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Storage systems contain redundant copies of data such as identical files or within

sub-file regions. Using deduplication technology, we can take advantage of this re-

dundancy and reduce the space needed to store files in the file system. Scalable,

highly reliable distributed systems supporting data deduplication have recently be-

come popular for storing backup and archival data. There is potential for this

technology to be adapted to primary storage.

This dissertation is focused on solving the storage problem, designing and de-

veloping HD2FS, improving data storage capacity and efficiency in distributed file

systems.

ii



Resumen de Disertación Doctoral Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los
Requerimientos para el grado de DOCTOR EN FILOSOFIA
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Los sistemas de almacenamiento contienen copias redundantes de datos, como

archivos idénticos o dentro de regiones de subarchivos. Utilizando la tecnoloǵıa de

deduplicación sobre esta redundancia, reducimos el espacio necesario para almacenar

archivos en el sistema de archivos. Recientemente se han popularizado los sistemas

distribuidos escalables y altamente confiables que respaldan la deduplicación de

datos para almacenar datos de copia de seguridad y archivado. Existe la posibilidad

de que esta tecnoloǵıa se adapte al almacenamiento primario.

Esta disertación se enfoca en resolver el problema de almacenamiento de datos

mediante el diseño y desarrollo del sistema HD2FS, logrando mejorar la capacidad

y la eficiencia del almacenamiento en el sistema de archivos distribuidos.
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Chapter 1

INTRODUCTION

In recent years, the storage needs are increasing faster than the price drop in

the storage systems. The production and sharing of massive amounts of data has

become an everyday necessity. Cloud and Big Data are pushing storage scale to new

high levels. There will be about 44 ZB of digital data by 2020 and it is expected to

grow exponentially. The amount of money companies have to invest every year in

new storage systems is increasing. There is a need of new methods that are capable

of managing such data scales efficiently.

1.1 Justification

Storage systems typically contain redundant copies of data such as identical

files or within sub-file regions. Using deduplication technology can take advantage

of this redundancy and reduce the space needed to store files in the file system.

Scalable, highly reliable distributed systems supporting data deduplication have

recently become popular for storing backup and archival data. There is potential

for this technology to be adapted to primary storage.

Deduplication systems divide files into chunks (data blocks) and identify re-

dundant chunks by comparing their chunk identifiers (fingerprints) [1]. Typical

deduplication solutions rely on fixed-size chunking methods. Although it provides

a simpler implementation, the benefits of deduplication in those scenarios limit the

use of this technique mostly to backup data [2–4]. The file recipe for a file is a

synopsis that contains a list of chunk identifiers (fingerprints) that comprise the

file. Each chunk identifier can be created using a collision resistant hash like SHA-1

1



1.2. PROBLEM STATEMENT

or SHA-256 over the contents of the block [5]. Once the chunk identifiers in a file

recipe have been obtained, they can be combined as prescribed in the file recipe to

reconstruct the file.

1.2 Problem Statement

The price drop in the storage systems can not compensate for the continuous

increase in the storage needs. Also, cloud and Big Data are pushing storage scale

to new high levels. It is estimated that there will be about 44 ZB of digital data

by 2020 and it is expected an exponential grow. Distributed file systems are widely

used and store huge amounts of redundant data.

Despite lots of research have been done in deduplication, there is no research in

finding a relation between the percentage of duplicate content and the percentage of

duplicate chunks for any type of files. By having a file-aware chunking mechanism [6]

there is potential to integrate this technology into primary storage solutions [7].

1.3 Purpose

The purpose of this research is to improve data storage capacity and efficiency in

distributed file system environments using deduplication. The Hadoop Distributed

File System (HDFS) is the one most used distributed file systems and it is open

sourced. These two factors make it an ideal candidate to integrate deduplication.

Thus, in this thesis we extend HDFS to include deduplication.

1.4 Distributed File Systems

A distributed file system (DFS) is a distributed implementation of a traditional

model of a file system, where multiple users share files and storage resources through

a network such as the Internet.

1.4.1 Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is used to solve the storage problem of

huge data, but does not provide a handling mechanism of duplicate content. HDFS

is based on Google File System (GFS) and it operates on top of the operating system.

2



1.4. DISTRIBUTED FILE SYSTEMS
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1.5. DEDUPLICATION

Figure 1–1 shows a typical Hadoop Distributed File System (HDFS) configura-

tion. HDFS has a name node, an optional secondary name node, and several data

nodes. The name node is managing access and storing all metadata, such as file

names, file attributes, and block locations. For fast lookup, the metadata is kept in

RAM. Files contents are stored as blocks distributed across data nodes. It provides

reliability throw replication, allowing copies of blocks to be stored on several data

nodes. Client writes data directly to the data nodes. The data nodes will forward

the data to the next data node for replication. The default replication is 3. Client

reads the data directly from the nearest data nodes. Periodically, the name node

is exchanging heartbeats with the data nodes, signals that indicate that the data

node is alive. If no response is received, the corresponding data node is considered

lost. In this case, the blocks from the lost data node will be replicated to another

data nodes. In the case of a name node failure, if a secondary name node is config-

ured, it will assume it’s role as name node. For safety, it is highly recommended the

secondary name node to run on a different machine.

1.5 Deduplication

Recently, the use of deduplication has shown potential to remove storage re-

dundancy in similar files across file systems. The concept of a file can be adapted

to refer to chunks (data blocks) and file recipes [3].

Original data Deduplicated data

Deduplication 
process

Figure 1–2: Deduplication process.
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As Figure 1–2 shows, deduplication systems divide files into chunks (data

blocks) and identify redundant chunks by comparing their chunk identifiers [1].

The chunk index (fingerprint) contains the chunk identifier of the stored chunk.

Each chunk identifier can be created using a collision resistant hash like SHA-1 or

SHA-256 over the contents of the block [5]. The file recipe for a file is a synopsis

that contains a list of chunk identifiers (fingerprints) that comprise the file. Once

the chunk identifiers in a file recipe have been obtained, they can be combined as

prescribed in the file recipe to reconstruct the file.

There are several deduplication systems already available. The majority of the

deduplication systems are for backup data and they are using fixed-size chunks.

1.6 Concepts

The most important concepts in this research are:

Deduplication. Deduplication systems divide files into chunks (data blocks) and

identify redundant chunks by comparing their chunk identifiers [1].

Chunk index (fingerprint). The chunk index (fingerprint) contains the chunk

identifier of the stored chunk. Each chunk identifier can be created using a collision

resistant hash like SHA-1 or SHA-256 over the contents of the block [5].

File recipe. The file recipe contains a list of chunk identifiers (fingerprints).

Distributed file system (DFS). A distributed file system (DFS) is a distributed

implementation of a traditional model of a file system, where multiple users share

files and storage resources through a network such as the Internet.

Hadoop Distributed and Deduplicated File System (HD2FS)

A new deduplicated and distributed file system using Hadoop Distributed File Sys-

tem (HDFS) by adding deduplication.
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1.7 Contributions

The main contribution of this research is to integrate deduplication

technology in distributed file system environments to improve efficiency

in the storage of large amounts of data. Our prototype system uses Hadoop

Distributed File System (HDFS). HDFS is used to solve the storage problem of

large data sets, but does not provide a mechanism to handle duplicate content

within file boundaries. The experimental results show that deduplication provides

superior efficiency compared to file compression for both (file read-decompress or

write-compress) I/O patterns, highlighting the potential for this technology to be

effectively adapted to improve storage systems capacity.

Other contributions of this research include:

• The design and implementation of a distributed datastore using deduplication,

which we called Smartstorage: a deduplicated and distributed datastore [8],

• A characterization of file attributes that help determine the appropriate chunk size

in primary deduplication systems, The use of file attributes to determine the best

chunk size in primary deduplication [9],

• The development of a file-aware deduplication storage system. Using file-aware

deduplication to improve capacity in storage systems [10],

• The design and implementation of a deduplication storage system for genomics

data, in order to improve data storage capacity and efficiency in distributed file

systems without compromising I/O performance. GDedup: Distributed file system

level deduplication for genomic big data [11],

• Integrating deduplication to a distributed file system environment such as the

Hadoop Distributed File System (HDFS). Distributed file system level deduplica-

tion [12].
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1.8 Outline

This thesis is organized as follows: Chapter 2 presents the background and re-

lated works. Chapter 3 describes the design and implementation of a deduplicated

and distributed file system using Hadoop Distributed File System (HDFS), the ex-

periments done so far with the corresponding results and the new contributions,

discuss the advantages and disadvantages of such strategy. Chapter 4 describes an

application of the newly created file system, HD2FS and how to efficiently store

data in cloud. Chapter 5 describes an application of HD2FS to manage large scale

genomic data. Chapter 6 contains the conclusions.
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Chapter 2

RELATED WORK

This chapter presents the related work addressing deduplication. The main top-

ics are: Classification of Storage Deduplication Systems, Fixed-sized Deduplication,

Inline Deduplication, Primary Storage Deduplication, and Hadoop-based systems.

Deduplication systems divide files into chunks (data blocks) and identify redundant

chunks by comparing their chunk identifiers (fingerprints) [1]. Different indexes are

used to manage the relations between files and chunks, which require additional

capacities beside the deduplicated data. The chunk index contains the chunk iden-

tifiers of the stored chunks. Every deduplication system has an additional persistent

index to store the information that is necessary to rebuild file contents based on file

recipes.

A file recipe contains a list of chunk identifiers. Each of these chunk identifiers

represents a unique identifier for a particular chunk. Using the file recipe, the

original file contents (denoted as logical data) can be reconstructed by using the

uniquely identifiable chunked data [13]. To reconstruct the logical data, the chunk

identifiers are read and their associated data chunks are loaded and concatenated in

the specified order.

2.1 Classification of Storage Deduplication Systems

Paulo and Pereira [14] present a classification of deduplication systems accord-

ing to six criteria that correspond to key design decisions: granularity, locality,

timing, indexing, technique, and scope. Granularity refers to the method used for

partitioning data into chunks. Locality [15] is used to support caching strategies
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can be temporal or spatial. Timing refers to when duplicates are eliminated. Du-

plicates are eliminated before storing the file to the file system for inline dedupli-

cation [16, 17], and after storing the file to the file system for offline deduplication.

Indexing provides an efficient data structure for duplicate discovery. Technique can

be chunk-based, or if eliminates duplicate content among two similar but not fully

identical chunks, delta encoding. The scope for distributed deduplication systems

can be local or global.

Deduplication can be regarded as bidirectional mapping between the logical

view (containing identifiable duplicates) and the physical view (stored in actual

devices from which duplicates have been removed).

2.2 Fixed-sized Deduplication

Zhao et al. [18] proposed Liquid, a distributed file system particularly designed

to simultaneously address the above problems faced in large-scale VM deployment.

However, they are considering chunk sizes multiples of 4 KB, between 256 KB and

1 MB. Their idea was to delay fingerprint calculation and use multiple threads.

Liquid delays fingerprint calculation for recently modified data blocks. In order to

speed up the deduplication process, a group of four fingerprint calculation threads is

used. One of the concurrent threads calculates the fingerprint for one data block at

one time, so multiple threads will process different data blocks concurrently. Data

blocks are split into groups according to their fingerprints. Frequently accessed data

blocks are cached in memory. It uses the copy-on-read technique to bring data

blocks from data servers and peer clients to local cache on demand as they are being

accessed by a VM. Liquid also provides fault tolerance through data replication,

data migration, and hot backup of the meta server. It is compiled with block size

as a parameter and it offers fault tolerance by mirroring the meta server, and by

replication on stored data blocks.

9
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Fu et al. [19] introduces Near-exact Deduplication, where a small number of

duplicate chunks are allowed for higher backup performance and lower memory

footprint. Data deduplication is disassembled into a large N -dimensional parame-

ter space. Each point in the space is of various parameter settings, and performs

a tradeoff among backup and restore performance, memory footprint, and storage

cost. They propose a general purpose framework to evaluate various deduplication

solutions in the space. Their goal was to find some reasonable solutions that have

sustained backup performance and perform a suitable tradeoff between deduplication

ratio, memory footprints, and restore performance. The fingerprint index consists

of two submodules: a key-value store and a fingerprint prefetching/caching module.

According to the use of the key-value store, the fingerprint index is classified into:

Exact Deduplication (ED) if all duplicate chunks are eliminated for highest dedu-

plication ratio (data size before deduplication / data size after deduplication), and

Near-exact Deduplication (ND) if a small number of duplicate chunks are allowed

for higher backup performance and lower memory footprint. According to the fin-

gerprint prefetching policy, the fingerprint index is classified into exploiting: Logical

Locality (LL) if the chunk (fingerprint) sequence of a backup stream before dedu-

plication is preserved in recipes, and Physical Locality (PL) if the physical layout of

chunks (fingerprints), namely the chunk sequence after deduplication is preserved in

containers.

Mao et al. [20] introduce SAR, an SSD (solid state drive) Assisted Read scheme,

effectively exploits the high random-read performance properties of SSD’s, and the

unique data-sharing characteristic of deduplication-based storage systems by stor-

ing in SSD’s the unique data chunks with high reference count, small size, and

non-sequential characteristics. Many read requests to HDD’s are replaced by read

10
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requests to SSD’s, significantly improving the read performance of the deduplication-

based storage systems [21]. It transforms many small HDD-bound read I/Os to SSD-

bound I/Os to fully leverage the significant random-read-performance and energy-

efficiency advantages of the latter over the former. Also, improves system reliability

and availability by significantly shortening the restore window. SAR outperforms the

traditional deduplication-based system significantly in read operations by a speedup

factor of up to 28.2, with an average factor of 5.8 in terms of the average response

time while reduces the user response time of the traditional deduplication-based

storage system by an average of 83.4 % and up to 176.6 %.

Clements et al. [22] introduces DEDE, a block-level deduplication system for

live cluster file systems that does not require any central coordination, tolerates host

failures, and takes advantage of the block layout policies of an existing cluster file

system. Their idea was to use shared on-disk logs. Hosts keep summaries of their

own writes to the cluster file system in shared on-disk logs, uses content hashes to

identify potential duplicates, detects and eliminates duplicates introduced since the

last index update, and stores summaries of recent modifications in on-disk write

logs. DEDE must be resilient to stale index entries that do not reflect the latest

content of recently updated blocks. However, the correctness does not depend on

its ability to monitor every write to the file system and it uses only 4 KB fixed-size

blocks. Also, requires the file system to be block oriented and to support file-level

locking, block-level copy-on-write support. The file system block size must also align

with the deduplication block size.

