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Raúl Torres, Ph.D. Date
Department Chairperson



Abstract of Thesis Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

STUDY OF ACCURACY AND HARDWARE PERFORMANCE IN
DISCRETE TRANSFORMS AND THEIR FAST ALGORITHMS

By

Violeta Reyes Rodŕıguez
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Nowadays, during the design of digital arithmetic units, most research efforts are

centered in finding algorithms that reduce resource consumption or latency. Efforts

to find algorithms that provide higher accuracy are scarce. This thesis presents a

study of accuracy and hardware performance of discrete transforms and their fast

algorithms. The discrete transforms studied included the Fourier (DFT), the Hart-

ley (DHT), and the cosine (DCT) direct algorithms. The fast DFT treatments were

the Cooley-Tukey and Pease. The fast DHT treatments included the Bracewell and

Hou. In the case of the DCT the fast treatments evaluated were the Nikara and

Translation. This work used approximation and statistical methods for the accu-

racy analysis. These methods quantify the normwise relative error of the discrete

transform treatments and determine significant differences in their accuracy. For the

hardware performance analysis, a FPGA synthesis methodology was adopted to quan-

tify resource consumption and latency of the treatments. The results of the study

showed that the discrete transforms direct treatment provide higher accuracy, and

the highest resource consumption and latency. We observed in the accuracy analysis

that as the resolution of the discrete transform computation incremented, the range

magnitude of the treatments experimental normwise relative error incremented. But

the range magnitude of the fast algorithms treatments incremented at a higher scale.
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Por

Violeta Reyes Rodŕıguez

Septiembre 2015

Consejero: Dr. Manuel Jiménez
Departamento: Ingenieŕıa Eléctrica y Computadoras

Actualmente, durante el diseño digital de unidades aritméticas, los esfuerzos se

centran en buscar algoritmos que reduzcan el consumo de recursos o latencia. Esfuer-

zos para encontrar algoritmos que provean mayor exactitud son descuidados. Esta

tesis presenta un estudio de exactitud y desempeño hardware de transformadas disc-

retas y sus algoritmos rápidos. Las transformadas discretas estudiadas fueron las

formulaciones directas de Fourier (DFT), Hartley (DHT) y coseno (DCT). Los algo-

ritmos rápidos de la DFT fueron Cooley-Tukey y Pease. Para la DHT los algoritmos

rápidos fueron Bracewell y Hou. Los algoritmos rápidos de la DCT fueron Nikara y

Traslación. Este trabajo utiliza métodos de aproximación y métricas estad́ısticas para

el análisis de exactitud. Los mismos cuantifican el error de los tratamientos y determi-

nan diferencias significativas en su exactitud. Para el análisis de desempeño hardware,

se opto por una metodoloǵıa de śıntesis de FPGA. Los resultados mostraron que las

formulaciones directas de las transformadas discretas proporcionan mayor exactitud,

consumo de recursos y latencia. En el estudio se observo que a medida que aumenta

la resolución del computo de una transformada discreta, la magnitud del rango del

error relativo normalizado experimental de los tratamientos aumenta. La diferencia

significativa entre los tratamientos fue que la escala en que aumenta la magnitud del

rango de los tratamientos de algoritmos rápidos es mayor.
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Chapter 1

Introduction

One of the main reasons digital systems fail is due to the finite amount of bits to

represent numbers. This finite representation of numbers causes errors in arithmetic

computations. This problem has been the source of fatal accidents in the past. In 1991

an American Patriot missile failed to intercept an Iraqi missile, an incident caused by

rounding error [1]. In 1996 the Ariane 5 rocket exploded after forty seconds in flight.

The root event was caused by an overflow error [2]. During 1985 -1987 the THERAC-

25 machine used for radiation therapy, caused the deaths of four patients by radiation

poisoning. The reason behind the deathly overexposures was an overflow error [3].

These accidents could be avoided if proper accuracy analysis of their arithmetic units

were performed.

In arithmetic algorithms, the error caused by rounding and its propagation can

be analyzed and approximated. The problem during the design process is that most

of the efforts are centered in finding arithmetic algorithms formulations that improve

resource consumption or latency, and efforts to find formulations that improve accu-

racy are scarce.

This work developed methodology to study the accuracy and hardware perfor-

mance of three discrete transforms and some of their fast algorithms. The discrete

transforms studied were the Fourier (DFT), the Hartley (DHT), and cosine (DCT).

The methodology combines approximation and statistical methods for the accuracy

analysis. To assess their hardware performance, a FPGA synthesis methodology was

adopted.

1
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The rest of this document is organized as follows. Next chapter presents a

theoretical background and previous work on the subject of error analysis. Chapter

3 presents the problem statement and hypothesis of the proposed work, among the

work objectives. Then, in Chapter 4 the methodology followed is presented. Chapter

5 presents the results of accuracy and hardware performance of the formulations

evaluated. In Chapter 6 the recommendations and contributions from this work are

provided. Finally, Chapter 7 present the conclusions of this work.



Chapter 2

Previous Work

This chapter presents a theoretical background and previous work about error

caused by floating point representation of numbers in arithmetic operations. Also,

a literature review of works related to accuracy analysis performed on arithmetic

formulations and their fast algorithms.

2.1 Error in Floating Point Representation

Error in the floating point representation of a number x, occurs when its value

falls between two consecutive numbers, F l(x1), F l(x2), in the selected format. Namely,

when a floating point arithmetic operation or some other mapping produces a result

x, such that F l(x1) < x < Fl(x2), a rounding scheme is needed to select which of the

two consecutive numbers will represent F l(x). The decision of using either F l(x1)

or F l(x2) as F l(x) will depend on the selected rounding scheme. The absolute error

resulting from the selection of the value to represent x is a metric that describes the

magnitude of the difference between the approximation, F l(x) and the exact value,

x.

|ǫx| = |F l(x)− x| (2.1)

Another commonly used error metric is the absolute relative error, which quantifies

the magnitude of the significance of the error to the exact value.

|ǫx| =
∣

∣

∣

∣

F l(x)− x

x

∣

∣

∣

∣

(2.2)

3
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The upper bound of the absolute relative error is commonly used to approximate the

error in floating point arithmetic operations. This upper bound will depend on the

rounding technique used in the arithmetic operations [4] [5]. In a single floating point

operation, this is denoted as the machine absolute relative error upper bound, ǫmach.

When the rounding scheme used is the truncation, the machine relative error upper

bound is

|ǫmach| = 2−m+1 (2.3)

When using the rounding-to-nearest scheme, the machine absolute relative error up-

per bound of a single floating point operation is

|ǫmach| = 2−m, (2.4)

where m is the number of bits used to represent the significand in a floating point rep-

resentation. The previous upper bounds are for uniform distributions of the operands

in a computation. Tsao studied the distribution of the absolute relative error for two

rounding techniques in various floating point arithmetic operations [6]. The round-

ing schemes used were rounding-to-nearest and truncation. The study used the most

significant digits of random integers to derive the relative error distributions of round-

ing schemes in floating point arithmetic operations. The results describe the relative

error distribution of rounding schemes as a combination of uniform and reciprocal

distributions. For truncation, the absolute relative error distribution is described as

P (|ǫ|) =











βm−1

loge β
(β − 1)

1
loge β

(

1
ǫ0
− βm−1

)

0 ≤ ǫ0 ≤ β−m

β−m ≤ ǫ0 < β−m+1











(2.5)

For rounding-to-nearest scheme, the absolute relative error distribution is described

as

P (|ǫ|) =











βm−1

loge β
(β − 1)

1
logeβ

(

1
2|ǫR|

− βm−1
)

−β−m

2
≤ ǫ0 ≤ β−m

2

β−m

2
< |ǫ0| < β−m+1

2











, (2.6)
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where β and m are the base and the number of bits in the significand of the floating

point representation. Kuck, et. al, proposed additional error metrics for other round-

ing schemes, namely the average relative error and the average bias error. [7]. The

average relative error measures the average magnitude of the relative error, while the

average bias error measures the average tendency of the rounding technique to favor

error.

2.1.1 Error Analysis

An analysis method commonly used to estimate the error of floating point com-

putations is the forward error analysis. The purpose of this analysis is to estimate

the upper bound of the absolute relative error of a floating point computation. As

an example, consider the sum of a and b. The relative error is defined as

|ǫa+b| =
∣

∣

∣

∣

(a + b)− F l(a+ b)

a + b

∣

∣

∣

∣

, (2.7)

therefore,

F l(a+ b) = (a + b)(1 + ǫa+b) (2.8)

The forward error analysis represents F l(a+ b) with the floating point representation

of every operand and arithmetic operation. Therefore,

F l(a+ b) =(F l(a) + F l(b))(1 + ǫsum)

=(a(1 + ǫa) + b(1 + ǫb))(1 + ǫsum)

(2.9)

Here, the terms F l(a) and F l(b) are defined using equation 2.2. The term ǫsum refers

to the relative error of the sum operation caused by the rounding technique. Since























|ǫa|

|ǫb|

|ǫsum|























≤ |ǫmach|, (2.10)
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then

F l(a+ b) ≤ (a+ b)(1 + |ǫmach|)2 (2.11)

Therefore,

|ǫa+b| ≤ (1 + |ǫmach|)2 − 1 (2.12)

2.2 Literature Review

Stoutemyer performed pre-linearized forward error analysis on mathematical ex-

pressions using the computer algebra language REDUCE [8]. The analysis he per-

formed was to determine the relative inherent and rounding errors of floating point

operations. His analysis technique ignores the error caused by the product of rela-

tive inherent and rounding errors. He determined “error propagation rules” for basic

arithmetic operations and for more transcendental functions as the power, logarithm,

sine, cosine, tangent, and others. He performed the error analysis on the equivalent

arithmetic expressions: a2 − b2 and (a + b)(a − b), both obtaining the same relative

inherent error. No resource consumption or latency analysis was provided in this

study.

Yun and Lee performed fixed-point error analysis on three fast DCT (FCT)

algorithms [9]. The FCT algorithms analyzed were those proposed by Lee, Hou

and Vetterli. In their error analysis they used a statistical model to estimate the

absolute error mean and variance of the FCTs algorithms. The results showed that

the Vetterli’s FCT provided best results in terms of variance error and signal-to-noise

ratio (SNR). In the analysis, the Direct DCT computation was considered as base

line; and obtained the best results in the variance error. In the study, no resource

consumption or latency information of the algorithms was provided. Therefore no

tradeoffs can be assumed for the algorithms.

Yun and Lee later performed the same fixed-point error analysis on the inverse

FCT (IFCT) algorithms proposed by Lee, Hou and Vetterli [10]. The results showed
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that Hou’s algorithms had better accuracy performance in terms of error variance.

Their work did not perform a resource consumption or latency analysis to the evalu-

ated algorithms.

Harish and Prabhu also performed a fixed-point error analysis for the FCT pro-

posed by Hou and Makhoul [11]. The error analysis used a statistical model to

estimate the error variance of the algorithms. The results showed that the Makhoul’s

algorithm obtained better results in the error variance. They presented a vague com-

parison between resource consumption and latency of the algorithms. Their compar-

ison established that Hou’s algorithm was twice faster and it used half the memory

used by Makhoul’s algorithm. The latency comparison was based on the number of

multiplication operations. They also compared the algorithm complexity in terms of

design interpretation, in which the Hou’s algorithm resulted in disadvantage.

Rao and Prabhu performed a fixed-point error analysis for various radix-4 fast

DHT (FHT) [12]. The algorithms studied were the radix-4, the radix-2, and the

split-radix decimation-in-time (DIT). Their error analysis used a statistical model to

estimate the error variance of the algorithms. The results of the analysis showed that

the radix-4 algorithms obtained better variance error and NRS performance than

the radix-2 and the split radix. No resources consumption or latency analysis was

performed to the algorithms under evaluation.

Glaros and Carayannis introduced an analytic methodology for fixed-point error

analysis for various Toeplitz algorithms [13]. The analysis was performed on the Schur

and the split Schur algorithms. The their exact and first-order error analysis used a

statistical model to estimate error variance of the algorithms. The analysis showed

the Schur algorithm with better accuracy performance than the split Schur algorithm.

In their work, no resource consumption and latency analysis was performed.

Tao performed a floating point error analysis for matrix multiplication and matrix

chain product computation [14]. The fast matrix multiplication algorithms analyzed
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were those proposed by Winograd and Strassen. Both algorithms were compared to

the standard algorithms for matrix multiplication computation. The error analysis

used was the complexity error analysis that used as metric the absolute error. Tao’s

work showed that the standard algorithms provided a minimal error growth compared

to Winograd’s and Strassen’s. From the three algorithms, Strassen’s provided the

worst error upper bound. This work did not perform resource consumption or latency

analysis to the studied matrix multiplication algorithms.

Pitas and Strintzis studied the accuracy of floating point structures of three

different algorithms used to compute two-dimensional fast DFT (FFT) [15]. The

studied algorithms were the conventional row-column FFT (RCFFT), the vector radix

FFT (VRFFT), and the polynomial transform FFT (PTFFT). A error analysis used a

statistical model to estimate the error variance of the algorithms. The results showed

that the VRFFT and PTFFT had similar error performances and both performed

better than the CRFFT. Again, no latency analysis was provided in this study.

Table 2.1 shows a summary of the previous work found in the literature. As seen

in the column of limitations, most of the previous works have no resource consumption

nor latency analysis presented. When studying algorithms to be implemented on

hardware, those attributes are as important as the accuracy. An essential part of this

work is to analyze the accuracy and hardware performance of the discrete transforms

and their fast algorithms.
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Table 2.1 : Summary of previous work.

Author(s) Error Error Number Algorithms Limitation(s)
Analysis Metric Format

Stoutemyer Forward Relative Floating a2 − b2, No resource
[8] Error Error (a+ b)(a− b) consumption or

Analysis latency analysis.
Yun and Statistical Absolute Fixed FCT No resource
Lee [9] Model Error consumption or

Mean and latency analysis.
Variance

Yun and Statistical Absolute Fixed IFCT No resource
Lee [10] Model Error consumption or

Variance latency analysis.
Harish and Statistical Absolute Fixed FCT Vague assumption
Prabhu [11] Model Error of resource

Variance consumption
and latency.

Rao and Statistical Absolute Fixed FHT No resource
Prabhu [12] Model Error consumption or

Variance latency analysis.
Glaros and Statistical Absolute Fixed Toeplitz No resource
Carayannis Model Error consumption or

[13] Variance latency analysis.
Tao [14] Complexity Absolute Floating Matrix No resource

Error Error Multiplication consumption or
Analysis latency analysis.

Pitas and Statistical Absolute Floating 2-D FFT No latency
Strintzis [15] Model Error analysis.

Variance



Chapter 3

Problem Statement, Hypothesis, and Objectives

During the process of designing a digital arithmetic algorithm, most research ef-

forts are centered in finding algorithms that reduce resource consumption or improve

the latency of the operation. Usually, the accuracy is not a parameter for consid-

eration during the research of the appropriate algorithm. Those analyzing accuracy

rarely consider hardware performance parameters. The problem addressed in this

work is that of determining how the arithmetic structures of discrete transforms and

their fast algorithms impacts both accuracy and hardware performance.

3.1 Hypothesis

The work reported was developed under the hypothesis that the arithmetic struc-

ture of discrete transforms and their fast algorithms have different impact in the

accuracy of the results.

3.2 Objectives

Below is a description of the general objective and the specific objectives of this

work.

General Objective

Analyze the accuracy difference between the discrete transforms and their fast

algorithms using accuracy quantification methods. These methods were based on

statistical and error analysis. Also, analyze the hardware performance of the discrete

transforms and their fast algorithms using a FPGA synthesis methodology.

10
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Specific Objectives

1. Develop a methodology for accuracy quantification of discrete transforms and their

fast algorithms

2. Synthesize hardware designs of discrete transforms and their fast algorithms struc-

tures

3. Analyze the accuracy of discrete transforms and their fast algorithms structures

4. Study the hardware performance advantages of discrete transforms and their fast

algorithms

5. Describe the behavior of accuracy of discrete transforms and their fast algorithms

based on their arithmetic structures

6. Identify structures where it is possible to improve the accuracy and how the im-

provements affect the hardware performance



Chapter 4

Methodology

The objectives of this work were based on the analysis of accuracy and hardware

performance of the discrete transforms and their fast algorithms. For the data compi-

lation of accuracy and hardware performance, quantitative methods were employed.

