components of the proposed diffusion tensor.
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unsharp the edges is usually used after diffusion . For the case of the proposed

TAND, this is not need it. This difference is explained with the components of

their respective diffusion tensors. Figure 5.6.1(e) and (h) shows the β− component

of both methods. It is clear that, for Weickert, this component plays an important

role. While in the case of the proposed TAND does not. According to the analysis

of the divergence-based PDE diffusion carry out by [3] β produce an inter channel

coupling which is reduced in the proposed TAND. λ and ν− components of the

proposed TAND looks very similar but their values for the horizontal and vertical

edges are different. So depending in the application, preserving the edges can

help to obtain better results for the next processing in the image. Comparison with

Figure 5.6.2 and Figure 5.6.3 show similar conclusions than the ones with Figure

5.6.1.

5.6.2 TAND for Coherence Enhancing Diffusion

The thyroid cell tissue will be used for the comparisons for CED. The parameters

used are: time step size τ = 5, σ = 0.5, ρ = 2.5 and n = 30. Figure 5.6.4 shows the

thyroid tissue being processed with Weickert’s TAND and the proposed TAND. It

is clear the the proposed TAND produce less enhancement of the area around the

cell chain and produce less granules as shown in Figure 5.6.5.
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Figure 5.6.2: Comparison of the proposed TAND-EED with Weickert’s TAND-EED applied
to Cuprite image. (a) n = 1 using the proposed TAND; (b) n = 5 using the the
proposed TAND-EED; (c) n = 15 using the proposed TAND; (d), (e), and (f)
are the same as (a), (b), and (c) respectively but using the Weickert’s TAND.
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Figure 5.6.3: Comparison of the proposed TAND-EED with Weickert’s TAND-EED applied
to A. P. Hill image. Both methods uses σ = 1.5, τ = 5, ψ = μ′

1s 45 percentile.
(a) n = 1 using the proposed TAND; (b) n = 15 using the the proposed TAND-
EED; (c), and (d) same as (a) and (b) respectively but using the Weickert’s
TAND.
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Figure 5.6.4: Comparison of cell chains obtained with the spectrally adapted TAND and
Weickert’s TAND. τ = 5, σ = 0.5, ρ = 2.5 and n = 30. (a) I30,75 using the
classical structure tensor, as defined in (5.5.1). (b) Same as (a), after eliminat-
ing all granules of area 15 pixels. (c) I − u30 with Weickert’s TAND-CED (d)
I30,75 using the heat weighted structure tensor. (e) Same as (d) after eliminat-
ing all granules of area 15 pixels. (f) I − u30 with proposed TAND-CED, (g)
Weickert’s TAND-CED (h) Proposed TAND-CED (i) Original Image
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Figure 5.6.5: Comparison of number of granules of I30,φ with area less than equal to 15 pix-
els found using the classical structure tensor vs. the heat weighted structure
tensor.

5.7 concluding remarks

The experiments in this chapter show that defining the weights with s = 1 pro-

duces more stable results for CED than variying s with the number iterations, n, of

TAND. They also show that using an anisotropic diffusion based on a tensor helps

the diffusion process to discriminate and ultimately preserve low contrast edges.

Comparing the ST using TAND show that the heat weighted structure tensor helps

the diffusion tensor TAND-EED to better discriminate which edges to keep longer

as TAND-EED iterate. This result was achieved by comparing the components of

the diffusion tensor of TAND-EED produced using the proposed heat weighted

and the classical structure tensor. The proposed ST also helps TAND-CED to pro-

duce less broken edges and to obtain a better structure enhancement than using

the classical structure tensor. From the comparison between the proposed TAND

with Weickert’s TAND, it can be concluded that the proposed ST produce better

regularization results since the edges are not blurred while the inner regions are

strongly smoothed but preserving the small features in the images. Comparing
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both TAND-CED can be concluded that using the heat weighted ST applied to the

thyroid cell image produces less broken edges and the chain of cells can be better

discriminated than using Weickert’s TAND-CED.
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O N P U B L I C LY AVA I L A B L E R E M O T E S E N S I N G I M A G E RY

The work presented in this thesis belongs to the Hyperspectral Remote Sensing

field. The discussion in this chapter will be expanded to include aerial photography

and satellite imaging in general. This chapter will reflect on and present issues

about the impact of publicly available remotely sensed imagery.

