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Abstract

The main objectives of this work are to describe the theoretical use of the
regularization method to solve integral equations of the first kind and to
develop a solution method for integral equations of the first kind in two and
three dimensions. To solve such equations, the kernels are represented by
two-dimensional matrices and singular value decomposition is used to get the
solutions. The regularization parameter is computed by using the L-curve
method and the Discrepancy Principle.
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Resumen

Los objetivos principales de este trabajo son describir el uso teórico del
método de regularización para resolver ecuaciones integrales de primera es-
pecie y desarrollar un método de solución para las ecuaciones integrales de
primera especie en dos y tres dimensiones. Para resolver este tipo de ecua-
ciones los núcleos se representan por matrices bidimensionales y se usa des-
composición en valores singulares para obtener las soluciones. El parámetro
de regularización se calcula usando los métodos de la L-curva y el Principio
de Discrepancia.
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INTRODUCTION

We have two main objectives in this work. The first objective is to describe

theoretically the Tikhonov regularization method to solve inverse problems.

The second objective is to solve integral equations of the first kind in two and

three dimensions, especially in a compact parallelepiped in R2 or R3. The

treatment of integral equations is self-contained. Because integral equations

of the first kind are particular cases of inverse problems, some topics about

functional analysis and theory of inverse problems are included.

Integral equations of the first kind for one dimensional case are well doc-

umented and a variety of programs to solve them can be found, for instance,

in [21] and [25], but programs for other dimensions are not found frequently.

Therefore, programs to solve integral equations of the first kind for two and

three dimensions are desirable. This kind of equation arises frequently in

applied sciences. Wing [28], Lamm [13] and Denisov [5] show some examples

where integral equations are used. Steinberg [24] got a system of integral

equations of the first kind in three dimensions while he was trying to find a

linearization for an inverse problem for an elastic body. That was the source

1



2

of this work.

For completeness, the functional analysis of integral equations is included

in Chapter 1. Moreover, we include a theoretical treatment of inverse prob-

lems, especially the Tikhonov regularization method [5, 25] in Chapter 2.

Chapter 3 contains a description of the tools used to solve integral equa-

tions of the first kind. There, we describe some numerical methods and some

examples are presented.

Due to the ill-posedness of integral equations, it is not easy to deal with

them. Considering these types of equations in dimensions other than one is

a little bit harder because of the complexity of multiple integrals. This can

be seen in the type of programs developed which demand a huge quantity of

memory in order to achieve acceptable results.



Chapter 1

BASIC RESULTS OF
FUNCTIONAL ANALYSIS

In this chapter we give some basic results of functional analysis which will

help us to understand the mathematical theory of functional equations used

to solve inverse problems. We present an overview about metric spaces, Ba-

nach spaces, Hilbert spaces and several concepts defined over these spaces

such as convergence, compactness, completeness and weak convergence. Also

how they interact with each other and with operators defined on them. All

these topics aim at the notion of compact operators whose principal proper-

ties we discuss in Sections 1.2 and 1.4.

1.1 Linear Operators

Definition 1.1.1 (Metric or distance). A metric (or distance) d on a non-
empty set X is a function d : X × X → C satisfying the following four
properties. ∀x, y, z ∈ X:

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3
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3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a metric space.

Definition 1.1.2 (Normed Space). Let X be a linear space over K where K
is either R or C.

1. ‖x‖ ≥ 0, ∀x ∈ X

2. ‖x‖ = 0, if and only if x = 0

3. ‖λx‖ = |λ|‖x‖, ∀x ∈ X, λ ∈ K

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X

The pair (X, ‖ · ‖) is called normed vector space or simply normed space. It
is either real or complex depending on the nature of K.

Definition 1.1.3 (Convergent sequence). Let (X, d) be a metric space

i) The sequence {xn}∞n=1 ⊆ X is said to be convergent to x ∈ X if
d(xn, x) → 0 when n→∞.

ii) A sequence {xn}∞n=1 is said to be a Cauchy sequence if for each ε > 0,
there is N = N(ε) such that d(xm, xn) < ε for all m,n ≥ N. When
every Cauchy sequence converges in a metric space, The metric space
is called complete metric space.

Remark 1. Every normed space becomes a metric space if the metric is
defined as d(x, y) = ‖x− y‖.

From now on each time we mention convergence in a normed space it

means convergence in the metric that the norm defines on it.

Definition 1.1.4 (Banach Space). A complete normed space (X, ‖ · ‖) is
called Banach Space.

Definition 1.1.5 (Inner product). An inner product on a real-vector space
X is a real valued function of two variables (·, ·) : X ×X → R such that:

1. (·, ·) is linear in the first variable, i.e, (αx + βy, z) = α(x, z) + β(y, z)
for all x, y, z ∈ X and all real numbers α and β
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2. (·, ·) is symmetric, i.e, (x, y) = (y, x) for all x, y ∈ X and

3. (x, x) ≥ 0 for each x ∈ X and (x, x) = 0 if and only if x = 0.

Remark 2. - An inner product can be complex-valued, in this case the
second condition in the foregoing definition must be changed to (x, y) =
(y, x).

- A real vector space (a complex vector space) equipped with a real inner
product (a complex inner product) is called a real inner product space
(complex inner product space).

- Every inner product induces a norm ‖u‖ = (x, x)1/2 on the space and
this norm satisfies

‖u1 + u2‖2 + ‖u1 − u2‖2 = 2(‖u1‖2 + ‖u2‖2). (1.1)

and the above relation defines an inner product.

- The identity above gives us a criterion to decide when a norm is induced
by an inner product.

Definition 1.1.6 (Hilbert Space). A Hilbert space is an inner product space
which is complete in the norm induced by its inner product.

Theorem 1.1.7. Let a set M of a metric space Z be one-to one mapped by
an operator A onto a set N of a metric space U . If A is continuous in M ,
and M is a compact set, then the inverse operator A−1 is continuous in N.

Proof. See [5, p. 16]

Definition 1.1.8 (Linear operator). Let T : X → Y a mapping between
normed spaces.

(i) T is called linear operator if T (αx+ βy) = αT (x) + βT (y)

Let T a linear operator.

(ii) T is bounded if there exists a constant C > 0 such that ‖Tx‖Y ≤ ‖x‖X

for all x.
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(iii) T is continuous in x ∈ X if for each sequence (xn) converging to x, the
sequence (T (xn)) converges to T (x).

(iv) T is continuous in X, if it is continuous for all x ∈ X.

Theorem 1.1.9. Let T : X → Y be a linear operator then the following are
equivalents,

(i) T is bounded in X

(ii) T is continuous in X

(iii) T is continuous at 0

If (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces over K, the set of all

bounded linear operators from X to Y , represented by B(X, Y ), is a vector

normed space. For T1, T2 ∈ B(X, Y ), λ ∈ K and x ∈ X we define

(T1 + T2)x = T1x+ T2x, (λT )x = λ(Tx),

and if T ∈ B(X, Y ), ‖T‖B(X,Y ) denote the lowest C > 0 such that ‖T (x)‖ ≤

C‖x‖ for all x ∈ X.

Theorem 1.1.10. Let T ∈ B(X,Y ) then

(i) ‖ · ‖B(X,Y ) is a norm on B(X, Y )

(ii) For T ∈ B(X,Y ), ‖T‖ = sup{‖Tx‖ : x ∈ X with ‖x‖ = 1}

(iii) ‖Tx‖ ≤ ‖T‖‖x‖

If T is a linear operator defined from X to Y we denote its domain by

D(T ) and its range by R(T ) and we write T : D(T ) ⊆ X → Y.

Definition 1.1.11 (Dual of a normed space). Let X be a normed space over
K. The set of all continuous linear operators from X to K is called the dual
of X. It is denoted by X ′. Customarily the elements of X ′ are called linear
functionals or simply functionals.
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When f ∈ X ′, sometimes f(x) is noted (f, x) or 〈f, x〉 because it resembles

an inner product. The dual of the dual of X, i.e, (X ′)′ is called bidual. We

use X ′′ for it. Each fixed element f ∈ X ′ defines a linear operator from X

to K, say ϕf ,

ϕf : X → K

x 7→ f(x)

in the same way, each x ∈ X define a linear transformation from X ′ to

K, say ϕx,

ϕx : X ′ → K

f 7→ f(x).

Henceforth a canonical injection between X and a subset of X ′′ can be

defined. It is an isometry.

J : X → X
′′

x 7→ J(x) = ϕx

in this fashion X can be identified with a subset of its bidual.

Now we are going to describe some orthogonal relations in Banach Spaces
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[3, p. 23]. If X is a Banach space we define

M⊥ = {f ∈ X ′; 〈f, x〉 = 0, ∀x ∈M} M ⊂ X (1.2)

N⊥ = {x ∈ X : 〈f, x〉 = 0, ∀f ∈ N} N ⊂ X ′. (1.3)

Some interesting relations are:

(M⊥)
⊥

= M, N ⊂ (N⊥)
⊥
. (1.4)

Definition 1.1.12 (Weak topology). Let X be a Banach space. The weak
topology on X is the intersection of all topologies on X with respect to each
of which, all {ϕf}f∈X′ are continuous.

To distinguish between the strong convergence and the weak convergence

we are going to use → for the former and ⇀ for the latter.

Definition 1.1.13 (Weak* topology). Let X be a Banach space. The weak*
topology on X ′ is the weakest topology on X ′ with respect to each of which,
all {ϕx}x∈X are continuous.

The topologies above described are Hausdorff. A complete description

of this topologies can be found in Brezis [3], also in Yosida [30, Sect.IV.7,

p.111], and Dunford and Schwartz [6, p.475].

On X ′ three topologies are defined:

1. The norm induces a topology in X ′. It is called strong topology or

uniform topology of operators.

2. The weak topology which is induced by X ′′ over X ′, σ(X ′, X ′′)

3. The weak* topology σ(X ′, X).
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Definition 1.1.14 (Weak convergence). The convergence in the weak topol-
ogy is called weak convergence.

The convergence in those metric and topological spaces are related as

follow [3];

Theorem 1.1.15. Let E be a Banach space and let (xn) be a sequence in E.
Then

(i) xn ⇀ x for σ(E,E ′) ⇐⇒ 〈f, xn〉 → 〈f, x〉 ,∀f ∈ E ′.

(ii) If xn → x in the strong topology then xn ⇀ x in σ(E,E ′).

(iii) If xn ⇀ x for σ(E,E ′) then ‖xn‖ is bounded and ‖x‖ ≤ lim inf ‖xn‖.

(iv) If xn ⇀ x for σ(E,E ′) and xn → x in the strong topology in E ′ then
〈fn, xn〉 → 〈f, x〉 .

(v) If xn ⇀ x0 and ‖xn‖ → ‖x0‖, then ‖xn − x0‖ → 0.

(vi) If xn is bounded in norm, then we can choose from it a subsequence
weakly convergent to a certain element x0.

(vii) Let A be a linear continuous operator if xn ⇀ x then A(xn) ⇀ A(x).
See [17, p. 216].

Definition 1.1.16 (Closed operator). Let X be a Banach Space and T :
D(T ) ⊆ X → X a linear operator. T is said to be a closed linear operator if
xn ∈ D(T ); xn → x ∈ X; Txn → y implies x ∈ D(T ) and Tx = y

An immediate consequence of this is that every bounded operator is

closed.