For the accuracy quantification the metric used was the normwise relative error;

the methods used were of estimation and experimentation. The main tasks performed

for the accuracy quantification were:

• Software Designs - Generate software designs of the discrete transforms and

their fast algorithms

• Experimental Data Compilation - Run experiments on the software design

of the algorithms for the compilation of experimental data

• Error Analysis - Forward error analysis of the discrete transforms and their

fast algorithms, for the estimation of the error in the results

• Error Analysis Validation - Validation of the error analysis using the ex-

perimental data

• Statistical Analysis - Apply statistical test to the experimental data to com-

pare the accuracy between the discrete transforms and their fast algorithms

For the performance quantification, FPGA design methods were employed. The

main tasks performed for the performance quantification were:

• Hardware Designs - Generate hardware designs of the discrete transforms

and their fast algorithms

12
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• Structures Synthesis - FPGA synthesis of the hardware design of the dis-

crete transforms and their fast algorithms

• Resources Report - Generate resources consumption reports from the syn-

thesized hardware designs

• Latency Report - Generate latency reports from the synthesized hardware

designs

The main software platforms used for some of these tasks were:

• MATLAB

• Xilinx Vivado

Figure 4.1 shows the relation among these tasks and the results analysis.

Results Analysis

Hardware

Designs

Resources

Reports

Latency

Reports

Structures

Synthesis

Software

Designs

Error

Analysis

Statistical

Analysis

Error Analysis

Validation

Experimental Data

Compilation

Performance QuantificationAccuracy Quantification

Figure 4.1 : Methodology

The next sections of the methodology are organized as follows. Section 4.1

provides a theoretical background of the selected discrete transforms and their fast

algorithms. Also, provides a example of their arithmetic structure, which are used

for the software and hardware designs. Section 4.2 provides additional details of the

software and hardware designs. The Section 4.3 discussed the experimental design
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used for the Experimental Data Compilation. Section 4.4 discussed the method used

for the Error Analysis and the approach used for its validation. Finally, Section 4.5

discusses the approach taken for the Statistical Analysis.

4.1 Discrete Transforms and their Fast Algorithms

The discrete transforms selected for this study belong to the sinusoidal unitary

transforms class [16]. The chosen discrete transforms are widely used in applications

of digital signal processing. The applications include image compressing, spectral

analysis and spread spectrum systems [16–18]. Before discussing the evaluated dis-

crete transforms formulations, we present a review of discrete transform operations

in their matrix representation.

The operator of a discrete transform of the signal x[n], of length N , is represented

as

X [k] = DT{x[n]}, k = 0, 1, · · · , N − 1, (4.1)

where DT denotes the discrete transform operation over the discrete signal x[n], and

X [k] denotes the result signal of the operation.

The matrix representation of a discrete transform operation has the form of

XN = DTNxN , (4.2)

where XN and xn are column vectors, of size N , of the signals X [k] and x[n], defined

as

XN =



















X [0]

X [1]

...

X [N − 1]



















(4.3)
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xN =



















x[0]

x[1]

...

x[N − 1]



















, (4.4)

and, DTN is denoted as the discrete transform matrix of size N × N . The matrix

coefficient depend on the discrete transform operation. The discrete transforms fast

algorithms used Kronecker product (⊗) and direct sum (⊕) operators, along with

identity and permutation matrices, to represent the DTN matrix.

The Kronecker product of the matrices A, of size m× n, and B, of size p× q, is

defined as

A⊗ B =













a0,0B

...

am−1,0B

· · ·
. . .

· · ·

a0,n−1B

...

am−1,n−1B













(4.5)

The direct sum of coefficients and matrices are defined in Equations 4.6 and 4.7,

respectively. The direct sum of coefficients results in a diagonal matrix, and the

direct sum of matrices results in a block diagonal matrix.

N−1
⊕

i=0

ai = a0 ⊕ a1 ⊕ · · · ⊕ aN−1 =



















a0

a1

. . .

an−1



















(4.6)

N−1
⊕

i=0

Ai = A0 ⊕ A1 ⊕ · · · ⊕ AN−1 =



















A0

A1

. . .

An−1



















(4.7)
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The identity matrix is a diagonal matrix where the value of the diagonal elements is

one. The identity matrix formal definition is

[IN ]i,j =











1,

0,

i = j

otherwise











(4.8)

Permutation matrices are characterized by having a single ”1” in each column and

row, and ”0” elsewhere. The purpose of permutation matrices is to rearrange the

rows or columns of a matrix or vector. A permutation matrix of size N×N is defined

as

PN =



















ePN (0)

ePN (1)

...

ePN (N−1)



















, (4.9)

where ePN (i) denotes the ith row vector of length N with ”1” in the PN(i)th position

and ”0” elsewhere. The term PN(i) denotes the permutation matrix function. The

multiplication of a permutation matrix PN with a column vector xN , results as

PNxN =



















x[PN (0)]

x[PN (1)]

...

x[PN (N − 1)]



















(4.10)

A permutation matrix used in most of the matrix representation of the discrete

transforms fast algorithms is the Stride-s permutation matrix. The Stride-st permu-

tation matrix of size N ×N is defined as

[LN
st ]i,j =











1,

0,

(i · st mod N) + ⌊ i·st
N
⌋ = j

otherwise











(4.11)
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The evaluated discrete transforms include Fourier, Hartley, and cosine. The

Fourier transform yields complex results, while the other evaluated transforms pro-

duce real results. The selected fast algorithms were based on their structure. In the

case of Fourier and cosine transforms, we selected parallel and decimation fast algo-

rithms to observe the accuracy behavior when using complex and real operators. In

the case of Hartley transform, decimation-in-time and decimation-in-frequency fast

algorithms were evaluated to observe the effect on accuracy caused by the kind of dec-

imation. Next is the theoretical background of the selected discrete transforms and

their fast algorithms, including their matrix representations and arithmetic structure

interpretations. These arithmetic structures are used for their software and hardware

designs.

4.1.1 Discrete Fourier Transform

The main purpose of the discrete Fourier transform (DFT) is to transform a time

domain signal into the frequency domain. This transformation provides information

about the frequencies present in the time domain signal. The N -point DFT of a

signal x[n], is defined as

X [k] = DFT{x[n]} =

N−1
∑

n=0

x[n]wkn
N , k = 0, 1, ..., N − 1, (4.12)

where

wN = e−2πı̂/N ı̂ =
√
−1 (4.13)

Equation 4.14 describes the matrix-vector representation of this transformation.

XN = DFTNxN , (4.14)

where DFTN denotes the DFT matrix of size N × N , where the matrix coefficients

are defined as

[DFTN ]i,j = wij
N (4.15)



18

Figure 4.2 shows the structural interpretation of the 8-point Direct DFT.

x +

x

x

x

x

x

x

x

+ + + + + +

Figure 4.2 : structural interpretation of the 8-point Direct DFT

A N -point DFT requires an amount of N2 complex multiplication. Exploiting

the properties of the DFT, fast algorithms were achieved, which reduced the amount

of complex multiplications.

Cooley-Tukey FFT

The factorization presented by Cooley and Tukey is the most commonly used

algorithms for the fast discrete Fourier transform (FFT) [19]. They factorize a N -

point DFT, when N = r1r2, as follows,

X [k] =

r1−1
∑

n′′=0

r2−1
∑

n′=0

x[n′r1 + n′′]wn′r1k
N wn′′k

N , k = 0, 1, ..., N − 1 (4.16)

When r1 = 2, the inner sum in Equation 4.16 represents a N/2-point DFT for the

even (n′′ = 0) and odd (n′′ = 1) points in x[n]. Therefore, when N = 2 · r2 , equation
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4.16 can be rewritten as

X [k] = DFTr2{x[2n′]}w0k
N +DFTr2{x[2n′ + 1]}w1k

N (4.17)

Equation 4.17 can be described as

X [k] =











DFTr2{x[2n′]}w0k
N +DFTr2{x[2n′ + 1]}w1k

N ,

DFTr2{x[2n′]}w0k
N −DFTr2{x[2n′ + 1]}w1k

N ,

k = 0, 1, ..., r2 − 1

k = r2, ..., N − 1











,

(4.18)

where

k = k mod N/2 (4.19)

The matrix factorization of the Cooley-Tukey FFT is described as

XN = (DFTr1 ⊗ Ir2)T
N
r2 (Ir1 ⊗DFTr2)L

N
r1xN , (4.20)

where TN
r2

is a diagonal matrix defined as

T r1r2
r2

=

r1−1
⊕

i=0

(

r2−1
⊕

j=0

wij
r1r2

)

(4.21)

Figure 4.3 shows the structural interpretation of the 8-point Cooley-Tukey FFT,

when r1 = 2 and r2 = 4.

The main advantage of this FFT formulation is a reduction in the amount of

complex multiplication from N2 to approximately N(r1 + r2). Its disadvantage is

that limits the value of N -point to non-prime numbers.

Pease FFT

Pease presented this formulation with the purpose by generating a parallel FFT

architecture [20]. He accomplished the architecture by manipulating the DFT matrix

using bitreversal and stride-2 permutations matrices. Equation 4.22 presents the
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Figure 4.3 : Structural interpretation of the 8-point Cooley-Tukey FFT

matrix factorization formulated by Pease.

X2p =

{

p
∏

i=1

L2p

2 (I2p−1 ⊗DFT2)T
′
i

}

R2px2p (4.22)

where R2p is the Bit-reversal permutation matrix, and T ′
i is a diagonal matrix. The

Bit-reversal permutation matrix is defined as

R2p =

p
∏

i=1

(I2p−i ⊗ L2i

2 ) (4.23)

The diagonal matrix T ′
i is defined as [21]

T ′
i =

2p−i−1
⊕

j=0

(I2i−1 ⊗W j2i−1

2 ), (4.24)

where the matrix W2 is defined as

W2 =







w0
2p

0

0

w1
2p






(4.25)

Figure 4.4 presents the structural interpretation of the 8-point Pease FFT.
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Figure 4.4 : structural interpretation of the 8-point Pease FFT

This FFT formulation has two main advantages: a reduction of complex mul-

tiplications from N2 to Nlog2N , and a regular structure. The drawback of this

formulation is that limits the value of N to a power of two.

4.1.2 Discrete Hartley Transform

The discrete Hartley transform (DHT) was initially proposed as an analogous

discrete transform of the DFT. The difference between these discrete transforms is

that the DHT produces real results and the DFT yields complex results. The N -point

DHT of a signal x[n], is defined as

X [k] = DHTN{x[n]} =

N−1
∑

n=0

x[n]cas

(

2πkn

N

)

,k = 0, 1, ..., N − 1, (4.26)

where cas(θ) = cos(θ) + sin(θ). Equation 4.27 describes the matrix-vector represen-

tation of this transformation.

XN = DHTNxN , (4.27)
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where DHTN denotes the DHT matrix of size N ×N and its coefficients are defined

as

[DHTN ]i,j = cas

(

2πij

N

)

(4.28)

Figure 4.5 shows the structural interpretation of the 8-point Direct DHT.

x +

x

x

x

x

x

x

x

+ + + + + +

Figure 4.5 : Structural interpretation of the 8-point Direct DHT

An N -point DHT computation requires N2 multiplication. Exploiting the prop-

erties of the DHT matrix, fast algorithms were achieved, which reduced the amount

of multiplications [22, 23].

Bracewell FHT

Bracewell proposed a radix-2 decimation-in-time (DIT) fast discrete Hartley

transform (FHT) [22]. He separated the sum of product in Equation 4.26 into the

even and odd points of the signal x[n] as shown below

X [k] =

N
2
−1
∑

n′=0

x[2n′]cas

(

2πkn′

N/2

)

+

N
2
−1
∑

n′=0

x[2n′ + 1]cas

(

2πk(n′ + 1/2)

N/2

)

(4.29)
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Equation 4.29 can be rewritten for the first and second half of the points in X [k] as

shown in Equations 4.30 and 4.30, for k′ = 0, 1, ..., N/2− 1.

X [k′] =

N
2
−1
∑

n′=0

x[2n′]cas

(

2πk′n′

N/2

)

+

N
2
−1
∑

n′=0

x[2n′ + 1]cas

(

2πk′(n′ + 1
2
)

N/2

)

(4.30)

X [k′ +N/2] =

N
2
−1
∑

n′=0

x[2n′]cas

(

2πk′n′

N/2

)

−
N
2
−1
∑

n′=0

x[2n′ + 1]cas

(

2πk′(n′ + 1
2
)

N/2

)

(4.31)

The matrix representation of this formulation is

XN = (DFT2 ⊗ IN/2)(DHTN/2 ⊕ D̂HTN/2)L
N
2 xN , (4.32)

where D̂HTN/2 denotes a matrix of size N/2×N/2 and its coefficients are defined as

[D̂HTN ]i,j = cas

(

2πi(j + 1/2)

N

)

(4.33)

Figure 4.6 shows the structural interpretation of the 8-point Bracewell FHT. The

main advantage of this formulation is that it reduces the amount of multiplications

from N2 to N2

2
. Its disadvantage is that limits the value of N to multiples of two.

Hou FHT

Hou proposed a radix-2 decimation-in-frequency (DIF) FHT [23]. This formu-

lation first separates the sum of products in Equation 4.26 into the first and second

half of points of the signal x[n] as follows

X [k] =
r−1
∑

n′=0

x[n′]cas

(

2πkn′

N

)

+
r−1
∑

n′=0

x[n′ +N/2]cas

(

2πk(n′ +N/2)

N

)

=

r−1
∑

n′=0

(x[n′] + (−1)kx[n′ +N/2])cas

(

2πkn′

N

)

(4.34)

Then Hou describes Equation 4.34 for the even and odd points ofX [k] as in Equations

4.35 and 4.36, for k′ = 0, 1, ..., N/2− 1.

X [2k′] =

r−1
∑

n′=0

(x[n′] + x[n′ +N/2])cas

(

2πk′n′

N/2

)

(4.35)
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Figure 4.6 : Structural interpretation of the 8-point Bracewell FHT

X [2k′ + 1] =

r−1
∑

n′=0

(x[n′]− x[n′ +N/2])cas

(

2π(k′ + 1
2
)n′

N/2

)

(4.36)

The matrix representation of this formulation is

XN = LN
N/2(DHTN/2 ⊕ D̂HT

T

N/2)(DFT2 ⊗ IN/2)xN , (4.37)

where D̂HT
T

N/2 is the transpose of matrix D̂HTN/2 of size N/2×N/2, as established

by Equation 4.33. The coefficients of the matrix D̂HT
T

N/2 are defined as

[D̂HT
T

N ]i,j = cas

(

2π(i+ 1/2)j

N

)

(4.38)

Figure 4.7 shows the structural interpretation of the 8-point Hou FHT. This FHT

formulation has the same advantages and disadvantages of the Bracewell FHT for-

mulation.
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Figure 4.7 : Structural interpretation of the 8-point Hou FHT
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4.1.3 Discrete Cosine Transform

The discrete cosine transform (DCT) is of great use in image compression algo-

rithms [16, 24]. This work used the even, type II DCT, defined as follows

X [k] = DCT II
N {x[n]} = sfN(k)DCT

II

N {x[n]}, k = 0, 1, ..., N − 1

= sfN(k)

N−1
∑

n=0

x[n]cos

(

πk
(

n+ 1
2

)

N

)

(4.39)

where, sfN(k) is denoted as a scaling factor, and DCT
II

N {x[n]} as an unscaled DCTII

operation. These are defined as

sfN (i) =











√

1
N
,

√

2
N
,

k = 0

k 6= 0











(4.40)

DCT
II

N {z[n]} =
N−1
∑

n=0

z[n]cos

(

πk
(

n + 1
2

)

N

)

, k = 0, 1, ..., N − 1 (4.41)

The matrix representation of the a N -point DCT computation is defined as

XN = SFNDCT
II

N xN , (4.42)

where SFN is a diagonal matrix of size N ×N , and DCT
II

N is denoted as an unscaled

DCTII matrix of size N ×N . These are defined as

SFN =
N−1
⊕

i=0

sfN(i) (4.43)

[DCT
II

N ]i,j = cos

(

πi
(

j + 1
2

)

N

)

(4.44)

Figure 4.8 shows the structural interpretation of the 8-point DCT.

An N -point DCT computation of requires a total of N(N + 1) multiplication.