A brief overview of the advances in technology and some events that helped

reach the availability of remotely sensed data to the public will be presented. It is

not by any means complete. It is done with the aim of placing ideas in perspec-

tive. The first launch of a non-weather satellite for civilian use occurred in 1972

when NASA put Landsat into orbit to monitor the planet’s land masses, tracking

everything from desertification to changes in agriculture. During the 1980s, hyper-

spectral remote sensors were developed. Satellites with the capability of acquiring

HSIs were launched in the subsequent decades, bringing more analytic capabilities

to the data collected. At the same time geospatial data began to be developed but

it was not until the mid-2000s that this technology began have its greatest impact

on our society. Geospatial data is the combination of several technologies such as

remote sensed data, GIS and global positioning systems (GPS). Geospatial data add

high positional accuracy capabilities to the remotely sensed data, in that way inte-

grating separate or loosely related technologies producing a powerful system [110].

Another factor was the the creation of the global information infrastructure, i.e.,

the development and public access to the Internet for the majority of people on the

planet. The internet allows access to information in nearly real time. With the de-
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velopment of computer hardware, cheap computer memories and wide broadband

internet access, now it is possible to download a high volume of data in several

minutes.

Fourteen years ago, in 1998, several ethical issues were raised by [111] related

to the advances in (i) information management, data control of remotely sensed

imagery, and (ii) the development of a digital, global information infrastructure,

such as the Internet. There were concerns about the usage of remotely sensed data

given the general evolution of the remote sensing infrastructure from government

to commerce and from domestic to international. This paper also warned about the

lack of comprehensive policy development with respect to high-resolution remote

sensing technology. The relaxed policies about remotely sensed data paved the way

for Google Earth that was launched in 2005.

This brought about the change from centralized government owned remotely

sensed data to freely acquired aerial imagery using Google Earth and from data

produced by trained experts and then processed to be used for another set of

trained experts to data openly available to anybody who knows how to use the

internet. Google Earth uses high spatial resolution data provided by commercial

satellite image providers like DigitalGlobe and GeoEye as well as data provided

by local municipalities and governmental agencies [112]. Not only Google can

acquire remotely sensed imagery, nowdays it is possible to market, sell and buy

high spatial and spectral resolution global imagery. The USA, Russian, French,

Japanese, Indian, Chinise-Brazilian, Israel and Canadian governments, and even

non-goverment parties sell this kind of imagery acquired by their orbiting imaging

system over the Internet [110, 113]. According to a United Nation resolution for re-

motely sensed data [114], data rights, pricing, and distribution policies reside with

the governments owning the spacecraft.
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All that gives rise to issues about privacy. Those images are acquired without tak-

ing into account the owner of the land being sensed or any wishes for privacy that a

person or institution might have. Of course, if it were necessary to have the written

permission of every owner of a piece of land in the Earth, Remote Sensing would

not exist. Despite the fact that global remote sensing requires some form of global

rules, the addition of profitable businesses ruled by market variables and civilian

and military interests make it very difficult to have meaningful rules governing it

[113]. So, now it is possible to have access to high spatial resolution photographs of

military installations (national or foreign) and study its development through the

years [115]. It is also possible to acquire high spatial and spectral HSI images de-

tecting hidden precious metal deposits and to then sell them to the highest bidder

without the owner of the land even knowing it. This is somewhat extreme as you

normally need some idea of where to look but it is possible. Definitely it is possible

to open Google Earth in any random place in the US click Street View and maybe

within five minutes or so you can see the state of the neighborhood and then send

advertisements of your products. It is also possible to find a picture of a car clearly

showing its license plate in the driveway of a random house. All the before men-

tioned factors have contributed to us living in a surveillance society. For example

questions, such as: Can the IRS use those images to look for unreported property

renovation or extension? Can the law enforcement and environmental agencies use

these publicly available images to do surveillance without a warrant? The answer

is yes at least in the US [111, 113] and Canada [116].

Another interesting issue raised by [115] related to Google Earth and to some

extend to all remotely sensed imagery is the idea of a ‘global panopticon’ in which

the viewer of data sees all, but those who are viewed see nothing and, importantly,

do not know if and when they are being watched. Furthermore, the majority of

those being viewed are not even aware of the mechanism that might be watching
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them and correspondingly do not act as if they are being watched. So there are two

faces of the coin, the liberating and revelatory aspects of this technology unveiling

governments and military to all and in contrast the possibly repressive aspects of a

panoptic technology of surveillance.