Now we discuss the concept of adjoint operator which plays an important

roll in functional analysis. We follow [3, p.27]. Let E, F be Banach spaces

and A : D(A) ⊆ E → F a linear transformation with dense domain. We will

define an operator A∗ : D(A∗) ⊆ F ′ → E ′ as follow:

D(A∗) = {v ∈ F ′ : ∃c ≥ 0 such that | 〈v, Au〉 | ≤ c‖u‖, ∀u ∈ D(A)}.
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It is known that D(A∗) is a subspace F ′. Now we define A∗v for each

v ∈ D(A∗). Given v ∈ D(A∗) consider the mapping g : D(A) → K defined by

g(u) = 〈v, Au〉 , u ∈ D(A). It follows that |g(u)| ≤ c‖u‖ for all u ∈ D(A).

The Hahn-Banach theorem allows to extent g to a liner operator fg : E → K

such that |fg(u)| ≤ c‖u‖, for all u ∈ E. This extension is unique because

fg is continuous on D(A) and D(A) is dense. Thus the following definition

make sense.

Definition 1.1.17 (A djoint Operator). Let A : D(A) ⊆ E → F a linear
operator between the Banach spaces E y F with dense domain.We call adjoint
of the operator A, noted A∗, to the operator A∗ : D(A∗) ⊂ F ′ → E ′ defined
as follow:

D(A∗) = {v ∈ F ′ : | 〈v, Au〉 | ≤ c‖u‖, ∀u ∈ D(A)}

A∗v = fg,

where fg is the extension in the foregoing discussion.

A∗ is a linear operator and it is related to A as follow:

〈v, Au〉F ′,F = 〈A∗v, u〉E′,E ∀u ∈ D(A),∀v ∈ D(A∗) (1.5)

1.2 Compact Operators

Unless otherwise is stated, the main results in this section were taken of [3].

In the following we define the notion of compact operator and we study some

of its properties. This kind of operators are also called completely continuous

operators [14], [3, Sect. VI.1 - VI.3]. Before giving the definition we remind
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that a set C is relatively compact in a metric space (M,d) if its closure, i.e

C, is a compact set in (M,d).

Definition 1.2.1 (Compact operator). Let BE denote the closed unit ball in
the normed space E. A linear operator A : D(A) ⊆ E → F is said to be a
compact operator if A(BE) is a compact set in the strong topology of F ,i.e,
if A(BE) is relatively compact in the strong topology of F .

The set of all compact operators from E to F is noted by K(E,F ). If

F = E, it is noted by K(E). It can be shown that A : D(A) ⊆ E → F

is a compact linear operator if and only if it maps every bounded subset of

D(A) into a relatively compact set in F and this is precisely the definition

of completely continuous operator in [17]. Another equivalent definition is:

A ∈ L(E) is compact if any bounded (xn) sequence has a subsequence (xnk
)

such that {Axnk
} converges.

Theorem 1.2.2. Let A be a compact operator and suppose that xn weakly
converge to x. Then {Axn} strongly converges to Ax. See [17, p. 229]

Definition 1.2.3 (Finite-range operator). A linear operator T is said to be
of finite range if dimR(T ) <∞.

It follows immediately that every continuous operator of finite range is

compact [3].

Theorem 1.2.4 ([3]). K(E,F ) is a closed normed subspace of B(E,F ) for
the norm ‖ · ‖B(E,F )

Corollary 1.2.5. Let (Tn) be a sequence of continuous operators with finite
range from E to F and T ∈ B(E,F ) such that ‖Tn − T‖ → 0. Then T ∈
K(E,F ).

Theorem 1.2.6. Let E,F and G be Banach spaces. If T ∈ B(E,F ) and
S ∈ K(F,G) then S ◦ T ∈ K(E,G).
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Now we present two very important examples of compact operators.

Example 1 ([1]). Let [a, b] be a finite closed interval and let K : [a, b] ×
[a, b] → R be a continuous function. Consider the vector space C[a, b] with
the sup norm (‖ · ‖∞), and then define T : C[a, b] → C[a, b] by

T (f)(x) =

∫ b

a

K(x, y)f(y)dy (1.6)

for each f ∈ C[a, b]. This is a compact operator which is called integral
operator and the function K is the kernel of T. The linearity of the integral
guarantees that this operator is a linear operator.

Put

M = sup{|K(x, y)| : (x, y) ∈ [a, b]× [a, b]} <∞.

The calculations |T (f)(x)| ≤M(b−a)‖f‖∞ yields ‖T (f)‖∞ ≤M(b−a)‖f‖∞

and ‖T‖ <∞, so T is a bounded operator.

Let B = {f ∈ C[a, b] : ‖f‖∞ ≤ 1} the unit ball in C[a, b]. Observe that

B̄ is closed and bounded. Thus, by the Ascoli-Arzelà theorem we need only

to show that T (B) is a equicontinuous subset of C[a, b]. To prove this, fix

x0 ∈ [a, b] , and let ε > 0. Since K is uniformly continuous, there is δ > 0

such that |K(x1, y)−K(x2, y)| ≤ ε holds whenever |x1−x2| < δ. Henceforth,

if x ∈ [a, b] satisfies |x− x0| < δ and f ∈ B, then

|T (f)(x)− T (f)(x0)| =
∣∣∣∣∫ b

a

[K(x, y)−K(x0, y)]f(y)dy

∣∣∣∣ ≤ (b− a)ε

This shows that T (B) is equicontinuous at x0. Since x0 is arbitrary, T (B)

is equicontinuous everywhere. Thus, T (B) is compact. This complete the

proof of the compactness of T.
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Example 2 ([27]). Let X be a compact subset of a Euclidean n -space. Con-
sider Lp(X) and Lp(X × X), 1 < p < ∞. For K ∈ Lp(X × X) define

‖K‖ =
{∫ [∫

|K(x, y)|q dy
]p/q

dx
}1/p

where 1
p
+ 1

q
= 1. Consider the integral

operator

T (f)x =

∫
X

K(x, y)f(y)dy (1.7)

and suppose that Tf is in Lp(X) whenever f is. Then T is a linear compact
operator on Lp(X) when ‖K‖ <∞.

Now we are going to prove this fact.

|T (f)(x)|p ≤
{∫

X

|K(x, y)||f(y)|dy
}p

∫
X

|T (f)x|pdx ≤
∫

X

{[∫
X

|K(x, y)|qdy
]p/q

‖f‖p
p

}
dx

= ‖K‖p
p‖f‖p

p

‖Tf‖p ≤ ‖K‖p
p‖f‖p

p

‖T‖p ≤ ‖K‖p

The last inequality shows that if ‖Kn − K‖ → 0 then ‖Tn − T‖ → 0.

Since X×X is compact, continuous functions are dense in Lp(X×X), so K

can be approximated by a sequence Kn of continuous functions. Using the

Weierstrass theorem each Kn can be approximated uniformly by a sequence

of polynomials Kni
, i.e, Kni

u→ Kn when i → ∞. Every polynomial can be

written as

Kni
(x, y) =

ni∑
j=1

φij(x)ψij(y), φij ∈ Lp(X) ψij ∈ Lq(X), 1/p+ 1/q = 1.

Define Tni
as the integral operator with kernel Kni

and Tn the integral op-

erator with kernel Kn. Each Tni
has finite range, so it is compact. Since
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Kni
→ Kn when i → ∞, Tni

→ Tn. Then Tn is compact because K(X) is

closed. As Kn → K, Tn converges to T which is compact because K(X) is

closed.

Definition 1.2.7 (Resolvent of an operator). Let A : D(A) ⊆ X → X an
operator over a complex normed space. The resolvent set of the operator
A ,ρ(A) ,is the set of λ ∈ C which λI − A is invertible.

The resolvent set of A, ρ(A), is an open set of C

Definition 1.2.8. (Spectrum of an operator) If A is an operator as in the
above definition the complement of ρ(A) in C is called spectrum of A. It is
denoted σ(A).

Since ρ(A) is an open set of C, the spectrum is closed.

Theorem 1.2.9. Let A ∈ K(E) with dimE = ∞. Then

a) 0 ∈ σ(A)

b) σ(A)\{0} equals the nonzero eigenvalues

c) Only one of the following holds:

– σ(A) = {0},
– σ(A)\{0} is finite,

– σ(A)\{0} is a sequence converging to zero.

Theorem 1.2.10 (Fredholm Alternative). Let A ∈ K(E), where E is a
Banach space. Then

a) ker(λI − A) has finite dimension

b) R(λI −A) is closed, besides, R(λI −A) = ker(λI −A∗)⊥ and R(λI −
A∗) = ker(λI − A)⊥

c) ker(λI − A) = {0} ⇔ R(λI − A) = E

d) dim ker(λI − A) = dim ker(λI − A∗).
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The last theorem tell us something about the resolution of the equation

λf −Af = g. Either the equation λf −Af = g has a unique solution for all

f ∈ E or λf − Af = 0 has n linearly independent solutions, this is, the non

homogeneous equation λf − Af = g is solvable if g verifies a finite number

of orthogonal conditions (f ∈ ker((λI − A∗)⊥).

In words of the Definition 1.3, λf − Af = g has a unique solution f if

and only if φ(g) = 0 whenever A∗φ = λφ, φ ∈ E ′. See [27].

1.3 Singular Vectors

This topic can be found in [18] and [28].

Each operator A has associated two sets of vectors vi and ui, which are

eigenvectors of A∗A and AA∗ respectively. They are related by

Avi = σiui, A∗ui = σivi

where the σi are the positive square roots of the nonzero eigenvalues ηi of

AA∗ and A∗A, i.e, A∗Avi = ηivi and σi =
√
ηi. The functions vi and ui are

called singular vectors of A. The σi are called singular values. The operators

A∗A and AA∗ have the same eigenvalues, so they have the same singular

values.
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1.4 Theory in Hilbert spaces

For this section we suppose that all Hilbert spaces are separable. The main

references for this part are ?? and ??.

The notion of orthogonality defined in (1.3) can be restated in terms of

inner products using the following theorem:

Theorem 1.4.1 (F. Riesz). If H is a Hilbert space and f : H → C is a
continuous linear functional then there exists a unique vector y ∈ H such
that 〈f, x〉 = f(x) = (x, y) holds for all x ∈ H. Moreover ‖f‖ = ‖y‖.

With the notation of inner products two vectors x and y are orthogonal

if (x, y) = 0. It is noted x ⊥ y. The orthogonal complement of a set M is

M⊥ = {x ∈ X;x ⊥ y, ∀y ∈M} M ⊂ X.

A set of pairwise orthogonal vectors is called an orthogonal set, if in addition

each vector has norm one, it is called orthonormal set. A orthogonal set

has the Pythagorean property, i.e, if N = {x1, x2, ..., xn} is an orthogonal set

‖
∑n

i=1 xi‖2 =
∑n

i=1 ‖xi‖2. If N is a closed subspace ofH then span(N⊥) = H

and H = N ⊕N⊥

Theorem 1.4.2. Let {xi}i∈I be an orthonormal family of vectors in an inner
product space, then ∑

i∈S

|(x, xi)|2 ≤ ‖x‖2

holds for each vector x. In particular, for each x all but at most countable
number of (x, xi) vanish.

Theorem 1.4.3. A vector subspace N of a Hilbert space is dense if and only
if the zero vector is the one and only vector orthogonal to N.
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Definition 1.4.4 (Complete orthogonal set). Let H be an inner product
space and S ⊂ H. S is said to be complete if x ⊥ s for all s ∈ S implies
x = 0.

Beginning with a dense subset {x1, x2, ...} of a Hilbert space, a complete

orthogonal set can be constructed using Gram-Schmidt orthogonalization

process. This kind of sets are called orthonormal basis and they will be

noted as {ei}i∈I .