Exploiting the properties of the DCT
II

N matrix, fast algorithms were achieved.
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Figure 4.8 : Structural interpretation of the 8-point DCT

Nikara FCT

Nikara proposed a fast discrete cosine transform (FCT) that worked when the

number of points of the DCT operation was N = 2p. His formulation exploits the

characteristics of the DCT
II

N matrix, to develop a parallel structure [25]. He used

diverse permutation matrices and Kronecker product operators for his FCT formula-

tion. His formulation is defined as follows

X2p =

√

2

2p
U

(p−1)
2p

{

1
∏

s=p−1

A
(s)
2p S

(s)
2p

}

A
(0)
2p P

H
2px2p , (4.45)

where

U
(p−1)
2p =

p−2
∏

i=0

(I2p−1 ⊕R2p−2p−1)(I2i ⊗ L2p−i

2p−i−1), (4.46)

R1 = I1, R2 = I2, R4 = L4
2P

H
4 , RN = IN/4 ⊗ R4, (4.47)
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[PH
2p ]k,l =











1,

0,

l = h2p(k)

l 6= h2p(k)











, (4.48)

h1(0) = 0,h2N (2i) = hN(i), h2N(2i+ 1) = 2N − 1− hN(i),i = 0, 1, ..., N − 1,

(4.49)

A
(s)
2p = M

(s)
2p D

(s)
2p H

(s)
2p (I2p−1 ⊗DFT2), (4.50)

M
(s)
2p =

2p−1−1
⊕

i=0







1

−µs(i)

0

1






, (4.51)

µs(i) =











0,

1,

i mod 2s = 0

i mod 2s 6= 0











, (4.52)

D
(s)
2p =

2p−1
⊕

i=0

gp(i, s), (4.53)

gp(i, s) =
(

2µs(⌊i/2⌋)d(2p−s−1 + ⌊i/2s+1⌋)
)fp(i,s)

, (4.54)

d(1) =
√
0.5; d(2i) =

√

0.5(1 + d(i)); d(2i+ 1) =
√

0.5(1− d(i)), (4.55)

fp(i, s) = (i mod 2) + (1− τ0(i))(1− τp−1(s)), (4.56)

τi(s) =











0,

1,

s = i

s 6= i











, (4.57)

H
(s)
2p =

2p−2−1
⊕

i=0

(L4
2R4L

4
2)

µs−1(i), (4.58)

and

S
(s)
2p = I2p−s−1 ⊗ L2s+1

2s (4.59)

Figure 4.9 shows the structural interpretation of the 8-point Nikara FCT. The

main advantages of this FCT include the reduction of arithmetic computations and

the regularity of the formulation. A disadvantage is the complexity of the matrices

used for the matrix factorization.
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Figure 4.9 : Structural interpretation of the 8-point Nikara FCT

Translation FCT

Püschel and Moura discussed translation techniques used to formulate fast algo-

rithms for discrete trigonometric transforms (DTT), as the DCT [26]. These tech-

niques were employed to represent a N -point DCT using other types of DCTs when

the number of points is a multiple of two. Next is shown how a DCT II
N {x[n]} can be

formulated using a DCT
II

N/2{z[n]} and a DCT
IV

N/2{y[n]}. The DCT
IV

N {y[n]} denotes

an unscaled DCTIV operation, which is defined as

DCT
IV

N {y[n]} =

N−1
∑

n=0

y[n]cos

(

π
(

k + 1
2

) (

n+ 1
2

)

N

)

, k = 0, 1, ..., N − 1 (4.60)

The translation technique first rewrites Equation 4.39 as follows

X [k] =sfN(k)

N
2
−1
∑

n′=0

x[n′]cos

(

πk
(

n′ + 1
2

)

N

)

+sfN(k)

N
2
−1
∑

n′=0

x[N − 1− n′]cos

(

πk
(

N − 1− n′ + 1
2

)

N

)

=sfN(k)

N
2
−1
∑

n′=0

(x[n′] + (−1)kx[N − 1− n′])cos

(

πk
(

n′ + 1
2

)

N

)

(4.61)
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Then, it defines the even and odd points of the signal X [k] as in Equations 4.62 and

4.63, for k′ = 0, 1, · · · , N/2− 1.

X [2k′] = sfN(k)

N
2
−1
∑

n′=0

(x[n′] + x[N − 1− n′])cos

(

πk′
(

n′ + 1
2

)

N/2

)

= sfN(k)DCT
II

N/2{x[n′] + x[N − 1− n′]}

(4.62)

X [2k′ + 1] = sfN(k)

N
2
−1
∑

n′=0

(x[n′]− x[N − 1− n′])cos

(

π
(

k′ + 1
2

) (

n′ + 1
2

)

N/2

)

= sfN(k)DCT
IV

N/2{x[n′]− x[N − 1− n′]}

(4.63)

The matrix representation of this formulation is given by Equation 4.64

XN = SFNL
N
N/2(DCT

II

N/2 ⊕DCT
IV

N/2)(DFT2 ⊗ IN/2)(IN/2 ⊕ ĪN/2)xN , (4.64)

where ĪN/2 denotes a reflection matrix of size N/2 × N/2, and DCT
IV

N/2 an unscaled

DCTIV matrix . These are defined as

[IN ]i,j =











1,

0,

i = N − 1− j

i 6= N − 1− j











, (4.65)

and

[DCT
IV

N ]i,j = cos

(

π
(

i+ 1
2

) (

j + 1
2

)

N

)

(4.66)

Figure 4.10 shows the structural interpretation of the 8-point Translation FCT. The

main advantage of this formulation is that it reduces the number of multiplications

to N2

2
. A disadvantage is that limits the value of N to multiples of two.
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Figure 4.10 : Structural interpretation of the 8-point Translation FCT

4.2 Software and Hardware Designs

The structural interpretation of the treatments were used in the software and

hardware designs. The software designs were used in the experimental design, which

acquire experimental data from the discrete transforms treatments for their accuracy

quantification. The hardware designs were used in the FPGA synthesis of the treat-

ments, for the data compilation of hardware performance. The software and hardware

designs of the treatments, used floating point arithmetic operators. The floating point

standard used was the IEEE 754 standard for single precision representation.

The software designs of the discrete transforms treatments were develop in MAT-

LAB. The approach was to define a MATLAB function for each discrete transform.

The function accepted two parameters: xN and treatment. The xN parameter is the

input signal to be transformed. With this parameter number of point of the discrete

transform is defined. The treatment parameter define the treatment used for the dis-

crete transform computation. The general MATLAB function flow used for a discrete

transform computation was

function X=DiscreteTransform(x N, treatment)
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N=length(x N);

if strcmp(treatment, "FDT1")

X N= FastDiscreteTransform1(x N,N);

elseif strcmp(treatment, "FDT2")

X N= FastDiscreteTransform2(x N,N);

else

X N= DirectDiscreteTransform(x N,N);

end if;

end function;

The hardware designs developed were FPGAs based. The design entry used

VHDL as the hardware description language. The synthesis platform used for the

hardware designs was Xilinx Vivado. An automated script was develop for the gener-

ation of custom VHDL files, based on the number of point of the discrete transform.

The software platform used for the automated method was MATLAB. The general

flow used for the VHDL file generation of the discrete transform treatments is illus-

trated in Figure 4.11 .

Discrete Transform Treatments

HDL Characterization

Input

Parameter

DDT

FDT 2

FDT 1

 VHDL Codes

DDT_N.vhd

FDT2_N.vhd

FDT1_N.vhd

Figure 4.11 : HDL Codes Generation
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Appendices A and B provide the code of the MATLAB functions developed for

the software and hardware designs.

4.3 Experimental Design

The goal of the experimental design was quantifying the accuracy of the evaluated

discrete transforms treatments. The metric used for accuracy quantification was the

normwise relative error. In the discrete transform context, the normwise relative error

is defined as

||ǫXN
||g =

||F l(XN)−XN ||g
||XN ||g

, (4.67)

where g refers to the norm rule, F l(XN) refers to the floating point computation

of the discrete transform treatment, and XN refers to the exact computation of the

discrete transform.

This study used the two-norm, defined by Equations 4.68 and 4.69.

||x||2 =

√

√

√

√

N−1
∑

i=0

|x[i]|2 (4.68)

||A||2 =
√

maxN−1
i=0 λi(ATA) (4.69)

Here, λi(A
TA) refers the ith eigenvalue of ATA.

In this work, F l(XN) used single precision floating point operators. The exact

computation of the discrete transform, XN , was defined as the computation of the

Direct discrete transform treatment with double precision floating point operators.

The experiments were defined by two controlled factors:

• Size - Number of points of the discrete transform, N . Six levels were used, N=2,

4, 8, 16, 32, 64.

• Treatment - Refers to the discrete transform treatment used for the computation

of F l(XN ). Three levels were used: the direct discrete transform treatment (DDT)

and two fast discrete transform treatments (FDT 1 and FDT 2).
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A total of 18 experiments were evaluated for each discrete transform. Since

the main objective of this study was to observe the effect of the treatment on the

accuracy, the experiments were grouped by the size factor. Therefore, a total of six

experiment groups were evaluated for each discrete transform.

An total of 1,000 replicas of the experiment groups were performed for each dis-

crete transform. The replicas were defined by the values of the input vector elements,

x[n]. These had the following characteristics:

• Pseudorandom values with a standard uniform distribution

• Values in the range [0,1]

• Values with single precision representation

Figure 4.12 shows the defined experimental flow for a experiment group.

Treatments

Input

Vector

SP

SP

DDT

SP

FDT 2

SP

FDT 1

DP

DDT
DDT

DP

Exact DT

Accuracy

Quantifications

Normwise

Relative Error

Computed

DT

DP

DP

DP

DP

Figure 4.12 : Experimental Flow

4.4 Error Analysis

One of the main objectives of this study was to empirically estimate the accuracy

of discrete transforms treatments. The forward error analysis, discussed in Chapter
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2, was the methodology followed for the empirical error estimations. The floating

point computation of a discrete transform is described as

F l(XN) = (IN +REXN
)DTNxN (4.70)

where REXN
is the relative error diagonal matrix. The normwise relative error is

defined as

||ǫXN
||2 =

||F l(XN)−XN ||2
||XN ||2

≤ ||REXN
||2κ(DTN), (4.71)

where

κ(DTN) = ||DTN ||2||DT−1
N ||2 (4.72)

The forward error analysis also provided insight about the architectural differ-

ences between the discrete transforms treatments. These differences will be taken in

consideration for the recommendations.

For the validation of the error analysis, the experimental and estimations of the

normwise relative error were compared.

4.5 Statistical Analysis Design

The purpose of the statistical analysis was to determine significant differences

between the accuracy of the discrete transform treatments using statistical tools. This

analysis consisted of two phases. The first phase was the distribution identification

of the experimental data in each experiment. The second phase was to perform

statistical tests to compare the accuracy between the treatments pairs in each level

of the size factor. The statistical tests were dependent on the distribution of the

experimental data.



Chapter 5

Results

This chapter presents accuracy and hardware performance results of the discrete

transforms treatments. Section 5.1 presents the forward error analysis results. This

analysis estimates the normwise relative error of the treatments. Section 5.2 provides

the statistical analysis results. Section 5.3 presents the hardware performance of the

treatments, in terms of resource consumption and latency. Section 5.4 discusses the

accuracy and hardware performance of the treatments.

5.1 Error Analysis

For the forward error analysis of the discrete transforms treatments the next

assumptions were made.

• The length of signal x[n] is N = 2p, p = 1, 2, ..., 6

• The points of signal x[n] are error free

• The matrix coefficients are error free.

• The machine relative error, ǫmach, refers to the maximum relative error of a

single precision arithmetic operation. This means ǫmach = 2−23

The main properties of the basic floating point computations used in the forward

error analysis were:

• The floating point addition of operands a and b, with relative errors ǫa and ǫb,

where {a, b ∈ R} or {a, b ∈ C}, is

F l(a+ b) ≤ (a+ b)

(

1 + ǫmach +
(aǫa + bǫb)(1 + ǫmach)

a + b

)

(5.1)

36
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• The floating point multiplication of operands a and b, with relative errors ǫa

and ǫb, where {a, b ∈ R}}, is

F l(a · b) ≤ (a · b)(1 + ǫa)(1 + ǫb)(1 + ǫmach) (5.2)

• The floating point multiplication of operands a and b, with relative errors ǫa

and ǫb, where {a, b ∈ C}}, is

F l(a · b) ≤ (a · b)(1 + ǫa)(1 + ǫb)(1 + ǫmach)
2 (5.3)

The approach in the forward error analysis was to represent the computations of

F l(XN) as the computation of its matrix representation. As mentioned before, the

matrix representation of XN is in the form

XN = DTNxN , (5.4)

where DTN is the discrete transform matrix. Therefore, the relative error estimations

are proportional to the amount of matrices used to represent DTN . The main prop-

erties of the floating point matrix computations used in the forward error analysis

were:

• The floating point computation of the expression y = Ax, where {A,∈ RN×N},

{x ∈ RN}, is described as

F l(y) = (IN +REy)Ax, (5.5)

where

[F l(y)]i ≤
(

N−1
∑

m=0

F l([A]i,m)F l([x]m)

)

(1 + ǫmach)
N (5.6)

• The floating point computation of the expression y = Ax, where {A,∈ CN×N},

{x ∈ CN}, is described as

F l(y) = (IN +REy)Ax, (5.7)
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where

[F l(y)]i ≤
(

N−1
∑

m=0

F l([A]i,m)F l([x]m)

)

(1 + ǫmach)
N+1 (5.8)

• The floating point computation of the expression y = A · x, where A is a

permutation matrix does not generate relative error.

5.1.1 Discrete Fourier Transform (DFT)

The computation of an N -point Direct DFT, as described in Equation 4.14,

consists of one matrix to describe the DFTN matrix. The floating point computation

of XN is described as

F l(XN) = (IN +REXN
)DFTNxN (5.9)

Since the operands are complex, the upper bound of ||REXN
||2 in the direct compu-

tation of an N -point DFT is

||REXN
||2 ≤ (1 + ǫmach)

N+1 − 1 (5.10)

Next are the forward error analyses of the Cooley-Tukey and Pease Fast Fourier

Transforms (FFTs) treatments.

Cooley-Tukey FFT

The computation of an N -point Cooley-Tukey FFT, as described Equations 4.20,

consists of four matrices to describe DFTN matrix. The floating point computation

of XN is described as

F l(XN) = (IN +REXN
)(DFT2 ⊗ IN

2

)TN
N
2

(I2 ⊗DFTN
2

)LN
2 xN (5.11)

where IN
2

is an identity matrix, TN
N
2

is a diagonal matrix, and LN
2 is a permutation

matrix; all previously defined in Chapter 4. Therefore, the upper bound of ||REXN
||2
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in the computation of an N -point Cooley-Tukey FFT is

||REXN
||2 ≤ (1 + ǫmach)

3(N+1) − 1 (5.12)

Pease FFT

The computation of an N -point Pease FFT, as described in Equation 4.22, con-

sists of 3p+1 matrices to describe the DFTN matrix. The floating point computation

of XN is described as

F l(X2p) = ||REXN
||2
{

p
∏

i=1

L2p

2 (I2p−1 ⊗DFT2)T
′
i

}

R2px2p , (5.13)

where I2p−1 is an identity matrix, T ′
i is a diagonal matrix, and L2p

2 and R2p are

permutation matrices; all previously defined in Chapter 4. Therefore, the upper

bound of ||REXN
||2 on the computation of an N -point Pease FFT is

||REXN
||2 ≤ (1 + ǫmach)

2p(N+1) − 1 (5.14)

Normwised Relative Error Estimations

Table 5.1 provides the upper bounds of ||ǫXN
||2, as defined in Equation 4.71, of

the N -point DFT treatment. These values show that the Direct DFT had the lowest

||ǫXN
||2 upper bound as N increases.

Table 5.1 : Upper bound of ||ǫXN
||2 of the N -point DFT treatments.

N κ2(DFTN)
||ǫXN

||2 ≤ ||REXN
||2κ2(DFTN)

Direct DFT Cooley-Tukey FFT Pease FFT
2 ≤ 1 + 2−51 < 2−21 < 2−19 < 2−20

4 ≤ 1 + 2−52 < 2−20 < 2−19 < 2−18

8 < 1 + 2−25 < 2−19 < 2−18 < 2−17

16 < 1 + 2−25 < 2−18 < 2−17 < 2−15

32 < 1 + 2−24 < 2−17 < 2−16 < 2−14

64 < 1 + 2−24 < 2−16 < 2−15 < 2−13
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Error Analysis Validation

Table 5.2 shows the ranges of the experimental values of ||ǫXN
||2 of the DFT

treatments. As observed, the ranges are lower than the ||ǫXN
||2 upper bounds esti-

mations of these treatments (Table 5.1 ). The ranges of the Direct DFT are lower

than those of the FFTs treatments as N increases. This behavior was also observed

in the forward error analysis, proving a relationship between the estimations with the

magnitude of the experimental data ranges. This validates the forward error analysis

results with the experimental data of the DFT treatments.