On a brighter side, public access to remote sensing imagery has allowed some

non-environmentally or non-military related projects that are looking for the greater

good for humanity. The use of remotely sensed images as evidence of human rights

violations, such as the ones in Darfur and Zimbabwe [117]. They have also been

used to investigate accusations of human rights violations, such as government

sponsored forced relocation, location of massive graves, and to document the ex-

tent of conflicts in many parts of the world [118, 119]. HSIs have been used in

environmental applications since its development. But now not only satellite im-

agery is used but high resolution spacial aerial images found freely in Google Earth

have also been used to make virtual discoveries. Hundreds of new species in dense

and difficult to access forests in different parts of the world have been found us-

ing the available imagery, which then led to an in-site discovery. The internet and

remotely sensed imagery is also used to create awareness to all that are willing to

read about the speed of deforestation on some other part of the planet [120].

6.1 concluding remarks

In conclusion, publicly available remote sensing imagery has issues related to pri-

vacy, data management and control of who owns the information. The reality of

being sensed from so many feet over our heads and not knowing it produces the

idea of a panoptic society in which even the governments cannot hide its secrets

places. On the other hand, the fact that everybody who owns a computer and uses

internet can have access to it also gives some liberating sense. In general, it is diffi-
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cult to control the flow of remotely sensed information since many parties produce

it and distribute it. On the other hand, it has been shown that there is more avail-

ability of data for the experts and for people who just like to be informed. It is also

expected advances in the creation of sensors with more capabilities, now that there

is a wider use of remotely sensed technology.
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C O N C L U S I O N S A N D F U T U R E W O R K

7.1 conclusions

The structure tensor is the backbone in many algorithms used in computer vision

to find the spatial local structure in color and gray value images. Its extension to

vector valued images with more than 3 bands has been done without taking into

account the spectral characteristics of the data. The structure tensor is a useful

tool that arises in many frameworks such as statistics, differential geometry, and

optimization. This work showed that including the spectral information in the

structure tensor makes a difference and it can improve significantly image enhance

methods such as TAND.

A spectrally weighted structure tensor framework has been presented. Also, a

spectrally weighted structure tensor for the case of vector-value images that locally

are highly correlated in the spectral dimension has been proposed. The weights

are based on the heat operator acting on each pixel of the gradient. This structure

tensor is data-based and it does not introduce new parameters to the model.

Diffusion tensors were proposed and it was shown that they take full advantage

of the edge information produced by the spectrally weighted structure tensor. The

proposed diffusion tensors were used to design a Tensor Anisotropic Nonlinear Dif-

fusion (TAND) for Edge Enhancing Diffusion (EED) and for Coherence Enhancing

Diffusion (CED). TAND-EED was used to regularize HSIs, while TAND-CED was

used to do structure enhancement. Experiments with HSI of different spatial and
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spectral resolutions were used. The images were taken using sensors in airborne,

microscope, and in-situ hyperspectral camera. The experiments compare the pro-

posed TAND using the heat weighted structure tensor with the proposed TAND

using the classical structure tensor.

The experiments performed in this work showed that the proposed weighted

structure tensor enhanced the ability of the diffusion tensor of TAND–EED to dis-

criminate edges that must persist longer through the iterations while discarding

edges that are less important. To the best to my knowledge, TAND–CED has not

been used before to do structure enhancement of HSIs. Neither is used to do

structure enhancement of HSI as treated in this work. TAND–CED using the heat

weighted structure tensor produced less broken edges than the one using the classi-

cal structure tensor. In this case, two different problems from different fields were

treated. One was extracting the chain of cells in a thyroid tissue image and the

other was finding the wakes of a boat in an open ocean image. This was achieved

by averaging along the spectral direction the image of the difference between the

original image and the TAND-CED processed image at some iteration n. Counting

the number of connected components of small area of the resulting image was used

as a measure of how broken the edges were. Then the ratio, r, between the numbers

of granules found using the classical ST over the number of granules found using

the heat weighted one was used to assess performance. The graph of r vs. φ (the

threshold for the intensity values of the averaged image) in both problems showed

that TAND-CED using the heat weighted ST produces less broken edges.

