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ABSTRACT   
 

Reef scientists continue exploring methods to better characterize the status of 

coral reefs environments.  In that endeavor, an airborne AISA image (1m, 24 bands) was 

analyzed together with Ikonos (4m, 3 bands), ASTER (15m, 2 bands), and ETM+ (30m, 

4 bands) spaceborne data in order to increase the small number of pilot sites (Turk and 

Caicos, Tahiti) where multi-sensors comparisons are now available. The benefits of 

atmospheric and water column correction on the accuracy of image classification maps 

are also assessed.  Water-column correction considered both, the empirical Lyzenga’s 

(1978, 1981) approach and the analytical Maritorena’s (1994) model.  The latter model 

requires pixel-specific depth measurements and information on the characteristics of the 

water column.  Bathymetry was collected using an airborne lidar sensor.  AISA products 

were consistently more accurate than spaceborne products with a maximum accuracy of 

93%.   Also, water column correction proved to be beneficial by generally improving 

classification accuracy for the processed scenes.  Other trends were revealed. 
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RESUMEN 
 
 Investigadores de arrecifes de coral continúan desarrollando métodos que mejoren 

el modo de evaluar el ambiente coralino.  Con similar propósito, se analizó el sensor 

aéreo AISA (1m, 24 bandas), junto a los sensores espaciales Ikonos (4m, 3 bandas), 

ASTER (15m, 2 bandas) y ETM+ (30m, 3 bandas) a modo de contribuir al reducido 

número de estudios (Turk y Caicos, Tahiti) que comparan diferentes sensores con 

potencial en habientes coralinos. Consideramos además los beneficios provistos mediante 

la corrección de atmósfera y batimetría a la presición de mapas bénticos. En la correción 

batimétrica incluímos el modelo empírico postulado por Lyzenga (1978, 1981) y el 

modelo analítico de Maritorena (1994). Este último requiere valores de profundidad por 

pixel y conocimiento general de las propiedades ópticas de la columna de agua. Los datos 

de profundidad se obtuvieron de medidas colectadas por un sistema aéreo lidar. Los 

mapas temáticos derivados de AISA fueron consistentemente más precisos, con un valor 

máximo de presición de 93%, que los obtenidos por sensores satelitales.  La clasificación 

supervisada obtuvo beneficios de la correción batimétrica.  Tendencias adicionales fueron 

reveladas.    
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Chapter 1 

1.  Introduction 

 

Coral reefs offer a realm of economic and social goods to humans (Moberg and 

Folke, 1999).  In short, they are a source of income, recreation, biodiversity, food, and 

natural protection against shoreline erosion and storm damage.  However, the worldwide 

coral reef scenery is degrading.  Many documents have reported over the past three 

decades evident signs of deterioration in coral reef communities at local, regional and 

global scales (Wilkinson, 2002).  Those reports do not paint a better panorama for the 

future of coral reefs, the ecosystem that has being called the rainforest of the oceans 

(Bellwood & Hughes, 2001).  Compiled information suggests that such trend is in part a 

response to physical and biological natural disturbances.  For example, modern corals 

around the world are experiencing high levels of stress due to what seems to be an 

ongoing cycle of global climate change similar to those engraved on fossil coral records.  

Reefs have had the capacity to recover over the perturbations imposed by natural 

processes in the past.  But, more recently, anthropogenic activities are also stressing and 

quickly degrading such fragile communities to the limits or beyond recovery (Wilkinson, 

2002).  Increased fresh water run-off, sedimentation, nutrification, oil pollution, 

overfishing or destructive fishing practices, improper watershed management, ship 

groundings or people tramping over corals are some of the human related factors that 

endanger reefs directly or indirectly.  Other factors include global greenhouse gases and 

aerosols emissions, ozone-depleting chemicals usage, and land-use land-cover changes 

that are all triggering or contributing to global warming and its effects over corals 

(Kleypas et al. 2001).  In order to improve our understanding on inherent coral reef 

processes and effective conservation practices it is important to assess better methods of 

characterizing the environment and separating the relative influence of natural and 

anthropogenic stressors at various scales.   
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1.1 Remote Sensing for Coral Reef Mapping 

Thematic maps are of fundamental importance to characterize the marine system. 

Their enhance interpretability facilitate describing the coral reef physical environment 

(Andréfouët et al. 2002b), identify connectivity to relevant land-based and marine threats 

(Andréfouët et al. 2002a), and to set a baseline reference for change detection analysis 

(Palandro et al. 2003) in a coherent manner.  Map production provides the means to 

display, store, and relate georeferenced spatial data available for analysis and decision-

making.  Further, the advent of geographic information systems (GIS) made possible to 

integrate several spatial data sources with more analytic capabilities for interpretation.  

GIS also facilitates the production of more meaningful maps for environmental modeling 

and promotes interactive exchange of relevant data between multidisciplinary 

collaborators.  The effective use of those cartographic documents, however, relies on 

their accuracy reproducing the environment. 

Remote sensing technologies offer the synoptic view required to account for the 

larger land-seascape matrix in the characterization and monitoring of the environment.  

Traditional methods to gather spatial information became somewhat impractical at that 

scale, making of remote sensing the most, and in some cases the only, feasible mean to 

capture referenced data for map production at a suitable spatial resolution (e.g. within 

meters).  Throughout the years more sophisticated remote sensing technologies are 

becoming available.  However, the choice of a satellite sensor optimized for the study of 

coral reef communities seems to still be out of the satellites constellation.  These 

submerged and highly heterogeneous environments impose challenges for benthic habitat 

mapping and require a specialized sensor.  Such challenges not only include dealing with 

the intervening above water atmospheric path (Gordon, 1992), but also bring the need to 

account for the contribution of the water surface effects (Fraser et al., 1997; Hochberg et 

al., 2003b; Mobley, 1999), water column optical attenuating properties (Morel and 

Maritorena, 2001; Mobley, 1994; Smith and Baker, 1981), and depth variation effects 

(Lyzenga, 1978, 1981; Maritorena, 1996; Philpot, 1989; Stumpf et al., 2003) to the 

measured signal.  Additionally, the spectral resolution of a sensor designed to better 
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discriminate reef biological communities require a high number of narrow, properly 

placed, spectral bands which are not currently available in existing sensors (Hochberg 

and Atkinson, 2003; Hochberg et al., 2004; Mumby and Edwards, 2002).  Optical multi-

spectral sensors mounted on aircraft platforms seem to be the more appropriate type to 

overcome the lack of spectral specialization of satellite sensors.  However, the latter lacks 

the spatial synoptic coverage for large-scale studies and usually cost more.  

Three main aspects need to be considered for remote sensing coral reef habitat 

mapping.  Those are spatial resolution, spectral resolution, and the reef system 

configuration.  The relative influence of those three aspects, however, is still unclear 

(Capolsini et al., 2003; Mumby and Edwards, 2002; Mumby, 2001; Mumby et al., 

1998b).  To unravel the potentialities of existing sensors in terms of their spatial and 

spectral resolution, and performance over various environments, few multi-sensor 

comparisons have been accomplished (Capolsini et al. 2003; Andréfouët et al. 2002b; 

Mumby and Edwards 2002; Hochberg and Atkinson, 2003a; Mumby et al. 1998b).  

Those have pointed to some general trends when mapping coral reef habitats.  For 

instance Capolsini et al. (2003) and Mumby and Edwards (2002) observations suggest 

that, if dealing with similar spectral bands but different spatial scales, a higher spatial 

resolution increase the classification accuracy for fine level habitat mapping.  Hochberg, 

Atkinson and Andréfouët (2003) compared coral reef spectral reflectances collected in-

situ around the world to those provided by simulated broadband spaceborne sensors, and 

pointed out the limitations of the latter to spectrally discriminate between sand, coral and 

algae independently to geographic location.  Further, Andréfouët et al. (2003a), Capolsini 

et al. (2003), and Mumby et al. (1998a) demonstrated the advantages of considering the 

reef morphology and habitat zonation at reef level (e.g. contextual knowledge) to 

improve image classification accuracy.  Additional efforts to validate or unveil trends in 

terms of thematic map accuracy relative to sensors specification should clarify the 

relative potentialities of individual sensors for coral reef habitat mapping.  

A multi-scale-sensor study should inspect the range of sensors specifications 

under comparable conditions and same image processing scheme.  Otherwise, the relative 
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comparison may be meaningless.  More efforts are needed to account for the different 

types of reef biota and configurations worldwide by increasing the number of 

comparative studies and exploring the various image-processing methods and their 

effects on habitat mapping.  To contribute to the small number of pilot sites where multi-

sensor comparisons are now available (Turk and Caicos, Tahiti), the relative performance 

between three broadband multispectral satellite sensors (namely, the medium spatial 

resolution Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 

and ETM+, and the high spatial resolution Ikonos), and a high-spectral and high-spatial 

data sensor (i.e. the Airborne Imaging Spectroradiometer for Applications (AISA)) was 

evaluated.  Other studies have already included Ikonos, Aster and ETM+ sensors.  This 

study is the first presenting the high spatial (1.5 m) and spectral resolution (24 bands 

between 0.44 and 0.74 nm) AISA sensor for habitat mapping.  The case study area, 

Anniversary Reef, is a small (~2 km2) shallow water (2-12 m) patch reef environment 

which represents quite well the bigger lagoonal patch reef system of Biscayne National 

Park and the inshore Florida Reef Tract.  The suite of sensors under investigation 

presents a wide range of spatial and spectral resolutions. This allows comparison between 

the relative influences of sensor’s characteristics to the classification accuracy of derived 

coral reef habitat maps.  

1.2 Image Processing 

In an effort to generate more accurate maps, different image processing methods 

are usually applied seeking for better calibration, correction, and enhanced benthic 

habitat discrimination.  A critical step when analyzing radiance values of images 

collected remotely is to overcome for the absorption and scattering effect of the 

atmospheric path.  This correction becomes more important when attempting a sensor-to-

sensor comparison.  A relative comparison of scenes collected under different 

atmospheric conditions, sea-state, viewing geometry, and illumination creates the need of 

isolating the leaving water reflectance signal from the influence of atmospheric factors.   

Another key issue of mapping underwater communities is to compensate for the 

influence of variable depth on the measured reflectance signal.  Water column correction 
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is expected to improve spectral separability of reef substrates located at different depths 

and ultimately enhance habitat-mapping accuracy (Mumby et al., 1998a).   

The type of selected image classification algorithms may also influence final 

classification results (Andréfouët et al., 2003b; Capolsini et al., 2003).  Identification of 

the more effective and practical algorithm and methodologies may lead to consensus 

among reef scientist to follow more homogeneous approaches for coral reef habitat 

mapping (Green et al., 1996; Mumby et al., 1998a; Andréfouët et al., 2003c). 

1.3    Objectives 

The main objective of this study is to help reveal the capabilities and limitations 

of a realm of existing remote sensors for coral reef mapping over a patch reef 

environment.  The influence of different image processing techniques on habitat mapping 

accuracy is investigated as well.  The different options presented to achieve the mapping 

goes from high-cost (radiative transfer modeling, bathymetric lidar and hyperspectral 

airborne data) to lower-cost (empirical bathymetric correction, low resolution satellite 

sensors) approaches.   

This thesis is organized in four major sections.  The materials and methods 

chapter illustrate the imagery and specific approaches adopted to collect the ground truth 

data.  It presents the different image processing methods performed for atmospheric and 

bathymetric correction, including as well ground truth data ordination and habitat 

classification scheme, image classification, and accuracy assessment approaches.  Results 

and discussion in terms of achieved accuracy of the maps based on extensive ground-

truth data and trends are presented on chapter three and four.  The most important 

observations derived from this study and suggestions on the potential of employed 

imagery and evaluated methods for coral reef habitat  mapping are addressed in chapter 

five. 
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Chapter 2 

2.  Materials and Methods 

2.1 Study Area 

Florida’s high latitude reef communities resemble the Caribbean flora and fauna 

reef environment, only less diverse and with lower vertical relief (Marszalek et al., 1977).  

Holocene patch reefs, over the Key Largo Limestone formation, are the main features on 

the gently sloping inner continental shelf.  Over 6000 patch reefs exist within the inshore 

Florida Reef Tract, being more abundant in the upper keys off Key Largo and Elliot Key.  