Theorem 1.4.5. For an orthonormal family {ei}i∈I of vectors in a Hilbert
space the followings statements are equivalents

1. The family {ei}i∈I is an orthonormal basis

2. x ⊥ ei, ∀i ∈ I implies x = 0

3. For all ∈ H, (x, ei) 6= 0 for at most countably many indices and
x =

∑
i∈I(x, ei)e1, where the series converge in norm.

4. For each pair of vectors x and y we have (x, ei) 6= 0 and (y, ej) 6= 0 for

at most countably many indices and (x, y) =
∑

i∈I(x, ei)(y, ei)

5. (Parseval’s identity) For each vector x we have ‖x‖2 =
∑

i∈I |(x, ei)|2.

Theorem 1.4.6. An infinite-dimensional Hilbert space H is separable if and
only if it has a countable orthonormal basis. Moreover, in this case, every
orthonormal basis is countable.

By using the Riesz’s theorem the relation (1.5) can be expressed as

(Tu, v) = (u, T ∗v), ∀u, v ∈ H.

If the operator satisfies T ∗ = T then

(Tu, v) = (u, Tv), ∀u, v ∈ H.
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A operator satisfying T ∗ = T is called self-adjoint or Hermitian and its

eigenvalues are all real. Besides, its eigenvalues are non negative if (Tx, x) ≥

0 for all x.

Theorem 1.4.7. Let H be a separable Hilbert space and let T be a self-
adjoint compact operator. Then H admits a orthogonal basis which consists
only of eigenvectors of the operator.

The proof of theorems in this section can be found in [1, 3, 27].

Since every finite-range operator is compact and K(H) is closed then the

last theorem gives us a way to approach T by finite-range operators. If T is

compact self-adjoint operator in a Hilbert space, let {un}∞n=1 its eigenvectors

with eigenvalues {γn}. Put E0 = ker(T ) and En = ker(γnI − T ). These sets

are pairwise orthogonal [3, p. 97]. Then Tu =
∑∞

n=1 γnun, γn ∈ En. Define

Tu =
∑k

n=1 γnun. Henceforth Tk has finite range and

‖Tk − T‖ ≤ sup
n≥k+1

|γn| → 0

so Tk → T.



Chapter 2

ELEMENTS OF INVERSE
PROBLEMS

The principal objective of this chapter is to discuss some theoretical facts

about inverse problems which will give us the tools to solve operator equa-

tions arising in the theory of inverse problems. We are mainly interested in

integral operators involved in integral equations. For this part we follow [5].

Nevertheless, we can take a look at [13] and [12] to review some methods to

solve this kind of problems.

2.1 Preliminaries

Consider the linear system Az = u where

A =

[
0.6410 0.2420
0.6210 0.2300

]
u =

[
0.8830
0.8510

]
.

The exact solution is z =

[
1
1

]
. Suppose that we do not know the exact

right-hand side but an approximation uδ =

[
0.8930
0.8210

]
which correspond to

19
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a perturbation δ =

[
0.01
−0.03

]
, i.e, u = u + δ. We expect that for small

changes δ in u we get solutions near to u. We solved the equation Az = uδ

with MATLAB using both the command A\uδ and z = A−1uδ to get zδ =[
−2.3520
9.9201

]
. This solution is far from the exact solution.

Let us try another approximation. Take as approximated solution zδ =

arg min
z
‖Az − uδ‖ in this case we obtain an approximated solution zδ =[

−2.3521
9.9201

]
. It is still far from the exact solution. We need to decrease the

size of the obtained solution while we keep ‖Az − uδ‖ as small as possible.

It can be done by imposing a weight α over the size of the approximated

solution. The original problem is replaced by the following. To approach the

exact solution by

zα = arg min
z
‖Az − uδ‖+ α‖z‖, (2.1)

or

zα = arg min
z
‖Az − uδ‖ subject to ‖x‖ ≤ α (2.2)

for a suitable α. Using (2.1 ) we get the following zα’s for the indicated values

of α.

α App. Solution
10−5 (-0.4827, 4.9227)
10−4 (0.9005 1.2247)
10 (0.0992 0.0371)

Certain values of α can give approximated solutions which are close to

the exact solution (third row in the above table), but others do not. Thus,

the principal issue is how to choose α so that we can get ”good” solutions.
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Why is so troublesome to dealt with this simple example? The columns

of A are very similar, A is near to singularity and it has a high condition

number. To summarize, the matrix A is ill behaved. This situation is not

the exception, it can be the rule. Consider the following example we take

from [18, p. 176].

Suppose that K(x, y) is an absolutely integrable function. Consider the

integral operator Tf = g with unknown f . Define

hn(x) ≡
∫ b

a

K(x, y) cos(ny)dy (c ≤ x ≤ d).

The Riemann-Lebesgue implies hn → 0 in the sup norm. Taking n large

enough

sup
c≤x≤d

|hn(x)| ≤ ε.

Put Kf = g and g1 = g + Chn where f and f1 are solution of integral

equation with data g and g1 respectively. Then

∫ b

a

K(x, y)(f(y)− f1(y))dy = g − g1 = C

∫ b

a

K(x, y) cos(ny)dy

The change in f corresponding to a change δg = Chn(x) in g is δf =

C cos(ny). So,

‖δf‖
‖δg‖

≤ |C(b− a)|
‖δg‖

.

Since ‖δg‖ can be done as small as you want, ‖δf‖ becomes as large as you

like. The integral operator in this case is ill behaved too.
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The equations (2.1) and (2.2) are particular examples of regularization

methods. They are used to handle the kind of problems described above.

The first one is called Tikhonov regularization method. We will deal with it

in the next sections.

2.2 General Description of Inverse Problems

Denisov [5] said the development of the theory of inverse problems is mainly

motivated by applied research, the inverse problems arise when it is neces-

sary to process and to interpret observed data in different branches of science.

Later in the text, he said that in these cases some characteristics of math-

ematical models are unknown and they need be determined using results of

an experiment. A common characteristic of these problems is that the con-

clusions have to be derived of indirect manifestations of the object which can

be measured experimentally.

These problems are related with:

• Chemical Kinetics [5]

• Inverse Heat Conduction Problems [2].

• Image Reconstructions [19]

• Parameter Estimation [13]

• Inverse Scattering Problems [15]
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• Inverse Problems in Elasticity [22, 23, 24]

• Inverse Sturm-Liouville Problem [4, 16, 20, 26]

In an abstract setting, a inverse problem can be formulated as an operator

equation

Az = u (2.3)

where the operator A maps a linear normed space Z into a linear space U .

Usually, Z is a complex Banach or Hilbert space and u is a data function.

The operator A can be linear or nonlinear, depending on the application.

Lamm in [13] says that the purpose is to find an element z̄ ∈ Z which

solve ( 2.3). If the data u is not in the range of A there is no possibility to

find a solution of 2.3, in this case, we can modify the problem and instead

look for a solution z̄ of the least squares problem

J(z̄) = min
z
J(z) (2.4)

where

J(u) := ‖A(z)− u‖2
U .

The operator equation (2.3) is well-posed if for each u a solution of the

problem exists, it is unique and it continuously depends on u. A problem

which is not well-posed is called ill-posed. According to this, the problem

of solving (2.3) is well-posed if the inverse operator A−1 is well defined and
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continuous in U . We can take a look at Theorem 1.1.7 on Page 5, it gives

some conditions under which the equation is well posed. When A is a linear

completely continuous operator(see Section 1.2) is called an operator of the

first kind.

Now we consider the operator equation (2.3) of first kind where A is a

continuous operator mapping a metric space Z into a metric space (U, d).

Usually this an ill-posed problem. In the sequel we are going to assume that

for each ū in a compact subset of Z, exist a unique z̄ such that Az̄ = ū.

Besides we are going to assume that ū is approximated by uδ, and d(uδ, ū) ≤

δ.

We hope that if δ becomes smaller and smaller, uδ would get closer and

closer to the real solution in some way. The following theorem states precisely

the way in what sense we take the closeness.

Theorem 2.2.1 ([5]). Let Z be a metric space and M a compact subset of
Z. Consider

ZM
δ = Zδ ∩M,

where Zδ = {z : d(Az, uδ) ≤ δ} 6= ∅. When δ → 0,

sup
z∈ZM

δ

d(z, z̄) → 0.

Proof. Suppose that the theorem is false, i.e, there exists a sequence

δn → 0 and zδn ∈ ZM
δn

such that d(zδn , z̄) ≥ ε, where ε is a positive constant.

Since zδn ⊂M , we can take limit in the inequality d(zδn , z̄) ≥ ε, to obtain

d(z0, z̄) ≥ ε.
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Since zδk
∈ ZM

δk
≤ δk, d(Azδk

, uδk
) ≤ δk. Taking limits in this inequality

by δk → 0, we obtain that d(Az0, ū) = 0. Therefore, Az0 = Az̄ = ū and by

the uniqueness of the solution of 2.3 for ū, we have z0 = z̄. This equality

contradicts d(z0, z̄) ≥ ε. This means the theorem is true.

2.3 Regularization Method

Now we are going to describe the so called Tikhonov regularization method [5].

It is presented in a general framework within a Hilbert space.

Suppose that, for a linear compact operator A, the Equation 2.3 has

a unique solution z̄ for each exact ū, and ū is approximated by uδ and we

know the estimation ‖uδ− ū‖ ≤ δ. The main objective here is to construct an

approximate solution zδ of (2.3) which would converge to z̄ for δ → 0. Since

(2.3) can be an ill-posed problem, its solution can oscillate dramatically, see

Section 2.1, we add an stabilizer term to the expression ‖Az−u‖ in order to

control this ill behavior.

Consider the functional

Mα(z) = ‖Az − u‖2 + α‖z‖2,

where α is considered as a parameter. The roll of α is to coordinate the

compromise between the accuracy of the model-fitting and the stability of

the possible solutions [?].

Theorem 2.3.1 ([5]). For every u ∈ U and α > 0 the functional Mα(z)
attains its infimum in an element of U and it is unique.
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Proof. Since Mα(z) is nonnegative, then M0 = inf
z∈Z

Mα(z) ≥ 0. Now we

consider the minimizing sequence zn ,M
α(zn) → M0 for n → ∞. We can

take the zn ordered such that Mα(zn+1) ≤Mα(zn); then

Mα(zn) = ‖Azn − u‖2 + α‖zn‖2 ≤Mα(z1) = M1.

Therefore, ‖zn‖ ≤ (M1/α)1/2. Since zn is bounded in norm, by the The-

orem 1.1.15(vi) on Page 9 we can choose from it a subsequence zk weakly

convergent to z0. Now we shall prove thatMα(z0) = M0.We have, by the the-

orem last mentioned, ‖z0‖ ≤ lim inf ‖zk‖ and by Theorem 1.2.2 Azk → Az0,

so ‖Azk − u‖ → ‖Az0 − u‖ and ‖Azk − u‖2 → ‖Az0 − u‖2.

Now take ε > 0, since lim
n→∞

Mα(zn) = M0 there is k0 such that |Mα −

M0| < ε for n ≥ k0. So, Mα(zk) ≤ Mα(z0). Besides α‖z0‖2 ≤ α‖zk‖2 + ε

because ‖z0‖ ≤ lim inf ‖zk‖. Also we have ‖Az0 − u‖2 ≤ ‖Azk − u‖2 + ε,

Mα(zk) ≤M0 because ‖Azk − u‖ → ‖Az0 − u‖. From the inequalities above

we can conclude

Mα(z0) = ‖Az0 − u‖2 + α‖z0‖2

≤ ‖Azk − u‖2 + α‖zk‖2 + 2ε

= Mα(zk) + 2ε

≤ M0 + 3ε.
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So, Mα(z0) ≤M0 because ε is arbitrary. Since M0 is infimum, M0 ≤Mα(z0).