Table 5.2 : Ranges of experimental ||ǫXN
||2 of the DFT structures

N -point Direct DFT Cooley-Tukey FFT Pease FFT
2 2−52 < ||ǫXN

||2 < 2−24 2−28 < ||ǫXN
||2 < 2−23 2−28 < ||ǫXN

||2 < 2−23

4 2−28 < ||ǫXN
||2 < 2−23 2−26 < ||ǫXN

||2 < 2−23 2−26 < ||ǫXN
||2 < 2−23

8 2−26 < ||ǫXN
||2 < 2−22 2−23 < ||ǫXN

||2 < 2−20 2−23 < ||ǫXN
||2 < 2−20

16 2−26 < ||ǫXN
||2 < 2−22 2−22 < ||ǫXN

||2 < 2−19 2−22 < ||ǫXN
||2 < 2−19

32 2−25 < ||ǫXN
||2 < 2−22 2−20 < ||ǫXN

||2 < 2−18 2−20 < ||ǫXN
||2 < 2−18

64 2−24 < ||ǫXN
||2 < 2−21 2−19 < ||ǫXN

||2 < 2−17 2−19 < ||ǫXN
||2 < 2−17

5.1.2 Discrete Hartley Transform (DHT)

The computation of an N -point Direct DHT, as described in Equation 4.27,

consists of one matrix to describe theDHTN matrix. The floating point computation

of XN is described as

F l(XN) = (IN +REXN
)DHTNxN (5.15)

Since the operands are real, the upper bound of ||REXN
||2 on the direct computation

of an N -point DHT is

||REXN
||2 ≤ (1 + ǫmach)

N − 1 (5.16)

Next are the forward error analysis of the Bracewell and Hou Fast Hartley Trans-

forms (FHTs) treatments.
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Bracewell FHT

The computation of an N -point Bracewell FHT, as described in Equation 4.32,

consists of three matrices to describe the DHTN matrix. The floating point compu-

tation of XN is described as

F l(XN) = (IN +REXN
)(DFT2 ⊗ IN

2

)(DHTN
2

⊕ D̂HT N
2

)LN
2 xN , (5.17)

where IN
2

is an identity matrix, and LN
2 is a permutation matrix; all previously defined

in Chapter 4. Therefore, the upper bound of ||REXN
||2 on the computation of an

N -point Bracewell FHT is

||REXN
||2 ≤ (1 + ǫmach)

2N − 1 (5.18)

Hou FHT

The computation of anN -point Hou FHT, as described in Equation 4.37, consists

of three matrices to describe the DHTN matrix. The floating point computation of

XN is described as

F l(XN) = (IN +REXN
)LN

N/2(DHTN/2 ⊕ D̂HT
T

N/2)(DFT2 ⊗ IN/2)xN , (5.19)

where LN
N/2 is a permutation matrix. Therefore, the upper bound of ||REXN

||2 on the

computation of an N -point Hou FHT is

||REXN
||2 ≤ (1 + ǫmach)

2N − 1 (5.20)

Normwised Relative Error Estimations

Table 5.3 provides the upper bound of ||ǫXN
||2, as defined in Equation 4.71,

of the N -point DHT treatments. These values show that the Direct DHT had the

lowest ||ǫXN
||2 upper bound as N increases. Also, that the Bracewell and Hou FHTs

had the same ||ǫXN
||2 upper bounds.
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Table 5.3 : Upper bound of ||ǫXN
||2 of the N -point DHT treatments.

N κ2(DHTN)
||ǫXN

||2 ≤ ||REXN
||2κ2(DHTN)

Direct DHT Bracewell FHT Hou FHT
2 < 1 + 2−23 ≤ 2−22 ≤ 2−21 ≤ 2−21

4 < 1 + 2−22 ≤ 2−21 ≤ 2−20 ≤ 2−20

8 < 1 + 2−19 ≤ 2−20 ≤ 2−19 ≤ 2−19

16 < 1 + 2−18 ≤ 2−19 ≤ 2−18 ≤ 2−18

32 < 1 + 2−17 ≤ 2−18 ≤ 2−17 ≤ 2−17

64 < 1 + 2−15 ≤ 2−17 ≤ 2−16 ≤ 2−16

Error Analysis Validation

Table 5.4 shows the ranges of the experimental values of ||ǫXN
||2 of the DHT

treatments. As observed, the ranges are lower than those of the ||ǫXN
||2 upper bounds

estimations of these treatments (Table 5.3 ). It is also observed that the ranges of

the Direct DHT were lower than those of the FHTs treatments as N increases. This

behavior was also observed in the forward error analysis, proving a relationship be-

tween the estimations with the magnitude of the experimental data ranges. Also, was

observed that the ranges of the experimental ||ǫXN
||2 of the Bracewell and Hou FHTs

were similar. This validates the forward error analysis results with the experimental

data of the DHT treatments.

Table 5.4 : Ranges of experimental ||ǫXN
||2 of the DHT structures

N -point Direct DHT Bracewell FHT Hou FHT
2 2−34 < ||ǫXN

||2 < 2−23 2−28 < ||ǫXN
||2 < 2−22 2−28 < ||ǫXN

||2 < 2−22

4 2−28 < ||ǫXN
||2 < 2−22 2−27 < ||ǫXN

||2 < 2−23 2−27 < ||ǫXN
||2 < 2−22

8 2−26 < ||ǫXN
||2 < 2−22 2−23 < ||ǫXN

||2 < 2−20 2−23 < ||ǫXN
||2 < 2−20

16 2−26 < ||ǫXN
||2 < 2−22 2−22 < ||ǫXN

||2 < 2−18 2−22 < ||ǫXN
||2 < 2−19

32 2−25 < ||ǫXN
||2 < 2−21 2−20 < ||ǫXN

||2 < 2−18 2−20 < ||ǫXN
||2 < 2−18

64 2−24 < ||ǫXN
||2 < 2−21 2−19 < ||ǫXN

||2 < 2−17 2−19 < ||ǫXN
||2 < 2−17

5.1.3 Discrete Cosine Transform (DCT)

The computation of an N -point Direct DCT, as described in Equation 4.42, con-

sists of two matrices to describe the DCTN matrix. The floating point computation
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of XN is described as

F l(XN) = (IN +REXN
)SFNDCT

II

N xN (5.21)

Since the operands are real, the upper bound of ||REXN
||2 on the direct computation

of an N -point DCT is

||REXN
||2 ≤ (1 + ǫmach)

2N − 1 (5.22)

Next are the forward error analysis of the Nikara and Translation Fast Cosine

Transforms (FCTs) treatments.

Nikara FCT

The computation of an N -point Nikara FCT, as described in Equations 4.45, con-

sists of 5p+2 matrices to describe the DCTN matrix. The floating point computation

of XN is described as

F l(XN) = (IN +REXN
)

√

2

2p
U

(p−1)
2p

{

1
∏

s=p−1

A
(s)
2p S

(s)
2p

}

A
(0)
2p P

H
2px2p , (5.23)

where matrix A
(s)
2p (as defined in Equation 4.50) consist of four matrices, including

one permutation matrix. The terms U
(p−1)
2p , S

(s)
2p , and PH

2p are permutation matrices.

Therefore, the upper bound of ||REXN
||2 on the computation of an N -point Nikara

FCT is

||REXN
||2 ≤ (1 + ǫmach)

(3p+1)N − 1 (5.24)

Translation FCT

The computation of an N -point Translation FCT, as described in Equations

4.64, consists of five matrices to describe the DFTN matrix. The floating point

computation of XN is described as

F l(XN) = (IN +REXN
)SFNL

N
N/2(DCT

II

N/2⊕DCT
IV

N/2)(DFT2⊗ IN/2)(IN/2⊕ ĪN/2)xN

(5.25)
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where LN
N/2 and (IN/2⊕ ĪN/2) are a permutation matrices. Therefore, the upper bound

of ||REXN
||2 on the computation of an N -point Translation FCT is

||REXN
||2 ≤ (1 + ǫmach)

3N − 1 (5.26)

Normwised Relative Error Estimations

Table 5.5 provides the upper bound of ||ǫXN
||2, as defined in Equation 4.71,

of the N -point DCT treatments. These values show that the Direct DCT had the

lowest |ǫXN
| upper bound as N increases.

Table 5.5 : Upper bound of ||ǫXN
||2 of the N -point DCT treatments.

N κ2(DCTN)
||ǫXN

||2 = ||REXN
||2κ2(DCTN)

Direct DCT Nikara FCT Translation FCT
2 ≤ 2 + 2−23 ≤ 2−20 ≤ 2−19 < 2−19

4 < 2− 2−22 ≤ 2−19 < 2−17 < 2−18

8 < 2− 2−26 ≤ 2−18 < 2−15 < 2−17

16 < 2− 2−24 ≤ 2−17 < 2−14 < 2−16

32 < 2 + 2−26 ≤ 2−16 ≤ 2−13 < 2−15

64 < 2− 2−24 ≤ 2−15 < 2−11 < 2−14

Error Analysis Validation

Table 5.6 shows the ranges of the experimental ||ǫXN
||2 of the DCT treatments.

As observed, the ranges are lower than the ||ǫXN
||2 upper bounds estimation for these

treatments (Table 5.5 ). The ranges of the Direct DCT were lower than those of

the FCTs treatments as N increases. This behavior was also observed in the forward

error analysis, proving a relationship between the estimations with the magnitude of

the experimental data ranges. Also, was observed that the ranges of the experimental

||ǫXN
||2 of the Nikara and Translation FCTs were similar. This validates the forward

error analysis results with the experimental data of the DCT treatments.
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Table 5.6 : Ranges of experimental ||ǫXN
||2 of the DCT structures

N -point Direct DCT Nikara FCT Translation FCT
2 2−32 < ||ǫXN

||2 < 2−23 2−30 < ||ǫXN
||2 < 2−23 2−30 < ||ǫXN

||2 < 2−23

4 2−28 < ||ǫXN
||2 < 2−23 2−27 < ||ǫXN

||2 < 2−21 2−26 < ||ǫXN
||2 < 2−21

8 2−27 < ||ǫXN
||2 < 2−22 2−25 < ||ǫXN

||2 < 2−21 2−24 < ||ǫXN
||2 < 2−21

16 2−25 < ||ǫXN
||2 < 2−22 2−23 < ||ǫXN

||2 < 2−20 2−23 < ||ǫXN
||2 < 2−20

32 2−25 < ||ǫXN
||2 < 2−21 2−22 < ||ǫXN

||2 < 2−19 2−22 < ||ǫXN
||2 < 2−19

64 2−24 < ||ǫXN
||2 < 2−21 2−20 < ||ǫXN

||2 < 2−18 2−20 < ||ǫXN
||2 < 2−18

5.2 Statistical Analysis

The purpose of the statistical analysis was to determine if the experimental

normwise relative error (experimental data) differences between the discrete transform

treatments were statistically significant.

First an Anderson-Darling (AD) test was performed to the treatments experi-

mental data [27]. The AD test determines if the treatments experimental data fol-

lowed a normal distribution at a significance level of 0.05. The AD test null and

alternative hypotheses were:

H0: The data from treatment y is from a normal distribution.

H1: The data from treatment y is not from a normal distribution.

The AD test statistic was defined as

A2
y = −ny −

ny
∑

i=1

2i− 1

ny

[

ln(F (yi)) + ln(1− F (yny+1−i))
]

(5.27)

where ny refers to the sample size of the treatment y, yi refers to the sample i of the

ordered sample set of y, and F (yi) is defined as

F (yi) = P (yi) (5.28)

The null hypothesis is rejected if the AD test statistic, A2
y, is higher than the critical

value of the theoretical normal distribution at a 0.05 significance level.

From the 54 all the treatments experiments, 16% of experimental data distribu-

tions rejected the null hypothesis of the AD test. This means that the continuous
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distribution of the treatments experimental data did not follow a normal distribution.

Since transforming the treatments experimental data to fit a normal distribution could

cause misleading statistical interpretations, a non-parametric approach was used to

compare the pairs of treatments experimental data.

The non-parametric test used was a two-sample Kolmogorov-Smirnov (KS) test

[28]. This statistical test determines if the continuos distributions of two treatments

experimental data are equals, at a significance level of 0.05. The two-sample KS test

null and alternative hypotheses were:

H0: The data from treatments v and w comes from the same continuous distribution.

H1: The data from treatments v and w are from different continuous distributions.

The KS test statistic uses the cumulative distribution function (CDF) of the treat-

ments experimental data to compare their continuos distributions. The CDF, FX(x),

is defined as the probability that a random variable in the sample set X takes a value

less than or equal to x. Therefore,

FX(x) = P (X ≤ x) (5.29)

The KS test statistic is defined as

G∗
v,w = maxx(|Fv(x)− Fw(x)|) (5.30)

The null hypothesis is rejected at a significance level of 0.05 if

G∗
v,w > 1.36

√

nv + nw

nv × nw

(5.31)

where nv and nw refers to the sample size of the treatments v and w.

By plotting the CDF of the treatments, various statistical properties of the exper-

imental data can be observed. These properties include range size, range magnitudes,

minimum, maximum, and median. An examination of the treatments CDF plots was
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performed for a better understanding of the KS test results, and to observe the be-

havior of the treatments experimental data as the number of point increases. Next

are the statistical tests results and observations.

5.2.1 Discrete Fourier Transform

Table 5.7 shows the AD test results of the experimental normwise relative error

of the N -point DFT treatments. Only four out of the 18 DFT experiments failed to

reject the null hypothesis. Next are the detailed results of the two samples KS test

of the N -point DFT treatments.

Table 5.7 : AD test results of the experimental data of the DFT structures

N -point Direct DFT Cooley-Tukey FFT Pease FFT
2 H0 rejected H0 rejected H0 rejected
4 H0 rejected H0 rejected H0 rejected
8 H0 rejected H0 rejected H0 rejected
16 H0 rejected H0 not rejected H0 not rejected
32 H0 rejected H0 rejected H0 rejected
64 H0 rejected H0 not rejected H0 not rejected

Direct DFT vs. Cooley-Tukey FFT

Table 5.8 shows the KS test results of the N -point Direct DFT and Cooley-

Tukey FFT treatments experiments. These tests rejected the null hypothesis of the

KS test, therefore the difference in accuracy between these treatments were statisti-

cally significant.

Table 5.8 : KS test results of the Direct DFT and the Cooley-Tukey FFT treatments

N -point H0 P -value G∗

2 H0 rejected 2.1759× 10−130 5.4400× 10−1

4 H0 rejected 3.1267× 10−151 5.8600× 10−1

8 H0 rejected 0 9.9900× 10−1

16 H0 rejected 0 1.0000
32 H0 rejected 0 1.0000
64 H0 rejected 0 1.0000
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Figure 5.1 shows the CDF plots of these treatments experimental data of

the N -point DFT computation. In these plots the differences in range, and range

magnitudes between the treatments experimental data are visible. These differences

are proof that the Direct DFT and Cooley-Tukey FFT treatments provide different

accuracy. In these CDF plots we observed that the range magnitude of the Direct

DFT experimental data was lower than the Cooley-Tukey FFT. This means that the

Direct DFT treatment provides higher accuracy than the Cooley-Tukey FFT.
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Figure 5.1 : CDF plots of the N -point Direct DFT and Cooley-Tukey FFT Exper-
imental Data

Figure 5.2 shows the CDF plots of the experimental data of these treatments

N -point DFT computation. It was observed that as the number of point of the DFT

computation increases, the range magnitude of the treatments experimental data

increases. But the difference observed between these treatments was that the range

magnitude of the Cooley-Tukey FFT experimental data increased at a higher scale.
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Figure 5.2 : CDF plots of the Direct DFT and Cooley-Tukey FFT Experimental
Data

Direct DFT vs. Pease FFT

Table 5.9 shows the KS test results of the N -point Direct DFT and Pease

FFT treatments experiments. These tests rejected the null hypothesis of the KS

test, therefore the differences in accuracy between these treatments were statistically

significant.

Figure 5.3 shows the CDF plots of these treatments experimental data of the N -

point DFT computation. In these plots the differences in range, and range magnitudes

between the treatments experimental data are visible. These differences are proof that

the Direct DFT and Pease FFT treatments provide different accuracy. In the CDF

plots we observed that the range magnitude of the Direct DFT experimental data
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Table 5.9 : KS test results of the Direct DFT and the Pease FFT treatments

N -point H0 P -value G∗

2 H0 rejected 2.1759× 10−130 5.4400× 10−1

4 H0 rejected 1.5907× 10−77 4.1900× 10−1

8 H0 rejected 0 9.9700× 10−1

16 H0 rejected 0 1.0000
32 H0 rejected 0 1.0000
64 H0 rejected 0 1.0000

was lower than the Pease FFT. This means that the Direct DFT treatment provides

higher accuracy than the Pease FFT.
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Figure 5.3 : CDF plots of the N -point Direct DFT and Pease FFT Experimental
Data

Figure 5.4 shows the CDF plots of the experimental data of these treatments

N -point DFT computation. It was observed that as the number of point, N , of the

DFT computation increases, the range magnitude of the treatments experimental

data increases. But the difference observed between these treatments was that the

range magnitude of the Pease FFT experimental data increased at a higher scale.
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Figure 5.4 : CDF plots of the Direct DFT and Pease FFT Experimental Data

Cooley-Tukey FFT vs. Pease FFT

Table 5.10 shows the KS test results of the N -point Cooley-Tukey and Pease

FFTs treatments experiments. Four out of the six tests rejected the null hypothesis

of the KS test, therefore the difference in accuracy of between these treatments are

statistically significant.

