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ABSTRACT 

 

Magnesium Diboride (MgB2) is a material recently discovered to exhibit 

superconducting properties. A trace in the behavior of the energy gaps of this material is 

performed via numerical calculations by the establishment of a theoretical model based in the 

BCS theory. Bogoliubov/Valatin transformations are applied to treat the compound in its pure 

form; later on, when impurities are included, Anderson’s theory of dirty superconductors and 

Kim/Overhauser’s observations are implemented to describe the behavior of the energy gaps 

within the dirty limit. Finally, a weak localization correction, also worked out by Kim, is 

introduced when the concentration of impurities is increased. A comparison with experimental 

data is made. It is observed that inter-band scattering is predominant within the dirty limit while 

when the weak localization correction is adopted, intra-band scattering turns predominant. 
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RESUMEN 

 

El Diboruro de Magnesio (MgB2) es un material recientemente  descubierto que exhibe 

propiedades superconductoras. Una descripción del comportamiento de las brechas de energía de 

este material es llevada a cabo usando cálculos numéricos por medio del planteo de un modelo 

teórico basado en la teoría BCS. Se aplican las transformaciones canónicas de 

Bogoluibov/Valatin para tratar el compuesto en su forma pura; luego, cuando se incluyen 

impurezas, la teoría de Anderson para superconductores “sucios” y observaciones de 

Kim/Overhauser son implementadas para la descripción del comportamiento de las brechas de 

energía dentro del límite sucio. Finalmente, se introduce una corrección por localización débil, 

también elaborada por Kim, cuando la concentración de impurezas se incrementa. Se hace una 

comparación con datos experimentales. Se observa que la dispersión inter-bandas predomina en 

el límite sucio mientras que cuando la corrección por localización débil es adoptada, la 

dispersión intra-bandas se torna predominante. 
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I. INTRODUCTION 

 

 

Superconductivity is the phenomenon in which the temperature of a metal or alloy is 

lowered below a specific number bringing as consequence that the system loses its capability of 

resisting an electrical current when a voltage is applied and its capacity of expelling all magnetic 

flux except in a thin region near the surface when a weak magnetic field is applied. The first 

effect, the absence of electrical resistance for which superconductivity is usually known, was 

discovered in 1911 by Kamerlingh Onnes and his assistant Gilles Holst [1] when the first one 

discovered that electrical resistance of mercury dropped abruptly to zero at a temperature of 

4.2K; the second effect, the so-called Meissner-Ochsenfeld effect, was discovered by Meissner 

in 1933 [2].   

 

Several approaches in the understanding of the superconducting mechanism were 

developed over the years after this discovery, most of them unsuccessful [4]. Finally, the 

ultimate enlightenment was provided by the BCS theory proposed by J. Bardeen, L. Cooper and 

J. Schrieffer (referred as BCS hereafter) in 1957 [4]. The theory establishes the background for 

the comprehension of the electron-phonon interaction mechanism responsible of 

superconductivity in the so-called conventional superconductors (see S.S. 1.3). This is the 

mechanism believed to govern superconductivity in the very atypical compound known as MgB2 

or Magnesium Diboride [21] [24]-[30] [65]-[70]. This recently discovered compound (2001), 

with an extraordinarily simple lattice structure [27], exhibits an unusually high transition 

temperature of 39K approximately, which makes it scientifically very attractive. 
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The purpose of this thesis work is the application of the BCS theory [4] and its 

generalizations [17] [37] [41] [48] to provide a method to outline the theoretical behavior of 

MgB2’s energy gaps, the parameters that dictate the intensity of the binding of the electron pairs 

participating in superconductivity; by consideration and inclusion of  a set of parameters [41] 

[43], the numerical results derived from such model can be contrasted with real experimental 

data [64]-[77] and therefore conclusions can be drawn.   

 

This thesis is arranged in the following manner: Chapters (Ch. I, II, …), which are 

divided in Sections (S.  1, 2, …), which are as well divided in Sub-sections (S.S.   1.1., …, S.S.   

2.1., …).  Ch. I corresponds to this Introduction (S. 1), Motivation (S. 2) and Literature Review 

(S. 3). Ch. II is devoted to the Theoretical Background. Here, mathematical and physical tools 

and concepts are introduced to develop the numerical model to trace the behavior of MgB2’s 

energy gaps. S. 1 is rather introductory and, in general, it concentrates conceptually and without 

mathematical formalities in the main features of the mechanism of conventional 

superconductivity and their most important representatives (S.S. 1.1 to 1.4); as well, the 

characteristics of the MgB2 compound are explored (S.S. 1.5). All the rigorous mathematical 

formalism is treated along S. 2, where a brief development of the aspects of the BCS theory 

relevant to the objective of this document is carried out in S.S. 2.1; later on, the systematic 

establishment of a mathematical model allowing the study of the behavior of the energy gaps 

takes place from S.S. 2.2 to S.S. 2.5 using the aspects discussed in S.S. 2.1. Numerical results 

and calculations are finally shown in Ch. III, where the model is applied in several regimes 
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(clean and dirty) and results are compared with experimental data. Finally, Ch. IV is devoted to 

the Conclusions and Future Work. Ch. V corresponds to References.   

 

In this document key terms and important Chapters, Sections or Sub-sections are 

intentionally bolded. As well, bolded mathematical quantities represent vector quantities and 

non-bolded ones represent scalar quantities. 

 

 

1. MOTIVATION 

The progress of science in present times is undeniable and also is the possible 

technological applications of that progress. One of the branches of Physics, among a huge 

number of them which could supply the most useful applications is that related with Material 

Sciences. Particularly, the superconducting phenomena, whose discovery and application date 

back to almost a century ago, offer an almost infinite spectrum of technological development for 

the world as we know it. The discovery or manufacture of superconducting materials with 

critical temperature each time higher witnessed in the present offer a high incentive to the 

embracement of this reality, but in order to reach such goal, we have undoubtedly to consider the 

elaboration of theoretical models capable to draw the structure of such materials and their 

behavior. The articulation of such models imply a great knowledge of the Physics of the 

superconducting materials as well as the appropriate mathematical and computational techniques 

necessary for modeling the governing parameters to be contrasted with the experimental results. 
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2. LITERATURE REVIEW 

The scientific literature available on the MgB2 compound is abundant and wide-ranging 

especially after its discovery by Nagamatsu et al. [21] in January 2001. As pointed out by Buzea 

and Yamashita at the Introduction of [22], the number of papers related to this topic spiked that 

very same year, showing the great interest that MgB2 generated in the scientific community. An 

extensive description of this compound and its properties, like crystal structure, band structure, 

Fermi surface, energy gaps, phonon spectrum and modes, doping effects, defects, isotope effect, 

specific heat, electron-phonon interaction, density of states, etc., can be found in the studies and 

experiments performed by Vinod et al., Liu et al., Kong et al., Kortus et al., Mazin and Antropov 

and Choi et al. [24]-[30] respectively, among a huge number of other scientific studies found in 

the Reference section of these papers [63]-[77]. Y. Wang et al. [65], as well as M. Putti et al. 

[67] and Kortus et al. [73] supply the most relevant experimental data based on specific-heat 

measurements on neutron-irradiated MgB2; such will be used for the contrasting of the numerical 

results. It is noteworthy the empirical two band model developed by Wang [65], based in the 

work of Bouquet et al. [66], to show the presence of two energy gaps in this compound and to 

perform a phenomenological trace of these [66]. Putti et al. also performs this outline and 

contrasts it with that of Yang’s [67]. 

 

A theoretical approach to the MgB2 system in its pure form is available via the 

conventional BCS theory [3] [4] [12] [14] [34] [35]. Important formalisms are those suggested 

by Bogoliubov [17] and Valatin [37] (BV) which make use of the mean-field approach; these 
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formalisms are extendedly used for theoretical foundation of the model implemented here. As 

well, Suhl et al. [41] introduce an important treatment for the multiple gap case based in the 

results derived via BV’s approach. It is worthy of mention the theoretical Eliashberg formalism 

implemented by H. J. Choi et al. [27] to follow the numerical trace of MgB2’s energy gaps using 

the formalism proposed by Marsiglio et al. [64], closely related to this work.  

 

As well, important and well-founded theoretical models for the understanding of the role 

of impurities in superconducting systems can be drawn mainly from the theory of Abrikosov and 

Gor’kov (AG, hereafter) [46] on the subject and Anderson’s theory of impure superconductors 

[47] (or “dirty” superconductors). Essential contributions to these theories concerning both the 

influence of the impurity concentration in the magnitude of the critical temperature and the range 

of applicability of Anderson’s theorem have been offered by Kim and Overhauser [42] [43] [52] 

[53] [57] [58] [71] (KO, hereafter) as well as by AG.   
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II. THEORETICAL BACKGROUND 

 

1. GENERALITIES ON THE SUPERCONDUCTING STATE AND MgB2 

The major concern along S. 1 will be pointing out the properties and give a general 

overview, rather conceptual than mathematical, of the mechanism responsible of the loss of 

resistivity in superconductors. In addition, an outline of the characteristics of the 

superconducting compound MgB2, to which the concepts and the theoretical models described in 

S. 2 are applicable, will be offered. A detailed mathematical treatment of most of the stated in the 

following can be found through S. 2 to S. 3. 

 

1.1. PROPERTIES OF THE SUPERCONDUCTING STATE 

When a piece of, for example, Tin is cooled down below about 4K it exhibits a series of 

new thermodynamic behaviors which include the almost total absence of electrical resistance and 

a perfect diamagnetism [1] [2]. From a purely mathematical point of view, the mechanism 

hidden behind the superconducting state is due to the abnormal behavior of a fraction of 

electrons conveniently located in k-space [3]. 

 

The fraction of the electrons which interact effectively in superconductivity is around 10
-4

 

of the total at T = 0, which corresponds to a number of nearly 10
6
 electrons [3] [4]. The 

superconducting behavior, hence, can be interpreted as a collective phenomenon. Such collective 

conduct is very common in Physics, as discovered particularly in the last decades; perhaps, the 
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best example is the Laser, in which photons play their collective, cooperative role by all 

oscillating at the same rate, all with the same energy; another exciting example is the Bose-

Einstein condensate, in which bosonic atoms, e.g. 
87

Rb, sit in the ground state until all atoms can 

be represented by a single wavefunction [5]. Actually, Bose-Einstein condensation and 

superconductivity exhibit a good number of common similarities [6]. Condensation is an 

important quantum-mechanical consequence of the collective conduct. Other examples of this 

phenomenon can be drawn out from the superfluidity experiments, principally those related with 

liquid Helium and even from Astronomy where a condensed behavior in neutrons is known to be 

responsible of the differences in the measurements of radiation absorption and moments of 

inertia in neutron stars when compared with predictions based in individual non-interacting 

particle models [3]. 

 

1.2. THE MECHANISM OF  CONVENTIONAL SUPERCONDUCTIVITY 

The “anti-social” reputation of electrons is widely known in Quantum Mechanics due to 

Pauli’s Exclusion Principle (PEP, henceforth), which dictates the procedure of arranging a given 

number of electrons when a certain number of states is available; electrons are thus said to be 

slightly tolerant to be placed next to a partner, only if this partner has an opposite spin.  Such 

unfriendly conduct is not reserved for electrons only but belongs to all particles with half-integer 

spin or fermions, for example, electrons, neutrons, protons, the components inside them and 
3
He 

among others; in such cases, PEP applies. In contrast, bosons are particles with integer spin. This 

imprints a forthcoming personality on them because not only bosons won’t “exclude” each other 

but the probability for a boson to fill a level will be increased if that level is already occupied by 
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another boson [8]. Photons and phonons along with a large proportion of atoms are examples of 

bosons; but obviously, any substance made up of an even number of fermions behaves like 

boson. This is the case for electrons, which under certain restrictions can be considered as bosons 

when paired together.   

 

Fermions obey the so-called Fermi-Dirac statistical distribution, dictated by 

 
 

1

exp / 1
F D

B

f
k T


 

 
   

    (1.1)   

and bosons obey the so-called Bose-Einstein statistical distribution, dictated by 

    

 
 

1

exp / 1
B E

B

f
k T


 

 
   

,                                           (1.2) 

where in both cases f stands for the probability for a given particle at a given temperature T to lie 

in a particular energy state with energy   and chemical potential μ. Considerations bringing 

0F Df    while 1B Ef    as 0T   are commonly discussed in textbooks, highlighting that 

something out of the ordinary occurs when temperature approaches to zero [8]. 