Henceforth Mα(z0) = M0. Now we are going to prove the uniqueness of z0.

The functional Mα(z) is differentiable for each z, and its gradient is given

by 2(A∗Az − A∗u+ αz). Extrema for Mα(z) must satisfy

2(A∗Az − A∗u+ αz) = 0 (2.5)

which z0 satisfies. This equation is linear and it has a unique solution if

αz+A∗Az = 0 has only the zero solution. Suppose that there is z1 6= 0 such

that αz+A
∗Az1 = 0. Then

(αz1 + A∗Az1, αz1 + A∗Az1) = 0

α2(z1, z1) + 2α(Az1, Az2) + (A∗Az1, A
∗Az1) = 0,

but this is not possible because the first term is a positive one and the other

two are nonnegative, so the equation αz + A∗Az = 0 has a unique solution.

Hence z0 is unique.

Suppose now that zα(δ) is the element which gives the minimum for

Mα(δ)(z) = ‖Az − uδ‖+ α(δ)‖z‖2 with both α(δ) and δ greater than zero.

Theorem 2.3.2 ([5]). If α(δ) > 0 for δ > 0, α(δ) → 0 and δ2/α(δ) → 0 for
δ → 0, then ‖zα(δ) − z̄‖ → 0 for δ → 0.

Proof. To reach a contradiction suppose that ‖zα(δ) − z̄‖ does not con-

verge to zero. Then, there is ε > 0 and δk → 0 that ‖zα(δk) − z̄‖ ≥ ε. As
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the element zα(δk) gives the infimum for Mα(δk)(z) = ‖Az−uδk
‖2 +α(δk)‖z‖2

then

Mα(δk)(zα(δk)) ≤Mα(δk)(z̄).

Therefore,

α(δk)‖zα(δk)‖2 ≤ ‖Az̄ − uδk
‖2 + α(δk)‖z̄‖2.

Since

‖Az̄ − uδk
‖ = ‖ū− uδk

‖ ≤ δk,

‖zα(δk)‖2 ≤ δ2
k/α(δk) + ‖z̄‖2.

By hypothesis, δ2
k/α(δk) is bounded and so is zα(δk). Therefore we can choose

a subsequence zα(δm) weakly convergent to a certain element z0. Then

‖z0‖ ≤ lim inf ‖zα(δm)‖ ≤ lim sup ‖zα(δm)‖ ≤ ‖z̄‖, (2.6)

Since

Mα(δm)(zα(δm)) ≤ Mα(δm)(z̄)

‖Azα(δm) − uδm‖2 + α(δm)‖zδm‖2 ≤ ‖Az̄ − uδm‖2 + α(δm)‖z̄‖2

‖Azα(δm) − uδm‖ ≤ (δ2
m + α(δm)‖z̄‖2)1/2.

We get the estimates for the norm

‖Azα(δm) − ū‖ ≤ ‖Azα(δm) − uδm‖+ ‖uδm − ū‖

≤ (δ2
m + α(δm)‖z̄‖2)1/2 + δm. (2.7)
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Taking into account that zα(δm) is weakly convergent to z0, A is completely

continuous, and taking limit when δm → 0, we get ‖Az0 − ū‖ = 0. By the

uniqueness of the solution of Equation 2.3, we obtain z0 = z̄. Inequality (2.6)

yields ‖zα(δm)‖ → ‖z̄‖; therefore, the sequence zα(δm) weakly converges to z0

and ‖zα(δm)‖ → ‖zδ0‖. Then

‖zα(δm) − z̄‖ → 0 for δm → 0,

by Theorem 1.1.15(v). This contradicts the first inequality in the proof.

The foregoing theorem guarantees the convergence of the approximated

solutions to the real solution when δ and δ2/α(δ) tend to 0. In real problems

we have specific values of δ, so it is recommendable to have a way to choose

an α which will provide the convergence of the approximated solutions to the

exact solution.

2.4 Choosing the parameter of regularization

In this section we are going to discuss how to choose the regularization para-

meter which could give the best regularized solution in a sense we illustrate

below. Two methods treated here are the Discrepancy Principle and L-curve

method.
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2.4.1 Discrepancy Principle

Consider the equation (2.3) where A is a compact operator mapping a sep-

arable Hilbert space Z into another separable Hilbert space U such that

R(A) = U. Suppose that for a exact ū the equation Az = ū has a unique

solution z̄. Also suppose we do not know ū, but an approximation uδ to

which ‖uδ − ū‖ ≤ δ and 0 < δ < ‖uδ‖. Put ẑα the element which gives the

infimum for the functional

‖Az − uδ‖2 + α‖z‖2.

Lema 2.4.1. Let u be a nonzero element of U , zα1 and zα2 the elements of Z
which give the minimum of Mα1(z) and Mα2(z). For α1 6= α2 then zα1 6= zα2

Now define for α > 0

m(α) = ‖Azα − u‖2 + α‖zα‖2

ϕ(α) = ‖Azα − u‖2

Ψ(α) = α‖zα‖2

Lema 2.4.2. 1. For a nonzero u the functions m and ϕ are strictly in-
creasing and Ψ is strictly decreasing.

2. The functions above defined are continuous for α > 0

3. For u 6= 0,
lim

α→0+
ϕ(α) = 0, lim

α→∞
ϕ(α) = ‖u‖2

Under above conditions the following theorem holds:

Theorem 2.4.3 (Discrepancy Principle). For each δ ∈ (0, ‖uδ‖) there is
a unique solution α(δ) of the equation ϕ̂(α) = ‖Aẑα − uδ‖2 = δ2. Besides,
‖ẑα(δ) − z̄‖ → 0 for δ → 0.
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The nonlinear equation in the last theorem can be approximated by iter-

ative methods such as Newton method.

2.4.2 L-Curve method

For this section we use as reference Section 2.9 of [11] and [10].

We saw in the preliminary section that when we minimized the Tikhonov

functional, it was not necessarily true that for small values of ‖Azα−uδ‖ the

solutions were close to z̄. Generally zα can oscillate or to have a very high

size. One can draw this two quantities as a function of the parameter α and

to find α such that both quantities match the given problem. Intuitively, the

ideal α is the α which gives the corner of the parametric curve. This corner

is emphasized when the parametric curve is drawn in log-log scale.

The L-Curve is a log-log plot of the norm of a regularized solution (‖zα‖)

versus the residual norm (‖Azα−u‖), see Figure 2.4.2. It shows the compro-

mise between the regularized solutions and how well they fit the given data

u when the parameter α varies. The L-curve is used both as an analysis tool

and as a method for choosing the regularization parameter.

Basically, as it is stated in the foregoing references, the L-curve is imple-

mented for discrete problem such as those derived from the discretization of

the equation of the first kind by using either quadrature methods or Galerkin



32

-

6

log
(
‖Azα − u‖

)

lo
g
( ‖z α

‖)

Over-regularization

Under-regularization

}Cor
ne

r,
op

tim
um

re
gu

la
riz

ed
so
lu
tio

n
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method. Using the singular value decomposition, the residual norm and the

norm of the regularized solution can be written as

‖zα‖2 =
n∑

i=1

(
fi
uT

i u

σi

)2

(2.8)

‖Azα − u‖2 =
n∑

i=1

(
(1− fi)u

T
i u

)2
(2.9)

where

fi =
σ2

i

σ2
i + α2

.

The vertical part of the L-curve corresponds to those regularized solutions

to which ‖zα‖ presents significant changes due to small variations in the

parameter α because of the error δ prevails on zα. The horizontal part of the

L-curve corresponds to solutions where the residual norm is more sensitive

to α because the regularization error prevails on zα. Why is the L-curve

important? Well, by locating the corner of the L-curve, an approximation

to the optimal regularization parameter can be computed. Henceforth, α

can be found such that zα has a good trade-off between the error due to

regularization and the error due to δ. The corner of the L-curve is defined

in [10] as the point of maximum curvature. If we define

η = ‖zα‖2, ρ = ‖Azα − u‖2

and
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η̂ = log(‖zα‖2), ρ̂ = log(‖Azα − u‖2)

the curvature of the L-curve is given by

κ = 2
ρ̂′η̂′′ − ρ̂′′η̂′(

(ρ̂′)2 + (η̂′)2
)3/2

.

In that reference technical details can be found.

2.4.3 Similarities and differences between the discrep-
ancy method and L-curve method

Now, some differences and similarities between the discrepancy method and

L-curve method are established. They are related to the size of the regulariza-

tion parameter and the way they are computed. Also some limitations of the

methods are mentioned. The following summarizes the principal advantages

and disadvantages mentioned by Hansen in [10].

The first important difference is that the discrepancy method is based

on knowledge, or a good estimate, of ‖δ‖ while the L-curve method does

not require δ, instead it uses the right-hand side u. The L-curve is not

a rigorous method in the analytical sense. When a good estimate for δ

is known, the discrepancy method gives a good regularization parameter

which corresponds to a regularized solution just to the right of the L-curve

corner[10]. Underestimated values of δ leads to under-regularized solutions,
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but overestimated values of δ leads to over-regularized solution with too large

regularized error.

The L-curve has some limitations. Hanke [8] showed that for smooth

exact solutions this criterion will fail in the estimation of α. The smoother

the solution the worse the α computed by the L-curve criterion. Another

limitation is related to the size of the discretization mesh. L-curve gives

too large regularization parameters as the size of the mesh increases, i.e, the

solutions are over-regularized.



Chapter 3

INTEGRAL EQUATIONS

3.1 Definition and classification

Let X be a measure space. Consider a measurable function g : X → R

defined in X. Let K a measurable function from X × X to R and dy a σ-

finite measure on X and consider α as a parameter. In Section 1.2, Equation

1.7 we have defined the integral operator

T (f)(x) =

∫
X

K(x, y)f(y)dy.

It was shown it is a compact operator. Now consider

f = g + αTf, (3.1)

where f is an unknown function. This equation is called an integral equation.

For a compact operator T , Equation 3.1 is called integral equation of the

second kind and

g = Tf (3.2)

36
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is called integral equation of the first kind.

Since T is a compact operator the Problem 3.2 is ill-posed. The solution

can not be unique or a solution can not depend continuously on the data

function. See example in Section 2.1.

We shall restrict ourselves to the case X = Lp(X), 1 ≤ p ≤ ∞. When

p = 2, Lp(X) is a Hilbert space with the inner product defined by (f, g) =∫
X
f(y)g(y)dy. We also assume that T (f) ∈ Lp whenever f is. The adjoint

of T is

T ∗(f)y =

∫
X

K(x, y)f(x)dx

If we putX = [a, b], a, b ∈ R and we take the Riemann integral. Integral

equations of the form

f(x) = g(x) +

∫ b

a

K(x, y)f(y)dy (3.3)

g(x) =

∫ b

a

K(x, y)f(y)dy (3.4)

are called linear Fredholm integral equations of the second kind and of the

first kind respectively. For X = Ω ⊆ Rn we write

f(x) = g(x) +

∫
Ω

K(x,y)f(y)dy, x,y ∈ Ω ⊂ Rn.
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3.2 Expansion in series of Singular Values and

Singular Functions

In this section we will describe how to use the results of Chapter 1 to expand

a function satisfying an integral equation of the first or second kind in a series

by using singular values and singular functions . We deal with concrete cases

of X which is going to be a compact interval in R, a compact rectangle in

R2 or a compact parallelepiped in R3.