These are remnant outcrops of individual massive heads or aggregations of coral heads, 

providing a topographic relief propitious for coral recruitment (Shinn et al., 1989).  Yet, 

located at the northernmost limit of coral reefs development in the Atlantic, these shelf 

reef communities are exposed to subtropical marine climate that exerts an important 

control on reef development and biodiversity (Jaap, 1984).  The shallow basin reef 

system is subjected to thermal stresses, both due to severe winter cold fronts, and high 

summer temperatures.  These variations may quickly alter water temperature and 

chemistry, potentially resulting in community shifts and lower coral growth.  Since the 

late 70’s, Florida reefs have also experienced coral diseases that have rapidly affected 

reef-builders stony corals and damaged the marine ecosystem (Jaap et al., 2001). 

Biscayne National Park (BNP), in Florida, is located at the upper end of the 

Florida Reef Tract and represents a good example of conflicting conservation goal and 

commercial activities.  It is located between the Gulf Stream oceanic current in the East 

and the sprawling Miami urban area in the North, the Florida Keys ecosystems in the 

South and the Everglades/Florida Bay wetland/estuaries ecosystems in the West.  

Biscayne Bay connects this complex seascape of coastal population activities and a 

sensitive marine environment through natural hydrologic networks, groundwater systems, 

and currents.  Coastal anthropogenic activities have been pointed as a major contributor 

to the degradation of the coastal marine ecosystem in the Florida Keys.  This is explained 

by an increased flow of nutrient and sediments from land-use practices carried by inland 

run-off or percolated through the porous limestone bedrock underlying the Keys.  Recent 
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studies have also revealed some connection between humans intestinal bacteria found in 

coastal waters and diseases killing Florida corals (Porter and Meier, 1992).  BNP is a 

focus center for the study of marine degradation, coral reef research, and establishment of 

policies for marine resources management. 

The case study area encompasses an extension of about 2 km2, centered at 

coordinates 25º23’19” North and 80º09’56” West within BNP (Figure 1).  This 

geographic range was selected given the availability of ancillary data relevant to this 

study and for being representative of the inshore Florida Reef Tract system in the Upper 

Keys.  Abundant reef patches populate the sea floor of this shallow lagoon terrace with 

depth ranging between 1 to 12 meters and a mean tide range of about 1.18 feet.  The 

study area encloses approximately 200 sand-rimmed patch reefs with the general dome-

shape profile that characterize Floridian patches.  They exhibit a large range of sizes, 

varying from 10 to 100 meters in diameter with a vertical relief of 1 to 4 meters at their 

center axis.  The benthic communities associated to these patches are quite heterogeneous 

and spatially mixed.  Its general assemblage consists of abundant octocorals, scattered 

stony corals, algae, coral rubble, sponges, and seagrass meadows.   

 Anniversary Reef lies in the center of the area of interest (Figure 2), and can be 

distinguished from the other sub-circular patches by it size and configuration.   It exhibits 

a drop-like shape elongated in its north-south axis (1.5 km) compared to a narrower east-

west axis (0.6 km), showing a NNE to SSW trend.  Anniversary Reef is a patch platform 

that rises about 3 meters from the grassy lagoon floor and possesses an irregular 

topographic relief pattern.  The lower areas in the platform are mostly populated with 

seagrass, sponges, and algae, while the higher topographic features resemble the coral 

communities of deeper patches with more abundant stony coral cover.  Based on the 

physiographic descriptions presented by Jaap (1984), this reef may be considered a 

transitional reef that embodies a series of isolated and coalesced patch reefs.  

The biotic and geomorphological patchiness of the studied reef system is suitable 

and challenging to test the potentialities of the spectral and spatial resolution 

specifications of evaluated sensors for coral reef habitat mapping.  
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Figure 2.  Map showing the extent of the study area and 
general morphology of reef patches. 

Figure 1.  Map indicating the location of the study area in 
Biscayne National Park, Florida. 

  



 9

2.2 Data Collection 

 Our database includes AISA, Ikonos, ASTER, and ETM+ imagery together with 

bathymetric data and ground truth field measurements.  The digital dataset was projected 

to Universal Transverse Mercator (UTM), zone 17, WGS-84 datum, and processed using 

the Environment for Visualizing Images (ENVI® 4) software package.  Main 

characteristics of the images are summarized on Table 1.  Imagery was selected for being 

acquired within one-year time frame of each other and having very low or none cloud 

cover.  This data set represents a suite of modern remote sensors potentially interesting 

for reef habitat mapping (Figure 3).  ETM+, for example, provide the area coverage and 

collection repetition adequate for regional studies and temporal monitoring.  However, at 

a local scale it does not deliver relative high spatial detail.  In the other hand, the area 

coverage and collection repeatability for AISA is highly influenced by the high costs, 

although it does provides very fine details locally.  This analysis uses the visual region of 

the spectrum since the near infrared (NIR) portion is quickly absorbed in the water 

column making it unsuited for coral reef studies.  

Figure 3. Comparison between synoptic view coverage of studied imagery: 
ETM+, ASTER, Ikonos, and AISA (a, b, c, d respectively) (top), and spatial 
resolution contrast between scenes using Alina’s Reef as example (bottom).   
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Table 1. Main characteristics of investigated scenes.  
 

Sensor Specific 
Sensor AISA Ikonos ASTER ETM+ 
Platform Twin Otter  Ikonos-2 EOS TERRA Landsat 7 
Operator 3Di Space Imaging NASA/NASDA NASA 
Launch  1997 1999 1998 1999 
Sensor altitude (km) 1 to 4 680 705 705 
Temporal resolution (day)  On demand 3.5-5 16 16 
Number of spectral bands up to 55 5 15 8 
Swath (nadir)   286 pixels 13 km 60 km 185 km 
Inclination (deg) Nadir  Pointable Sun-sync, 98.2 Sun-sync, 98.2 

Image Specific 
Date 7-Jan-2001 18-Mar-2001 25-Sep-2000 5-Feb-2000 
Time (GMT) 15:05:00 15:59:00 16:15:11 15:42:34 
Digitization (bits/pixel) 16 11 8 8 
Spatial resolution (m) 1.5  4 15 30 
Relevant spectral bands (VIS) 17 3 2 3 
Spectral range (µm) 0.43 - 0.75 0.45 - 0.69 0.52 - 0.69  0.45 - 0.69  
Solar azimuth (deg) ~138.79 136.77 150.86 143.68 
Solar elevation (deg) ~58.82 34.47 29.66 50.26 
Processing level Orthorectified  Orthorectified L1B L1G 
Resampling method   NN CC NN 

Environmental Conditions 
Water vapor (g/cm2) 1 2.1 2.3 4.1 1.6 
Current wind speed (m/sec) 2 4.2 4.8 3.7 7.3 
Total ozone (Dobson units) 3 4.0 260.0 260.0 280.0 
Mean Tide Prediction (ft) 0.07 0.37 0.14 1.63 
Cloud Cover (%)  0  0 - 5 0 - 14 0 - 9  

1 From Topography Experiment for Ocean Circulation (TOPEX), AISA value from 6S. 
2 From NOAA FWYF1 station (resides 20 kilometers north of the study area). 
3 From Total Ozone Mapping Spectrometer (TOMS), AISA value from 6S. 

 

2.2.1 Digital Imagery 

2.2.1.1 AISA 

AISA data were acquired by the USGS Center for Coastal and Watershed Studies, 

Saint Petersburg-Florida, in the morning of January 07, 2001 to assess the capabilities of 

this hyperspectral sensor for coral reef mapping.  The complete AISA data collection 

comprised an area of 6 km2 in Biscayne National Park (Figure 4).  The AISA airborne 

system, manufactured by Spectral Imaging (Finland), offers high degree of positional 
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accuracy provided by the combination of Differential Global Positional System (DGPS) 

coupled with an Integrated Navigation System (INS) and real time Kalman filter.  

Concurrent upwelling radiance and downwelling irradiance measurements were acquired 

and pre-processed by the 3Di Technologies Company.  Pre-processing involved 

radiometric calibration, rectification, and georeferencing attained using calibration files 

feed to the AISA CaliGeo® software.  Flight lines were mosaiced at the Institute for 

Marine Remote Sensing (IMaRS), University of South Florida.  Operating collection 

mode of AISA (mode B) allowed user-specified spectral sampling, wavelengths, and 

number of channels.  The 1.5 m ground resolution was achieved by flying at an average 

nominal altitude of 1500 m.   Spectral information of collected AISA data is summarized 

on Table 2. Detailed information for the AISA system can be found at: 

http://www.specim.com. 

2.2.1.2 Ikonos 

 The Ikonos multiband image was captured in March 18, 2001 and made available 

by the National Aeronautics and Space Administration (NASA) Scientific Data Purchase 

(SDP) program.  The 4 m nominal pixel size image is a standard orthorectified product 

(“Standard Master”).  According to NASA specifications, absolute horizontal geodetic 

accuracy of this product is 12.2 m.  Standard Master products are rectified to an earth 

Figure 4. AISA composite image after 
flight-lines mosaicing and normali-
zation.  RGB colors represented with 
spectral bands 12, 6, and 2 respectively.
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ellipsoid using ephemeris data.  The Ikonos image in question was radiometrically 

corrected, has MTFC-off (modulation transfer function compensation-not applied), and 

was resampled using a Nearest Neighbor algorithm.  Table 3 summarizes Ikonos main 

spectral characteristics.  Refer to the following website for more information: 

http://www.spaceimaging.com. 

Table 2. AISA visible and NIR spectral bands  

Band No. 
Minimum 

Wavelength 
Center 

Wavelength 
Maximum 

Wavelength 
Channel      
Width 

 Ground 
resolution (m) 

1 429.43 430.24 431.05 1.62 1.50 
2 431.05 435.10 439.15 8.11 1.50 
3 442.39 446.45 450.50 8.11 1.50 
4 453.74 457.79 461.85 8.11 1.50 
5 476.44 480.49 484.54 8.11 1.50 
6 487.78 491.83 495.89 8.11 1.50 
7 497.51 501.56 505.61 8.11 1.50 
8 508.86 512.91 516.96 8.11 1.50 
9 518.58 522.63 526.69 8.11 1.50 

10 531.55 535.60 539.65 8.11 1.50 
11 542.90 546.95 551.00 8.11 1.50 
12 554.24 558.30 562.35 8.11 1.50 
13 565.59 569.64 573.69 8.11 1.50 
14 575.15 579.48 583.81 8.66 1.50 
15 587.28 591.61 595.94 8.66 1.50 
16 599.40 603.73 608.06 8.66 1.50 
17 611.53 615.86 620.19 8.66 1.50 
18 621.92 626.25 630.58 8.66 1.50 
19 632.31 636.64 640.97 8.66 1.50 
20 644.43 648.76 653.09 8.66 1.50 
21 656.56 660.89 665.22 8.66 1.50 
22 666.95 671.28 675.61 8.66 1.50 
23 677.34 681.67 686.00 8.66 1.50 
24 689.47 693.80 698.13 8.66 1.50 
25 718.91 723.24 727.57 8.66 1.50 
26 743.16 747.49 751.82 8.66 1.50 

                    

Table 3. Ikonos visible and NIR spectral bands 

Band No. 
Minimum 

Wavelength 
Center 

Wavelength 
Maximum 

Wavelength 
Channel      
Width 

 Ground 
resolution (m) 

1 444.70 480.30 516.00 71.30 4 
2 506.40 550.70 595.00 88.60 4 
3 631.90 664.80 697.70 65.80 4 
4 757.30 805.00 852.70 95.40 4 

Pan 525.80 727.10 928.50 403.00 1 
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2.2.1.3 ASTER 

The ASTER image was acquired in September 25, 2000.  It is a Level 1B (L1B) 

data product supplied by the USGS Eros Data Center Distributed Active Archive Center 

(USGS-EDC-DAAC).  The image is radiometrically calibrated and geometrically 

corrected.  The Cubic Convolution (CC) algorithm was used for resampling. The visible 

range of the ASTER image (0.52 to 0.69 µm) is confined within two broad spectral bands 

(band no. 1 and 2) having a spatial resolution of 15 m (Table 4).  More information is 

available at the ASTER User Handbook (http://asterweb.jpl.nasa.gov). 