2.3 Inline Deduplication

Kim et al. [23] and Xie et al. [24] propose a content-based chunk placement

scheme to increase deduplication rate on the DFS. To avoid performance overhead

caused by deduplication process, Lessfs, a block-level and inline deduplication file

system is used in each chunk server. Their idea was to use Lessfs in each chunk
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server. Consistent hashing for chunk allocation and failure recovery is used. Their

experimental results show that the proposed system reduces the storage space by

60 % compared with the system without consistent hashing. Chunks are stored on

the chunk server that has more available space than the other servers. All chunks

of chunk server are stored in a mount point of Lessfs and the duplicated chunk data

are eliminated by Lessfs. However, if the deduplication process is performed in a

master server, those overheads cause bottleneck of a master server. Also, the data

deduplication process is performed in each chunk server separetely.

Matsumiya et al. [25] develope ifarm, an implementation of Gfarm, a distributed

file system used in the field of High Performance Computing (HPC) with dedupli-

cation of file data. Their idea was to compute the fingerprints asynchronously with

client requests. It was considered only the case in which the computation nodes read

and write too large data to store to disk spaces provided by the distributed file sys-

tem (DFS). Also, DFS must load/store from/into the huge storage multiple times,

and these operations can cause overheads on file access performance. However, it

is required to reduce the amount of data stored in I/O servers and decreases data

transfer operations between a distributed file system and huge storage. The inline

deduplication method was used, where clients can access the storage during dedu-

plication. ifarm is using content defined chunking (CDC), that divides a file into

variable size chunks based on their content. Fast execution of CDC is required to

archive practical inline deduplication. Their experiments show that ifarm is 117 %

faster when sequentially reading a zero-data file (best case), and it is 99.8 % slower

when sequentially reads a random-data file (worst case).

Jones [26, 27] defines a sequence as a group of consecutive file data blocks in an

incoming file system write request. Their goal was to maximize the amount of data

read per seek with the smallest impact to deduplication possible. Their idea was to

use sequences. A sequence is considered a duplicate if a group of consecutive data

12
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blocks is found to be in the same consecutive order on disk. By using sequences,

deduplicated file data will not be fragmented over the disk. A sequence is not

deduplicated unless there is an exact match found on disk for the consecutive group

of blocks in the sequence. It needs to exist on disk in the same consecutive order as

the sequence in question. Three algorithms were compared: the Naive algorithm,

the Sliding window algorithm, and the Minimum threshold algorithm.

Wildani et al. [28] implement HANDS, a framework that dynamically pre-

fetches chunk identifiers from disk into memory cache according to working sets

statistically derived from access patterns. Their idea was to use neighborhood group-

ing to dynamically pre-fetch fingerprints. It generates correlated groups of segments,

or working sets, based on usage patterns. Loading groups of data into the index

cache significantly reduces the number of accesses to the on-disk index cache while

realizing most of the data reduction potential. HANDS can reduce the percentage of

the index cache that is stored in memory to 1 % while still achieving 90 % of the op-

timal space savings. Working sets are groups of blocks that are likely to be accessed

together. Instead of trying to predict the next access based on popularity, however,

co-locate elements on disk if they are likely to be accessed together regardless of

whether the elements have a high probability of being accessed at all. It applies

a statistical analysis to a training set to establish initial groupings, and then alter

these groupings based on their observed predictive capacity. Neighborhood Parti-

tioning (NP) is a statistical method to compare data across multiple dimensions

with a definable distance metric. Also, it introduce N-Neighborhood Partitioning

(NNP), which merges several NP groupings without the memory overhead of a single

large partitioning.

13



2.4. PRIMARY STORAGE DEDUPLICATION

2.4 Primary Storage Deduplication

El-Shimi et al. [29] present a large scale study of primary data deduplication

and use the findings to drive the design of a new primary data deduplication system.

However, they are not considering chunk sizes below 4 KB.

Tarasov et al. [30, 31] implements Dmdedup, a versatile and practical primary

deduplication platform operating at block layer. It has sequential and random read,

write behaviour. Dmdedup was used to evaluate the benefits of hints [32] like

nodedup(deduplication should only be performed when there is a potential bene-

fit) and prefetch (inform the deduplication system of I/O operations that are likely

to generate duplicates).

Koller and Rangaswami [33] propose content similarity to improve I/O perfor-

mance, and Aronovich et al. [34] present the design of a similarity based deduplica-

tion system.

Chen and Shen [35] implement OrderMergeDedup, deduplicating writes to the

primary flash storage with failure-consistency and high efficiency.

Klonatos et al. [36] implements ZBD, a block-layer driver transparently com-

pressing/decompressing data between the file system and the storage device.

Jin and Miller [37] show the effectiveness of deduplication on VMDI’s by loading

groups of data into the index cache, significantly reducing the number of accesses

to the on-disk index cache while realizing most of the data reduction potential.

Kumar et al. [38] present a genetic optimized data deduplication for distributed

big data storage systems. The proposed genetic evolution algorithm, an optimized

Two Thresholds Two Divisors content-defined chunking algorithm by significantly

reducing the computing operations.

Kamboj et al. [39] present a deduplication system for encrypted data in cloud.

The proposed Dedup App, a client side application for deduplication interface based
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on challenge of ownership and re-encryption. However, they are implementing file

deduplication only, instead of finding duplicates within the file system.

2.5 Hadoop-based systems

The Hadoop Distributed File System (HDFS) is used to solve the storage prob-

lem of huge data, but does not provide a handling mechanism of duplicate files.

Ku et al. [17] use the middle layer file system in the HBASE virtual architec-

ture to do file deduplicate in HDFS, with two proposed architectures: RFD-HDFS

(Reliable File Deduplicated HDFS) where no errors are permitted, and FD-HDFS

(File Deduplicated HDFS) where very few errors are permitted. In the case of RFD-

HDFS, stream comparison is used to partially retrieve data fragments to conduct

binary compare in the sequential serial method. Three phases are used to determine

whether the files are the same: if the hash value exists, if the file sizes are the same,

and gradually and sequentially executing stream comparison. For the collision pol-

icy of the duplicate files, if the SHA value of the file is the same, the file size is the

same. In the case of FD-HDFS, the hashes with the same fingerprints are regarded

as the duplicate files.

Sun et al. [40] present a deduplication cloud storage system, named DeDu, which

runs on commodity hardware. The idea is to use link files and file level deduplication.

At the front end, it has a deduplication application. At the back end, there are two

main components, which are HDFS and HBase, respectively used as a mass storage

system and a fast index. Both the MD5 and SHA-1 algorithm are used to make a

unique fingerprint for each fIle, and set up a fast fingerprint index to identify the

duplicates. A distribution file system DFS is developed to store data and develop

“link files” to manage files in DFS. There are two ways to identify duplications in a

cloud storage system: by comparing blocks or files bit to bit [41] (accurate, but time

consuming), or by comparing blocks by hash values [42] (very fast, with a chance of

accidental collision). The combination of MD5 and SHA-1 will greatly reduce this
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probability. The existing approaches for identifying duplicates work on two different

levels: file level (decreases the quantity of hash values significantly), and chunk level

(convenient for DFS to store chunks). The deduplication method in DeDu is at file

level and based on comparing by hash values. HDFS and HBase were used as storage

mechanisms. The advantage of HDFS is that it can be used under high throughput

and large dataset conditions, and it is stable, scalable, and fault-tolerant. HBase

is a Hadoop database. The hash value is calculated at the client side before data

transmission while the lookup function is executed in HBase. When duplication is

found, real data transmission will not occur.

Zhang et al. [43] present an inline data deduplication for SSD-based distributed

storage architecture based on existing protocol of HDFS using two routing algo-

rithms to assign chunks to data nodes that are most likely to contain similar blocks.

However, they are not considering chunk sizes below 4 KB and they are not com-

paring the results obtained with the SSD-based distributed storage to regular HDD-

based storage which is by far cheaper and do not present the write limit and disk

endurance limitations.

Zhang et al. [44] propose an integrated deduplication approach by using Hadoop

and levaraging parallelism based on Mapreduce and HBase. The hashes are stored

in HBase and the file content in the HDFS. They are using the default setting of

data block size of Hadoop (64 MB). Files are aggregated into a Hadoop sequence

file, then the sequence file is evenly divided into chunks. However, this approach is

more similar to file deduplication, their chunks are the Hadoop blocks.

Liu et al. [45] present a Hadoop based scalable cluster deduplication for big data,

Halodedu. They use MapReduce and HDFS for parallel deduplication processing

and managing data stores. MySQL is used to store the metadata, and the unique

chunks are managed by HDFS. With their approach, the deduplication ratio is
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decreasing as the cluster size is increasing. However, with our HD2FS system, the

deduplication ratio is not altered by the cluster size.
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Chapter 3

HADOOP DISTRIBUTED AND

DEDUPLICATED FILE SYSTEM (HD2FS)

This chapter presents the methodologies to design and implement a dedupli-

cated and distributed file system. Our implementation relies on the Hadoop Dis-

tributed File System (HDFS). The primary reason for using HDFS as the base is

that it is a widely used and open source distributed file system and by integrating

our design into it, would increase adoption by the global community. Preliminary

study was done on the relationship between the percentage of duplicate content

and the percentage of duplicate chunks for the most common file types in order to

determine the best chunk size for each type of file [10].

3.1 Preliminary Study

The study on the relationship between the percentage of duplicate content and

the percentage of duplicate chunks for the most common types of files was performed.

Given a file type, its best chunk size for deduplication was determined. The objective

of the experiments was to understand the relationship between chunk size and file

type in order to select a chunk size that can be used to add deduplication at the

filesystem level. Focused on the amount of duplicate content, and given the duplicate

content, the amount of duplicate chunks for different chunk sizes were computed.

The results of the experiments provided us with sufficient information to identify

the best chunk size for different file types. Finally, by knowing the best chunk

size for a given file type, we used this information to build our deduplicated and
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distributed file system by integrating deduplication into Hadoop Distributed File

System (HDFS).

3.1.1 Experimental Setup

The experiments were done on a DELL PowerEdge R220 server equipped with

an Intel(R) Xeon(R) CPU E3 − 1286 v3 @ 3.70 GHz 8 core CPU, 32 GB of RAM,

400 GB SSD, and 12 TB of extra storage using regular hard drives. The experiments

were run on the SSD and the results stored on the extra storage. Taking advantage

of its low-latency access, the SSD was also used for storing the metadata. Depending

on the chunk size used for deduplication, the metadata ranges from one percent of the

total data for 4 KB chunks, to around ten percent of the total data for 512 B chunks.

The operating system used was Ubuntu Linux 14.04 LTS with kernel Linux 4.2.0-42.

3.1.2 Data sets

The reference sets

The first step in this experiment was to build the data sets. Using random words

from the English dictionary and the fact that the average sentence length in the

English language is about 14 words, sentences were generated. Using the fact that

in the English language there are about four or five sentences per paragraph, sen-

tences were combined into paragraphs. In this way, with 3,600 paragraphs per file,

5,000 text (TXT) files with an average file size of 1.82 MB were generated. Also,

using 380,000 random numbers between 1 and 500,000, comma separated values

(CSV) files with an average file size of 2.45 MB were generated. In this way, 4,000

comma separated values (CSV) files were generated, each file with 2,500 rows and

152 columns. This two sets of files will be used as references throughout the exper-

iments.

The modified sets

The second step was to modify the original sets of files. Let sizeMB denote the

size of the modify block, a block used to introduce modified content, and DupCont
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denote the percentage of duplicate content. We used 256, 512, and 1,024 as sizeMB

values, corresponding to 256 B, 512 B, and 1 KB modify block sizes, respectively.

The DupCont values were 20, 40, 60, 80, 90, 95, and 98. For the cases of inserting

new content, we also added the additional values of 30, 50, and 70.

Let ∆ denote the file modification percentage. If a file is modified ∆ percent, the

corresponding DupCont will be (100 −∆) percent. To obtain the same percentage

of duplicate content as with a modify block size of 1 KB, we need to modify twice

as many blocks of size 512 B and four times as many blocks of size 256 B.

The modifications were done at random locations, and within a set of modified

files, sizeMB and DupCont values are fixed and unique.

For the text (TXT) files, three cases were considered. In the first case, blocks

with the same size were interchanged, no new data was added to the files. In the

second and third case, blocks were replaced with new random data without taking

into consideration the English letters frequencies, and by taking into considera-

tion the English letters frequencies, respectively. Figure 3–1 and Figure 3–2 show

the character frequency distribution if blocks were replaced with new random data

without taking into consideration the English letters frequencies, and the character

frequency distribution if blocks were replaced with new random data by taking into

consideration the English letters frequencies.

Table 3–1 shows the number of different sets of files, the total number of files,

and the total size for the TXT files. The first line corresponds to the unmodified

(reference) set of files.

For the comma separated values (CSV) files, blocks with the same size were

interchanged, no new data was added to the files.

In the third step, from all the modified text (TXT) files, including the reference

ones, Microsoft Word Documents (DOC), Microsoft Word Open XML Documents

(DOCX), and Adobe Portable Document Format (PDF) files were generated. From
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Table 3–1: The modified TXT files by interchanging blocks, and by inserting new random
content. The first line corresponds to the unmodified (reference) set of files.

Modify Type Sets Files Size (GB)

Unmodified (reference) 1 5,000 9
Interchanged blocks 21 105,000 187
Insert new content 60 300,000 534
Total: 82 410,000 730

Table 3–2: Statistics of the complete data set used for the preliminary study.

File tye Average size Sets Total size Percentage of Total
(MB) (GB) (%)

DOC 3.89 82 1,558 42
TXT 1.82 82 730 20
PDF 1.60 82 640 17
DOCX 0.88 52 224 6
CSV 2.45 22 211 6
XLS 2.28 22 196 5
JPG 2.47 22 106 3
PPT 1.33 22 57 2
Total: 386 3,722 100

all the comma separated values (CSV) files, including the reference ones, Microsoft

Excel (XLS) files were generated. LibreOffice command line converter was used

to generate the Microsoft Word Documents (DOC), the Adobe Portable Document

Format (PDF) files, and the Microsoft Excel (XLS) files. In order to generate

the Microsoft Word Open XML Documents (DOCX), Pandoc universal document

converter was used.

The Joint Photographic Experts Group files (JPG) and the Microsoft Power

Point files (PPT) were real files, not generated ones.

Table 3–2 shows the statistics of the complete data sets. There are 386 different

sets of files for a total of 3.6 TB of data. The Percentage of Total column shows the

percentage of each file type taking into consideration their size.
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3.1.3 Compare Two Files Using Deduplication

With the created data sets and using deduplication, we compared each file

with its original one in order to compute the number of duplicate chunks between

them. Fixed-length deduplication was used, each file being divided into equally sized

chunks. Using SHA-1 secure hash algorithm, a unique chunk identifier (fingerprint)

was generated for every chunk and sent to the database. If the identifier already ex-

isted, meaning that this chunk was already stored, the corresponding chunk counter

was incremented by one. If the chunk identifier was not found in the database, it

was added and the chunk was stored on the disk. In order to find the optimal chunk

size for different file types, we considered the following potential chunk sizes: 512 B,

1 KB, 2 KB, and 4 KB. The percentage of duplicate chunks between every modified

set of files and its corresponding reference set of files was computed. In order to be

able to compute the percentage of duplicate chunks for each case, deduplication was

used. Each file type was considered separately because the probability of finding

duplicates in files of the same type is significantly higher than between files of all

types.

