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Abstract 
 

Marine, aerospace, ground and civil structures can receive unexpected loading that 

may compromise integrity during their life span.  Therefore, improvement in detecting 

damage can save revenue and lives depending upon the application.  The prognostic 

capability is usually a function of the examiner’s experience, background and data 

collection during the evaluation.  Nondestructive evaluation (NDE) methods are varied 

and specific to a given type of system (material, damage type, loading and environmental 

scenarios).  As a result, one method of damage detection alone cannot examine all 

possible conditions and may even give false readings.  In other words, by using more 

than one NDE technique, the probability of ensuring a more accurate detection increases.   

This work examined various existing NDE techniques to assess damage in sandwich 

composites structures including: vibration modal analysis, transient thermal response, and 

acoustic emission. Sandwich composites consisting of two carbon fiber/epoxy matrix 

face sheets laminated onto a urethane foam core were experimentally and analytically 

characterized using vibration, and thermal response to detect the presence of various 

types of damages. A neural network (NN) approach that uses vibration and thermal 

signatures to determine the condition of a composite sandwich structure is purposed. The 

data used to train a probabilistic neural network (PNN) were provided by numerical 

simulations. Literature offers substantial evidence of the validity of each of the chosen 

damage detection schemes separately. However, we will show that these methods can 

work jointly to complement each other in detecting the state of a sandwich composite 

structure. 
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Resumen 

 

Las estructuras comunmente utilizadas en ingeniería sufren la acción de cargas 

impredecibles, la cuales puden comprometer su integridad durante la vida útil. Sin 

embargo, métodos de detección de daños mas sofisticados pueden evitar pérdidas 

económicas y humanas dependiendo de la aplicación. La capacidad de diagnostico 

predictivo depende de la experiencia de la persona que realiza la evaluación, de sus 

conocimientos previos y de la información obtenida durante la inspección. Además, los 

métodos no destructivos de evaluación son muy  variados y específicos para cada tipo de 

material, daño, carga y aplicación. Por lo tanto, el uso de un único método no es 

suficiente para cubrir todas las posibles condiciones y podría producir falsos resultados. 

En otras palabras, usando varios métodos de evaluación simultaneamente aumenta la 

probabilidad de detección del daño. El presente trabajo examina algunos de los métodos 

no destructivos actualmente utilizados para evaluar daños en estructuras de materiales 

compuestos tipo sandwich como por ejemplo ánalisis modal de vibraciones, 

comportamiento termal en estado transitorio, emisiones acásticas, etc. Estructuras de 

material compuesto formadas por dos laminas de fibras de carbonos en una matríz de 

epoxy separadas por un nucleo de poliuretáno liviano fueron estudiadas analítica y 

experimentalmente usando resultados termales y de vibraciones. Esta información es 

analizada y clasificada por un systema de redes neurales en busca de daños y defectos en 

el material. El proceso de aprendizaje del systema de redes se realizó usando resultados 

obtenidos de modelos numéricos. Aunque los métodos no destructivos antes 

mencionados funcionan bien por si solos, aqui mostraremos que pueden trabajar 

conjuntamente complementandose entre ellos en la deteccion de daños en este tipo de 

materiales.        
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Chapter 1  
 

Introduction 

 
This first chapter introduces to the basic concepts and terms related to the damage 

detection subject. Some important topics are discussed in order to understand the 

methodology fallowed in this work. Finally, we describe our motivation and the 

innovative aspect of the research. 

  

1.1 Introduction 

 

The subject of structural health monitoring has been receiving a growing amount of 

interest from researchers in diverse fields of engineering. Nondestructive inspection 

techniques are generally used to investigate the critical changes in the structural 

parameters so that an unexpected failure can be prevented. Although there are many 

techniques and approaches involved in the nondestructive evaluation (NDE) of structural 

systems [1], they can all be mostly categorized as local or global methods. The first class 

includes methods designed to provide information about a relatively small region of the 

structure under study by using local measurements. Examples include acoustic 

techniques, thermal field methods or curvature approach. The second class of methods 

uses global measurements to determine the general state of the system. Vibration 

methods which involve measurement of natural frequencies fit into this category. Clearly, 

the two approaches are complementary to each other, with the optimum selection of 

method highly dependent on the scope of the problem at hand. In this study, local 

methods that concentrate on a part of the structure are used to detect, locate and quantify 

damages. One of the primary considerations when selecting a nondestructive testing 

technique is, whether it is capable of detecting the existing defect with sufficiently high 
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probability. This establishes the threshold rejection criterion of whether the component is 

fit for service.  

 

Not all NDE techniques are physically capable of detecting all damages. Each one has 

its own limitations. The capability of a method depends on the inherent limitations of the 

procedure used. Among the promising NDE methods are those based on the analysis of 

structural dynamic response measurements to identify a suitable mathematical model 

corresponding to the state of the physical structure. Deterioration and damage result in a 

reduction in the structural stiffness. This reduction produces significant changes in the 

dynamic properties, such as natural frequencies, mode shapes and structural damping. 

Since the measurement of natural frequencies is easier than that of changes in structural 

damping, damage can be detected from dynamic analysis using natural frequencies and 

mode shapes. Although changes in natural frequencies give a useful indication of the 

existence of damage, it can be concluded that a damage identification method based on 

this feature is not sufficient to locate the damage [2]. Therefore, mode shapes information 

is required to determine the location of the damage. Since displacements and curvature 

mode shapes can be obtained by both experimental as well as numerical means, this work 

focuses on damage detection techniques that use this information. Later, the difference 

between the undamaged and damaged state is performed to improve damage detection. 

As previous mentioned this technique produces successful results in detecting and 

locating damages which cause significantly reduction on stiffness of the structure. 

However, this approach may give problems in dealing with thin and light structures, as 

panels of composite materials, where, if the defect is small, natural mode shapes may 

mask the local vibration pattern induced by the fault. For these cases, it is necessary to 

use another non destructive inspection technique that complements the vibration method.  

 

Thermal analysis is a method based on the acquisition of external surface temperature 

distribution data from a specimen in response to a thermal transient excitation induced by 

external heating and exposed to free convection. The purpose of using thermal techniques 
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is to show that the temperature distribution over the sample changes significantly due to a 

severe variation in the mechanical properties and this feature could be related to a 

specific damage. There exist others NDE techniques which can be used for damage 

characterization purposes. Acoustic emission testing will be considered as an alternative 

method.  

 

While there are many approaches that have been investigated and are still being 

developed for signature based NDE of structures, the class of health monitoring 

approaches that do not require detailed knowledge of the vulnerable parts of the structure 

or of the failure modes of the structure, have a significant advantage in that they have the 

potential to handle unexpected failure patterns. Among the structure identification 

approaches that have been receiving growing attention recently are artificial neural 

networks (ANNs). Several studies [3] have demonstrated that ANNs are a powerful tool 

for identification of systems typically encountered in the structural dynamics field.  

 

ANNs were originally developed to simulate the function of the human brain or 

neural system, resulting in systems that learn by experience. The use of ANNs has 

increased dramatically in recent years in the applied mechanics field in order to model 

complex system behavior. Its potential has been recognized in the field of monitoring and 

control of structural systems [4]. The primary strengths of ANN methods in this context 

are that they can potentially deal with demanding problems of robustness, complex 

nonlinear systems and online identification. In view of the strong interest that ANNs have 

generated in the computational mechanics community, it is not surprising that 

investigators have started to evaluate the suitability and capabilities of these networks for 

damage detection purposes. Several studies [5-8] have demonstrated that these neural 

networks (NNs) offer a powerful tool for assessing the condition of structures with 

inherent damage. 
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1.2 Objectives 

 

The aim of this work is the development of an intelligent system for data processing 

and defect characterization to detect and identify the location and extent of damages in 

sandwich composites structures. In particular, this system was tested for pattern 

recognition using both numerical and experimental data from different sources such as 

thermal, acoustic and vibration analysis. Among these diagnostic techniques, the most 

largely studied and applied are those based on vibration measurements. In this field, 

several strategies for structural excitation, vibration measurement and data processing 

have been presented. However, this approach may give problems in cases where the 

defect is to small to change the modal parameters (natural frequencies and mode shapes). 

Therefore, three nondestructive techniques were studied in this work to obtain diverse 

information that allows the evaluation of the health of the structure under investigation. 

The fundamental curvature mode shapes were used locally to identify the damage sites 

corresponding to a reduction in stiffness, which show up as spikes in the curve, while 

thermal distribution images were generated to detect a variation in mechanical properties 

such as thermal conductivity, specific heat or mass density. The third technique to be 

considered was acoustic emission (AE) analysis, which produced additional information 

about the localization and scale of damages.  

 

In order to handle this information and to identify combined cases, it is important that 

the data be presented or modeled in a unified framework. Three dimensional numerical 

models of sandwich composite structures with several different defects were used to 

generate damage scenarios to train an ANN. This NN was later employed to classify the 

measured data, previously processed with dedicated algorithms for feature extraction. 

The selection of the most appropriate NN model, based on its performance in pattern 

recognition applications, was a very important consideration of the thesis. A procedure to 

generate a training set from numerical models is proposed.  
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The processing system was tested and optimized on the numerical data, before final 

application to real experimental results. The issues to be resolved in this thesis are 

summarized in the topics stated below: 

 
1. To select appropriate NDE techniques in order to investigate critical changes in 

structural parameters. 

2. To find an adequate NN architecture based on its performance in data 

classification. 

3. To used features extraction techniques to the data before the NN implementation. 

4.  To create and validate numerical models to generate different damage scenarios. 

5. To unify the NN application in order to interpret the information from different 

NDE methods. 

6. To perform experimental analysis to test the feasibility of the proposed approach 

in detecting real damage cases. 

 

1.3 Nondestructive Inspection Technology 

 

Nondestructive testing (NDT) is a branch of the materials sciences that is concerned 

with all aspects of the uniformity, quality and serviceability of materials and structures. 

Essentially, NDT refers to all the methods which allow testing or inspection of a system 

without impairing its future usefulness even without taking it out of service [9]. The 

science of NDT incorporates all the technology for detection and measurement of 

significant properties. In other words, the purpose of NDT is to determine whether a 

material or a component will satisfactory perform its intended function. By using NDE 

methods and techniques, it is possible to decrease the factor of ignorance about a system 

without decreasing its factor of safety. In general, the use of NDT will fall into one of the 

following categories: 

 
1. Determination of material properties. 

2. Detection, characterization, location and sizing of discontinuities or defects. 
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3. Determining quality of manufacture or fabrication of a component or structure. 

4. Checking for deterioration after a period of service for a component or structure. 

 

Some of the benefits derived from NDT are increased productivity, improved 

serviceability and safety. Increased serviceability of equipment and materials will result 

through the application of NDE methods and techniques that find and locate defects 

which may cause malfunctioning or breakdown of equipment. A variety of NDE 

techniques have been developed to detect and characterize defects. All the NDE 

techniques are based on physical principles. Practically, every form of energy has been 

used in NDE. Similarly, nearly every property of the materials to be inspected has been 

made the basis for some method or technique. Almost all methods of NDE involve 

subjecting the specimen being examined to some form of external energy source and 

analyzing the detected response signals. The essential parts of any NDE test are: 

 
1. Application of a testing or inspection medium. 

2. Modification of the testing or inspection medium by defects or variations in the 

structure or properties of the material. 

3. Detection of these changes by suitable detector. 

4. Conversion of these changes into a suitable detector. 

5. Interpretation of the information obtained. 

 

It is important that the interpretation of the NDE results be made by an experienced or 

skilled person or computer [9]. Interpretation of the results sometimes determines the 

success or failure of a test method or technique. The most popular NDE techniques 

currently used are: 

 
1. Ultrasonic testing. 

2. Radiography (X-ray, Gamma-ray, etc.). 

3. Eddy current testing. 

4. Liquid penetrant testing. 
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5. Magnetic (particle, flux leakage, etc.). 

6. Acoustic emission testing. 

7. Infrared thermography. 

8. Visual testing (optical). 

9. Vibration Testing. 

 

However, ultrasonic testing, radiography, liquid penetrant, magnetic particles and 

visual testing are not suitable for structural health monitoring (SHM) application. On the 

other hand, eddy current testing is applicable only to conductive materials while acoustic 

emission testing is a real time method of damage detection. 

 

In many types of NDT, the sensitivity of the technique depends upon the ability to 

distinguish the significant part of the signal from the general background due to noise or 

inherent background signals from the material being examined. The power and speed of 

modern computers, signal processing methods and modeling numerical methods have 

allowed remarkable developments took in NDE techniques. Significant improvements 

have been made both in the NDT equipment and in the specific techniques used. 

Similarly, use of multiple NDT sensors, NDE techniques and computer assisted 

processing in modern nondestructive inspection systems have reduced costs by increasing 

both the speed and reliability of inspection. 

 

1.4 Structural Health Monitoring and Damage Detection 

 

The process of implementing a damage detection strategy for engineering structure is 

referred to as Structural Health Monitoring (SHM) [10]. The SHM process involves the 

observation of a system over time using periodically sampled response measurements 

from an array of sensors. The extraction of damage sensitive features from these 

measurements and the statistical analysis of these features are then used to determine the 

current state of system health. SHM essentially involves the embedding of an NDE 
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system (or a set of NDE systems) into a structure to allow continuous remote monitoring 

for damage. There are several advantages to using a SHM system over traditional 

inspection cycles, such as reduced down time, elimination of component tear down 

inspections and the potential prevention of failure during operation. 

 

Damage characterization is probably the most fundamental aspect of detecting 

damage, the familiarity of what kinds of damage are common in a type of material or 

structure, and the knowledge of what reasonable changes in properties correspond to 

these forms of damage. These damage characteristics depend on the type of material the 

structure is constructed with, as well as the structural configuration. With metallic 

structures, designers and operators are mostly concerned with fatigue cracks and 

corrosion, while for composite materials, delaminations and impact damage are more of a 

concern. Once an understanding of the damage signature in the material of concern is 

reached, then the sensing method and sensors can be selected. 

 

Sensors are used to record variables such as strain, acceleration, sound waves, 

electrical or magnetic impedance, pressure or temperature. A SHM system requires a 

specific number of sensors, depending on its size, arrangement and desired coverage area. 

Sensing systems can generally be divided into two classes: passive or active sampling. 

Passive sampling systems are those that operate by detecting responses due to 

perturbations of ambient conditions without any artificially introduced energy. Several 

vibrational techniques can be performed passively, with the use of accelerometers, 

ambient frequency response and acoustic emission with piezoelectric wafers. Active 

sampling systems are those that require externally supplied energy to properly function. 

A few strain based examples of active systems include electrical and magnetic impedance 

measurements. Active vibrational techniques include the transfer function based modal 

analysis. Passive techniques tend to be simpler to implement and operate with a SHM 

system and provide useful global damage detection capabilities, however generally active 

methods are more accurate in providing localized information about a damaged area. An 
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effective design of a structural health monitoring system will use several different sensing 

methods, taking advantage of both the strengths and weaknesses of each one.  

 

1.5 Data Processing Intelligent Systems 

 

Algorithms are probably the most essential component of a SHM system. They are 

necessary to decipher and interpret the collected data. Examples of algorithms that have 

been used include spectral analysis, expert systems (ES) and codes that perform wavelet 

decomposition. Spectral analysis [11] involves the frequency response function (FRF) 

using the fast Fourier transform algorithm. This technique provides a quick and accurate 

approach in obtaining structural FRFs that may be used to extract parameters.  

 

Wavelet analysis may be viewed as an extension of the traditional Fourier transform 

(FT) with adjustable window location and size [12]. The merits of wavelet analysis lie in 

its ability to examine local data to provide multiple levels of details and approximations 

of the original signal. Therefore, transient behavior of the data can be retained. However, 

other algorithms are more appropriate for implementing in fault diagnosis and detection 

such as rule based ES, fuzzy logic systems and ANNs. 

 

 A rule based ES is defined [13] as one which contains information obtained from a 

human expert and represents that information in the form of rules, such as IF-THEN. The 

rule can then be used to perform operations on data to inference in order to reach 

appropriate conclusion. These inferences are essentially a computer code that provides a 

methodology for reasoning about information in the rule base or knowledge base, and for 

formulating conclusions. 

 

On the other hand, fuzzy systems are based on membership functions and rules of 

association that process vague, imprecise or ambiguous information [14]. The proper 

selection of these functions and rules is essential to successful development of a fuzzy 
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logic based decision system. Known inputs and corresponding correct decisions are used 

to generate the membership functions used to develop the rule base. Fuzzy sets are 

commonly predetermined or manually defined. This teaching method is referred to as 

supervised learning because the fuzzy sets are prescribed.  

 

Other architectures, such as ANNs have the advantage of using unsupervised learning 

[13]. An unsupervised system learns from training data that are clustered into patterns to 

form classes. In recent years, there has been a growing interest in using ANNs, a 

computing technique that operate in a manner analogous to that of biological nervous 

systems. This concept is used to implement software simulations for the massively 

parallel processes that involve processing elements interconnected in network 

architecture. ANNs are suitable for pattern classification and natural information 

processing tasks and they are finding applications in almost all branches of science and 

engineering.  

 

The current work deals with the recognition of features extracted from different NDE 

tests.  This information could be represented in diverse formats or contaminated by noise 

due to various reasons. Besides, some discrepancies may occur when matching these 

features with known patterns. To solve these issues a statistical based approach should be 

implemented such as Bayesian classifier [15] which stores a single probabilistic summary 

for each class. Probabilistic neural networks (PNNs) belong to Bayesian classifiers and 

are used for classification problems. Bayesian NN will be discussed in detail in chapter 6. 

 

1.6 Sandwich Composite Materials 

 

The sandwich structure is a composite configuration that consists of high strength 

composite facing sheets bonded to a lightweight foam or honeycomb core (Figure 1.1). 

Examples of these structures include skins made of glass/carbon/Kevlar fibers in vinyl 

ester/epoxy matrix bonded and separated by an aluminum honeycomb or polyurethane 
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foam. Sandwich structures have extremely high flexural stiffness to weight ratios and 

widely used in mechanical structures such as airplanes and ships. The design flexibility 

offered by these and other composite configurations is obviously quite attractive to 

designers, and the potential now exists to design not only the structure, but also the 

structural material itself. We are interested in carbon fiber – epoxy skins with 

polyurethane foam panels due to the relevance of this material for the NAVY. 

 

 
Figure 1.1: Sandwich composite panel. 