Table 5.10 : KS test results of the Cooley-Tukey FFT and the Pease FFT treatments

N -point H0 P -value G∗

2 H0 not rejected 1.0000 0
4 H0 rejected 8.7181× 10−27 2.4500× 10−1

8 H0 not rejected 8.2284× 10−1 2.8000× 10−2

16 H0 rejected 5.3063× 10−27 2.4600× 10−1

32 H0 rejected 1.5726× 10−73 4.0800× 10−1

64 H0 rejected 6.0397× 10−69 3.9500× 10−1
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Figure 5.5 shows the CDF plots of these treatments experimental data of the

N -point DFT computation. The CDF plots of the treatments experimental data

of the 2 and 8 -point DFT computations overlap; those were the experiments that

failed to reject the null hypothesis of the KS test. The other experiments, which

rejected the null hypothesis, we observed significant differences in the distributions of

the treatments experimental data. In these plots the distributions of the Pease FFT

treatment tented to lower values. That means that the Pease FFT treatment provide

higher accuracy than the Cooley-Tukey FFT.
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Figure 5.5 : CDF plots of the N -point Cooley-Tukey FFT and Pease FFT Experi-
mental Data

Figure 5.6 shows the CDF plots of the experimental data of these treatments

N -point DFT computation. It was observed that as the number of point, N , of the

DFT computation increases, the range magnitude of the treatments experimental

data increases.
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Figure 5.6 : CDF plots of the Cooley-Tukey and Pease FFTs Experimental Data

5.2.2 Discrete Hartley Transform

Table 5.11 shows the AD test results of the experimental normwise relative

error of the N -point DHT treatments. Only three out of 18 DCT experiments failed

to reject the null hypothesis. Next are the detailed results of the two samples KS test

of the N -point DHT treatments.

Table 5.11 : AD test results of the experimental data of the DHT structures

N -point Direct DHT Bracewell FHT Hou FHT
2 H0 rejected H0 rejected H0 rejected
4 H0 rejected H0 rejected H0 rejected
8 H0 rejected H0 rejected H0 rejected
16 H0 rejected H0 not rejected H0 rejected
32 H0 rejected H0 rejected H0 not rejected
64 H0 rejected H0 rejected H0 not rejected
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Direct DHT vs. Bracewell FHT

Table 5.12 shows the KS test results of the N -point Direct DHT and Bracewell

FHT treatments experiments. These tests rejected the null hypothesis of the KS

test, therefore the difference in accuracy between these treatments were statistically

significant.

Table 5.12 : KS test results of the Direct DHT and the Bracewell FHT treatments

N -point H0 P -value G∗

2 H0 rejected 2.7384× 10−205 6.8300× 10−1

4 H0 rejected 2.8804× 10−24 2.3300× 10−1

8 H0 rejected 0 9.9900× 10−1

16 H0 rejected 0 1.0000
32 H0 rejected 0 1.0000
64 H0 rejected 0 1.0000

Figure 5.7 shows the CDF plots of these treatments experimental data of

the N -point DHT computation. In these plots we observed significant differences in

distribution, range, and range magnitude between the treatments experimental data.

This proof a difference in accuracy between these treatments, in which the Direct

DHT provides the higher accuracy.

Figure 5.8 shows the CDF plots of the experimental data of these treatments

N -point DHT computation. It was observed that as the number of point, N , of the

DHT computation increases, the range magnitude of the treatments experimental

data increases. But the difference observed between these treatments was that the

range magnitude of the Bracewell FHT experimental data increased at a higher scale.
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Figure 5.7 : CDF plots of the N -point Direct DHT and Bracewell FHT Experimental
Data
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Figure 5.8 : CDF plots of the Direct DHT and Bracewell FHT Experimental Data
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Direct DHT vs. Hou FHT

Table 5.13 shows the KS test results of the N -point Direct DHT and Hou

FHT treatments experiments. These tests rejected the null hypothesis of the KS

test, therefore the difference in accuracy between these treatments were statistically

significant.

Table 5.13 : KS test results of the Direct DHT and the Hou FHT treatments

N -point H0 P -value G∗

2 H0 rejected 2.7384× 10−205 6.8300× 10−1

4 H0 rejected 1.2686× 10−178 6.3700× 10−1

8 H0 rejected 0 9.9600× 10−1

16 H0 rejected 0 1.0000
32 H0 rejected 0 1.0000
64 H0 rejected 0 1.0000

Figure 5.9 shows the CDF plots of these treatments experimental data of

the N -point DHT computation. We observed in these plots significant differences in

distribution, range, and range magnitudes between the treatments experimental data.

These are proof that the treatments provide different accuracy. In these plots the

range magnitude of the Direct DHT experimental data were lower than the Bracewell

FHT, therefore Direct DHT treatment provides higher accuracy.

Figure 5.10 shows the CDF plots of the experimental data of these treatments

N -point DHT computation. It was observed that as the number of point, N , of the

DHT computation increases, the range magnitude of the treatments experimental

data increases. But the difference observed between these treatments was that the

range magnitude of the Hou FHT experimental data increased at a higher scale.
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Figure 5.9 : CDF plots of the N -point Direct DHT and Hou FHT Experimental
Data
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Figure 5.10 : CDF plots of the Direct DHT and Hou FHT Experimental Data
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Bracewell FHT vs. Hou FHT

Table 5.14 shows the KS test results of the N -point Bracewell and Hou FHTs

treatments experiments. Five out of the six tests rejected the null hypothesis of

the KS test, therefore the difference in accuracy of between these treatments were

statistically significant.

Table 5.14 : KS test results of the Bracewell FHT and the Hou FHT treatments

N -point H0 P -value G∗

2 H0 not rejected 1.0000 0
4 H0 rejected 4.9708× 10−102 4.8100× 10−1

8 H0 rejected 6.6442× 10−4 8.9000× 10−2

16 H0 rejected 3.6717× 10−94 4.6200× 10−1

32 H0 rejected 1.5461× 10−20 2.1400× 10−1

64 H0 rejected 3.4097× 10−8 1.3300× 10−1

Figure 5.11 shows the CDF plots of these treatments experimental data of the

N -point DHT computation. The CDF plots of the treatments experimental data of

the 2-point DHT computation overlap, those were the experiments that failed to reject

the null hypothesis of the KS test. In the other plots, where the null hypothesis was

rejected, we observed differences in their distributions and ranges of the treatments

experimental data. Also, that most of the distributions of the Hou FHT treatment

tended to lower values than the Bracewell FHT. Therefore, the Hou FHT treatment

provides the higher accuracy.

Figure 5.12 shows the CDF plots of the experimental data of these treatments

N -point DHT computation. It was observed that as the number of point, N , of the

DHT computation increases, the range magnitude of the treatments experimental

data increases.
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Figure 5.11 : CDF plots of the N -point Bracewell and Hou FHTs Experimental
Data
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Figure 5.12 : CDF plots of the Bracewell and Hou FHTs Experimental Data
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5.2.3 Discrete Cosine Transform

Table 5.15 shows the AD test results of the experimental normwise relative

error of the N -point DCT treatments. Only two out of the 18 DCT experiments

failed to reject the null hypothesis. Next are the detailed results of the two samples

KS test of the N -point DCT treatments.

Table 5.15 : AD test results of the experimental data of the DCT structures

N -point Direct DCT Nikara FCT Translation FCT
2 H0 rejected H0 rejected H0 rejected
4 H0 rejected H0 rejected H0 rejected
8 H0 rejected H0 rejected H0 not rejected
16 H0 rejected H0 rejected H0 rejected
32 H0 rejected H0 rejected H0 rejected
64 H0 rejected H0 not rejected H0 rejected

Direct DCT vs. Nikara FCT

Table 5.16 shows the KS test results of the N -point Direct DCT and Nikara

FCT treatments experiments. These tests rejected the null hypothesis of the KS

test, therefore the difference in accuracy between these treatments were statistically

significant.

Table 5.16 : KS test results of the Direct DCT and the Nikara FCT treatments

N -point H0 P -value G∗

2 H0 rejected 2.8793× 10−5 1.0500× 10−1

4 H0 rejected 9.7020× 10−315 8.4600× 10−1

8 H0 rejected 0 9.2200× 10−1

16 H0 rejected 0 9.9700× 10−1

32 H0 rejected 0 1.0000
64 H0 rejected 0 1.0000

Figure 5.13 shows the CDF plots of these treatments experimental data of the

N -point DCT computation. In these plots the significant differences in distributions,

range, and range magnitude between these treatments proof a difference in their

accuracy. In these CDF plots we observed that the range magnitude of the Direct
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DCT experimental data was lower than the Nikara FCT. This means that the Direct

DCT treatment provides the higher accuracy than the Nikara FCT.
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Figure 5.13 : CDF plots of the N -point Direct DCT and Nikara FCT Experimental
Data

Figure 5.14 shows the CDF plots of the experimental data of these treatments

N -point DCT computation. It was observed that as the number of point, N , of the

DCT computation increases, the range magnitudes of the treatments experimental

data increases. But the difference observed between these treatments was that the

range magnitude of the Nikara FCT experimental data increased at a higher scale.
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Figure 5.14 : CDF plots of the Direct DCT and Nikara FCT Experimental Data

Direct DCT vs. Translation FCT

Table 5.17 shows the KS test results of the N -point Direct DCT and Translation

FCT treatments experiments. These tests rejected the null hypothesis of the KS

test, therefore the difference in accuracy between these treatments were statistically

significant.

Table 5.17 : KS test results of the Direct DCT and the Translation FCT treatments

N -point H0 P -value G∗

2 H0 rejected 2.8793× 10−5 1.0500× 10−1

4 H0 rejected 1.0153× 10−285 8.0600× 10−1

8 H0 rejected 0 9.6400× 10−1

16 H0 rejected 0 9.9500× 10−1

32 H0 rejected 0 1.0000
64 H0 rejected 0 1.0000
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Figure 5.15 shows the CDF plots of these treatments experimental data of the

N -point DCT computation. In these plots the significant differences in distributions,

range, and range magnitude between these treatments proof a difference in their

accuracy. Based on the range magnitude of the treatments experimental data, the

Direct DCT treatment provides the higher accuracy.
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Figure 5.15 : CDF plots of the N -point Direct DCT and Translation FCT Experi-
mental Data

Figure 5.16 shows the CDF plots of the experimental data of these treatments

N -point DCT computation. It was observed that as the number of point, N , of the

DCT computation increases, the range magnitudes of the treatments experimental

data increases. But the difference observed between these treatments was that the

range magnitude of the Translation FCT experimental data increased at a higher

scale.
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Figure 5.16 : CDF plots of the Direct DCT and Translation FCT Experimental
Data

Nikara FCT vs. Translation FCT

Table 5.18 shows the KS test results of the N -point Nikara and Translation

FCTs treatments experiments. Three out of the six tests rejected the null hypothesis

of the KS test, therefore the difference in accuracy of between these treatments were

statistically significant.

Table 5.18 : KS test results of the Nikara FCT and the Translation FCT treatments

N -point H0 P -value G∗

2 H0 not rejected 1.0000 0
4 H0 not rejected 2.5751× 10−1 4.5000× 10−2

8 H0 rejected 6.5747× 10−68 3.9200× 10−1

16 H0 rejected 1.7936× 10−4 9.6000× 10−2

32 H0 rejected 1.4756× 10−4 9.7000× 10−2

64 H0 not rejected 1.0480× 10−1 5.4000× 10−2
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Figure 5.17 shows the CDF plots of these treatments experimental data of

the N -point DCT computation. The CDF plots of the treatments experimental data

of the 2,4 and 64 -point DFT computations overlap; those were the experiments

that failed to reject the null hypothesis of the KS test. While the other plots is

notable the difference in location between the CDF plot of the treatments. The other

experiments, which rejected the null hypothesis, we observed a significant differences

in the distributions the treatments experimental data. In these plots the distributions

of the Nikara FCT treatment tented to lower values. That means that the Nikara

FCT treatment provide the higher accuracy than the Translation FCT.
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Figure 5.17 : CDF plots of the N -point Nikara and Translation FCTs Experimental
Data

Figure 5.18 shows the CDF plots of the experimental data of these treatments

N -point DCT computation. It was observed that as the number of point, N , of the

DCT computation increases, the range magnitude of the treatments experimental

data increases.
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Figure 5.18 : CDF plots of the Nikara and Translation FCTs Experimental Data

5.3 Hardware Performance

This section presents the hardware performance results of the discrete transforms

treatments evaluated. The hardware performance results includes the resources con-

sumption and latencies of the treatments FPGA synthesis. The FPGA used was the

Xilinx Virtex-7 XC7VX690T-2FFG1761C with system clock of 200 MHz.

The main FPGA hardware units used by these structures were the configurable

logic block (CLB) and digital signal processing (DSP) slices. The main logic units

that this FPGA CLB slices can generate are [29]

• Four 6-to-2 Look-up-Tables (LUTs)

• Eight Registers

• Two 8-to-1 Multiplexers (MUXs)

• One 16-to-1 Multiplexers (MUXs)
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The equation used to approximate the CLB slices consumption based on the logic

units consumptions in the Resource Consumption Report of the structures was

NCLBS =

⌈

NLUTs

4

⌉

+

⌈

NREGs

8

⌉

+

⌈

NMUX8−1

2

⌉

+NMUX16−1 (5.32)

where NLUTs, NREGs, NMUX8−1, and NMUX16−1 refers to the number of LUTs, Reg-

isters, 8-to-1 MUXs, and 16-to-1 MUXs, respectively.

The DSP slices of this FPGA, the DSP48E1 slice, support many rapid arithmetic

units as

• Multiplier

• Multiplier-Accumulator

• Multiplier-Adder

Next are the hardware performance results of the discrete transforms treatments

evaluated in this work. Due to insufficient computer resources not all the N -point

discrete transform treatments designs were synthesized and some of the synthesized

designs were not able to produce the timing reports for the latency performance. The

detailed hardware performance results are in Appendix C.

5.3.1 Discrete Fourier Transform

Figures 5.19 and 5.20 show the FPGA CLB and DSP slices consumption of

the N -point DFT treatments designs. These results denote that the N -point Direct

DFT treatment consumed more FPGA resources than the N -point FFTs treatments.

The treatments that consumed less slices was the N -point Pease FFT treatment. It

was also observed that as N increases, the amount of slices consumption of the DFT

treatments designs increases.

Figure 5.21 shows the total latency of the N -point DFT treatments designs. In

this plot was observed that the Direct DFT treatment had the highest total latency

in most of the N -point DFT designs. Also, that the N -point Pease FFT treatment

had the lowest total latency.
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Figure 5.19 : FPGA CLB Slices consumption of the N -point DFT treatments
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Figure 5.21 : Total latency of the N -point DFT treatments

5.3.2 Discrete Hartley Transform

Figure 5.22 shows the FPGA CLB slices consumption of the N -point DHT

treatments designs. These results denote that the N -point Direct DHT treatment

consumed more FPGA resources than the FHTs treatments. Its was observed in this

plot that the amount of FPGA resources consumption of the Bracewell and Hou FHTs

treatments was similar. In this plot we observed that as N increases, the amount of

slices consumption of the DHT treatments designs increases.

Figure 5.23 shows the total latency of the N -point DHT treatments designs.

It was observed in this plot that the N -point Direct DHT treatment designs had the

highest total latency. Also, that the N -point Bracewell and Hou FHTs treatments

designs had similar total latency. But the Hou FHT treatment had the lowest total

latency.
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Figure 5.22 : FPGA CLB Slices consumption of the N -point DHT treatments
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Figure 5.23 : Total latency of the N -point DHT treatments
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5.3.3 Discrete Cosine Transform

Figures 5.24 and 5.25 show the FPGA CLB and DSP slices consumption

of the N -point DCT treatments designs. These results show that the N -point Direct

DCT treatment had the highest FPGA resource consumption. Also, showed that the

N -point Nikara FCT treatment designs had the lowest FPGA resource consumption.

Its was observed that as N increases, the amount of slices consumption of the DCT

treatments designs increases.

Figure 5.26 shows the total latency of the N -point DCT treatments designs.

This plot shows that the Direct DHT treatment had the highest total latency in most

of the N -point DCT designs. Also, that the N -point Translation FCT treatment had

the lowest total latency.
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5.4 Results Discussion

Next are the accuracy and performance results discussion of the evaluated dis-

crete transforms treatments.

5.4.1 Discrete Fourier Transform

The error analysis of the DFT treatments shows that the N -point Direct DFT

treatment had the lowest normwise relative error upper bound. In the validation of

the error analysis it was observed that experimental normwise relative error range of

the N -point Direct DFT treatment was lower than the FFTs treatments.

The statistical analysis of the DFT treatments determined a significant differ-

ence between the treatments experimental data distributions. This means that the

treatment used for the DFT computation has its individual impact in accuracy, which

is characterized by their factorization of the DFT matrix. In the statistical analy-

sis it was observed that as the number of point of the DFT computation increases,

the range magnitude of the treatments experimental data increases. The significant

difference between the DFT treatments was that the range magnitude of the FFTs

treatments increased at higher scales. Therefore, the Direct DFT treatment provides

higher accuracy as the resolution of the DFT computation increases. Between the

FFTs treatments, the Pease FFT provides higher accuracy than the Cooley-Tukey

FFT.

The hardware performance results of the DFT treatments showed that the Direct

DFT designs had the largest FPGA resources consumption; while the Pease FFT

designs had the lowest resources consumption. In the latency results of the treatments

designs we observed that most of the Direct DFT designs had the highest total latency.