Let chunkSize denote the chunk size and DupCh denote the percentage of

duplicate chunks. The values for chunkSize were 512 for 512 B chunks, 1,024 for

1 KB chunks, 2,048 for 2 KB chunks, and 4,096 for 4 KB chunks, respectively. To

compute the percentage of duplicate chunks (DupCh), the chunk identifiers from

the original set of files were compared with the chunk identifiers from every modified

set of files.

Figure 3–3 shows an example of the resulting chunks from two files, after dedu-

plication. The first file is the reference file, and the second file is the modified file.

In this example, it was assumed that after deduplication, each file was divided

into ten chunks of the same size. The first line contains the unmodified file, and the

second line the modified file. Because the files were generated from random words,
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A B C D E F G H I J

A K C L M N G J O P

Figure 3–3: Compare two files using deduplication. Each file contains ten chunks of the
same size. Chunks A, C, G, and J are duplicates, even if chunk J appears at different
locations in the files.

there are no duplicate chunks within a file nor within any set of files, except in

the cases where the files have special formats and were generated using converters

(DOC, DOCX, PDF, XLS). Fixed chunk sized deduplication was used. Every chunk

identifier was recorded into a database, and using SQL queries the total number of

chunks per file and the number of duplicate chunks were computed. In this example,

there are four duplicate chunks (A, C, G, and J) from a total of ten chunks in each

file. To compute the percentage of duplicate chunks between these two files, we used

the following formula:

DupCh =
Total Chunks− UniqueChunks

Total Chunks
(3.1)

where DupCh represents the percentage of duplicate chunks, UniqueChunks the

number of chunks having count=1, and Total Chunks represents the total number

of chunks. Therefore, the percentage of duplicate chunks in this example is:

DupCh =
20− 12

20
= 40 %.

If the modify block size (sizeMB) was smaller than or equal the chunk size

(chunkSize), by changing one block, one or two chunks were altered. The bigger

the difference between the chunk size and the modify block size, the higher the

probability that only one chunk will be altered. If the modify block size was bigger

than the chunk size, by changing one block, more than two chunks were altered. The

later case applies only when the value of sizeMB is 1 KB and the value of chunkSize

is 512 B, when two or three chunks were altered.
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3.1.4 Results Analysis by File Type

Text files

Figure 3–4 shows the percentage of duplicate chunks as function of the percentage of

duplicate content for TXT, CSV, PPT, and JPG files for the following chunk sizes:

512 B, 1 KB, 2 KB, and 4 KB.
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Figure 3–4: Duplicate content analysis for TXT, CSV, PPT, and JPG files. The X axis
represents the duplicate content percentage, and the Y axis represents the duplicate chunk
percentage.
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The three cases correspond to the following modify block sizes: 256 B in Fig-

ure 3–4a, 512 B in Figure 3–4b, and 1 KB in Figure 3–4c, respectively. We can see

that as the chunk size increases, the percentage of duplicate chunks decreases. It

decreases even faster as the modify block size decreases.

For 256 B modify blocks in Figure 3–4a, the percentage of duplicate chunks

decreases from 94 % to 1 % (DupCont = 20, chunkSize = 512), from 90 % to

1 % (DupCont = 40, chunkSize = 1,024), from 83 % to 1 % (DupCont = 60,

chunkSize = 2,048), and from 71 % to 1 % (DupCont = 80, chunkSize = 4,096),

respectively.

For 512 B modify blocks in Figure 3–4b, the percentage of duplicate chunks

decreases from 96 % to 4 % (DupCont = 20, chunkSize = 512), from 94 % to

1 % (DupCont = 20, chunkSize = 1,024), from 90 % to 1 % (DupCont = 40,

chunkSize = 2,048), and from 83 % to 1 % (DupCont = 60, chunkSize = 4,096),

respectively.

For 1 KB modify blocks in Figure 3–4c, the percentage of duplicate chunks

decreases from 97 % to 9 % (DupCont = 20, chunkSize = 512), from 96 % to

4 % (DupCont = 20, chunkSize = 1,024), from 94 % to 1 % (DupCont = 20,

chunkSize = 2,048), and from 90 % to 1 % (DupCont = 40, chunkSize = 4,096),

respectively.

Microsoft Word Document files

Figure 3–5 shows the percentage of duplicate chunks as function of the percentage of

duplicate content for Microsoft Word Document DOC files for the following chunk

sizes: 512 B, 1 KB, 2 KB, and 4 KB, respectively.

The three cases correspond to different modify block sizes: 256 B in Figure 3–5a,

512 B in Figure 3–5b, and 1 KB in Figure 3–5c, respectively. We can see that as the

chunk size increases, the percentage of duplicate chunks decreases. It decreases even

faster as the size of the modify block decreases. Figure 3–6 shows the percentage
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Figure 3–5: Duplicate content analysis for DOC files with interchanges. The X axis rep-
resents the duplicate content percentage, and the Y axis represents the duplicate chunk
percentage.

of duplicate chunks as function of the percentage of duplicate content for Microsoft

Word Document DOC files corresponding to the case where the modifications were

done by inserting new random data. We can see that for 512 B chunk size, the rela-

tionship between the percentage of duplicate chunks and the percentage of duplicate

content is approximately linear. Up to 50 % duplicate content, the 1 KB chunks have

almost the same behavior as the 512 B chunks, after that the percentage of duplicate
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(b) 512 B modify blocks.
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Figure 3–6: Duplicate content analysis for DOC files with completely / controlled random
content inserted. The X axis represents the duplicate content percentage, and the Y axis
represents the duplicate chunk percentage.

chunks is almost zero. For 2 KB and 4 KB chunk sizes, the percentage of duplicate

chunks is almost zero if the percentage of duplicate content is less than 98 %. We

found that if new data is inserted to Microsoft Word Document DOC files, 512 B

chunk size should be used for the deduplication. Also, the use of English letters

frequency had no effect on the percentage of duplicate chunks.
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Microsoft Word Open XML Document files

Figure 3–7 shows the percentage of duplicate chunks as a function the percentage

of duplicate content for Microsoft Word Open XML Documents DOCX files for the

following chunk sizes: 512 B, 1 KB, 2 KB, and 4 KB, respectively.
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Figure 3–7: Duplicate content analysis for DOCX files. The X axis represents the duplicate
content percentage, and the Y axis represents the duplicate chunk percentage.

The three cases correspond to different modify block sizes: 256 B in Figure 3–

7a, 512 B in Figure 3–7b, and 1 KB in Figure 3–7c. Because the DOCX files are

already compressed, the percentage of duplicate chunks is almost zero, except the
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Figure 3–8: Duplicate content analysis for PDF files. The X axis represents the duplicate
content percentage, and the Y axis represents the duplicate chunk percentage.

case when the size of modify block is 1 KB (sizeMB= 1KB) and the percetage

of duplicate content (DupCont) is greater than 98 %, the percentage of duplicate

chunks is about 2 %.

Portable Document Format files

Figure 3–8 shows the percentage of duplicate chunks as a function of the percentage

of duplicate content for Portable Document Format (PDF) files for the following

chunk sizes: 512 B, 1 KB, 2 KB, and 4 KB, respectively.
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The three cases correspond to different modify block sizes: 256 B in Figure 3–

8a, 512 B in Figure 3–8b, and 1 KB in Figure 3–8c, respectively. The percentage of

duplicate chunks is around nine percent for 512 B chunk size and decreases to 4 %

for 4 KB chunk size.

Microsoft Excel files

Figure 3–9 shows the percentage of duplicate chunks as function of the percentage

of duplicate content for the following chunk sizes: 512 B, 1 KB, 2 KB, and 4 KB,

respectively. The three cases correspond to different modify block sizes: 256 B in

Figure 3–9a, 512 B in Figure 3–9b, and 1 KB in Figure 3–9c, respectively. We can

see that as the chunk size increases, the percentage of duplicate chunks decreases.

It decreases even faster as the size of the modify block decreases.

For 256 B modify blocks in Figure 3–9a, the percentage of duplicate chunks

decreases from 95 % to 4 % (DupCont = 20, chunkSize = 512), from 91 % to

2 % (DupCont = 20, chunkSize = 1,024), from 84 % to 2 % (DupCont = 40,

chunkSize = 2,048), and from 70 % to 1 % (DupCont = 60, chunkSize = 4,096),

respectively.

For 512 B modify blocks in Figure 3–9b, the percentage of duplicate chunks

decreases from 97 % to 7 % (DupCont = 20, chunkSize = 512), from 95 % to

3 % (DupCont = 20, chunkSize = 1,024), from 91 % to 2 % (DupCont = 40,

chunkSize = 2,048), and from 83 % to 1 % (DupCont = 40, chunkSize = 4,096),

respectively.

For 1 KB modify blocks in Figure 3–9c, the percentage of duplicate chunks

decreases from 98 % to 16 % (DupCont = 20, chunkSize = 512), from 97 % to

7 % (DupCont = 20, chunkSize = 1,024), from 95 % to 3 % (DupCont = 20,

chunkSize = 2,048), and from 91 % to 1 % (DupCont = 40%, chunkSize = 4,096),

respectively.

32



3.1. PRELIMINARY STUDY

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

D
up

lic
at

e 
ch

un
ks

 (%
)

Duplicate content (%)

512B chunks
1KB chunks
2KB chunks
4KB chunks

(a) 256 B modify blocks.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

D
up

lic
at

e 
ch

un
ks

 (%
)

Duplicate content (%)

512B chunks
1KB chunks
2KB chunks
4KB chunks

(b) 512 B modify locks.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

D
up

lic
at

e 
ch

un
ks

 (%
)

Duplicate content (%)

512B chunks
1KB chunks
2KB chunks
4KB chunks

(c) 1 KB modify blocks.

Figure 3–9: Duplicate content analysis for XLS files. The X axis represents the duplicate
content percentage, and the Y axis represents the duplicate chunk percentage.

Microsoft Powerpoint files and JPG images

Figure 3–4 shows the percentage of duplicate chunks as function of the percentage

of duplicate content for the following chunk sizes: 512 B, 1 KB, 2 KB, and 4 KB,

respectively. The Microsoft Powerpoint files and the JPG image files were modi-

fied without taking into consideration their format. Therefore, they have the same

behavior as the already presented TXT files.
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3.2 Metrics

3.2.1 Deduplication Ratio and Percentage of Duplicate Chunks

Let chunkSize denote the chunk size, DedupRatio denote the deduplication

ratio, and DupCh denote the percentage of duplicate chunks. The deduplication

ratio is defined as the ratio between the original data size and the non redundant

data size. A higher DedupRatio value shows a high redundancy in the file content

while a lower ratio shows a high number of unique chunks. The deduplication ratio

is given by the following formula:

DedupRatio =
Original Data Size

NonRedundantData Size
=

Total chunks

Distinct chunks
(3.2)

The percentage of duplicate chunks is given by the following formula:

DupCh =
Total chunks− Unique chunks

Total chunks
(3.3)

In our experiments, we used the following chunkSize values: 512 B, 1 KB, 2 KB,

4 KB, 8 KB, and 16 KB.

3.2.2 Chunking and Reconstruction Times

The chunking time represents the time needed to write a file to the dedupli-

cated system. As the diagram in Figure 3–10 shows, the file is divided in equally

sized chunks, and the chunk indexes are computed. The chunk indexes are saved

to the file recipe, which will be the new file. The chunks content are sent to the

deduplication database.

The reconstruction time represents the time needed to read a file from the

deduplicated system. As Figure 3–11 shows, for reading a file, the corresponding file

recipe is first read from the file system, then the corresponding chunk contents are

retrieved from the deduplication database and concatenated in order to reconstruct

the original file.
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Figure 3–10: Deduplication (chunking) diagram.
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Read 
request

File

Disks

Figure 3–11: File reconstruction diagram.

3.3 Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is used to solve the storage problem

of huge data, but does not provide a handling mechanism of duplicate files. HDFS is

based on Google File System (GFS) and it operates on top of the operating system.

As Figure 1–1 shows, HDFS has a name node, an optional secondary name

node, and several data nodes. The name node is managing access and storing all

metadata, such as file names, file attributes, and block locations. For fast lookup,

the metadata is kept in RAM. Files contents are stored as blocks distributed across

data nodes. It provides reliability throw replication, blocks are stored on several
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data nodes. Client writes data directly to the data nodes. The data nodes will

forward the data to the next data node for replication. The default replication is

three. Client reads the data directly from the nearest data nodes. Periodically, the

name node is exchanging heartbeats with the data nodes. If no response is received,

the corresponding data node is considered lost. In this case, the blocks from the

lost data node will be replicated to another data nodes. In the case of a name node

failure, if a secondary name node is configured, it will assume it’s role as name node.

For safety, it is highly recommended the secondary name node to run on a different

machine.

3.4 Database Management Systems selection

The objective of this section is to find the optimal Database Management Sys-

tem in order to implement a deduplicated and distributed file system using Hadoop

Distributed File System(HDFS). The following potential Database Management Sys-

tems were considered: MariaDB, MongoDB, PostgreSQL, and SQLite. For the case

of MariaDB, the experiments were done for the following storage engines: ARIA,

InnoDB, and MyISAM.

3.4.1 Data set

In this experiment we used 500 CSV files of size 100 MB each and measured the

file chunking and reconstruction times as function of the number of records in the

database. Each file was divided into 204,800 chunks of size 512 B and each chunk

was sent to the database.

3.4.2 MariaDB

MariaDB is the most popular Relational Database Management System. We

used the following data types: INT, CHAR, VARCHAR, TINYTEXT, TEXT,

MEDIUMTEXT, LONGTEXT, BLOB (for binary data). Two tables were created:

files and chunks. MariaDB has two major storage engines, the default XtraDB /

InnoDB and ARIA. There is also MyISAM, a non-transactional storage engine, also
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tested for comparison, not as a candidate storage engine. ARIA is faster for reads

and writes, XtraDB / InnoDB is faster for reads. Each ARIA table is stored on

disk in three files: the frm file stores the table format, the data file has an MAD

extension, and the index file has an MAI extension. MariaDB is easy to work with,

is feature rich, secure, scalable, and powerful. It has some disadvantages as known

limitations, reliability issues, and stagnated development. MariaDB is used for dis-

tributed operations, for high security, for web-sites and web-applications, and for

custom solutions. Appendix A.1 contains implementation details, including SQL

command for creating the tables A.1.1, inserting file information and chunks into

the database A.1.2, and reconstructing the files A.1.3.