 

The disadvantage, however, is that composite materials present challenges for design, 

maintenance and repair over metallic parts since they tend to fail by combined failures 

modes [16]. Furthermore, damage detection in composites is much more difficult due to 

the anisotropy of the material, the conductivity of the fibers, the insulative properties of 

the matrix, and the fact that much of the damage often occurs beneath the top surface of 

the laminate. There are 5 principal modes of failure of sandwich composites with foam 

cores: 

 
1. Yielding or Fracture of the tensile face sheet 

2. Buckling or Wrinkling of the compression face sheet 

3. Failure of the core in shear although there is also a lesser possibility of tensile or 

compressive failure of the core 

4. Failure of the bond between the face sheet and the core 

5. Indentation of the faces and core at the loading points 
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Face Yielding 

Face yielding (Figure 1.2) occurs when the normal tensile stress in the face equals the 

strength (yield strength for ductile face sheet materials, fracture strength for brittle face 

sheet materials). 

 

 
Figure 1.2. 

 

Face Wrinkling 

Face wrinkling (Figure 1.3) occurs when the normal stress in the compression face 

sheet of the beam reaches the level of instability (buckling). 

 

 
Figure 1.3. 

 

Core Failure 

The core will fail when the principal stresses in the core combine to exceed the yield 

criterion (Figure 1.4). Generally, the shear stresses in the core are large compared with the 

normal stresses and so failure will occur when the maximum shear stress in the core 

exceeds the shear yield strength of the core. This shear yield strength corresponds to 

plastic bending of the cell walls about the cell edges which in turn depends on the foam 

density and the yield strength of the foam substrate.  

 

 
Figure 1.4. 
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Failure of the Adhesive Bond 

Failure of the adhesive bond between the face sheet and the core is a very important 

failure mechanism (Figure 1.5). For polymer matrix composites skins bonded to foam 

cores, the epoxy used to make the bond is usually stronger than the foam and failure will 

generally occur in the foam, not the bond. However, if a crack like defect exists in the 

bond, such as might arise from incomplete coverage of the adhesive or a trapped air 

pocket for in situ foamed composites, then failure can occur in the bond plane by 

extension of the crack. Both cases are included into this failure mode. 

 

 
Figure 1.5. 

 

Core Indentation 

The problem of indentation of the core only occurs when loads are highly localized 

and arises because the stress immediately under the loading point is greater than the 

crushing strength of the core (Figure 1.6). 

 

 
Core indentation 

Figure 1.6. 
 

In addition, other types of failures [17] can occur in the laminated composite (face 

sheet) such as fiber breaking, debonding, matrix microcracking and delamination. Those 

defects that produce a significant reduction in stiffness of the structure are expected to be 

detected by changes in the dynamic parameters (natural frequencies, damping ratio and 
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mode shapes) while others faults are examined by using thermal images and acoustic 

emission techniques.  

 

1.7 Approach: Innovative Aspect of the Research 

 

Many NDE techniques (mentioned in section 1.3) have been used to localize and 

identify damages in a structure and several algorithms (discussed in section 1.5) have 

been implemented to characterize these defects. However, a combined method of NDE 

techniques could be more effective in detecting different kind of damages or a 

combination of those. These NDE techniques will complement to each other and a 

particular defect in the structure could be localized by one or more technique.  

 

The approach of this work consists of using measurements from diverse NDE 

techniques to identify damages in sandwich composites materials using NNs. As 

mentioned in section 1.3, vibration measurements, infrared thermography and acoustic 

emission testing are considered in this study. Data for the training process of the NN will 

be provided by finite element simulations. Once properly trained, the neural network will 

in theory provide damage information when measured structural responses are presented 

to the system. Figure 1.7 shows schematically the NN approach. 
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Figure 1.7: NN approach. 
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Chapter 2  
 

Literature Review 

 
The following chapter focuses on mentioning some of the previous works done in 

damage detection subject. These works are classified according to the NDE technique 

used for damage characterization. Other NDE based methods which were not mentioned 

in the previous chapter are discussed in section 2.4.  

 

1.6 Vibrations Based Techniques  

 

Any localized defect in a structure reduces the stiffness and modifies the damping in 

the damaged area. These features are related to variation in the dynamic properties, such 

as, decreases in natural frequencies and modification of the modes of vibration of the 

structure. One or more of above characteristics can be used to detect and locate damages.  

 

Pandey, Biswas and Samman [18] investigated the curvature mode shapes as a 

possible candidate for detecting cracks. It was shown that the absolute changes in the 

curvature mode shapes are localized in the region of damage and hence can be used to 

detect defects in a structure. Finite element analysis (FEA) was performed for two 

models, a cantilever and a simply supported isotropic beam, to obtain the displacement 

mode shapes. No experimental verification was performed in this work. 

 

Adams and Cawley [19] employed a sensitivity analysis to deduce the location of 

damage in two dimensional (2D) structures, based only on FEA. Flexural modes of 

vibration were used in this case.  The method was applied to the case of a metallic flat 

plate with the assumption that the modulus of elasticity in the damage area was equal to 

zero.  
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Ratcliffe and Bagaria [20] presented an experimental nondestructive vibration based 

technique for locating damages in a composite beam. The study was limited to 

delaminations. The method operates on the fundamental displacement eigenvectors, 

which are converted into a curvature mode shapes. Then, to extract small features the 

curvature was locally smoothed with a gapped cubic polynomial. This procedure could 

operate solely on data obtained from the damaged structure. The damage location method 

was tested by using a FE model of a composite beam before experimental demonstration. 

 

Ratcliffe [21] also developed a technique for identifying the location of structural 

damage in a beam using a 1D FEA. A finite difference approximation called Laplace’s 

differential operator was applied to the mode shapes to identify the location of the 

damage. This procedure is best suited to the mode shapes obtained from fundamental 

natural frequencies. In both cases [20-21], the interpretation of the data was done visually. 

 

Zhao, Ivan and DeWolf [22] consider in their investigation a variety of diagnostic 

parameters, including static displacements, natural frequencies, mode shapes and other 

parameters based on mode shapes (slope array and state array). The method used was a 

counter propagation neural network (CPNN) and it was applied only to continuous beam 

FE models. It was concluded that there is no approach that has consistent advantages over 

others. The best way is to use multiple approaches at the same time to produce reliable 

results. 

 

Byon and Nishi [23] presented the application of hierarchical NNs for damage 

identification in a carbon fiber reinforced plastic (CFRP) laminated beam. Damage was 

introduced in the test specimen by cutting the unidirectional prepreg and replacing with 

teflon film. When the first three natural frequencies and/or the third mode shape of the 

beam were used as inputs data, NN estimated the exact location and amount of damage.   
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Toro, Shafiq, Serrano and Just [24] applied an eigen parameter based technique to 

detect localized damage in geometrically complex sandwich composite structures using 

3D orthotropic FEA. It was shown that the fundamental displacement mode shape 

curvature of a sandwich structure could be used to identify the unique damage sites 

corresponding to a reduction in stiffness. A segment wise analysis approach was 

suggested for non planar or discontinuous structures. PNNs were used to aid in damage 

detection of 3D geometries based on training performed with the finite element 

simulations.  

 

Sahin and Shenoi [25] investigated the effectiveness of the combination of global and 

local vibration based analysis data as input for a feedforward back propagation ANN for 

location and severity prediction of damage in fiber reinforced plastic laminates. Later, the 

authors [26] performed the same analysis over steel beams using strain gauges and 

accelerometers to obtain resonant frequencies and strain mode shapes. In both cases 

studied, the selection of features as input data was considered crucial in the accuracy of 

prediction of damage. They concluded that although reduction in natural frequencies is 

considered as an indicator for the existence of the damage and its severity, it did not 

provide any useful information about the location of the damage.  

 

Kessler, Spearing, Atalla, Cesnik and Soutis [27] presented an experimental and 

analytical method for the in situ detection of damage in composite materials. Modal 

analysis techniques (frequency response and impedance) were applied to graphite/epoxy 

specimens containing representative damage modes such as holes, deformation by impact 

and delaminations. A limitation of this method is that not much information about the 

specific location or type of damage can be inferred. 

 

Masri, Nakamura, Chassiakos and Caughey [28] presented a neural network based 

approach for the detection of changes in the characteristics of structural systems unknown 

to the NN (i.e. not in training set). Later, Masri, Smyth, Chassiakos, Caughey and 
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Hunter [29] presented a structural damage detection methodology based on nonlinear 

system identification approaches. These methods rely on the use of vibration response 

(accelerations, velocities, and displacements) from a healthy theoretical system to train a 

feedforward NN for identification purposes. NNs showed to be capable of detecting 

changes in the physical system with respect to its reference (or undamaged) state. 

 

Another popular approach in nondestructive damage detection is to use spectral 

analysis. This technique provides a quick and accurate approach in obtaining structural 

FRFs that may be used to extract parameters [11]. These parameters are then compared 

with baselines to identify the changes in structural integrity. Spectral analysis can detect 

location of damage but it does not provide information about the type of damage. The 

undamaged case data is used to identify the healthy state of the structure. However 

spectral analysis usually involves a data reduction technique which has a high 

computational cost. 

 

Zang and Imregun [11] dealt with structural damage detection using measured FRFs 

as input data to a back propagation ANNs and the output was a prediction of the actual 

state of the specimen. The methodology was applied to detect three different states of a 

real space antenna: reference, slight mass damage and slight stiffness damage. The results 

showed that it was possible to distinguish between the three states of the structure, 

subject to using a suitable NN configuration. This approach could also be done using 

FEA. 

 

1.7 Thermal Based Techniques 

 

Stimulated infrared (IR) thermography is a NDE method used for the localization and 

characterization of thermally resistive defects. In recent years, infrared thermography has 

gained prominence among the NDE techniques used in detection of defects, particularly 

for composite structures. This method is based on that in presence of a defect; the surface 
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temperature evolution is locally modified producing a thermal contrast whose localization 

allows identifying the damaged area.  

 

Shih, Shin, Delpak, Hu, Plassmann, Wawrzynek and Kogut [30] explored the 

possibility of detecting geometrical defects in concrete specimens using thermal imaging. 

The method was based on the characteristics of flow heat phenomenon. They used an IR 

camera to capture the surface temperature distribution in order to determine the position 

of the crack and other geometrical imperfections. In this work, the detection process was 

not automated. 

 

Bai and Wong [31] developed a photo thermal model in order to investigate the 

behavior of thermal waves in homogeneous plates and layered plates under convective 

conditions. This model was then utilized to predict the phase differences produced by 

multi layer subsurface defects. Then the authors used experimental results from lock in 

thermography to compare with theoretical results obtained by solving numerically. 

 

Plotnikov and Winfree [32] presented comparisons of results from thermal contrast, 

time derivative and phase analysis methods for defect visualization. These comparisons 

were based on 3D simulations (finite difference) of a test case representing a plate with 

multiple delaminations. Comparisons were also based on experimental data obtained 

from a specimen with flat bottom holes and a composite panel with delaminations. The 

authors concluded that both thermal contrast and phase thermography are effective 

methods for defect edge extraction while time derivative is suitable to measure the defect 

depth. 

 

1.8 Acoustic Emission Based Techniques 

 

The AE technique is a NDE method that permits continuous damage inspection, 

classification and identification of modes of failure in real time, which is critical for 
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taking preventive measures. AE techniques detect transient acoustic waves generated by a 

sudden change in the local stress field in a material. The use of AE in NDT is based upon 

the fact that crack tips have high stresses and will grow producing AE that can be 

detected by sensors. 

 

Bakuckas, Prosser and Johnson [33] used the AE technique to locate damage in a 

titanium matrix composite system based on the arrival times of AE events between two 

sensors. The authors established correlations between the observed damage growth 

mechanisms and the AE results in terms of the events amplitude. 

 

Quispitupa, Shafiq, Just and Serrano [34] presented an AE based stiffness 

reduction model that identifies the extent of damage in sandwich composites subjected to 

fatigue loading conditions. In this work it was concluded that AE yields very accurate 

information about the extent and location of damage in various constituents of sandwich 

composites. 

 

1.9 Other Techniques 

 

In addition to the NDE techniques described above, there are other methods which 

also provide information used for damage detection purposes. These include: stimulated 

shearography, the ElectroMagnetic/InfraRed (EMIR) method and electrical impedance. 

 

Shearography 

Shearography belongs to speckle interferometry techniques [35]. It consists in 

illuminating the sample with coherent light and making the reflected wave front interfere 

with itself, producing a slightly shifted (image “shear”). This interferometry image is 

registered for two given states of the object to be controlled, first unperturbed, then under 

a stress produced by a mechanical or thermal excitation. The difference between two 

interference images gives a pattern representative of the differential displacements of the 
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surface in the direction of shearing. For NDE purpose, this imaging technique needs to be 

coupled with a mechanical or thermo mechanical stimulation of the structure, with the 

damage creating a local perturbation of the displacement field. Figure 2.1 shows typical 

results corresponding to both thermal and purely mechanical stimulation. 

 

The ElectroMagnetic/InfraRed (EMIR) Method 

The principle of the EMIR method is the fallowing [35]: the structure to be tested is 

illuminated by a microwave electromagnetic (EM) field (X-band). An IR camera 

observes a photothermal thin film converter, some tens of microns thick, of controlled 

electrical conductivity, placed in near vicinity of the structure. The image gives directly 

the space distribution of the electric field intensity in the film plane, allowing visualizing 

local perturbations in the field due to existing defected areas. Defects can be abnormal 

structural arrangement and/or abnormal EM properties. One of the advantages of (EMIR) 

method resides in its sensitivity to the presence of water and/or moisture trapped in the 

composite material due to the damage. This is of practical use, since water absorption is 

possible after the damage occurrence, in the field condition. Two different configurations 

of this method are presented in Figure 2.2 a and b. Detection of water trapped in damaged 

sandwiches using these configurations is shown in Figure 2.2 c, d, e and f. 

 

 
a)                                                        b)                                                          c) 

Figure 2.1: Shaerographic images of damages: a) with thermal excitation; b) vibratory excitation; 

c) idem. 
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Balageas, Bourasseau, Dupont, Bocherens, Dewynter-Marty and Ferdinand 

[35] tested the techniques described above in addition with stimulated IR thermography 

and ultrasonic testing in order to compare their performance when applied to the same 

sandwich composite specimens. Moreover, they used two integrated HMS based on the 

one hand on microbending sensitive fibers and Optical Time Domain Reflectometry 

(OTDR), and on the other hand on Fiber Bragg Grating (FBG) sensors. Their 

experiments demonstrated that HMS can detect damage with sensitivity comparable to 

that of the external NDE techniques. 

 

 
                        a)                                                        b)                                                          c) 

 
                        d)                                                        e)                                                          f) 

Figure 2.2. EMIR method:  a) transmission configuration; b) interferometric configuration; 

c) detection of water trapped in damaged sandwich; d) idem by interferometric technique: 

amplitude image; e) idem: phase image; f) idem by transmission technique (amplitude image) . 
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Electrical Impedance 

The fundamental idea is that through applying and monitoring electric signals within 

an electrically conductive material, the structural condition of it can be determined [36]. 

In this method an electric current is applied and the electric potential is recorded at 

monitoring electrodes around the area of study. Damage, in this case, is linked to a 

reduction in the conductivity as would be appropriate for a tear in an electroactive 

membrane or fiber breakage in a composite laminate structure.  

 

Anderson, Lemoine and Ambur [36] developed an electric potential based damage 

detection technique in conjunction with a feedforward back propagation NN inversion 

scheme to predict damage in electrically conductive composite structures.  

 

According to previous mentioned shearography testing requires a very complex and 

expensive equipment while EMIR method is only efficient when the damage leads to 

water or moisture trapping in the structure. On the other hand, electrical impedance 

scheme is applicable to electrically conductive composite structures. Therefore, we 

consider that IR thermography and vibrations testing are the most adequate for SHM in 

sandwich composite structures. The next chapter is based on numerical vibration analysis 

and we will prove the feasibility of this approach. 
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Chapter 3 
 

Vibrations Analysis 

 
This chapter focuses on using vibration based analysis to generate features that can be 

used to predict severity as well as location of damages. More precisely we are interested 

in the behavior of natural frequencies and mode shapes of the structure. Several damaged 

scenarios will be created using finite element models. Then, linear modal analysis will be 

performed and modal parameters will be obtained. Finally, the feasibility of this method 

in detecting and locating damages will be discussed.     

 

3.1 Vibrations Problem 

 
This section deals with the mathematical formulation of the vibration problem and 

how the solutions of the equations of motion are related to eigenvalue and eigenvector 

problems.  

 
3.1.1 Equations of Motion 

 
The equations of motion for a vibrating structure are commonly derived by applying 

Newton’s second law to all of the degrees of freedom (DOFs) of interest. In practice, 

damping is normally ignored in light weight structures such as sandwich composite 

panels what does not affect the accuracy of the results.  

 

Assuming negligible damping and assuming that the structure is in free vibrations, a 

finite set of equilibrium equations are obtained. Expression (3.1) represents a system of 

second order coupled linear ordinary differential equations, where  and [ ]  

represent the mass matrix and the stiffness matrix respectively and {  is the nodal 

displacement vector. {  is the second temporal derivate of { } . 

[ M ]

}

K 

U(t)

U(t)} U(t)
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 [ ] { } [ ] { } { } M  U(t)  +  K  U(t)  = 0                                       (3.1) 
 

In order to obtain the natural frequencies and mode shapes of the structure, it is not 

necessary to solve the system of equations (3.1). That means that it is not required to know 

the displacement vector {  at any time. Instead, we will use a procedure which 

connects the free vibration problem with eigenvalue problems. 

}U(t)

 
3.1.2 The Eigenvalue Problem  

 
It is well known that the system (3.1) has a solution of the form of simple harmonic 

motion { } { }U(t) u i te ω⋅ ⋅= ⋅  [37], where {u  is a vector of constants to be determined, } ω  is a 

constant to be determined and 1i = − .  Substituting this solution in equation (1):  

 

 [ ] [ ]{ }{ } { }2 M    K u  0 i te ωω ⋅ ⋅− ⋅ + ⋅ =  (3.2) 
 

Note that the scalar  for any value of t and hence equation (3.2) yields the fact 

that 

0 i te ω⋅ ⋅ ≠

ω and {u  must satisfy the following generalized eigenvalue problem:  }

 

 [ ] [ ]{ }{ } { }2 K  M u  0 ω− ⋅ =  (3.3) 
 

Pre and post multiplying equation (3.3) by the matrix 1 2[ ] M − , we transform the 

generalized eigenvalue problem into a standard eigenvalue problem:  

 

 [ ] [ ] [ ]( ) [ ]{ }{ } { }1 2 1 2  2 M  K  M  I u  0 ω− −
⋅ ⋅ − ⋅ =  (3.4) 

 

 [ ] [ ]{ }{ } { }2A  I u  0 ω− ⋅ =  (3.5) 

 

In equation (3.5), ω  represents the eigenvalue (modal frequency) and {u} the 

associated eigenvector (mode shape) of the matrix[ . If the system being modeled has ]A 
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n degrees of freedom, the matrices [ , [  and [  will have dimension n x n and 

the vector {  will have n components. Equation (3.5) will produce result n eigenvalues 

and n eigenvectors.  