Table 4. ASTER visible and NIR spectral bands   

Band No. 
Minimum 

Wavelength 
Center 

Wavelength 
Maximum 

Wavelength 
Channel      
Width 

 Ground 
resolution (m) 

1 520 560 600 80 15 
2 630 660 690 60 15 

3N 780 820 860 80 15 
3B 780 820 860 80 15 

         

2.2.1.4 ETM+ 

 The Landsat ETM+ image was gathered in February 5, 2000 and was provided by 

the USGS-EDC-DAAC as a level 1G (L1G) product.  An L1G image has undergone 

radiometric and geometric corrections.  The used image was generated by the Level 1 

Product Generation System (LPGS), was resampled using the Nearest Neighbor method, 

and is located on the path/row 015/042 within the World Reference System.  Table 5 

summarizes ETM+ spectral configuration.  For more specific information on the Landsat 

7 program, ETM+ sensor, and data products refer to: 

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html.  

Table 5. ETM+ visible and NIR spectral bands  

Band No. 
Minimum 

Wavelength 
Center 

Wavelength 
Maximum 

Wavelength 
Channel      
Width 

 Ground 
Resolution (m) 

1 450 485 520 70 30 
2 530 570 610 80 30 
3 630 655 660 60 30 
4 780 840 900 120 30 

Pan 520 710 900 380 15 
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2.2.2 Bathymetric Data 

 During the summer of 2001 the NASA Experimental Advanced Airborne 

Research Lidar (EAARL) was flown over the Florida Keys Reef Tract as part of a 

mission to test the performance of this Light Detection and Ranging (lidar) system over a 

shallow water reef environment (Brock et al., 2004).   EAARL makes use of a precision 

GPS network to monitor the aircraft attitude, and to establish an accurate 3D geolocation 

above the WGS-84 ellipsoid.  An average pulse repetition frequency of 3000 Hertz 

allows closely spaced measurements to depict subtle subaerial and seafloor topographic 

changes.  It uses electromagnetic radiation, in a narrow beam attenuation mode, to 

measure signal return time.  Such measurements are adjusted to the light-transmission 

properties of the air and water to determine water depth and above water altitudes.  

Details on EAARL are provided in Wright and Brock (2002).  EAARL data were utilized 

to generate a digital elevation model of the seafloor in the study area.    

2.2.3 Ground Truth Datasets 

The field campaign was designed to collect ground truth data optimized to the 1.5 

m spatial resolution of AISA.   A priori knowledge of the area together with unsupervised 

classification (i.e. ISODATA) was the criteria used to classify the AISA image into four 

coarse benthic classes.  The resulting preliminary map provided the leading strata to 

generate the random points to be used in a stratified sampling approach (Congalton, 

1991).  A number of 30 random points per strata were generated using an automated 

computer based technique.  A benthic habitat sampling data sheet, to be filled at each 

field station, was designed to guide the assessment and to maintain consistency between 

surveyor observations (Appendix 1). 

The field campaign was carried out on March 2002.  Benthic communities were 

described following the photo-quadrat technique using a 1m2 submersible quadrat 

(Figure 5).  Additionally, a short (1 minute) underwater video of the neighboring area 

was acquired at every station.  Video recording was utilized for further visual reference 

and to allow extrapolation of station observations to the coarser resolution images.  

Benthic communities were characterized and visually quantified based on percent cover 
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within each 1m2 quadrat.   Hard coral taxon was described at a genus level except where 

continuous stony coral covered an area bigger than the quadrat perimeter.  In such cases, 

those were recorded to species level.  Observers were towed between stations as a way to 

manage the time more efficiently and to detect any remarkable feature on the way to 

consecutive stations (e.g. three big (~4 m) massive Montastraea annularis heads were 

identified and georeferenced).  Every station was georeferenced using a Precision 

Lightweight GPS Receiver (PLGR+96 – PPS) with a positional uncertainty of ± 3 meters.  

A total of 102 stations were surveyed during the field campaign.  Eighteen of the 

proposed field stations were not accomplished due to time and weather constrains.  

Additionally to the visited stations, two 100 m long video-transects were surveyed over 

Anniversary Reef to represent gradational transitions between benthic communities.  

2.3 Data Processing 

2.3.1 Pre-processing 

Digital numbers were converted to physical units of calibrated radiance (W m-2sr-

1nm-1) using the equations and calibration coefficients provided by the sensor technical 

handbooks and online official information.   

 

Figure 5. Example of an underwater photo-quadrat station, 
showing the 1m2 scaled quadrat, station ID slate to keep record 
of photography, and BNP typical biota.   
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2.3.2 EAARL Bathymetric Data 

 Some suspicious depth values were identified on the EAARL dataset.  Those were 

more likely due to water turbidity.  Indeed, water properties places limitations on whether 

lidar optical measurements represent actual depth.  Most of the noise was seen at depth 

greater than 6 meters and mainly over the seagrass beds.   

 In order to discard erroneous values, the georeferenced depth measurements (i.e. 

x, y, z) were examined by creating region statistics within a size-controlled window.  

Depth values that deviated significantly from the window mean depth were evaluated.  

The AISA image was subsequently inspected to avoid eradication of true ground features 

(e.g. small patch reefs).  Suspicious depth spikes were filtered out to restore the expected 

smoother appearance of the fairly flat seagrass beds.  Once filtering was accomplished 

the corrected data set was gridded using the kriging interpolation method incorporated in 

the ArcMap 8.2 software (Figure 6).  Four different DEM were generated from the point 

dataset to correspond with the pixel size of the four studied images (i.e. 1.5, 4, 15, 30 

meters respectively).  

2.3.3 Geospatial Positioning 

 The data set was rectified to the AISA coordinate system so that field data ground 

positioning could be better constrained and to maintain geographic integrity for all data.  

With AISA as master, the satellite images were georectified when necessary applying the 

Nearest Neighbor resampling approach.  The Nearest Neighbor algorithm was selected to 

avoid averaging pixel information with surrounding values.   

To assure appropriate positioning of depth information, remarkable features were 

identified within the bathymetric data.  Isolated coral heads, escarpments, or any other 

identifiable feature that could be related to elements observed in AISA, were used as 

ground control points.  Isobaths were generated from rectified DEMs and overlapped 

over the imagery for quality control. 
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2.3.4 Sea Surface Correction 

Visual inspection of the Ikonos image revealed the influence of wind-driven 

waves and resulting sunglint at the sea surface.  Such effect obstructs visual recognition 

of subsurface features and may bias image statistics on a benthic habitat classification 

approach.  Wave-induced specular reflectance effects (i.e. glint) were removed by 

applying the method presented on Hochberg et al. (2003b) (Figure 7).  This method 

assumes that the near-infrared region (NIR) of the spectrum (i.e. band 4 in Ikonos) is 

totally absorbed by the water.  Thus, any recorded NIR upward radiance above a water 

body should contain the reflected sunlight, as a function of geometry.  Assuming that the 

glint effect remains relatively constant independently of wavelength then the NIR can be 

used to lead the recognition and removal of sunglint across wavelengths in the visible 

(VIS) range.  The glint correction was performed after correcting for the atmospheric 

effect.  For a more complete understanding of the method and algorithm refer to 

Hochberg et al., 2003.  

 

 

Figure 6. (a) EAARL georectified depth measurements. (b) DEM obtained from the interpolation of 
unfiltered depth data points.  (c) DEM generated from the interpolation of filtered depth data points. 
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2.3.5 Atmospheric Modeling 

This study used different models to estimate the contribution of the atmosphere to 

the at-sensor measured signal.  No ancillary data or atmospheric measurements were 

available to describe scene-specific optical conditions of the atmosphere at sensor 

overpass.  Thus, parameters were modeled using the radiative transfer numerical models 

6S version 2.0 (Vermote et al., 1997) and Hydrolight 4.1 (Mobley et al., 1995).    

Informational gaps to describe atmospheric constituents (i.e. ozone, water vapor) or air-

water surface conditions (i.e. wind speed) were filled with historical archived data (Table 

1).  Every computed parameter is considered λ (wavelength) dependent, but this term was 

omitted for brevity. 

 Radiation undergoes significant attenuation in its double journey through the 

atmosphere (i.e. sun-target-sensor).  The two critical processes are the absorption due to 

atmospheric gases, and scattering due to atmospheric aerosols and molecules content.  

The scattering factors, Lrayleigh and Laerosol, refers to molecular and aerosol scattering 

respectively.  The latter also considers multiple scattering between the two types.  The 

spectral radiance (L) that does not reach the target but that is scattered upward to the 

sensor is known as atmospheric path radiance (Latm) and is expressed as:   

Figure 7. Ikonos images showing before (left) and after (right) glint 
removal results over the study area. 
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Latm = Lrayleigh + Laerosol                                     (1) 

Total radiance (Ltotal), as seen by a remote sensor, is the sum of the spectral radiances 

arriving from the atmosphere (Latm), plus the target radiance (Ltarget) after being 

transmitted from the target to the sensor through the atmosphere (Hu and Carder, 2002):  

Ltotal = Latm + t Ltarget                            (2) 

where t is the diffuse transmittance for propagation.  The 6S code was employed to model 

t and to derive Latm.  Parameters used in the different runs are shown in Table 6, and the 

coefficient values are as in Table 7.  Atmospheric corrections provide the signal just 

above the water surface.  

 Table 6. Parameters for 6S atmospheric modeling 

Parameters Values 
Atmospheric Model  Tropical 
Aerosol Model Maritime 
Visibility 35 km 
Target Altitude at sea level 
Sensor Altitude Refer to Table 1 
Environmental Conditions Refer to Table 1 
Ground Reflectance Type Homogeneous surface 
Ground Reflectance Target Mean spectral value of clear water 

 

Over water, as opposed to atmospheric correction for land applications, is 

necessary to also consider the optical properties of the sea surface including the reflected 

skylight and the solar glitter reflection (Mobley, 1999).  The combination of such effects 

together with the inherent light absorbing and scattering properties of the water column 

reduces the radiance signal of the target (i.e. water-leaving radiance, Lw) to a 10 – 15 % 

when registered at the satellite sensor (Hu and Carder, 2002).   Water column corrections 

methods are discussed in the next section. 
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Table 7. Modeled coefficient employed to derive above-water remote sensing reflectance 

Wavelength t Ed ρ Latm F0 Lsky R∞ Kd

nm W/m2*nm W/m2*sr*nm W/m2*nm W/m2*sr*nm sr-1 m-1

430 0.9747 0.5463 0.0246 0.0046 1.1380 0.0005 0.0062 0.0594
435 0.9753 0.6466 0.0238 0.0068 1.7270 0.0006 0.0058 0.0605
446 0.9767 0.7561 0.0223 0.0070 1.8960 0.0006 0.0054 0.0608
458 0.9782 0.8016 0.0207 0.0067 1.9760 0.0006 0.0051 0.0598
480 0.9801 0.8264 0.0184 0.0062 2.0400 0.0006 0.0047 0.0570
492 0.9817 0.7995 0.0173 0.0054 1.9010 0.0006 0.0042 0.0581
502 0.9825 0.8011 0.0165 0.0051 1.8990 0.0005 0.0037 0.0629
513 0.9834 0.7869 0.0155 0.0048 1.8660 0.0005 0.0028 0.0765
523 0.9839 0.7906 0.0148 0.0046 1.8990 0.0005 0.0025 0.0817
536 0.9846 0.8130 0.0139 0.0043 1.8760 0.0005 0.0023 0.0838
547 0.9851 0.8186 0.0133 0.0040 1.8380 0.0005 0.0020 0.0915
558 0.9857 0.8079 0.0127 0.0037 1.7920 0.0005 0.0017 0.0981
570 0.9861 0.8090 0.0121 0.0035 1.7740 0.0004 0.0015 0.1080
579 0.9865 0.8208 0.0117 0.0035 1.8330 0.0004 0.0012 0.1330
592 0.9869 0.7474 0.0112 0.0033 1.8130 0.0004 0.0007 0.2120
604 0.9874 0.7843 0.0107 0.0031 1.7810 0.0004 0.0004 0.3290
616 0.9878 0.7780 0.0103 0.0027 1.6130 0.0004 0.0004 0.3720
626 0.9882 0.7571 0.0099 0.0028 1.7010 0.0004 0.0003 0.3920
637 0.9885 0.7523 0.0096 0.0026 1.6580 0.0004 0.0003 0.4240
649 0.9888 0.7177 0.0093 0.0024 1.5620 0.0003 0.0003 0.4620
661 0.9890 0.6942 0.0090 0.0023 1.5750 0.0003 0.0002 0.5650
671 0.9893 0.7051 0.0087 0.0022 1.5200 0.0003 0.0002 0.6080
682 0.9895 0.6790 0.0085 0.0021 1.4830 0.0003 0.0002 0.6450
694 0.9897 0.5949 0.0082 0.0020 1.4400 0.0003 0.0001 0.7480

θ0 = 58.82 1/7/01 15:05

480 0.8966 1.3823 0.0728 0.0375 1.9461 0.0015 0.0048 0.0475

550 0.9329 1.3281 0.0454 0.0223 1.8575 0.0012 0.0019 0.0789

664 0.9596 1.1271 0.0254 0.0105 1.5580 0.0009 0.0002 0.4850

θ0 = 33.84 3/18/01 15:59

660 0.949 1.200 0.026 0.011 1.543 0.001 0.0018 0.000
810 0.964 0.909 0.016 0.005 1.121 0.001 0.0002 2.580

θ0 = 29.75 9/25/00 16:15

482 0.8974 1.0253 0.0789 0.0317 1.9690 0.0017 0.0047 0.0047
565 0.9369 0.9779 0.0459 0.0173 1.8429 0.0013 0.0016 0.0016
660 0.9589 0.8625 0.0281 0.0109 1.9014 0.0011 0.0002 0.0002

θ0 = 50.17 2/5/00 15:43

Landsat 7 ETM +

ASTER

IKONOS

AISA
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 Solving equation 2 for water-leaving radiance (Lw) just above the sea surface and 

accounting for the reflected skylight (Lsky) we have: 

t Ltarget = t Lw + Lsky                                    (3) 

thus; 

                                                                   (4) 

 

Water-leaving radiance is then normalized by the incident downwelling irradiance (Ed) to 

yield remote sensing reflectance: 

                                                                                                       
 

The latter is a measure of how much incident downwelling light makes its way back up to 

the sensor from the water surface (Mobley, 1999; Toole et al., 2000).  The reflected 

skylight and downwelling irradiance factors for clear-sky conditions were estimated 

using the Gregg and Carder (1990) RADTRAN model implemented in the Hydrolight 4.1 

code (Table 7).  Considering that the study area is relatively small, homogeneous 

atmospheric conditions within each individual image were assumed.  