These hardware performance results agree with the theory of FFTs treatments, that

these reduce the amount arithmetic operation. Therefore, the treatment used for

DFT computation has a different impact in the hardware performance than other.
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5.4.2 Discrete Hartley Transform

During the error analysis of the DHT treatments, two characteristics were ob-

served. First we observed that the Direct DHT treatment had the lowest normwise

relative error upper bound. The second was that the normwise relative error upper

bound of the Bracewell and Hou FHTs treatments were the same. In the validation

of the error analysis of these treatments the first characteristic was validated, the ex-

perimental normwise relative error range of the N -point Direct DHT treatment was

lower than the FHTs treatments. The second characteristic was also validated, the

experimental normwise relative error range of the N -point Bracewell and Hou FHTs

treatments were similar and below the error analysis estimations.

In the statistical analysis of the DHT treatments was determined a significant

difference between the treatments experimental data distributions. This result means

that although the experimental normwise relative error range of theN -point Bracewell

and Hou FHTs structures were similar, their distributions were not the same. There-

fore, the treatment used for the DHT computation has its individual impact in ac-

curacy, which is characterized by their factorization of the DHT matrix. In the

statistical analysis it was observed that as the number of point of the DHT compu-

tation increases, the range magnitude of the treatments experimental data increases.

The significant difference between the DHT treatments was that the range magnitude

of the FHTs treatments increased at higher scales. Therefore, the Direct DHT treat-

ment provides higher accuracy as the resolution of the DHT computation increases.

Between the FHTs treatments, the Hou FHT provides higher accuracy.

The hardware performance results of the DHT treatments showed that the Di-

rect DHT designs had the largest FPGA resources consumption and highest latencies

than the FHTs treatments. We also observed that the hardware performance of the

N -point Bracewell and Hou FHTs designs were similar; but the Hou FHT treatment

had the lowest resource consumption and total latency. The main difference between
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these FHTs treatments is that the Bracewell FHT is a decimation-in-time formula-

tion, while the Hou FHT is a decimation-in-frequency formulation. These hardware

performance results are proportional to the theory of these treatments, in terms of

their reduction of arithmetic operations.

5.4.3 Discrete Cosine Transform

In the error analysis of the DCT treatments was observed that the N -point Di-

rect DCT treatment had the lowest normwise relative error upper bound. During

the validation of the error analysis we observed that the experimental normwise rel-

ative error range of the N -point Direct DCT treatment was lower than the FCTs

treatments.

The statistical analysis of the DCT treatments determined a significant differ-

ence between the treatments experimental data distributions. This means that the

treatment used for the DCT computation has its individual impact in accuracy, which

is characterized by their factorization of the DCT matrix. In the statistical analy-

sis it was observed that as the number of point of the DCT computation increases,

the range magnitude of the treatments experimental data increases. The significant

difference between the DCT treatments was that the range magnitude of the FCTs

treatments increased at higher scales. Therefore, the Direct DFT treatment provides

higher accuracy as the resolution of the DCT computation increases. Between the

FCTs treatments, the Nikara FCT provides higher accuracy.

In the hardware performance results of the DCT treatment we observed that the

Direct DCT designs had the highest FPGA resources consumption, and the highest

latencies in most of the designs. We also observed that most of the Nikara FCT

designs had the lowest resources consumptions. But, most of the Translation FCT

designs had the lowest latencies. Therefore, the treatment used for the DCT compu-

tation has a different impact in the hardware performance than other treatments.



Chapter 6

Recommendations and Contributions

6.1 Recommendations

The results of this work showed a tradeoff between accuracy and hardware perfor-

mance of the discrete transforms treatments. It was observed that the Direct discrete

transforms treatments provided higher accuracy than the fast algorithms treatments,

but its hardware performance was in disadvantage. Improvements to the hardware

design of the direct discrete transform treatments can be performed to reduce re-

sources consumption or latency. A sequential design approach is recommended to

reduce hardware resource consumption. This approach reuses arithmetic cores (i.e.

adders/subtracters, multiplier, sum of products, stages, etc) by introducing memory

and data addressing blocks to the design [30]. The main drawback of the sequen-

tial design approach is that increments the total latency of the designs. To improve

the total latency, its recommended the utilization of fast arithmetic operators units

(i.e. adders/subtracters, multipliers) [5]. The disadvantage of these fast units is that

consumes a higher amount of hardware resources.

The arithmetic structures of some of the fast algorithms treatments allow for

structure modifications to improve the accuracy. The treatments are those that im-

plement sum of products; i.e. Cooley-Tukey FFT, the Bracewell and Hou FHTs and

the Translation FCT. A method to improve the accuracy of these treatments was

discussed by Wilkinson [4]. The method sorts the elements of a sum of elements

operator,
∑N

i=0 ai, in ascending order of their value then proceed to the sum of the
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sorted elements. This method tries to avoid the cancelation of elements. The disad-

vantage of this method is that the sorting unit increments the resource consumption

and latency of the treatments.

To improve the accuracy of the Pease FFT and Nikara FCT treatments is recom-

mended the utilization of floating point arithmetic units with higher precision. This

method will impact the hardware performance of these treatments.

A future work could be the implementation of the previous recommendations to

observe their effect in accuracy and hardware performance. Also, since the platform

used for FPGA synthesis caused some limitations in this work, a future consideration

would be using a different platform with more efficient memory usage in the computer

host.

6.2 Contributions

The main contributions of this work include:

• A method to study the accuracy and hardware performance of the discrete trans-

forms and their fast algorithms. The same method can be adjusted and applied to

other arithmetic formulations.

• General estimations of the normwise relative error of the discrete transforms and

their fast algorithms evaluated.

• Establishment that the treatment used for the computation of a discrete transform

has its individual impact in the accuracy, which is characterized by their discrete

transform factorization.

• Establishment of the existence of a tradeoff between the accuracy and the hardware

performance of the discrete transforms and their fast algorithms.

• Recommendations to improve the hardware performance of the discrete transforms

formulation with higher accuracy.

• Recommendations to improve the accuracy of discrete transform fast algorithms.



Chapter 7

Conclusions

A study of accuracy and performance of three discrete transforms and their

fast algorithms was performed. The transforms evaluated were the Fourier (DFT),

Hartley (DHT), and cosine (DCT). The DFT treatments evaluated were the Direct

DFT, and the Cooley-Tukey and Pease Fast Fourier transforms (FFTs). The DHT

treatments evaluated were the Direct DHT, and the Bracewell and Hou Fast Hartley

transforms (FHTs). The DCT treatments evaluated were the Direct DCT, and the

Nikara and Translation Fast Cosine transforms (FCTs).

The method established in this study consists of accuracy and hardware per-

formance analyses. The accuracy analysis combined approximation and statistical

methods to quantify error and determine the differences and similitudes between

the discrete transforms and their fast algorithms. The hardware performance anal-

ysis compared the resource consumption and latency of the treatments based on

their FPGA synthesis. These methods served to determine which treatment pro-

vided the highest accuracy and what were their hardware performance implications.

This method can be adjusted and used in other arithmetic formulations and their fast

algorithms. By using this methodology a better understanding of how the arithmetic

structure of a formulation affects its accuracy and hardware performance is achieved.

The results of this study show a tradeoff between the accuracy and hardware

performance properties of the discrete transforms treatments. The treatments with

lower normwise relative error (higher accuracy), provided higher FPGA resources con-

sumption and latencies; and vice versa. In the accuracy analysis the Direct discrete
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transforms treatment provided the higher accuracy. Between the FFT treatments,

Pease provided higher accuracy and better hardware performance than the Cooley-

Tukey. The FHT treatments showed similar results in the forward error analysis,

but the statistical analysis showed a significant difference in the experimental norm-

wise relative error. Where the Hou FHT treatment provide higher accuracy than the

Bracewell. The hardware performance of the FHT treatments were similar. The ac-

curacy analysis of the FCT treatments showed a significant difference in the accuracy,

in the Nikara FCT treatment provided a higher accuracy.

In the accuracy analysis we observed that as the resolution of the discrete trans-

form computation increases, the range magnitude of the treatments experimental

normwise relative error increases. The differences observed between the treatments

was that the range magnitude of the fast algorithms incremented at a higher scale.

These results showed a significant difference in accuracy between the discrete

transforms and their fast algorithms. Therefore the hypothesis of this work is ac-

cepted.
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Appendix A

MATLAB Code of the Software Designs

A.1 Discrete Fourier Transform

function results = FT Simulation( AlgType,data,N,S,DP )

N=double(N);

if DP==0

results(1:S,1:N)=single(0);

if AlgType==1

cDFTs(1:N,1:N)=single(0);

for row=single(1:1:N)

for col=single(1:1:N)

angle=((pi*2*(row-1)*(col-1))/N);

cDFTs(row,col)=single(exp(-1i*angle));

end

end

for s=1:1:S

for row=1:1:N

%SOP

partialResult=single(0);

for col=1:1:N

partialResult=CASim SP(partialResult,...

CMSim SP(data(s,col),cDFTs(row,col)));

end

results(s,row)=partialResult;

end

end

elseif AlgType==2
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cDFTs(1:N/2,1:N/2)=single(0);

for row=single(1:1:N/2)

for col=single(1:1:N/2)

angle=single((pi*4*(row-1)*(col-1))/N);

cDFTs(row,col)=single(exp(-1i*angle));

end

end

for s=1:1:S

dataP=PERM(data(s,1:N),'STn',2);

dSE=dataP(1:N/2);

dSO=dataP((N/2)+1:N);

for row=single(1:1:N/2)

PRE=single(0);

PRO=single(0);

% SOP

for col=1:1:N/2

PRE=CASim SP(PRE,CMSim SP(dSE(col),cDFTs(row,col)));

PRO=CASim SP(PRO,CMSim SP(dSO(col),cDFTs(row,col)));

end

angle=single((2*pi*(row-1))/N);

twf=single(exp(-1i*angle));

PROM=CMSim SP(PRO,twf);

results(s,row)=CASim SP(PRE,PROM);

results(s,row+(N/2))=CASim SP(PRE,-PROM);

end

end

else%if AlgType==3

n=log2(N);

twf(1:n,1:N/2)=single(0);

for st=n:-1:1

row=1;

for m=1:1:2ˆ(n-st)

for bf=1:1:2ˆ(st-1)



j=single((m-1)*(2ˆ(st-1)));

angle=single((2*pi*j)/N);

twf(st,row)=single(exp(-1i*angle));

row=row+1;

end

end

end

StageResult(1:n+1,1:N)=single(0);

for s=1:1:S

StageResult(n+1,1:N)=PERM(data(s,1:N),'BR',0);

for st=n:-1:1

for k=1:1:N/2

CM RESULT=CMSim SP(StageResult(st+1,k*2),twf(st,k));

BFResult((k*2)-1)=CASim SP(StageResult(st+1,(k*2)-1),...

CM RESULT);

BFResult(k*2)=CASim SP(StageResult(st+1,(k*2)-1),...

-CM RESULT);

end

StageResult(st,1:N)=PERM(BFResult,'STn',2);

end

results(s,1:N)=StageResult(1,1:N);

end

end

else

results(1:S,1:N)=0;

cDFTs(1:N,1:N)=0;

for row=single(1:1:N)

for col=single(1:1:N)

angle=single(((pi*2*(row-1)*(col-1))/N));

cDFTs(row,col)=double(single(exp(-1i*angle)));

end

end

for s=1:1:S %S:SET



for row=1:1:N

%SOP

partialResult=double(0);

for col=1:1:N

partialResult=CASim DP(partialResult,...

CMSim DP(data(s,col),cDFTs(row,col)));

end

results(s,row)=partialResult;

end

end

end

end

A.2 Discrete Hartley Transform

function results = HT Simulation( AlgType,data,N,S,DP )

results(1:S,1:N)=0;

if DP==0

if AlgType==1

dht(1:N,1:N)=single(0);

for row=single(1:1:N)

for col=single(1:1:N)

angle=single((2*pi*(row-1)*(col-1))/N);

dht(row,col)=single(single(cos(angle))+single(sin(angle)));

end

end

for s=1:1:S

for row=1:1:N

%SOP

partialResult=single(0);

for col=1:1:N

partialResult=FlPASim SP(partialResult,...

FlPMSim SP(data(s,col),dht(row,col)));

end



results(s,row)=partialResult;

end

end

elseif AlgType==2

dhtE(1:N/2,1:N/2)=single(0);

dhtO(1:N/2,1:N/2)=single(0);

for row=single(1:1:N/2)

for col=single(1:1:N/2)

angleE=single((2*pi*(row-1)*(col-1))/(N/2));

dhtE(row,col)=single(single(cos(angleE))...

+single(sin(angleE)));

angleO=single((2*pi*(row-1)*(col-(1/2)))/(N/2));

dhtO(row,col)=single(single(cos(angleO))...

+single(sin(angleO)));

end

end

for s=1:1:S

%STRIDE-2 PERM

dataP=PERM(data(s,1:N),'STn',2);

dPE(1:N/2)=dataP(1:N/2);

dPO(1:N/2)=dataP((N/2)+1:N);

for row=1:1:N/2

PRE=single(0);

PRO=single(0);

%SOP

for col=1:1:N/2

PRE=FlPASim SP(PRE,FlPMSim SP(dPE(col),dhtE(row,col)));

PRO=FlPASim SP(PRO,FlPMSim SP(dPO(col),dhtO(row,col)));

end

results(s,row)=FlPASim SP(PRE,PRO);

results(s,row+(N/2))=FlPASim SP(PRE,-PRO);

end

end



else%if AlgType==3

dhtE(1:N/2,1:N/2)=single(0);

dhtO(1:N/2,1:N/2)=single(0);

for row=single(1:1:N/2)

for col=single(1:1:N/2)

angleE=single((2*pi*(row-1)*(col-1))/(N/2));

dhtE(row,col)=single(single(cos(angleE))...

+single(sin(angleE)));

angleO=single((2*pi*(row-(1/2))*(col-1))/(N/2));

dhtO(row,col)=single(single(cos(angleO))...

+single(sin(angleO)));

end

end

F2 E(1:N/2)=single(0);

F2 O(1:N/2)=single(0);

for s=1:1:S

PREven(1:N/2)=data(s,1:N/2);

PROdd(1:N/2)=data(s,(N/2)+1:N);

for row=1:1:N/2

F2 E(row)=FlPASim SP(PREven(row),PROdd(row));

F2 O(row)=FlPASim SP(PREven(row),-PROdd(row));

end

PR(1:N)=single(0);

for row=1:1:N/2

%SOP

PRE=single(0);

PRO=single(0);

for col=1:1:N/2

PRE=FlPASim SP(PRE,FlPMSim SP(F2 E(col),dhtE(row,col)));

PRO=FlPASim SP(PRO,FlPMSim SP(F2 O(col),dhtO(row,col)));

end



PR(row)=PRE;

PR(row+(N/2))=PRO;

end

%STRIDE-2 PERM

results(s,1:N)=PERM(PR,'STn',N/2);

end

end

else

dht(1:N,1:N)=0;

for row=single(1:1:N)

for col=single(1:1:N)

angle=single((2*pi*(row-1)*(col-1))/N);

dht(row,col)=double(single(cos(angle)+sin(angle)));

end

end

for s=1:1:S

for row=1:1:N

%SOP

partialResult=0;

for col=1:1:N

partialResult=FlPASim DP(partialResult,...

FlPMSim DP(data(s,col),dht(row,col)));

end

results(s,row)=partialResult;

end

end

end

end

A.3 Discrete Cosine Transform

function results = CT Simulation( AlgType,data,N,S,DP)

n=log2(N);

results(1:S,1:N)=0;



if DP==0

if AlgType==1

cons(1:N)=single(0);

cons(1)=(1/single(N))ˆ(1/2);

cons(2:N)=(2/single(N))ˆ(1/2);

c(1:N,1:N)=single(0);

for row=single(1:1:N)

for col=single(1:1:N)

angle=single((pi*(row-1)*((col-1)+(1/2)))/N);

c(row,col)=single(cos(angle));

end

end

for s=1:1:S

for row=single(1:1:N)

partialResult=single(0);

%SOP

for col=single(1:1:N)

partialResult=FlPASim SP(partialResult,...