]M ]K ]A 

}u

 

Various approaches exist to numerically solve eigenvalue problems. These include: 

QR iteration, Jacobi, Power and the Lanczos methods [38]. In the current work natural 

frequencies and mode shapes are obtained by performing linear modal analysis using 

FEMPRO/ALGOR FEA® commercial software [39]. 

 

3.2 Numerical Model 

 
In model dependent analyses, it is important to have an accurate numerical model 

before performing experiments. In this section we will use a FE model of a sandwich 

composite cantilever beam to demonstrate the feasibility of the curvature approach. The 

model was created according to the test specimen studied later in section 5.2.2 The 

sandwich beam was conformed by two carbon fiber-epoxy face sheets bonded a by rigid 

polyurethane foam. The face sheets were made of epoxy matrix reinforced by carbon 

fibers along longitudinal and transversal directions. The beam dimensions were 23 in 

length, 2 in width and 0.286 in thick, while the foam core was 0.25 in wide. The model 

and coordinate system are shown in Figure 3.1.  

 

 
x 

z y 

0.286 in

23 in

2 in

Figure 3.1: FE model and coordinate system. 
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The FE model of the beam was created in ALGOR® FEA commercial software. Two 

layers of eight nodes “thin composite elements” were used for the face sheets and six 

layers of eight nodes “brick elements” for the foam core. The cantilever boundary 

condition was modeled by constraining all degree of freedoms of the nodes located at the 

root of the beam. For a cantilever beam the vibration mode shapes that can most 

accurately be measured are flexural mode shapes, therefore we selected as features of 

study the first three flexural mode shapes and the corresponding natural frequencies. 

 
In order to test the numerical model and check mesh independency, four mesh 

densities were used for modeling an isotropic aluminum cantilever beam. Aluminum is a 

well known material and theoretical solutions (natural frequencies and mode shapes) are 

available in the literature [37].  After performing linear modal analysis for the first three 

natural frequencies, results obtained from different models were compared to the closed 

form solutions. Table 3.1 lists the frequencies and the percentage difference between 

theoretical and finite element analysis (FEA) results. The variation in natural frequencies 

is less than 2 % between 4 x 23 x 8 and 32 x 184 x 8 mesh densities. Therefore the first 

model was used for all later simulations due to the computational efficiency.  
 
 
Table 3.1: First three natural frequencies of an aluminum beam (Hz). 
 

Elements 
Mode N° Closed - Form  

Solution 4 x 23 x 8 8 x 46 x 8 16 x 92 x 8 32 x 184 x 8  

1st  17.600  17.952 (2.00) 17.843 (1.37) 17.794 (1.10) 17.772 (0.97) 

2nd  110.300  112.461 (1.96) 111.734 (1.29) 111.418 (1.01) 111.276 (0.88) 

3rd  308.832  315.785 (2.25) 312.988 (1.34) 311.921 (1.00) 311.473 (0.85) 

 
 

Since we are interested in flexural mode shapes, only translation degrees of freedom 

along Z direction were considered in the analysis. Translation along the X and Y axis and 

rotations are neglected.  
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3.3 Fitting Model Parameters 

 

To fit the numerical results with further experimental measurements, it is essential to 

know what values of the parameters required for the FE model best characterize the 

physical properties of the test specimen. To deal with this problem, we need first to 

obtain experimental results. The mean square error between numerical frequencies nω  

and measured frequencies eω  were used to build the objective function to be minimized.  

 

 
22 2

3 31 1 2 2

1 2

          
e ne n e n

e e

ω ωω ω ω ω
ω ω ω

⎛ ⎞⎛ ⎞ ⎛ ⎞ −− −
= + + ⎜⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
objective function

3
e ⎟  (3.6) 

 
As mentioned in the previous section, the numerical model of the sandwich beam was 

made of eight nodes thin composite elements and eight nodes brick elements. ALGOR® 

FEA requires six elastic properties for the linear thin composite element type and four 

elastic properties for the linear isotropic brick element type. The elastic constants and the 

notation followed in this work are shown in Table 3.2 and Table 3.3. Therefore, our 

objective function is a thirteen variable valued function. In other words, for obtaining a 

single value of the objective function it must be evaluated in the ten elastic properties and 

the three experimental modal frequencies. 

 
Table 3.2: Linear thin composite element properties. 

 

Notation Property  

fρ  Mass density 
L
fE  Longitudinal modulus of elasticity 
T
fE  Transversal modulus of elasticity 

12
fυ  Major Poisson’s ratio 
21
fυ  Minor Poisson’s ratio 

fG  Shear modulus of elasticity 
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Table 3.3: Linear isotropic brick element properties. 
 

Notation Property  

cρ  Mass density 

cE  Modulus of elasticity 

cυ  Poisson’s ratio 

cG  Shear modulus of elasticity 
 

 

The experimental frequencies listed in Table 3.4 were available from the test later 

described in section 5.2.1. The numerical frequencies are not sensitive to all the variables 

in the same way. A simple sensitivity study showed that only six of the ten elastic 

properties are significant for the objective function. Figure 3.2 and Figure 3.3 show the 

behavior of the objective function with respect to the model parameters. The variables 
T
fE , 12

fυ , 12
fυ  and cυ  do not modify significantly the objective function, therefore they can 

be ignored in the optimization process.  

 
Table 3.4: Experimental natural frequencies. 

 

Mode N° Natural Frequency [Hz] 

1st  25.625 

2nd  134.062 

3rd  314.062 

 

Thus, the original thirteen variable valued objective function (3.7) was reduced to a six 

variable valued function (3.8): 

 
 original 12 21

1 2 3 =  ( , , , , , , , , , , , , )L T e
f f f f f f c c c cf E E G E G e eρ υ υ ρ υ ω ω ωobjective function  (3.7) 

 
 reduced  =  ( , , , , , )L

f f f c c cf E G E Gρ ρobjective function  (3.8) 
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Figure 3.2: Variation of the objective function with respect to the face sheet parameters a) mass 

density; b) longitudinal modulus of elasticity; c) transversal modulus of elasticity; d) mayor 

poisson ratio; e) minor poisson ratio; f) shear modulus of elasticity.   
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Figure 3.3: Variation of the objective function with respect to the foam core g) mass density; h) 

modulus of elasticity; i) poisson ratio; j) shear modulus of elasticity. 

 

Since an analytical expression for the objective function (f) in terms of the elastic 

properties was not available and we only had some discrete values of this function, it was 

necessary to apply an interpolation technique. The method chosen to optimize the 

reduced objective function was the quadratic interpolation method [65]. This procedure is 

based on selecting three values for the first variable 1 2 3( , , )f f fρ ρ ρ while keeping the 

remaining variables fixed ( , , , , )L
f f c c cE G E Gρ  and evaluating the function f at those points 

(equations (3.9)). Then, a second order polynomial 1( )fh ρ is used to approximate the 

objective function at those values and a local minimum ( *
fρ ) of 1( )fh ρ  is found. 
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1( , , , , , )L
f f f c c cf E G E Gρ ρ  

 2( , , , , , )L
f f f c c cf E G E Gρ ρ  (3.9) 
3( , , , , , )L
f f f c c cf E G E Gρ ρ  

 
Later, setting the value *

fρ  for the variable fρ  and selecting three values for the 

second variable 1 2 3( , ,L L L
f f f )E E E , three new values of the objective function are obtained:  

 
* 1( , , , , , )L
f f f c c cf E G E Gρ ρ  

 * 2( , , , , , )L
f f f c c cf E G E Gρ ρ  (3.10) 
* 3( , , , , ,L )f f f c c cf E G E Gρ ρ  

 
A new second order polynomial ( )L

2 fh E  is used to fit the function f at those points and a 

local minimum, *L
fE , of this polynomial is found. Figure 3.4 depicts the optimization 

method for the first two variables fρ  and L
fE .  

 

 
Figure 3.4. 
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This procedure is repeated for all the variables until a satisfactory value of objective 

function is reached. Each time the six variables of f are updated, an iteration of the 

optimization method is completed.  

 

Note that initial values for the six elastic constants ( , , , , , )L
f f f c c cE G E Gρ ρ are required 

in order to start the optimization method. The further these values are from the optimum, 

the greater the number of iterations that are needed by the method to converge to a 

solution. As a starting point, typical elastic property values for materials used in 

sandwich composite panels [41] were used as input parameters to the numerical model.  

 
Two complete iterations were necessary to obtain a satisfactory level of accuracy in 

the numerical results. However the procedure was not stopped until five iterations to 

check the stability of the solution. Convergence of the method is shown in Figure 3.5. The 

final elastic properties of the FE model listed in Table 3.5 lead to the value 1.178 x 10-3 

for the objective function. 
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Figure 3.5. 

 

Because of the fiber orientation in the face sheets, mechanical properties of this 

material are equal along both longitudinal and transversal directions. In addition, the 
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foam core longitudinal modulus of elasticity is negligible compared with the face sheet 

modulus of elasticity.  

 
Table 3.5: Elastic properties used in the FE model. 

 

Property Face Sheet Foam Core 

Mass density (lb/in3) 1.97x10-4 1.56x10-5

Longitudinal modulus of elasticity (lbf/in2) 8.13x106 1x102

Transversal modulus of elasticity (lbf/in2) 8.13x106 ___ 

Major Poisson’s ratio 0.3 0.3 

Minor Poisson’s ratio 0.3 ___ 

Shear modulus of elasticity (lbf/in2) 9x104 5.6x103

 

Setting the above elastic constants for the finite element model, the first three natural 

frequencies were calculated and compared with those obtained experimentally in section 

5.2.3. Table 3.6 indicates that the maximum difference between numerical and 

experimental results was less than 3 %. 

 
Table 3.6: Natural frequencies of the intact FE beam. 

 

Mode N° Experimental Results Finite Element Results 

1st  25.625 24.903 (2.81) 

2nd  134.062 134.668 (0.45) 

3rd  314.062 318.859 (1.52) 

 

According to the level of accuracy obtained with this model, elastic properties listed 

in Table 5 will be used for all later finite element simulations. Moreover, section 5.2.3 

shows the close agreement between numerical mode shapes and curvature mode shapes 

measured in the modal testing. 
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3.4 Curvature Finite Difference Approximation 

 

Localized changes in stiffness result in a mode shape that has a localized change in 

slope, therefore, this feature will be studied as a possible candidate for damage detection 

purposes. For a beam in bending the curvature (κ) can be approximated by the second 

derivate of the deflection: 

 

 
2

2

zd
dx

κ =  (3.11) 

 
In addition, numerical and experimental mode shape data is discrete in space, thus the 

change in slope at each node can be estimated using finite difference approximations. In 

this work the central difference equation was used to approximate the second derivate of 

the displacements u along the X direction at node i:  

 

 1
2

z 2 z zi i
i h

κ 1i− +− ⋅ +
=  (3.12) 

 
The term  is the element length. In this process meshing and node 

numbering is very important. Equation (3.12) require the knowledge of the displacements 

at node i, node i -1 and node i+1 in order to evaluate the curvature at node i. Thus, the 

value of the curvature of the mode shapes could be calculated starting from node 2 thru 

node 23. After obtaining the curvature mode shapes the absolute difference between the 

undamaged and damaged state is determined to improve damage detection  

1z zi ih −= −

 

 ( )     
Damage
WithiDamage

Noii     κκκ −=Δ  (3.13) 

 
As a result of this analysis, a set of curvature vectors for different damage 

localizations are obtained. These vectors will be used as input data to train the neural 

network. A neural network is employed to make pattern recognition and to classify 

further numerical (FEA) results and experimental vibration measurements. 
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3.5 Undamaged Case 

 

By using the same finite element model presented in section 3.3, linear mode shapes 

and natural frequencies analysis was performed in ALGOR® FEA. The numerical results 

were exported to MATLAB® [41] to be processed. The first three natural frequencies of 

the intact cantilever beam were listed previously in Table 3.6.  

 
The associated mode shapes were sketched evaluating the displacements in Z 

direction of the 24 equidistant nodes located at the centerline of the beam as shown in 

Figure 3.6. In order to unify the results from the different cases, mode shapes were 

normalized by setting the largest grid point displacement equal to 1. 

 

 1    2     3    4     5    6    7    8     9    10   11  12  13   14   15   16  17  18   19   20  21   22  23  24 

z 
y 

x 

 
Figure 3.6: Node location in the FE model. 

 
 

Figure 3.7 shows the first three mode shapes for the intact cantilever beam. The 

curvature mode shapes were calculated from the displacements mode shapes by applying 

the central difference approximation for the second derivate. The first three curvature 

mode shapes are shown in Figure 3.8.  

 

It can be noticed from these figures that all the mode shapes and curvature mode 

shapes are smoothed functions, what indicate the absence of damages. Undamaged 

curvature mode shapes will be used to compare further results. Since changes in the 

curvature are local in nature, they can be used to detect and locate damages in the beam.  
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Figure 3.7: Mode shapes - Intact beam. 
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Figure 3.8: Curvature mode shapes - Intact beam. 

 
 
3.6 Damaged Case 
 
 

Structural damage was modeled as a local separation between the face sheet and the 

foam core. A 1 in x 2 in bond failure was created in the FE model by having a region 

where elements were not connected to each other. Five different locations were selected 

along the beam span for setting the damages. These locations are between node 3 - 4, 

node 5 - 6, node 9 - 10, node 16 - 17 and node 20 - 21. The dimensions used to model the 
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failure were kept constant during the analyses. The damage scenarios were studied 

individually and then some combined cases were studied.  

 

3.6.1 Simple Damage Scenarios 

 
The first scenario selected for studying the effect of a localized damage in the beam is 

shown in Figure 3.9. As in the previous section, linear mode shapes and natural frequency 

analysis was performed using ALGOR FEA®. The elastic properties of the materials are 

the same as that for the undamaged beam and remain constant for all the cases.  
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Figure 3.9: FEM of damage case 2. 

 

The first three natural frequencies of the damaged cantilever beam (case 2) are listed 

in Table 3.7. Since the damage produced a localized reduction in stiffness, the natural 

frequencies have decreased compared to those corresponding to the intact beam (Table 

3.6). The associated mode shapes and curvature mode shapes are shown in Figure 3.10 and 

Figure 3.11.  
 

Table 3.7: Frequencies of the damaged FE beam. 
 

Mode N° Natural Frequency [Hz] 

1st  24.547 

2nd  122.079 

3rd  303.989 
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Figure 3.10: Mode shapes - Damage case 2. 
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Figure 3.11: Curvature mode shapes - Damage case 2. 

 

From these figures, it can be seen that both mode shapes and curvature mode shapes 

suffer significant irregularities which are more marked in the damaged area. In section 

3.7 the selection of the difference in curvature mode shapes as feature for damage 

detection and location is justified. Figure 3.12 shows the absolute difference in curvature 

between the intact beam and the damaged beam. This feature also was normalized by 

setting the largest value equal to 1. 
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Figure 3.12: Difference in curvature - Damage case 2. 

 

The maximum difference value for each curvature mode shape occurs in the damage 

location, which was placed between node 5 and node 6. In other areas of the beam this 

characteristic was much smaller. Although the third mode shapes was the most sensitive 

to the failure it is important that the three curvature mode shapes peak at the damaged 

location. The same analysis was performed for the other damage cases and analogous 

results were obtained. Natural frequencies are all listed in Table 3.8. Although the 

reduction in natural frequencies is related to the existence of damage and its severity, this 

feature can not provide any useful information about the location of the damage. Thus, 

this modal parameter will not be considered in the following cases. Curvature mode 

shapes were calculated and compared with the undamaged case (Figures 3.13-3.16).  

 
Table 3.8: Natural frequencies for different damage locations (Hz). 
 

Damage Case  Mode 
N°  

1) Node 3 - 4 2) Node 5 - 6 3) Node 9 - 10 4) Node 16 -17 5) Node 20 - 21 

1st   24.558 24.547 24.559 24.731 24.885 

2nd   119.547 122.079 130.546 130.949 129.549 

3rd   279.013 303.989 295.377 318.483 286.192 
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Figure 3.13: Difference in curvature - Damage case 1. 
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Figure 3.14: Difference in curvature - Damage case 3. 
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Figure 3.15: Difference in curvature - Damage case 4. 
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Figure 3.16: Difference in curvature - Damage case 5. 

 
 

Each plot shows a peak at the damage location; therefore this feature successfully 

identified the position of the damage along the length of the beam. Always the third mode 

shape was the most sensitive to the damage except in damage case 4 where the second 

mode shape better identified the failure. In chapter 6, differences in curvature mode 

shapes will be used as input patterns to the neural network and the corresponding damage 

position as its associated target in the training procedure for further case classification.  

 

3.6.2 Multiple Damages Scenarios 

 

In order to investigate the behavior of curvature mode shapes when multiple damages 

are present in the beam, the same analysis was performed for a beam containing 

simultaneously two of the previous damage scenarios.  
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Figure 3.17: FE model of multiple damages (case 6). 
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The first of the multiple damage scenarios was a combination of damage case 1 and 

damage case 3 as shown in Figure 3.17. Curvature mode shapes were calculated for this 

multiply damaged beam and compared with those from the intact beam. The results are 

plotted in Figure 3.18. 
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Figure 3.18: Difference in curvature - Damage case 6. 

 
The second of the multiple damage scenarios was a combination of damage case 2 and 

damage case 4 as shown in Figure 3.19. The results are plotted in Figure 3.20. 
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Figure 3.19: FE model of damage case 7. 

 
 

According to the previous results, the proposed approach not only successfully 

located the damage for single cases but also for multiple damage scenarios. 
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Figure 3.20: Difference in curvature - Damage case 7.  

 

This particular characteristic makes this procedure suitable for real application where, 

in most cases, structures may contain several defects at the same time.  

 

3.7 Scope of the Method 

 

This section focuses on the limitations of the damage detection curvature approach. 