 

2.3.6 Bathymetric Correction 

The process of remote sensing coral reef habitat mapping consists in assigning 

bottom reflectances to benthic classes.  As the atmosphere, the water medium interacts 

with the radiant flux and modifies it in such a way that the spectral characteristics of a 

substrate type at various depths can be confused with that of a totally different substrate 

(e.g. shallow seagrass confused with deep sand).  Variations in water-depth tend to 

attenuate habitat spectral contrast, which influences then statistical based image 

classification.  To obtain a depth-independent spectral measurement of the substrate is 

necessary to compensate for the water column effect (Mumby et al., 1998a).   
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Solar radiation entering a water body attenuates in an exponential manner with 

increasing depth (Gordon, 1992).  The severity of the light exponential decay is 

dependant on the absorbing properties of the water medium and measured wavelength.  A 

number of models have been developed that can be used to compensate for the effect due 

to the water column.   Most of them require water optical measurements and pixel-based 

depth information (Gordon and Brown 1974; Philpot, 1989; Mobley et al., 1993; Lee et 

al., 1994; Maritorena et al., 1994; Maritorena, 1996; Lee et al., 1999).  Others account 

for the water column effect using empirical approaches (Lyzenga 1978, 1981).  Two of 

these approaches were chose, the analytical technique presented by Maritorena et al. 

(1994) and the empirical image-based approach by Lyzenga (1981).  These were selected 

to compare their relative benefits on image classification accuracy, considering as well 

data processing timing and data requirements. 

2.3.6.1 Lyzenga’s Model (1978, 1981) 

This approach takes the most of the spectral information without the requirement 

of having ancillary data.  Instead of deriving substrate spectra accounting for the depth 

and water properties, this method transforms spectral values into a ‘depth-invariant index 

of the bottom types’.  If the logarithm of reflectances of a pair of bands is plotted against 

each other the spectral values for a constant bottom type at variable depths should follow 

a straight line (Lyzenga et al., 1978).  Different bottom types should provide different 

parallel lines.  The main limitation of this approach, among others, is that it needs to be 

employed over clear waters (i.e. Jerlov water Type I or II).  However, our study area 

fulfills such requirement.   

A number of pixels representing the same bottom type are selected (i.e. sand).  

Since the study area does not include large areas of the same substratum at different 

depths it was necessary to collect sand pixels outside of it.  Sand pixel regions were 

chosen by ground truth and visual observations.  Lyzenga’s algorithm was applied to the 

atmospherically corrected scenes (i.e. Rrs values).   
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The model assumes that the bottom-reflected radiance is approximately a linear 

function of the bottom reflectance and an exponential function of the water depth 

(Lyzenga, 1981).  The first step is to relate the exponential decay of sand reflectance due 

to increasing depth.  Sand reflectance values are linearised using [6]:  

 

                                             (6) 
 

where ρi is the atmospherically corrected reflectance (Rrs) for band i.  The scatter bi-plot 

of transformed values for bands (X) i and j of a relatively uniform bottom type should 

reveal a linear trend as on Figure 8.   Second, the slope of the correlation between the 

selected pair of bands (ij) provides the attenuation coefficient ratio (ki/kj) with:  

 

                                       (7) 
where 

                                            (8) 
and  

                                      (9) 
 

(i.e. σii and σjj are the variances for i and j measurements respectively, and σij is the 
covariance between i and j).  Having derived ki/kj the final step is to calculate the bottom-
type index (Yij) by:  
                               

 

 (10)
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2.3.6.2 Maritorena’s et al. Model (1994) 

This analytical model seeks to relate above water remote sensing reflectance (Rrs) 

to bottom remote sensing reflectance (RB). The formula involves the effective attenuation 

of the water column, reflectance of optically deep water, and water column thickness.  

First, it assumes that the upwelling irradiance just below the surface can be decoupled 

into the flux backscattered by the water column and the bottom reflectance (RB).  Thus, it 

is necessary to estimate and subtract the influence of the water column flux, accounting 

for its optical properties, to approximate the bottom reflectance.   

If the attenuation of a water column limited by a black bottom and the reflected 

flux immediately above the bottom, where the bottom is a Lambertian reflector, occurs 

with a same vertical diffuse attenuation coefficient, then RB can be approximated by: 

RB = R∞ + (R(0,H) - R∞) exp (2KH)                          (11) 

where, R∞ is the reflectance at null depth for the deep ocean, K is an operational diffuse 

attenuation downwelling irradiance, and H is the depth level.  R(0, H) is the reflectance 

just below the surface of an homogeneous ocean bounded by a reflecting bottom at depth 

H.  For detailed explanation refer to Maritorena et al. (1994).  

 

Figure 8.  Scatter plot of transformed 
sand spectral values at different depth 
showing AISA bands (X) 5 and 6.

y = 0.8448x - 0.5544
R2 = 0.9886

X6

X5
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Figure 9. Mean spectra of reflectances measured over deep water (R∞). 

Figure 10. Kd values as estimated with HYDROLIGHT 

To represent the contribution of the water body, R∞ value was derived by 

selecting a number of deep-water pixels per scene and computing its mean value for each 

of the spectral bands involved (Figure 9).  K was replaced by the diffuse attenuation 

coefficient (Kd) modeled using the Hydrolight 4.1 radiative transfer numerical model 

(Figure 10).  Inputs to the code are shown in Table 8.  Pixel specific depth (H) values 

come from the bathymetric lidar gridded data.   
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Parameters Values 
Inherent Optical Property ABCASE1 
Absorption Pope and Fry’s (1997) 
Phase function Pure Water 
Typical Chlorophyll 0.3 mg m-3 * 
Bb/b 1.2 % * 
Sky Model RADTRAN 
Wind Speed See Table 1 
Bottom Conditions Infinitely deep 
* C. Hu personal communication

Table 8.  Input parameters for HYDROLIGHT water properties 
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2.4 Classification Scheme 

Even though the study area remains quite the same along the suite of studied 

scenes, it is very likely that class spectral definition differ according to the spatial 

characteristics of the capturing sensor (e.g. percent coral cover).  Most of the reef 

inhabitants have a spatial extent that is usually smaller than the image pixel size.  It 

means that the spectral value of a pixel carries reflectances of multiple individuals and 

not just a single unit in the ground.  Further, optical remote sensors also capture coral reef 

structural configuration in two-dimensions.  This effect also contributes to the mixture of 

measured spectral reflectances at pixel level.   

  The hierarchical classification scheme for Caribbean coral reefs suggested by 

Mumby and Harborne (1999) was adapted here to allow consistency and comparison 

between classification results.  Regardless the differences between sensors spatial 

resolution, class definition is based on major benthic habitat constituents and remain 

quite unchanged throughout the suite of scenes.  Therefore, very specific classes only 

detectable at 1.5 or 4 meters resolution (i.e. AISA and Ikonos scale) are omitted to allow 

a meaningful multi-sensor classification scheme (Capolsini et al., 2003).  The 

quantitative assessments of biotic percent cover and reef community characterization 

were tabulated based on biological and geomorphological descriptors obtained from the 

field data sheets. 

2.4.1 Geomorphological Structure 

Three of the seven geomorphological categories presented in Mumby and 

Harborne (1999) can be identified within the studied patch reef system.  These categories 

are patch reef, lagoon floor, and reef escarpment.  The latter is mainly used to account for 

the topographic effect at the patch reef side slopes.     
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2.4.2 Benthic Class Definition 

A matrix of Bray-Curtis index of similarity was constructed using a square root 

transformation, based on in-situ data (Bray and Curtis, 1957).  Quantitative descriptors 

were not transformed to maintain the influence of in-situ habitat cover percentage 

throughout the analysis.  The field database was first organized per field stations (rows) 

and variables (columns), and then imported into the PRIMER 5.1 software.  The Bray-

Curtis index (Sjk) is a measure of the distance (similarity) between every pair of sites (jk).  

A similarity value of 0% means that there is no similarity among a pair of sites, while 

100% suggest that the sites are identical.  Bray-Curtis ordination was selected given that 

it has being widely adopted for multivariate analysis in ecology including coral reefs 

environments.  It is also considerate an objective way to statistically categorize complex 

assemblages of marine communities, as those found in the Caribbean.  It is defined as: 

                                   (15)  

where Xij and Xik are the abundances of the ith “variable” in the  jth and  kth  samples 

respectively, and p is the overall number of “species”. 

 To discriminate or distinguish similar benthic classes within the dataset a 

hierarchical cluster analysis was performed using the average linkage method.  This 

method sorts, hierarchically, the matrix similarity measures into homogeneous groups.  

Those can then be presented as a tree plot, or dendogram, for further interpretation.   

 The categorization of habitats typology was established using the Similarity 

Percentage (SIMPER) analysis (Clarke and Warwick, 1994).  SIMPER provides a 

measure of the average contribution of each “variable” to the established 

similarity/dissimilarity.  This was applied within assigned clusters to describe habitat 

type, and among pairs of clusters to define complexity levels within the dataset.  For the 

latter, the average dissimilarity of every pair of cluster combination was examined.  The 

pair with the lower dissimilarity (i.e. higher similarity) was merged into a single cluster 
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following the typology hierarchy.  SIMPER was computed to successively merge the 

clusters until four basic classes were derived (i.e. coral, seagrass, sand, algae).  The 

SIMPER analysis was also carried out using the PRIMER software.   

2.5 Image Classification 

Image classification consists in assigning image pixels to thematic classes based 

on their spectral properties.  This process can be achieved with a variety of methods.  The 

supervised classification approach was embraced here to predict the output benthic 

habitat classes given collected ground truth data.  Supervised classification implies that 

some a priori knowledge of the area of interest allows creating spectral signatures that 

are used to train the algorithm.  Here, the conventional maximum likelihood (ML) 

classifier was applied.  The ML decision rule is considered to be robust given that its 

estimation depends on the covariance between spectral bands for each of the classes.  

This algorithm has also been widely used by reef remote sensing scientists in similar 

studies. 

2.5.1 Data Training 

Training pixels were defined based on visual image interpretation, with the 

guidance of field descriptions and videography collected in-situ.  Pixels of well known 

ground areas were selected as training sites.  The spectral signature separability of those 

was compared with the spectral signatures of correspondent in-situ data for quality 

control.   The benthic class typology was assigned following the classification scheme as 

defined in section 2.4.  Same training areas were identified for AISA and Ikonos.     