About the convergence of the nine diagonal linear system it was found that

ILU(0) was enough to accelerate the convergence of the solution.
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7.2 future work

The spectrally adapted structure tensor presented in Chapter 3 is designed for

vector-valued images that are locally highly correlated, such as HSI. Finding a way

to spectrally adapt other kind of vector-valued images, such as MSI, that do not

fully or partially fulfill this condition is important, so TAND can be adapted to

them. The spectrally adapted structure tensor can be studied also for 3D images,

i.e., volumetric images, such as MRI medical images.

Finding a tensor for TAND that produce less or none rounding effect in the

corners is another topic to study. This effect is due to the fact that the structure

tensor for EED does not distinguish between right and left directions. This is a

known problem, it have been studied by Steidl and Teuber for gray value images

of shear and rotated rectangles [121]. In this case, they modify the eigenvectors of

the structure tensor to make them sensible to directions, and not only orientations.

A diffusion tensor that mitigates this problem for images with shear and rotated

rectangles is also proposed. So, an study of an spectrally adapted structure tensor

that it is sensible to directions to try the correct the rounding of the corners can also

be done. Another direction of study is the usage of structure tensor-based corners

detection methods and used it to correct the lack of detection of the corners by the

structure tensor itself.

From the implementation of the structure tensor, it is clear that all the operations

are done pixel-wise. To calculate the structure tensor per pixel, it is only necessary

the pixel and its 3 × 3 neighborhood around itself. This produces an embarrassing

parallel scenario. So a parallel implementation can be done. TAND on the other

hand has the same characteristics until the step in which the linear system need to

be solved. There are parallel implementations of BiCGStab for distributed memory

architectures. In [122], a parallel implementation using Compute Unified Device
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Architecture (CUDA) in Graphics Processing Unit (GPU) have been proposed for

solving finite difference linear systems with explicit preconditioned Biconjugate

Conjugate Gradient type methods . So a parallel implementation of the structure

tensor and TAND can be achieved.

Studying the effect of the disturbance term presented in Section 4.5 thru the

iterations and its real impact in the divergence-based diffusion can be another study

direction. A study of advantage and disadvantage of using TAND-EED versus

using the regularization obtained using the trace-base diffusion operator presented

by [123, 3] for HSI can be useful to study in which situation is better to use either

method.



A P P E N D I X

147



A
S E L E C T E D T O P I C S

a.1 some definitions from linear algebra and numerical analysis

The definitions in this section are based on the ones appearing in [102].

a.1.1 Rank of a Matrix

The rank of a matrix A is defined as the dimension of the subspace for which

Tv �= 0 and denoted by rank. The space for which Tv = 0 is known as the null space.

The dimension of the null space is known as nullity, denoted by null. One of the

most important theorems in linear algebra, known as dimension theorem establish

that:

rank(A) + null(A) = d

where d is the number of columns of A, which in the case of symmetric matrices is

the same as its number of rows.

a.1.2 Sparse and dense Matrices

A sparse matrix is a matrix in which the majority of entries are zero. In contrast, a

dense matrix is one in which the majority of the entrances are non-zero. A structured

sparse matrix is one whose nonzero entries form a regular pattern, often along a
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small number of diagonals. A matrix with irregularly located entries is said to be

irregularly structured. One way to produce sparse matrices is from the discretization

of a PDE or an Ordinary differential equation (ODE) to fit the continuous theory

into the discrete data.

a.1.3 Projection Methods to solve large linear systems

Given a linear system

Ax = b (A.1.1)

where A is a k × k real matrix. A can also denote the linear mapping in Rk that it

represents. b is a vector with the same number of rows as A, and x is the solution

vector to be found when solving the linear system (A.1.1) . The idea of projection

methods is to extract an approximate solution to the above problem from a subspace

K of Rk.