FlPMSim SP(single(data(s,col)),c(row,col)));

end

results(s,row)=FlPMSim SP(partialResult,cons(row));

end

end

elseif AlgType==2

for s=1:1:S

cons=(2/single(N))ˆ(1/2);

dataP(1:N)=single(data(s,1:N));

% HADAMARD PERMUTATION

dataP(1:N)=single(PERM(dataP(1:N),'Ha',0));

% A(0)

st=0;

dataP(1:N)=single(ID N F 2(dataP(1:N),0));

dataP(1:N)=single(PERM(dataP(1:N),'H',st));



dataP(1:N)=single(DM(dataP(1:N),CT A2 COEF(st,N),0));

dataP(1:N)=single(CT A2 MN(dataP(1:N),st));

for st=1:1:n-1

% [I {N/2ˆ(S+1)} (X) Pˆ{T} {2ˆ(S+1),2}]

dataP(1:N)=single(PERM(dataP(1:N),'S',st));

dataP(1:N)=single(ID N F 2(dataP(1:N),0));

dataP(1:N)=single(PERM(dataP(1:N),'H',st));

dataP(1:N)=single(DM(dataP(1:N),CT A2 COEF(st,N),0));

dataP(1:N)=single(CT A2 MN(dataP(1:N),st));

end

dataP(1:N)=single(PERM(dataP(1:N),'U',st));

%FACTOR MULTIPLIER

for i=1:1:N

results(s,i)=single(FlPMSim SP(dataP(i),cons));

end

end

elseif AlgType==3

cons(1:N)=single(0);

cons(1)=(1/single(N))ˆ(1/2);

cons(2:N)=(2/single(N))ˆ(1/2);

cIIb(1:N/2,1:N/2)=single(0);

cIVb(1:N/2,1:N/2)=single(0);

for row=single(1:1:N/2)

for col=single(1:1:N/2)

angleIIb=single((2*pi*(row-1)*(col-(1/2)))/N);

cIIb(row,col)=single(cos(angleIIb));

angleIVb=single((2*pi*(row-(1/2))*(col-(1/2)))/N);

cIVb(row,col)=single(cos(angleIVb));

end

end

for s=1:1:S % SAMPLE

dataP(1:N)=PERM(data(s,1:N),'IIb',0);

dPFH=dataP(1:N/2);



dPSH=dataP((N/2)+1:N);

%F 2 ID N

dE(1:N/2)=single(0);

dO(1:N/2)=single(0);

for i=1:1:N/2

dE(i)=FlPASim SP(dPFH(i),dPSH(i));

dO(i)=FlPASim SP(dPFH(i),-dPSH(i));

end

PRDCTb(1:N)=single(0);

for row=1:1:N/2

PRE=single(0);

PRO=single(0);

%BEGIN SOP

for col=1:1:N/2

PRE=FlPASim SP(PRE,FlPMSim SP(dE(col),cIIb(row,col)));

PRO=FlPASim SP(PRO,FlPMSim SP(dO(col),cIVb(row,col)));

end

PRDCTb(row)=PRE;

PRDCTb(row+(N/2))=PRO;

end

dataP(1:N)=PERM(PRDCTb,'STn',N/2);

for row=1:1:N

results(s,row)=FlPMSim SP(dataP(row),cons(row));

end

end

end

else

cons(1:N)=0;

cons(1)=double((1/single(N))ˆ(1/2));

cons(2:N)=double((2/single(N))ˆ(1/2));

c(1:N,1:N)=0;

for row=single(1:1:N)

for col=single(1:1:N)



angle=single((pi*(row-1)*((col-1)+(1/2)))/N);

c(row,col)=double(single(cos(angle)));

end

end

for s=1:1:S

for row=1:1:N

%SOP

partialResult=0;

for col=1:1:N

partialResult=FlPASim DP(partialResult,...

FlPMSim DP(double(data(s,col)),c(row,col)));

end

results(s,row)=FlPMSim DP(partialResult,cons(row));

end

end

end

end



Appendix B

MATLAB Code to Generate the Hardware Designs

B.1 Discrete Fourier Transform

function FT Code Gen(Alg,N,folder)

vcode=verifyParameters(Alg,N);

if vcode==-1

disp('Invalid parameters');

return;

end

fnName=['FT' sprintf('%02d',N) ' A' num2str(Alg)];

fnFFT=[folder fnName '.vhd'];

frFFT=fopen(fnFFT(2:length(fnFFT)),'wt');

% VHDL LIBRARIES

fprintf(frFFT,'library IEEE;\n');

fprintf(frFFT,'use IEEE.std logic 1164.all;\n\n');

% STRUCTURE ENTITY

FT entity(frFFT,N,fnName);

% STRUCTURE ARCHITECTURE

fprintf(frFFT,['architecture arch' fnName ' of ' fnName ' is\n\n']);

if Alg==1

FT A1(frFFT,folder,N);

elseif Alg==2

FT A2(frFFT,folder,N);

else

FT A3(frFFT,folder,N);

end
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fprintf(frFFT,['\nend arch' fnName ';']);

fclose(frFFT);

end

Direct DFT

function FT A1( frFFT,folder,N )

fprintf(frFFT,['signal xt C:std logic vector(' ...

num2str((64*N)-1) ' downto 0);\n']);

FT A1 COEF(frFFT,N);

fprintf(frFFT,'\n');

SOP Code Gen(folder(2:length(folder)),N,1);

SOP COMP(frFFT,N,1);

fprintf(frFFT,'begin\n\n');

fprintf(frFFT, '\tCOMPLEX CONVERTION:\n');

fprintf(frFFT,['\tfor x in 0 to (' num2str(N) '-1) generate\n']);

fprintf(frFFT, '\t\txt C((64*(x+1))-1 downto (64*x)) ');

fprintf(frFFT, '<= xt((32*(x+1))-1 downto (32*x))');

fprintf(frFFT, ' & \"00000000000000000000000000000000\";\n');

fprintf(frFFT, '\tend generate COMPLEX CONVERTION;\n\n');

fprintf(frFFT,['\tSOPC GENERATION:\n\tfor k in 0 to (' ...

num2str(N) '-1) generate']);

nameRef='\tSOPC ROWx';

coef='C(k)';

Xf='Xf((64*(k+1))-1 downto (64*k))';

SOP PM(frFFT,N,nameRef, 'xt C',coef, Xf,1);

fprintf(frFFT,'\tend generate SOPC GENERATION;\n');

end

Cooley-Tukey FFT

function FT A2(frFFT,folder,N)

if N>2

Alg=['FT' sprintf('%02d',N) ' A2'];



xt Even='xtE';

Xf Even1='XfE1';

xt Odd='xtO';

Xf Odd1='XfO1';

Xf EO1='XfEO1';

Xf EO2='XfEO2';

d=FT A2 COEF(N);

fprintf(frFFT,['signal xt Stride2:std logic vector('...

num2str((32*N)-1) ' downto 0);\n']);

fprintf(frFFT,['signal ' xt Even ', ' xt Odd ':std logic vector('...

num2str((32*(N/2))-1) ' downto 0);\n']);

fprintf(frFFT,['signal ' Xf Even1 ', ' Xf Odd1 ':std logic vector('...

num2str((64*(N/2))-1) ' downto 0);\n']);

fprintf(frFFT,['signal ' Xf EO1 ', ' Xf EO2 ':std logic vector('...

num2str((64*N)-1) ' downto 0);\n']);

DM Code Gen(folder,Alg,1,d,1);

DM COMP(frFFT,Alg,N,1,1);

PERM Code Gen(folder,N,'STn',2,0);

PERM COMP(frFFT,N,'STn',2,0)

FT Code Gen(1,N/2,folder)

FT COMP(frFFT,N/2,1)

BF Code Gen(folder,1);

BF COMP(frFFT,1);

fprintf(frFFT,'begin\n\n');

PERM PM(frFFT,N,'STn',2,'Stride2 Permutation','xt','xt Stride2',0);

% FFT(N/2) EVEN ELEMENTS

fprintf(frFFT,['\n\t' xt Even '<= xt Stride2(' ...

num2str(((N/2)*32)-1) ' downto ' num2str(0) ');\n']);

FT PM(frFFT,N/2,'FT Even',xt Even,Xf Even1,1);

% FFT(N/2) ODD ELEMENTS

fprintf(frFFT,['\t' xt Odd '<= xt Stride2('...

num2str((N*32)-1) ' downto ' num2str((N/2)*32) ');\n']);

FT PM(frFFT,N/2,'FT Odd',xt Odd,Xf Odd1,1);



% DIAGONAL

fprintf(frFFT,['\n\t' Xf EO1 ' <= ' Xf Odd1 ' & ' Xf Even1 ';\n']);

DM PM(frFFT,'DIAG',Alg,1,Xf EO1, Xf EO2,1);

% BUTTERFLIES

F 2 ID N Code Gen(frFFT,N/2,Xf EO2,'Xf',1);

else %DFT OF 2 POINTS

fprintf(frFFT,['signal xtC:std logic vector(' ...

num2str((64*N)-1) ' downto 0);\n']);

fprintf(frFFT,'\n');

BF Code Gen(folder,1);

BF COMP(frFFT,1);

fprintf(frFFT,'begin\n\n');

for i=1:1:N

fprintf(frFFT,['\txtC(' num2str((i*64)-1) ' downto '...

num2str(64*(i-1)) ')']);

fprintf(frFFT,['\t<= xt(' num2str((i*32)-1) ' downto '...

num2str(32*(i-1)) ')']);

fprintf(frFFT,'\t& \"00000000000000000000000000000000\";\n');

end

xt0='xtC(63 downto 0) ';

xt1='xtC(127 downto 64)';

Xf0='Xf(63 downto 0) ';

Xf1='Xf(127 downto 64)';

BF PM(frFFT,'BF 1',xt0,xt1,Xf0,Xf1,1);

end

end

Pease FFT

function FT A3(frFFT,folder,N)

Alg=['FT' sprintf('%02d',N) ' A3'];

n=log2(N);

fprintf(frFFT,['signal xtC:std logic vector(' num2str((64*N)-1) ...

' downto 0);\n']);



FT A3 COEF(frFFT,n);

for st=1:1:(n);

fprintf(frFFT,['signal S' num2str(st) ' DM:std logic vector((64*' ...

num2str(N) ')-1 downto 0);\n']);

fprintf(frFFT,['signal S' num2str(st) ' FN:std logic vector((64*' ...

num2str(N) ')-1 downto 0);\n']);

fprintf(frFFT,['signal S' num2str(st) ' ST:std logic vector((64*' ...

num2str(N) ')-1 downto 0);\n']);

end

PERM Code Gen(folder,N,'BR',0,1);

PERM COMP(frFFT,N,'BR',0,1);

PERM Code Gen(folder,N,'STn',2,1);

PERM COMP(frFFT,N,'STn',2,1);

for i=1:1:n

DM COMP(frFFT,Alg,N,i,1)

DM Code Gen(folder,Alg,i,FT A3 COEF(i,n),1);

end

ID N F 2 COMP(frFFT,N/2,1);

ID N F 2 Code Gen(folder,N/2,1);

fprintf(frFFT,'begin\n\n');

fprintf(frFFT, '\tCOMPLEX CONVERTION:\n');

fprintf(frFFT,['\t\tfor x in 0 to (' num2str(N) '-1) generate\n']);

fprintf(frFFT, '\t\t\txtC((64*(x+1))-1 downto (64*x)) ');

fprintf(frFFT, '<= xt((32*(x+1))-1 downto (32*x))');

fprintf(frFFT, ' & \"00000000000000000000000000000000\";\n');

fprintf(frFFT, '\t\tend generate COMPLEX CONVERTION;\n');

% BIT REVERSAL PERMUTATION

PERM PM(frFFT,N,'BR',0,'BR PERM','xtC',['S' num2str(n) ' DM'],1)



for st=n:-1:1

% DIAGONAL MATRIX

DM PM(frFFT,['DM ' num2str(st)],Alg,st,['S' num2str(st) ' DM'],...

['S' num2str(st) ' FN'],1);

% (Id (N/2)(X)F 2) MATRIX

ID N F 2 PM(frFFT,['IxF' num2str(st)],N/2,['S' num2str(st) ' FN'],...

['S' num2str(st) ' ST'],1);

% STRIDE-2 PERMUTATION

if st==1

vs='Xf';

else

vs=['S' num2str(st-1) ' DM'];

end

PERM PM(frFFT,N,'STn',2,['ST PERM S' num2str(st)],...

['S' num2str(st) ' ST'],vs,1);

end

end

B.2 Discrete Hartley Transform

% function HT Code Gen(Alg,N,dir)

function HT Code Gen(Alg,N,folder)

vcode=verifyParameters(Alg,N);

if vcode==-1

disp('Invalid parameters');

return;

end

% folder=[dir '/HT RESULTS/'];

% mkdir(folder(2:length(folder)));

fnName=['HT' sprintf('%02d',N) ' A' num2str(Alg)];

fnFHT=[folder fnName '.vhd'];

frFHT=fopen(fnFHT(2:length(fnFHT)),'wt');

% LIB

fprintf(frFHT,'library IEEE;\n');



fprintf(frFHT,'use IEEE.std logic 1164.all;\n\n');

% ENTITY

HT entity(frFHT,N,fnName);

% ARCHITECTURE

fprintf(frFHT,['architecture arch' fnName ' of ' fnName ' is\n\n']);

% SIGNALS & COMPONENTS

if Alg==1

HT A1(frFHT,folder,N);

elseif Alg==2

HT A2(frFHT,folder,N);

else

HT A3(frFHT,folder,N);

end

fprintf(frFHT,['\nend arch' fnName ';']);

fclose(frFHT);

end

Direct DHT

function HT A1( frFHT,folder,N )

HT A1 COEF(frFHT,N);

fprintf(frFHT,'\n');

SOP Code Gen(folder(2:length(folder)),N,0);

SOP COMP(frFHT,N,0);

fprintf(frFHT,'begin\n\n');

for k=1:1:N

nameRef=['SOP ROW ' num2str(k)];

coef=['C' sprintf('%02d',k)];

Xf=['X f(' num2str((k*32)-1) ' downto ' num2str((k-1)*32) ')'];

SOP PM(frFHT,N,nameRef, 'x t',coef, Xf,0);

SOP Code Gen(folder(2:length(folder)),N,0);

end

end

Bracewell FHT



function HT A2( frFHT,folder,N )

fprintf(frFHT,['signal ST P:std logic vector(' ...

num2str((32*N)-1) ' downto 0);\n']);

fprintf(frFHT,['signal xt E, xt O:std logic vector(' ...

num2str((32*N/2)-1) ' downto 0);\n']);

fprintf(frFHT,['signal DIT E, DIT O:std logic vector(' ...

num2str((32*N/2)-1) ' downto 0);\n']);

fprintf(frFHT,['signal DIT:std logic vector(' ...

num2str((32*N)-1) ' downto 0);\n']);

DEC='DIT';

TorF=0;

BF Code Gen(folder,0);

BF COMP(frFHT,0);

PERM COMP(frFHT,N,'STn',2,0);

PERM Code Gen(folder,N,'STn',2,0);

%EVEN

DIT E=['HT' sprintf('%02d',N/2) ' ' DEC ' E'];

HT COMP(frFHT,N/2,DIT E);

HT DIT DIF Code Gen(N/2,folder,0,TorF);

%ODD

DIT O=['HT' sprintf('%02d',N/2) ' ' DEC ' O'];

HT COMP(frFHT,N/2,DIT O);

HT DIT DIF Code Gen(N/2,folder,1,TorF);

fprintf(frFHT,'begin\n');

PERM PM(frFHT,N,'STn',2,'STRIDE 2','x t','ST P',0);

fprintf(frFHT,['\n\txt E<=ST P((32*' ...

num2str(N/2) ')-1 downto 0);\n']);

fprintf(frFHT,['\n\txt O<=ST P((32*' ...

num2str(N) ')-1 downto (32*' num2str(N/2) '));\n']);

HT PM(frFHT,DIT E,'HT DIT EVEN','xt E','DIT E');

HT PM(frFHT,DIT O,'HT DIT ODD','xt O','DIT O');

fprintf(frFHT,'\n\tDIT<= DIT O & DIT E;\n\n');

F 2 ID N Code Gen(frFHT,N/2,'DIT','X f',0);



end

Hou FHT

function HT A3( frFHT,folder,N )

fprintf(frFHT,['signal F2 ID N:std logic vector(' ...

num2str((32*N)-1) ' downto 0);\n']);

fprintf(frFHT,['signal xt E, xt O:std logic vector(' ...

num2str((32*N/2)-1) ' downto 0);\n']);

fprintf(frFHT,['signal DIF E, DIF O:std logic vector(' ...

num2str((32*N/2)-1) ' downto 0);\n']);

fprintf(frFHT,['signal DIF:std logic vector(' ...

num2str((32*N)-1) ' downto 0);\n']);

BF Code Gen(folder,0);

BF COMP(frFHT,0);

DEC='DIF';

TorF=1;

PERM COMP(frFHT,N,'STn',N/2,0);

PERM Code Gen(folder,N,'STn',N/2,0);

%EVEN

DIF E=['HT' sprintf('%02d',N/2) ' ' DEC ' E'];

HT COMP(frFHT,N/2,DIF E);

HT DIT DIF Code Gen(N/2,folder,0,TorF);

%ODD

DIF O=['HT' sprintf('%02d',N/2) ' ' DEC ' O'];

HT COMP(frFHT,N/2,DIF O);

HT DIT DIF Code Gen(N/2,folder,1,TorF);

fprintf(frFHT,'begin\n\n');