 

Electron pairing and superconductivity behavior seen as a condensation of bosons was 

not an idea attained by snap. A microscopic theory of superconductivity based in this initiative 

implied several failed attempts, some of them referenced at the Introduction of [4]. Evidently, the 

major inconvenient in electron pairing lies in the impossibility of attraction between electrons 

imposed by its mutual Coulombian repulsion. It was not until Fröhlich’s suggestion of the role of 

the interaction between electrons and lattice vibrations in superconductivity [9] that a major 
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advance in the understanding of this phenomenon showed to be successful. Fröhlich’s theory 

received a dramatic confirmation when in 1950 the isotope effect was discovered [10] [11],  

cT M const      (1.3) 

demonstrating a dependence of the superconducting transition temperature (Tc) with the ionic 

mass (M) of the material, and thus the lattice. Fröhlich’s theory, however, failed in other aspects, 

the most important being the order of difference in energy between the normal and 

superconducting state [6]. The correct approach was offered by BCS with the BCS theory [4].  

 

The aspects of BCS theory relevant to this document will be fully discussed in the next 

Section; only a rather conceptual insight of the electron-phonon interaction mechanism will be 

offered in the following lines. To this aim, consider Fig. 1.1: if as a very rough approximation 

electrons are treated as free, the journey of a given electron through the ion matrix can 

temporarily polarize a particular zone in the lattice; any neighboring electron might therefore 

perceive the polarization and become attracted to that temporary wrench in the lattice. In this 

manner, both electrons interact attractively by exchange of a virtual phonon [6]; we refer to this 

pair of electrons as the Cooper pair.  
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Figure 1.1. Polarization of the lattice by a traveling electron [3] 

 

The process that leads to the formation of Cooper pairs in low-Tc superconductors is 

understood as follows:  

 

Figure 1.2. Arrangement of fermions at different temperatures [3] 

 

It’s commonly known that a system of fermions at a given temperature T will settle in different 

energy states according to their energies and in concordance with PEP, as in Fig. 1.2 above. 

When 0T  , a lot of empty energy states are available and given the selfish character of 

fermions, each one will settle singly in some energy level if possible. However, when 
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temperature is lowered (ideally) to zero, empty spots stop being accessible and fermions are 

forced to share levels with a partner with opposite spin up to a maximum level, the Fermi level; 

it has to be remembered that no electron in any of the filled levels will tolerate a third partner, 

thus, if an electron, say, in the ground state level interacts with a phonon, the probability of that 

electron to accept the phonon will be small since the latter would kick the former just a few 

levels up where it will find no spot to settle. This is a situation similar to trying to convince one 

of the spectators in the first row of a filled theater whose assistants are, say, recently divorced 

couples to move to the rear seats with the promise of a ticket for an entire row for his (or her) 

own; in this analogy, PEP establishes that no spectator will accept the offer but, even more, he or 

she will tolerate his (or her) annoying ex-partner on behalf of not giving up his (or her) V.I.P. 

seat.  In consequence, technically, phonons cannot interact with the electrons in the first levels. 

However, and carrying on with our analogy, for couples sitting in the last filled rows the 

situation is different because they can move to the empty rows behind them, they just don’t have 

a ticket; in consequence, they will accept the offer. In other words, just like shown in Fig. 1.3, 

phonons are more likely to interact with the electrons lying in the last filled levels or near the 

Fermi surface because these electrons can be promoted to further empty levels.  
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Figure 1.3. Acceptation of phonons by fermions arranged in energy levels. 

 

As suggested by Fröhlich [9] and demonstrated by L. N. Cooper [12], are the electrons 

within a thin layer around the Fermi surface (see page 30) the ones responsible of the instability 

of the system and subsequently responsible of the superconducting state. It has to be mentioned 

that the basis of Cooper’s result lies in the convenient approximation of the attractive interaction 

matrix element by the constant 0V   (See S.S.  2.2), but no link between the form of this 

attractive interaction and the electron-phonon interaction is made. This suggests that the nature 

of the attractive interaction is not limited to the exchange of phonons; apparently the mechanism 

of such mediation is very different for other systems such as high-Tc superconductors and others 

[13]. A formal calculation of the above-mentioned electron-lattice interaction matrix element is 

performed by Bardeen himself [14] and others via a Hartree approach, being the main feature in 

this calculation the inclusion of the dynamics of the lattice and the electrons. This differed with 
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the standard calculations of Bloch type (See S.S. 2.2) done to that time which considered the 

motion of the electron through a static lattice as independent of its vibrations, leading to the well 

known band structure theory. The mathematical proof offered by Cooper won’t be showed in this 

document, neither Bardeen’s, but these are standard calculations in most of the literature in 

superconductivity [4] [6] [12].  

 

After electrons become attracted by mediation of phonons, these pairs behave like bosons 

and migrate to a state of lower energy which differs from the normal state ground state energy by 

an exponential factor [4]; this is, actually, the benefit of becoming paired if one is electron. In the 

context of our previous analogy, the situation resembles one in which the spectators of the 

hypothetical theater at the “Fermi row” were proposed to have to pay half the price for their 

ticket if they joined with a partner and, in addition to this, were allowed to see the show not from 

the first row but from the set itself. In this way, money charges would split and both electrons 

would enjoy the benefits. However, due to the bosonic behavior associated to Cooper pairs, once 

the first couple accepts the ticket and moves, other couples will want to join them in the set, so to 

speak; no set will sustain such situation and in consequence will collapse. The same instability 

can be transferred to the interpretation of the instability of the Fermi sea [15], which will 

collapse at T = 0.  This is precisely Cooper’s result [12]. Notice that the presence of the electrons 

below the layer only provides a “floor” for those electrons involved in the Cooper pairing in the 

sense of not allowing the occupancy of k-states below kF in virtue of PEP. 
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Although some of the similarities between the Bose-Einstein (BE) condensation and the 

superconducting behavior are marked, certain care should be taken when subscribing to such 

interpretation. The approach of superconductivity from the BE condensation point of view was 

taken for several years as a theoretical oddity, except probably for the case of Schafroth et al. [6], 

who developed a serious formalism based on this perspective inspired in the observations of Ogg 

on very dilute solutions of alkali metals in liquid ammonia [16]. Bogoliubov [17] also became 

aware of this idea when developing his formalism, to be described in S. 2. The major difficulty in 

seeing the Cooper pair as a composite boson lies in the location of the pairing taking place in the 

momentum space rather than real space. Differences are also marked when normal states above 

Tc are compared in both BE and BCS cases; one probably should speak of a BCS condensation 

instead of a BE condensation of Cooper pairs. Abundant discussions are pertaining to a crossover 

between BCS theory and BE condensation can extensively be found in scientific literature and 

journals [18]. Despite the differences, this author will subscribe to the condensation of Cooper 

pairs perspective of one of the BE-type.  

 

Because of Cooper pairing, the existence of a difference in energy between normal and 

superconducting state suggests the appearance of an energy gap (∆) as the parameter giving 

account for the binding energy of the Cooper pair at the ground state [3]. The energy gap is the 

most important term along this document.  A detailed discussion and calculations will be left on 

hold until the upcoming Sections.  
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Subscribing oneself to the assumptions of the range of the electron-phonon interaction at 

T = 0 adopted by Cooper [14] and Fröhlich [9] the energy gap would be located at the edge of 

the Fermi sphere, pretty much in the way schematized in Fig. 1.4. The minimum excitation 

energy would be 2∆ [4] on the account of the excitation of both of the paired electrons; it has to 

be in this way given the restrictions of the PEP and the conservation of momentum. Within 

rough approximations,  2 0 3.52 B ck T   for a given superconductor [13] (See Eq. (2.42) on 

page 47). 

 

 

Figure 1.4. Energy gap in the k-space [3] 

 

For excited states (T ≠ 0), ∆ exhibits a dependence of the temperature described in Fig. 

1.5. A complete mathematical approach for the computation of ∆ within different regimes and 

superconducting systems await in S. 2. A numerical calculation in which Fig. 1.5 is reproduced 

will be performed in Ch. III. Discussions about the behavior sketched below will be postponed 

until S. 2, where the proper mathematics is introduced. 
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                            Figure 1.5. Temperature dependence of the energy gap [7] 

 

 

1.3. THE SUPERCONDUCTING MATERIALS 

A glimpse to Fig. 1.6 picked from Internet [19] tells us the wide variety with which the 

superconducting phenomenon is found in the elements found in nature.  Table 1.1 excerpted 

from [20] is even more complete.  
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Figure 1.6. Periodic Table of Superconductivity [19] 

 

 

Table 1. Properties of the superconducting elements [20] 
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Up to date there are around 7000 known superconducting materials [3]. Very roughly 

speaking such a wide collection can be classified in two groups: 

I. Metals and Alloys. In this group we will find non-magnetic elemental 

superconductors and some of their alloys. This is the group of superconductors 

referred as conventional superconductors. As a general feature of this group, critical 

temperatures do not exceed 10 K (MgB2 can possibly be considered an exception of 

this rule) and members of this group enjoy of highly symmetrical crystallographic 

structures [19]. Some of the conventional superconducting elements become 

superconductors only under high pressure, because of the dramatic influence of this 

procedure in the density of states, or when prepared into thin films, which raises the 

critical temperature [3]. The mechanism governing the superconductivity in these 

materials is the classical, BCS-type described in S.S. 1.2. As said before, it’s very 

likely that MgB2 can be categorized into this family but its uncommonly high Tc 

provides for it a very particular spot if one wants to consider it strictly conventional. 

A summary of the characteristics of this compound will be discussed in S.S. 1.4.   

 

II. Unconventional superconductors. In this group we will mainly find magnetic low-

dimensional compounds. In these materials the superconductivity is of 

“unconventional” type, in the sense that the electron-phonon interaction is strong and 

non-linear [3] as well as other more exotic mechanisms of superconductivity seem to 

be in play. The strong correlation between electrons sheds a shadow in the 

understanding of the mechanism of superconductivity in these systems, of which 
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there is not yet a complete theory. As examples of members of this group one can 

find the so-called Chevrel phases (which are molybdenum sulfides with high 

transition temperatures and critical fields) along with Copper oxides or cuprates 

(which are the also called high-Tc superconductors and represented a revolutionary 

discovery, back in 1986); several cuprates, from [3], are listed in Table 1.2. As seen, 

critical temperatures range over 100 K. Cuprates represent a good example of 

superconductivity of the unconventional type in which neither BCS nor mean-field 

theory are applicable. Other members of this group are also the charge-transfer 

organics [19] (which are organic compounds and polymers who exhibit 

superconductivity), heavy-fermion systems (superconductors whose electrons exhibit 

huge effective mass, ~100 times the electron mass), nickel borocarbides, strontium 

ruthenates, ruthenocuprates (hybrids from cuprates and strontium ruthenate), along 

with a good number of recently found high-Tc superconductors. 

 

 

Table 2. Some examples of cuprates [3] 
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1.4.  MgB2 : FEATURES AND SUPERCONDUCTING PROPERTIES 

Magnesium Diboride, or MgB2, is an atypical superconductor discovered very recently 

(2001) [21] with a considerable high transition temperature of about 39 K, at ambient pressure. 

MgB2 appears to fall in the category of a very exceptional conventional superconductor with 

uncommon high Tc when compared with other more known conventional superconducting 

materials. The family of borocarbides RE-TM2B2C, with RE = Y, Lu, Er, Dy or other rare earths 

and TM = Ni or Pd, share this feature along with an anisotropic layered structure [22].  

 

The task of pushing up the critical temperature of conventional BCS-like superconductors 

was a labor undertaken since back in the 1960s, way before the discovery of high-Tc 

superconductivity, with the suggestion of metallic Hydrogen as possible candidate for a high-Tc 

superconductivity [23]. Roughly speaking, such initiative was based in the belief that 

Hydrogen’s light mass would imply high phonon frequencies and subsequently a low coupling 

constant [24]. As shown with detail in Eq. (2.41) in S. 2, this would reflect in a higher Tc; for 

example, MgB2’s Tc requires a coupling constant of ≈ 1 [25].  Yet being metallic Hydrogen 

scarce, the idea was transferred to compounds made of light elements, like carbides and nitrides. 