The Petrov-Galerkin conditions are m (independent) orthogonality conditions im-

posed over the the search subspace K of dimension m so an approximate solution

of (A.1.1) can be found in K. Specifically, the residual vector b − Ax is constrained

to be orthogonal to m linearly independent vectors. This defines another subspace

L of dimension m which will be called the subspace of constraints . This is,

Find x̃ ∈ K, such that b − Ax̃ ⊥ L

when an initial guess x0 to the solution exists then the approximation must sought

in the affine space x0 + K instead of the homogeneous vector space K. Then the

problem becomes

Find x̃ ∈ x0 +K, such that b − Ax̃ ⊥ L.
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Figure A.1.1: Interpretation of the orthogonality condition. Taken from [102]

x̃ ∈ x0 + K means that x̃ can be written as x̃ = x0 + δ, for some δ ∈ K. Let the

residual vector r0 be defined as :

r0 = b − Ax0, (A.1.2)

then

b − A (x0 + δ) ⊥ L or r0 − Aδ ⊥ L

then by definition of orthogonality the approximate solution can be defined as:

x̃ = x0 + δ, for δ ∈ K, such that 〈r0 − Aδ, w〉 = 0, ∀w ∈ L

where 〈·, ·〉 is the inner product defined in Rm.

Many of the standard techniques use a succession of these projections. Typically,

a new projection step uses a new pair of subspaces K and L and an initial guess x0

equal to the most recent approximation obtained from the previous projection step

[102]. When K = L then the projection method is known as orthogonal, otherwise

oblique. This distinction is rather important and gives rise to different types of

algorithms.
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A set of methods known as Krylov subspace methods defines the search subspace

K of dimension m as

Km (A, r0) = span
{

r0, Ar0, A2r0, ..., Am−1r0

}

where r0 is defined as in (A.1.2). The different Krylov methods distinguish one

from another by the definition of Lm and the use of preconditioners.

For completeness in the presentation the three most used Krylov methods used

for non-symmetric linear systems will be presented in the next subsections all the

algorithms are taken from [102].

a.1.3.1 BiCG

Bi-conjugated gradient, BiCG, is a Krylov method that solves non-symmetric linear

systems by defining a projection process onto

Km = span
{

v1, Av1, A2v1, ..., Am−1v1

}

orthogonal to

Lm = span
{

w1, ATw1,
(

AT
)2

w1, ...,
(

AT
)m−1

vw

}

with v1 = r0/ ‖r0‖2 and w1 an arbitrary vector that fulfills 〈v1, w1〉 �= 0. w1 = v1

is often chosen. If there is a dual system ATx∗ = b∗ to be solved with AT then

v1 = r∗0/ ‖r∗0‖2 where r∗0 = b∗ − ATx∗0. The algorithms is presented in Algorithm

A.1 [102]. If a dual system with AT is being solved then r∗0 = b∗ − ATx∗0 and the

update x∗j+1 := x∗j + αj p∗j to the dual approximate solution must be added after

line 5 in Algorithm A.1. There is a variant of this algorithm that avoid the products

with the transpose matrix which is a more efficient computationally.
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Algorithm A.1 Bi-Conjugate Gradient (BiCG)

1. Compute r0 = b − Ax0. Choose r∗0 such that 〈r0, r∗0〉 �= 0.

2. Set, p0 = r0, p∗0 = r∗0

3. For j = 0, 1, ..., until convergence do

4. αj :=

〈
rj,r∗j

〉
〈

Apj,p∗j
〉

5. xj+1 := xj + αj pj

6. rj+1 := rj − αj Apj

7. r∗j+1 := r∗j − αj Ap∗j

8. β j :=

〈
rj+1,r∗j+1

〉
〈

rj,r∗j
〉

9. pj+1 := rj+1 + β j pj

10. p∗j+1 := r∗j+1 + β j p∗j

11. EndDo
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Algorithm A.2 BiCGStab

1. Compute r0 = b − Ax0. Choose r∗0 arbitrarily

2. Set, p0 = r0

3. For j = 0, 1, ..., until convergence do

4. αj :=

〈
rj,r∗j

〉
〈Apj,r∗0〉

5. sj := rj − αj Apj

6. ωj := 〈Asj,sj〉
〈Asj,Asj〉

7. xj+1 := xj + αj pj + ωjsj

8. rj+1 := sj − ωj Asj

9. β j := 〈rj+1,r∗0〉
〈rj,r∗0〉 × αj

ωj

10. pj+1 := rj+1 + β j
(

pj − ωj Apj
)

11. EndDo

a.1.3.2 BiCGStab

Bi-Conjugate gradient method was developed to avoid the usage of the transpose

of A in BiCG and to gain faster convergence. This method check for convergence

twice in one iteration, so the method can converge in the middle of an iteration.