To visually gather training pixels for the lower spatial resolution images ASTER 

and ETM+ was more challenging because of the increased spectral mixing.  To aid with 

the definition of training pixels for the coarser resolution images, it was necessary to 

interactively evaluate the spectral signature and geographic location of individual pixels 

(sites) over the higher resolution Ikonos image.  
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It is desirable that habitat signatures derived from training samples are 

representative of the class in question and dissimilar to other classes.  Therefore, pixels 

that presented abnormal signatures were carefully examined (e.g. dark for sand, bright for 

dense seagrass).  The ML algorithm assumes normality within the training data, and such 

parametric rule should be approximated by having an appropriate sample size and by 

checking for deviated spectral values within the samples.  The inter and intra classes 

spectral distances based on the spectral separability report derived from Jeffries-Matusita 

and Transformed Divergence (ENVI®) separability measures (Richards, 1999) was 

examined.  Once the statistical characterization was approximated the image 

classification approach followed using the ML decision rule with equal probabilities of 

the classes.  Same training signatures were applied to classify the L, Rrs, RB, and Yij 

images per sensor (i.e. radiance, remote sensing reflectance, bottom remote sensing 

reflectance, and invariant bottom index, respectively).   

2.5.2 Control Data 

The same study area was considered to test the classification accuracy of the 

different sensors (Figure 11).  Given the different number of pixels constituting each 

sensor image, the number of control sites per image was not the same (Stehman, 1997; 

Capolsini et al., 2003).   The ground truth data was used to specifically test the accuracy 

of AISA classification results for L, Rrs, RB, and Yij images. 

Error! 

 

 

 

 

 
Figure 11.  Images of the study area represented using an RGB color composite.  a) AISA with 
bands 14, 8, and 2; b) Ikonos with bands 3, 2, and 1; c) ASTER using band 2, 1, and 1; d) ETM+ 
with bands 3, 2, and 1.  

cb a d 
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The number of control points or ground truth sites was adequate to test the overall 

classification accuracy of AISA and Ikonos.  However, because of the coarser resolution 

of ASTER and ETM+, it was necessary to discard a number of control sites (i.e. 12 and 

25 for ASTER and ETM+ respectively).  The reduced set was too limited to represent or 

assess the accuracy of some benthic classes for the latter images.  To deal with such 

situation, AISA was considered a ground-truth image from which control pixels were 

generated.   For consistency, same strategy was applied to generate a number of control 

points proportional to the number of pixels in every spaceborne image evaluated.  The 

selection of control pixels, with AISA as master, was achieved by the following steps:      

1. Resample the classified AISA image, after assessing its classification accuracy 

(see section 2.5.3), to the different spatial resolutions of the spaceborne images 

(i.e. 4, 15, and 30 meters).   

2. Generate a stratified random sample over the corresponding AISA classification 

map proportional to the size of each thematic class.     

3. Derived control pixels are exhaustively tested over the actual AISA image and 

resulting thematic maps to better approximate ground truth.    

4. Reconcile control pixels to the correspondent spaceborne image and proceed with 

the accuracy assessment.   

2.5.3 Accuracy Assessment 

The percentage agreement of classified habitat maps was assessed using the 

overall, user, and producer accuracies computed from the derived confusion matrices.  

The overall accuracy (Po) is the proportion of the correctly classified and total number of 

control points.  User’s accuracy (Pu) is the ratio of correctly classified control point and 

total number of control points per row, the lower the user’s accuracy the more error of 

commission.  While producer’s accuracy (Pp) is found by dividing the correctly classified 

control point by the total number of control points per column, the lower the producer’s 

accuracy the more error of omission.  The two latter measures show the classification 

accuracy of individual classes (Congalton, 1991).   
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We also evaluate the Tau coefficient of accuracy (T) as a complementary measure 

to Po.  This coefficient, unlike to the overall accuracy, also accounts for the omission and 

commission errors (i.e. off-diagonal values) in the confusion matrix.  It measures the 

improvement of a classification over a random assignment of pixels (T=0) (Ma and 

Redmond, 1995).   It is calculated from:     

 

                                                   (16) 

where 

                                          (17) 

 
(i.e. N = the total number of control sites, M = number of classes, i = is the ith classes,  ni 

= row total of class i, xi = diagonal value for class i).  Assuming a distribution close to 

normality, then a Z-test can be performed to check over the differences of two Tau 

coefficients (Ma and Redmond, 1995).  The Z-test between Tau coefficients is:  

 
                                    

 (18) 

where the variance of Tau is 

                                           (19) 

 
and T1 and T2 are the coefficient of two independent confusion matrices.  A Z-test greater 

than zero at the 95 percent significance level (Z ± 1.96) would agree with the null 

hypothesis H0 (T1 = T2), otherwise it would favor the alternative hypothesis H1 (T1 ≠ T2) 

(Ma and Redmond, 1995). 
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Chapter 3 

3.  Results 

 

3.1 Performance of image correction methods 

3.1.1 Atmospheric Modeling 

 Image classification results for images with radiance and Rrs values were 

compared to account for any major changes.  Classification results were significantly 

similar.  From here on then Rrs images are considered the base images for comparison.   

Image classification results of Ikonos (Rrs) before and after glint correction were 

also compared.  Results consistently show an increased overall accuracy ranging from 2 

up to 7% on the image maps derived from the glint corrected values.  The glint corrected 

Ikonos image (Rrs) is the one used for further image processing and accuracy assessment 

comparisons.  

3.1.2 Bathymetric Correction 

Visually, bathymetric correction was effective by enhancing the contrast between 

the lagoon floor habitats.  In the case of the RB images, deep sand pockets, seagrass and 

reef patches showed a spectral signal more alike to those on shallower waters.  Spatial 

details, like changes in lagoon floor seagrass densities, also become clearer.  Both 

algorithms produced considerable enhancements when inspecting the resulting images.  

That is especially the case for AISA and Ikonos as seen in Figure 12.  ASTER, also 

presents a remarkable enhancement of the bottom floor on the RB image but not the Yij 

one.  The benefits of water column correction are not very obvious for ETM+ (Figure 

13). 

  

  



 33

Six depth invariant bands were created for AISA, and three for Ikonos and 

Landsat respectively.  ASTER, with only two water penetrating spectral bands, produced 

a single depth invariant index band.  Thus, multispectral classification could not be 

performed on this single band since the classification algorithm adopted (i.e. maximum 

likelihood) requires two or more image bands to produce the statistics necessary for 

spectral habitat separation.  This limited the possibility of assessing the benefits of the 

empirical Lyzenga’s model over ASTER.    

 

 

Figure 12. Visualization of AISA (top) and Ikonos (below) images before and after water 
column correction.  Images are represented using the single band 5, and band ratio b6/b9 for 
AISA, and band 2 and band ratio b1/b2 for Ikonos.   

AISA 

Ikonos 

              Rrs              RB         Yij 
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3.2 Determination of Habitats Classification Scheme 

Cluster analysis was used to group field data into habitat classes based on the 

Bray-Curtis similarity matrix (Figure 14).  The hierarchical classification suggested 10 

classes at a fine descriptive resolution (Figure 15), while higher up in the hierarchy four 

basic coarse classes (i.e. coral, algae, seagrass, sand) can be defined.  Each complexity 

level was derived starting at the fine level of class definition.  Then, a SIMPER analysis 

was employed to determine the contribution of the linked sites to the hierarchy and for 

label assignment (i.e. accounting for the more dominant benthos per class).   

 

 

Figure 13. Visualization of ASTER (top) and ETM+ (below) before and after water column 
correction.  Images are represented using band 1, and band ratio b1/b2 for ASTER and ETM+ 
respectively.   

ASTER 

ETM+ 

              Rrs              RB         Yij 
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Class definition similarity values at the fine descriptive level ranged from 60 to 99 

percent.  These numbers represent the degree of uniformity among the factors defining 

each benthic class.  The coral classes obtained the lower values (i.e. 60 to 67 percent), 

and indeed those are the classes with the more heterogeneous substrate type.  Classes 

dominated with seagrass, algae, and sand reached the higher values (i.e. 72 to 99 percent) 

suggesting more synonymous classes.  Habitat typologies at a coarse level (i.e. coral, 

seagrass, algae, sand) are achieved at a threshold of about 55 percent similarity.  Sand 

and algae are well differentiated at the level of 52 percent.  However, it is important to 

note that only four field sites (i.e. two each) are use to describe these classes.  The major 

discriminative contributors for the class coral include gorgonians, algae, and coral rubble. 

Gorgonians are the most prominent of all with a 30 to 46 percent contribution to the 

dense live covered substrate class.  Scattered stony corals only contributed a 4 to 11% to   

Figure 14. Cluster diagram, or dendogram, showing the similarity of habitat communities among 
sampled sites.  Colors represent class definition grouping at the fine complexity level.  Refer to Table 9 
for the description of habitat classes.  
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Table 9. Interpretation of benthic communities at coarse and fine complexity levels as derived from the 
Bray-Curtis analysis.  Labeling letters corresponds to the color coding indicated in Figure 14.  Habitat 
percentage cover and geomorphological attributes were incorporated in the classification scheme 
following habitat definition as presented by Mumby and Harborne (1999).   

Coarse Complexity Fine Complexity 

Habitat Label Habitat Label 
Characteristics 

A Dense live covered 
substrate 

More than 50 percent is life-covered substrate.  
Including hard coral, gorgonians, benthic algae, 
sponges and seagrass.  Mainly over patch reefs. 

B Dense live covered 
reef edge 

Similar to class A, mainly with more abundant 
gorgonians, dead coral and coral rubble.  Sitting 
at the patch edge or escarpment, with a slope 
averaging 25 degrees. 

Coral Classes 
(>1% hard coral cover) 

C Sparse live covered 
substrate 

Less than 50 percent is life-covered substrate. 
Predominantly bare substratum (pavement, 
dead coral, coral rubble, sand pockets).  Over 
patch reefs.  

D Dense seagrass More than 70 percent total cover.  Individual or 
mixed beds of Thalassia and Syringodium with 
scattered occurrence of calcareous green algae.  
On the lagoon floor. 

E Medium density 
seagrass on sandy 
bottom 

Cover 30 to 70 percent.  Individual or mixed 
Thalassia and Syringodium, over clean 
carbonate sand.  On the lagoon floor as patch 
reef halo. 

F Sparse seagrass Less than 30 percent cover.  Usually Thalassia 
over carbonated sand with some occurrence of 
calcareous green algae.  On the lagoon floor in 
a matrix of clean carbonate sand.  

G Medium density 
seagrass on sandy 
bottom with algae 
and coral rubble 

Cover 30 to 70 percent, mainly Thalassia with 
very sparse patches of sponges, gorgonians, 
algae, and coral rubble.   On the lagoon floor. 

Seagrass Dominated 
(>10% seagrass cover) 

H Seagrass with distinct 
coral patches 

Seagrass visibly dominant, with sparse 
occurrence of gorgonians, algae, sponges, coral 
rubble or small stony corals.   

Algal dominated 
(>50% algal cover) 

I Algal dominated 10 to 50 percent cover of brown and calcareous 
algae.  On the deep lagoon floor over a matrix 
of mixed carbonate sand and mud.   

Bare substratum 
 

J Sand  Carbonate sand/mud with occurrence of sparse 
green algae and/or seagrass. 
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Figure 15.  Illustrations representing the different habitat categories used in the classification scheme 
at a fine complexity resolution.  Benthic and geomorphological components (i.e. patch reef, reef edge, 
and lagoon floor) are embedded within the classification descriptors.   Refer to Table 9 for class 
description. 
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the same class.  For the seagrass class, seagrass was the major contributor except for the 

sparse seagrass class where a sandy background is usually dominant.  Five seagrass 

classes were derived from the hierarchical classification.  Those are mainly differentiated 

by a quantified estimate of percent cover.  Habitat classes at a fine complexity level were 

merged into more generalized habitats as in Figure 16.   

3.3 Image Classification Analysis 

 A total number of 105 habitat maps with correspondent confusion matrices were 

generated for analysis.  That is, seven images for each of the four sensors accounting for 

the seven levels of habitat complexities, multiplied by the four different image-processing 

stages, including L.  An exception to that is ASTER, which was not processed to Yij.   