In all cases we consider L2(X). So we consider the integral operator

T : L2(X) → L2(X)

f 7→ T (f)x =

∫
X

K(x, y)f(y)dy

whereK ∈ L2(X×X). T is a compact operator over the Hilbert space L2(X).

We are mainly interested is solving integral equations of first kind. Never-

theless, we are going to describe how to solve integral equations of the second

kind, specially of Fredholm type. These results will be used later.

The following can be found in [18] and [28]. Consider g = Tf, where T

is a self-adjoint integral compact operator( this is the case when the kernel

is symmetric). By Theorem 1.4.7 on page 18, L2(X) admits a orthonormal

basis which consists only of eigenfunctions of the operator T. Let {un}∞n=1

the eigenfunctions. Then g can be expanded in a Fourier series
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g(x) =
∞∑

n=1

anun(x) where an = (g, un).

If the Kernel is expressible in a series of the form

K(x, y) =
∞∑

m=1

cm(y)um(x),

then multiplying un(x) in both sides and taking integral we get

∫
X

K(x, y)un(x)dx =
∞∑

m=1

cn(y)

∫
X

un(x)um(x)dx = cn(y), so

cn(y) =

∫
X

K(x, y)un(x)dx = T (un)x = λnun(x).

Thus

K(x, y) =
∞∑

n=1

λnun(x)un(y).

When K is not symmetric it is still possible to express g in a series of

singular functions of a suitable symmetric operator. The equation g = Tf is

expressed as T ∗g = T ∗Tf . As a consequence of Fubini’s theorem, T ∗T and

TT ∗ are symmetric compact operators, so L2(X) has a orthonormal basis of

eigenfunctions of T ∗T , say {vn}, with eigenvalues {λn} and a orthonormal

basis of eigenfunctions of TT ∗, say {un} . The singular values are {σn}. Thus

g(x) =
∞∑

n=1

(g, un)un =
∞∑

n=1

(Tf, un)un =
∞∑

n=1

(f, T ∗un)un
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or simply

g(x) =
∞∑

n=1

σn(f, vn)un(x). (3.5)

Here we used the relations in Section 1.3 and (1.5). In the same fashion

f(y) can be expanded as f(y) =
∑∞

n=1(f, vn)vn(y). We put this expression

in (3.4), taking g as in (3.5). Thus,

∞∑
n=1

(g, un)un =
∞∑

n=1

(f, vn)Tvn =
∞∑

n=1

(f, vn)σnun.

From here we get (f, vn) = (g,un)
σn

. Finally

f(x) =
∞∑

n=1

(g, un)

σn

vn(x). (3.6)

3.2.1 A Method for solving linear Fredholm integral
equations of the second kind

Now we proceed to solve the Equation 3.3 in a formal way using expansion

in Fourier series following [28]. So, consider the equation

f(x) = g(x) + α

∫ b

a

K(x, y)f(y)dy, K(x, y) = K(y, x), α 6= 0.

This implies (1/α)(f − g) can be represented as Tf . Let {φn} be the

eigenfunctions of the integral operator T . For a solution of Equation 3.3 we

have

f − g =
∞∑

n=1

anφn(x), an = (f − g, φn) = (f, φn)− (g, φn).
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Henceforth (f, φn) = (g, φn)
(

1
1−αλn

)
. From this an can be expressed

an = (f − g, φn) = (αTf, φn) = α(f, Tφn) = αφnλn(f, φn)

if T is a symmetric operator. Therefore,

an = (f − g, φn) =
αλn

1− αλn

(g, φn).

Thus we can get a representation of f in a series:

f(x) = g(x) +
∞∑

n=1

αλn

1− αλn

(g, φn)φn(x) (3.7)

No solution f can exists if, for some j, α = λ−1
j and (g, φj) 6= 0. In a gen-

eral way the Fredholm Alternative (Theorem 1.2.10) describes the situation.

The Equation 3.3 has a unique solution for all g ∈ L2(X) or the homogeneous

equation admits a finite number of linearly independent solutions, say k. In

the latter case, the solution of (3.3) is not unique. For instance, if (g, φj) = 0,

α = λj and f is a solution, so is f+Cjφj for an arbitrary constant Cj. In fact,

if λj has multiplicity k and (g, φm+h) = 0, h = 1, .., k then f +
∑k

h=1Cjφm+h

is also a solution.

3.2.2 A method to solve integral equations of the first
kind

This section aims at solving the Equation 3.2 using the Regularization Method

described in Section 2.3. We follow [28], [18] and [7]. In order to solve g = Tf

we take a initial guess, say f0. Put F = f − f0 and G = g − Tf0. So

G = g − Tf0 = Tf − Tf0 = T (f − f0) = TF,
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this is, G satisfies an integral equation of the first kind. The associated

functional is

F(W,α) = ‖G− TW‖2
L2(X) + α‖W‖2

L2(X), α > 0.

The condition for the minimum of this functional, see Equation 2.5, leads

to

W =
T ∗G

α
− 1

α
T ∗TW,

which is an integral equation of the second kind with unknown W. We can

use the expression (3.7) with −1/α instead of α to get

W (x) =
T ∗G

α
−

∞∑
n=1

λ2
n

α+ λ2
n

(
T ∗G

α
, φn

)
φn(x).

Since T ∗G = T ∗TF , it is possible to write T ∗G in a series of eigenfunctions

{φn} of T ∗T with eigenvalues λ2
n, so

T ∗G =
∞∑

n=1

(T ∗G, φn)φn(x)

thus

Wα(x) =
∞∑

n=1

(T ∗G, φn)

α+ λ2
n

φn(x).

Using the properties of the adjoint operator and singular values and singu-

lar functions (Section 1.3), we set (T ∗G, φn) = (G, Tnφ), σn = λn, φn =

vn, , Tφn = Tvn = σnun.

A expression for W is

Wα(x) =
∞∑

n=1

σn(G, un)

α+ σ2
n

vn(x).
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Therefore, lim
α→0+

Wα(x) =
∑∞

n=1
(G,un)

σn
vn(x) which is precisely the expan-

sion explained in (3.6). Thus

F (x) = lim
α→0+

Wα(x).

Finally we obtain a expression for f , f = F + f0

f(x) =
∞∑

n=1

(G, un)

σn

vn(x) + f0 (3.8)

If G is in error we replace G by Gc + δ, where Gc denotes the correct

solution, then the solution obtained is

f(x) =
∞∑

n=1

σn
(Gc, un)

α+ σ2
n

vn(x) +
∞∑

n=1

σn
(δ, un)

α+ σ2
n

vn(x),

and the error in the solution is

E(x) =
∞∑

n=1

λn

α+ λ2
n

(ε, un)vn(x). (3.9)

To reduce the error due to regularization, α must be taken small. Also

α must be taken large enough in order to reduce the error E(x) due to the

error in the data g.

For a fixed α, the maximum for the function
x

(x2 + α)
is 1

2α1/2 , so d λn

α+λ2
n
≤

1

2
√
α

and ‖E‖L2 ≤
1

2
√
α
‖δ‖L2 . If we choose α such that

1

2
√
α
‖δ‖L2 < 1

a safe choice of α to keep E small would be α >
‖δ‖2L2

4
. The Theorem 2.4.3

gives a criterion to choose an optimum α for a fixed δ.



44

3.3 Numerical Methods to solve Integral Equa-

tions

The purpose here is to solve integral equations of the first kind by using

numerical approximations. We are going to solve Fredholm integral equations

in two and three dimensions. We assume that kernels have no singularities.

g(x) =

∫ b

a

K(x, y)f(y)dy (3.10)

g(x) =

∫∫
Ω

K(x,y)f(y)dy, Ω = [a, b]× [c, d] (3.11)

g(x) =

∫∫∫
Ω

K(x,y)f(y)dy, Ω = [a, b]× [c, d]× [e, f ]. (3.12)

In order to solve the equations, we must compute the singular values

and singular functions of the operator in the right-hand side of the above

equations. It can be done by replacing integrals using a quadrature scheme

such that the integral kernel is now represented by a matrix. The eigenvalues,

singular vectors and singular values of this matrix give the approximated

values for those items related to the integral operator. Thus if we use the

regularization method with an initial data f0 and F = f − f0, the solution

will be given by a sum like

f ≈ f0 +
n∑

i=1

σi(G, ui)

α+ σ2
i

vi

which is an approximation of (3.8).
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3.3.1 Solution to one-dimensional Fredholm integral
equation of the first kind

This topic is well documented. We can get many available programs written

in different programming languages such as C, MATLAB and FORTRAN.

For x1, x2, · · · , xn

T (f)xi =

∫ b

a

K(xi, y)dy ≈
n∑

j=1

K(xi, yj)f(yj)wj, with weights wj

Put kij = K(xi, yj)wj, K = (kij), fj = f(yj), gi = g(xi), f =

[f1, · · · , fn]t, g = [g1, · · · , gn]t. Thus T = Kf is the matricial represen-

tation of the operator T.

Gutiérrez [7], following [28] solved the equation g = Kf. He developed a

code in MATLAB to solve it by using the expansion in the series (3.7) which

uses singular values and functions . The parameter α was chosen by trial

and error, in spite of some algorithms to choose it.

Other interesting code to solve integral equation of the first kind, de-

veloped in FORTRAN, is found in [25]. There, the method of generalized

discrepancy (2.4.3) is utilized to choose the best α. In contrast with Gutier-

rez, the solution was computed by solving directly the equation of the second

kind (2.5) which gives the minimum for the Tikhonov functional.

For solving one-dimension integral equations of the first kind there are

many available programs ready to use where different techniques are used.
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3.3.2 Solution to two-dimension Fredholm integral equa-
tion of the first kind

The main objective here is to generalize the Gutierrez’s method for inte-

gral equation of the first kind in one dimension to two-dimension integral

equations of the first kind. It is not very common to find programs which

solve this type of equations in two dimensions. Xiao [29] uses fast convergent

algorithms so solve such equations.

The program that we are going to use is similar to the Gutierrez’s pro-

gram, i.e, the sum (3.7) is used. The first step is to represent the kernel

of the integral equation by a bi-dimensional matrix, after that the singular

value decomposition is done and finally we build the approximated solution

by using (3.7).

Let beK(x,y) the kernel of the integral equation, where x = (u, v), y =

(x, y), u, v, x, y ∈ R. Let g be the data function and f the unknown function,

the function which has to be found. Moreover, suppose that g is given in the

grid in Figure 3.1 with an error and we know gδ such that ‖g−gδ‖ ≤ δ. This

norm is approximated by

‖g − gδ‖2 =

∫ d

c

∫ b

a

(
g(u, v)− gδ(u, v)

)2
dudv

≈
qmax∑
q=1

pmax∑
p=1

(
g(up, vq)− gδ(up, vq)

)2
wpw

′

q.

Here wp and w
′
q are weights of the quadrature used. The functions f and g

are represented by the matrices f and g whose orders are (imax)(jmax)× 1,
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(umax)(vmax)× 1 respectively.
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Figure 3.1: Grids used to approach functions f , K, and g. Case 2D

The operator T can be approximated by

T (f)(up, vq) =

∫ d

c

∫ b

a

K(up, vq, x, y)dxdy

≈
jmax∑
j=1

imax∑
i=1

K(up, vq, xi, yj)wiw
′
j

p = 1, · · · , pmax q = 1, · · · , qmax.