Different damage sizes and location were studied. First, a 0.75 in x 0.0625 in x 0.018 in 

surface crack was modeled between node 11 and node 12. Figure 3.21 shows the damage 

location. The mode shapes and curvature mode shapes are plotted in Figure 3.22 and 

Figure 3.23 respectively. 
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Figure 3.21:  FE model of damage case 8. 
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Figure 3.22: Mode shapes - Damage case 8. 
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Figure 3.23: Curvature mode shapes - Damage case 8. 
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Figure 3.24: Difference in curvature - Damage case 8. 
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This damage scenario was not detected using the natural mode shapes because they 

did not significantly change from the undamaged mode shapes. A small peak can be 

observed in the second curvature mode shape. Performing the difference between 

curvature mode shapes, Figure 3.24 is obtained.  Although the second curvature mode 

shape was the most sensitive to the crack, the three curves show peaks between node 11 

and node 12. This damage case validates the selection of the curvature approach for 

damage detection reasons.  

 

Finally, a damage scenario consisting in a 0.0625 in diameter and 0.018 in depth 

indentation introduced between node 10 and node 11 on the surface of the sandwich 

beam model. Differences in curvature mode shapes were calculated and plotted in Figure 

3.26.   
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Figure 3.25:  FE model of damage Case 9. 
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Figure 3.26: Difference in curvature - Damage case 9. 
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This case shows that curvature approach may mask the damage location when it does 

not severely reduce the stiffness of the structure. The first curvature mode shape was 

unable to predict the defect location. Another example is the damage scenario shown in 

Figure 3.27 whose curvature data is plotted in Figure 3.28.  
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Figure 3.27:  FE model of damage Case 10. 
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Figure 3.28: Difference in curvature - Damage case 10. 

 

These situations could be classified erroneously by the neural network. Therefore, in 

the next chapter thermal transient analysis is considered as an alternative method of 

damage characterization that complements the curvature method.  
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Chapter 4 
 

Thermal Analysis 
 

In this chapter the transient thermal response of a sandwich composite structure is 

studied. The mathematical formulation of the problem is presented. Then, a numerical 

approximation technique is used to solve the governing equations. The thermal 

distribution on the surface of the model is analyzed when damages are introduced. 

Finally, the feasibility of this feature being used for damage detection is discussed.  

 

4.1 Heat Transfer Problem 

 

The analysis consists in the acquisition of external surface temperature data from a 

numerical model in response to a thermal transient excitation induced by external heating 

and exposed to free convection condition. This method is based on the fact that in 

presence of a defect; the surface temperature evolution is locally modified producing a 

thermal contrast whose localization allows identifying the damaged area. 

 

4.1.1 Problem Formulation 

 

The governing partial difference equation that models the temperature distribution is 

the three dimensional transient heat conduction equation [42,43]: 

 

 
T T T

x x y y z zpc k k k
t

ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⋅ ⋅ = ⋅ + ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

T
 (4.1) 

 
The terms T, ρ ,  and c  in equation (1) represent temperature, mass density, thermal 

conductivity and specific heat capacity respectively, 

k

( )x, y, z  are the spatial coordinates 

and t is the time. To solve this equation, it is necessary to use a set of initial and boundary 
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conditions. In particular, one initial condition in time and two boundary conditions in 

space are used. To simplify the notation, we rename the coordinates   

. ( ) ( 1 2 3 x, y, z  = x , x , x=x )
 
Initial conditions: 

 

 
0  0
 x  

0 0
 x

T  T          x     

T   T          x     
i

i

i

i

= ∈ Γ

= ∈ Γ
 (4.2) 

 
0T  and  are initial temperature values for points placed in the regions  and 0T Γ Γ  of 

the domain of equation (4.1) 

 

Boundary conditions: 

 

 ( ) (0  x
 x 0  x x

T TT T           T T
x x i

i i i

L
i i L

k h k h )∞ ∞

= =

∂ ∂
⋅ = ⋅ − ⋅ = ⋅ −
∂ ∂

 (4.3) 

 
In the above equation  represents the convection heat transfer coefficient,  is the 

ambient temperature and  is the model length in  direction. The coefficient h  for 

the vertical face was approximated by using the correlation for a vertical plate. This 

correlation is formulated in terms of non dimensional numbers [43]. The first of them is 

the Nusselt number defined as:  

h T∞

xL i xi

 

 

2 x n

a

h LNu CRa
k

= =  (4.4) 

 
In equation (4.4),  represents the thermal conductivity of the air, is the height 

of the plate, and C and are constant that depend on the Raleigh number . In this 

case, it is recommended [43] to use 

ak x2L

n Ra

02.1=C  and 148.0=n .  
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The Raleigh number  is defined as: Ra

 

 

3
2( ) xS

a a

g T T LRa
v

β
α

∞−
=  (4.5) 

 
The term  is the gravity constant,  is the surface temperature where  is 

evaluated,  is the temperature of the air far way from the beam,  is the viscosity of 

air, and 

g ST h

∞T av

aα  is the diffusivity of the air. The term β  is the volumetric thermal expansion, 

which is approximated by: 

 

 filmT
1

=β
 (4.6) 

 

 2
∞+

=
TTT S

film  (4.7) 

 

The temperatures  and are in Kelvin. ST ∞T Figure 4.1 shows the convection heat 

transfer coefficient used in the numerical simulation. 
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Figure 4.1. 
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Several numerical methods are available to solve equation (4.1). These include FEA, 

the finite difference (FD) method, finite volume (FV) method, among others. An 

algorithm that allows the handling of parameters defined above was required. The FV 

code was selected in order to obtain the numerical solution of the thermal problem 

[44,45,46]. This technique involves integrating the differential equation into a control 

volume. The integration process is done around a nodal point P. Its neighboring nodal 

points are called E and W (east and west) in x1 direction, N and S (north and south) in x2 

direction and T and B (top and bottom) in x3 direction. According to the notation used in 

the literature, capital letters indicate the nodal point while small letters refer to the 

boundary of the control volume around the point P.  

 

To show how this technique works, we approximate equation (4.1) along x1 direction. 

The first step in FV technique is to divide the original domain into discrete control 

volumes. The simplest case of control volume is a cube centered in each nodal point.  

 

 
Figure 4.2: 1D FV model. 

 

Figure 4.2 describes the 1D model of FV. Then, the x1 dimensional version of 

equation (4.1) is integrated over the domain of the control volume ( )Ω : 

 

 1 1

T T  0
x x pk c d

t
ρ

Ω

⎛ ⎞⎛ ⎞∂ ∂ ∂
⋅ − ⋅ ⋅ Ω =⎜ ⎜ ⎟⎜ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∫ ⎟⎟  (4.8) 
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1 2x x xd d d dΩ = ⋅ ⋅ 3 . Solving equation (4.8): 

 

 
1

1 1  

T T Tx   
x x p

e w

k A k A c A
t

ρ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂

⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅Δ ⋅ ⋅ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
0  (4.9) 

 
In equation (4.9), A  represents the cross sectional area and 1xΔ  is the dimension along 

x1 axis of the control volume. The flux terms are approximated by: 

 

 

1 1 x  x

1 1 

T TT  
x x

E P

EPe

k A k A
⎛ ⎞−⎛ ⎞∂

⋅ ⋅ = ⋅ ⋅⎜⎜ ⎟ ⎜∂ Δ⎝ ⎠ ⎝ ⎠
⎟⎟  (4.10) 

 

 

1 1 x  x

1 1

T TT  
x x

P W

PWw

k A k A
⎛ ⎞−⎛ ⎞∂

⋅ ⋅ = ⋅ ⋅⎜⎜ ⎟ ⎜∂ Δ⎝ ⎠ ⎝ ⎠
⎟⎟  (4.11) 

 
Where  is the length between  and , 1x EPΔ 1x E 1x P 1x PWΔ  is the length between  

and , and 

1x W

1x P 1 xT
E

, , 
1 xT
W 1 xT

P
 are the temperatures of the nodal point E, W and P 

respectively. Substituting equations (4.10) and (4.11) into equation (4.9): 

  

 

1 11 1  x  x x  x
1

1 1

T TT T Tx   
x x

P WE P
p

EP PW

k A k A c A
t

ρ
⎛ ⎞⎛ ⎞ −− ∂

⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅Δ ⋅ ⋅ =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠
0

∂
 (4.12) 

 
Rewriting the above equation: 

 

 

1 11 1  x  x x  x
1

1 1

T TT T T -    x
x x

P WE P p

EP PW

c
k t

ρ⎛ ⎞⎛ ⎞ −− ⋅ ∂
= ⋅Δ ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠ ∂

 (4.13) 

 
Regrouping terms: 

 

 1 11  x  x  
Tx   T T T

1xE WE W Pa a a
t

α ∂
⋅Δ ⋅ = ⋅ + ⋅ − ⋅

∂ P
 (4.14)
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In equation (4.14), α is the thermal diffusivity. The coefficients are defined as: 

 

1

1
xE

EP

a =
Δ

 

 1

1
xW

PW

a =
Δ

 (4.15)
 

EWP aaa +=  

 

In addition, equation (4.14) must be integrated in time. A fully implicit scheme was 

used to solve the integration. This method approximates the time derivate by using 

equation (4.16) with a  time step.  tΔ

 

 T T T  
t t t

t t

+Δ∂ +
=

∂ Δ
 (4.16) 

Equation (4.14) takes the form: 
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 (4.17) 

 
Rewriting equation (4.17): 

 

 1 1 1

   
0  x  x  x 0  x( ) T   T T T

P E W

t t t t t t t
P E Wa a a a a+Δ +Δ +Δ+ ⋅ = ⋅ + ⋅ − ⋅
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Where: 

 

 
1

0
xa

t
α ⋅Δ

=
Δ

 (4.19) 

 
The iterative method (4.18) starts at the initial temperature values given by equations 

(4.2). The matrix form of equation (4.18) is: 

 

  (4.20) [ A ]{ } { }T B=
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Where  is the matrix of coefficients {  is the vector of the unknown 

temperatures and {

[ A ] }T

}B  is a vector computed from the right hand side of equation (4.18). 

The vector { }B  contains all known values obtained from the initial condition, the 

previous time step or the boundary conditions.  

 

To solve the system (4.20) the Conjugated Gradient Stabilized (CGSTAB) algorithm 

[38] was written in a FORTRAN [47] code. The block diagram of the code is shown in 

Figure 4.3. The main program trans3d uses five subroutines. The first of them is the 

subroutine init which reads the data of the problem: initial conditions, dimensions, and 

so forth. Then the 3D mesh is generated by the subroutine gridgen. The assembly of the 

matrix  [  is done by calct which uses the subroutine bct to set the boundary 

conditions.  The subroutine cgstab3d solves the linear system (4.20) using the CGSTAB 

algorithm. Finally the subroutine tecplot prints the results in the TECPLOT

 A ]

® [48] file 

format. 

 

trans3d 
Main Program 

init 
Subroutine 

 

gridgen 
Subroutine 

 

calct 
Subroutine 

cgstab3d 
Subroutine 

tecplot 
Subroutine 

 

bct 
Subroutine 

 

Figure 4.3: Block diagram of CGSTAB code. 
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 TECPLOT® was used to generate a set of images (bitmaps) of the surface temperature 

distribution as a function of time. These images are related to a particular damage case. 

Later, the bitmaps will be converted to numerical data to train a neural network.  As in 

the vibration approach, this neural network will be employed to make pattern recognition 

and to classify measured thermal data for damage detection. 

 

4.2 Numerical Model 

 

As mentioned previously the temperature distribution on the test specimen was 

predicted using the FV method. This numerical solution provided a basis for the required 

temperature range and sensitivity of the infrared imager that was used in the experimental 

application. The FV model was a 6 in x 2 in x 0.286 in sandwich composite. This model 

was created by using a 96 x 29 x 20 nodes grid. It gave a spatial resolution of a 0.0625 in 

x 0.069 in on the x1 - x2 plane (Figure 4.4). Three different thermal properties were set in 

the x3 direction corresponding to the materials of the sandwich.   

 

 

2 in 

6 in
x1 

x2 

x3 

Figure 4.4: 3D FV mesh. 

 

The defects were represented as inclusions of a material with thermal properties 

different from that of the composite material. Air properties were used to represent 

material defects. Free convection losses from the beam surface were considered. The 

thermal properties of the sandwich and defects do not vary with temperature. An instant 

surface heating was modeled by setting  and  as initial temperatures in the regions 0T 0T
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Γ  and Γ respectively (Figure 4.5). The transient thermal distribution of the model is 

directly related to the heated area Γ . The parameters required for this model are listed in 

Table 4.1. 

 

ΓΓ  Γ

Figure 4.5: Initial temperature distribution. 
 

Table 4.1: FV model parameters. 

Parameter Value  

Spatial resolution ,1xΔ 2xΔ , 3xΔ  [cm] 1.58, 1.75, 0.036 

Time step [sec] tΔ 0.01 

Initial temperature [K, °C] 0T 353.15, 80  

Initial temperature [K, °C] 0T 298.15, 25 

Ambient temperature [K, °C] T∞ 298.15, 25 

Face sheet material thermal diffusivity fα [sec/cm] 0.062 

Foam core material thermal diffusivity cα [sec/cm] 0.22 

Damage thermal diffusivity dα [sec/cm] 0.22 

Convection coefficient [W/cm K] h Figure 4.1 

 
 
The solution of this model allows obtaining a temperature value at each node of the 

grid for a moment in time from initial to infinity with a defined time step. The first 60 

seconds of the transient thermal response of the sandwich composite are represented in a 

sequence of 12 images. This sequence is similar to one received from an infrared camera, 

except it is free from noise, optical distortions and inhomogeneous heating. Image 

processing techniques will be applied to this ideal temperature response in order to study 

scope of the proposed thermal NDE. 
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4.3 Undamaged Case 

 

The normal thermal response of the sandwich composite was simulated using the FV 

model described in the previous section. The model parameters values were set according 

to Table 4.1. The study was limited to a 4 in x 2 in centered area. The temperature range 

selected was 25 °C - 28 °C using a scale of 16 colors. The surface temperature 

distribution was plotted every 5 seconds during an interval of 60 seconds (Figure 4.6).  

The isotherms have elliptical shapes shifted from the center. This effect is associated with 

the variation of the convection coefficient  along xh 2 direction (Figure 4.1) and it will be 

present when the face sheet is placed vertically. No shifting due to convection will be 

present if the face sheet is horizontal. Any irregularity can be observed from this 

sequence of images.    

 

 
a) 

 
b) 
 

 
c) 

 
d) 
 

 
Figure 4.6. Undamaged case: a) 5 sec.; b) 10 sec.; c) 15 sec.; d) 20 sec.
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e) 

 
f) 

 
g) 

 
h) 
 

 
i) 

 
j) 

 
k) 

 
l) 
 

Figure 4.6. Undamaged case: e) 25 sec.; f) 30 sec.; g) 35 sec.; h) 40 sec.; i) 45 sec.; j) 50 sec.; 

k) 55 sec.; l) 60sec.

 59



4.4 Damaged Case 

 

4.4.1 Simple Damage Scenarios 

 

In order to study the thermal distribution around a surface defect, a 1/16 in diameter 

indentation was modeled. The depth of this damage is equal to the face sheet thickness. 

As mentioned in the previous section, the thermal diffusivity of the defect is much less 

than the face sheet diffusivity. Thus, while the temperature on the surface of the model 

decreases, the defect location appears visible as a hot spot. For all the damage cases 

studied in this section, we will only show the most relevant images. These images 

represent the success of the thermal analysis in detecting the damage location. In Figure 

4.7 a and b a hot spot can be clearly visualized while in Figure 4.7 c and d the damage is 

less noticeable.  

 
a) 

 
b) 

 
c) 

 
d) 

 
Figure 4.7. Damage case 1: a) 10 sec.; b) 15 sec.; c) 30 sec.; d) 35 sec.

 

damage damage 

damage damage 
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The relative position of the damage respect to the heated zone is the factor that 

determines the time at which the damage can be identified. The location and size of the 

damage can be extracted from an image using edge extraction techniques. These features 

will be used later to characterize each damage case (section 6.4). 

 

The next damage scenario includes the same type of damage studied in the 

previous case but with different location.  The simulated defect was placed near to the 

heating focus. Two thermal images were able to locate the damage. Figure 4.8 correspond 

to 50 and 55 seconds of transient thermal response of the model respectively. Because of 

its position, the defect was not detected until the last seconds of the interval of study. A 

small hot spot can be seen inside the red area.  

 

 
a) 

 

damage damage 

b) 
 

Figure 4.8. Damage case 2: a) 50 sec.; b) 55 sec. 

The next damage case consists of a 1/8 in diameter notch through the face sheet of the 

sandwich composite. Size of the damage is an important factor when locating it. The 

bigger the size, the longer the period of time that the defect is visible. The numerical 

solution was plotted at 5, 10, 30 and 35 seconds in Figure 4.9. Note that in all the cases 

studied until now, the temperature distribution changed only in the vicinity of the 

damage. Far away from this area the thermal response remained unperturbed. Thus most 

of the information contained in each image is not required for damage detection.  
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Therefore, features extraction techniques are required in order to reduce the amount of 

data and retain the relevant information. 

 
a) 

 
b) 

 
c) 

 
d) 

 
Figure 4.9. Damage case 3: a) 5 sec.; b) 15 sec.; c) 30 sec.; d) 35 sec. 

 

A 3/8 in surface crack was created in the FV model by connecting consecutive 

damaged elements. The thermal response at 50 and 55 seconds is shown in Figure 4.10.  

 

 
a) 

 
b) 

 
Figure 4.10. Damage case 4: a) 50 sec.; b) 55 sec. 

 

 62



4.4.2 Multiple Damage Scenarios 

 

Multiple damage states may be common in sandwich composite structures. The 

thermal technique presented here is especially suitable for these cases.  The same 

concepts and conclusions for a single damage state apply when several damages occur in 

the material. The feature extraction method, which will be described in Chapter 6, 

identifies each hot spot in an image and then classifies it according to a data base of 

known damage cases. Figure 4.11 a and b show the FV solution at 15 and 20 seconds 

respectively. In both images two hot spots can be distinguished. 

 

 
a) 

 

damage damage 

b) 
 
 

Figure 4.11. Damage case 5: a) 15 sec.; b) 20 sec 
 
 

4.5 Scope of the Method 

 

Note that all the damage cases analyzed in this chapter included surface failures. This 

is the principal limitation of thermal transient analysis. Because of the thermal 

distribution only changes in the vicinity of the damage, this technique is unable to detect 

subsurface defects. This conclusion will be demonstrated by experimental results in 

Chapter 5. However thermal response showed to be suitable to identify small surface 

defects which were almost undetectable by the curvature approach studied in Chapter 4. 