The algorithm is presented in Algorithm (A.2)

a.1.3.3 GMRES

The Generalized Minimum Residual Method (GMRES) is a projection method based

on taking K = Km and L = AKm in which Km is the m − th Krylov subspace with
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Algorithm A.3 GMRES

1. Compute r0 = b − Ax0. β := ‖r0‖2, and v1 = r0/β

2. For j = 0, 1, ..., m Do:

3. Compute wj := Avj

4. For i = 0, 1, ..., j Do:

5. hij :=
〈
wj, vi

〉
6. wj := wj − hijvi

7. EndDo

8. hj+1 :=
∥∥wj
∥∥

2. If hj+1,j = 0 set m := j and go to 11

9. vj+1 = wj/hj+1, j

10. EndDo

11. Define the (m + 1)× m Hessenberg matrix H̄m =
{

hij
}

1≤i≤m+1,1≤j≤m.

12. Compute ym the minimizer of ‖βe1 − H̄my‖2 and xm = x0 + Vmym.

v1 = r0/ ‖r0‖2. This technique minimizes the residual norm over all vectors in

x0 +Km. Any vector in x0 +Km can be written as

x = x0 + Vmy,

where y is an m−vector.The simplest version of this algorithm is presented in Table

(A.3) [102].



B
A P R E C O N D I T I O N E R F O R S O LV I N G T H E F I N I T E

D I F F E R E N C E D I S C R E T I Z AT I O N O F P D E S A P P L I E D T O

I M A G E S

b.1 linear systems and preconditioners used to solve them

Semi-implicit schemes are the most common methods used in PDE-based image

processing [2, 5, 4]. These schemes produce a linear system that need to be solved

in each iteration. Depending on the discretization those system can suffer from

slow convergence. The mathematical guarantees are, at best, that the solution can

be found in linear time that depend on the number of entries in the image. For

high dimensional data such as HSI, this can be really slow. Therefore the most

common practice to accelerate convergence is preconditioning the coefficient ma-

trix. Preconditioning are a set of methods that find equivalent linear systems with

the same solution that the original linear system. This is done by transforming

the original linear system into one that has the same solution, but it is likely to be

easier to solve with an iterative solver [102].

For example, the system Ax = b can be transformed by :

M−1Ax = M−1b (B.1.1)

or

AM−1u = bM−1 (B.1.2)
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where M−1 can be obtained using some analytical method or the solution of a sub-

sidiary linear system u = Mx. (B.1.1) is known as left-preconditioner and (B.1.2) as

right-preconditioner. Usually explicit computation of M and M−1A will be avoided.

Instead the iterative processes operate with A and M−1 whenever it is necessary.

The most simple explicit preconditioner technique is given by the Jacobi or diag-

onal preconditioner. This preconditioner consist in setting the preconditioner M =

diag(A), assuming that Aii �= 0 for all i. The system is solved by a Krylov method.

The standard preconditioner is the one obtained by the incomplete factorization of

the original matrix A. The coefficient matrix A is factored into the product of the

lower triangular and upper triangular parts of A denoted respectively as L and U,

and the residual or error of the factorization R is subtracted, that is:

A = LU − R

this factorization is known as ILU(0). It is rather popular since it is easy and inex-

pensive to compute. But often the approximation can be so crude that the Krylov

method used will require more iterations to converge [102]. More sophisticated

ILU factorization will require a higher computational cost but it makes the Krylov

method converge with fewer iterations.

When the coefficient matrix A is symmetric and positive definite it is always

possible to find a lower triangular matrix L such that A = LLT, this is known

as the Cholesky factorization . An incomplete Cholesky factorization finds a sparse

lower triangular matrix K that is an approximation to L in some sense. Then a

preconditioner M can be defined as:

M = KKT
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K can be found by finding the exact Cholesky decomposition except that any entry

is set to zero if the corresponding entry in A is also zero.

Several standard preconditioners have been used to process HSI, such as Incom-

plete Cholesky, for the divergence-based diffusion PDE using a diffusivity function

[5], and the Incomplete LU factorization (ILU(0)), for the trace-based diffusion PDE

using oriented Gaussian masks [124].

b.1.1 Properties of the Linear System arising from TAND.