So, using the grids in Figure 3.1, we have the expression for T (f)

T (f)(up, vq) = [K(up, vq, x1, y1)f(x1, y1)w1w
′
1 + · · ·

+ K(up, vq, ximax, y1)f(ximax, y1)wimaxw
′
1] + · · ·

+
[
K(up, vq, x1, yjmax)f(x1, yjmax)w1w

′
jmax + · · ·

+ K(up, vq, ximax, yjmax)f(ximax, yjmax)wimaxw
′
jmax

]
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The matrix T that approximates the kernel has order (pmax)(qmax) ×

(imax)(jmax), the element in the position
(
pmax(q−1)+p, imax(j−1)+ i

)
is given by K(up, vq, xi, yj)wiw

′
j.

In Section A.1 we described the program that we use to do the computa-

tions for the two-dimensional case. As is usual in these cases, we are going

to solve some test problems with known solutions.

Example 3.

We solved the Equation 3.11 with g(x, y) = 5000
3

(x+y), kernelK(u, v, x, y) =

(u+v)(x+y), and Ω = [−5, 5]× [−5, 5]. The exact solution is f(x, y) = x+y

as we can verify by doing

∫ 5

−5

∫ 5

−5

(u+ v)(x+ y)(x+ y)dxdy =
5000

3
(u+ v).

Now we will compute the numerical solution. Put a = c = −5, b = d = 5 and

used the same grid for f and g with n = imax = jmax. In Figure 3.2 we

have the exact solution and the approximated solution computed with the

method of the L-curve for δ = 10−3 and n = 60.

We solve the problem for different values of n. Table 3.1 show values

of n, the regularization parameter, residual norm given by L-curve, norm of

approximated solution, and the relative error. The solution gets better when

n increases. The relative error of the best solution is 29.94%. Figures 3.4,

3.6, 3.8 show others solutions. Their respective L-curves are in Figures 3.3,
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Figure 3.2: Solutions of Example 3, with f0(x, y) = 0 and n = 60.
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3.5 and 3.7. The function l curve [11] was not able to draw an L-curve for

n=40,50,60.

n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

10 1667.6087 10000.0681 42.0036 0.43692
20 1585.2079 20000.1364 84.0353 0.37311
30 1559.0615 30000.2045 126.0443 0.34061
40 1546.1678 40000.2727 168.0527 0.32131
50 1538.4825 50000.3408 210.0614 0.30852
60 1533.3788 60000.409 252.0705 0.29942

Table 3.1: Some significant quantities for Example 3

Figure 3.3: L-curve for n=10, Example 3.
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Figure 3.4: Approximated solution, f0(x, y) = 0, n=10, Example 3.
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Figure 3.5: L-curve for n=20, Example 3.
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Figure 3.6: Approximated solution, f0(x, y) = 0, n=20, Example 3.
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Figure 3.7: L-curve for n=30, Example 3.
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Figure 3.8: Approximated solution, f0(x, y) = 0, n=30, Example 3.
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Example 4.

In this example we keep the function f(x, y) = x+ y, but we change the

kernel. Now

K(u, v, x, y) =
u

1 +
√

(x− u)2 + (y − v)2
,

and Ω = [−5, 5] × [−5, 5]. This time the data function g can not be cal-

culated directly, instead we use the approximation g = Tf . We computed

the numerical solutions and the results are summarized in Tables 3.2 and

3.3. The program gives better results when the parameter of regularization

is computed with the L-curve.

n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

10 0.16005 20399904.3604 44.4571 0.071712
20 0.010032 32107782.0407 85.0228 0.068475
30 0.0019668 44204436.8668 125.6645 0.066177
40 0.00061694 56410404.4078 166.3251 0.064659
50 0.00025081 68661540.5549 206.9986 0.063764
60 0.00012021 80935592.0947 247.6853 0.063274

Table 3.2: Some significant quantities for Example 4. L-curve Method. f0 =
1. Case 2D

We got better results for this kernel. The relative error in Table 3.1

are over 29.94% and for same values of n, the relative errors in Table 3.2

are under 7.17%. This is due to the fact that the kernel on Example 3 is

smoother than the Kernel in Example 4. In Figure 3.10 we can see some

approximated solution of the Example 4. The residuals , f exact − fapp, can
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n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

10 1.0111e-05 2.04e+07 89.533 0.98495
20 1.7101e-06 3.2108e+07 170.76 0.99041
30 5.9478e-07 4.4205e+07 247.04 0.96314
40 2.7392e-07 5.6411e+07 328.55 0.97231
50 1.4224e-07 6.8663e+07 410.15 0.97797
60 7.8849e-08 8.0937e+07 491.79 0.98178

Table 3.3: Some significant quantities for Example 4. Discrepancy Principle.
f0 = 1Case 2D

be seen in Figure 3.11 and more details can de found in Table B.1.
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Figure 3.9: Approximated solutions for Example 4. L-curve method
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Figure 3.10: Approximated solutions for Example 4. Discrepancy Principle
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Figure 3.11: Residuals for Example 4. f0 = 1, n = 60.
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Example 5.

As a third example for testing the program we solve Equation 3.11 with

kernel K(u, v, x, y) = (x2 + y)eu−v and data function g(x, y) = −50,000
9
ex−y.

The exact solution for this example is f(x, y) = y2 − x2 and Ω = [−5, 5] ×

[−5, 5]. We took the same grid for f and g with n = imax = jmax. We can

see the approximated solution and exact solutions in Figures 3.12, 3.14, 3.16

and 3.18 with its respective L-curves in Figures 3.13, 3.15, 3.17, and 3.19.

The graphics give a rough idea that the method is not giving good solutions

for this problem. In Table 3.4 we can see that the values of the residual norms

are very high they increase as n increases according to the explanations in

Section 2.4.2. We encounter high relative error because both the kernel and

the exact solution are smooth( see Section 2.4.3). We can see a complete

list of numerical values in the Table B.2. The discrepancy principle was not

able to compute the regularization parameter beyond n = 30 (See Table 3.5)

because the values were zero to machine precision. The values computed by

both methods are completely different. They are high in the first case and

low in the second one. The residuals can be seen in Figure 3.20.
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Figure 3.12: Approximated solution f0(x, y) = 1, n = 10, Example 5.
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Figure 3.13: L-curve for n = 10, Example 5.
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Figure 3.14: Approximated solution f0(x, y) = 1, n = 20, Example 5.
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Figure 3.15: L-curve for n = 20, Example 5.
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Figure 3.16: Approximated solution f0(x, y) = 1, n = 30, Example 5.
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Figure 3.17: L-curve for n = 30, Example 5.
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Figure 3.18: Approximated solution f0(x, y) = 1, n = 60, Example 5.
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Figure 3.19: L-curve for n = 60, Example 5.



70

Figure 3.20: Residual for Example 5, f0 = 1, n = 60.
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n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

10 496.5204 167397407.2 55.9982 0.87046
20 426.1497 214445602.8 101.8378 0.87105
30 1517366.672 277949675.8 149.5894 0.86804
40 1418143.192 344686997 197.7848 0.86587
50 1361064.37 412599052.3 246.1505 0.86435
60 1324022.513 481067923.3 294.5991 0.86323

Table 3.4: Some significant quantities for Example 5. L-curve method.

n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

10 1.1075e-98 6.3017e+27 4.5739e+38 3.6053e+36
20 3.9927e-112 9.6515e+33 7.9234e+43 3.4133e+41
30 9.5882e-151 1.4186e+54 2.5954e+64 7.6906e+61

Table 3.5: Some significant quantities for Example 5. Discrepancy Principle
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Example 6.

Using the same kernel as in Example 4,

K(u, v, x, y) =
u

1 +
√

(x− u)2 + (y − v)2
,

and Ω = [−5, 5] × [−5, 5] we try to solve Equation 3.11. The test function

is f(x, y) = y2 − x2. Again g can not be computed exactly. So, an approx-

imated data function g = Tf works as input for the problem. Tables 3.6

and 3.5 summarize some important quantities like the size of the grid, the

regularization parameter, residual norm, norm of the approximated solution

and the relative error. In this case the relative errors are substantially smaller

than those in Table 3.4. Values of the exact and approximated solutions are

displayed in Table B.3. Residuals can be seen in Figure 3.24.

n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

10 0.16005 20399627.4675 121.8057 0.14117
20 0.010032 32107265.7223 227.0518 0.11654
30 0.0019668 44203668.8915 331.9676 0.10684
40 0.00061694 56409382.9004 436.8627 0.10113
50 0.00025081 68660264.9581 541.7847 0.097212
60 0.00012021 80934062.1857 646.746 0.094292

Table 3.6: Some significant quantities for Example 6. Case 2D

In Figure 3.21 we can see some approximated solution of the Example 6.



73

Figure 3.21: Approximated solutions for Example 6. L-curve method
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Figure 3.22: Approximated solutions for Example 6. Discrepancy Principle
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n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

10 1.0111e-05 2.04e+07 185.57 0.51573
20 1.7101e-06 3.2108e+07 340.26 0.52229
30 5.9478e-07 4.4204e+07 500.4 0.53421
40 2.7392e-07 5.641e+07 661.39 0.5415
50 1.4224e-07 6.8662e+07 822.66 0.54626
60 7.8849e-08 8.0936e+07 984.06 0.54958

Table 3.7: Some significant quantities for Example 6. Discrepancy Principle.
Case 2D

Figure 3.23: Exact Solution for Example 6, n = 60.
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Figure 3.24: Residual Example 6, f0 = 1, n = 60.
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Example 7.

Lets check another example. Now

K(u, v, x, y) =
sinu

1 +
√

(x− u)2 + (y − v)2

and the test function is f(x, y) = xe−x2−y2
. The data function g is approxi-

mated as in the foregoing example. For this particular example the relative

errors are high as we can see in Tables 3.8 and 3.9. If we take a closer look at

Figure 3.25 it seems that the approximated solutions fit the exact solution in

the inner of the region. In Tables B.4 and B.5 we have a sample of the values

of the approximated solution and exact solution for n = 60 and different

initial guesses. The Figures 3.28 and 3.29 show that certainly the numerical

solution is closed to the exact solution in the inner but it does not fit well

the exact solution in the boundary in the case of initial guess f0 = 1. That

is why we have high relatives errors for this case.

n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

10 0.16005 20399627.4675 121.8057 0.14117
20 0.010032 32107265.7223 227.0518 0.11654
30 0.0019668 44203668.8915 331.9676 0.10684
40 0.00061694 56409382.9004 436.8627 0.10113
50 0.00025081 68660264.9581 541.7847 0.097212
60 0.00012021 80934062.1857 646.746 0.094292

Table 3.8: Some significant quantities for Example 7. Case 2D
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Figure 3.25: Approximated solutions for Example 7. Case 2D



79

Figure 3.26: Approximated solutions for Example 7. Discrepancy Principle.
Case 2D
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n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

0 1.2558e-06 2.04e+07 9.5255 15.299
20 1.0588e-07 3.2107e+07 19.525 16.343
30 4.5184e-08 4.4204e+07 29.61 16.228
40 4.1028e-08 5.641e+07 39.698 16.17
50 4.151e-08 6.866e+07 49.783 16.135
60 3.7903e-08 8.0934e+07 59.868 16.112

Table 3.9: Some significant quantities for Example 7. Discrepancy Principle.
Case 2D

Figure 3.27: Exact solution for Example 7. Discrepancy Principle. Case 2D
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Figure 3.28: Residuals Example 7, f0 = 0, n = 60.
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Figure 3.29: Residuals Example 7, f0 = 1, n = 60.
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3.3.3 Solution to three dimensional Fredholm integral
equation of first kind

To solve Equation 3.12 let us take a straight parallelepiped Ω = [a, b]× [, d]×

[e, h] which is sliced to obtain a grid in three dimension.