These two techniques complement each other and will be used together in order to 

improve the damage detection capability. 
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Chapter 5 
 

Experimental Validation 
 

5.1 Introduction 

 

The purpose of experiments is to acquire real information about the behavior of the 

specimen under study in response to an external excitation (thermal or vibration) and to 

validate the numerical results. Validation of the numerical models is crucial as they are 

the source of the data used in the damage detection process. As previously mentioned, 

two non destructive evaluation methods will be studied. Modal testing will be performed 

in order to obtain the dynamic properties of the structure (natural frequencies and mode 

shapes) and IR thermography will provide necessary information about the surface 

temperature distribution over the beam. Several damages scenarios will be tested by both 

techniques with the purpose of determining the limitations of each method. The obtained 

experimental data will be used for training and simulating an ANN in order to identify 

and locate the damage.  

 

5.2 Modal Testing 

 

In modal testing, Frequency Response Function (FRF) measurements are usually 

made under controlled conditions, where the test structure is artificially excited. The FRF 

is a fundamental measurement that isolates the inherent dynamic properties (frequencies 

and mode shapes) of a mechanical structure [49]. The FRF describes the input output 

relationship between two degrees of freedom (DOFs) on a structure as a function of 

frequency. In Figure 5.1 the output of the mechanical system  is related to the input 

 through the factor . A brief look at the mathematical representation of the 

X(ω)

F(ω) H(ω)
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dynamics of a structure reveals that FRFs can be completely represented in terms of 

modal parameters [50]. 

 

 
 

Figure 5.1: FRF H(  definition. ω)
 

The equations of motion for a vibrating structure are commonly derived by applying 

Newton’s second law to all of the DOFs of interest in the structure. In an experimental 

situation, this results in a finite set of equations, one for each measured DOF: 

 
  (5.1) [ M ]{X( )} + [ K ]{X( )} = {F( )}t t t

 
The excitation forces and responses are functions of time t, and the coefficient 

matrices  and [ K ]  are constants. This dynamic model describes the vibration 

response of a linear, time invariant structure. If initial conditions are ignored, the 

equivalent frequency domain form of the dynamic model can be represented in terms of 

discrete Fourier Transform (FT) [50]: 

[ M ]

 
  (5.2) {X(ω)} = [ H(ω) ]{F(ω)}

 
This equation is a definition of the FRF matrix. It also indicates that FRF ( ) is 

defined [49] as the ratio of the FT of an output response ( X( ) divided by the FT of the 

input force ( ) that caused the output. An FRF is a complex valued function of 

frequency and can be displayed in various formats as shown in Figure 5.2. In this chapter, 

the Bode representation will be used to plot the measured FRFs. Figure 5.3 is a typical 

plot of the Log Magnitude of an FRF measurement (solid curve), but several resonance 

curves are also plotted as dotted lines. 

H(ω)

ω)

F(ω)
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Figure 5.2: Typical FRF plots. 
 

Each of these resonance curves (dotted lines) is the structural response due to a single 

mode of vibration. The overall structural response is in fact, the summation of resonance 

curves. In other words, the overall response of a structure at any frequency is a 

summation of responses due to each of its modes. It is also evident that close to the 

frequency of one of the resonance peaks, the response of one mode will dominate the 

frequency response [49]. The frequency of a resonance peak in the FRF is used as the 

modal frequency. This peak frequency is not exactly equal to the modal frequency but is 

a close approximation, especially for lightly damped structures.  

 

 
 

Figure 5.3: Log magnitude of an FRF. 
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To properly identify a resonant peak two characteristics must be present: the 

magnitude of the FRF must be at a local maximum and a phase shift of approximately nπ 

degrees must occur. On the other hand, mode shapes can be obtained by applying well 

known curve fitting methods [49]. However, in the current work mode shapes are found 

by exciting the structure at each one of the peak frequencies and measuring the response 

(displacements) at several points of the structure. Thus, experimental modal parameters 

(frequencies and mode shapes) are obtained from a set of FRF measurements. 

 

5.2.1 Test Specimens 

 

Several sandwich composite beams were used as specimens for experimental testing. 

The samples are made of two carbon fiber-epoxy face sheets bonded by rigid 

polyurethane foam. The face sheets are made of epoxy matrix reinforced by carbon fibers 

along longitudinal and transversal directions. All the tested samples were 47 in length, 2 

in width and 0.286 in thick with 0.25 in of the thick of foam core.  

 

The mid point of the beam was considered to be the optimum DOF from which to 

excite the flexural modes of the beam. This location is the best choice for the shaker and 

the reference accelerometer installation. Only one half of the beam was used as test 

model, the other half was used for symmetry reasons. The geometric symmetry with 

respect to Y axis (see Figure 5.4), avoided the rotation of the cross section at the middle 

of beam simulating a cantilever condition.   

 

In the first stage, modal testing was performed using an intact sandwich beam in 

order to adjust the finite element model. Later, numerous fault scenarios were created by 

introducing different types of damages at diverse locations along the beam. These 

included bond and core failures and superficial cracks. The objective of the study was to 

evaluate the scope of applicability of the method. Finally, multiple damage scenarios 

were analyzed to observe the behavior of modal parameters under these conditions. 
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5.2.2 Experimental Set Up 

 

FRF measurements must be acquired by providing artificial excitation with one or 

more shakers attached to the structure. Two common types of shakers are electro 

dynamic and hydraulic shakers. A variety of broad band excitation methods can be used, 

employing low level random, sine or transient signals [51]. At least a 2 channel Fast 

Fourier Transform (FFT) analyzer and a single axis accelerometer are required to make 

FRF measurements using a shaker. In this work, the test structure was set into vibration 

by using a VTS (Vibration Test Analysis) electro dynamic shaker [52]. The shaker input 

signals were created from the Virtual Function Generator (VFG) of the SigLabTM 

commercial package [53]. A 6 channel DSPT SigLab Dynamic Signal Analysis (DSA) 

system [54] was used to deal with the signals. Figure 5.4 depicts the experimental 

equipment and set up and the coordinate system. The DSA system sends the excitation 

signal to the shaker through output channel 1 (OC1) while receiving the measurements 

from a reference accelerometer and a Laser Doppler Vibrometer (LDV) [55] through input 

channels 1 (IC1) and 2 (IC2). 

 

 

Shaker

Reference 
Accelerometer 

Power Amplifier

(DSA) System 

PC - Siglab Software 

Test 
Structure 

X 

Z

LDV 

OC 1IC 2 IC 1 

Y 

Figure 5.4: Modal testing set up. 
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The OMETRON VH300+ model (LDV) is a highly accurate and versatile non contact 

vibration transducer for applications where it is undesirable to mount a vibration 

transducer onto a vibrating object. It is optimal for vibrations measurements without mass 

loading on lightweight structures such as sandwich composite panels. Measurement noise 

was removed by using frequency domain averaging methods in Siglab. 

 

It is important to note that only the translational DOF in the Z direction was 

considered in this analysis. First, the shaker was driven with a random input signal. The 

first three flexural frequencies were identified from FRF measurements as peaks 

frequencies. Later, the structure was exited by sinusoidal signals equal in frequency to the 

peak frequencies in order to excite one natural mode at a time. The response of the 

structure (displacements) was measured by positioning the LDV at several locations 

along the span of the test specimen. Then, the displacements vectors were exported to 

MATLAB® where curvature mode shapes were computed. This data was stored in an 

adequate format for further classification purposes.      

 

5.2.2 Results 

 
Experimental Undamaged Case 

 

We started our test by driving the shaker at a random input signal of bandwidth 0 - 

500 Hz. It was expected that the first three modal frequencies of the intact cantilever 

beam were in this range. The magnitude and phase of the obtained FRF are shown in 

Figure 5.5. Clearly, the three peaks can be identified at about 26 Hz, 135 Hz and 315 Hz. 

In addition, phase shifts of approximately 180 degrees occurred at those frequencies. 

These peak frequencies were related to the modal frequencies of the specimen. Table 5.1 

lists the first three flexural modal frequencies for the undamaged beam. Mode shapes can 

be sampled from as many points on the structure as desired. The more a mode shape is 

measured (sampled) across the span of the beam, the more accurately a change can be 

identified with a specific region of the structure when it occurs. In order to characterize 
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each mode shape with reasonable fidelity, sufficient test points are required. According to 

literature the [56], reasonable fidelity is commonly accepted to be at least 10 points/cycle 

along any axis with sine like deformations. For a cantilever beam in bending, sinusoidal 

like deformation occurs along the span of the beam. The highest spatial frequency is a 

sine cycle along the X axis and corresponds to the 3rd mode shape (see Figure 5.7).  
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Figure 5.5: Bode plot - Intact beam. 

 
 

Table 5.1. Experimental natural frequencies. 
 

Mode N° Natural Frequency [Hz] 

1st  25.625 

2nd  134.062 

3rd  314.062 

 

The test model was chosen to have 24 equally spaced points in the X direction from 

the reference accelerometer to the end of the beam. Along the Y axis for a given X 

location, the Z deformations appeared to be straight lines and parallel to the Y axis when 

the structure vibrates in bending. Therefore any point in this direction may be sampled. 

Figure 5.6 shows a scheme of the positions where displacements in the Z direction were 

measured. 
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Figure 5.6: Measuring nodes. 

 

In order to excite one mode shape at a time, the beam was excited by a sinusoidal 

signal equal in frequency to each peak frequency. The response of the structure was 

measured sequentially at every node. Mode shapes and curvature mode shapes are plotted 

in Figure 5.7 and Figure 5.8. The irregularities in the experimental curvature mode shapes 

are caused by small errors introduced in the measurements. In this case, there was no 

damage present in the structure. These curvature mode shapes will be used to compare 

with all later damaged cases. 
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Figure 5.7: Mode shapes - Intact beam. 
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Figure 5.8: Curvature - Intact beam. 

 

Any difference between such states will be represented by a peak in the difference of 

curvature. Figure 5.9-5.11 compare experimental with FEA mode shapes for the intact 

beam. From these figures, we can see that after optimizing the properties the FE model 

successfully predicts the dynamic behavior of the undamaged test specimen.  
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Figure 5.9: Mode shape 1 - Intact beam. 
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Figure 5.10: Mode shape 2 - Intact beam. 
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Figure 5.11: Mode shape 3 - Intact beam. 
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Experimental Damaged Case 1 

 

An artificial bond failure was introduced into the test specimen by debonding the 

interface between the foam core and the upper face sheet. The damage size was 1 in 

length and 2 in width; the location was between nodes 5 - 6 according to damage case 2 

simulated in section 3.6.1 (Figure 5.12). The same testing methodology used for the intact 

beam was followed in this case. The Magnitude and Phase of the FRF were plotted in 

Figure 5.13. Three new peaks were identified near to undamaged frequencies. These peaks 

were related to the modal frequencies of the structure. Table 5.2 lists the first three 

flexural frequencies corresponding to this test specimen.  

 

 
Bond failure 

Figure 5.12: Damage case 1. 
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Figure 5.13: Bode plot - Damage case 1. 
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Table 5.2. Experimental natural frequencies. 
 

Mode N° Natural Frequency [Hz] 

1st  25.312 

2nd  129.687 

3rd  310.312 

 

The natural frequencies have decreased from those corresponding to the undamaged 

case. However, noted in chapter 3, this feature can not be used to detect the damage. 

Therefore in the following test cases this modal parameter will not be shown as part of 

the results. Mode shapes and curvature mode shapes are plotted in Figure 5.14 and Figure 

5.15. 
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Figure 5.14: Mode shapes - Damage case 1. 
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Figure 5.15: Curvature - Damage case 1. 

 

Figures 5.16-5.18 compare measured damaged mode shapes with FEA results. As in 

the previous case, the numerical solution was very accurate. In Figures 5.19-5.21 

theoretical and experimental differences in curvature were plotted. Because the curvature 

was calculated using the second derivate approximation, the numerical curvature mode 

shapes are less precise than de displacement mode shapes. The reason for the differences 

between the numerical and the experimental results in Figure 5.19 is because the changes 

in curvature are in the order of magnitude of the error in the measurements. Figure 5.22 

shows the differences in the three curvature mode shapes in the same scale. 
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Figure 5.16: Mode shape 1 - Damage case 1. 
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Figure 5.17: Mode shape 2 - Damage case 1. 
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Figure 5.18: Mode shape 3 - Damage case 1. 
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Figure 5.19: Difference in curvature mode shape 1. 
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Figure 5.20: Difference in curvature mode shape 2.  
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Figure 5.21: Difference in curvature mode shape 3. 
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Figure 5.22: Difference in curvature - Damage case 1. 

 

Experimental Damaged Case 2 

 

This damage scenario contains a core failure placed at the same location as in the 

previous case. This core failure was created by making a 1 in x 2 in x 0.0625 in 

perforation through the foam core of the sandwich beam (Figure 5.23). Since the 

difference between curvatures mode shapes has been selected as a feature for damage 

detection, we will focus only in this result from modal testing. Figure 5.24 shows that the 

foam damage was successfully identify by the curvature approach.  

 
 

 

Figure 5.23: Damage case 2. 
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Figure 5.24: Difference in curvature. 

Core failure 

Damage case 2. 
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Experimental Damaged Case 3 

 

Test beam 3 involves a 0.375 in x 2 in width bond failure at node 11 (Figure 5.25). 

This damage was artificially introduced into the specimen by the same technique used in 

damaged beam 1. In this case, the size of the damage is significantly smaller than that in 

the two specimens tested so far.  Figure 5.26 demonstrates that the natural mode shapes do 

not always change when the structure is damaged while the curvature mode shapes 

plotted in Figure 5.27 show irregularities in the damaged area. In Figure 5.28, the 

difference between undamaged and damaged curvature peaks the damage location. 

 
 

 

Figure 5.25: Damage case 3. 
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Figure 5.27: Curvature - Damage case 3. 
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Bond failure 

Figure 5.26: Mode shapes - Damage case 3. 
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Figure 5.28: Difference in curvature. 

Damage case 3.
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Modes 1 and 2 do not show any significant difference, only mode 3 picks up the 

damage location in the vicinity of node 11. 

 

Experimental Damaged Case 4 

 

A superficial crack was created in the upper face sheet of the test specimen. The 

fissure was 0.75 in length oriented along the Y axis and it was placed between nodes 12-

13 (Figure 5.29). Curvature mode shapes were computed and compared with the 

undamaged case in Figure 5.30.  

 
 

 

Figure 5.29: Damage case 4. 
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Figure 5.30: Difference in curvature. 

Damage case 4. 

 

In both cases, the first and second curvature mode shapes were unable to predict the 

defect location. Only the third mode was able to detect the presence of the damage. The 

curvature approach may not succeed when damage does not severely reduce the stiffness 

of the structure such (small damage size). The term small is related to the size of the 

structure under study. According to the results obtained in this section, we can conclude 

that a 0.5 in damage length is approximately the smallest size that the curvature method is 

able to detect accurately for the studied beams.   
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Multiple Damages States 

 

In chapter 3 we investigated the behavior of curvature mode shapes when multiple 

damages were present in the beam.  The numerical results showed that, theoretically, this 

method successfully identify simultaneous damage locations. To validate those results, 

multiple (two) damage scenarios were tested. The first of these multiple damage states 

involves two bond failures located between nodes 5 and 6 and nodes 9 and 10 

respectively. The curvature mode shapes were calculated and compared with those 

corresponding to the intact beam (Figure 5.31).  
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Figure 5.31: Difference in curvature. 

  Damage case 5. 
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Figure 5.32: Difference in curvature. 

Damage case 6. 

 

Although all curvatures show peaks at the damage locations, the third mode shape 

was the most sensitive to the defects. The next multiple damage beam includes a bond 

failure between nodes 7 and 8 and a core failure between nodes 16 and 17. The 

differences in curvature mode shapes were plotted in Figure 5.32. In this case the damage 

locations were better identified by the second curvature mode shape. These experimental 

measurements demonstrate that the curvature approach is very suitable for multiple 

damage scenarios. 
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5.3 Infrared Thermography Testing 

 

Infrared (IR) thermography measures surface emissions in the IR radiation band, 

which are directly related to surface temperature. Any phenomenon that creates 

measurable temperature changes can be visualized [57]. Recent achievements in thermal 

acquisition systems have lead to improvements in the capabilities of thermographic 

methods for nondestructive inspection of metallic and composite panels [32]. Transient 

thermography involves heating the surface of a target structure for a short period of time 

followed by the capture of the thermal decay using an infrared camera at time intervals 

Δt.  

 

Current systems enable the recording, storage, and processing of hundreds of 

digitalized images at very fast rates. The thermal images are typically analyzed for the 

presence of hot spots which may indicate the existence of defects. Noise and optical 

distortions produce difficulties for the interpretation of the recorded data. Post processing 

is a required procedure for the determination of the size and location of damages in 

inspected structures.  

 

5.3.1 Test Specimens 

 

In this work, experimental infrared thermography was applied on sandwich composite 

panels described in section 5.2.2. The study of the surface temperature distribution was 

focused on a 2 in x 4 in area of the sample. The regular thermal distribution over the 

specimen was used to fit parameters used in the numerical model described in section 4.2. 

Several damages scenarios were created by introducing surface and subsurface artificial 

defects. These included surface cracks, indentations and bond failure. First, the thermal 

fields around simple damage scenarios were recorded. Then, the same analysis was 

performed on multiple damages states.  
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5.3.2 Experimental Set Up 

 

The test specimen was mounted vertically and heated by the action of a hot air flow 

supplied by a blower [58]. The blower was kept in front of the sample until its surface 

temperature reaches a constant value 80 °C. An AVIO TVS 8500 Thermal Video System 

[59] based on an infrared imager with an InSb FPA detector was used to measure the 

surface emissions in the 3.5-5.1 μm range. The IR camera collected surface temperature 

from a 15.8 in distance from the specimen. A field view of 4 in width and 3.55 in high 

was obtained. A sequence of 12 thermal images with size 256 x 256 pixels were recorded 

with a time step of 5 second for each sample tested. Five seconds is the smallest time step 

that the AVIO system is able to record. In order to synchronize the images in different 

series, the temperature of an arbitrary point was set as a reference to start recording the 

thermal response of the beam. Figure 5.33 illustrates the experimental test set up.  
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Test Structure

y 

x 

IR Camera

Heated 

Free Convection 

z 

Figure 5.33: IR thermography testing set up. 
 

The digitalized thermal response for the specimen was stored in a memory card for 

further analysis using the GORATEC PE Professional commercial software [60].  By 
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applying median based filters, noise and optical distortions were removed from the 

thermal images. Then, the original IR images were converted to Windows Bitmaps 

images (BMP). BMP image files are one of the file formats supported by the Image 

Processing Toolbox of MATLAB® [61]. The same defect edge extraction procedure used 

in section 4.6 was applied to the collected images resulting in a set of binary images. This 

method allowed the extraction of relevant features which will be used in chapter 6 for 

damage characterization purpose.  