3.3.1 Comparison between Sensors 

 Overall, AISA was consistently more accurate than the other satellite sensors 

(Figure 17a).  The accuracy achieved by AISA remained significantly high throughout 

the analysis (> 85%) for every habitat complexity levels.  From the intermediate 

complexity level of 7 classes to the coarser level of 4 classes AISA Po did not change 

significantly, showing values ranging from 94 to 97%.  The image classification accuracy 

of AISA was contrasted to those of other satellite sensors by differences in pairs of Tau 

coefficients (z-test) (Table 10).  At a 95% significance level, z-test reveals significant 
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Figure 16.  Diagram showing pair of classes consecutively merged at 
individual SIMPER analysis runs.   
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differences between the digital airborne high spectral image (AISA) and the broader 

spatial and spectral spaceborne images.  Ikonos is the only satellite sensor that shows 

some correspondence to AISA.  However, such correspondence is only reached at the 

coarse complexity levels of 5 and 4 habitats.  Figure 18 shows the classification maps at 

the different habitat complexity levels as derived from the AISA image. 

 Ikonos overall accuracy results show a clear trend of higher accuracy for lower 

habitat complexities (Figure 17b).  Overall accuracies ranged between 55% at 10 habitat 

classes to 85% at 4 habitats regardless of the image processing method.  Z-tests among 

pairs of Tau coefficients do not suggest a correspondence between this high spatial 

resolution sensor to the coarse spatial resolution ASTER and ETM+ (Table 10).   After 

bathymetric correction (RB), however, all sensors showed correspondence with Ikonos for 

the habitat classification schemes containing only 5 and 4 classes.  There is a marked 

significant difference between all sensors after Yij water column correction.  

 ASTER presents a similar but weaker trend of increasing accuracy with 

decreasing habitat complexity (Figure 17c).  However, such trend is considerably more 

apparent for the image processed to RB compared to the lower stage of image processing 

Rrs.  ASTER proved to be significantly different to AISA and Ikonos, but similar to 

ETM+ at every level of habitat complexity (0.04 < Z < 1.86) (Table 10).  For Rrs, overall 

accuracy shows a slight increase between 10 and 4 habitat classes, with values ranging 

from as low as 36.75% to a moderate 54.78% respectively.  In contrast, RB produced 

overall accuracy values going from 51.20% to 82.17% for the same habitat complexities.  

The Tau coefficient, however, remained relatively low for both image-processing cases 

(< 52%).  
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As ASTER, ETM+ reproduced an increasing but quite ambiguous trend of overall 

accuracy improvement towards the coarse habitat schemes for image processed to Rrs.  

Overall accuracies go from 47.33% for 9 classes to 63.33% for 4 habitat classes, with a 

drop in accuracy between intermediate habitat schemes.  A similar situation is apparent 

for the Yij image maps.  However, the latter did to not increase the classification accuracy 

over the more basic processing level Rrs.  In general, higher accuracy values for ETM+ 

are obtained with RB (49.33% to 68.67% for 9 and 4 habitat classes respectively) relative 

to the other image processing methods.  Based on the z-test, ETM+ only presented some 

correspondence with ASTER.   

Z-test values for Yij (Table 10c) present a marked significant difference among all 

the sensors.  This was expected since the Yij method produce a unitless bottom-index that 

lack spectral information, and resulting indexed band values are not spectrally related. 

Table 10.  Z-test results comparing the significant difference between Tau coefficients for the 
four sensor images processed to (a) Rrs, (b) RB, and (c) Yij at seven habitat complexities. Values 
in bold denote a significant difference between pair of sensors.     

(a) 

(b) 

No. Classes AISA:Ikonos AISA: ASTER AISA:ETM+ Ikonos:ASTER Ikonos:ETM+ ASTER:ETM+
10 4.58 6.28 - 2.48 - -
9 3.93 5.63 5.74 1.89 2.07 0.22
8 2.63 5.19 4.76 2.25 1.81 0.59
7 2.98 5.17 5.17 3.11 3.11 0.03
6 3.19 5.61 5.88 3.44 3.90 0.47
5 1.64 4.20 4.47 3.15 3.53 0.33
4 1.65 4.19 3.30 3.04 1.92 1.24

No. Classes AISA:Ikonos AISA: ASTER AISA:ETM+ Ikonos:ASTER Ikonos:ETM+ ASTER:ETM+
10 3.71 5.03 - 1.83 - -
9 2.47 4.02 5.41 2.03 3.24 1.13
8 2.92 3.77 5.18 1.25 2.34 0.94
7 2.44 4.13 5.50 2.30 3.31 0.89
6 2.84 4.38 5.86 2.15 3.15 0.78
5 1.71 2.52 4.39 1.11 1.79 0.37
4 1.73 2.66 3.87 1.13 1.70 0.34

No. Classes AISA:Ikonos AISA:ETM+ Ikonos:ETM+
10 3.48 - -
9 2.30 5.40 4.09
8 2.95 5.16 3.06
7 2.95 5.57 3.83
6 3.34 5.87 3.81
5 2.14 4.54 3.02
4 1.97 3.87 2.34(c) 
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Figure 17.  Comparison of overall accuracy and Tau coefficients for the classification of four sensor images at seven levels of habitat complexities (Error 
bars are the upper 95% confidence intervals of Tau coefficient).  The three different values denote the influence of different stages of image processing. 
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Figure 18. AISA based image maps derived from a supervised classification of remote sensing bottom albedo values.  Each map represents 
a different habitat complexity.  From top-left: the coarser complexity (4 classes) going towards the finer complexity (10 classes) at the 
bottom-right.  Color coding represents habitat classes as described on table 9. 
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3.3.2 Comparison between Methods 

 Same training and control pixels were employed for the supervised classification 

of individual image data that undergoes three different levels of image processing.   

 After confirming a significant agreement in the overall accuracy of total radiance 

and Rrs images, the latter became the basis for comparison.  In all the cases Rrs returned 

lower overall accuracies when compared to RB.  Comparison between Rrs and Yij, 

however, do not always show such a clear pattern. 

Sucessfully employed in previous studies (Armstrong, 1993; Mumby et al., 1998), 

here the empirical Yij method yielded variable results among the different sensors.  For 

AISA Yij performed relatively well, only differing to the already high Rrs Po values by ± 

3%.  For the complexity levels of 7, 6, and 5 this processing method even returned higher 

accuracies than those attained by RB.  Ikonos results at habitat complexity levels 9 and 10 

showed a more obvious tendency to improved accuracy by Yij.  However, at coarser 

habitat complexities the Po of Yij balances up with Rrs values, suggesting no improvement.  

It is inmediatelly apparent that this empirical method performed poorly for ETM+.  For 

the latter, Yij consistently presented lower accuracies than those attained by Rrs. 

RB image processing stage introduced a relatively slight improvement to AISA’s 

overall accuracy when compared to Rrs.  Again, for AISA, all the three image processing 

methods returned significantly high accuraccies.  Thematic maps derived from RB using 

the very detailed bathymetric DEM returned superior overall accuracies for all the 

satellite sensors.   ASTER is the one that shows the higher proportion of benefits from the 

RB method in comparison to the other sensors.  The overall accuracy gained by this 

sensor at 5 habitat classes reached an improvement of 32% over the Rrs.  From the z-test 

values (Table 11), it appears that despite the different responses, the three methods are 

not necessarily significantly different between each other for all of the sensors. 
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3.3.3 Discrimination of Habitat Classes  

Although the study area is relatively small and some of the classes are also 

spatially small, the accuracies (user and producer) of individual habitat classes cannot be 

rigorously discussed considering the reduced number of reference points describing 

benthic classes (Cogalton, 1991).  However, it is possible to depict some general trends 

from the omission and commission errors as derived from the resulting error matrices 

Table 11.  Z-test results comparing the significant difference between the 
classification of (a) AISA, (b) Ikonos, (c) ASTER, and (d) ETM+ images processed 
with three different methods at seven habitat complexities. Values in bold denote a 
significant difference between pair of methods. 

(c) 

(a) 

(b) 

(d) 

No. Classes Rrs:RB Rrs:Yij RB:Yij
10 0.15 0.07 0.22
9 0.18 0.18 0.00
8 0.01 0.00 0.01
7 0.08 0.16 0.08
6 0.16 0.16 0.00
5 0.26 0.37 0.10
4 0.34 0.34 0.00

No. Classes Rrs:RB Rrs:Yij RB:Yij
10 1.27 1.31 0.04
9 1.24 1.46 0.21
8 0.09 0.05 0.05
7 0.79 0.25 0.54
6 0.64 0.05 0.61
5 0.16 0.15 0.30
4 0.17 0.00 0.17

No. Classes Rrs:RB Rrs:Yij RB:Yij
10 1.54 - -
9 0.85 - -
8 1.56 - -
7 1.30 - -
6 1.42 - -
5 1.33 - -
4 1.34 - -

No. Classes Rrs:RB Rrs:Yij RB:Yij
10 - - -
9 0.13 0.61 0.85
8 0.05 0.56 0.58
7 0.42 0.44 0.83
6 1.05 0.27 0.82
5 1.59 0.50 1.24
4 0.14 0.39 0.51
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(Table 12 and 13).  For AISA, most of the habitat classes were relatively well resolved at 

every complexity and image processing level.  The satellite sensors, however, showed a 

contrasted response with significant confusion discriminating most of the individual 

classes.  In general, the dense seagrass class seems to be the one that was relatively better 

resolved.   Most of the classes’ poor discrimination or confusion relates to the degree of 

spatial patchiness and variability of each benthic habitat class per image spatial 

resolution. (Figure 19).  

a b 

c d 

Figure 19. Image derived thematic maps for nine habitat classes visually showing the 
relative difficulties for the spaceborne sensors to discriminate spatially small and patchy 
features.   Illustration shows AISA, Ikonos, ASTER, and ETM+ RB images (a, b, c, and 
d respectively). 
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Chapter 4 

4. Discussion 
 

 

4.1 Spectral, Spatial, and Descriptive Resolutions 

The configuration of the high spectral and spatial resolution AISA sensor 

rendered significantly better results compared to the other satellite sensors.  Overall 

accuracy of AISA delivered values as high as 84% for fine complexity habitat mapping, 

reaching a higher Po of 95% at a coarse habitat complexity level.  The relative high 

accuracy attained by AISA was maintained along the analysis for the different habitat 

complexities considered here.  These results compared favorably with those reported by 

Mumby et al. (1998b) for a similar airborne hyperspectral imagine system (CASI).  They 

obtained Po values ranging between 70 and 90% for fine to coarse habitat schemes for a 

fringing reef environment in the Caribbean.  These results confirm the higher potentiality 

of an effective combination of high spectral and spatial resolution in the degree of 

accuracy gained for coral reef habitat mapping relative to that offered by satellite sensors.  

However, there are several aspects such as cost, availability, geographic coverage, and 

historic temporal resolution, which lead the reef scientific community to keep exploring 

the potentialities of available spaceborne images for marine studies.  

Significantly varying in both spatial and spectral resolution, the satellite sensors 

rendered considerable discrepancies for benthic habitat classification relative to AISA.  

Several trends in map accuracy have suggested that, given the low spectral contrast 

between reef habitats delivered by spaceborne sensors (Hochberg and Atkinson, 2003a), 

the more significant aspect to consider for better accuracy relies then on the sensor’s 

spatial resolution (Capolsini et al., 2003, Mumby and Edwards, 2002).  The results of this 

study support such premise following a similar trend of higher classification accuracy 

(e.g. about 10%) gained by the higher spatial resolution Ikonos over ETM+.  This two 

sensors share very similar spectral resolution but differ considerably in spatial resolution 

(e.g. 4m and 30m).  Results for ASTER classification accuracy however, did not showed 

advantage over ETM+ even when the former has a higher spatial resolution (e.g. 15m and 
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30m).  Actually, in most cases, ASTER performed poorly relative to ETM+.  These 

results go in agreement with those presented by Capolsini et al. (2003).  The more likely 

explanation to this resides on the less suited spectral attributes of ASTER, having only 

two water penetrating bands, for coral reef mapping.  Mumby et al. (1998b) compared 

classification accuracies of high-spatial but low-spectral resolution aerial photography to 

those of CASI (e.g. high-spectral and high-spatial resolution), and results favored the 

latter over aerial photography.  Although, the compared case study areas and mapping 

approach for CASI and aerial photography were not totally comparable, the 

aforementioned suggests that spatial and spectral resolution should complement each 

other, given that sacrificing one of them implies reducing effectiveness to the other.  By 

all means then Ikonos is favored over ASTER and ETM+ satellite sensors, spatially and 

spectrally, by proving higher accuracy for reef habitat mapping (Figure 17).  ASTER and 

ETM+ were not effective for fine level habitat mapping (Po < 50%) over the patchy coral 

reef case study area.     