It is believed that the high transition temperature (among conventional superconductors) in MgB2 

is the confirmation of this suggestion and the interest in superconductivity of light mass 

superconductors has been found reinvigorated since its discovery in 2001 [22]. It also represents 

a hope for high-Tc superconductivity with simple compounds. Such discovery inspired 
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experiments with other diborides, whose transition temperatures range from 0.5 K to 15.6 K, 

placing MgB2 at the top; for an extensively detailed list of these diborides, refer to [22].  

 

 The structure of MgB2 is shown in Fig. 1.7, while a comparison between structures is 

shown in Fig. 1.8 [26]. MgB2’s structure corresponds to a simple hexagonal AlB2-type structure 

[22], very usual among diborides; boron atoms form graphite-type honeycombed flat layers and 

magnesium atoms are located above the centre of the hexagons in-between the boron planes [27] 

as part of a parallel also flat triangular lattice approximately halfway between the boron layers 

[22] [25]. The distance between the boron planes being appreciably longer than the boron-boron 

distance corresponds to an evidence of strong anisotropy along the boron-boron lengths [22] 

similar to that exhibited by graphite.  

 

 

     Figure 1.7. Structure of MgB2 [22]. 
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Figure 1.8. Structure of MgB2 compared to other superconducting materials [22]. 

 

Band-structure calculations show that MgB2 exhibits two types of bands at the Fermi 

surface: one narrow band made up of boron π-orbitals and a broader one made up of boron σ-

orbitals. At the Fermi level the electronic states are either σ-boron orbitals or π-boron orbitals 

[27]. Magnesium atoms donate their valence electrons to the boron planes forming an ionic bond 

with the boron atoms; the in-plane Boron atoms are supported together by 2D-covalent bonds 

while there are 3D-metallic bonds between the layers [26]. The peculiarity of MgB2 lies in the 

incomplete filling of the two σ-bands associated with strongly covalent, sp
2
-hybrid bonding 

within the graphite-like boron layers; holes at the top of this band are the ones exhibiting two-

dimension properties and are located within the boron sheets; three-dimensional electrons and 

holes in the π-bands are delocalized over the crystal [28] like n graphite. A band-structure 

diagram is shown below along with the symmetry lines of the Brilloin zone. 
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        Figure 1.9.  Band structure diagram of MgB2 [29] 

 

The Fermi surface of MgB2 consists of four sheets where σ-bands form two hole-like 

coaxial cylinders along the A  line and π-bands form a hole-like tubular net near K and M, 

and an electron-like tubular net near H and L [28] [29]. The diagram of MgB2’s Fermi surface is 

exhibited below. More details can be found in [27]-[30]. 

 

             Figure 1.10. Fermi surface of MgB2 [28] 
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The electronic states in MgB2 in the boron plane couple strongly to specific phonon 

modes, which results favorable for Cooper pairing. The calculated phonon spectrum of MgB2 is 

well determined. Six non-acoustic modes have been classified as phonon modes at the center  : 

The so-called A2u and B1g , which are singly degenerate modes involving vibrations along the c 

axis; in the latter, boron atoms are moving in opposite directions with the magnesium atom 

stationary and in the former with both Mg and B atoms are moving along c. Next one is the so-

called E1u mode in which Mg and B planes vibrate in opposite directions along the x or y 

directions with the Mg ions staying stationary [26]. Finally, there is the so-called E2g mode, 

which is highly anharmonic. Is this mode the one proved to be responsible of the boron σ-bands 

strong coupling and subsequent superconductivity in MgB2 [30]. The intensity of this coupling, 

and consequently the intensity of the energy gap associated to this type of electron pairing  (  , 

henceforth), is calculated as 6.8 meV [27]. This corresponds to the 2D strongly coupled gap. 

A schematization of this mode is offered below: 

 

Figure 1.11. A vibration mode in Boron planes in MgB2 [27]. 

 

The charge distribution of the σ- bonds is not symmetrical with respect of the in-plane 

positions of boron atoms which brings σ-bond states to couple very strongly with the in-plane 

vibration of boron atoms [27]. As boron layers oscillate, for example in the manner shown 
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above, some bonds are shortened while others are elongated; shortened bonds become attractive 

to electrons whereas the elongated ones turn repulsive. The σ-bonds are shown schematically in 

Fig. 1.12. 

 

Figure 1.12. σ-bondings in MgB2 coupling strongly with the vibrational E2g phonon mode [27] 

 

On the other hand, π-bonding states also couple with the mentioned mode but forming a 

much weaker electron pair bounded by a smaller energy gap (  , henceforth) calculated as 1.8 

meV [30]. This corresponds to the 3D weakly coupled gap [22]. Observe that both energy gaps 

seem to have risen from the anharmonicity of the E2g mode. Although evidence in favor of the 

existence of two separated energy gaps appears to be yet inconclusive [22], this document will 

subscribe to a doubly-gapped MgB2 model. Experimental results and behavior of these energy 

gaps are shown in Fig. 1.13. Notice the experimental data offering evidence of a single 

anisotropic energy gap. Compare the shape of curves in Fig. 1.13 with that of Fig. 1.5 in page 

16. 



 
 
 

 
 

26 
 

 

Figure 1.13. Temperature dependence experimentally observed of the energy gaps in MgB2 [22] 

 

The size of the energy gaps is proven to change in different sections of the Fermi surface 

[27], ranging form 1.2 to 3.7 meV for the π sheets (  ) and from 6.4 to 7.2 meV for the σ sheets 

(  ). Such differences can be attributed to surface impurities or non-uniformity [22]. A minute 

treatment of MgB2 in the BCS framework and one particularly related with its energy gaps will 

be postponed until S. 2. 

 

The main characteristics of MgB2 as far as this document is concerned have been 

mentioned. Abundant literature and journals are available being [22] probably the most 

illuminating. Magnesium Diboride holds its spot at the top of the list as probably one of the most 

uncommon conventional superconductors, not only because of its exceptional high Tc but also 

because of its structure whose seeming simplicity (compared with cuprates’) makes this 

compound scientifically interesting, in addition with the considerably low costs of manufacture 
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implied due to the abundance of its components in nature, its high critical currents and its high 

critical temperature. Practical applications above 20 K (boiling temperature of Hydrogen) are in 

order.  

 

2. BCS THEORY FOR TRACING THE BANDS OF MgB2 

 

2.1. GENERALITIES: HAMILTONIAN AND GROUND STATE 

WAVEFUNCTION  

An adequate microscopic theory of superconductivity has to be able to account for the 

infinite conductivity, the Meissner effect and the isotope effect exhibited by conventional 

superconductors. Bloch’s one-particle model for the normal metal turns out to fail dramatically 

on this purpose. Following BCS, we can conceive a trial wavefunction as a product of Bloch 

wavefunctions of each Cooper pair in the system, 

       
1 /2

1 1 /2 1 1 2 /2 1

,...,

,..., ,..., exp exp
k k

r r k k k r r k r r
N

N N N N N Ng i i              ,     (2.1) 

where g weighs the probability of a certain pair to be placed at a given k-state, and then find that 

this function is incalculable; however, since the wave number will have to run over all the k 

values in the band, and being 2310N  , the number of factors in the sum above and the number 

of g’s to be determined will range up to the frantic quantity of
231010  [13]. The inadequacy of 

Bloch’s theory to explain superconductivity, despite of its successful description of the band 

structure in normal metals, is evident. In Bloch’s treatment, it is assumed that the movement of 
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the electron through the lattice occurs independently and in the presence of a rather self-

consistent field produced by the other electrons and ions [4] therefore neglecting the dynamical 

effects of the lattice vibrations due to the electrons as well as the correlation between electrons 

by Coulomb forces. 

 

Upon Fröhlich’s suggestion of an attraction mechanism between electrons provided by 

the electron-phonon interaction [9], briefly described in S. 1, an insight on the interaction 

energies in the superconducting system becomes necessary. This is tackled by calculating the 

interaction between an electron and a polarized medium, via 

  1 ,
r R r

r P rel phH e d  
     

which yields [31] 

 * † † †

, , , ,

,

,q q k q k q q k q k

q k

el phH M c c a M c c a   


     



                             (2.2) 

with q k k  and 
q

M  the interacting matrix element [32]. This calculation is carried by the 

second quantization (SQ) framework of the annihilation/creation fermionic operators  ( c and †c ) 

and the annihilation/creation bosonic phonon operators ( a  and †a ). Since we’ll be more 

interested in the first ones rather than the second ones, we enunciate their anti-commutation 

properties, to be extensively used in the following: 



 
 
 

 
 

29 
 

 

   

†

, , ,

† †

, , , ,

,

, , 0.

k k kk

k k k k

c c

c c c c

  

   

  

 



 
                                             (2.3) 

Here   denotes the electron spin. In the same context, from considerations of the effects of 

electrons and ions on the conductivity, an expression for the electron-electron interaction will 

read as [31]-[34] 

2

2 2

† †41
, , , ,2

,

k q k q k k

qkk
c

e
el el q

H c c c c
   



      
 

   ,                               (2.4) 

with c standing for the electron-ion screening length.  The sum of all these interactions, along 

with the kinetic energy of the electrons and phonons, results in the so-called Fröhlich 

Hamiltonian [9] [34], 

 
2

2 2
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, ,

,

† † † †41
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 
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
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 

 
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  

  

 

 

 



              (2.5) 

with 
k  representing the Bloch energies. In order to integrate the effect of the phonons into a 

single total effective interaction with electrons, a canonical transformation is carried out [31] 

[32] [34], 

S S

FrH e H e  , 

with the result of diagonalizing the Hamiltonian by the appropriate selection of S, this yielding 

   

2
2

2 2 2 2

2 † †4

,

.
q q

k k q q

k q, k , k q, k,

kk q
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M
e
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


     
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 
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 
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


                 (2.6) 
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For the interested reader, details of this diagonalization procedure are offered in Refs. [31] and 

[32], among other standard textbooks [6] [15]. 

 

It is noteworthy that the main feature of the Hamiltonian of Eq. (2.6) is the fact that the 

term in brackets becomes negative for 
k k q q
     when the electron-phonon interaction 

term dominates over the screened Coulomb interaction. BCS postulate that 
k k q q
     is 

the order of the energy difference for the important superconducting transitions to occur [33] 

[34]. In addition, they narrow the interval of the attractive interaction down to

kF D F DE E       , leaving only those electron states with k’s sufficiently close to the 

Fermi surface because these play the most significant role in the process; finally, BCS introduce 

the form of the interacting matrix elements for these electrons as the averaged quantity [4] 

2
2

2

2
4 0.

q

q c

M
e

Av

V 
 

                                                 (2.7) 

These approximations relax Eq. (2.6) down to 

† †

,

,
k q, k , k q, k,

kk q

H V c c c c   


    

 

                                     (2.8) 

leading to the complete Hamiltonian (kinetic plus potential energy), to be written as 

† † †

, ,

.
k k k k q, k , k q, k,

k kk q

H c c V c c c c      
 

     

 

                          (2.9) 
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A further simplification on Eq. (2.9) is still on the way when BCS exclude out all the interacting 

pairs within the energy interval of interest except those with opposite wave numbers [4]. The 

footing of this decision is closely related to the requisition of an adequate wavefunction for the 

ground state [32] [35]. For further simplicity, 0q   is chosen.  Furthermore, since the exchange 

energy between electrons is minimum for electrons with anti-parallel spins, such assumption is 

also adopted. In Eq. (2.9) we replace them by   or  ; because wave numbers are also opposite, 

we decide to compile this observation into the single notation, k   or k  . However, we will 

prefer the use of the spin index whenever a simplification in the notation is gained. 

 

With all these truncations considered, Eq. (2.9) can be finally rewritten in the more 

condensed form, known as reduced Hamiltonian [4]: 

 † † † † .
k kkk k k k k k k k

k kk

redH c c c c V c c c c            


                      (2.10) 

Finally, it has to be observed that c and †c still satisfy Eq. (2.3) but cc  and † †c c  satisfy a 

completely different set of commutation rules [4].  