 

5.3.3 Results 

 
Experimental Undamaged Case 

 

The first thermal measurements correspond to a sandwich composite beam with no 

damages. This case allowed us to know the normal temperature distribution over this type 

of structure in response to a thermal excitation. This information was used to estimate the 

thermal properties of these particular materials. These include the thermal diffusivity α  

and the convection heat transfer coefficient  required for the numerical model. As 

mentioned in the previous section, each test was recorded in a series of 12 IR images at 5 

second intervals. Figure 5.34 shows the cooling phase of the undamaged beam section.  

h

 

 
a) 

 
b) 

 
Figure 5.34. Undamaged case: a) 5 sec.; b) 10 sec.  
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c) 
 

 
f) 

 
d) 

 

 
g) 

 
e) 
 

 
h) 

Figure 5.34. Undamaged case: c) 15 sec.; d) 20 sec.; e) 25 sec.; f) 30 sec.; g) 35 sec.; h) 40 sec. 
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i) 

 
k) 

 
j) 

 
l) 

 
Figure 5.34. Undamaged case: i) 45 sec.; j) 50 sec.; k) 55 sec.; l) 60 sec.  

 

As mentioned in chapter 4, the isotherms also are elliptical shapes shifted from 

the center of heating. This effect is a result of the variation of the coefficient  along Y 

direction.  

h

 

Experimental Damaged Case 1 

 

The first damage scenario studied using IR thermography was a 1/16 in indentation 

through the face sheet of the sandwich composite (Figure 5.35). The damage was placed 

inside the heated area. Thus, while the isotherms move during the cooling phase, the 

defect location becomes visible.  
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Indentation 

Figure 5.35: Damage case 1. 

 

Figure 5.36 shows the thermal response for this damage case. As can be noticed, not 

all the thermal images provide clear evidence of the damage. This effect is related to both 

the time at which the image was taken and the temperature scale used to represent the 

thermal distribution. Clearly, a hot spot can be identified in Figures 5.36 b, c, f, and g. This 

feature will be extracted from these images using a defect edge extraction procedure 

based on image gradient computation (contour [61]). The information obtained from this 

technique will be used to characterize this damage case. 

 

 

 
a) 

 

damage 

b) 
 

Figure 5.36. Damaged case 1: a) 5 sec.; b) 10 sec. 
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d) 

 
g) 
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h) 

 
Figure 5.36. Damaged case 1: c) 15 sec.; d) 20 sec.; e) 25 sec.; f) 30 sec.; g) 35 sec.; h) 40 sec.

damage 
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i) 

 

 
j) 

 
k) 

 

 
l) 

 
Figure 5.36. Damaged case 1: i) 45 sec.; j) 50 sec.; k) 55 sec.; l) 60sec.

Experimental Damaged Case 2 

 

This damage state involves the same type of damage studied in the previous case 

but with a different location. Here, we are interested in determining the relationship 

between the damage site and the time at which it is detected. The thermal response for 

this damage case is plotted in Figure 5.37. From Figures 5.37 b, c, f, and g, there is no 

evidence of the damage. However, in Figures 5.32 i, j, and k the hot spot can be noticed 

inside the red area. Therefore we can conclude that the time of the damage visualization 
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is related to the relative position of the damage respect to the heated zone. Thus, the 

whole series of IR thermal images will be used to detect the damage. 

 

 
a) 
 

 
b) 
 

 
c) 

 
d) 

 

 
e) 

 

 
f) 

 
Figure 5.37. Damaged case 2: a) 5 sec.; b) 10 sec.; c) 15 sec.; d) 20 sec. e) 25 sec.; f) 30 sec.
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h) 
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i) 

 
l) 

 
Figure 5.37. Damaged case 2: g) 35 sec.; h) 40 sec.; i) 45 sec.; j) 50 sec.; k) 55 sec.; l) 60sec.
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Experimental Damaged Case 3 

 

A 1/8 in hole through the face sheet of the sandwich beam was tested using the 

current technique (Figure 5.38). Although 12 IR images were recorded from this test case, 

only those where the damage is visible are plotted in the fallowing figures. Figure 5.39 

shows the thermal response at 5, 10, 30 and 35 seconds respectively. Due to the location 

of this damage, it can be identified at the beginning and at the middle of the period of 

observation. 

 

 Hole 

Figure 5.38: Damage case 3. 

 

 
a) 

 

damage damage 

b) 
 

Figure 5.39. Damaged case 3: a) 5 sec.; b) 10sec. 
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c) 

 

damage damage 

d) 
 

Figure 5.39. Damaged case 3: c) 30 sec.; d) 35 sec. 
 

Experimental Damaged Case 4 

 

The fourth damage case consists of a 3/8 in surface crack oriented in Y direction 

(Figure 5.40). The most representative thermal images are shown in Figure 5.41. Because 

of its location is near to the center of the heated area, the crack was not visible until the 

50 seconds. But as mentioned previously, if it is located elsewhere with respect to the 

centre of the heated zone it appears at other time intervals. 

 

 

Crack 

Figure 5.40: Damage case 4. 
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a) 

 

damage damage 

b) 
 

Figures 5.41. Damaged case 4: a) 50 sec.; b) 55 sec. 

 

 

Experimental Damaged Case 5 

 

All the damage cases studied so far were artificial surface damages. Now, IR 

thermography is tested in detecting internal defects. A 1 in x 2 in bond failure was 

introduced into the test specimen by debonding locally the interface between the foam 

core and one of the face sheets (Figure 5.42). The sample was heated by the same 

technique used in the other cases.  

 

 
Bond failure 

Figure 5.42: Damage case 5. 
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None of the Figures 5.43 shows evidence of the presence of the bond damage. This 

result leads to the conclusion that IR thermography is restricted to surface damage cases.  

 

 
a) 
 

 
d) 

 
b) 
 

 
e) 

 
c) 

 
f) 

 
Figures 5.43. Damaged case 5: a) 5 sec.; b) 10 sec.; c) 15 sec.; d) 20 sec.; e) 25 sec.; f) 30 sec.  
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k) 

 
i) 

 
l) 

 
Figures 5.43. Damaged case 5: g) 35 sec.; h) 40 sec.; i) 45 sec.; j) 50 sec.; k) 55 sec.; l) 60 sec.   
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In section 5.2.3 the curvature approach successfully located bond failures while it was 

unable to identify small damages. According to previous mentioned the curvature 

approach and IR thermography have their own limitations. Thus, these two NDE methods 

are complementary each other and they can be used together to improve damage 

detection performances.    
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Chapter 6 
 

Neural Network Implementation 
 

This chapter deals with the analysis and classification of the numerical data and 

experimental measurements from previous chapters. A brief introduction to neural 

network (NN) theory is discussed. Then several types of NNs are mentioned and the 

selection of the probabilistic neural network (PNN) is justified. Single and multiple 

damage scenarios are studied in order to check the NNs performance in damage 

detection. Finally a unified approach for thermal and curvature data processing is 

proposed.  

 

6.1 Preface 

 

The diagnosis of a structure based on its response is an inverse process; the causes 

must be discerned from the effects [22]. This procedure requires specific data related to 

the response of the structure, to adequately search for defects through a mathematical 

model. A unique solution often does not exist for an inverse problem, especially when 

insufficient data is available. Thus, it is very difficult to evaluate an existing structure that 

has suffered some unknown type of damage using traditional damage detection methods 

based on a priori knowledge of damage scenarios. 

  

In general, nondestructive damage detection involves the comparison of the changes 

in structural properties or responses, and it can be viewed as a classification problem. 

Effective classification or interpretation of the changes in the structural response or 

properties due to damage is a critical task. In chapter 1, the advantages of using artificial 

neural networks (ANNs) over other algorithms were discussed. These include [25] self-

adaptiveness, generalization, abstraction capabilities and suitability for real-time 

applications.  
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ANNs are suitable for pattern classification and information processing tasks. ANNs 

are computational models composed of many simple and highly interconnected 

processing elements that process information and establish complex and highly nonlinear 

relationships and associations from large sets of data. ANNs, like people, learn by 

examples. In the approaches using ANNs, the data required to model an inverse relation 

are obtained as the solution of the direct problem [22]. For example, the changes in some 

structure parameters can be identified from the known structure response when the 

network has been trained properly. In the current work, these structural responses will be 

collected through computer damage simulations using the numerical models and through 

the experimental measurements. The advantages of using ANNs in general are their 

capacity to diagnose correctly, even when trained with partially inaccurate data, and their 

ability to continue learning and to improve their performance when presented with new 

training data.  

 

A NN involves processing elements or neurons and interconnection weights between 

neurons. These interconnection weights determine the nature and the strength of the 

connection between neurons. A neuron with a single R-element input vector is shown in 

Figure 6.1. The individual element inputs 1 2,  ,  . . . , Rp p p  are multiplied by weights 

 and the weighted values are fed to the summing junction. Their sum 

is simply Wp, the dot product of the matrix W and the vector p. 

1,1 1,2 1,,  ,  . . . , Rw w w

 

 
Figure 6.1: NN diagram. 
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The neuron has a bias b, which is summed with the weighted inputs to form the net 

input n. This sum, n, is the argument of the transfer function f, which produces the scalar 

output a. Examples of transfer functions are: hard-limit; linear; and log-sigmoid [62]. 

Note that w and b are both adjustable parameters of the neuron. Such parameters can be 

adjusted so that the network exhibits some desired behavior. Two or more of the neurons 

shown in Figure 6.1 can be combined in a layer, and a particular network could contain 

one or more such layers.  

 

The overall methodology of using NNs is divided into two parts: (1) the training 

stage; and (2) the simulation stage. In the training stage, the network of interconnected 

neurons is presented with a set of input data and corresponding target output values. Then 

the interconnection weights among neurons and biases are iteratively adjusted, using 

predefined learning rules, so the NN can replicate the target output values with minimum 

error. The training algorithms direct how the weights and biases change in response to a 

given input and output pair during the training stage. All of these algorithms use a 

gradient based technique called back propagation, which involves updating the network 

weights and biases in the direction in which the error between the outputs and targets 

decreases most rapidly (the negative of the gradient). There are many variations of the 

back propagation algorithm: batch training (train); batch gradient descent (traingd); and 

batch gradient descent with momentum (traingdm). The knowledge learned by NNs is 

represented by the connection weights.  

 

As mentioned in section 1.5, two types of learning methods are used for NNs: 

supervised and unsupervised training. Supervised training means that a network is 

presented with the correct response during training. On the other hand, unsupervised 

learning does not require knowing the correct response and can be used when there is a 

lack of knowledge of correct answers for training data. Once a NN has been trained and 

has reached an equilibrium state, the output in response to a particular input (test sample) 

is calculated as a summation of weighted inputs. The power of NNs comes to life when a 
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pattern that has no output associated with it, is given as an input. In this case, the network 

produces the output that corresponds to that of the least different pattern learned. 

 

6.2 Neural Network Selection 

 

In order to find the most effective ANN for damage severity and location predictions, 

different NNs were studied. Although traditional feed forward neural networks [15] are 

used in pattern classification, the non-linearity of the problem and the presence of random 

noise in the data demand a more robust model. For example perceptrons are especially 

suited for simple problems in pattern classification but they have several limitations. The 

most important is that perceptrons can only classify linearly separable sets of vectors. If a 

straight line or a plane can be drawn to separate the input vectors into their correct 

categories, the input vectors are linearly separable. If the vectors are not linearly 

separable, learning will never reach a point where all vectors are classified properly. 

 

On the other hand, Hopfield networks [62] can act as error correction or vector 

categorization networks. Input vectors are used as the initial conditions to the network, 

which recurrently updates until it reaches a stable output vector. Hopfield networks are 

interesting from a theoretical standpoint, but are seldom used in practice. Even the best 

Hopfield designs may have false stable points that lead to incorrect answers. More 

efficient and reliable error correction techniques, such as back propagation, are available. 

 

Radial basis networks [15] are statistical based models. These NNs require more 

neurons than standard feedforward back propagation networks, but often they can be 

designed in a fraction of the time it takes to train standard feedforward networks. One of 

the designs of radial basis networks is the probabilistic neural network (PNN) [62] which 

combines some of the best attributes of statistical pattern recognition and feed forward 

neural networks. The PNN features very fast training time, offers robustness to noisy data 

and guaranteed convergence to a Bayesian classifier [15] providing given enough training 
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data. The architecture of the PNN is shown in Figure 6.2. It has a radial basis layer and a 

special competitive layer. When an input is presented, the first layer computes distances 

from the input vector to the training input vectors, and produces a vector whose elements 

indicate how close the input is to a training input.  

 

The second layer (competitive layer) sums these contributions for each class of inputs 

to produce as its net output a vector of probabilities. Finally, the “compete” transfer 

function on the output of the second layer picks the maximum of these probabilities, and 

produces a 1 for that class and a 0 for the other classes. Due to the mentioned advantages 

the PNN based on radial basis networks was chosen for the implementation. All the 

PNNs used in this work were designed using MATLAB® neural network toolbox. 

 

 
Figure 6.2: PNN architecture. 

 

A novel class of artificial neural networks called, morphological associative 

memories (MAMs) [63, 64] were studied. They have the capability to retrieve complete 

stored patterns from noisy or incomplete input pattern keys. This is one of the most 

interesting characteristics of this type of ANNs. In MAMs the operations of 

multiplications and addition performed in the theory of ANNs are replaced by addition 

and maximum (or minimum) of sums, respectively.  The network weights are computed 
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directly from the input/output values. Therefore convergence problems do not exist in 

this kind of networks. A MAM network and a PNN were compared based on their 

performance in recognizing noised data. According to the obtained results, PNNs showed 

to be more efficient than MAMs when both type erosive and dilative noise are present.  

 

The data required for training the NNs is provided by numerical models. This 

information is preprocessed using MATLAB® routines. The preprocessing of the data 

involves two main stages: (1) the extraction of synthetic features related to the presence 

and the characteristics of the damage; (2) the normalization of the input patterns to 

improve convergence of the learning rule.  

 

All the previous mentioned NNs are not designed to be incremental learners since 

old examples are represented explicitly in the networks.  Every new example demands 

the modification of the network architecture by the addition of another pattern unit and 

associated connections. However once the NNs were properly trained, the weights and 

biases do not need to be recalculated when the network is used to classify a new input 

pattern.  

 

6.3 Curvature Method 

 

In chapter 3 we obtained the natural mode shapes for several damage scenarios using 

FE models. Then, the curvature mode shapes were computed and the difference with 

respect to the undamaged case was performed. Later, in chapter 5, the same procedure 

was followed for experimental mode shapes which were measured using modal testing. 

In both cases, the damage location was identified as peaks in the difference curvature 

mode shapes while the damage magnitude was estimated by means of the curvature 

normalization value. In this section, both structural features are used to train and test a 

PNN for damage predictions.  
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Since every curvature mode shape contains specific information related to the defect, 

they are processed separately by three different networks. Figure 6.3 shows the NN 

architecture developed for curvature data classification. Each PNN associates the input 

data to a predefined damage case (target). Predictions of PNN1, PNN2 and PNN3 are 

used as inputs to a fourth PNN (PNN4) which provides the ultimate opinion regarding 

damage location and size. PNN4 classifies the damage estimations a1; a2; and a3 based on 

their probability of certainty (p1; p2; p3). This means that if some of the estimates have a 

low probability of occurring, they will not affect the PNN4 prediction. The damage 

estimate with the highest probability dominates the PNN4 opinion. This probability must 

be inside a predefined threshold in order to be considered as a credible prediction.  

 

For example if only one network predicts the damage ai with the probability pi, PNN4 

will predict a damage ai.  If two networks estimate the same damage ai with different 

probabilities pi and pj and the third network predicts a different damage ak with a 

probability pk > pi + pj; PNN4 will classify a damage ak. On the other hand, if different 

damage scenarios are selected by PNN1, PNN2, and PNN3 the damage estimate with the 

highest probability will be chosen by PNN4 as the possible damage state. But if all the 

predictions are little probable, the case will be classify and labeled as undamaged. This 

architecture of NNs avoids false readings.  

 

Inputs 
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mode shape 1

Diff. curv. 
mode shape 2

Diff. curv. 
mode shape 3

PNN 1 

PNN 2 

PNN 3 

PNN 4 
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Preprocessing PNNs Outputs 

a1; p1 

a2; p2 
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Figure 6.3: Scheme for NN curvature data classification. 
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6.3.1 Simple Damage Scenarios 
 

The simplest case of testing a NN involves classifying one of the training patterns and 

verifying that it has correctly associated it with the corresponding target. The NNs 

scheme of Figure 6.3 was trained using the data from damage cases listed in Table 6.1. 

These training cases correspond to simple damage scenarios simulated by the FE models 

of chapter 3. The curvature data for each case is plotted in Figure 6.4.  

 

Several test cases were chosen to check the performance of the proposed NN 

architecture in damage detection. These include the numerical (N) and experimental (E) 

damage scenarios shown in Table 6.2. First, the NN system was fed with damage case N3 

(Figure 6.5 a) and it was correctly associated with itself. This obvious result confirmed a 

priory that the NNs were properly trained. On the other hand, damage case N4 (Figure 6.5 

b) was not used in the learning process. However, the NN system related this case to the 

closest learned damage scenario N5.  

 
Table 6.1: Training with curvature damage scenarios. 

Damage  
case Type Damage state Size Location  

N1  Nodes  3 - 4 

N2  Nodes  5 - 6 

N3 Nodes  9 - 10 

N5 

Bond failure 1 x 2 in 

Nodes 17 - 18 

N8 Surface crack 0.75 in Nodes 11 - 12 

N9 Surface indentation 

Simple 

0.0625 in Nodes 13 - 14 

 

Cases N6 and N7 in Table 6.2 are multiple damage states and will be discussed in 

detail in the next section. Note that E1 and E2 are different types of failures but they have 

the same location as shown in Figure 6.5 c and d. However, both damages were associated 

to the same training case N2.  
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a)  Damage N1. 
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b) Damage N2. 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.2

0.4

0.6

0.8

1

 Node

Mode 1
Mode 2
Mode 3

 
c) Damage N3. 
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d) Damage N5. 
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e) Damage N8. 
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f) Damage N9.

 
Figure 6.4. NN curvature training data: a); b); c) and d) bond failures; e) crack; f) indentation.  
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a) Damage N3. 
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b) Damage N4. 
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c) Damage E1. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.2

0.4

0.6

0.8

1

 Node

Mode 1
Mode 2
Mode 3

 
d) Damage E2. 
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e) Damage E3. 
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f) Damage E4.