TAND discretized with a 3× 3 spatial neighborhood and using semi-implicit meth-

ods produces a nine diagonal coefficient matrix. This is, it produces a structured

sparse coefficient matrix as shown in Figure B.1.1(b). Let I be the image processed

with TAND with size n1 × n2 × m. Then the coefficient matrix in Figure B.1.1(b)

arise from the calculation of the 3 × 3 averaging mask A (Un
P) at pixel P ∈ Rm as

shown in Figure B.1.1(a). The averaging mask at each pixel P = (i, j, 1 : m) only has

9 nonzero entries. This mask is vectorized and becomes the row k = i + n1(j − 1).

After the averaging mask is calculated for each image pixel, the N × N coefficient

matrix A is created, where N = n1 · n2. Since the diffusion tensor is the same for

all the bands, the linear system can be seen in two ways :

1. A linear system in which the right hand side (RHS) is a matrix, that is

AUn+1 = B

where each column of B is a band of the image Un, see Figure B.2.1. In

this case, the operations in the Krylov methods are the same. To keep the

relations between the bands of a HSI and have the same amount of diffusion

in each band, it is important not to solve this system as a multiple Right
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Figure B.1.1: Averaging mask and the nine diagonal linear system produced by solving
TAND with the finite difference method.

Hand Side (RHS) system. Instead, the residuals of the whole system are

calculated by creating a vector of residuals and finding the residual of each

band in a loop over the number of bands. The results in this thesis were

calculated by modifying Matlab’s BiCGStab method in that way. The system

is preconditioned by finding a preconditioner for matrix A.

2. It can also be seen as a regular linear system

AUn+1 = b

in which the coefficient matrix A is a matrix with m blocks in its diagonal, and

each block is the A matrix as shown in Figure B.1.1(b). b is a vector created

from the vectorization of Un. In this case, a preconditioner for the whole

system can be constructed by creating a matrix with the same structure as A
but each block is the preconditioner designed for A

Therefore in any of the cases it is only required to find a preconditioner for the

matrix A shown in Figure B.1.1(b).
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Figure B.2.1: Schematic representation of the nine diagonal linear system resulting from
TAND.

b.2 peric preconditioner

Having a priory knowledge of the sparsity pattern of the coefficient matrix is an

advantage in order to design preconditioners based on the data. The preconditioner

presented in this section can be extended for any of the cases presented in Section

B.1.1. Let

Aφ = S (B.2.1)

be the linear system, where A is a nine diagonal matrix, φ is the vector of variables

and S is the RHS. The system is depicted in Figure B.2.1.

Since each row for the linear system only has nine values different from zero

then the system at row k is:

anwφnw + awφw + aswφsw + anφn + apφp

+asφs + anwφnw + aeφe + aseφse = Sp

(B.2.2)

Since the sparse pattern of matrix A is from a discretization from a regular grid, a

matrix C = L · U with the same diagonals as matrix A can be found. L and U have

nonzero coefficients on seven diagonals only, which coincide with the correspond-
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Figure B.2.2: Schematic representation of the proposed matrices L, U and their product
matrix C

ing seven nonzero diagonals of A. The two diagonals left out correspond to two

opposite corner points aNE, aSW of the averaging mask shown in Figure B.1.1(a),

since the column major format is used to arrange φ. Otherwise they are aNW , aSE.

C with its decomposition is shown in Figure (B.2.1)

The following is the resulting coefficient of the LU product matrix, C, for a row

k:
ck

nw =bk
nw;

ck
w =bk

w + bk
nwbk−r−1

s ;

ck
sw =bk−r

s bk
w;

ck
n =bk

n + bk−r−1
e bk

nw;

ck
p =bk

p + bkr
e bk

w + bk
nbk−1

s + bk
nwbk−r−1

se ;

ck
s =bk

pbk
s + bkr

se bk
w;

ck
ne =bk−1

e bk
n;

ck
e =bk

e bk
p + bk

nbk−1
se ;

ck
se =bk

pbk
se;

(B.2.3)

For now on, the superscript k will be dropped and all the calculations will be

assumed to be at row k of the corresponding matrix, where r = n1.
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Since L and U do not use φne and φsw, they can be approximated by using the

same bands used in their definition on the averaging mask and subtract them from

the center value, as follows:

φne ≈ α
(
φn + φe − φp

)
(B.2.4)

φsw ≈ α
(
φs + φw − φp

)

Substituting Equations (B.2.4) in (B.2.2) and after some algebra :

(an + αane)φn + anwφnw + (ap − αane − αasw)φp + (as + αasw)φs

+aseφse + (aw + αasw)φw + (ae + αane)φe = Sp

(B.2.5)

is obtained. This equation produces a linear system

Ãφ = S (B.2.6)

where the coefficient for the kth row is given by:

ãnw =anw

ãw =aw + αasw

ãn =an + αane

ãp =ap − αane − αasw

ãs =as + αasw

ãe =ae + αane

ãse =ase
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Note that (B.2.6) only have seven diagonals and not nine as C = L · U. Assuming

that the equations (B.2.4) holds then

φne − α
(
φn + φe − φp

)
= φsw − α

(
φs + φw − φp

) ≈ 0 (B.2.7)

so the following system will be approximately equal to (B.2.6)

ãnwφnw + ãwφw + ãnφn + ãpφp + ãsφs + ãeφe + ãseφse

+csw
[
φsw − α

(
φs + φw − φp

)]
+ cnw

[
φne − α

(
φn + φe − φp

)]
= Sp

(B.2.8)

Replacing the values of ã’s in (B.2.8) and factoring for the φ’s, a linear system

is obtained. Then, making the corresponding φ’s coefficients in (B.2.8) equal to

corresponding C’s coefficients in (B.2.3), results in:

bnw =anw

bw =
aw + αasw − bnwbk−r−1

s

αbk−r
s + 1

bn =
an + αane − bk−r−1

e bnw

αbk−1
e + 1

bp =ap − bnbk−1
s − bk−r

e bw − bnwbk−r−1
se

+ α(bk−1
e bn − asw − ane + bk−r

s bw)

bs =
as + αasw − bk−r

se bw − αbk−r
s bw

bp

be =
ae + αane − bnbk−1

se − αbk−1
e bn

bp

bse =
ase

bp

which will be the coefficients of the diagonals in L and U in (B.2.3). The terms

without superscript are assumed at row k. All those calculations were done using

Matlab’s symbolic toolbox. This preconditioner was inspired by a method [103]
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Figure B.3.1: Comparison in terms of (a) total time, (b) relative residual and (c) number of
iterations that BiCGStab needs to converge after being preconditioned with
ILU(0), Jacobi diagonal and the proposed Peric Preconditioners. The linear
system results from appliying TAND-EED to Indian Pines. (d) shows κ′1s
entropy vs. number of iterations of TAND

proposed to solve the linear system in (B.2.1). But the coefficients for C result

from the approximation of (B.2.6), which in turn is the approximation to (B.2.1),

and does not inspire much reliability for a direct solver. But could be used as a

preconditioner. The results showed in the next section use α = 0.02.

b.3 experimental results

Figure B.3.1 shows the comparison of preconditioning BiCGStab using ILU(0), Ja-

cobi diagonal and the proposed Peric Preconditioners. Figure B.3.1(a) shows the
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total time for a preconditioned BiCGStab to obtain a solution. This time is ob-

tained after adding the time to create the preconditioner and solve the system. As

TAND-EED regularize the image the time needed to obtain a solution decrease in

all the preconditioners, except in Peric, in some intervals the Peric preconditioner

is slowing down the solution. From Figure B.3.1(a) is clear that the quickest pre-

conditioner is the ILU(0). Figure B.3.1(b) shows the results for the relative residual

error. BiCGStab was set to stop with a tolerance of 10−4.The different precondi-

tioned BiCGStabs produce a non monotone decreasing sequences of errors as the

number of iterations of TAND increases, except ILU that after TAND’s iteration 12,

its errors decrease. Figure B.3.1(c) shows the number of iterations that BiCGStab

needs to converge vs. the number of iterations of TAND. The shapes of the curves

for Figure B.3.1(a) and (c) are equal since the time need to solve the system is

proportional to the number of iterations that the preconditioned BiCGStab need

to converge. Figure B.3.1(d) shows κ′1s entropy, This value is almost identical for

each of the preconditioned BiCGStab in each iteration of TAND, showing that the

resulting images are very similar. κ′1s entropy was calculated
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