 

The enunciation of a ground state wavefunction for Hamiltonian (2.10) is in close link to 

its structure. In detail, BCS first propose and reduce the Hamiltonian in the manner described 

above and then use all the negative terms from Eq. (2.6) to enter them with equal phases into a 



 
 
 

 
 

32 
 

constructed wavefunction [4]; later, they demonstrate that with the proper selection of the 

coefficients of the argument this wavefunction is an eigenstate of Eq. (2.10) [6].  

 

The construction of this wavefunction is not hard to see within the SQ notation. If one 

returns to Eq. (2.1) and brings the expression into the SQ scheme, considering the 

simplifications discussed before and introducing the proper normalization constant, one is left 

with [31] 

† †1
!

0k k k
k

N

N N
g c c

  

 
  

 
 ,                                       (2.11) 

where Eq. (2.11) remains yet incalculable because of the size of N;  for matters of convenience it 

was supposed that the number of pairs is 2N instead of N. The correct course in deriving the 

weight coefficients kg  would be to submit the reduced Hamiltonian to a variational 

minimization procedure in which mean values, with Eq. (2.11) as basis, would have to be 

estimated [6]. This is an evidently tiresome task, again because of N; consequently, BCS decide 

to work with the function 

N N

N

   ,                                               (2.12) 

where N  is a weight factor. By direct substitution of Eq. (2.11) into Eq. (2.12) it becomes easy 

to realize that   can be rewritten as 
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† †exp 0
k k k
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Expanding out, 
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  


 

where the last equality is the result of the properties enunciated in Eq. (2.3). The Hartee-like 

function derived above is proposed by BCS in their fundamental paper [4], showing the 

probabilities of finding a given k level occupied in pairs or empty. The normalization leads to 

[13], 

 † † 0
k k k k

k

BCS u v c c
  

  ,                                (2.13) 

where 

2 2 1
k k

u v   .                                                 (2.14) 

A formal interpretation of Eq. (2.14) will be offered in S.S. 2.2.  

 

The success of BCS’ approach in using Eq. (2.13) as the correct ground-state 

wavefunction lies in the easiness of the computation in the grand-canonical ensemble rather than 

in the canonical ensemble [13] [31] (See S.S.  2.3). The simplicity of Eq. (2.13) when compared 

with Eq. (2.1) or Eq. (2.12) is straightforward. However, working with Eq. (2.13) implies a cost; 
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in this case, the fact that the average particle number N  is not uniquely defined when 

calculated using Eq. (2.13) as basis [6]. Nonetheless, BCS show that 22N N  is in the order of 

1
2N

  and thereby the quantity is neglectible with increasing number of particles.  With a 

manageable wavefunction in hand, the path to a minimization procedure is clear and direct. 

  

2.2. BCS THEORY FOR A PURE SINGLE ENERGY GAP SUPERCONDUCTOR 

AT T = 0. 

The simplest superconducting system corresponds to a pure superconductor at zero 

temperature where the treatment discussed above plainly applies. The quest for the coefficients u 

and v in Eq. (2.13) and its determination via minimization of the mean value of the reduced 

Hamiltonian will become the main task in this Sub-section. To do so, we mathematically shift 

the ground-state energy by defining 

k k FE                                                             (2.15) 

and substitute this into Eq. (2.10), which results transformed into 

red FH H E N   ,                                                      (2.16) 

where N stands for the number operator, given by 

†

k k

k

N c c 


  ,                                                    (2.17) 
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 ,    . The second addend at the right of Eq. (2.16) is a direct consequence of keeping N  

fixed [13]. The effect of minimization results in 

  20 2
k k kl k k l l

k kl

BCS BCS

G red F GH E N v V u v u v


  
 

      
 
   ,           (2.18) 

where the constraint Eq. (2.14) is imposed by introducing 

cos

sin .

k k

k k

u

v








                                                         (2.19) 

Substitution in Eq. (2.18) and explicit differentiation with respect k
 yields 

2 sin 2 cos2 sin 2 0.
k k k kl l

l

V       

When some algebra is performed in this expression [13], the equation above can be manipulated 

into 

sin 2

2
tan 2

kl l

l k

k kk

V 

 





   ,                                                 (2.20) 

where   

1
2

sin 2V    k kl k

l

  .                                                   (2.21) 

The term of Eq. (2.21) represents the most important physical quantity along this document; it 

corresponds to a preliminary version of the energy gap (henceforth referred as ∆- term). A 

simple geometric construction shown in Fig. 2.1 allows one to interpret its meaning. 
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                                                Figure 2.1. Geometric meaning of θk [13] 

 

Since 
k kE    if 0k  (Fermi level), it stands clear that 

k  is evidently the minimum 

excitation energy, hence 

2 2

k k k
E    .                                                (2.22) 

is the excitation energy over the Fermi level. BCS demonstrate the existence of the energy gap 

by computing the energy difference between a state where a Cooper pair is broken in 

uncorrelated electrons and one in which they lay in the ground state, deriving  2∆ as result [4] 

[6]. It’s interesting to contrast this with what was discussed in S.S. 1.3.  

 

With the help of Eq. (2.22), Eq. (2.21) can be transformed into 

2 2

1
2

l

l l
k kl

l

V





     ,                                           (2.23) 

which will be referred henceforth as the self-consistency equation. In the following Sub-

sections it’ll be seen how this condition changes with the introduction of excitations and the 
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increase of the number of energy gaps. The self-consistency equation is important because it 

directly hands a procedure for computing the ∆- term(s).  

 

A little algebraic game with Eq. (2.19), Eq. (2.20), Eq. (2.21) and the geometrics of Fig. 

2.1 lead to the result  

 

 

2 1
2

2 1
2

1

1 .

k

k

k

k

k

k

E

E

u

v





 

 
                                                     (2.24) 

Attention should be paid to the behavior of these quantities; for example, it’s seen that when 

k   , then 2 1
k

v   and 2 0
k

u  ; when 
k  , then 2 0

k
v   and 2 1

k
u  . Thus, these 

coefficients account for the probability of occupation of states below and above the Fermi level 

in the superconducting state. On the other hand, when 0k   (normal state) then 2 0
k

u   and 

2 1
k

v  . A description of this behavior can be drawn out from Fig. 2.2. Observe the resemblance 

with the Fermi-Dirac distribution, although they’re slightly different [13]. 



 
 
 

 
 

38 
 

 

       Figure 2.2. Plot of  2

k
v  vs. 

k  

 

Important information can be derived from Eq. (2.23) when the condition (2.7) is 

introduced in the following manner: 

,

0,

k

kl

k

D

D

V
V

 

 

 
 






  .                                              (2.25) 

Then, substituting into Eq. (2.23), it is found that the self-consistency equation is satisfied only if 

k  fulfills [13] [36] 

,
,

0,

k

k

k

D

D

 

 

 
  






                                               (2.26) 

which upon the cancelation of   at both sides leaves Eq. (2.23) reading as 

 
1
22 2

2
1 .k

k

V 


   
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By transformation of the sum into an integral, the sum becomes 

 
2 2

1
2

1 ,V N d


 


 
 

where the weight function N is the density of states within the energy layer D D      ; 

here, for the sake of simplicity in the calculation, we will choose it to be constant and equal to 

  00N N    allowing us to factor it out of the integral. Finally, given that V is different from 

zero only within the mentioned region and using the symmetry of  , one draws 

 0 02 2

11

0
sinh

D
Dd

N V

 






 

 
. 

When   is cleared up from the equation, the specific form of 1sinh  is used and the 

approximation 
0 1N V   (known in literature as weak-coupling limit) is applied, a simple 

expression for the ∆- term is finally derived as 

 0 12 expD 
   ,                                           (2.27) 

where   denotes the coupling constant. Typically 0.3   in the weak-coupling limit; this 

approximation makes the former estimation accurate enough up to a 1% [13] which is 

surprisingly small considering that the possible influence of the electron-phonon interaction with 

electrons outside energy interval D D      , as well as other assumptions already 

mentioned, were totally neglected. Substitution of typical values in Eq. (2.27) place 0 around 

0.8 meV for a Debye temperature of about 300K.  
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Result of Eq. (2.27) is a demonstrative estimation of the ∆- term under the simple 

conditions inherent to the superconducting system at T = 0. The logical next step will be to 

consider such estimation when T ≠ 0. 

 

2.3.  BCS THEORY FOR A PURE SINGLE ENERGY GAP SUPERCONDUCTOR 

AT T ≠ 0. 

An immediate generalization of the previous results is in order for the treatment of our 

system when excited states are allowed; however, an approach based in a variational-like 

minimization of the energy will prove to be rather tiresome and complicated. A more 

sophisticated, modern, simplifying and elegant procedure is that suggested by N. Bogoliubov and 

J. Valatin [17] [37]; we will refer it henceforth as BV formalism. BCS theory and BV formalism 

are proved to be equivalent, as showed by Yoshida [38], however, the BV approach will prove to 

be more convenient when applied in the treatment of excitations in the superconducting system. 

 

The BCS procedure for dealing with excitations is done exactly in the same way of S.S.   

2.2. and such is adopted by BCS in their fundamental paper [4]. Bogoliubov, however, chooses a 

different path. Briefly describing, he rewrites the Fröhlich’s Hamiltonian of Eq. (2.5), ignoring 

the Coulomb contribution of the third sum at the right as a very crude approximation, and 

integrates the remaining terms in a new Hamiltonian [6]: 
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     
1
2 † † †

2
,q

q q q k k q, k q, k
kq

FrH M a a c c c c


        
   


                        (2.28) 

where the matrix element 
q

M , the †/a a - and †/c c - operators have the same interpretation and 

properties as in Eq. (2.5). A set of elementary excitations with respect to the normal state, 

including the creation/annihilation of electrons and holes, is defined by the author; however, he 

concludes that the normal Fermi sea is not the adequate starting point, due to its instability 

because of the presence of the interaction (2.28), hence the correct set of excitations has to be 

made more general. As observed independently by Valatin [37], the correct description of such 

excitations can be done by introducing a canonical transformation on the c-operators in Eq. 

(2.28) defined by 

† †

† ,

k kk k k

k kk k k

u c v c

u c v c





   

    

 

 
                                             (2.29) 

where u and v still satisfy condition (2.14) and again they have to be determined. The †/  -

operators are named quasi-particles annihilation/creation operators. It is demonstrated that 

†/  - operators satisfy the same anticommutation rules (2.3), 

 

   

†

, , ,

† †

, , , ,

,

, , 0.

k k kk

k k k k

  

   

  

   

  

 



 
                                    (2.30) 

 

When Eq. (2.29) is inverted and substituted into Eq. (2.28) and by applying the condition 

that N  is kept fixed, Hamiltonian (2.28) is transformed into 
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     2 2 2 † † †2

,

k k k k k q q qk k k k
k k q

Fr F

F F

H E N

E v E u v a a

H H

      
     

  

      

 

               (2.31) 

where the mathematical structure of the Hamiltonians H   and H   is not shown but both are so 

complicated that it is not obvious to consider them as small perturbations.  Bogoliubov 

demonstrates that the condition of H H  seen as a small perturbation is precisely the condition 

that enables the determination of the coefficients u and v [6] [17]. Such is accomplished by the 

realization that the perturbations induced by H   and H   exactly cancel each other’s “dangerous 

terms” out [6] [17] simplifying singularities and leading to a compensation condition that carries 

Eq. (2.31) into a nicer form which ultimately delivers the values of u and v.  