3.4.3 MongoDB

MongoDB is a NoSQL Database Management System. It uses JSON-like doc-

uments (rows in mysql) with schemas. The following data types were used: string

(must be UTF-8 valid), integer, binary data (used to store binary data). Instead

of tables, MongoDB uses collections. The following collections were used in our

experiments: files and chunks. MongoDB has two storage engines: the default

WiredTiger and MMAPv1. MMAPv1 is better for heavy reads, WiredTiger is bet-

ter for heavy writes but has some known issues with ext4. MMAPv1 is better choice

for deduplication. MongoDB stores data as documents in a binary representation

called BSON (Binary JSON). MongoDB documents tend to have all data for a given

record in a single document, whereas in a relational database information for a given

record is usually spread across many tables. The database files are broken up into

2 GB extents. Documents in a collection are stored as a doubly linked list within

extents. Index data is also stored in these files, but they are stored as B-Trees.

Appendix A.2 contains implementation details, including command for creating the

collections A.2.1, inserting file information and chunks into the database A.2.2, and

reconstructing the files A.2.3.
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(a) Chunking using Aria storage engine.
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(b) Reconstruction using Aria storage engine.
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(c) Chunking using Innodb storage engine.
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(d) Reconstruction using Innodb storage engine.
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(e) Chunking using MyIsam storage engine.
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(f) Reconstruction using MyIsam storage engine.

Figure 3–12: Chunking and reconstruction real times for MariaDB using ARIA engine,
MariaDB using Innodb engine, MariaDB using MyISAM engine, MongoDB, PostgreSQL,
and SQLite.

3.4.4 Postgres

Postgres is an Object-relational Database Management System. Provides the

following data types: int, char, varchar, text , bytea (binary data). Two tables
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(a) Chunking user times.

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100

Re
co

ns
tru

ct
io

n 
us

er
 ti

m
e 

(s
)

DB size (Millions of records)

MariaDB
MongoDB
Postgres

SQLite

(b) Reconstruction user times.

Figure 3–13: Chunking and reconstruction user times for MariaDB, MongoDB, Post-
greSQL, and SQLite.

were created: files and chunks. Postgres supports and uses just only one storage

engine - PostgreSQL. The configuration and data files used by a database cluster

are stored together within the cluster’s data directory. For each database there is

a subdirectory, this is the default location for the database’s files. Each table and

index is stored in a separate file. Tables and indexes are divided into segments of size

1 GB. Advantages of Postgres are: Open-source, Strong community, strong third-

party support, extensible, objective. It has some disadvantages as performance,

popularity, and hosting. Postgres is used when data integrity is an absolute necessity,

for complex, custom procedures, complex designs, and when integration is needed.

Postgres is not recommended if fast read operations, or replication are required.

Appendix A.3 contains implementation details, including SQL command for creating

the tables A.3.1, inserting file information and chunks into the database A.3.2, and

reconstructing the files A.3.3.

3.4.5 SQLite

SQLite is a very powerful, embedded relational database management sys-

tem. The following data types are available: INT, CHAR, TEXT (stored using

the database encoding), BLOB (stored exactly as it was input). Two tables were

created: files and chunks. SQLite stores the data server less, in a single, stable
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(a) Chunking system times.
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(b) Reconstruction system times.

Figure 3–14: Chunking and reconstruction system times for MariaDB, MongoDB, Post-
greSQL, and SQLite.

cross-platform database file. It is compact, has manifest typing, variable-length

records, and readable source code. SQL statements compile into virtual machine

code. SQLite has Zero-configuration. Some advantages of SQLite are: it is file

based (the entire database consists of a single file on the disk), standards-aware

(uses SQL). It is great for developing and even testing (simplicity of working with a

single file and a linked C-based library). However, has no user management, lack of

possibility to tinker with for additional performance, DBMS allows only one single

write operating to take place at any given time. SQLite is used for single-user local

applications, and for testing. It is not recommended for multi-user applications and

for applications requiring high write volumes. Appendix A.4 contains implemen-

tation details, including SQL command for creating the tables A.4.1, inserting file

information and chunks into the database A.4.2, and reconstructing the files A.4.3.

41



3.4. DATABASE MANAGEMENT SYSTEMS SELECTION

Table 3–3: Database Management System (DMS) comparison. Chunking and reconstruc-
tion times for files of size 100 MB using databases containing between 50 and 100 million
records.

DMS Engine Type Storage Chunking Reconstruct
time (s) time (s)

MariaDB ARIA Relational 3 files per table 10.4 8.5
MariaDB InnoDB Relational 3 files per table 37.2 7.8
MariaDB MyISAM Relational 3 files per table 8.2 7.3
MongoDB MMAPv1 Not relational 2 GB extents 13.0 14.0
Postgres PostgreSQL Relational 1 GB segments 20.1 14.6
SQLite Relational 1 file per database 24.0 3.5

3.4.6 DBMS Comparison Results

Table 3–3 contains our results from the Database Management System (DMS)

comparison.

The best chunking (writing) times were obtained for MariaDB with ARIA and

MyISAM storage engines. The best reconstruction (read) time was obtained for

SQLite, followed by MariaDB with InnoDB engine. Because SQLite is not an option

for our deduplicated and distributed file system, we selected MariaDB with InnoDB

storage engine for our implementation.
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Figure 3–15: Comparative box plots for chunking and reconstruction real times for Mari-
aDB using ARIA engine, MariaDB using InnoDB engine, MariaDB using MyISAM en-
gine, MongoDB, PostgreSQL, and SQLite.
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Figure 3–16: Comparative box plots for chunking and reconstruction user times for Mari-
aDB using ARIA engine, MariaDB using InnoDB engine, MariaDB using MyISAM en-
gine, MongoDB, PostgreSQL, and SQLite.
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Figure 3–17: Comparative box plots for chunking and reconstruction system times for
MariaDB using ARIA engine, MariaDB using InnoDB engine, MariaDB using My-
ISAMengine, MongoDB, PostgreSQL, and SQLite.

45



3.5. HD2FS IMPLEMENTATION

3.5 HD2FS Implementation

In order to improve data storage capacity and efficiency in distributed file sys-

tem, using the results obtained from the preliminary study and the experiments

done to find the best Database Management System, the design and implemention

of the new deduplicated and distributed file system, HD2FS, was done by integrating

deduplication into Hadoop Distributed File System (HDFS), as Figure 3–19 shows.

HDFS is used to solve the storage problem of huge data, but does not provide a

handling mechanism of duplicate files.

Hadoop 2.9.0 source code downloaded from

http://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-2.9.0

was modified to integrate deduplication. The following new keys were defined in

hdfs-site.xml:

• dfs.dedupchunksize, used to set the deduplication chunk size, with a default value

of 512 corresponding to 512 B deduplication chunk size.

• dfs.dedupchunk.location.db, used to set where the chunk content will be stored, in

the deduplication database (true, default) or stored as files (false).

• dfs.dedupchunk.dir, used to set the directory for the chunks in the case they will

be stored as files, with the default value /home/hadoop/hadoopdata/dedupchunk/.

For writing a file to HD2FS, the stream containing the file content is used as input

in one of the following chunking methods:

dedupFromByteArray(Connection, OutputStream, byte, long, int), and

dedupFromByteArray(OutputStream, byte, long, int).

The first method is used if the chunk content will be stored in the database, and

the second in the case the chunk content will be stored as files.

The stream is processed by dividing it into chunks, computing the corresponding

chunkId by using the SHA-256 hash function, and writing the obtained chunkId

to the file recipe. The file recipe will be the new file in HD2FS, sent to the
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data nodes in HDFS blocks. After computing the chunkId, the stream content

is sent to the database, or stored as files, respectively. The deduplication chunk size

dedupchunksize can be modified in hdfs-site.xml, using the new key

dfs.dedupchunksize. Appendix E.1 contains the working hdfs-site.xml for HD2FS.

For reading a file from HD2FS, the corresponding reconstruction method will be

used, depending where the chunk contents are stored in the file system:

reconstructFromStreamToFile(Connection, InputStream, PathData), and

reconstructFromStreamToFile(dedupChunkFolder, dedupChunkSize,

InputStream, PathData).

The first method is used if the chunk content was stored in the database, and

the second in the case the chunk content was stored as files. In both cases, the

corresponding file recipe is obtained from HD2FS data nodes. The chunk ID’s are

read one by one and the corresponding content is obtained from the database or from

the stored file. In this way, using the unique data stored, the file is reconstructed.

The chunking methods can be found in Appendix C.1 and D.1, and the recon-

struction methos in Appendix C.2 and D.2, respectively.

3.5.1 Deduplication and Reconstruction Algorithms

Algorithm 1 and Algorithm 2 contain the deduplication algorithms for the two

cases, and Algorithm 3 and Algorithm 4 contain the reconstruction algorithms used

in our implementation. MariaDB with InnoDB storage engine was selected for the

implementation, and for replication purposes, MariaDB Galera Cluster was used.
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Algorithm 1 Deduplication algorithm - chunk content stored in the database.

1: procedure dedup(connectMariaDB,out,b,dedupChunkSize,numBytes)
2: sql← “INSERT IGNORE INTO chunk(chunkId,numBytes,count,content)
3: VALUES(?,?,1,?) ON DUPLICATE KEY UPDATE count=count+1;”
4: chunkSize← dedupChunkSize
5: bytesToChunk ← numBytes
6: while bytesToChunk > 0 do
7: if chunkSize < bytesToChunk then
8: bytesToChunkNext← chunkSize
9: else

10: bytesToChunkNext← bytesToChunk

11: end if
12: chunk ← Arrays.copyOfRange(b, numBytes - bytesToChunk,
13: numBytes - bytesToChunk + bytesToChunkNext)
14: chunkId← DigestUtils.sha256Hex(chunk)
15: sqlInsert← connectMariaDB.prepareStatement(sql)
16: sqlInsert← setString(1, chunkId)
17: sqlInsert← setInt(2, bytesToChunkNext)
18: sqlInsert← setBinaryStream(3, new ByteArrayInputStream(chunk),
19: bytesToChunkNext)
20: out← write(chunkId.getBytes(), 0, chunkId.getBytes().length)
21: try
22: sqlInsert← executeUpdate()
23: finally
24: sqlInsert← close()
25: end try
26: bytesToChunk ← bytesToChunk − bytesToChunkNext

27: end while
28: end procedure
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Algorithm 2 Deduplication algorithm - chunk stored as file in the file system.

1: procedure dedup(out,b,dedupChunkSize,numBytes)
2: chunkSize← dedupChunkSize
3: bytesToChunk ← numBytes
4: while bytesToChunk > 0 do
5: if chunkSize < bytesToChunk then
6: bytesToChunkNext← chunkSize
7: else
8: bytesToChunkNext← bytesToChunk

9: end if
10: chunk ← Arrays.copyOfRange(b, numBytes - bytesToChunk,
11: numBytes - bytesToChunk + bytesToChunkNext)
12: chunkId← DigestUtils.sha256Hex(chunk)
13: bytesToChunkNext)
14: out← write(chunkId.getBytes(), 0, chunkId.getBytes().length)
15: bytesToChunk ← bytesToChunk − bytesToChunkNext
16: outputStream← FileOutputStream(dedupChunkFolder + chunkId)
17: outputStream← write(chunk)

18: end while
19: end procedure
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Algorithm 3 Reconstruction algorithm - chunk content stored in the database.

1: procedure reconstruct(connectMariaDB,in,target)
2: sqlStatement← connectMariaDB.createStatement()
3: newFile← target
4: out← new FileOutputStream(newFile.toFile())
5: try
6: buf← new byte[64]
7: bytesRead← in.read(buf )
8: chunkId← new String(buf )
9: while bytesRead > 0 do

10: sql← “SELECT content, numBytes from chunk where chunkId = ’”
11: + chunkId + “’ LIMIT 1;”
12: statement← connectMariaDB.prepareStatement(sql)
13: chunkContentAndSize← statement.executeQuery()
14: chunkContentAndSize← next()
15: inContent← chunkContentAndSize.getBinaryStream(“content”)
16: chunkSize← chunkContentAndSize.getInt(“numBytes”)
17: chunkByte← new byte[chunkSize]
18: while inContent.read(chunkByte) >= 0 do
19: out← write(chunkByte)

20: end while
21: bytesRead← in.read(buf )
22: chunkId← new String(buf )

23: end while
24: out← close()
25: in← close()
26: finally
27: sqlStatement← close()
28: end try

29: end procedure
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Algorithm 4 Reconstruction algorithm - chunk stored as file in the file system.

1: procedure reconstruct(dedupChunkFolder,dedupChunkSize,in,target)
2: newFile← target
3: out← new FileOutputStream(newFile.toFile())
4: try
5: buf← new byte[64]
6: bytesRead← in.read(buf )
7: chunkId← new String(buf )
8: while bytesRead > 0 do
9: chunkStream← new FileInputStream(dedupChunkFolder + chunkId);

10: chunkByte← new byte[chunkStream.available()];
11: while inContent.read(chunkByte) >= 0 do
12: out← write(chunkByte)

13: end while
14: bytesRead← in.read(buf )
15: chunkId← new String(buf )

16: end while
17: out← close()
18: in← close()
19: end try

20: end procedure
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3.5.2 MariaDB Galera Cluster

After analyzing the chunking (writing) times in Figure 3–13a , Figure 3–13c, and

Figure 3–16a, the reconstruction (read) times in Figure 3–13b, Figure 3–13d, and

Figure 3–16b, MariaDB showed the best performance. Therefore, MariaDB Galera

Cluster was selected to store and replicate the chunks in our new deduplicated and

distributed file system HD2FS.

As Figure 3–19 shows, the Deduplication Engine (DE) in HD2FS is running

on the name node. During the deduplication process, the file recipes are stored in

HD2FS blocks in the data nodes, and DE uses MariaDB cluster to store the unique

chunk contents in the database. When reading a file, the file recipe is obtained from

HD2FS data nodes. The chunk ID’s are read one by one and the corresponding

chunk is obtained from the database. In this way, using the unique data stored in

the database, the file is reconstructed.

The deduplication database dedup contains the following table:

chunk(chunkId, numBytes, count, content)

where chunkId is the primary key, numBytes represents the number of bytes in the

chunk (the chunk size), count contains the number of times the chunk is referenced,

and content stores the binary content of the chunk as a BLOB data type. If the

chunk index already exists in the database, the corresponding reference count is

incremented by one. If the chunk index is not found, a new record is added with

the corresponding reference count equal one.
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Table 3–4: HD2FS cluster with deduplication.