 
Figure 6.5. NN curvature test data: a); b); c); and e) bond failures; d) core failure; f) crack. 
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This means that the location of the peaks in the curvature mode shapes is the most 

significant feature when classifying by the NNs scheme. All the simulations results are 

summarized in Table 6.2. 

  
Table 6.2: Results from curvature test damage cases. 

 

Input 
case Type Damage 

state Size Location  Assoc. 
case 

N3 Nodes  9 - 10 N3 

N4 
Simple 

Nodes 16 - 17 N5 

N6 Nodes  3 - 4;  9 - 10  N1; N3 

N7 
Multiple 

Nodes  5 - 6; 16 - 17 N2; N5 

E1 

1 x 2 in 

Nodes  5 - 6 N2 

E3 

Bond failure 

0.375 x 2 in Node 11 N3 

E2 Core failure 1 x 2 x 0.0625 in Nodes  5 - 6 N2 

E4 Surface crack 

Simple 

0.75 in Nodes 12 - 13 N9 

 
 

Because case E3 corresponds to a very small bond failure; the data obtained (Figure 

6.5 e) does not accurately characterize the damage location. Curvature mode shapes 3 

shows a peak at the damage location while curvature mode shape 1 and 2 were unable to 

predict the defect site. However E3 was related to damage case N3. The same effect can 

be observed in Figure 6.5 f for the case E4 which represents a surface crack. In this case 

curvature mode shapes 1 and 2 did not peak the damage location Thus, the NNs system 

connected E4 to damage case N9. These two cases prove that the NNs system can 

classify correctly the data using one curvature mode shape.  

 

6.3.2 Multiple Damages Scenarios 

 
As described in section 3.6.2, when the structure contains two or more damages at the 

same time, several peaks occur simultaneously in the curvature difference. These peaks 

are related to a particular damage location through the training data. Therefore in order to 
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detect all the damages in the structure, multi damage states are broken into single damage 

states before being analyzed by the NN. The linear behavior of the structure under small 

vibrations allows using of the principle of superposition. A mean based criterion was 

used to identify the maximum values on curvature differences.  

 

To show how this technique works, we will study the multiple damage cases N6 and 

N7 from the previous section. Figure 6.6 shows the curvature data of case N6. Note that 

the difference in curvature for mode shapes 3 peaks at two different locations while for 

the curvature mode shape 2 there is a single maximum (nodes 3 - 4). In addition, it is 

required that the input data to the PNN4 (a1; a2; a3) have the same size. In other words, 

PNN1, PNN2 and PNN3 must process patterns with the same amount of data for a 

specific damage case. For example if one mode shows 2 peaks and another mode shows 

only one peak, two curves need to be produced for each mode. 
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Figure 6.6: Multiple damages case N6.

 

Therefore the number of curves will be equal to the largest number of peaks in the 

curvature mode shape difference. Figures 6.7 - 6.9 show that two single peaks were 

extracted from each curvature mode shape. To extract the second peak from Figure 6.8 a 

this method simulates the existence of a maximum in the location were it actually occurs 

in the test data (Figures 6.7 a and Figures 6.9 a). For the test scenarios presented in this 

section the NN system was trained with the curvature data of Figures 6.4.  
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Figure 6.7. Damage case N6: Curvature peaks - Mode 1.
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Figure 6.8. Damage case N6: Curvature peaks - Mode 2.
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Figure 6.9. Damage case N6: Curvature peaks - Mode 3. 
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The damage predictions were listed in Table 6.2. The case N6 was related to the 

training cases N1 and N3. This result is correct as expected since damage case N6 is a 

combination of cases N1 and N3. A similar situation occurs for damage case N7 (Figure 

6.10). Figures 6.11 - 6.13 show the peaks extracted from each curvature mode shape. In this 

case the three curves peak at two different locations (nodes 5 - 6 and nodes 16 - 17). 

Because of case N7 was created based on cases N2 and N4, it was associated with the 

training cases N2 and N5. Remember that the single damage case N4 was connected to 

N5 when tested in the previous section.  
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Figure 6.10: Multiple damages case N7. 

 

It is important to mention that if the three curvatures have only one maximum each, 

the peaks extraction method does not modify the curvature data. This particular 

characteristic makes this procedure suitable for real application where, in most cases, 

structures may contain several defects at the same time.  

 

In the damage cases where the NN curvature approach fails to detect the damaged 

locations or its predictions have low probability of being correct, the NN thermal method 

can be used. As will be discussed in the next section, the thermal approach is suitable for 

small and surface damages, where the curvature approach may fail.  
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Figure 6.11. Damage case N7: Curvature peaks - Mode 1. 
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Figure 6.12. Damage case N7: Curvature peaks - Mode 2. 
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Figure 6.13. Damage case N7: Curvature peaks - Mode 3. 
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6.4 Thermal Method 

 

Algorithms mentioned in chapter 1 have been used in the process of interpreting 

thermographic images. In this section we will use a NN based algorithm to identify 

anomalies present in thermal images. These include: numerical solutions provided by 

finite volume (FV) models from chapter 3 and thermal transient measurements presented 

in chapter 5. In both cases, most of the information contained in the images is useless for 

anomaly identification. Therefore, features extraction techniques were used, which retain 

the relevant information. Figure 6.10 shows the pre-processing of an IR thermal image. 

 

First the original images were cropped (Figure 6.14 b) and converted to grayscale 

(Figure 6.14 c) by eliminating the hue and saturation information while maintaining the 

luminance. Then, 2D adaptive noise removal filtering was performed (Figure 6.14 d). 

Later an edge extraction procedure based on image gradient computation was used 

resulting in a set of binary images (Figure 6.14 e). Each contour of these images was 

plotted as a single curve (Figure 6.14 f).  

 

Three geometrical properties were calculated for every curve: centroid and moments 

of inertia respect to a pair of axis placed at the centroid. The first property indicates 

approximately the location of the contour in the image while the moments of inertia are 

related to the size and shape of the contour. A big contour centered in the image will 

probably correspond to a normal isotherm. On the other hand, a small contour could be 

associated with a surface defect.  

 

Thus each thermal image is characterized by a set of geometrical features. In this case 

a unique PNN is used for contour classification (Figure 6.15). Each feature of a test image 

is compared with a contours data base and classified as normal or anomalous. This 

classification is based on numerical cases learned which were presented in chapter 4. 
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a) 
d)

e)b) 

c) f)

Figure 6.14: Pre processing scheme of IR thermal image. 

 

   Note that this approach does not require the knowledge of the undamaged case. 

Usually, any surface defect can be seen as a hot spot in the thermal distribution. 

However, as shown in chapter 5, not all the thermal images provided clear evidence of 

the damage at a particular time. This effect was related to both the time the image was 

taken and the relative position of the damage with respect to the heated zone. Therefore, 

the NN algorithm was designed to determine location and size of the defects from the 

temporal and spatial thermal distributions.  
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Figure 6.15: NN scheme for thermal data classification. 

 

6.4.1 Simple Damage Scenarios 
 
 

PNN5 was trained using the information of damage cases shown in Figure 6.16. All 

the training data corresponds to simple damage states provided by FV models. While 

some of these damage cases were studied in chapter 4, others were created specially for 

the training of PNN5. These include surface indentations at different locations and 

surface cracks. The contours were extracted from these thermal images by using the 

technique described in the previous section and shown in Figure 6.17. Each contour was 

labeled with the letter T (training) and a number from 1 to 56 for identification. Then 

they were used to train PNN5. Table 6.3 summarizes the training data. The notation with 

bold font corresponds to the damage contours. 

 

As in the curvature approach, numerical (N) and experimental (E) damage scenarios 

were tested. The FV results of Figure 6.18 a, b and c (N9; N10; and N11) correspond to a 

single indentation, a surface crack and multiple (two) indentations. Damage case N11 

(Figure 6.18 c) is a multiple damage scenario which will be discussed in the next section. 

The thermal measurements shown in Figure 6.18 d, e and f (E1; E2; and E3) belong to 

three artificial face sheet indentations. The word artificial means that the damages were 

introduced in the specimens in the lab under controlled conditions.  
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Figure 6.16. NN thermal training data: a) indentation 15 sec.; b) idem 50 sec.; c) notch 10 sec.; 

d) crack 55 sec.; e) indentation 15 sec.; f) idem; g) idem; h) idem 35 sec.
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Figure 6.17. NN training contours: a) indentation 15 sec.; b) idem 50 sec.; c) notch 10 sec.; 

d) crack 55 sec.; e) indentation 15 sec.; f) idem; g) idem; h) idem 35 sec. 
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The features were labeled with the letter S (simulated) and a number from 1 to 18 as 

shown in Figure 6.19. Each one of these features was analyzed separately by the PNN5. 

First it discriminates between two types of contours: regular and possible damage 

contour. Then, if the contour being analyzed belongs to the second type, PNN5 matches it 

with the closest contour based on the training data.  

 

The results from NN are listed in Table 6.4. Note that the NN successfully classified 

the normal contours for all the testing cases. With respect to the damage contours, S3 was 

associated with T3 which has similar location but correspond to different times (30 and 

15 sec. respectively). S5 and T24 are the same damage type but they are also related to 

different times (50 and 55 sec. respectively). The measured contours S12 and S15 are the 

same damage at 15 and 30 sec. respectively. Both cases were associated with feature T52, 

which corresponds to the same damage obtained numerically.  

 
Table 6.3: Training with thermal damage scenarios. 

Damage 
case Type Damage 

state Size Contours 

N1  T1; T2; T3; T4; T5; T6; T7 
N2  

0.0625 in 
T8; T9; T10; T11; T12; T13; T14 

N3 

Surface  
indentation 

0.125 in T15; T16; T17; T18; T19; T20; T21 
N4 Surface crack 0.75 in T22; T23; T24; T25; T26; T27; T28 
N5 T29; T30; T31; T32; T33; T34; T35 
N6 T36; T37; T38; T39; T40; T41; T42 
N7 T43; T44; T45; T46; T47; T48; T49 
N8 

Surface  
indentation 

Simple 

0.0625 in 

T50; T51; T52; T53; T54; T55; T56 
 

 

 Finally, the contour S18 was related to T10 which corresponds to the same damage 

obtained numerically. As the NNs used for curvature data classification, the PNN5’s 

predictions are based on the probability that the input pattern being classified is a training 

case.  
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If this probability is inside a predefined threshold, the prediction is considered 

credible; if not the classification is related to a default non-damage case. This architecture 

avoids false damage detections.  Although the results obtained showed that the PNN5 

successfully associated the test cases with those used in the training, the NN performance 

can be improved by increasing the number of training cases. 
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Figure 6.18. NN thermal test data: a) indentation 30 sec.; b) crack 50sec.; c) indentations 15 

sec.; d) indentation 15 sec.; e) idem 30 sec.; f) idem 50 sec. 
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a) 
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d) 
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f) 

Figure 6.19. NN test contours: a) indentation 30 sec.; b) crack 50sec.; c) indentations 15 sec.; d) 

indentation 15 sec.; e) idem 30 sec.; f) idem 50 sec. 
 

Table 6.4: Results from thermal test damage cases. 

Input 
case Type Damage 

state Size Features  Associated 
feature 

N9 Surface 
indentation 0.0625 in S1; S2; S3 T51; T50; T3 

N10 Surface crack 
Simple 

0.75 in S4; S5 T9; T24 

N11 Multiple 0.0625 in S6; S7; S8; S9 T30; T1; T31;T38 

E1 S10; S11; S12 T51; T51; T52 

E2 S13; S14; S15 T51; 15; T52 

E3 

Surface 
indentation 
 Simple 0.0625 in 

S16; S17; S18 T50, T21; T10 
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6.4.2 Multiple Damage Scenarios 
 

An important consideration is what happens when a multiple damage scenario 

occurs. How will the NN classify this case if it was trained only with simple damage 

cases? To answer this question, the same procedure was applied using a two damage 

scenario. Two indentations similar to that in the previous cases were created in a FV 

model.  The test case N11 of Figure 6.18 c shows two hot spots on both sides of the heated 

zone. Similarly, two damage contours (S8 and S9) were obtained when applying the 

feature extraction technique (Figure 6.19 c). Because of the training cases N5 and N6 

(Figure 6.16 e and f) contain damages placed near to those in N11; S8 and S9 were 

associated to T31 and T38 respectively. Thus, a single input image containing two 

damages was associated with two different cases used in the training of the NN. This 

flexible characteristic of the transient thermal method makes it suitable for real 

implementation where multiple damages scenarios may be common. 

 

6.5 Curvature and Thermal Approaches Together 

 

Since curvature and thermal analyses have their own limitations, the NN performance 

in damage detection can be improved by complementing those methods. Thus, the 

previous curvature and thermal data classifications are used as inputs to a new PNN 

which provides the final verdict about the presence and the location of damages. 

Therefore, a combined NN approach for damage detection is proposed. Figure 6.20 shows 

schematically the PNN arrangement and the flow of the information.  

 

First, the input data is separated according to the native format used to store the 

information: xls for curvature measurements and image format (bmp, jpeg, and tiff) for 

IR thermal images. Then the data is preprocessed in order to extract the corresponding 

features; difference in curvature mode shapes and contour plots. After these features are 

classified, both approaches provide their own damage prediction. 
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Figure 6.20: General NN approach for damage detection. 

 

Depending on the type, size and location of the damages in the structure, three 

different situations can occur: both methods agree about the damage case, the two 

techniques make different predictions or none approach is able to identify the defect. To 

deal with this problem, PNN6 was designed to distinguish among the previous three 

situations. The output damage cases of the PNN4 and PNN5 are identified by the labels 

used in the training of the NNs. For example for the curvature data classification six 

damage scenarios were used which were labeled as N1; N2; N3; N5; N8; and N9. 

Depending on the input pattern being classified, the output of the PNN4 is one or more of 

these six labels. If the structure being monitored is not damaged, a special identifier is 

used to label this case (N0). A similar situation occurs with the thermal data 

classification. Based on these labels PNN6 decides if the damage cases associated by 

PNN4 and PNN5 are the same damage in the structure or each NN detected a different 

damage. In such a case both predictions are assumed to be correct and the state of the 

structure is labeled as a multiple damage case. When one of the two methods does not 

associate any damage with the input data and the other does, the corresponding damage 

case is assumed to be correct. If none technique identify the defect, PNN6 classifies the 

case as undamaged. Actually, the output of PNN6 is a set of labels which indicate the 

possible damages present in the structure based on both vibration and thermal training 

cases. 
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Chapter 7 
 

Conclusions and Future Work 

 

An experimentally validated ANNs damage detection system for location and severity 

predictions of damage in sandwich composite structures was developed. The system 

analyzes and classifies features extracted from vibration and thermal analysis. Several 

numerical models of sandwich composite structures with different type of defects were 

used to generate damage scenarios to train the ANNs. The ANNs system was later 

employed to classify measured data. The selection of the PNN architecture was based on 

its performance in pattern recognition. This ANN model belongs to the Bayesian 

classifiers. The processing system was tested and optimized on the numerical data, before 

final application to real experimental results. The issues that were resolved in this thesis 

are summarized in the topics stated below: 

 
7. Modal testing and IR thermography were selected to investigate critical changes 

in structural parameters. 

8. PNN architecture was proved to be the most efficient architecture for the 

measured data classification. 

9. Two different features extraction techniques were used in order to retain the 

relevant information from the experimental data before the NN implementation: 

differences in curvature mode shapes and thermal contours. 

10.  Numerical models were created and validated with experimental measurements 

to generate several damage scenarios. The simulated responses were used in the 

ANNs training. 

11. A combined ANNs approach which is able to deal with data provided by modal 

and thermal analysis was developed for damage predictions. 

12. Finally, experimental results were used to demonstrate the capability of the 

proposed approach in detecting real damage cases. 
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According to the results presented in this work, we can conclude that the 

difference in curvature mode shapes and thermal transient responses provide necessary 

information for the existence and severity of the damage. In addition, the ANNs 

predictions successfully identified the damage location for both simple and multiple 

damage states. This particular characteristic makes the proposed damage detection 

system suitable for real applications where multiple damages scenarios are quite 

common. 

 

However, the PNN model was not designed to be incremental learners since old 

examples are represented explicitly in the networks.  Every new example demands the 

modification of the network architecture by the addition of another pattern unit and 

associated connections. Therefore, an incremental learning rule will be investigated in 

order to optimize the ANN training process and to minimize the run time of the 

classification algorithm.  