 

Nonetheless, Valatin carries out an equivalent procedure [37] which uses less 

complicated expressions. Using a rather relaxed notation compared with that used by the author, 

Valatin introduces the transformations (2.29) by considering that due to the large number of 

particles involved and for low order excitations, the occupation of Bloch states with Cooper 

pairs, given by the particle number 
†

, ,k kc c  , should not vary considerably around its mean value 

[13]; here the mean value is computed with respect to the ground state [36]. This allows us to 

write, in Eq. (2.10), 

 † † † †

, , , , , , , ,k k k k k k k k
c c c c c c c c          .                        (2.32) 

By making the spin direction explicit and introducing 
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* † †

,

k k k

l l l

b c c

b c c

  

  




                                            (2.33) 

the quartic term in  the second sum of Eq. (2.10) can be rewritten as 

† † † † * *

l k k lk k l l k k l l
c c c c b c c b c c b b

           
   , 

where bilinear terms of higher order were neglected. This substitution yields 

 

 

1 † † † * *

† † † * * ,

k k k kl l k k lk k l l
k kl

k k k k k k kk k k k
k k

MH c c V b c c b c c b b

c c c c c c b

 


 






     

     

   

    

 

 
                    (2.34) 

where dummy indices were conveniently exchanged in the second summation. Notice in this 

expression, known henceforth as model Hamiltonian for the single energy gap superconductor 

(hence the superscript), that the ∆- term was introduced as  

,
k kl l kl l l

l l

V b V c c
  

                                         (2.35) 

which corresponds to Eq. (2.23). Also, because of the disappearance of quartic terms in the c-

operators in Eq. (2.34), the calculation of the grand canonical partition function, and thus the 

thermodynamics of the system, is clear-cut [31].  The substitution of Eq. (2.29) into Hamiltonian 

(2.34) yields 
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   

       

1

2 2 † † 2 † †

* † † 2 2 † † 2 * 2

2 2 2

1 ,

k k k k k k k kk k k k k k k k
k

k k k k k k k k k k k k k kk k k k k k k k
k

MH

u v v u v u v

u v u v u v b

        

       

           

           



     

          





 

and if a convenient rearrangement of the terms above is done via the condition (2.30), one 

derives 

       

    

1

2 2 * † † * 2 2 † †

2 * 2 2 * *

2

2 2 .

k k k k k k k k k k k k k kk k k k k k
k k

k k k k k k k k k k k k k k kk k
k k

MH

u v u v v u v u

v u v u v u v b

       

   

        

  



        

        

 

 

                    

(2.36) 

Notice the resemblance of Eq. (2.36) with Hamiltonian (2.31). Operators † †  and   stand for 

second order excitations and by assuming that our formalism is valid up to excitations of first 

order we can conveniently choose u and v to make these terms to vanish and complete the 

diagonalization. By noticing that the coefficients of the second and third sums in Hamiltonian 

(2.36) are complex conjugate of each other and treating 
k as real, the neglecting condition 

lightens up to  

2 22 0,
k k k k k k k
v u v u                                            (2.37) 

which allows the straightforward solution 

.k

k k k k

v

u
E     
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Here the choice of the positive square root as the correct one corresponds with the minimum 

energy criteria [13]. Implementation of the result above, together with the condition (2.14), 

yields 

 

 

2 1
2

2 1
2

1

1 ,

k

k

k

k

k

k

E

E

u

v





 

 
 

which is the exact same result of Eq. (2.24) derived by the variational principle.  

 

The effect of the BV formalism and the set of transformations (2.29) on our cherished ∆- 

term prove its suitability. Just inserting the transformation (2.29) inverted into Eq. (2.35) leaves 

  † †

† †1 ,

k kl kl l l l ll l l l l l
l l

kl l l l l l l
l

V c c V v u u v

V u v

   

   

        

     

     

  

 


 

where the terms implying second order excitations, as † †

l l
 

  
 and 

l l
 
  

, are neglected. The 

quantum statistical mechanical average computes [6] [36] 

 

 
 

† †tr 1
† †

tr
1 1 2

l ll l

ll l l l

HM

HM

e
F

e
f E





   

   


    



  
 

     
     ,                  (2.38) 

where  

   
1

1 exp

F

E
f E


                                                     (2.39) 
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stands for the Fermi function,  
1

Bk T


 . Upon these results the ∆- term can now be written 

as 

    2 2

2 21 1
2 2

1 2 tanhl

l l
k kl l l l kl l l

l l

FV u v f E V


 



        ,                 (2.40) 

where Eq. (2.22), Eq. (2.24) and Eq. (2.39) were used. Eq. (2.40) corresponds to the generalized 

equivalent self-consistency equation (2.23) for the superconducting system when excitations are 

allowed; just note that Eq. (2.40) turns into Eq. (2.23) by taking T = 0 in the first, indicating that 

(2.40) is indeed a more generalized expression.  

 

The inclusion of the condition (2.25) will lead again to condition (2.26) but will 

transform Eq. (2.40) into 

   
1 1
2 22 2 2 21

2 2
1 tanhk k k k

k

V   
    

  
 , 

and the transformation of the sum into an integral with the density of states as weight function, as 

done before, will yield 

2 21
2

0 2 2

tanh1

0

D

N V
d

  







 


, 

where the symmetry of   around the Fermi level (or the parity of the integrand) again was used. 

The solution of this expression, however, is rather more complicated than its equivalent in S.S. 

2.2 and demands numerical work when 0 cT T  . The behavior of the solution of this integral 
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equation is illustrated in Fig. 1.5. Such numerical procedure will be outlined and implemented in 

Ch. III. 

 

In spite of the complications inherent to it, estimations can still be performed on this 

integral expression. By the observation that the Cooper pairing kicks in once 
cT T  and 

therefore   0cT T    with   growing from zero as 0T  , our expression softens up to 

1
2

0

tanh1

0

D c

N V
d

  


 


, 

with  
1

c B ck T


 . Upon the mathematical substitution x  , the use of the explicit form of 

tanh [39] and the weak-coupling approximation (or
c D    ), we compute [13] [31] [36] 

 0

1 ln c DN V
A    , 

where 
2

1.14EA



  , E  standing for Euler’s constant. Solving for cT  

 11.14 expB c Dk T


  .                                         (2.41) 

From Eq. (2.41) a comparison with Eq. (2.27) is immediate, with an estimate of the size of 

  00    as result, 

0 1.764 B ck T   .                                                     (2.42) 

Compare this with the said about the size of the energy gap in S.S. 1.3. 
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2.4.  BCS THEORY FOR A PURE DOUBLE ENERGY GAP 

SUPERCONDUCTOR AT T ≠ 0. 

With the most difficult part of the BV formalism being discussed, a generalization of 

BCS theory for the multiple energy gap case is immediate. The direct consequence of this 

extension consists in the addition of extra terms in the reduced Hamiltonian (2.10), where now 

the notation will have to account for the different scattering possibilities for electrons lying in the 

two bands under study. Inspired by the theory of resistivity in transition metals, where electronic 

bands are labeled s and d [41], the corresponding emission and absorption of phonons can occur 

in four different manners in the vicinity of the Fermi level: via a s-d process (meaning the 

exchange of a phonon between an electron in s-band and an electron in d-band), a d-s process 

(meaning the exchange of a phonon between an electron in d-band and an electron in s-band), a 

s-s process (meaning the exchange occurs between electrons in s-band) or a d-d process 

(meaning the exchange occurs in the d-band); in consequence, three matrix elements 

,sd ds ssV V V  and ddV  will be necessary leaving the reduced Hamiltonian reading as [41] 

 

† †

† † † † † † † † ,

k k k q q q

k q

k k k k q q q q k k q q k k q q
kk qq kq

red

s d

ss dd sd

H

c c d d

V c c c c V d d d d V c c d d d d c c

   
 

 

                          
 





   

 

  

  

          (2.43) 
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where the letter   stands for the kinetic energy and the †/c c - and †/d d - operators and their 

respective adjoints stand for the annihilation/creation operators, all in the respective bands. As 

seen, condition (2.25) has been made explicit respectively for each band and the cutoff 

restrictions were included in the summations. Hereafter, we will refer to the inter/intra band 

scattering matrix elements 
ssV , 

sdV  and 
ddV  as the V- terms. 

Following the BV formalism, the same argument that led to (2.32) applies for each band 

and operator and the use of definition (2.33) transforms our sums containing quartic terms in the 

Hamiltonian (2.43) into our double energy gap, model Hamiltonian version dictated by 

† †

† † 2 † † 2

† † † † 2 ,

k k k q q q

k q

k k k k q q q q
k k q q

k k q q k k q q
k q k q

d

M

s d

ss ss dd

sd

H

c c d d

V S c c SV c c S V D d d D d d D

V D c c S d d D c c S d d SD

   
 

 

           

           





  
        

   

 
    

 

 

   

   

      

(2.44) 

where the superscript in the Hamiltonian accounts for the number of bands and were it became 

necessary to introduce 

† †

k k
k

S c c
  

                                                           (2.45) 

and 
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q q

q

D d d
  

 .                                                        (2.46) 

It’s important to notice that Eqs. (2.45-46) are not the ∆- terms equivalent with Eq. (2.35) in the 

single band case as a reader might mistakenly assume. Notice the symmetry between the 

coefficients of the scattering matrix elements in parentheses in the Hamiltonian (2.44). 

  

Immediately next, the BV canonical transformations of the type (2.29) for each operator 

are introduced in the form of 

†

†

†

† ,

k kk k k

k kk k k

q qq q q

q qq q q

c u e v e

c v e u e

d u f v f

d v f u f

   

    

   

    

 

  

 

  

                                              (2.47) 

where the transformations are shown here inverted. Operators e and f obviously satisfy the 

anticommutation rules (2.3), which are used whenever appropriate in the process of substitution 

of Eq. (2.47) into the Hamiltonian (2.44); such process is tedious and will not be displayed here. 

The final result holds as 
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     

     

       

   

2

2 2 † †

2 2 † †

2 2 † † 2 2 † †

2 2

2 2

2 2

2 2

2

k k k k k k k k k
k

q q q q q q q q q
q

k k k k k q q q q qk k q q
k q

k k k k k k
k

M

s

ss sd

d

dd sd

s d

ss sd dd sd

s

ss sd

H

u v SV DV u v e e e e

u v DV SV u v f f f f

u v u v SV DV e e u v u v DV SV f f

u v u v SV DV e





 



     

     

     



    

    

       

   





 

    

 

2 2

2 2 2 2

2

2 2 2 .

q q q q qk q q
q

k k q q

k q

d

dd sd

s d

ss dd sd

e u v u v DV SV f f

v v S V D V SDV



 

     
     

   



 

(2.48) 

Again, notice the symmetries and contrast the looks of this expression with the Hamiltonian 

(2.36). 

 

Just as before, we neglect the second order excitations allowing the coefficients of the 

operators ee , † †e e , ff  and † †f f  and the independent term to vanish with the adequate selection 

of the quantities u and v, where condition (2.14) is satisfied in each band . Naming 

s ss sdSV DV                                                               (2.49) 

and 

d dd sdDV SV                                                            (2.50) 

as the actual ∆- terms equivalent with Eq. (2.35), we easily derive the quadratic equation 

2 22 0
k k k k k

s

s sv u v u    , 
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with an analogous expression for 
d . Solving exactly as done in Eq. (2.37) and using condition 

(2.14), we obtain for the s-band 

 

 

2 1
2

2 1
2

1

1

k

k

k

k

k

k

s

s

s

s

E

E

u

v





 

 

                                                     (2.51) 

and for the d-band 

 

 

2 1
2

2 1
2

1

1 ,

q

q

q

q

q

q

d

d

d

d

E

E

u

v





 

 

                                                   (2.52) 

with 

 

 

2
2

2
2 ,

k k

q q

s s

s

d d

d

E

E





  

  

                                                (2.53) 

which, once more, matches faithfully the results of Eq. (2.22) and Eq. (2.24) now extended for 

our two bands.  

 

With the coefficients u and v known in both bands, the calculation of the ∆- terms of Eqs.  

(2.49-50) is easy. However, a quick view reveals the need of solving the mean values of Eqs. 

(2.45-46) first; upon the substitution of the transformations (2.47) into Eqs. (2.45-46) the yielded 

result is Eq. (2.38) extended for the two bands, i.e., 
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 

 

1 2

1 2 ,

k k k

k

q q q

q

F s

F d

S u v f E

D u v f E

  
 

  
 




 

where Ff  is the Fermi function of Eq. (2.39). Carrying this result back into Eqs. (2.49-50) and 

with the aim of Eqs. (2.51-52) and Eq. (2.53) one finally draws, for example in the case of s , 

   
   

   
   2 2 2 2

2 2 2 2
1 1
2 2

tanh tanh
qk

k k
k q

k q

k q

k q

s d

s d
s s

s d

s ss s sd dV V
 

   


   

        ,       (2.54) 

where an analogous expression holds for d . As it has probably been noticed, Eq. (2.54) is Eq. 