Figure 3.30: Grid where f is looked for.

Put x = (s, u, v), y = (x, y, z) where s, u, v, x, y, z are real variables.

Then for a sample of imax×jmax×kmax the function f is approximated by f

and for pmax×qmax×rmax points the data function g can be approximated
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by g. Besides

T (f)(sp, uq, vr) =

∫ h

e

∫ d

c

∫ b

a

K(sp, uq, vr, x, y, z)f(x, y, z)dxdydz

≈
kmax∑
k=1

jmax∑
j=1

imax∑
i=1

K(sp, uq, vr, xi, yj, zk)f(xi, yj, zk)wiw
′
jw

′′
k

p = 1, . . . pmax, q = 1, · · · , qmax, r = 1, · · · , rmax.

wi, w
′
j, w

′′
k are weights.

Thus the matrix T that approximates the kernel has order (imax)(jmax)(kmax)×

(pmax)(qmax)(rmax), the element in the position
(
qmax(pmax(r−1)+q−

1)+p), jmax(qmax(k−1)+j−1)+i
)

is given byK(sp, uq, vr, xi, yj, zk)wiw
′
jw

′′
k .

The problem is reduced to solve g = Tf .

In Section A.2 the program used to solve the following examples is shown.

Example 8.

We have solved the Equation 3.12 with Ω = [−5, 4]×[−5, 5]×[−5, 5]. The

kernel is K(s, u, v, x, y, z) = xye−s2−y2−v2
. The test function is f(x, y, z) =

x+ y + z and the data function is g(x, y, z) = −3750e−x2−y2−z2
taken in the

same grid as f . Here n = imax = jmax = kmax.

Table 3.10 shows values of the regularization parameter, residual norm,

norm of the regularized solution and relative error for different values of n

and δ = 10−3. The relative errors are near 1. The L-curve method was not

able to draw a curve, but still gives values of the regularization parameter.
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n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

5 426.8262 359.4216 6.9644 0.99448
10 235.7541 97.1448 18.0059 0.99433
15 258.3121 64.4325 32.4125 0.99418

Table 3.10: Relative errors and regularization parameters for Example 8

Example 9.

We have solved the Equation 3.12 with Ω = [−5, 4] × [−5, 5] × [−5, 5].

The kernel is

K(s, u, v, x, y, z) =
1

1 +
√

(x− s)2 + (y − u)2 + (z − v)2
.

The test function is f(x, y, z) = x+ y+ z and the data function g is approx-

imated by g = Tf taken in the same grid as f . Here n = imax = jmax =

kmax.

Table 3.11 summarizes the results for this example. Figures 3.31, 3.31

and 3.31 show L-curves for different values of n

n α ‖Azα − g‖ ‖zα‖ ‖zα−z̄‖
‖zα‖

5 68.9043 25435183925.5595 48.254 0.47825
10 63.0528 59327942223.8324 129.5619 0.52018
15 62.0819 102170668039.877 241.1695 0.46839

Table 3.11: Relative errors and regularization parameters for Example 9
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Figure 3.31: L-curve n = 5, Example 9. Case 3D
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Figure 3.32: L-curve n = 10, Example 9. Case 3D
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Figure 3.33: L-curve n = 15, Example 9. Case 3D
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3.4 The results

The method has worked satisfactorily with the examples 4, 6 and 7. The

approximated solutions were very closed to the exact solution. For examples

3 and 5 the approximated solutions were not good. The rate of change of the

kernels for examples 3 and 5 is very slow and the corresponding exact solu-

tions show the same behavior. Under these conditions the L-curve method

failed in the estimation of the regularization parameter. This is similar to

that Hanke showed in [9] and we mentioned in Section 2.4.3. The computed

regularization parameters, which were obtained based on the discrepancy

principle (2.4.1), were not able to give good approximated solutions.

For the case of three dimensions we could only use small values for n.

Therefore, we obtained a bad approach to the original problem. The results

that we get were not conclusive.

A more exhaustive numerical analysis is necessary for the better under-

standing of the results.

3.5 The programs

The programs were written in MATLAB because it has built-in subroutines

which make the job easier and has a nice interface. We also wanted to take

advantage of the work done by Gutierrez [7] and Hansen [11]. We have tried

to write self-explained programs with a minimum of functions. Besides, they
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save relevant information in graphics and data files.

The hardest part of the job is the Singular Value Decomposition(SVD)

and MATLAB does it very well. It uses LAPACK routines to compute the

singular value decomposition. To see more technical details you can see

MATLAB help, function ”svd”.

There are lots of comments in the code of the programs such that they

can help you to understand how the programs work. The main functions

are inteq2D.m, inteq3D.m which solve integral equation of the first kind

in two and three dimensions respectively. The programs companion are

auxinteq2D.m and auxinteq3D.m which helps to compute the approximated

kernel and the approximated data function when analytical expressions for

them are given . The general use of the programs is described in Appen-

dix A.1.

3.6 Some Final Considerations

Inverse problems are not easy to handle with. Since they are ill-posed in

general, one has to be very careful with approximations and computations.

Integral equations of the first kind fall within the scope of inverse problems,

they inherit the troubles that the latter have. In order to avoid those prob-

lems, a variety of techniques to solve inverse problems are considered. One

of the most successful techniques is the regularization method which we have
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explained and applied in this work [5, 25]. The ”solutions” obtained through

this method must be taken carefully because they can not reflect the essence

of the solution we look for. At the end, the knowledge of the particular case

and ”a priori” information about it can help to find the best solution. In real

problems there is no way to compute the relative errors, so it is up to you to

determine how well the numerical solution describes your problem [28].

The ill-posedness of the integral equations of the first kind make them

prone to have very high fluctuations because of small errors in the data.

In addition to this, when we use the computer to solve the problem we are

adding not only an error due to discretization of the problem but also an error

due to machine precision. To deal with this fact some basic assumptions

are done. The number of points chosen to build the discrete version of

the problem must be large enough to guarantee that it does not interfere

significantly with the error in the data or error due to machine precision [25].

Sometimes the effects of this error in the solution can not be predicted.

One of the important things in solving an integral equation of first kind by

regularization method is the choice of the regularization parameter α. We

have mentioned the L-curve method and the Discrepancy Principle. They

have their limitations. Therefore, it is not a easy matter to choose the best

regularization parameter. We used here the MATLAB package described

in [11]. It has several methods for choosing the parameter including the
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L-curve Method (l curve function) and the Discrepancy Method (discrep)

function.



CONCLUSIONS

A solution method for integral equations of the first kind in two and three

dimensions with no singularities in its kernel was implemented. It gave good

results in the two-dimensional case. For three dimensions the method was

not conclusive due to the small size of the discretization mesh that we had to

use. In each case the quality of the solutions depended on the rate of change

the kernels and the smottness of the exact solution. Also, the solutions were

influenced by the error in the data and the size of the grid.
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Appendix A

MATLAB CODE FOR THE
EXAMPLES

This appendix shows the MATLAB code of the programs and explain how
to use them. The common function used by the principal programs is
QuadWeights. It finds the quadrature weights when we know the analyti-
cal expression for the kernel.

% function QuadWeights(a,b,npoints,typeq);

% this function returns weights of of a type of quadrature.

% a Initial point of interval

% b End point of the interval

% input npoints integer, how many points), type

%input typeq( integer, type of quadrature as follow:

% 1-trapezoidal rule

% 2-Simpson rule

% n- Can be extended

function weight=QuadWeights(a,b,npoints,typeq);

weight=ones(1,npoints);

trapezoidal=1;

simpson=2;

cl_newton_cotes=3;

switch typeq

case trapezoidal

weight(1)=1/2;

weight(npoints)=1/2;

case simpson

if mod(npoints,2)==1

weight(1)=1;
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weight(npoints)=1;

for k=2:npoints-1

if mod(k,2)==0

weight(k)=2;

else

weight(k)=4;

end

end

weight=weight*1/3;

else

end

case cl_newton_cotes

switch npoints

case 5

weight=(2/45)*[7 32 12 32 7];

case 6

weight=(5/288)*[19 75 50 50 75 19];

case 10

weight=...

(9/89600)*[2857 15471 1080 19344 ...

5778 5778 19344 1080 15741 2857];

end

end

weight=((b-a)/(npoints-1))*weight;

A.1 MATLAB code for two-dimensional case

A.1.1 Function inteq2D

It gives the solution of a integral equation of first case in two dimensions
with no singularities in the kernel in a mesh imax× jmax.

function [SOL2D,RegPar, SizeRegSol, SizeResidual]=...

inteq2D(MatrixKernel2D,DataG,u,v,x,y,InitSol,ErrDelta)

% Function inteq2D.m.

% inteq2D(MatrixKernel2D,DataG,u,v,x,y,InitSol,ErrDelta,MeshSize)

% This Program compute the solution of a integral

% equation of first kind in two variables.
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% INPUT

% MatrixKernel2D: Twodimensional matrix which approximates the kernel 2D.

% DataG: Is a column matrix with the known data.

% u,v defines the grid where the data points are known

% x,y defines the grid we use to compute the approximated solution

% Initsol: Real number Initial solution

% ErrDelta: is de estimated error in the right handside g

%*****************************************************************

% variable * counter * N points * weights

%*****************************************************************

% u * * pmax *

% v * * qmax *

% x * * imax * w1

% y * * jmax * w2

%*****************************************************************

% OUTPUT

% SOL2D: Contain the solution over a mesh (pmax)(qmax)

% RegPar: Parameter of regularization given by l_curve

% SizeRegSol: norm of the regularized solution ||z||

% SizeResidual: Residual norm ||Az-g||

format long

hdp1=figure(1); %graphic handle to store temporarily the picture

hdp2=figure(2); %graphic handle to store temporarily the picture

pmax=length(u); qmax=length(v); imax=length(x) ;jmax=length(y);

W=zeros(imax*jmax,1); % approximated solution

isol=InitSol*ones(imax*jmax,1); %initial solution

G=DataG-MatrixKernel2D*isol; %compute the new data

%*************************************************************

% HERE WE DO THE SINGULAR VALUE DECOMPOSITION

%*************************************************************

display(’Doing SVD...’)

[U,S,V]=csvd(MatrixKernel2D);

display(’SVD is done...’)

figure(hdp1);

% Compute the regularization parameter and draw the l-curve.

% Save a copy of it in the current directory.

[regc,rhoc,etac,regparc]= l_curve(U,S,G);

saveas(hdp1,’LCURV2D’,’fig’);

RegPar=regc;
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%Now compute the solution

for j=1:imax*jmax

W=W+(S(j)/(regc+(S(j))^2))*((G’)*(U(:,j)))*V(:,j);

end

Sol{1}=W+isol;

%Arrange the solution in a mesh in order to be plotted.

for j=1:jmax

SOL2D(j,:)=Sol{1}(imax*(j-1)+1:j*imax)’;

end

SizeResidual=norm(MatrixKernel2D*Sol{1}-DataG);

SizeRegSol=norm(Sol{1});

figure(2);

hdp2=mesh(x,y,SOL2D);

strtitle=strcat(strcat(strcat(’Approx. Solution, ||z||=’,...

num2str(SizeRegSol)),’ ||Az-g||=’),num2str(SizeResidual));

title(strtitle)

saveas(hdp2,’SOL2D’,’fig’);

display(’To save a copy of the approx. solution could take a while.’)

if input(’Do you want save a copy of this solution,yes=1/no=0? ’)

dlmwrite(’NUMSOL2D’,SOL2D,’\t’)

end

A.1.2 Script auxinteq2D

This program helps to build the input for the function inteq2D when analyt-
ical expressions for the data function is given or, in the case of a test, when
the exact solution is given.

format long clc clear all def={’0’}; num_lines=1;
InitSol=inputdlg(’Enter the initial solution’,...