Host IP Address Node Role CPU Memory Storage
(GB) (GB)

hadoopb-name1. 136.145.57.93 Name 8 32 200 (SSD)
ece.uprm.edu Dedup engine
hadoopb-name2. 136.145.57.186 Secondary 4 16 200 (SSD)
ece.uprm.edu Name
hadoopb-data1. 136.145.57.187 Data 4 16 200 (SSD)
ece.uprm.edu
hadoopb-data2. 136.145.59.104 Data 4 16 200 (HDD)
ece.uprm.edu
hadoopb-data3. 136.145.59.105 Data 2 4 50 (HDD)
ece.uprm.edu
hadoopb-data4. 136.145.59.106 Data 2 4 50 (HDD)
ece.uprm.edu
hadoopb-data5. 136.145.59.107 Data 2 4 50 (HDD)
ece.uprm.edu
hadoopb-data6. 136.145.59.108 Data 2 4 50 (HDD)
ece.uprm.edu

3.5.3 HD2FS Cluster

Table 3–4 shows the HD2FS cluster configuration. For better performance, as

Table 3–4 shows, the MariaDB Galera cluster runs on three servers having solid

state drives (SSD): the name node, the secondary name node, and also on a data

node. Figure 3–20 shows a screenshot of our new deduplicated and distributed file

system HD2FS overview page and Figure 3–21 shows information about the data

nodes.

54



3.5. HD2FS IMPLEMENTATION

Figure 3–19: HD2FS cluster overview.
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Figure 3–20: HD2FS cluster data nodes.

3.6 Summary

In this chapter, a preliminary study and a Database Management System com-

parison in order to design and implement our new deduplicated and distributed file

system HD2FS was presented. Deduplication was integrated to Hadoop Distributed

File System (HDFS) and MariaDB Galera cluster was used to store and replicate

the data. In the next chapters, a study of performance and the advantages of using

HD2FS to store data in cloud and to improve storage management of genomic data

will be presented.
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Chapter 4

USING HD2FS TO EFFICIENTLY STORE

DATA IN CLOUD

This chapter presents the use of the deduplication storage system HD2FS, to

improve data storage capacity and efficiency in distributed file systems. Instead of

storing multiple copies of the same data, our deduplication system will store only

the data that is different along with a map to reconstruct all data files. In order to

demonstrate it’s feasibility and performance, we present a study of the relation be-

tween the number of different consecutive versions (distributions) of popular source

codes like GCC, Linux kernels, database log files, versus the deduplication ratio,

and the percentage of duplicate chunks, respectively.

4.1 Experiments

The experiments were designed to study the performance of HD2FS using real

world data sets.

4.1.1 Experimental Setup

This experiments used consecutive versions (distributions) of the GCC source

codes, Linux Kernel source codes, and InnoDB database log files. The source codes

were written to HD2FS cluster. As mentioned in Chapter 3, Table 3–4 shows the

HD2FS cluster configuration used in our experiments. The name node is a DELL

PowerEdge R220 server equipped with an Intel(R) Xeon(R) CPU E3-1286 v3 @

3.70 GHz 8 core CPU, 32 GB of RAM, 400 GB SSD, and 8 TB of extra storage using

regular hard drives. The experiments were conducted on the SSD as primary storage.

The secondary name node and one data node are AMD A10-7850K Radeon R7, 12
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Compute Cores 4C+8G @ 3 GHz 4 core CPU, 16 GB of RAM, 200 GB SSD. All the

remaining data nodes are virtual servers. One virtual server has 4 cores, 16 GB of

RAM, 200 GB HDD, and the remaining ones have 2 cores, 4 GB of RAM, 50 GB

HDD. The operating system on all servers in the HD2FS cluster was Ubuntu 17.10

LTS with kernel Linux 4.13.0-43..

4.1.2 Data Sets

Source codes from 84 versions of GCC were downloaded from the GNU Archives

http://ftp.gnu.org/gnu/gcc/. Also, the sorce codes from 201 versions of Linux kernel

2.x, the source codes from 75 versions of Linux kernel 3.x, and the source codes from

75 versions of Linux kernel 4.x were downloaded from a mirror of the Linux Archives

http://ftp.kernel.org/pub/linux/kernel/. During the writes of the previous source

codes to HD2FS, 16 Innodb database log files were saved every 1.5 hours. Table 4–1

contains the data sets used for HD2FS performance evaluation.

Table 4–1: Data sets used for HDFS with deduplication performance evaluation.

Name Versions Avg size Total size Comp Dedup DupCh
(MB) (GB) ratio ratio (%)

GCC 84 288.1 23.6 7.0 4.7 79
Linux kernels 2.x 201 173.2 34.0 5.1 10.2 90
Linux kernels 3.x 75 494.0 36.2 5.3 61.6 98
Linux kernels 4.x 50 731.1 35.7 5.6 21.6 95
InnoDB logs 16 2048.0 32.0 8.2 88

4.1.3 Results

The experiments were done using the following chunk sizes: 512 B, 1 KB, 2 KB,

4 KB, 8 KB, and 16 KB. For reference, the experiments were also run on the original

unmodified HDFS cluster. The first experiment was with the GCC source codes,

followed by the Linux kernel versions, considering the source codes for Linux kernel

2.x, 3.x, and 4.x separately. These experiments were performed to evaluate the

deduplication ratio and the percentage of duplicate chunks obtained with HD2FS.
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The next experiments were performed to evaluate the time performances of HD2FS

and the scalability of our new system.

GCC source codes

The first set of experiments used 84 consecutive versions of the GCC source

codes downloaded from their website. The source codes were written to HD2FS

cluster. The experiment was repeated for different chunk sizes: 512 B, 1 KB, 2 KB,

4 KB, 8 KB, and 16 KB. As Figure 4–1a shows, the deduplication ratio depends on

the chunk size, and is ranging between 4.5 and 6.5 as more source codes are added.

Also, as Figure 4–1b shows, the percentage of duplicate chunks also depends on the

deduplication chunk size, and is ranging between 78 % and 84 %.
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Figure 4–1: Deduplication ratio and percentage of duplicate chunks analysis for GCC
versions.

Linux kernel 2.x source codes

The second set of experiments used 201 consecutive versions of the Linux kernel

2.x source codes downloaded from their website. The source codes were written to

HD2FS cluster. The experiment was repeated for different chunk sizes: 512 B, 1 KB,

2 KB, 4 KB, 8 KB, and 16 KB. As Figure 4–2a shows, the deduplication ratio does

not depend on the chunk size, and is ranging between 4.5 and 10.2 as more source

codes are added. Also, as Figure 4–2b shows, the percentage of duplicate chunks

does not depend on the chunk size, neither. After adding all of the 201 Linux kernel
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2.x source codes, the percentage of duplicate chunks is ranging between 80 % and

90 %. In the case when the current version has lots of changes compared to the

previous versions, the deduplication ration and the percentage of duplicate chunks

are decreasing, followed by future increases when more and more source code versions

are added.
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Figure 4–2: Deduplication ratio and percentage of duplicate chunks analysis for Linux
Kernels 2.x distributions.

Linux kernel 3.x source codes

The third set of experiments used 75 consecutive versions of the Linux kernel

3.x source codes downloaded from their website. The source codes were also written

to HD2FS cluster. The experiment was repeated for different chunk sizes: 512 B,

1 KB, 2 KB, 4 KB, 8 KB, and 16 KB.

As Figure 4–3a shows, the deduplication ratio does not depend on the chunk size

and it shows a linear increase. By adding the source code of 75 consecutive kernel

versions, the deduplication ratio was about 61.6, by far superior to 5.3 compression

ratio obtained by regular compression algorithms such as tar or gzip. As Figure 4–3b

shows, the percentage of duplicate chunks does not depend on the chunk size neither.

After adding the source codes, the percentage of duplicate chunks was 98 %. This is

the case when there are less changes between the source codes in the kernel versions.

This shows a clear benefit of using HD2FS for this commonly used data.
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 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70

D
up

lic
at

e 
ch

un
ks

 (%
)

Consecutive versions

512B chunks
2KB chunks
4KB chunks
8KB chunks

(b) Percentage of duplicate chunks analysis for
Linux Kernels 3.x.

Figure 4–3: Deduplication ratio and percentage of duplicate chunks analysis for Linux
Kernels 3.x distributions.

Linux kernel 4.x source codes

The fourth set of experiments used 50 consecutive versions of the Linux kernel

4.x source codes downloaded from their website. The source codes also were also

written to HD2FS cluster. The experiment was repeated for different chunk sizes:

512 B, 1 KB, 2 KB, 4 KB, 8 KB, and 16 KB.
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Figure 4–4: Deduplication ratio and percentage of duplicate chunks analysis for Linux
Kernels 4.x distributions.

As Figure 4–4a shows, the deduplication ratio does not depend on the chunk size

and it shows a linear increase. By adding the source code of 50 consecutive kernel

versions, the deduplication ratio was about 21.6, greater than the 5.6 compression

ratio obtained by regular compression algorithms such as tar or gzip. As Figure 4–4b
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shows, the percentage of duplicate chunks does not depend on the chunk size neither.

After adding the source codes, the percentage of duplicate chunks was 95 %. We

can observe some downs in the figure. It is the case when the current written source

code has lots of changes compared to the previous already written source codes.

Database log files

The fifth set of experiments used the previously saved InnoDB database log files.

This experiment was also repeated for different chunk sizes: 512 B, 1 KB, 2 KB, 4 KB,

8 KB, and 16 KB. As Figure 4–5a shows, the deduplication ratio does not depend on

the chunk size and it shows a linear increase. By adding 16 consecutive database log

files, the deduplication ratio was about 8.2. As Figure 4–5b shows, the percentage

of duplicate chunks does not depend on the chunk size neither. After adding the

database log files, the percentage of duplicate chunks was 88 %.
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database log files.
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Figure 4–5: Deduplication ratio and percentage of duplicate chunks analysis for 16 conse-
tutive Innodb database log files using HD2FS cluster.
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4.1.4 Performance analysis

In order to test HD2FS performance, a set of user files of size 100 MB each was

written and than read from HD2FS in order to determine how the deduplication

chunk size influence the overall performance. As Figure 4–6 shows, for very small

chunk sizes such as 512 B or 1 KB, the write times are relatively high compared

to chunk sizes over 2 KB. The no-dedup experiment was done with the original

unmodified HDFS cluster, therefore without deduplication. We can see that HD2FS

performance is very similar to the performance of the original HDFS, but with the

big advantage of improving storage space requirements.
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Figure 4–6: Comparative box plots for Write and Read times for 100 MB files using HD2FS
cluster for different chunk sizes. Write times include the deduplication time and read times
include the reconstruction time.
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4.1.5 Scalability analysis

The scalability of HD2FS was also tested. The experiments were started with

the number of data nodes equal the default replication (3) in HDFS. Starting the

cluster with 3 data nodes, a set of user files of size 100 MB each was written and than

read from HD2FS. As Figure 4–7 shows, HD2FS cluster performance is not altered

by increasing the number of data nodes. Several configurations were tested. The

experiment was than repeated for 4, 5, and 6, the maximum available data nodes

in the cluster. The results show that as the number of data nodes is increasing, the

overall performance is slightly improved, the improvement is more visible for write

times.
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Figure 4–7: Scalability analysis for HD2FS. Comparative box plots for Write and Read
times were measured for different HD2FS cluster configurations. The number of data
nodes was increased from 3 up to 6, the maximum available data nodes in the cluster.
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4.2 Summary

In this chapter, an application of the new deduplicated and distributed file sys-

tem HD2FS to store user real data in cloud was presented. HD2FS was designed and

implemented using Hadoop Distributed File System (HDFS) by adding deduplica-

tion. A study of performance was done using real world data sets. The advantages

of using HD2FS have been presented. In particular, we have evaluated deduplica-

tion ratio, percentage of duplicate chunks, write and read times for the following

chunk sizes: 512 B, 1 KB, 2 KB, 4 KB, 8 KB, and 16 KB. Our results over different

types of commonly used data sets, show that the obtained deduplication ratio and

percentage of duplicate chunks values are superior in the case of using HD2FS when

compared to HDFS. The scalability analysis results show that as the number of data

nodes is increasing, the overall performance is slightly improved, the improvement

is more visible for write times. This means that there is potential for HD2FS to

be effectively integrated to improve storage management of user data. Also, the

obtained high deduplication ratio values and the write and read times comparable

with HDFS, gives HD2FS a clear benefit.
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Chapter 5

USING HD2FS TO MANAGE LARGE SCALE

GENOMIC DATA

During the last years, the cost of sequencing has dropped, and the amount

of generated genomic sequence data has skyrocketed. As a consequence, genomic

sequence data have become more expensive to store than to generate. The storage

needs for genomic sequence data are also following this trend. In order to solve these

new storage needs, different compression algorithms have been used. Nevertheless,

typical compression ratios for genomic data range between 3 and 10. In this chapter,

we present the use of HD2FS, in order to improve overall storage capacity and

efficiency in distributed file systems that handle genomic data

5.1 Introduction to Genomics

Genomics is the genetics area concerned with the sequencing and analysis of

genomes. A genome is a complete set of deoxyribonucleic acid (DNA) of an organism,

including all its genes. A gene is the basic physical and functional unit of heredity

and is made up of DNA. DNA is the hereditary material in humans and almost

all other organisms, stored as a code made up of four bases: adenine (A), guanine

(G), cytosine (C), and thymine (T). DNA bases pair up with each other such that

base A pairs with base T, and base C pairs with base G, to form units called base

pairs (bp). One of the most important DNA properties is that it can replicate

itself. A genome is usually stored in a single file. One of the most common file

types currently used to store a genome is the FASTA format. The FASTA format

is text-based, and originates from the FASTA software package [46, 47]. FASTA
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5.1. INTRODUCTION TO GENOMICS

has become a standard in genomics. The simplicity of its format makes it easy to

manipulate and parse sequences using languages like Python, Perl, Ruby, and other

text-processing tools. A sequence in FASTA format is represented as a series of

lines. Usually, the first line in a FASTA file starts with a “>” symbol. Following

the initial line, is the actual sequence itself in standard one-letter code similar to

ATTATCATTTCTAAAGAGA...

Human DNA consists of about 3 billion base pairs (bp), more than 99 percent of

those bases are the same in all people, and it’s representation requires about 100 GB

of data [48]. Because the cost of sequencing a human genome has dropped from

$1,000,000 in 2007 to about $1,000 in 2017, and is still dropping since then [49],

the amount of generated genomics data has skyrocketed and the storage needs for

genomics data are on pressure to keep up with the demand. Because a tumor’s whole

genome and a matching normal tissue needs about 1 TB of uncompressed data [48],

one million genomes would require 1 million TB, which is 1 Exabyte.

Recently, the use of deduplication has shown potential to remove storage re-

dundancy in similar files across file systems. The concept of a file can be adapted to

refer to chunks (data blocks) and file recipes [3]. The file recipe for a file is a synopsis

that contains a list of chunk identifiers (fingerprints) that comprise the file. Each

chunk identifier can be created using a collision resistant hash over the contents of

the block [5]. Once the chunk identifiers in a file recipe have been obtained, they

can be combined as prescribed in the file recipe to reconstruct the file.