F 2 ID N Code Gen(frFHT,N/2,'x t','F2 ID N',0);

fprintf(frFHT,['\n\txt E<=F2 ID N((32*' ...

num2str(N/2) ')-1 downto 0);\n']);

fprintf(frFHT,['\n\txt O<=F2 ID N((32*' ...

num2str(N) ')-1 downto (32*' num2str(N/2) '));\n']);

HT PM(frFHT,DIF E,'HT DIT EVEN','xt E','DIF E');



HT PM(frFHT,DIF O,'HT DIT ODD','xt O','DIF O');

fprintf(frFHT,'\n\tDIF<= DIF O & DIF E;\n');

PERM PM(frFHT,N,'STn',N/2,['STRIDE ' num2str(N/2)],'DIF','X f',0);

end

B.3 Discrete Cosine Transform

% function CT Code Gen(Alg,N,dir,bar)

function CT Code Gen(Alg,N,folder,bar)

vcode=verifyParameters(Alg,N);

if vcode==-1

disp('Invalid parameters');

return;

end

% folder=[dir '/CT RESULTS/'];

% mkdir(folder(2:length(folder)));

if bar==1 | | Alg==4

fnName=['CT' sprintf('%02d',N) ' A' num2str(Alg) ' bar'];

else

fnName=['CT' sprintf('%02d',N) ' A' num2str(Alg)];

end

fnFCT=[folder fnName '.vhd'];

frFCT=fopen(fnFCT(2:length(fnFCT)),'wt');

%VHDL LIBRARIES

fprintf(frFCT,'library IEEE;\n');

fprintf(frFCT,'use IEEE.std logic 1164.all;\n\n');

% STRUCTURE ENTITY

CT entity(frFCT,N,fnName);

% STRUCTURE ARCHITECTURE

fprintf(frFCT,['architecture arch' fnName ' of ' fnName ' is\n\n']);

if Alg==1

if bar==0

CT A1(frFCT,folder,N);

else



CT A1 bar(frFCT,folder,N);

end

elseif Alg==2

CT A2(frFCT,folder,N);

elseif Alg==3

CT A3(frFCT,folder,N);

elseif Alg==4

CT IV bar(frFCT,folder,N);

end

fprintf(frFCT,['\nend arch' fnName ';']);

fclose(frFCT);

end

Direct DCT

function CT A1(frFCT,folder,N)

CT A1 COEF(frFCT,N);

cons=single((2/N)ˆ(1/2));

cons bin=single2bin(cons);

CONS='CONS';

fprintf(frFCT,['signal ' CONS ':std logic vector(' ...

num2str(32) '-1 downto 0):= \"' cons bin '\";\n']);

fprintf(frFCT,['signal SOPs:std logic vector((32*' ...

num2str(N) ')-1 downto 0);\n']);

fprintf(frFCT,'\n');

FlPM COMP(frFCT);

SOP Code Gen(folder(2:length(folder)),N,0);

SOP COMP(frFCT,N,0);

fprintf(frFCT,'begin\n\n');

fprintf(frFCT,['\tSOP GENERATION:\n\tfor k in 0 to (' ...

num2str(N) '-1) generate\n']);

coef='C(k)';

SOP='SOPs((32*(k+1))-1 downto (32*k))';

Xf='X f((32*(k+1))-1 downto (32*k))';



CON='CONS ';

SOP PM(frFCT,N,'\tSOP ROWx', 'x t ',coef, SOP,0);

FlPM PM(frFCT,'\tFlPMx',SOP,CON,Xf);

fprintf(frFCT,'\tend generate SOP GENERATION;\n');

end

Nikara FCT

function CT A2(frFCT,folder,N)

Alg=['CT' sprintf('%02d',N) ' A2'];

n=log2(N);

% FACTOR

cons=single((2/N)ˆ(1/2));

cons bin=single2bin(cons);

CONS='CONS';

fprintf(frFCT,['signal ' CONS ':std logic vector(' ...

num2str(32) '-1 downto 0):= \"' cons bin '\";\n']);

% SIGNALS

fprintf(frFCT,['signal HaP:std logic vector((32*' ...

num2str(N) ')-1 downto 0);\n']);

% A(ST)

% [I {N/2} (X) F {2}]

for st=0:1:(n-1);

fprintf(frFCT,['signal S' num2str(st) ' FN:std logic vector((32*'...

num2str(N) ')-1 downto 0);\n']);

end

% [H NˆST]

for st=0:1:(n-1);

fprintf(frFCT,['signal S' num2str(st) ' HP:std logic vector((32*'...

num2str(N) ')-1 downto 0);\n']);

end

% [D NˆST]

for st=0:1:(n-1);

fprintf(frFCT,['signal S' num2str(st) ' Di:std logic vector((32*'...



num2str(N) ')-1 downto 0);\n']);

end

% [M NˆST]

for st=0:1:(n-1);

fprintf(frFCT,['signal S' num2str(st) ' MN:std logic vector((32*'...

num2str(N) ')-1 downto 0);\n']);

end

% [I {N/2ˆ(S+1)} (X) Pˆ{T} {2ˆ(S+1),2}]

for st=1:1:(n-1);

fprintf(frFCT,['signal S' num2str(st) ' STP:std logic vector((32*' ...

num2str(N) ')-1 downto 0);\n']);

end

% U

fprintf(frFCT,['signal UP:std logic vector((32*' ...

num2str(N) ')-1 downto 0);\n']);

% COMPONENTS

FlPM COMP(frFCT);

% HADAMARD PERM

PERM Code Gen(folder,N,'Ha',0,0);

PERM COMP(frFCT,N,'Ha',0,0);

%A(s)

% [I {N/2} (X) F {2}]

ID N F 2 Code Gen(folder,N/2,0);

ID N F 2 COMP(frFCT,N/2,0);

% [H NˆST]

for st=0:1:(n-1);

PERM Code Gen(folder,N,'H',st,0);

PERM COMP(frFCT,N,'H',st,0);

end

% [D NˆST]

for st=0:1:(n-1);

DM Code Gen(folder,Alg,st,CT A2 COEF(st,N),0);

DM COMP(frFCT,Alg,N,st,0);



end

% [M NˆST]

for st=0:1:(n-1);

CT A2 MN Code Gen(folder,N,st);

CT A2 MN COMP(frFCT,N,st);

end

% [I {N/2ˆ(S+1)} (X) Pˆ{T} {2ˆ(S+1),2}]

for st=1:1:(n-1);

PERM Code Gen(folder,N,'S',st,0);

PERM COMP(frFCT,N,'S',st,0);

end

% U

PERM Code Gen(folder,N,'U',0,0);

PERM COMP(frFCT,N,'U',0,0);

% BEGIN

fprintf(frFCT,'begin\n\n');

st=0;

STi HaP='HaP';

STi FN=['S' num2str(st) ' FN'];

STi HP=['S' num2str(st) ' HP'];

STi Di=['S' num2str(st) ' Di'];

STi MN1=['S' num2str(st) ' MN'];

%HADAMARD PERM

PERM PM(frFCT,N,'Ha',0,'HadamardPerm','x t',STi HaP,0);

% A(0)

ID N F 2 PM(frFCT,['IxF S' num2str(st)],N/2,STi HaP,STi FN,0);

PERM PM(frFCT,N,'H',st,['HP S' num2str(st)],STi FN,STi HP,0);

DM PM(frFCT,['Diag S' num2str(st)],Alg,st,STi HP,STi Di,0);

CT A2 MN PM(frFCT,['MN S' num2str(st)],N,st,STi Di,STi MN1);

for st=1:1:(n-1);

STi MN0=['S' num2str(st-1) ' MN'];

STi STP=['S' num2str(st) ' STP'];

STi FN=['S' num2str(st) ' FN'];



STi HP=['S' num2str(st) ' HP'];

STi Di=['S' num2str(st) ' Di'];

STi MN1=['S' num2str(st) ' MN'];

% [I {N/2ˆ(S+1)} (X) Pˆ{T} {2ˆ(S+1),2}]

PERM PM(frFCT,N,'S',st,['SP S' num2str(st)],STi MN0,STi STP,0);

% A(st)

ID N F 2 PM(frFCT,['IxF S' num2str(st)],N/2,STi STP,STi FN,0);

PERM PM(frFCT,N,'H',st,['HP S' num2str(st)],STi FN,STi HP,0);

DM PM(frFCT,['Diag S' num2str(st)],Alg,st,STi HP,STi Di,0);

CT A2 MN PM(frFCT,['MN S' num2str(st)],N,st,STi Di,STi MN1);

end

% U

PERM PM(frFCT,N,'U',0,'UPerm',STi MN1,'UP',0);

%FACTOR MULTIPLICATION

fprintf(frFCT,['\tFACTOR MULT:\n\tfor k in 0 to ' ...

num2str(N) '-1 generate']);

U='UP((32*(k+1))-1 downto (32*k))';

CON='CONS ';

Xf='X f((32*(k+1))-1 downto (32*k))';

FlPM PM(frFCT,'\tFlPMx',U,CON,Xf);

fprintf(frFCT,'\tend generate FACTOR MULT;\n');

end

Translation FCT

function CT A3(frFCT,folder,N)

Alg=['CT' sprintf('%02d',N) ' A3'];

xt='x t';

IIbP='IIbPerm';

F2IN='F2IN';

F2OUT='F2OUT';

STnP='STnPerm';

Xf='X f';

d=CT A3 COEF(N);



fprintf(frFCT,['signal ' IIbP ', ' F2IN ', ' F2OUT ', ' ...

STnP ':std logic vector(' num2str(32*N) '-1 downto 0);\n']);

PERM Code Gen(folder,N,'IIb',0,0);

PERM COMP(frFCT,N,'IIb',0,0);

CT Code Gen(1,N/2,folder,1);

CT COMP(frFCT,1,N/2,1);

CT Code Gen(4,N/2,folder,1);

CT COMP(frFCT,4,N/2,1);

PERM Code Gen(folder,N,'STn',N/2,0);

PERM COMP(frFCT,N,'STn',N/2,0);

DM Code Gen(folder,Alg,0,d,0);

DM COMP(frFCT,Alg,N,0,0);

BF Code Gen(folder,0);

BF COMP(frFCT,0);

%IIb PERM

fprintf(frFCT,'begin\n\n');

PERM PM(frFCT,N,'IIb',0,'IIb PERM',xt,IIbP,0);

F 2 ID N Code Gen(frFCT,N/2,IIbP,F2IN,0);

CT II IN=[F2IN '((32*' num2str(N/2) ')-1 downto 0)'];

CT II OUT=[F2OUT '((32*' num2str(N/2) ')-1 downto 0)'];

CT IV IN=[F2IN '((32*' num2str(N) ')-1 downto 32*'...

num2str(N/2) ')'];

CT IV OUT=[F2OUT '((32*' num2str(N) ')-1 downto 32*'...

num2str(N/2) ')'];

CT PM(frFCT,N/2,'CT II bar', CT II IN,CT II OUT,1,1);

CT PM(frFCT,N/2,'CT IV bar', CT IV IN,CT IV OUT,4,1);

PERM PM(frFCT,N,'STn',N/2,'STn PERM',F2OUT,STnP,0);

DM PM(frFCT,'DIAG',Alg,0,STnP,Xf,0);

end



Appendix C

Hardware Performance Details

C.1 Discrete Fourier Transform

Table C.1 : DFT Structures FPGA Resource Consumption

N -point
FPGA Resources

Structure
LUTs Registers DSP 8-to-1 16-to-1

GCB
Slices Slices Slices Muxes Muxes

2
Direct DFT 17,730 85 10 98 0 1

Cooley-Tukey FFT 3,203 0 0 19 1 0
Pease FFT 3,203 0 0 19 1 0

4
Direct DFT 85,223 425 50 498 0 1

Cooley-Tukey FFT 50,343 238 28 290 0 1
Pease FFT 21,621 68 8 144 2 1

8
Direct DFT 372,414 1,921 226 2,234 0 1

Cooley-Tukey FFT 205,550 1,054 124 1,222 0 1
Pease FFT 78,890 340 40 516 4 1

16
Direct DFT 1,555,672 8,177 962 9,450 0 1

Cooley-Tukey FFT 819,422 4,318 508 4,958 0 1
Pease FFT 234,737 1,156 136 1,524 8 1

32
Direct DFT 6,711,878 65,489 1,922 38,858 0 1

Cooley-Tukey FFT 3,259,226 17,374 2,044 19,918 0 1
Pease FFT 629,456 3,332 392 4,068 16 1
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Table C.2 : DFT Structures FPGA Latency

N -point
Latency Type

Structure Total Logic Route

2
Direct DFT 44.984 ns 13.061 ns 31.922 ns

Cooley-Tukey FFT 20.263 ns 7.946 ns 12.317 ns
Pease FFT 20.263 ns 7.946 ns 12.317 ns

4
Direct DFT 77.710 ns 22.116 ns 55.593 ns

Cooley-Tukey FFT 84.144 ns 24.002 ns 60.141 ns
Pease FFT 59.524 ns 18.502 ns 41.022 ns

8
Direct DFT 142.996 ns 40.663 ns 102.332 ns

Cooley-Tukey FFT 116.966 ns 33.438 ns 83.527 ns
Pease FFT 98.530 ns 29.245 ns 69.285 ns

C.2 Discrete Hartley Transform

Table C.3 : DFT Structures FPGA Resource Consumption

N -point
FPGA Resources

Structure
LUTs Registers DSP 8-to-1 16-to-1

GCB
Slices Slices Slices Muxes Muxes

2
Direct DHT 6,667 192 0 51 2 0

Bracewell FHT 3,256 50 0 30 2 0
Hou FHT 3,275 50 0 24 1 0

4
Direct DHT 31,815 768 0 194 10 0

Bracewell FHT 18,201 384 0 136 4 0
Hou FHT 18,058 384 0 127 6 0

8
Direct DHT 133,597 2,976 0 766 0 0

Bracewell FHT 70,339 1,440 0 406 0 0
Hou FHT 69,994 1,440 0 406 0 0

16
Direct DHT 568,256 12,096 0 3,196 0 0

Bracewell FHT 291,057 5,952 0 1,644 0 0
Hou FHT 290,559 5,952 0 1,644 0 0

32
Direct DHT 2,349,527 48,864 0 13,047 0 0

Bracewell FHT 1,188,904 24,288 0 6,626 0 0
Hou FHT 1,189,841 24,288 0 6,626 0 0



Table C.4 : DFT Structures FPGA Latency

N -point
Latency Type

Structure Total Logic Route

2
Direct DHT 30.637 ns 9.214 ns 21.422 ns

Bracewell FHT 28.924 ns 9.233 ns 19.690 ns
Hou FHT 27.903 ns 9.300 ns 18.603 ns

4
Direct DHT 66.237 ns 18.046 ns 48.190 ns

Bracewell FHT 47.128 ns 13.607 ns 33.520 ns
Hou FHT 44.175 ns 13.415 ns 30.760 ns

8
Direct DHT 126.058 ns 35.470 ns 90.587 ns

Bracewell FHT 77.341 ns 22.387 ns 54.953 ns
Hou FHT 76.238 ns 23.637 ns 52.601 ns

C.3 Discrete Cosine Transform

Table C.5 : DFT Structures FPGA Resource Consumption

N -point
FPGA Resources

Structure
LUTs Registers DSP 8-to-1 16-to-1

GCB
Slices Slices Slices Muxes Muxes

2
Direct DCT 7,534 102 12 59 2 1
Nikara FCT 5,808 68 8 44 0 1

Translation FCT 5,006 51 6 44 1 1

4
Direct DCT 31,473 340 40 238 10 1
Nikara FCT 18,078 153 18 132 0 1

Translation FCT 19,616 204 24 147 6 1

8
Direct DCT 125,408 1,224 144 824 0 1
Nikara FCT 51,407 357 42 329 0 1

Translation FCT 70,732 680 80 464 0 1

16
Direct DCT 507,035 4,624 544 3,312 0 1
Nikara FCT 135,511 833 98 861 0 1

Translation FCT 269,508 2,448 288 1,760 0 1

32
Direct DCT 2,038,931 17,952 2,112 13,280 0 1
Nikara FCT 338,557 1,921 226 2,141 0 1

Translation FCT 1,051,283 9,248 1,088 6,848 0 1



Table C.6 : DFT Structures FPGA Latency

N -point
Latency Type

Structure Total Logic Route

2
Direct DCT 36.800 ns 10.650 ns 26.150 ns
Nikara FCT 33.767 ns 9.805 ns 23.962 ns

Translation FCT 35.139 ns 10.234 ns 24.905 ns

4
Direct DCT 71.646 ns 20.112 ns 51.534 ns
Nikara FCT 71.979 ns 21.806 ns 50.173 ns

Translation FCT 49.851 ns 14.981 ns 34.870 ns

8
Direct DCT 132.218 ns 37.496 ns 94.721 ns
Nikara FCT 111.016 ns 32.616 ns 78.400 ns

Translation FCT 82.098 ns 24.843 ns 57.255 ns
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