’Initial Solution’,num_lines,def);
InitSol=str2num(InitSol{1}); def={’10^(-3)’}; num_lines=1;
ErrDelta=inputdlg(’Enter the error delta’,...

’Error in the right-hand side’,num_lines,def);
ErrDelta=str2num(ErrDelta{1}); prompt = {’Number points of
x’,’Number points of y’,’a’,’b’,’c’,’d’};
def={’10’,’10’,’-5’,’5’,’-5’,’5’}; num_lines=1; dlg_title = ’Input
for IFK 2D’; answer = inputdlg(prompt,dlg_title,num_lines,def);
imax=str2num(answer{1}); jmax=str2num(answer{2});
a=str2num(answer{3}); b=str2num(answer{4}); c=str2num(answer{5});
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d=str2num(answer{6}); prompt = {’Number points of u’,’Number
points of v’,’e’,’f’,’g’,’h’}; def={’10’,’10’,’-5’,’5’,’-5’,’5’};
num_lines=1; dlg_title = ’Input for IFK 2D, Data Points’; answer
= inputdlg(prompt,dlg_title,num_lines,def);
pmax=str2num(answer{1}); qmax=str2num(answer{2});
e=str2num(answer{3}); f=str2num(answer{4}); g=str2num(answer{5});
h=str2num(answer{6});prompt = {’Enter 2D kernel:’,...

’Enter data function:’,’Enter exact solution(test only)’};
def={’1./(1+sqrt((x-u).^2+(y-v).^2))’,’’,’x.*exp(-x.^2-y.^2)’};
dlg_title = ’Input for IFK 2D’; num_lines= 1; answer =
inputdlg(prompt,dlg_title,num_lines,def);
Kernel2DA=inline(answer{1}); Kfunction2DA=inline(answer{2});
ExactSol2DA= inline(answer{3});
u=e:(b-a)/(pmax-1):f; % data
x=a:(b-a)/(imax-1):b; % quadrature points
v=g:(d-c)/(qmax-1):h; % data
y=c:(d-c)/(jmax-1):d; % quadrature points
[X,Y]=meshgrid(x,y); w1=QuadWeights(a,b,imax,1);
w2=QuadWeights(c,d,jmax,1);
matrix=zeros(imax*jmax); % to store the aprroximated kernel
kfun=zeros(pmax*qmax,1); % matrix to store the known function
rfun=zeros(imax*jmax,1); % matrix to store the real solution
W=zeros(imax*jmax,1); % approximated solution
%********************************************
%COMPUTE THE APPROXIMATED KERNEL
%********************************************
for q=1:qmax; % counter for v

for p=1:pmax; % counter for u
for j=1:jmax; % counter for y

for i=1:imax; % counter for x
matrix(pmax.*(q-1)+p,imax.*(j-1)+i)=Kernel2DA(...

u(p),v(q),x(i),y(j)).*w1(i).*w2(j);
end

end
end

end

if ~strcmp(answer{2},’’)
%******************************************
%COMPUTE THE DATA FUNCTION
%******************************************
for j=1:jmax



102

for i=1:imax
kfun(imax.*(j-1)+i)=Kfunction2DA(x(i),y(j));

end
end
kfun=kfun+ErrDelta;

elseif ~strcmp(answer{3},’’)
%******************************************
%COMPUTE THE EXACT SOLUTION
%******************************************

for j=1:jmax
for i=1:imax

rfun(imax.*(j-1)+i)=ExactSol2DA(x(i),y(j));
end

end
kfun=matrix*rfun+ErrDelta;

else
quit

end

[Sol,regpar,norreg,norres]=...
inteq2D(matrix,kfun,u,v,x,y,InitSol,ErrDelta);

A.2 MATLAB code for three-dimensional case

A.2.1 Function inteq3D

It gives the solution of a integral equation of first case in two dimensions
with no singularities in the kernel in a mesh imax× jmax× kmax.

function [SOL3D,RegPar, SizeRegSol, SizeResidual]=...
inteq2D(MatrixKernel3D,DataG,s,u,v,x,y,z,InitSol,ErrDelta,MeshSize)

% Function inteq2D.m.
% inteq2D(MatrixKernel2D,DataG,u,v,x,y,InitSol,ErrDelta,MeshSize)
% This Program compute the solution of a integral
% equation of first kind in two variables.
% INPUT
% MatrixKernel3D: Twodimensional matrix which approximates the kernel 2D.
% DataG: Is a column matrix with the known data.
% s,u,v defines the grid where the data points are known
% x,y,z defines the grid we use to compute the approximated solution
% Initsol: Real number, Initial solution
% ErrDelta: is de estimated error in the right handside g
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%*****************************************************************
% variable * counter * N points * weights
%*****************************************************************
% s * * pmax *
% u * * qmax *
% v * * rmax *
% x * * imax * w1
% y * * jmax * w2
% z * * kmax * w3
%*****************************************************************
% OUTPUT
%[SOL3D,RegPar, SizeRegSol, SizeResidual]
% SOL3D: Contain the solution
% RegPar: Parameter of regularization given by l_curve
% SizeRegSol: norm of the regularized solution ||z||
% SizeResidual: Residual norm ||Az-g||

format long
imax=length(x); jmax=length(y); kmax=length(z);
W=zeros(imax*jmax*kmax,1); %to store approximated solution
isol=InitSol*ones(imax*jmax*kmax,1); %initial solution
display(’Doing SVD...’)
[U,S,V]=csvd(MatrixKernel3D);
display(’Done the singular values’);
G=DataG-MatrixKernel3D*isol;
hdp1=figure(1);
[regc,rhoc,etac,regparc]= l_curve(U,S,G);
saveas(hdp1,’LCURV3D’,’fig’);
RegPar=regc;
for j=1:imax*jmax*kmax

W=W+(S(j)/(regc+(S(j))^2))*(G’*(U(:,j)))*V(:,j);
end
SOL3D=W+isol;
SizeResidual=norm(MatrixKernel3D*SOL3D-DataG);
SizeRegSol=norm(SOL3D);
button = questdlg(...
’Do you want to save the solution. It could take a while’,...

’Continue Operation’,’Yes’,’No’,’No’);
if strcmp(button,’Yes’); dlmwrite(’NUMSOL3D’,SOL3D,’\t’); end



104

A.2.2 Script auxinteq3D

This program helps to build the input for the function inteq2D when analyt-
ical expressions for the data function is given or, in the case of a test, when
the exact solution is given.

format long
clc clear
% Define the default options of the dialog box
% for entering the limits of intervals, kernel, known function.

def={’10^(-3)’}; num_lines=1; ErrDelta=inputdlg(’Enter the error
delta’,...

’Error in the right-hand side’,num_lines,def);
prompt = {’Number points of x’,’Number points of y’,...

’Number points of z’,’a’,’b’,’c’,’d’,’e’,’f’};
def={’5’,’5’,’5’,’-5’,’4’,’-5’,’5’,’-5’,’5’};
num_lines=1;
dlg_title
= ’Input for IFK 3D’;
answer =
inputdlg(prompt,dlg_title,num_lines,def); imax=str2num(answer{1});
jmax=str2num(answer{2}); kmax=str2num(answer{3});
a=str2num(answer{4}); b=str2num(answer{5}); c=str2num(answer{6});
d=str2num(answer{7}); e=str2num(answer{8}); f=str2num(answer{9});
prompt = {’Number points of s’,’Number points of u’,...

’Number points of v’,’a1’,’b1’,’c1’,’d1’,’e1’,’f1’};
def={’5’,’5’,’5’,’-5’,’4’,’-5’,’5’,’-5’,’5’}; num_lines=1; dlg_title
= ’Input for IFK 3D, Data Points’; answer =
inputdlg(prompt,dlg_title,num_lines,def); pmax=str2num(answer{1});
qmax=str2num(answer{2}); rmax=str2num(answer{3});
s=str2num(answer{4}); u=str2num(answer{5}); v=str2num(answer{6});
a1=str2num(answer{4}); b1=str2num(answer{5}); c1=str2num(answer{6});
d1=str2num(answer{7}); e1=str2num(answer{8}); f1=str2num(answer{9});
prompt = {’Enter 3D kernel:’,...

’Enter data function:’,’Enter exact solution(test only)’};
def={’x.*y.*exp(-s.^2-y.^2-v.^2)’,’’,’x+y+z’}; dlg_title = ’Input
for IFK 3D’; num_lines= 1; answer =
inputdlg(prompt,dlg_title,num_lines,def);

%Build the function with the entered data.
Kernel3D=inline(answer{1}); Kunction3D=inline(answer{2});
ExactSol3D= inline(answer{3});
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s=a1:(b-a)/(pmax-1):b1; % data
x=a:(b-a)/(imax-1):b; % quadrature point
u=c1:(d-c)/(qmax-1):d1; % data
y=c:(d-c)/(jmax-1):d; % quadrature point
v=e1:(f-e)/(rmax-1):f1; % data
z=e:(f-e)/(kmax-1):f; % quadrature point
w1=QuadWeights(a,b,imax,1);
w2=QuadWeights(c,d,jmax,1);
w3=QuadWeights(e,f,kmax,1);
matrix=zeros(imax*jmax*kmax);

kfun=zeros(pmax*qmax*rmax,1); %column matrix that
%store the known function

W=zeros(imax*jmax*kmax,1); %approximated solution
isol=0*ones(imax*jmax*kmax,1); %initial solution
%********************************************
%COMPUTE THE APPROXIMATED KERNEL
%********************************************
for r=1:rmax % counter for v

for q=1:qmax %counter for u
for p=1:pmax; % counter for s
for k=1:kmax; % counter for v
for j=1:jmax; % counter for q
for i=1:imax; % counter for p

matrix(qmax*(pmax*(r-1)+q-1)+p,...
kmax*(imax*(k-1)+j-1)+i)=...
Kernel3D(s(p),u(q),v(r),x(i),y(j),z(k))...

.*w1(i).*w2(j).*w3(k);
end
end
end
end
end

end
%******************************************
%COMPUTE THE KNOWN FUNCTION
%******************************************

if ~strcmp(answer{2},’’)
%******************************************
%COMPUTE THE DATA FUNCTION
%******************************************
for r=1:rmax

for q=1:qmax
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for p=1:pmax
kfun(qmax*(pmax*(r-1)+q-1)+p)=...
Kfunction3D(s(p),u(q),v(r));

end
end

end
kfun=kfun+10^(-3);

elseif ~strcmp(answer{3},’’)
%******************************************
%COMPUTE THE EXACT SOLUTION
%******************************************

for k=1:kmax
for jmax=1:jmax
for i=1:imax

rfun(jmax*(imax*(k-1)+j-1)+i)=...
ExactSol3D(x(i),y(j),z(k));

end
end

end
kfun=matrix*rfun’+10^(-3);

else
quit

end
kfun=matrix*rfun’+10^(-3); %add the error in the case of a test.

%compute the approximated solution.
[Sol3D,RegPar,SizeRegSol,SizeRes]=...
inteq3D(matrix,kfun,s,u,v,x,y,z,0,10^(-3))
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