Typical deduplication solutions rely on fixed-size chunking methods [18]. Al-

though it provides a simpler implementation, the benefits of deduplication in those

scenarios limit the use of this technique mostly to backup data [2, 3, 50].

We present the use of HD2FS for genomics data in order to improve overall

storage capacity and efficiency in distributed file systems that handle genomic data.

Instead of storing multiple copies of the same genomics data, our deduplication
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5.2. DEDUPLICATION FOR GENOMIC DATA

system will store only the data that is different along with a map to reconstruct

all genomics data files. In order to demonstrate it’s feasibility and performance, we

present a study of the relation between the amount of different types of mutations like

point mutations, substitutions, inversions, and the deduplication ratio for vertebrate

genomes data set stored in FASTA genomics data files.

Gene mutations play a part in both normal and abnormal biological processes

including: evolution, cancer, and the development of the immune system, including

junctional diversity. Gene mutation are permanent alterations in the DNA sequence,

resulting from errors during DNA replication or any types of damage to the DNA

sequence. It may also result from insertion or deletion of segments of DNA due to

mobile genetic elements [51, 52]. Regarding the size of gene mutations, there are

small scale mutations such as Point Mutation (Figure 5–1a), Substitution (Figure 5–

1b), Inversion (Figure 5–1c), Insertion (Figure 5–1d), Deletion (Figure 5–2b), and

large scale mutations such as Duplication of genes (Figure 5–2a), and Deletions

(Figure 5–2b).

5.2 Deduplication for Genomic Data

The use of HD2FS to improve overall storage capacity and efficiency in dis-

tributed file systems that handle genomic data will be presented. HD2FS uses

fixed-length deduplication, where each file is being divided into equally sized chunks.

The deduplication engine (DE) is implemented at the name node level in a HDFS

system. It consists of a typical HDFS name node plus a deduplication database

which will hold information regarding chunks and the associated files they belong

to, and a chunk identifier to generate unique ID per chunk. The DE will perform

writes as follows: using the SHA-256 secure hash algorithm, a unique chunk iden-

tifier (fingerprint) is generated for every chunk and stored in the file recipe as well

as being sent to the deduplication database. If the chunk identifier already exists
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5.2. DEDUPLICATION FOR GENOMIC DATA

... T A T C T G C A G A ...

... T A C C T G C A G A ...

(a) Point mutation. Base T is replaced by the new base C.

... T A T C T G C A G A ...

... T A C A G T T A G A ...

(b) Substitution. The sequence TCTGC is replaced by
CAGTT.

... T A T C T A A A G A ...

... T A A A T C T A G A ...

(c) Inversion. The sequence TCTAA being replaced by its
inverse.

... T A T C T A A A G ... ...

... T A A T C T A A A G ...

(d) Insertion. The new base A is inserted and the following
sequence fter the deleted base is shifted one position to the right.

... T A T C T A A A G A ...

... T A C T A A A G A ... ...

(e) Deletion. The base T is deleted and the following sequence
after the deleted base is shifted one position to the left.

Figure 5–1: Small scale mutations: Point mutation, Substitution, Inversion, Insertion,
and Deletion.

in the deduplication database, meaning that the chunk is already stored, the cor-

responding chunk counter will be incremented by 1. If the chunk identifier is not

found in the deduplication database, it will be inserted and the chunk content will

be stored in the deduplication database. In the case of reads, a file reconstruction

algorithm will search for chunks stored in the file recipe and assemble the content

by appropriately merging such chunks. Since a HDFS already creates file chunks, an

extension to build the DE can leverage on this functionality and modify it to work

at a different chunk scale.

In order to optimize HD2FS for genomics data, we are interested in finding

the best chunk size (for read/write performance) for commonly used file types in

genomics, such as FASTA genomics data files. We consider the following potential
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... T A T ... A C A A G A ...

... T A T ... A T ... A C A ...

(a) Duplication of genes. The gene T...A is duplicated, and
the entire following sequence is shifted to the right.

... T A T C T ... A A G A ...

... T A T A G A ... ... ... ... ...

(b) Gene deletion. The entire following sequence is shifted to
the left.

Figure 5–2: Large scale mutations: Duplication of genes, and Gene deletion.

chunk sizes: 512 B, 1 KB, 2 KB, and 4 KB. A performance evaluation using such

sizes will be performed and the one that produces the best results is selected as the

ideal chunk size for these data.

5.3 Experiments

The experiments were designed to provide an understanding of the relation

between the amount of mutations, such as point mutations, substitutions, inversions

and the deduplication ratio in order to select a chunk size that can be used for

storing genomic data in HD2FS. Toward those ends, the focus was on the amount of

mutations, and given this amount, the deduplication ratio for different chunk sizes

was computed. The results of the experiments should provide us with sufficient

information to identify the best chunk size for genomics data files.

5.3.1 Experimental Setup

The experiments were performed on a DELL PowerEdge R220 server equipped

with an Intel(R) Xeon(R) CPU E3-1286 v3 @ 3.70 GHz 8 core CPU, 32 GB of RAM,

400 GB SSD, and 8 TB of extra storage using regular hard drives. The experiments

were conducted on the SSD as primary storage and the results stored on the extra

storage. Taking advantage of its low-latency access, the SSD was also used for storing

metadata. Depending on the chunk size used for deduplication, the metadata ranges

from 1 % of the total data for 4 KB chunks, to about 10 % of the total data for 512 B

chunks. The operating system used was Ubuntu 16.04 LTS with Linux kernel 4.10.
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Table 5–1: FASTA files data set.

Modify Type Sets Files Size (GB)

Reference set 1 407 50
Point Mutations 11 4,477 550
Substitutions (700 to 1500 bp) 16 6,512 800
Substitutions (7000 bp average) 11 4,477 550
Inversions (700 to 1500 bp) 16 6,512 800
Inversions (7000 bp average) 11 4,477 550
Total: 66 26,862 3,300

5.3.2 Datasets

The reference set

The data set was generated from a sample of 407 FASTA genomic data files

with a total size of 50 GB obtained from the collection of genome files downloaded

from ftp.ensembl.org, a genome browser for vertebrate genomes. The compressed file

collection has 282 GB, while uncompressed requires 683 GB of storage space. The

experiments use the 50 GB sample of 407 FASTA uncompressed files as the reference

set. The smallest file has 115 MB, the largest has 140 MB, and the average file size

is 125.8 MB.

Inserting modifications to generate duplicate data

The reference set is used to generate new testing sets of modified FASTA files.

The modified sets consist of mutations, substitutions and inversions. As showed in

Figure 5–1a, we introduced point mutations at random positions. In this way we

generated 11 new sets, with the following amounts of point mutations (in thousands):

5, 10, 20, 40, 60, 80, 100, 120, 140, 160, and 200, respectively. Every file in a

given set has the same amount of point mutations. We also introduce substitutions

(Figure 5–1b) and inversions (Figure 5–1c) at random positions. We considered two

cases: substitutions / inversions of sequences between 700 bp and 1,500 bp long, and

substitutions / inversions of sequences with an average length of 7,000 bp. In this

way we generated 16 new sets with substitutions / inversions of sequences between

700 bp and 1,500 bp having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, and 40
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thousand substitutions per file. We also generated 11 new sets with substitutions

/ inversions of sequences with an average length of 7,000 bp having 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, and 15 thousand substitutions per file. Every file in a given set has the

same amount and type of substitutions / inversions. Table 5–1 shows the number

of different sets of FASTA files, the total number of files, and the total size. The

first line corresponds to the unmodified (reference) set of FASTA files. As shown,

our testing dataset is of 3.3 TB of genomic data.

5.3.3 Deduplication for Genomic Data

With the obtained data set, the deduplication ratio and the percentage of du-

plicate chunks for every modified set of files and the reference set were computed.

Let chunkSize denote the chunk size, DedupRatio denote the deduplication ratio,

and DupCh denote the percentage of duplicate chunks. The deduplication ratio is

defined as the ratio between the original data size and the data size after eliminating

the duplicates. A higher DedupRatio shows a high redundancy in the file content

while a lower ratio shows a high number of unique chunks in the file. Similarly, a

high DupCh shows that the file content can be represented by a combination of a

small subset of unique chunks, while a low value shows highly unique chunk content.

We used the following chunkSize values: 512 B, 1 KB, 2 KB, and 4 KB. To compute

the percentage of duplicate chunks and the deduplication ratio, the chunk identifiers

from the original set of files were compared with the chunk identifiers from every

modified set of files.

A A B C D E F G H I

A A B X D E Y G H I

Figure 5–3: Each file contains 10 chunks of the same size. Chunks C and F are replaced
by chunks X and Y, respectively. Chunks A, B, D, E, G, H, and I are duplicates.

This is an example of these metrics using Figure 5–3, which shows the resulting

chunks from two files after deduplication. In this theoretical example, it was assumed

that after deduplication, each file was divided into 10 chunks of the same size.
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The first one is the reference file, and the second one is the modified file. During

deduplication, the chunk identifier together with a counter are recorded into the

genomics deduplication database. The total number of chunks, the number of unique

chunks (count=1), and the number of distinct chunks were computed by issuing

queries to the database. The percentage of duplicate chunks is given by the formula

in Equation (3.3). The deduplication ratio is given by the following formula in

Equation (3.2). In this example, the total number of chunks is 20. There are 11

distinct chunks (A, B, C, D, E, F, G, H, I, X, Y ), and 4 unique chunks (C, F, X,

Y ). The percentage of duplicate chunks and the deduplication ratio are:

DupCh =
20− 4

20
= 80 %

DedupRatio =
20

11
= 1.82

5.3.4 Deduplication vs. Compression

On the other hand, the compression ratio is defined as the ratio between the

original uncompressed data size and the compressed data size.

CompressionRatio =
Original Data Size

CompressedData Size
(5.1)

For genomics data, compression is widely used to save storage space. Different

algorithms are used to compress data in an efficient way. The compression algorithm

depends on the data we need to compress.

Table 5–2: Chunking and reconstruction times comparison for 100 MB files vs. GZIP
compression.

Chunk size Chunking time (s) Reconstruction time (s)

(GZIP decompress) 0.6
4 KB 1.1 0.9
2 KB 2.1 1.8
1 KB 4.1 3.7
512 B 8.2 7.3

(GZIP compress) 9.1
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Figure 5–4: Compression vs. Deduplication of a 100 MB size file.

For the data set of FASTA genome files, the compression ratio is between three

and four. Compression is identifying redundancy within a single file, only the data

within that file is examined. The memory resource requirements are relatively small,

only one file has to be processed. Deduplication needs more processing power. The

comparisons are done across all the files from the file system, so the potential to

identify redundancy is by far superior, especially when the file system contains many

copies of modified files. This is the case of FASTA genome files.

5.3.5 Results

Point Mutations

As Figure 5–5a shows, the deduplication ratio ranges between 2.22 and 1.51

(512 B chunks), 2.10 and 1.23 (1 KB chunks), 1.97 and 1.07 (2 KB chunks), 1.83

and 1.02 (4 KB chunks), as the number of point mutations per file increases from 5

thousand to 200 thousand.

As Figure 5–5b shows, for 512 B chunks, the percentage of duplicate chunks is

greater than 80 percent, even for 80 thousand point mutations per file. For extreme
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(b) Duplicate content analysis.

Figure 5–5: Deduplication ratio and duplicate chunks percentage for point mutations in
FASTA genome files. The X axis represent the amount of point mutations in files of
average size of 125 MB.

cases, where we considered 200 thousand point mutations per file, we still obtained

58 percent of duplicate chunks. For 1 KB chunks, the percentage of duplicate chunks

is greater than 80 percent, even there are 40 thousand point mutations per file. For

the case of 200 thousand point mutations, we still obtained 33 percent of duplicate

chunks. For 2 KB chunks, the percentage of duplicate chunks is greater than 80

percent, even there are 20 thousand point mutations per file. For the case of 200

thousand point mutations, the percentage of duplicate chunks is 10 percent. For

4 KB chunks, the percentage of duplicate chunks is greater than 80 percent, even

there are 10 thousand point mutations per file. For the case of 200 thousand point

mutations, the percentage of duplicate chunks is only 2 percent.

From Figure 5–4 and Table 5–2, the chunking and reconstruction times when

using 512 B chunks are 8.2 seconds, and 7.3 seconds, respectively. If 1 KB chunks

are used, the chunking and reconstruction times are 4.1 seconds, and 3.7 seconds,

respectively. If compression is used, 9.1 seconds are needed for compressing a 100 MB

FASTA genome file, and 0.6 seconds to decompress it. From these experiments, we

found that the best chunk size for deduplication of FASTA genome files with many

point mutations is 512 B.
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Substitutions and Inversions of sequences between 700 and 1,500
base pairs long

As Figure 5–6a shows, the deduplication ratio ranges between 2.23 and 1.57

(512 B chunks), 2.14 and 1.43 (1 KB chunks), 2.05 and 1.28 (2 KB chunks), 1.98

and 1.14 (4 KB chunks), as the number of point mutations per file increases from 5

thousand to 200 thousand.
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Figure 5–6: Deduplication ratio and duplicate chunks percentage for substitutions and
inversions for sequences of length between 700 and 1,500 base pairs in FASTA genome
files. The X axis represent the amount of substitutions or inversions in files of average
size of 125 MB.

As Figure 5–6b shows, for 512 B chunks, the percentage of duplicate chunks is

greater than 80 percent, even there are 20 thousand substitutions per file. For 1 KB

chunks, the percentage of duplicate chunks is greater than 80 percent, even there

are 15 thousand substitutions per file. For 2 KB chunks, the percentage of duplicate

chunks is greater than 80 percent, even there are 10 thousand substitutions per file.

For the case of 15 thousand substitutions, the percentage of duplicate chunks is

above 65 percent. For 4 KB chunks, the percentage of duplicate chunks is greater

than 80 percent, even there are 6 thousand substitutions per file. For the case of 15

thousand substitutions, the percentage of duplicate chunks is still above 50 percent.
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From these experiments, we found that 512 B and 1 KB chunk sizes have very

similar performance, also using 2 KB chunks gave very good results. From Figure 5–

4 and Table 5–2, the chunking and reconstruction times when using 2 KB chunks are

2.1 seconds, and 1.8 seconds, respectively. If 4 KB chunks are used, the chunking and

reconstruction times are 1.1 seconds, and 0.9 seconds, respectively. If compression is

used, 9.1 seconds are needed for compressing a 100 MB FASTA genome file, and 0.6

seconds to decompress it. From these experiments, we found that the best chunk size

for deduplication of FASTA genome files with many substitutions of length between

700 bp and 1,500 bp is 2 KB.