 

In addition, both vibration and transient thermal response of more complex 

structures will be studied. Thus, the analysis of different types of mode of vibrations 

(flexural, torsional, longitudinal, etc.) will be required. Conversely to the difference in 

curvature mode shapes used in this work, a new feature which does not include the 

undamaged state of the structure will be investigated in order to make the damage 

detection approach more autonomous.  
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Appendix A 

 
Matlab Code for Damage Detection 

 
% ----------------------------------------------------------------------------- 
%                         Preprocessing of Vibration Data  
% ----------------------------------------------------------------------------- 
 
clear all; 
clc; 
close all; 
 
% ----------------------------------------------------------------------------- 
%                               Read Vibration Data 
% ----------------------------------------------------------------------------- 
 
disp(' ') 
disp(' ') 
file02 = input('   Enter Vibration Data : '); 
disp(' ') 
file01 = input('   Enter Thermal Image  : '); 
disp(' ') 
 
set(0,'Units','centimeters') 
scnsize = get(0,'ScreenSize'); 
figure('Units','centimeters','Position',[0 0 1*scnsize(3) 
0.95*scnsize(4)],'visible','on') 
 
if ( file02 == 0); 
else 
 
path02 = 'C:\Andres\Thesis_Andres\Modes Data\'; 
Data1 = xlsread([path02 file02 '.xls']); 
nodes = Data1(:,1); 
nodes_number = nodes(length(nodes)); 
 
mode01 = Data1(:,2);  
mode02 = Data1(:,3);  
mode03 = Data1(:,4);  
 
mode11 = Data1(:,5); 
mode12 = Data1(:,6); 
mode13 = Data1(:,7); 
 
mode01n = mode01./(max(abs(mode01))); 
mode11n = mode11./(max(abs(mode11))); 
 
mode02n = mode02./(max(abs(mode02))); 
mode12n = mode12./(max(abs(mode12))); 
 
mode03n = mode03./(max(abs(mode03))); 
mode13n = mode13./(max(abs(mode13))); 
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% ----------------------------------------------------------------------------- 
%                        Curvature Mode Shapes Calculation 
% ----------------------------------------------------------------------------- 
 
 element = nodes(2) - nodes(1); 
       
 for k = 2:(length(nodes) - 1); 
     curv_m01n(k-1) = (mode01n(k-1) - 2*mode01n(k) + mode01n(k+1))/(element^2); 
     curv_m02n(k-1) = (mode02n(k-1) - 2*mode02n(k) + mode02n(k+1))/(element^2); 
     curv_m03n(k-1) = (mode03n(k-1) - 2*mode03n(k) + mode03n(k+1))/(element^2); 
      
     curv_m11n(k-1) = (mode11n(k-1) - 2*mode11n(k) + mode11n(k+1))/(element^2); 
     curv_m12n(k-1) = (mode12n(k-1) - 2*mode12n(k) + mode12n(k+1))/(element^2); 
     curv_m13n(k-1) = (mode13n(k-1) - 2*mode13n(k) + mode13n(k+1))/(element^2); 
 
     nodes_c(k-1) = nodes(k); 
end 
  
% ----------------------------------------------------------------------------- 
%                  Difference in Curvature Mode Shapes Calculation 
% ----------------------------------------------------------------------------- 
  
 diff_c1n = abs(curv_m01n - curv_m11n); 
 diff_c2n = abs(curv_m02n - curv_m12n); 
 diff_c3n = abs(curv_m03n - curv_m13n); 
  
 max_1 = max(diff_c1n); 
 max_2 = max(diff_c2n); 
 max_3 = max(diff_c3n); 
  
 diff1n = diff_c1n./max_1;  
 diff2n = diff_c2n./max_2;  
 diff3n = diff_c3n./max_3;  
 
% ----------------------------------------------------------------------------- 
%                   Peaks in Difference Curvature Mode Shapes  
% ----------------------------------------------------------------------------- 
 
[npeaks(1) ppeaks1 ind1 mean21] = npeaks(diff1n'); 
[npeaks(2) ppeaks2 ind2 mean22] = npeaks(diff2n'); 
[npeaks(3) ppeaks3 ind3 mean23] = npeaks(diff3n'); 
 
[val pos] = max(npeaks); 
 
switch (pos) 
case (1) 
   ppeaks = ppeaks1; 
   ind = ind1; 
case (2) 
   ppeaks = ppeaks2; 
   ind = ind2; 
case (3) 
   ppeaks = ppeaks3; 
   ind = ind3; 
end 
 
cpeaks(:,:,1) = peaks(diff1n',npeaks(pos),ppeaks,ind,mean21); 
cpeaks(:,:,2) = peaks(diff2n',npeaks(pos),ppeaks,ind,mean22); 
cpeaks(:,:,3) = peaks(diff3n',npeaks(pos),ppeaks,ind,mean23); 
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ncpeaks(:,:,1) = cpeaks(:,:,1).*max_1; 
ncpeaks(:,:,2) = cpeaks(:,:,2).*max_2; 
ncpeaks(:,:,3) = cpeaks(:,:,3).*max_3; 
 
% ----------------------------------------------------------------------------- 
%                                    Patterns 
% ----------------------------------------------------------------------------- 
 
CP = zeros(size(ncpeaks,1)+1,size(ncpeaks,2)-1,size(ncpeaks,3)); 
 
for k = 1:size(ncpeaks,3); 
for j = 2:size(ncpeaks,2); 
    CP(1,j-1,k) = max(abs(ncpeaks(:,j,k))); 
    CP(2:size(CP,1),j-1,k) = ncpeaks(:,j,k)./(max(abs(ncpeaks(:,j,k))));     
end 
end 
 
 
% ----------------------------------------------------------------------------- 
%                                     Plots 
% ----------------------------------------------------------------------------- 
 
LineWidth  = 1.5; 
MarkerSize = 8; 
MarkerFaceColor = 'k'; 
 
subplot(2,2,1); 
h = plot(nodes, mode11n, 'r', nodes, mode12n, 'b', nodes, mode13n, 'g');  
 
grid on; 
axis([0 nodes_number+1 -1.2 1.2]); 
title('{\it{ Mode Shapes }}','fontsize',14) 
xlabel('{\it{ Node}}','fontsize',10) 
set(gca,'XTick',[1:24],'YTick',[-
1.2:0.4:1.2],'fontsize',8,'PlotBoxAspectRatio',[2.5 1.25 1]); 
set ( h, 'LineWidth', LineWidth, ... 
         'MarkerSize', MarkerSize, ... 
         'MarkerFaceColor', MarkerFaceColor ) 
      
pause(2) 
 
subplot(2,2,1); 
h = plot(nodes_c, diff1n, 'r', nodes_c, diff2n, 'b', nodes_c, diff3n, 'g');  
 
grid on; 
axis([0 nodes_number+1 0 1.2]) 
title('{\it{ Difference Curvature }}','fontsize',14) 
xlabel('{\it{ Node}}','fontsize',10) 
set(gca,'XTick',[1:24],'fontsize',8,'PlotBoxAspectRatio',[2.5 1.25 1]); 
set ( h, 'LineWidth', LineWidth, ... 
         'MarkerSize', MarkerSize, ... 
         'MarkerFaceColor', MarkerFaceColor ) 
 
pause(2) 
  
for s = 1:size(cpeaks,3); 
for k = 2:size(cpeaks,2); 
 
subplot(2,2,2); 
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switch (s)    
case (1) 
     LineStyle = 'r-'; 
case (2) 
     LineStyle = 'b-'; 
case (3) 
     LineStyle = 'g-';      
end 
 
plot(nodes_c, diff1n, 'k-', nodes_c, diff2n, 'k-', nodes_c, diff3n, 'k-');  
 
hold on; 
grid on; 
axis([0 nodes_number+1 0 1.2]) 
xlabel('{\it{ Node}}','fontsize',10) 
set(gca,'XTick',[1:24],'fontsize',8,'PlotBoxAspectRatio',[2.5 1.25 1]); 
   
pause(1) 
 
h = plot(nodes_c, cpeaks(:,k,s), [ LineStyle ]);  
   
 grid on; 
 axis([0 nodes_number+1 0 1.2]) 
  
 title(['{\it{ Curvature Peak  }}' num2str(s) ' - ' num2str(k-
1)],'fontsize',14) 
 xlabel('{\it{ Node}}','fontsize',10); 
 set(gca,'XTick',[1:24],'fontsize',8,'PlotBoxAspectRatio',[2.5 1.25 1]); 
 set ( h, 'LineWidth', LineWidth, ... 
          'MarkerSize', MarkerSize, ... 
          'MarkerFaceColor', MarkerFaceColor )   
       
  hold off; 
  pause(2) 
 
  end 
end 
      
% ----------------------------------------------------------------------------- 
%                   Probabilistic Neural Network Simulations 
% ----------------------------------------------------------------------------- 
 
tic 
 
load cnets 
 
Y1 = sim(cnet1,CP(:,:,1)); 
Y1 = vec2ind(Y1); 
 
Y2 = sim(cnet2,CP(:,:,2)); 
Y2 = vec2ind(Y2); 
 
Y3 = sim(cnet3,CP(:,:,3)); 
Y3 = vec2ind(Y3); 
 
load CTrainData 
 
[n m] = size(P1); 
 
tcases = [1:m/4]; 
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for k = 1:m/4; 
tcases = [tcases ones(1,3).*k]; 
end 
 
b1 = ones(size(P1,2),1)*8.3225e0; 
b2 = ones(size(P2,2),1)*8.3225e0; 
b3 = ones(size(P3,2),1)*8.3225e0; 
 
for k = 1:size(CP,2); 
a11(:,k) = radbas(netprod(dist(P1',CP(:,k,1)),b1)); 
YS1(1,k) = tcases(Y1(1,k)); 
YS1(2,k) = a11(Y1(1,k),k); 
end 
 
for k = 1:size(CP,2); 
a12(:,k) = radbas(netprod(dist(P2',CP(:,k,2)),b2)); 
YS2(1,k) = tcases(Y2(1,k)); 
YS2(2,k) = a12(Y2(1,k),k); 
end 
 
for k = 1:size(CP,2); 
a13(:,k) = radbas(netprod(dist(P3',CP(:,k,3)),b3)); 
YS3(1,k) = tcases(Y3(1,k)); 
YS3(2,k) = a13(Y3(1,k),k); 
end 
 
for k = 1:val; 
Prob(:,:,k)  = [a11(:,k) a12(:,k) a13(:,k)]; 
Probs = sum(Prob(:,:,k),2); 
max_P(k) = max(Probs); 
Probn(:,k) = Probs./max_P(k); 
YSi = sim(cnet4,Probn(:,k)); 
YS(1,k) = vec2ind(YSi); 
YS(2,k) = Probs(YS(1,k)); 
YS(1,k) = tcases(YS(1,k)); 
end 
 
time = toc; 
 
subplot(2,2,2); 
 
for k = 1:size(YS,2); 
     
pause(2) 
 
h = plot(nodes_c, P1(2:n,YS(1,k)), 'r', nodes_c, P2(2:n,YS(1,k)), 'b', nodes_c, 
P3(2:n,YS(1,k)), 'g');  
 
hold on; 
grid on; 
axis([0 nodes_number+1 0 1.2]) 
title('{\it{ Damage Location }}','fontsize',14) 
xlabel('{\it{ Node}}','fontsize',10) 
set(gca,'XTick',[1:24],'fontsize',8,'PlotBoxAspectRatio',[2.5 1.25 1]); 
set ( h, 'LineWidth', LineWidth, ... 
         'MarkerSize', MarkerSize, ... 
         'MarkerFaceColor', MarkerFaceColor ) 
end 
end 
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% ----------------------------------------------------------------------------- 
%                                Read Thermal Data 
% ----------------------------------------------------------------------------- 
 
if ( file01 == 0); 
else 
       
path01 = 'C:\Andres\Thesis_Andres\Thermal Data\'; 
I01 = imread([path01 file01],'bmp'); 
 
%------------------------------------------------------------------------------ 
%                             Preprocessing of Thermal Data                
%------------------------------------------------------------------------------ 
 
[om,on,or] = size(I01); 
 
if ( om == 401 & on == 451); 
I01 = I01(121:280,59:397,:); 
else 
I01 = I01(60:170,1:256,:); 
end 
 
I01 = imresize(I01,[111 256], 'bicubic');  
I01 = I01(3:110,2:255,:); 
I00(:,:,1)   = rgb2gray(I01);  
[m,n,r] = size(I00); 
count = 1; 
 
for k = 1:r;         
IM1(:,:,k) = wiener2(I00(:,:,k));  
count = count + 1; 
IM2(:,:,k) = im2bw(IM1(:,:,k));  
count = count + 1; 
end 
 
% ----------------------------------------------------------------------------- 
%                                      Plots 
% ----------------------------------------------------------------------------- 
 
LineWidth  = 1.5; 
MarkerSize = 10; 
MarkerFaceColor = 'b'; 
 
subplot(2,2,3); 
image(I01);  
title('{\it{ Thermal Image }}', 'FontSize', 14);  
Xlabel('{\it{ }}', 'FontSize', 10); Ylabel('{\it{}}', 'FontSize', 10); 
set(gca,'XTicklabel',[],'YTicklabel',[],'fontsize',8,'PlotBoxAspectRatio',[2.5 
1.25 1]); 
axis equal; axis([1 253 1 107]); 
      
pause(2) 
 
subplot(2,2,4); [C1 h1] = contour(IM2(:,:,1),1,'k-');  
title('{\it{ Contours }}', 'FontSize', 14);  
Xlabel('{\it{ }}', 'FontSize', 10); Ylabel('{\it{}}', 'FontSize', 10);    
set(gca,'XDir','normal','YDir','reverse','XTicklabel',[],'YTicklabel',[], ... 
        'fontsize',8,'PlotBoxAspectRatio',[2.5 1.25 1]);  
axis equal; axis([1 253 1 107]); 
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[i1,j1] = find(C1==0.5);  
 
j1(length(j1)+1) = length(C1)+1;  C1(:,j1(length(j1))) = 0.5; 
 
for k = 1:length(j1)-1;     
    obj1size(k) = (j1(k+1)-1)-j1(k);     
end 
obj1 = zeros(2,max(obj1size),length(i1)); 
for k = 1:length(j1)-1;  
    obj1(:,1:obj1size(k),k) = C1(:,j1(k)+1:j1(k+1)-1);   
end 
 
clear i; 
 
obj1  = [obj1(1,:,:)  + obj1(2,:,:)*i];   
 
for k = 1:length(i1);  
    cent1(k) = mean([obj1(:,1:obj1size(k),k)]);  
    obj1c(:,:,k) = obj1(:,:,k) - cent1(k);  
end 
 
count = 1; 
 
subplot(2,2,4); 
 
for k = 1:length(i1); 
 
contour(IM2(:,:,1),1,'k'); hold on;  
title('{\it{ Contours }}', 'FontSize', 14);  
Xlabel('{\it{ }}', 'FontSize', 10); Ylabel('{\it{}}', 'FontSize', 10);    
set(gca,'XDir','normal','YDir','reverse','XTicklabel',[],'YTicklabel',[], ... 
        'fontsize',8,'PlotBoxAspectRatio',[2.5 1.25 1]);  
axis equal; axis([1 253 1 107]); 
 
pause(1) 
     
h= plot(obj1(:,1:obj1size(k),k)); 
 
text(real(cent1(k)),imag(cent1(k)), ['S' num2str(count)], 'FontSize', 08);  
count = count + 1; 
title('{\it{ Contours }}', 'FontSize', 14);    
Xlabel('{\it{ }}', 'FontSize', 10); Ylabel('{\it{}}', 'FontSize', 10);   
set(gca,'XTicklabel',[],'YTicklabel',[],'fontsize',8,'PlotBoxAspectRatio',[2.5 
1.25 1]); 
set ( h, 'LineWidth', LineWidth, ... 
          'MarkerSize', MarkerSize, ... 
          'MarkerFaceColor', MarkerFaceColor ) 
 
hold off; pause(2) 
 
end 
 
subplot(2,2,4); [C1 h1] = contour(IM2(:,:,1),1,'b-');  
title('{\it{ Contours }}', 'FontSize', 14);  
Xlabel('{\it{ }}', 'FontSize', 10); Ylabel('{\it{}}', 'FontSize', 10);    
set(gca,'XDir','normal','YDir','reverse','XTicklabel',[],'YTicklabel',[], ... 
        'fontsize',8,'PlotBoxAspectRatio',[2.5 1.25 1]);  
axis equal; axis([1 253 1 107]); 
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%------------------------------------------------------------------------------ 
%                                     Patterns                 
%------------------------------------------------------------------------------ 
 
tol = 1.5e1; 
c = 1; 
 
for k = 1:length(i1); 
Iy1(k)  = sum((real(obj1c(:,1:obj1size(k),k)).^2));        
Ix1(k)  = sum((imag(obj1c(:,1:obj1size(k),k)).^2));     
F1(:,k) = [Ix1(k);Iy1(k)]; 
 
if ( norm(F1(:,k)) < tol ); 
else     
P(:,c) = [real(cent1(k));imag(cent1(k));Ix1(k);Iy1(k)]; 
ind1(c)  = k; 
c = c + 1; 
end 
end 
 
PS = [P]; 
 
load TTrainDataN 
 
for k = 1:4;     
PNS(k,:) = PS(k,:)./max_PNT(k); 
end 
 
% ----------------------------------------------------------------------------- 
%                   Probabilistic Neural Network Simulations 
% ----------------------------------------------------------------------------- 
load tnets 
 
SP = sim(tnet1,PNS); 
 
SP = vec2ind(SP); 
 
[o q] = size(PNT); 
 
tcases = [1:q/2 1:q/2]; 
 
b1 = ones(size(PNT,2),1)*8.3255e0; 
 
for k = 1:size(PNS,2); 
    a1(:,k) = radbas(netprod(dist(PNT',PNS(:,k)),b1)); 
end 
 
for k = 1:length(SP); 
Prob  = [a1]; 
Probn = Prob(:,k)./max(Prob(:,k)); 
YS(1,k) = tcases(SP(k)); 
end 
 
count = 1; 
 
for k = 1:length(YS); 
switch (YS(k)); 
case (3);   
    tassoc(count) = YS(k); 
    count = count + 1; 
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case (10);    
    tassoc(count) = YS(k);      
    count = count + 1; 
case (17);   
    tassoc(count) = YS(k);      
    count = count + 1; 
case (24); 
    tassoc(count) = YS(k);     
    count = count + 1; 
case (31);   
    tassoc(count) = YS(k);    
    count = count + 1; 
case (38);   
    tassoc(count) = YS(k);       
    count = count + 1; 
case (45);   
    tassoc(count) = YS(k);       
    count = count + 1; 
case (52);     
    tassoc(count) = YS(k);      
    count = count + 1; 
otherwise 
    tassoc = 0; 
end 
end 
 
if ( tassoc ~= 0 ) 
load TTrainData 
 
subplot(2,2,4); image(I01); hold on; 
set(gca,'XTicklabel',[],'YTicklabel',[],'fontsize',8,'PlotBoxAspectRatio',[2.5 
1.25 1]); 
 
h = plot(PT(1,tassoc),PT(2,tassoc),'k+');  
title('{\it{ Damage Location }}', 'FontSize', 14);  
Xlabel('{\it{ }}', 'FontSize', 10); Ylabel('{\it{}}', 'FontSize', 10);    
axis equal; axis([1 253 1 107]); 
set(gca,'XTicklabel',[],'YTicklabel',[],'fontsize',8,'PlotBoxAspectRatio',[2.5 
1.25 1]); 
set ( h, 'LineWidth', LineWidth, ... 
          'MarkerSize', MarkerSize, ... 
          'MarkerFaceColor', MarkerFaceColor ) 
else 
subplot(2,2,4); image(I01); hold on; 
set(gca,'XTicklabel',[],'YTicklabel',[],'fontsize',8,'PlotBoxAspectRatio',[2.5 
1.25 1]); 
 
text([55 128], 'No Damage Detected', 'FontSize', 14);  
title('{\it{ Damage Location }}', 'FontSize', 14);  
Xlabel('{\it{ }}', 'FontSize', 10); Ylabel('{\it{}}', 'FontSize', 10);    
axis equal; axis([1 253 1 107]); 
set(gca,'XTicklabel',[],'YTicklabel',[],'fontsize',8,'PlotBoxAspectRatio',[2.5 
1.25 1]); 
set ( h, 'LineWidth', LineWidth, ... 
          'MarkerSize', MarkerSize, ... 
          'MarkerFaceColor', MarkerFaceColor ) 
end 
end 
 
%------------------------------------------------------------------------------ 
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