(2.40) generalized. The transformation of sums into integrals in the manner done in S.S. 2.3 and 

S.S. 2.4 goes similar; just noting   00s sN N  and   00d dN N  as the density of states at the 

Fermi surface and introducing 

 
2 21

2

2 2

tanh

0

D

F d
  







  


,                                           (2.55) 

the same kind of approximations done before yield the two simultaneous equations [41] 

   0 01s s ss s d d sd dN V F N V F                                      (2.56) 

   0 01 .d d dd d s s sd sN V F N V F                                    (2.57) 

Numerical work is necessary to solve the behavior of both   and such will be done in Ch. III. 
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Likewise in S.S. 2.3, an expression for the transition temperature 
cT  can be derived by 

observing that 
, 0s d   when 

cT T . Solving Eqs. (2.56-57) simultaneously for  0F , we 

obtain 

     0 0 0 0 2 21 0 1 0 0d dd s ss d s sdN V F N V F N N V F         . 

Equating to zero and solving the respective quadratic equation, one winds up with 

 
 

   
 

2
2

112
0 0 2 0 0 4 0 02 0 00 0

2 20 0 2 0 0 2

4

2 2
0

V V VV V sd ss ddss dd

N N N NN Ns ss d dd sd dd ss s ss d dds ss d dd

sd ss dd sd ss dds d sd ss dd s d sd ss dd

N V N V V V VN V N V

V V V V V VN N V V V N N V V V
F

  
            

  
      . 

However, because of definition (2.55), the left hand side is identical to  ln c DA   , 1.14A , 

as derived before, and solving for 
cT  we determine [41]: 

 1.14 exp 0B c Dk T F                                        (2.58) 

which stands equivalent with Eq. (2.41) for the double-gap case. 

 

As suspected, the BV formalism in the number of energy gaps can be readily extended to 

a generalized version from the set of formulas (2.56-57) to the set [41] 

 i ij j j

i

V F                                              (2.59) 

for more complicated systems, where i runs over the number of energy gaps. 
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2.5. BCS THEORY FOR A DOUBLE ENERGY GAP SUPERCONDUCTOR AT   

T ≠ 0 IN THE PRESENCE OF NON-MAGNETIC IMPURITIES.  

As far as Eqs. (2.56-57) are concerned, the V- terms are constants faithful to the BCS 

approximation (2.25) for a pure conventional superconductor but, as it’ll be seen in the 

following, such matrix elements are showed to exhibit a behavior markedly influenced by the 

impurity concentration [42] [43]. Our main task along this Sub-section will consist of 

demonstrating the way in which such phonon-mediated interaction matrix elements change in the 

presence of these impurities. 

 

The presence of impurities in the superconducting system implies a series of effects: a 

change in the number of conduction electrons, an alteration in the density of states, a 

modification in the Bloch states due to the impurity-electron scattering [42] [44] [45] and a 

minimum decrease in Tc [42] [46]. 

 

As result of our tour on BCS theory in previous Sub-sections, it is clear that the 

correlations of electrons with opposite momenta and spins hold responsible for the 

superconducting properties. In literature is commonly said that electrons are formed in pairs with 

mutually “time-reversed states” [40]. P. W. Anderson suggested a BCS-type theory which 

employs time-reversed scattered state pairs to treat impurities [47]. In general, this theory is 
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based on the idea that superconductivity is not sensitive to perturbations that do not destroy time-

reversal invariance [48]. In order to follow such formalism, we turn again to Bogoliubov, 

although this time a rephrase is introduced. We will follow Bogoliubov’s effective-field method 

in the manner done by de Gennes [49] in which a self-consistency field scheme is invoked [48]; 

in such notation the Hamiltonian for a system in the presence of non-magnetic impurities reads 

             
2

† † †1
2 2

p
r r r r r r r r r

imp

m
H d V V d

 

            
    ,   (2.60) 

where  and † are operators defined by 

 

 

,

† †

, .

k r

k

k

k r

k

k

r

r

i

i

e c

e c







 

 

 








                                            (2.61) 

Their anticommutation properties are enunciated as: 

      

         

†

† †

,

, , 0,

r r r r

r r r r

   

   

    

      
                              (2.62) 

where indices  and   stand for spin. Notice that the †/  - operators are written as linear 

expansions of the †/c c - operators which satisfy rules (2.3) as well. In the Hamiltonian (2.60), 

 r
impV  denotes the impurity potential, which is purposely assumed to be independent of spin 

indices (in order to concord with the non-magnetic character of impurities) and V stands for the 

phonon-mediated interaction. A consideration of the type (2.32) transforms the Hamiltonian 
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(2.60) into our version of the model Hamiltonian [48], which in literature is found to be called 

effective Hamiltonian [49], 

     

           

2
†

2

† † * ,

p
r r r r

r r r r r r

imp

eff m
H d V



 
       

         


                    (2.63) 

with 

     r r rV       .                                            (2.64) 

The introduction of the unitary transformation [49] 

        

        

† *

† * ,

r r r r

r r r r

n nn n
n

n nn n
n

u v

u v

 

 

 

 

   

   




                                       (2.65) 

as a generalization of the transformations (2.29), where †/  - operators are the same quasi-

particles annihilation/creation operators introduced in Eq. (2.29) satisfying condition (2.30), 

leads to the so-called Bogoliubov-de Gennes equations [50], 

 

 

 

 

 

 * *

r r r

r r r

E

E

u H u
E

v H v

     
     

      
 ,                                        (2.66) 

where matrix notation was used. In Eq. (2.66),    
2 2 2

2 2

p
r r

imp imp

E F Fm m
H V E V E        . 
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Because of the nature of impV  and V, the set of Eqs. (2.66) is still too complicated to be 

solved. A not too rigorous but acceptable assumption is to suppose  r independent of r despite 

of the presence of impurities [49]. By introducing the one-electron wavefunctions satisfying 

   r rn n E nH                                                    (2.67) 

and substituting into the set (2.66) one easily solves the system to end up with the expressions for 

nu  and nv  which read exactly identical to Eq. (2.24), where the assumption   .r const     

was adopted. The subsequent calculations, which unfold in a manner very similar than in latter 

Sub-sections, demonstrate that the presence of nonmagnetic impurities have no considerable 

effects in cT [46]. This is precisely the enunciation of Anderson’s theorem [47] and the range up 

which the approximation   .r const   holds is denominated dirty limit. Kim and Overhauser 

(KO) assert that Anderson’s theorem holds valid up to the first power in the impurity 

concentration [42]; such observation will be extremely helpful to truncate our calculations to be 

implemented later. 

 

In spite of all this, the assumption   .r const   is not entirely accurate [48] [50] and 

instead one should use 

 1 2 F

n nn n n n

n

V u v f    ,                                           (2.68) 

with Ff again the Fermi function; it is demonstrated that [42] [48] [50] 
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       * *
r r r r rnn n n n nV V d         ,                                  (2.69) 

where index n  denotes the time-reversed scattered state partner of index n, i.e., n n  . Eq. 

(2.67) is rather formal; in a pure metal, they represent Bloch functions, but in our impure system 

they have a complicated structure describing the scattering between electrons and impurities 

[49]. Such scattered-state wavefunctions (exact scattered states) can be sculpted from the time-

independent perturbation theory (TIP theory) with the result [51] 

     r
imp

k k

k V kk

n k k E E

k k

N r r  




 


 
   

 
  .                                   (2.70) 

with   ikr

k r e  .  

 

Up to this point, we can start matching our derivations with the corresponding parameters 

of the MgB2 compound. For example, because of the existence of the two electronic bands   

and   mentioned in S.S. 1.4, our wavefunction (2.70) should read, up to a second order of 

perturbative approximation and respectively for each band, as [52] 

       
k k k q

k k q k

k k q

k q

r r r r
imp impV V

n nN    

   

   
   

 

 

  
 

 
   

 
                   (2.71) 

       
q q q k

q q k q

q q k

q k

r r r r
imp impV V

m mN    

   

   
   

 

 

  
 

 
   

 
  .                (2.72) 
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On the other hand, our impurity potential will be assumed to be in the form of a point interaction 

[42], 

 r R
imp imp

o i

i

V V   ,                                            (2.73) 

where  Ri correspond to the impurity site position vectors and therefore the index runs up to the 

number of impurities in the system; if N
imp

 impurities are supposed to settle at  R j  the 

“sandwich” products within the summation symbols in Eqs. (2.71-72) are nicely calculable as: 

   exps s r R s s R
imp imp

o j j

j

V V i                            (2.74), 

with s standing for k or q. In Eqs. (2.71-72) constants Nn and Nm stand for the normalization 

constants and the zeroth approximation functions ( ) correspond to the free-electron 

wavefunctions for each band respectively.  

 

Each of the V terms to be inserted in Eqs. (2.56-57) can now be estimated via Eq. (2.69) 

with the scattered state wavefunctions given as in Eqs. (2.71-72). As expected, this task is 

extremely tedious. I will show the calculation of only one of the terms in a very simplified 

manner, only with demonstrative purposes.  

 

Let us consider V . Substitutions yield: 
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   

   
         
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(2.75) 

as it is easily noticed above, the approximation was carried up to the second order in the impurity 

potential 
imp

oV , hence terms of higher order were ignored. When “impurity-averaging” is 

considered, i.e., when one takes 1 Rid
  at both sides of  Eq. (2.75), all the first order terms 

vanish; in order to see why, consider a representative term with coefficient  
1

imp

oV , e. g.,  
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because    exp 2 ,0 0K R R Kj ji d       [39] since 0K  always; this effect mirrors in all 

the first order terms, killing them off. Adequately equating and relabeling indices to eliminate 

double sums and keeping only those terms of the form 
 

2

1

    , our matrix element now reads 
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(2.76) 

where 1rd   . Explicitly normalizing Eqs. (2.72-73) one draws 
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2 2 2 2

22 2 1 1 1 11
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 

 
     

 
    . 

Substituting into Eq. (2.76) a cancelation between several terms occur, leaving 
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(2.77) 
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The terms in square brackets imply a particular significance. Notice that, for example, the first 

addend at the right is the original V  term evaluated in the  - functions. This occurs with the 

other V- terms as well, whose structure corresponds to the V- terms evaluated via Eq. (2.69) but 

with the  - functions as arguments. We denominate these new potential terms as the V
0
- terms, 

each of which is defined by 

   
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2 2
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0 0
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

                                         (2.78) 

Upon the result derived by Kim [32] [52] [53], 

 

0

2

1
2

N 

  
 ,                                                    (2.79) 

where labels were omitted,   stands for the energy gap associated with the corresponding sum 

and 0N is the density of states at 0  . By calling upon the formulas [4] [42] 

Fv

o 






  ,                                                        (2.80) 

   
2 2

0 02 21 imp imp impV N nc N N V 

    ,                              (2.81) 

and [31] 

Fl v  ,                                                          (2.82) 
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where 
o  is the coherence length, here interpreted as the size of the Cooper pair [4] [46], and l is 

the electron mean-free path, one can readily derive the simplifying result  

 
 

2

2
1

4
oimp imp

l
N V



  
  ,                                     (2.83) 

where, again, labels were omitted at both sides of the equation for simplicity. When the sub- and 

supra- scripts of  o  and l are particularized to each sum, the result finally yields [55] 

 0 0 0

4
2

l
V V V V 





      . 

Analogous calculations result in analogous expressions for the rest of the scattering V-terms. If 

listed, these terms read [55]: 
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                           (2.84) 

 

However, as Kim et al. estimate, the reach of Anderson’s theorem is rather limited [42]. 

As impurity concentration increases, the set (2.84) rapidly loses validity because of the 

augmentation in disorder. Weak localization is a typical effect in disordered systems at low 

temperatures and occurs because of the diffusive nature of the electron at the quantum-

mechanical level when repeatedly scattered by random impurities [56]. Because elastic scattering 

dominates at low temperatures [47], electrons may maintain phase coherence over large 

distances giving rise to coherence interference phenomena. For example, a random array of 
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impurity scatterers will not give rise to a uniform scattering of electrons in all directions but to a 

backscattering enhanced [56].  This happens because coherent interference of electrons between 

self-crossing paths can take place when two electrons are scattered around in loops in different 

directions, i.e., clockwise or counterclockwise; then, because the length of the optical path is the 

same, the phase coherence occurs [56]. Electrons are thus said to be localized. Weak localization 

in superconductors is caused by impurity doping or radiation damage [43]. The effects of weak 

localization evidently have an influence over conductivity, as demonstrated by Kim and Park 

[43] and as found experimentally [57]. In consequence, a weak localization correction has to be 

introduced in Eq. (2.84). Such correction is also worked out by Kim et al. [42] [43] [57] [58], 

where a decrease in the phonon-mediated matrix elements is found as result [43].  