Substitutions and Inversions of sequences with an average length of
7,000 base pairs

As Figure 5–7a shows, the deduplication ratio ranges between 2.14 and 1.37

(512 B chunks), 2.04 and 1.32 (1 KB chunks), 1.97 and 1.25 (2 KB chunks), 1.90

and 1.01 (4 KB chunks), as the number of point mutations per file increases from 5

thousand to 200 thousand.

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10  12  14

D
ed

up
lic

at
io

n 
ra

tio
 

Substitutions / Inversions (thousands)

512B chunks
1KB chunks
2KB chunks
4KB chunks

(a) Deduplication ratio analysis.

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14

D
up

lic
at

e 
ch

un
ks

 (%
)

Substitutions / Inversions (thousands)

512B chunks
1KB chunks
2KB chunks
4KB chunks

(b) Duplicate content analysis.

Figure 5–7: Deduplication ratio and duplicate chunks percentage for substitutions and
inversions for sequences of average length of 7,000 base pairs in FASTA genome files.
The X axis represent the amount of substitutions or inversions in files of average size of
125 MB.

As Figure 5–7b shows, for 512 B chunks, the percentage of duplicate chunks

is greater than 80 percent, even there are 4 thousand substitutions per file. For
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extreme cases, where we considered 15 thousand substitutions, we still obtained 47

percent of duplicate chunks. For 1 KB chunks, the percentage of duplicate chunks

is greater than 80 percent, even there are 4 thousand substitutions per file. For

the case of 15 thousand substitutions, we still obtained 43 percent of duplicate

chunks. For 2 KB chunks, the percentage of duplicate chunks is greater than 80

percent, even there are 3 thousand substitutions per file. For the case of 15 thousand

substitutions, the percentage of duplicate chunks is above 33 percent. For 4 KB

chunks, the percentage of duplicate chunks is greater than 80 percent, even there

are 3 thousand substitutions per file. For the case of 15 thousand substitutions, the

percentage of duplicate chunks is still above 29 percent.

From these experiments, we found that all four chunks sizes behave very similar,

so 2 KB, or even 4 KB chunks can be used for deduplication. From Figure 5–4 and

Table 5–2, the chunking and reconstruction times when using 2 KB chunks are 2.1

seconds, and 1.8 seconds, respectively. If 4 KB chunks are used, the chunking and

reconstruction times are 1.1 seconds, and 0.9 seconds, respectively. If compression is

used, 9.1 seconds are needed for compressing a 100 MB FASTA genome file, and 0.6

seconds to decompress it. From these experiments, we found that the best chunk

size for deduplication of FASTA genome files with many substitutions of average

length of 7,000 bp is 2 KB.

Cummulative deduplication ratio

Instead of just deduplicating two sets of files, one reference set and one modified

set, the experiment was run on 20 sets of files. After adding a new set of files, the

deduplication ratio was computed for the following chunk sizes: 512 B, 1 KB, 2 KB,

and 4 KB. As Figure 5–8a shows, the deduplication ratio for point mutations is

increasing from 1 to 15.3 for 512 B chunks, from 1 to 12.4 for 1 KB chunks, from 1

to 9.1 for 2 KB chunks, and from 1 to 6.0 for 4 KB chunks. As Figure 5–8b shows,

the deduplication ratio for substitutions and inversions of sequences between 700 bp
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and 1,500 bp long is increasing from 1 to 16.1 for 512 B chunks, from 1 to 15.2 for

1 KB chunks, from 1 to 14 for 2 KB chunks, and from 1 to 11.3 for 4 KB chunks.

As Figure 5–8c shows, the deduplication ratio for substitutions and inversions of

sequences with an average length of 7,000 bp is increasing from 1 to 9.5 for 512 B

chunks, from 1 to 9.2 for 1 KB chunks, from 1 to 8.6 for 2 KB chunks, and from 1

to 7.7 for 4 KB chunks.

For the data set of FASTA genome files, the compression ratio is between 3 and

4, represented by the horizontal line in Figure 5–8a, Figure 5–8b, and Figure 5–8c.

As the figures show, the deduplication gives superior results then compression after

adding more than 5 sets of files.

From these experiments we found that by adding more and more data, the

deduplication ratio values are consistently greater than the compression ratio values.

Therefore, deduplication clearly outperforms compression at any used chunk size,

the results are even better for 512 B chunk size.
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(a) Point Mutations.
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(b) Substitutions and Inversions of sequences between
700 and 1,500 base pairs long.
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(c) Substitutions and Inversions of sequences with an
average length of 7,000 base pairs.

Figure 5–8: Cumulative Deduplication ratio.
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5.4 Summary

A study on the relation between the amount of different types of mutations in

genomic data such as point mutations, substitutions, inversions, and the effect of

such in the deduplication ratio for a data set of vertebrate genomes in FASTA format

to demonstrate the advantage of using HD2FS has been presented. In particular,

the deduplication ratio and the percentage of duplicate chunks for the following

potential chunk sizes: 512 B, 1 KB, 2 KB, and 4 KB were evaluated. The obtained

results over different types of mutations such as point mutations, substitutions,

inversions, and the deduplication ratio for a vertebrate genome data set stored in

FASTA format files show that the obtained ratio values are superior in the case of

using deduplication when compared to the current approach relying on compression.

Moreover, 512 B is the best chunk size for commonly used file types in genomics.

This means that there is potential for HD2FS to be effectively integrated to improve

storage management of genomic data.
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Chapter 6

CONCLUSIONS

A new deduplicated and distributed file system HD2FS was designed and imple-

mented by integrating deduplication into Hadoop Distributed File System (HDFS).

A preliminary study and a Database Management System comparison in order to

design and implement our new deduplicated and distributed file system HD2FS

was presented. Deduplication was integrated to Hadoop Distributed File System

(HDFS) and MariaDB Galera cluster was used to store and replicate the data.

A study of HD2FS performance was done using real world data sets. The

advantages of using HD2FS have been presented. In particular, we have evaluated

deduplication ratio, percentage of duplicate chunks, write and read times for the

following potential chunk sizes: 512 B, 1 KB, 2 KB, 4 KB, 8 KB, and 16 KB. Our

results over different types of commonly used data sets, show that the obtained

deduplication ratio and percentage of duplicate chunks values are superior in the

case of using HD2FS when compared to HDFS without deduplication. This means

that there is potential for HD2FS to be effectively integrated to improve storage

management of user data. Also, the obtained high deduplication ratio values and

the write and read times comparable with HDFS, gives HD2FS a clear benefit.

A study on the relation between the amount of different types of mutations in

genomic data such as point mutations, substitutions, inversions, and the effect of

such in the deduplication ratio for a data set of vertebrate genomes in FASTA format

to demonstrate the advantage of using HD2FS has been presented. In particular,

the deduplication ratio and the percentage of duplicate chunks for the following
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5.4. SUMMARY

potential chunk sizes: 512 B, 1 KB, 2 KB, and 4 KB were evaluated. The obtained

results over different types of mutations such as point mutations, substitutions,

inversions, and the deduplication ratio for a vertebrate genome data set stored in

FASTA format files show that the obtained ratio values are superior in the case of

using deduplication when compared to the current approach relying on compression.

Moreover, 512 B is the best chunk size for commonly used file types in genomics.

This means that there is potential for HD2FS to be effectively integrated to improve

storage management of genomic big data.

Overall, the obtained high deduplication ratio values and the write and read

times comparable with HDFS, gives HD2FS a clear benefit.

Other contributions of this research include:

• The design and implementation of a distributed datastore using deduplication,

which we called Smartstorage: a deduplicated and distributed datastore [8]. This

was our first implementation of a deduplicated and distributed datastore.

• A characterization of file attributes that help determine the appropriate chunk size

in primary deduplication systems, The use of file attributes to determine the best

chunk size in primary deduplication [9]. This was done as a preliminary work for

this thesis.

• The development of a file-aware deduplication storage system. Using file-aware

deduplication to improve capacity in storage systems [10].

• The design and implementation of a deduplication storage system for genomics

data, in order to improve data storage capacity and efficiency in distributed file

systems without compromising I/O performance. GDedup: Distributed file system

level deduplication for genomic big data [11],

• Integrating deduplication to a distributed file system environment such as the

Hadoop Distributed File System (HDFS). Distributed file system level deduplica-

tion [12].
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6.1. FUTURE WORKS

6.1 Future Works

Future research efforts include an analysis on the scalability limits of our new

deduplicated and distributed file system HD2FS for big data storage including ge-

nomics.
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Appendix A

DATABASE MANAGEMENT SYSTEM

SELECTION

A.1 MariaDB

A.1.1 Create tables

create table files(id CHAR (32) NOT NULL ,name CHAR (200) NOT NULL ,

size INT NOT NULL ,chunksize INT NOT NULL , PRIMARY KEY (id ,name ));

create table chunks(id CHAR (64) PRIMARY KEY NOT NULL ,count INT ,

content BLOB);

A.1.2 Insert file information and chunks into the database

INSERT IGNORE INTO files(id ,name ,size ,chunksize) VALUES

(fileID ,fileName ,fileSize , chunkSize );

INSERT IGNORE INTO chunks(id ,count ,content)

VALUES (fingerprint ,1,chunk) ON DUPLICATE KEY UPDATE count=count +1;

A.1.3 Reconstruct the files

SELECT content FROM chunks WHERE id=fingerprint;
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A.2. MONGODB

A.2 MongoDB

A.2.1 Create collections

db.createCollection("files")

db.files.createIndex ({id:1},{ unique:true });

db.createCollection("chunks")

db.chunks.createIndex ({id:1},{ unique:true });

A.2.2 Insert file information and chunks into the database

db.files.insert ({id:fileID ,name:fileName ,size:fileSize ,

chunksize:chunkSize })

db.chunks.update ({id:fingerprint },{$inc:{ count:1},

$setOnInsert :{ content:chunk}}, {upsert:true });

A.2.3 Reconstruct the files

db.chunks.find({"$where": "this.id==this.fingerprint"},

{"content": 1});
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A.3. POSTGRES

A.3 Postgres

A.3.1 Create tables

CREATE TABLE files(id CHAR (32) NOT NULL ,name CHAR (200) NOT NULL ,

size INT NOT NULL ,chunksize INT NOT NULL ,PRIMARY KEY (id ,name ));

CREATE TABLE chunks(id CHAR (64) PRIMARY KEY NOT NULL ,count INT ,

content BYTEA);

A.3.2 Insert file information and chunks into the database

INSERT INTO files(id ,name ,size ,chunksize) VALUES

(fileID ,fileName ,fileSize , chunkSize );

INSERT INTO chunks(id ,count ,content) VALUES (fingerprint ,1,chunk)

ON CONFLICT (id) DO UPDATE SET count=chunks.count +1;

A.3.3 Reconstruct the files

SELECT content FROM chunks WHERE id=fingerprint;
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A.4. SQLITE

A.4 SQLite

A.4.1 Create tables

CREATE TABLE files(id CHAR (32) NOT NULL , name CHAR (200) NOT NULL ,

size INT NOT NULL , chunksize INT NOT NULL , PRIMARY KEY (id ,name ));

CREATE TABLE chunks(id CHAR (64) PRIMARY KEY NOT NULL ,count INT ,

content BLOB);

A.4.2 Insert file information and chunks into the database

INSERT OR IGNORE INTO files(id ,name ,size ,chunksize) VALUES

(fileID ,fileName ,fileSize , chunkSize );

UPDATE OR IGNORE chunks SET count=count+1 WHERE id=fingerprint

INSERT OR IGNORE INTO chunks(id ,count ,content) VALUES

(fingerprint ,1,chunk );

A.4.3 Reconstruct the files

SELECT content FROM chunks WHERE id=fingerprint;
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Appendix B

JAVA SOURCE CODES FOR CHUNKING AND

RECONSTRUCTION USED IN THE

PRELIMINARY STUDY

B.1 connectionMariaDB.java

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

public class connectionMariaDB {

private static final String JDBC_DRIVER =

"org.mariadb.jdbc.Driver";

private static final String DB_URL =

"jdbc:mariadb :// localhost :3306/ dedup";

private static final String DB_USER = "hadoop";

private static final String DB_PASSWORD = "**********";

public Connection getDBConnection () throws Exception {

try {

Class.forName(JDBC_DRIVER );

} catch (ClassNotFoundException exception) {

System.out.println(exception.getMessage ());

}

try {

Connection connectMariaDB =
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B.1. CONNECTIONMARIADB.JAVA

DriverManager.getConnection(DB_URL , DB_USER ,

DB_PASSWORD );

return connectMariaDB;

} catch (SQLException exception) {

System.out.println(exception.getMessage ());

}

return null;

}

public void closeDBConnection(Connection connectMariaDB)

throws Exception {

connectMariaDB.close ();

}

}
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B.2. DEDUPCHUNK.JAVA

B.2 dedupChunk.java

import org.apache.commons.codec.digest.DigestUtils;

public class dedupChunk {

private String chunkID;

private byte[] chunkContent;

private int chunkSize ;

// Getters

public int getChunkSize (){

return chunkSize;

}

public byte[] getChunkContent (){

return chunkContent;

}

public String getChunkID (){

return chunkID;

}

// Setters

public void setChunkID (){

this.chunkID = DigestUtils.sha256Hex(chunkContent );

}

// Constructors

public dedupChunk(int chunkSize) {

this.chunkSize = chunkSize;

this.chunkContent = new byte[chunkSize ];

}

}
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B.3. HADOOPCHUNK.JAVA

B.3 hadoopChunk.java

import org.apache.commons.codec.digest.DigestUtils;

import java.io.*;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.sql .*;

public class hadoopChunk extends File{

protected String inputFileName;

dedupChunk dedupChunk = new dedupChunk (512);

connectionMariaDB connectionMariaDB =

new connectionMariaDB ();

// Getters

public String getInputFileName (){

return inputFileName;

}

public long getFileLength (){

return length ();

}

public String getFileParent (){

return getParent ();

}

public int getLastChunkSize (){

int lastChunkSize = (int) (getFileLength () %

dedupChunk.getChunkSize ());

return lastChunkSize;

}

public long getNumberOfChunks (){

long numberOfChunks = (int) (getFileLength () /

dedupChunk.getChunkSize ());
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B.3. HADOOPCHUNK.JAVA

if (getLastChunkSize ()>0){

numberOfChunks += 1;

}

return numberOfChunks;

}

// Constructors

public hadoopChunk(String inputFileName) {

super(inputFileName );

this.inputFileName = inputFileName;

}

public boolean checkIfExistsInDB () throws Exception {

String sql_check_if_exists_file =

"SELECT EXISTS (SELECT fileId FROM file WHERE "

+ "fileName = ’"

+ inputFileName

+ "’)";