Results for the four sensors considered here (i.e. AISA, Ikonos, ASTER, ETM+ 

ETM+), and others evaluated in previous studies (i.e. CASI, MASTER, Landsat TM, 

Landsat MSS, SPOT XS, and SPOT Pan) (Andréfouët et al., 2003c; Capolsini et al., 

2003; Mumby and Edwards, 2002; Mumby et al., 1998b), shows clearly that the number 

of mapped thematic classes is in linear relation to the accuracies gained in the 

classification.  Such statement is also readably confirmed in this study, with some 

exceptions that are discussed in section 4.3.    

 

4.2 Image Processing and Classification Accuracy 

Overall, AISA did not showed significant difference in Po considering the three 

different levels of image processing and each level of habitat complexities.  A slight 

improvement (~3%) in AISA classification accuracy is depicted by means of bathymetric 

correction.  However, there is no clear trend in which of the applied methods (RB, Yij) 

performed better.  Contrasted results to these were obtained in Mumby et al. (1998a) 
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where an airborne multispectral CASI image obtained a 13% improvement in Po after 

applying the empirical Lyzenga’s model at a fine descriptive resolution.  The more likely 

reason for such difference is that our study site comprises depths less than 12m, while 

depths in Turk and Caicos study reached a maximum of 20m.  Turk and Caicos study 

also reported no significant improvement in Po for CASI after water-column correction 

(Yij) for habitat mapping at coarse descriptive resolution.  AISA proved its potential 

regardless further image processing. 

Ikonos Po only improved by 5% after RB correction.  It did not improved 

significantly however after Yij correction.  Of all four sensor evaluated here, ASTER is 

the one showing a remarkable recovery in Po with the addition of detailed lidar 

bathymetric data for water-column correction (RB).  RB image processing rendered 

accuracies almost 30% higher than the ones obtained from Rrs alone.  After such 

correction, the enhanced spatial resolution of ASTER revealed its superiority over the 

30m ETM+ by producing values about 10% higher than those for ETM+.  Further, at 

habitat complexities of 4 and 5 classes ASTER even reached Po values more similar to 

Ikonos, although its Tau coefficient remained quite low (T = 51%) and comparable to 

those of ETM+.  This study is first presenting the RB method with detailed lidar 

bathymetric data for coral reef mapping.  Thus, further inter-site comparison is not 

possible at this point.     

The results of this study showed relative improvement from bathymetric 

correction for all the images.  Among the image processing methods considered, RB 

demonstrated to be the one that performed better increasing mapping accuracy.  The Yij 

method does not present significant improvement for AISA or Ikonos and performed 

poorly over ETM+.  Part of the Yij low performance can be explained by the difficulties 

finding a unique substrate type well represented at different depths in the studied scenes, 

situation that is certainly accentuated with coarser spatial resolutions.  A recent study 

(Purkis and Pasterkamp, 2004) presents remarkable benefits from water depth corrections 

to in-situ above-water spectra used as a basis for the classification of a Landsat TM 

image.  Although different image classification protocols, the water column corrections 
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methods adopted in their study (Bierwirth et al., 1993) compares to this study RB 

approach.  They favored the method and recommend coupling bathymetric data to in-situ 

optical measurements to correct for the effect of the water-column and improve 

classification accuracy of Landsat imagery. 

It is not clearly depicted here that the benefits gained by water column correction 

are more apparent at finer habitat complexities as suggested by Mumby et al. (1998a).  

Only the Ikonos images RB and Yij showed a weak trend suggesting so, relative to Rrs.  

However, ASTER and ETM+ gained the more benefits from water column correction 

(RB) compared to AISA or Ikonos. 

 

4.3 The Reef Environment and Classification Scheme 

The studied area encompasses a number of individual small reef patches scattered 

over a shallow lagoon basin covered by seagrass with perceptible spatial changes in 

densities.  Seagrass spatial changes are not expected to change significantly within the 

scenes timeframe. Once again, AISA proved to be capable of mapping most of the 

narrow geomorphological features and differences in seagrass densities present in this 

patch reef lagoonal system (Figure 18).  On the other hand, the class dense life covered 

reef edge immediately appeared not suited for any of the satellite sensors.  It is actually 

possible to visually recognize the existence of such class at Ikonos and ASTER 

resolutions.  However, given the spectral challenges introduced by the topographic slope, 

neither Ikonos nor ASTER were efficient to spectrally discriminate it from the 

surrounding seagrass beds.  For ETM+, this spatially narrow class was quickly discarded 

because of resolution constrains.     

 Thematic maps derived from ASTER and ETM+ showed a tight range difference 

in overall accuracy and Tau coefficients (± 5%) between habitat complexity levels 9 thru 

6, and within the different stages of image processing.  The fairly constant low Po could 

be interpreted as a limitation of those broadband sensors to spectrally discriminate 
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between seagrass with variations in density.  By considering the landscape, it is also 

reasonable suggesting that the baseline map accuracy is modulated by the seagrass spatial 

patchiness relative to the capturing spatial resolutions (15 – 30m).  Both points are valid.  

Then, it may seem pointless to keep paying attention to results showing such a poor 

performance (Po < 56%).  These observations, however, helped putting this sensor-to-

sensor analysis in better perspective.  For instance, these results suggested that habitat 

complexities with 5 and 4 classes are the more appropriate schemes to allow a 

meaningful comparison between the investigated sensors (Capolsini et al., 2003).  It is 

also depicted that the classification accuracies are not only controlled by the spectral and 

spatial resolutions but also by the internal configuration of the reef system.  In which 

case, ASTER and ETM+ showed the poorer performance over the studied patch reef 

system. 

 After reaching the habitat scheme that overcomes the difficulties imposed by the 

reef system internal structures and that allowed a more meaningful comparison between 

sensors, AISA is still the more accurate sensor for this case study.  Ikonos follows, with 

accuracies closely related to the ones achieved by ASTER when the latter undergoes 

bathymetric correction.  Without bathymetric correction, ASTER performed poorer than 

ETM+.    
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  Chapter 5 

5. Conclusions 

 

In general, remotely sensed data have proved to be useful for baseline reef habitat 

mapping.  However, with recent trends of marine habitat degradation, it has become 

imperative to resolve the environment with a higher level of accuracy and detail.  We 

compared a series of modern airborne and satellite sensors together with three different 

levels of image processing methods to help unveiling their relative capabilities and 

benefits for coral reef habitat mapping. 

In this study several trends were noticed: 

1. AISA data was highlighted to be significantly more accurate than the 

studied satellite sensors, by producing more accurate benthic habitat 

thematic maps including finer definition of geomorphological features. 

2. Despite the spectral similarities with ETM+, Ikonos showed to be superior 

to it and to ASTER at every habitat complexity level.  This demonstrates the 

benefits of the higher spatial resolution.   

3. Over all the sensors, Ikonos is the one that exhibited more clearly a linear 

trend of improved accuracy with a decreased level of habitat complexity.  At 

the coarser levels of habitats definition, 5 and 4 classes, Ikonos achieved Po 

values greater than 80%.  While at finer levels (>6 classes), it only reached 

moderate overall accuracies (Po < 70%).   

4. AISA did not show major improvements in classification accuracy after 

bathymetric correction.  It actually rendered high Po over the studied coral 

reef environment without further image correction methods (85% > Rrs < 

95%). 
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5.  The Yij approach over Ikonos returned comparable results to those reached 

by the more basic Rrs image processing stage.  Further, the RB analytical 

model proved to be beneficial over the Rrs by improving the classification 

accuracy of Ikonos (>5%).  Such small improvement, however, may not 

justify the use of costly high resolution lidar data for image bathymetric 

correction and shallow water coral reef habitat mapping.  Other empirical or 

analytical methods to derive depth (H) for such purposes should be 

evaluated. 

6. Bathymetric correction with RB rendered significant improvements over 

ASTER (>30%).  The improvement is such that overall classification 

accuracies compared to those for Ikonos at coarse levels of habitat 

complexities.  ASTER proved to only be moderately appropriate for benthic 

habitat mapping over the studied patchy coral reef environment at a coarse 

habitat complexity level (4 and 5 classes) and after further image processing 

(RB > 80%). 

7. Bathymetric correction using RB was more beneficial for the broadband 

lower spatial resolution sensors (ASTER and ETM+) compared to the 

relative low gain in accuracy for AISA and Ikonos. 

8. Overall, RB performed better than Yij for all the sensors considered here. 

9. The internal structure of the reef system controlled the proportion of classes 

comparable in this multi-sensor approach.  Results showed that a 

meaningful scheme amenable for sensor-to-sensor comparison is only 

reached at a coarse habitat complexity level (5 and 4 classes).  Here, the 

different densities of the “background” class seagrass modulated the 

classification results between habitat schemes with 10 to 6 classes.  AISA 

and, in a smaller extent, Ikonos showed to be the sensors less influenced by 

the patchiness of the case study reef system.  ETM+ only produced 
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moderate classification accuracies at the more basic level of habitat 

complexity (4 classes). 

These findings support several trends that have being observed in previous studies 

(Turk and Caicos, Tahiti).  However, this is the first multi-sensor comparison study that 

has been performed over an area as particular as the patch reef system in the Florida 

Keys, and that includes as part of its dataset lidar data for an objective bathymetric 

correction.  Similarities on the results presented here with previous studies suggest that 

comparable trends can be generalized to different reef areas.  Essentially, the selection of 

the more “appropriate” sensor still depends on particular objectives.  However, multi-

sensor studies accounting for various reef systems (e.g. biologically and morphologically 

different) will suggest what to expect when using a particular sensor for coral reef habitat 

mapping.  Reports on costs and image-processing effectiveness together with analytical 

studies on the capabilities of modern sensors over different reef areas should point to the 

more suited sensor to remotely assess coral reefs.   

As further work, it is suggested to update the cost-effectiveness assessment 

presented in Mumby et al. (1999b) by accounting for the more recent satellite sensors.  

QuickBird for example offer refined spatial resolution (2.44-meters multispectral and 

0.61-meters panchromatic), being the only space sensor providing such level of footprint 

detail.  QuickBird’s spectral bandwidths are similar to those of Ikonos and ETM+.  

Hyperion, in the other hand, offers same spatial resolution as ETM+ (30-meters).  

However, it is the first hyperspectral earth observing satellite sensor covering the whole 

spectral range within 220 spectral bands.  It is expected that by accounting for the 

enhanced spatial and spectral capabilities of satellite sensors as such, it will be possible to 

narrow the gap between the degree of accuracy that can be derived from high resolution 

airborne and spaceborne sensors for coral reef assessment.  It should elucidate as well the 

relative importance of the spatial and spectral resolutions in terms of thematic map 

accuracy.  Further, such cost-effectiveness report should also include the time and effort 

effectiveness of using empirical or analytical image correction techniques, additionally to 

the image classification methods that will pay-off for the better map accuracies. 
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This study adds to the handful number of existing multi-sensor comparison 

studies targeting coral reef habitat mapping.  Further evaluation on the capabilities of 

available remote sensors and different image processing techniques, will keep helping 

elucidating trends in the important task of accurate coral reef habitat inventorying, 

mapping and monitoring.  Additionally, it also contribute clearing the path to the already 

raised discussion on the “necessity” for a spaceborne sensor with specifications better 

suited for underwater studies at various scales.  Better suited spatial and spectral 

resolutions, together with an appropriate synoptic coverage for regional studies, should 

help to access and address more efficiently the different signs of worldwide coral reef 

degradation (Hochberg, Atkinson, and Andréfouët, 2003). 
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Appendix 1. Benthic sampling form used during the field campaign. 
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Producer User Producer User Producer User Producer User Producer User Producer User
Four classes

Live covered substrate 96.9 91.2 93.8 96.8 93.8 100.0 82.4 43.8 82.4 53.9 82.4 43.8

Seagrass 93.5 98.6 98.7 97.4 98.7 97.4 82.0 97.1 90.1 96.7 82.0 97.1

Algal dominated 80.0 100.0 100.0 100.0 100.0 100.0 100.0 8.3 100.0 10.0 100.0 8.3

Carbonate sand 100.0 62.5 100.0 100.0 100.0 83.3 87.5 93.3 56.3 100.0 87.5 93.3

Five classes
Dense live covered substrate 95.5 95.5 90.9 95.2 100.0 100.0 71.4 23.8 73.3 47.8 66.7 37.0

Sparse live covered substrate 60.0 100.0 70.0 100.0 70.0 100.0 100.0 54.6 100.0 62.5 100.0 71.4