 

The foundation of KO’s assertion is related with the calculation of the matrix element 

(2.69).  When scattered states of Eq. (2.67) are expanded in plane waves, 

k

k

kn n                                                    (2.85) 

and such unitary transformation is brought into Eq. (2.69), the V-terms can be rewritten as 

 
* *

kk q

kk q

k k k q k qnnV V n n n n 



        .                        (2.86) 

Anderson’s theorem is achieved when Fröhlich’s pairing interaction is considered within BCS 

cutoff and the sum in k  is omitted by making k k    [42]. In other words, when not all the 

terms of the sum are taken into consideration and a portion of them are disregarded [47] [58]; 
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however, these remaining “non-BCS” V-terms cannot always be ignored. KO state that in the 

weak localization regime such remaining term has a significant contribution [43].  

 

In light of these considerations and counting in both BCS and non-BCS terms in the 

calculation, Kim rewrites Eq. (2.86) as [58] 

* *
1

k k kq

k k k q k qnnV V n n n n



 
          

 
 ,                  (2.87) 

where the second addend in parentheses is the one neglectible in the dirty limit scheme. In order 

to calculate this correction term, Kim decides to work with the phenomenological power-law 

scattered-state wavefunctions derived by Kaveh and Mott [59], which read 

     2

1exp expk r k r
r

A i B ikr    ,                                        (2.88) 

when the proper labels are omitted. In Eq. (2.88) 

 2 2 1 11 4
l L

A B                                                            (2.89) 

2 3 1
8 Fk l

B


 ,                                                                    (2.90) 

where L denotes the diffusion length [43]. Approximating the eigenstates by an incoherent 

superposition of plane wave states, as suggested by Thouless’ approach [60], Kim determines  

     2

1exp exp
k
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r k r
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n r
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and substituting back into Eq. (2.69), for the 3-D case [43] [55] [57], 
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31 1
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. 

Carrying the expression above into our particular two-band case yields [55] 
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(2.91) 

 

Matrix elements of Eq. (2.91) therefore correspond to the matrix elements of Eq. (2.84) 

within the weak localization limit. The formalism adopted for tracing the behavior of the energy 

gaps in Eqs. (2.56-57), adapted to the two-band gap model, will read as 

   0 01 N V F N V F       
                                        (2.92) 

   0 01 ,N V F N V F       
                                       (2.93) 

where formulas will have to account for the shift in the values of the V- terms by weak 

localization when impurity concentration grows big enough. Because of the decrease of Tc (see 

Eq. (2.58)) implied when such tracing is to be performed, the mean-free path spacing parameter l 
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becomes the perfect quantity to model the impurity concentration and hence the magnitude of the 

weak localization effect. The way in which this will be done and also the manner in which the 

calculations will be performed are the subject of the next Chapter. 
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III. NUMERICAL CALCULATIONS, RESULTS AND DISCUSSION 

 

1. INTRODUCTION 

 

The numerical modeling of the problem is performed by the numerical adaptation of Eqs. 

(2.92-93). In the following, corresponding computations based in the single-gap and double-gap 

model (in absence and presence of impurities) will be performed. Such numerical calculations 

will play the role of both a background to compare the calculations performed including the 

corrections in the V-terms due to the presence of impurities and to test the computing algorithms. 

All the numerical computations were performed with the computer software MATLAB 7.4.0 

(R2007a). 

 

 It has to be observed that it’s an obvious fact that no computer program can calculate the 

integral (2.55) accurately. Any software will approximate the infinite sum by a finite sum of 

representative, yet appropriate geometric figures to estimate the area under the curve, in our case, 

that curve described by the argument of (2.55);  MATLAB contains several functions to perform 

this. I chose quad, a function that approximates the integral of a function with a tolerance of 

610  using a recursive adaptive Simpson cuadrature [61]. For all mathematical purposes 

(excluding certain syntax implied) quad and F in (2.55) are the same.  

 

Finally, a few statements applicable to all our calculations have to be kept in mind:  

 In all the n-iterating integral equations (of the type of Eqs. (2.92-93), for 

example), 1 , 1Bk  and 1Fk  were adopted. 
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 In all the n-iterating integral equations n stands for the number of iterations. 

The numerical method employed in all the calculations is the standard for solving integral 

equations by a successive approximation method [62]. 

 

2. TRACING OF THE ENERGY GAP FOR A PURE SINGLE ENERGY GAP 

SUPERCONDUCTOR AT T ≠ 0. 

2.1  NUMERICAL FITTING 

According with (2.40) and (2.54), each ∆ at the left hand side depends of the ∆- terms in 

the sum(s) at the right hand side. This suggests that the ultimate value of a given ∆- term will be 

the result of a repeated iteration for a fixed T. For the single band case, where only one ∆ - term 

appears, the numerical fitting inspired in (2.40) is remarkably simple and dictated by 

 1 0n n nN V F    ,                                                      (3.1) 

where the product 0N V  and the initial value ∆
0 

are properly chosen from the experimental data 

[49].   

Units are also accommodated. Henceforth the upper limit of (2.54) is taken in 

temperature units by the known equivalency D B Dk  , with D  standing for the Debye 

temperature.  For the next results, the values for Tc are calculated via Eq. (2.41). Experimental 

values for 0N V  and D  are excerpted from [49]. For the single band the results shown for the 

size of ∆ are normalized to the size of the energy gap at zero temperature (Eq. (2.42)). This is 

done to match the results available in literature [4] [13]. 
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2.2.  RESULTS 

The computations implemented here produced the following results for the single band 

case, impurities absent: 

 

 

 

Plot 1. Parameters: 0 0.25, 4.0359K,  195K,  100.c DN V T n     
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Plot 2. Parameters: 0 0.18, 1.0266K,  235K,  500.c DN V T n     
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Plot 3. Parameters: 0 0.35, 4.5429K,  70K,  1000.c DN V T n     
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Plot 4. Parameters: 0 0.18, 1.6382K, 375K,  5000.c DN V T n     
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2.2.  DISCUSSION 

The plots for the single-band case show to be in perfect concordance with those portrayed 

in most of the common superconductivity references in literature, as below, where the tracing of 

the energy gap performed by Bardeen et al. in their fundamental paper [4] is displayed. 

 

Figure 4.1.  Ratio of the energy gap performed by Bardeen et al. [4] 

 

In the plots obtained the behavior of the curve is in discussion when 0
c

T
T
 and 1. In the 

first case, the plot behaves as expected from literature, where an expansion in Eq. (2.40) and an 

approximation for cT T  produces the relation       00 exp
Bk T

T const
     

 
 [13] which 

leaves an almost constant energy gap size near T = 0 as evidenced in Fig. 4.1. Also as observed 

above, the convergence improves naturally with increasing number of cycles. It’s to be noticed 

that the integral (2.55) converges rather fast in a fashion considerably insensitive to the initial 

value 0  (except, obviously 0 0  ). In the second case, it’s well known the approximation 

relation      0 1 0 1
c

T
T

T x       when cT T  [4] [63], where 
c

T
T

x  ; by evaluating 
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1

d
dx x




  the asymptotic behavior of the slope of the curve at cT T  turns very evident as achieved 

in the plots above. As suggested by Bardeen et al., this is a behavior predicted for all 

conventional superconductors [4]. 

 

3. TRACING OF THE ENERGY GAPS FOR A PURE DOUBLE ENERGY GAP 

SUPERCONDUCTOR AT T ≠ 0. 

 

3.1  NUMERICAL FITTING 

The double band case, however, is more complicated.  Since the ∆- terms in Eqs. (2.56-

57) are mutually coupled, an appropriate numerical fitting of Eqs. (2.92-93) inspired in (2.54) 

will stand as 

   

   

1 0 0

1 0 0 .

n n n n n

n n n n n

N V F N V F

N V F N V F

        

        





      

      
                                 (3.2) 

Most of the results are replications of the calculations done in [41]. Here, computations were 

made in absence and/or presence of either the inter- or the intra- scattering matrix element.  

 

Normalization of the energy gaps for this case is done with respect to the quantity B ck T ; 

the parameters used are the same implemented in [41]. The values of Tc were calculated using 

Eq. (2.58); the Debye temperature θD is estimated to fit results. Results are shown with and 

without normalization to the units. At the end, some calculations were performed considering 

parameters from MgB2. 
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3.2  RESULTS 

The computations implemented here produced the following results for the double band 

case, impurities absent, no intra-band scattering allowed: 

 

 

Plot 5. Parameters:  
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Plot 6. Parameters:  

0V V   , 1
3
,V N N    11.0677K, 195K,  2000.c DT n    
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Plot 7. Parameters:  

0V V   , 1
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The computations implemented here produced the following results for the double band 

case, impurities absent, no inter-band scattering allowed: 

 

 

Plot 8. The energy gap size is not normalized 
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Plot 9. The energy gap size is normalized. 

Parameters: 
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The computations implemented here produced the following results for the double band 

case, impurities absent, with inter- and intra- band scattering allowed: 

 

 

Plot 10. The energy gap size is not normalized.  
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Plot 11. Energy gaps in pure MgB2 compound normalized to meV units. The red plot 

corresponds to the tracing of  ; The blue plot corresponds to the tracing of  . 
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3.3.  DISCUSSION 

As observed, the general behavior of the energy gaps follow that of the single band case 

in terms of the shape of the plot. However, the absence or presence of inter- or intra- band 

scattering becomes a determinant factor for the critical temperature. 

It turns easy to note that in absence of the intra-band scattering ( 0V V   ) but in 

presence of inter-band scattering ( 0V   ) only one sign of Eq. (2.58) prevails whereas the 

other is devoid of physical significance; by a simple substitution, Eq. (2.58) becomes 

 inter1.14exp 0B ck T F    ,                                                 (3.3) 

where   1
inter 0

N N
F

 
 . In these cases, normalization was possible to this one temperature (Plot 5 

to Plot 7). The other determinant factor is the ratio 
N

N



, which leaves a single band when equal to 

one (Plot 5; see also Eqs. (2.92-93)) but splits plots in pairs of symmetrical curves around the 

curve 1
N

N



  for increasing values of this ratio (Plot 7).  

This situation changes in the presence of intra-band scattering ( 0V V   ) and 

absence of inter-band scattering ( 0V  ). In such cases the two signs of F are evidently 

differentiated. A substitution in Eq. (2.58) yields: 

   2,1

intra1.14exp 0B ck T F     ,                                             (3.4) 

where   1
intra 0

N V
F

 

   and   1
intra 0

N V
F

 

  , which justifies the presence of two transition 

temperatures. This observation allows us to understand the behavior of the gaps when both intra- 
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and inter- scattering are permitted (Plot 10). As seen, in proportion to the increase in the 

magnitude of the inter-band scattering matrix element, the curve for the lesser Tc shows the 

initial tendency to a lower temperature to finally merge with the curve for the higher Tc as T 

continues increasing. These results are in concordance with those derived by Suhl et al. [41], as 

displayed below. 

 

 

 

 

 

Figure 4.2. Results of the energy gap tracing for the double band case performed by Suhl 

et al. [41]. 

 

 

Finally, the results obtained using parameters of the MgB2 compound (Plot 11) are in 

concordance with the numerical trace performed by Choi et al. [27], shown below. The values of 

N
0
V and θD were conveniently chosen to fit the experimental data. 
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Figure 4.3. Numerical trace of then energy gaps in MgB2 performed by Choi et al. [27] 

using the iterative technique of Marsiglio et al.[64] 

 

 

4. TRACING OF THE ENERGY GAPS FOR A DOUBLE ENERGY GAP 

SUPERCONDUCTOR AT T ≠ 0 IN THE PRESENCE OF NON-MAGNETIC 

IMPURITIES 

 

4.1  NUMERICAL FITTING 

As depicted before, numerical tracing is done by Eq. (3.2) but the the variations in the 

matrix elements because of the influence of the scattering due to impurities in the dirty limit and 

within the weak localization correction (Eqs. (2.84) and (2.91)) have to be accounted for. In 

order to contrast results, the experimental tracing on the superconducting energy gaps of MgB2 

done by Y. Wang et al. [65], F. Bouquet et al. [66] and several studies of M. Putti et al. [67]-[69] 

and Z. Hoîanová et al. [70] are considered. Specifically, Wang et al. present a study where the 

evolution of the energy gaps is followed by bulk specific-heat measurements while disorder is 

introduced [66]. This is exactly what our theoretical model allows us to do. 
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Figure 4.4. Experimental tracing of the energy gaps in MgB2 by Putti et al. [67]. 