Connection connectMariaDB =

connectionMariaDB.getDBConnection ();

Statement sqlStatement = connectMariaDB.createStatement ();

try{

ResultSet fileExists =

sqlStatement.executeQuery(sql_check_if_exists_file );

fileExists.next ();

boolean exists = fileExists.getBoolean (1);

return exists;

} finally {

connectionMariaDB.closeDBConnection(connectMariaDB );

sqlStatement.close ();

}
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B.3. HADOOPCHUNK.JAVA

}

public String generateFileID () throws Exception {

String fileID =

DigestUtils.md5Hex(Files.readAllBytes(

Paths.get(inputFileName )));

return fileID;

}

public long computeFileLength () throws Exception {

Connection connectMariaDB =

connectionMariaDB.getDBConnection ();

Statement sqlStatement =

connectMariaDB.createStatement ();

InputStream in =

new FileInputStream(new File(inputFileName + ".fr"));

try {

long fileLength = 0;

int numBytes;

byte buf[] = new byte [64];

int bytesRead = in.read(buf);

String chunkId = new String(buf);

while (bytesRead >0) {

String sql_read_chunk_numBytes =

"SELECT numBytes from chunk where chunkId =

’" + chunkId + "’ LIMIT 1;";

ResultSet storedChunkSize =

sqlStatement.executeQuery(

sql_read_chunk_numBytes );

storedChunkSize.next ();

numBytes =
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B.3. HADOOPCHUNK.JAVA

storedChunkSize.getInt("numBytes");

fileLength += numBytes;

bytesRead = in.read(buf);

chunkId = new String(buf);

}

in.close ();

return fileLength;

}

finally{

connectionMariaDB.closeDBConnection(

connectMariaDB );

sqlStatement.close ();

}

}

public void insertIntoDB () throws Exception {

String sql_insert_file =

"INSERT IGNORE INTO file(fileId , fileName , fileSize)

VALUES (’" + generateFileID () + "’, ’"

+ inputFileName + "’, " + getFileLength () + ");";

Connection connectMariaDB =

connectionMariaDB.getDBConnection ();

Statement sqlStatement =

connectMariaDB.createStatement ();

try{

sqlStatement.executeQuery(sql_insert_file );

} finally {

connectionMariaDB.closeDBConnection(

connectMariaDB );

sqlStatement.close ();
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}

}

public void dedupHadoopChunk () throws Exception {

Connection connectMariaDB = null;

PreparedStatement sql_insert_blob = null;

try {

connectMariaDB = connectionMariaDB.

getDBConnection ();

connectMariaDB.setAutoCommit(false);

String sql_insert_chunk_content =

"INSERT IGNORE INTO chunk(chunkId , numBytes ,

count , content) VALUES( ?, ?, 1, ?)"

+ " ON DUPLICATE KEY UPDATE count=count +1;";

if (! checkIfExistsInDB ()) {

System.out.print(

"The file does not exists in the database");

File fileDirectoryDedup =

new File(getFileParent ());

if (! fileDirectoryDedup.exists ()) {

fileDirectoryDedup.mkdirs ();

}

BufferedWriter fileRecipe =

new BufferedWriter(new FileWriter(

inputFileName + ".fr" ));

InputStream in =

new FileInputStream(inputFileName );

sql_insert_blob =

connectMariaDB.prepareStatement(

sql_insert_chunk_content );
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int chunkSize = dedupChunk.getChunkSize ();

byte chunk [] = new byte[chunkSize ];

int bytesToChunk = in.read(chunk);

while (bytesToChunk >0) {

int bytesToChunkNext =

(chunkSize <bytesToChunk) ? chunkSize :

(int) bytesToChunk;

String chunkIdString =

DigestUtils.sha256Hex(chunk );

// sha256 for the current chunk content

sql_insert_blob =

connectMariaDB.prepareStatement(

sql_insert_chunk_content );

sql_insert_blob.setString (1, chunkIdString );

sql_insert_blob.setInt(2, bytesToChunkNext );

sql_insert_blob.setBinaryStream (3,

new ByteArrayInputStream(chunk),

bytesToChunkNext );

sql_insert_blob.executeUpdate ();

fileRecipe.write(chunkIdString );

bytesToChunk = in.read(chunk);

}

connectMariaDB.commit ();

fileRecipe.close ();

insertIntoDB ();

System.out.println("Successfully added!");

} else {

connectMariaDB.rollback ();

System.out.println(
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B.3. HADOOPCHUNK.JAVA

"File already in the database!");

}

} catch (SQLException sqlException1) {

try {

if(connectMariaDB != null)

connectMariaDB.rollback ();

} catch (SQLException sqlException2) {

System.out.println(sqlException2.getMessage ());

}

System.out.println(sqlException1.getMessage ());

} finally {

try {

if (sql_insert_blob != null) {

sql_insert_blob.close ();

}

if (connectMariaDB != null) {

connectionMariaDB.closeDBConnection(

connectMariaDB );

}

} catch (SQLException sqlException3) {

System.out.println(sqlException3.getMessage ());

}

}

}

public hadoopChunk reconstructHadoopChunk ()

throws Exception {

hadoopChunk reconstructedHadoopChunk =

new hadoopChunk(inputFileName );

String sql_file_dedup_properties =
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"SELECT fileId FROM file WHERE fileName=’"

+ inputFileName + " ’;";

Connection connectMariaDB =

connectionMariaDB.getDBConnection ();

Statement sqlStatement =

connectMariaDB.createStatement ();

try{

if(! checkIfExistsInDB ()) {

System.out.println(

"The requested file does not exists.");

} else {

System.out.print("Reconstructing ... ");

File fileDirectoryReconstruct =

new File(getFileParent ());

if (! fileDirectoryReconstruct.exists ()) {

fileDirectoryReconstruct.mkdirs ();

}

FileOutputStream out =

new FileOutputStream(reconstructedHadoopChunk );

ResultSet chunkProperties =

sqlStatement.executeQuery(

sql_file_dedup_properties );

chunkProperties.next ();

InputStream in =

new FileInputStream(

new File(inputFileName + ".fr"));

String originalFileID =

chunkProperties.getNString("fileId");

byte buf[] = new byte [64];
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int bytesRead = in.read(buf);

String chunkId = new String(buf);

while (bytesRead >0){

String sql_read_chunk_content =

"SELECT content , numBytes from chunk where

chunkId = ’"

+ chunkId

+ "’ LIMIT 1;";

PreparedStatement statement =

connectMariaDB.prepareStatement(

sql_read_chunk_content );

ResultSet chunkContentAndSize =

statement.executeQuery ();

chunkContentAndSize.next ();

InputStream inp =

chunkContentAndSize.getBinaryStream(

"content");

int chunkSize =

chunkContentAndSize.getInt("numBytes");

byte[] chunkByte = new byte[chunkSize ];

while (inp.read(chunkByte )>=0) {

out.write(chunkByte );

}

bytesRead = in.read(buf);

chunkId = new String(buf);

}

out.close ();

in.close ();

if ( originalFileID.compareTo(
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reconstructedHadoopChunk.generateFileID ())==0)

{

System.out.println(

"File reconstructed successfully!");

} else {

System.out.println(

"Error reconstructing the file!");

}

}

}

catch (Exception exception) {

System.out.println(exception.getMessage ());

} finally {

try {

if (sqlStatement != null) {

sqlStatement.close ();

}

if (connectMariaDB != null) {

connectionMariaDB.closeDBConnection(

connectMariaDB );

}

} catch (SQLException sqlException) {

System.out.println(sqlException.getMessage ());

}

}

return reconstructedHadoopChunk;

}

}
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Appendix C

CHUNK CONTENTS STORED IN THE

DATABASE

C.1 Deduplication method in HD2FS

public void dedupFromByteArray(Connection connectMariaDB ,

OutputStream out , byte b[], long dedupChunkSize , int numBytes)

throws Exception {

String sql_insert_chunk_content =

"INSERT IGNORE INTO chunk(chunkId , numBytes , count ,

content) VALUES( ?, ?, 1, ?)"

+ " ON DUPLICATE KEY UPDATE count=count +1;";

int chunkSize = (int)dedupChunkSize;

int bytesToChunk = numBytes;

while (bytesToChunk >0) {

int bytesToChunkNext = (chunkSize < bytesToChunk)

? chunkSize : bytesToChunk;

byte [] chunk = Arrays.copyOfRange(b,numBytes -

bytesToChunk ,numBytes - bytesToChunk

+ bytesToChunkNext );

String chunkId = DigestUtils.sha256Hex(chunk);

// compute sha256 for the current chunk content

sql_insert_blob =

connectMariaDB.prepareStatement(

sql_insert_chunk_content );
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sql_insert_blob.setString (1, chunkId );

sql_insert_blob.setInt(2, bytesToChunkNext );

sql_insert_blob.setBinaryStream (3,

new ByteArrayInputStream(chunk),

bytesToChunkNext );

out.write(chunkId.getBytes(), 0,

chunkId.getBytes (). length );

try {

sql_insert_blob.executeUpdate ();

} finally {

sql_insert_blob.close ();

}

bytesToChunk -= bytesToChunkNext;

}

}
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C.2 Reconstruction method in HD2FS

public void reconstructFromStreamToFile(Connection

connectMariaDB , InputStream in , PathData target)

throws Exception {

Statement sqlStatement =

connectMariaDB.createStatement ();

PathData newFile = target;

FileOutputStream out =

new FileOutputStream(newFile.toFile ());

try{

byte buf[] = new byte [64];

int bytesRead = in.read(buf);

String chunkId = new String(buf);

while (bytesRead > 0){

String sql_read_chunk_content =

"SELECT content , numBytes from chunk where

chunkId = ’" + chunkId + "’ LIMIT 1;";

PreparedStatement statement =

connectMariaDB.prepareStatement

(sql_read_chunk_content );

ResultSet chunkContentAndSize =

statement.executeQuery ();

chunkContentAndSize.next ();

InputStream inContent =

chunkContentAndSize.getBinaryStream("content");

int chunkSize =

chunkContentAndSize.getInt("numBytes");

byte[] chunkByte = new byte[chunkSize ];

while (inContent.read(chunkByte) >= 0) {
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out.write(chunkByte );

}

bytesRead = in.read(buf);

chunkId = new String(buf);

}

out.close ();

in.close ();

}

catch (Exception exception) {

System.out.println(exception.getMessage ());

} finally {

try {

if (sqlStatement != null) {

sqlStatement.close ();

}

} catch (SQLException sqlException) {

System.out.println(sqlException.getMessage ());

}

}

}
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CHUNK CONTENTS STORED AS FILES

D.1 Deduplication method in HD2FS

public void dedupFromByteArray(OutputStream out , byte b[],

long dedupChunkSize , int numBytes) throws Exception{

int chunkSize = (int)dedupChunkSize;

int bytesToChunk = numBytes;

while (bytesToChunk >0) {

int bytesToChunkNext =

(chunkSize <bytesToChunk) ? chunkSize : bytesToChunk;

byte [] chunk = Arrays.copyOfRange(b,numBytes -

bytesToChunk ,numBytes - bytesToChunk

+ bytesToChunkNext );

String chunkId = DigestUtils.sha256Hex(chunk);

// compute sha256 for the current chunk content

FileOutputStream outputStream =

new FileOutputStream(dedupChunkFolder + chunkId );

outputStream.write(chunk);

outputStream.close ();

out.write(chunkId.getBytes(), 0,

chunkId.getBytes (). length );

bytesToChunk -= bytesToChunkNext;

}

}
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D.2 Reconstruction method in HD2FS

public void reconstructFromStreamToFile(String dedupChunkFolder ,

long dedupChunkSize , InputStream in , PathData target)

throws Exception {

PathData newFile = target;

FileOutputStream out =

new FileOutputStream(newFile.toFile ());

try{

byte buf[] = new byte [64];

int bytesRead = in.read(buf);

String chunkId = new String(buf);

while (bytesRead > 0){

InputStream chunkStream =

new FileInputStream(dedupChunkFolder + chunkId );

byte[] chunkByte = new byte[chunkStream.available ()];

while (chunkStream.read(chunkByte) >= 0) {

out.write(chunkByte );

}

bytesRead = in.read(buf);

chunkId = new String(buf);

}

out.close ();

in.close ();

}

catch (Exception exception) {

System.out.println(exception.getMessage ());

}

}
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HDFS-SITE.XML

E.1 hdfs-site.xml

<?xml version="1.0" encoding="UTF -8"?>

<?xml -stylesheet type="text/xsl" href="configuration.xsl"?>

<!--

Licensed under the Apache License , Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http: //www.apache.org/licenses/LICENSE -2.0

Unless required by applicable law or agreed to in writing ,

software distributed under the License is distributed on an

AS IS" BASIS , WITHOUT WARRANTIES OR CONDITIONS

OF ANY KIND , either express or implied.

See the License for the specific language governing

permissions and limitations under the License.

See accompanying LICENSE file.

-->

<!-- Put site -specific property overrides in this file. -->

<configuration >

<property >

<name >dfs.replication </name >

<value >3

</value >
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</property >

<property >

<name >dfs.namenode.name.dir </name >

<value >/home/hadoop/hadoopdata/hdfs/namenode

</value >

</property >

<property >

<name >dfs.datanode.data.dir </name >

<value >/home/hadoop/hadoopdata/hdfs/datanode

</value >

</property >

<property >

<name >dfs.dedupchunk.dir </name >

<value >/home/hadoop/hadoopdata/dedupchunk/

</value >

</property >

<property >

<name >dfs.dedupchunk.location.db </name >

<value >false

</value >

<description >Dedup chunk location. true for database

and false for file </ description >

</property >

<property >

<name >dfs.namenode.http -address </name >

<value >hadoopb -name1.ece.uprm.edu:50070

</value >

<description >NameNode hostname for http access.

</description >
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</property >

<property >

<name >dfs.namenode.secondary.http -address </name >

<value >hadoopb -name2.ece.uprm.edu:50090

</value >

<description >Secondary NameNode Hostname for http access.

</description >

</property >

<property >

<name >dfs.namenode.checkpoint.dir </name >

<value >/home/hadoop/hadoopdata/hdfs/namesecondary

</value >

</property >

<property >

<name >dfs.blocksize </name >

<value >1048576

</value >

<description >Block size </ description >

</property >

<property >

<name >dfs.stream -buffer -size </name >

<value >1048576

</value >

<description >Stream buffer size </ description >

</property >

<property >

<name >io.file.buffer.size </name >

<value >1048576

</value >
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<description >Buffer size </ description >

</property >

<property >

<name >dfs.client -write -packet -size </name >

<value >1048576

</value >

<description >Write packet size </ description >

</property >

<property >

<name >dfs.dedupchunksize </name >

<value >512

</value >

<description >Dedup chunk size </ description >

</property >

</configuration >
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