Seagrass 97.4 94.9 100.0 95.1 98.7 96.2 80.6 99.3 87.3 97.2 81.7 94.9

Algal dominated 80.0 100.0 100.0 100.0 100.0 100.0 100.0 6.7 0.0 0.0 0.0 0.0

Carbonate sand 100.0 62.5 100.0 100.0 100.0 83.3 87.5 100.0 62.5 90.9 81.3 86.7

Six classes
Dense live covered substrate 95.5 95.5 95.5 95.5 100.0 95.7 58.3 46.7 83.3 55.6 75.0 45.0

Sparse live covered substrate 70.0 100.0 80.0 100.0 80.0 88.9 80.0 30.8 80.0 30.8 80.0 26.7

Dense seagrass 100.0 90.6 100.0 93.6 96.6 96.6 75.2 81.0 77.0 87.0 71.7 86.2

Medium-sparse seagrass 97.9 100.0 97.9 100.0 97.9 100.0 47.8 61.1 63.0 65.9 47.8 55.0

Algal dominated 80.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0

Carbonate sand 100.0 71.4 100.0 83.3 100.0 83.3 82.4 93.3 58.8 100.0 82.4 93.3

Seven classes

Dense live covered substrate 95.5 95.5 95.5 95.5 95.5 100.0 35.7 33.3 62.5 50.0 25.0 40.0

Sparse live covered substrate 80.0 100.0 80.0 100.0 80.0 100.0 100.0 66.7 85.7 60.0 85.7 54.6

Dense seagrass 100.0 92.9 100.0 100.0 100.0 92.9 81.3 85.7 85.4 81.7 83.2 84.1

Medium-sparse seagrass 97.9 97.9 97.9 95.9 97.9 100.0 50.0 57.9 50.9 81.1 42.4 69.4
Seagrass with distinct coral 
patches 87.5 87.5 87.5 87.5 93.8 83.3 62.5 62.5 85.7 48.0 85.7 44.4

Algal dominated 80.0 100.0 100.0 100.0 100.0 100.0 100.0 6.7 100.0 25.0 100.0 18.2

Carbonate sand 100.0 71.4 100.0 83.3 100.0 83.3 58.8 100.0 75.0 100.0 87.5 82.4

Eight classes

Dense live covered substrate 95.5 95.5 95.5 95.5 95.5 100.0 28.6 57.1 37.5 27.3 35.7 62.5

Sparse live covered substrate 80.0 100.0 80.0 100.0 80.0 100.0 50.0 50.0 85.7 60.0 50.0 42.9

Dense seagrass 100.0 92.9 100.0 92.9 100.0 92.9 78.0 81.6 72.5 80.5 75.8 83.1

Medium-sparse seagrass 52.4 91.7 52.4 84.6 47.6 90.9 85.7 46.2 57.1 50.0 85.7 50.0

Medium density seagrass 96.3 70.3 92.6 69.4 96.3 68.4 31.0 44.8 50.0 63.9 35.7 41.7
Seagrass with distinct coral 
patches 87.5 87.5 87.5 87.5 87.5 82.4 66.7 57.1 50.0 32.1 66.7 57.1

Algal dominated 80.0 100.0 100.0 100.0 100.0 100.0 100.0 5.9 0.0 0.0 100.0 6.7

Carbonate sand 100.0 83.3 100.0 100.0 100.0 100.0 75.0 80.0 73.3 84.6 68.8 84.6

Nine classes

Dense live covered substrate 95.5 95.5 95.5 95.5 95.5 100.0 42.9 37.5 62.5 45.5 62.5 45.5

Sparse live covered substrate 80.0 100.0 80.0 88.9 80.0 80.0 66.7 57.1 87.5 70.0 50.0 57.1

Dense seagrass 100.0 92.9 100.0 92.9 100.0 92.9 69.9 85.5 77.5 82.1 76.4 87.2

Medium density seagrass 66.7 87.5 100.0 100.0 66.7 93.3 50.0 40.0 66.7 60.0 66.7 66.7

Sparse seagrass 75.0 66.7 62.5 71.4 87.5 87.5 50.0 25.0 100.0 75.0 100.0 75.0

Medium density seagrass 100.0 79.2 100.0 90.5 94.7 85.7 46.0 41.5 51.2 59.5 51.2 53.7
Seagrass with distinct coral 
patches 87.5 73.7 87.5 73.7 93.8 68.2 50.0 52.9 50.0 52.6 65.0 61.9

Algal dominated 80.0 100.0 100.0 100.0 100.0 100.0 100.0 9.1 100.0 22.2 100.0 25.0

Carbonate sand 60.0 100.0 100.0 100.0 60.0 100.0 60.0 75.0 69.2 81.8 92.3 75.0

Ten classes

Dense live covered substrate 86.4 95.0 86.4 95.0 86.4 90.5 33.3 28.6 42.9 25.0 14.3 11.1

Rrs RB Yij
Ikonos

Rrs RB Yij
AISA

Dense live covered reef edge 91.3 87.5 91.3 91.3 78.3 90.0 45.5 27.8 22.2 9.1 22.2 6.3

Sparse live covered substrate 80.0 100.0 62.5 71.4 80.0 80.0 27.3 33.3 87.5 63.6 87.5 63.6

Dense seagrass 100.0 92.9 100.0 86.7 100.0 76.5 73.4 72.3 67.9 84.6 71.6 82.9
Medium density seagrass on 
sandy bottom 66.7 87.5 66.7 82.4 66.7 93.3 55.6 83.3 55.6 62.5 55.6 62.5

Sparse seagrass 75.0 66.7 62.5 71.4 87.5 87.5 50.0 33.3 33.3 25.0 33.3 50.0
Medium density seagrass on 
sandy bottom with algae and 
rubble 

100.0 79.2 100.0 90.5 94.7 85.7 13.6 35.3 46.5 58.8 34.9 79.0

Seagrass with distinct coral 
patches 87.5 70.0 87.5 70.0 93.8 68.2 72.2 52.0 57.9 57.9 68.4 59.1

Algal dominated 80.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 50.0 10.0 50.0 12.5

Carbonate sand 60.0 100.0 100.0 100.0 60.0 100.0 73.3 84.6 61.5 88.9 84.6 84.6

Appendix 2. Producer and user accuracies as derived from error matrices for AISA and Ikonos image 
classification at every habitat complexity and image processing level.  
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Producer User Producer User Producer User Producer User Producer User Producer User

Four classes
Live covered substrate 18.8 50.0 25.0 40.0 - - 46.7 19.4 40.0 15.0 73.3 19.6

Seagrass 58.5 84.4 89.2 89.2 - - 62.9 91.8 71.0 88.9 50.8 92.7

Algal dominated 100.0 5.9 100.0 11.1 - - 0.0 0.0 0.0 0.0 0.0 0.0

Carbonate sand 60.0 13.6 70.0 87.5 - - 100.0 50.0 90.0 81.8 100.0 50.0
Five classes

Dense live covered substrate 50.0 26.7 37.5 50.0 - - 33.3 6.4 11.1 6.7 44.4 10.3

Sparse live covered substrate 0.0 0.0 0.0 0.0 - - 83.3 26.3 50.0 12.5 100.0 17.7

Seagrass 52.3 87.2 90.8 89.4 - - 41.9 91.2 71.8 89.0 37.9 92.2

Algal dominated 100.0 5.9 100.0 11.1 - - 0.0 0.0 0.0 0.0 0.0 0.0

Carbonate sand 60.0 13.6 70.0 87.5 - - 100.0 50.0 90.0 81.8 100.0 50.0
Six classes

Dense live covered substrate 50.0 50.0 37.5 50.0 - - 44.4 9.8 11.1 6.3 44.4 11.1

Sparse live covered substrate 0.0 0.0 0.0 0.0 - - 83.3 22.7 50.0 14.3 83.3 19.2

Dense seagrass 52.5 70.0 90.0 66.1 - - 40.3 62.0 76.6 66.3 44.2 63.0

Medium-sparse seagrass 28.0 41.2 30.0 57.7 - - 17.0 66.7 21.3 58.8 19.2 60.0

Algal dominated 100.0 5.9 100.0 14.3 - - 0.0 0.0 0.0 0.0 0.0 0.0

Carbonate sand 50.0 13.5 70.0 87.5 - - 80.0 50.0 60.0 85.7 70.0 53.9

Seven classes
Dense live covered substrate 25.0 22.2 37.5 75.0 - - 22.2 7.1 11.1 7.7 44.4 11.1

Sparse live covered substrate 0.0 0.0 0.0 0.0 - - 33.3 22.2 33.3 11.1 50.0 18.8

Dense seagrass 61.5 76.9 90.8 64.1 - - 61.3 67.9 82.3 70.8 54.8 68.0

Medium-sparse seagrass 28.0 51.9 24.0 60.0 - - 14.9 63.6 21.3 66.7 17.0 57.1
Seagrass with distinct coral 
patches 60.0 69.2 80.0 48.0 - - 73.3 50.0 46.7 28.0 46.7 46.7

Algal dominated 100.0 5.9 100.0 14.3 - - 0.0 0.0 0.0 0.0 0.0 0.0

Carbonate sand 50.0 13.2 70.0 87.5 - - 80.0 47.1 60.0 85.7 70.0 53.9
Eight classes

Dense live covered substrate 25.0 22.2 37.5 75.0 - - 22.2 7.1 11.1 7.7 44.4 11.1

Sparse live covered substrate 0.0 0.0 0.0 0.0 - - 33.3 28.6 33.3 13.3 50.0 21.4

Dense seagrass 58.5 76.0 90.8 64.8 - - 61.3 67.9 82.3 70.8 54.8 68.0

Medium-sparse seagrass 85.7 42.9 85.7 46.2 - - 42.9 50.0 42.9 50.0 42.9 42.9

Medium density seagrass 11.6 38.5 9.3 50.0 - - 12.5 55.6 17.5 50.0 12.5 50.0
Seagrass with distinct coral 
patches 60.0 60.0 80.0 48.0 - - 73.3 50.0 40.0 25.0 46.7 46.7

Algal dominated 100.0 5.9 100.0 14.3 - - 0.0 0.0 0.0 0.0 0.0 0.0

Carbonate sand 50.0 13.2 70.0 87.5 - - 80.0 53.3 50.0 83.3 70.0 58.3
Nine classes

Dense live covered substrate 25.0 40.0 37.5 60.0 - - 33.3 11.5 11.1 7.7 44.4 11.4

Sparse live covered substrate 0.0 0.0 0.0 0.0 - - 33.3 28.6 33.3 12.5 33.3 15.4

Dense seagrass 65.2 78.2 81.8 64.3 - - 69.4 70.5 82.3 70.8 54.8 68.0

Medium density seagrass 85.7 42.9 85.7 40.0 - - 42.9 42.9 42.9 50.0 42.9 42.9

Sparse seagrass 50.0 100.0 50.0 100.0 - - 0.0 0.0 0.0 0.0 0.0 0.0

Medium density seagrass 14.6 54.6 14.6 60.0 - - 13.2 45.5 13.2 50.0 18.4 58.3
Seagrass with distinct coral 
patches 73.3 57.9 80.0 44.4 - - 53.3 44.4 46.7 26.9 46.7 41.2

Algal dominated 100.0 6.7 100.0 12.5 - - 0.0 0.0 0.0 0.0 0.0 0.0

Carbonate sand 50.0 13.2 70.0 87.5 - - 70.0 63.6 50.0 83.3 60.0 66.7
Ten classes

Dense live covered substrate 25.0 28.6 25.0 40.0 - - - - - - - -

Dense live covered reef edge 25.0 5.3 12.5 7.7 - - - - - - - -

Sparse live covered substrate 0.0 0.0 0.0 0.0 - - - - - - - -

Rrs RB Yij Yij

ASTER Landsat ETM+
Rrs RB

Dense seagrass 43.9 80.6 77.3 59.3 - - - - - - - -
Medium density seagrass on 
sandy bottom 85.7 42.9 85.7 40.0 - - - - - - - -

Sparse seagrass 50.0 100.0 50.0 100.0 - - - - - - - -
Medium density seagrass on 
sandy bottom with algae and 
rubble 

9.8 57.1 14.6 60.0 - - - - - - - -

Seagrass with distinct coral 
patches 73.3 57.9 66.7 52.6 - - - - - - - -

Algal dominated 100.0 6.3 100.0 11.1 - - - - - - - -

Carbonate sand 50.0 17.9 70.0 87.5 - - - - - - - -

Appendix 3. Producer and user accuracies as derived from error matrices for ASTER and ETM+ image 
classification at every habitat complexity and image processing level. 
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