 

As observed above, because the quantities whose change is to be followed are 0  and Tc 

(and not ∆ and T, like in the former Sections) an important simplification occurs because F in 

Eqs. (2.92-93) is now evaluated at  0 0T    ; hence, by the definition of F in Eq. (2.55), 

0   , yielding  tanh 1   and thus the integral loses its hyperbolic trigonometric part 

becoming the simple nice analytic integral of page 39.  This will save an enormous quantity of 

calculations, at least compared with those performed in S. 2 and S. 3. Furthermore, because 

l l  , where l stands for l or  l  henceforth, the assumption 1 0
l
  will be reasonable and 

the matrix elements (2.91) are dramatically reduced to [55]: 
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 
2

0 31
Fk l

V V
  

 
  

 
 

 
2

0 31
Fk l

V V
  

 
  

 
                                                (3.3) 

   
2 2

0 3 31 .
F Fk l k l

V V V
     

 
    

 
 

 

Upon observations from Kim et al. [57] [71] [72] and experimental results [22] [25], the 

dirty limit is conditioned by 1 0.1
Fk l

 , while the weak localization correction becomes 

important for 1 0.1
Fk l
 . Besides, in the calculations implemented here 10000Å l   700Å is 

assumed, where l  diminishes as 0cT   because of the increasing in disorder. Notice that this 

variation directly affects the Cooper pair sizes, as defined in Eq. (2.80). Once outside the dirty 

limit, weak localization correction turns important and 700l  Å is left fixed; then the V-terms 

calculated up to this point from Eq.(2.84) enter as V
0
- terms in Eq. (3.3) with 75Å l  3Å. 

Initial values for the Cooper pair sizes were calculated from Eq. (2.80) as 0 83  Å and 

0 262.5  Å by using 0 2meV   and 0 6.3meV   as very rough approximations from 

experimental data [27]. These values are fixed at the entry of the weak localization correction 

limit as well. 

 

4.2  RESULTS 

With these implementations in mind, the computations implemented here produced the 

following results for the double band superconductor MgB2, impurities present: 
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Plot 12a.  Tracing of MgB2’s zero-temperature energy gaps within the dirty limit with increasing 

disorder ( 0 38.5KcT  ) (red line corresponds to 0

 , blue line corresponds to 0

 ). 
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Plot 12b.  Tracing of MgB2’s zero-temperature energy gaps within the dirty limit                               

with increasing disorder ( 31.5K 38.5KcT  ) (red line corresponds to 0

 , blue line 

corresponds to 0

 ).  
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Plot 13. Tracing of MgB2’s zero-temperature energy gaps with increasing disorder including the 

weak localization correction (red line corresponds to 0

 , blue line corresponds to 0

 ).  
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Plot 14. Tracing of MgB2’s zero-temperature energy gaps with increasing disorder (red line 

corresponds to 0

 , blue line corresponds to 0

 ).  
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4.3  DISCUSSION 

The shapes of the curves obtained are quite distinct from those of the former Sub-

sections, mainly due to the change in the parameters plotted. In theory, with the older parameters 

one should expect a behavior as that portrayed in Fig. 4.3. An experimental trace on MgB2’s 

energy gaps of the kind performed using our theoretical model is conducted by Hoîanová et al. 

[70] on Carbon substituted Mg(B1-xCx)2 samples (Fig. 4.6). The values of Tc change slowly 

within the dirty limit (31.5K 38.5KcT  ) but they experience a quite significant decrease when 

weak localization ( 31.5KcT  ) is taken into account.  This is observed and explained by KO [42] 

and Kim [55] [57]. As well the remarkably different behavior displayed by the zero-temperature 

energy gaps in different regimes is also significant. Within the dirty limit, where scattering 

matrix elements of Eq. (2.84) are valid, a decrease in 0

  (red) is observed (although not at a 

constant slope, as one can conclude from Plot 14), while a minor increase in 0

  (blue) occurs; it 

is considerably important to observe that some experiments report no change of 0

  at all (with    

0 2  meV) in this interval [73]. A slight increase is reported by Daghero et al. [74] and 

Gonnelli et al. [75] [76]. On the other hand, once the weak localization correction of Eq. (2.84) 

becomes important both gaps are seen to diminish down to zero in a rather linear fashion; a 

linear trend of the energy gaps can also be compared with the point-contact spectroscopy (PCS) 

experimental results of Hoîanová et al. [70] on C-substituted MgB2 (see Fig. (4.5)). Other 

research groups as Putti et al. [67], Hoîanová et al. [70] and Gonelli et al. [75] also attract 

attention on this linear behavior with different slopes.  
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Also observed by Putti et al. [67] in their experimental trace (Fig. 4.4) is that the saddle 

point in the π- gap curve occurs at 30K. For the plots obtained here it occurs at 31.5K. For these 

researchers, however, both gaps merge from approximately 21K and continue as a single gap 

down to zero [67]. As said a few lines above such merging is also observed experimentally by 

Gonelli et al. [75]. For the plots derived here the merge occurs at 0K. Such observation is 

suggested by the results of Hoîanová et al. [70]. 

 

 

Figure 4.5. Superconducting energy gaps from PCS experiments as a function of Tc from 

Hoîanová et al. [70] 
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Figure 4.6. Experimental trace of the energy gaps in MgB2 in presence of impurities 

conducted by Hoîanová et al. [70] 
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IV. CONCLUSIONS AND FUTURE WORK 

 

1.  CONCLUSIONS 

A qualitative theoretical model for the tracing of the energy gaps in a two band 

superconductor was elaborated and an outline of such energy gaps within the BCS theory was 

performed considering several regimes. The effect of weak localization on a two band 

superconductor was studied.  It is found that within the “clean regime”, i.e. impurities absent, Tc 

is rather sensitive to the inter- and intra- band scattering, the first one being clearly responsible 

for the merging of the energy gaps at a single Tc, as seen in Plots 10 and 11 [77].  Despite the 

BCS crude approximation of the phonon-mediated interaction (See Eqn. (2.25)), the results are 

in qualitative good agreement with experimental results (See Fig. 1.5). Blatt [3] (p. 244-245) 

shows a numerical tabulation of ∆; values are comparable with those derived here. In the double 

band case, the results are sensitive to the fraction 
N

N



 in the absence of intra-band scattering; in 

absence of inter-band scattering, an ideal situation of two superconducting transition 

temperatures was obtained; in the case of no impositions on the values of these scattering 

elements we derive results applicable to MgB2 and comparable with experiments (Plot 11).  

 

Within the “dirty regime”, i.e. impurities present, the inter- and intra- band scattering 

matrix elements play different roles in proportion to the range of validity of Anderson’s theorem, 

i.e. the dirty limit, and the weak-localization correction from Kim [55]. It is easily seen from Eq. 
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(2.91) that inter-band scattering is predominant within the dirty limit (because of the absence of l 

in the equations). As pointed by Putti et al. [67], as well as Kim [55], the decrease of 0

  and the 

slight rise of 0

  is apparently a direct consequence of the inter-band scattering. Kortus et al. 

[73] claim that this behavior of the π- gap is the result of a compensation effect between band 

filling (in the case of doped samples) and inter-band scattering.  Kortus also predicts a shift in the 

merging point for higher doping concentrations at lower Tc; Daghero et al. [74], however, 

attributes this to the moderate increase of the inter-band scattering whereas for Gonnelli et al. 

[75] [76] such change and the subsequent merge of the gaps is dependent on the kind of doping 

[76]. Different experimental groups predict different critical temperatures for the merging of the 

gaps to occur. Merging at 0K is justified by theory (see Eq. (3.2)). Daghero et al. [74] predicts 

an extremely high inter-band scattering matrix element to produce a significant suppression of Tc 

and the subsequent gap merge for neutron-irradiated MgB2 samples; this group obtains better 

results for a merging in the gaps by manipulating other parameters like the magnitude of the 

density of states and disregarding the effect of disorder [74]. Impurity concentration is being 

increased by decreasing of l  ( and later decreasing l ), as described back in S.S. 4.1 in Ch. III.  

 

As seen in Eq. (3.3), intra-band scattering becomes predominant when weak localization 

is considered [55] (because of the absence of l of the equations). It is easy to observe that even 

without the assumption 1 0
l
 , the dependence remains since this parameter is left fixed (see 

S.S. 4.1 in Ch. III). The descent in the values of the gaps outside the dirty limit is quite linear 

(although observe that 0

  is not completely linear at 0cT  ) which suggests some sort of 
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relation between 0  and Tc of the type of Eq. (2.42); such expression, however, doesn’t seem to 

be easy to deduce analytically since being 0 0N V  there isn’t a simple equation relating  0F  

and  0F   (which is simply 1


in the single band model) and, in consequence, a straightforward 

comparison is not possible. This was precisely what one was enabled to do to derive Eq. (2.42) 

[13] and this is why an equivalent expression for the two band model is absent. Kim [71] shows 

that the BCS Tc equation within the dirty regimen is 

 
eff

11.14 expB c Dk T


  ,                                          (4.1) 

where 
4

eff A   is the coupling constant and A is defined as in Eq. (2.89), clearly predicting 

decrease in Tc due to the presence of impurities. However, the desired equation is still unattained 

because (again) a simple equation of the type of Eq. (2.27) is missing in the two band model. 

The question remains open.    

 

2.  FUTURE WORK AND RECOMMENDATIONS 

Further numerical work is still in order. The calculations implemented here are extremely 

rough. For example, they didn’t take into account a trace of the energy gaps without the 

extremely uneven constraint 1 0
l
 , although such assumption is still in the range of acceptance 

[57] if one just looks for a qualitative description. The implementation of the more precise matrix 

elements of Eq. (2.91) can clarify more of the quantitative behavior of the energy gaps. 

However, a considerable number of variables were ignored; a finer model to implement the 
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calculations would have to account for changes in the density of states of the electronic bands, 

the influence of the phonon frequencies and the cell volume. Daghero et al. [74] worked out a 

model with these features. As well, a more sophisticated theoretical approach can be 

implemented; such theoretical approach is available via the Eliashberg theory formalism. Choi et 

al. [27] uses it to trace the energy gaps as in Fig. 4.3. The Green’s function formalism of 

superconductivity [79], which is commonly used in literature, was not adopted here. These 

implementations might considerably improve the theoretical predictions. 

 Other improvements of the work done here can consist in more elaborate manners of 

changing the parameters used. This can be done via use of more powerful software tools. In this 

case there is not an easy way to predict the shape of the plots. As well, a trace ∆ vs. T as that 

performed in S. 2 and S. 3 in Ch. III with impurities present is left pendant. The experimental 

data of such trace is provided in Fig. 4.6 [70].  

 

The character of the impurities implemented in the model totally discarded their magnetic 

properties. A more sophisticated model that includes such magnetic behavior is in order. Wide 

literature concerning the effect of magnetic impurities in superconductivity is available [42] [53] 

[78] [80] as well as scientific evidence to contrast results [67]-[70] [74]-[77]. As well, the model 

implemented here considered the positioning of the impurities in a rather vague manner by 

assuming them randomly and uniformly distributed and its contribution being neglectible except 

when point-interacting with Cooper pairs. A more sophisticated model would probably 
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implement the specific localization of the impurity elements in relation with the lattice as well as 

other parameters pertaining to them. 

 

It is also important to point out that the weak localization corrections suggested by Kim 

et al. extend in a very similar manner to several other quantities [43] [71] [81], such as the 

conductivity, correlation function and transition temperature (see Eq. (4.1)), which also can be 

adopted for further calculations in future computations.  

 

Several inconsistencies between theory and experiment remain still unexplained [73]. 

Further experimental studies on this phenomenon are suggested. 
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