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Abstract

Most modern arithmetic processors rely on pipelining techniques to obtain a high throughput.
Floating-point (FP) operations are often time-consuming and depend on pipelining to accelerate
their processes. This project reports the development of scalable, FP arithmetic operators with a
variable number of pipeline stages. An algorithm for pipeline insertion was developed and used for
FP Multiplication, Addition/Subtraction, Division, and Square Root. The use of this algorithm
enables operating frequencies up to 175MHz when implemented on a Xilinx Virtex IT FPGA. The
developed units offer scalability in terms of precision, range, and pipeline granularity. Also new
topologies and improvements for supporting units were achieved. Future work includes automation

of the pipeline insertion process.



Resumen

La mayorfa de los microprocesadores modernos hacen uso de técnicas de “pipeline” para
obtener un alto rendimiento. Las operaciones de punto flotante son generalmente complejas, por
lo que estas técnicas se usan para acelerar su ejecucion. Este proyecto presenta el desarrollo de
unidades aritméticas escalables de punto flotante con un nimero variable de etapas de “pipeline”.
Se desarrollé un algoritmo para la insercién de etapas de “pipeline”, el cual fue usado para las
unidades de suma,/resta, multiplicacién, divisién y rafz cuadrada de punto flotante. El uso de este
algoritmo en estas unidades permitié alcanzar frecuencias de operacién de hasta 175MHz al ser
implementadas en un FPGA Virtex II de Xilinx. Las unidades desarrolladas ofrecen escalabilidad
en términos de precisién, rango dindmico y granularidad de “pipeline”. Adicionalmente, nuevas
topologias y mejoras para sub-componentes fueron desarrolladas. Finalmente, la automatizacién

del proceso de insercién de etapas de “pipeline” queda como alternativa de trabajo futuro.
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Terms Definitions

1. ASIC: Application Specific Integrated Circuit. Build for a limited or fixed application.
Typically produced in high volumes to justify their development costs. They are efficient for

the designed task but very expensive in low volumes.
2. DSP: Digital Signal Processing.

3. Floating Point: This number representation format includes sign (s), exponent (e), and
mantissa (m) fields. The floating point value (z)is represented by z = —1° x m x 2¢. FP offers
a dynamic wide range for large and small number representation. The format chosen in our
application resembles in most aspects the IEEE 754 standard for floating point representation

[22].

4. IEEE 754 standard: Specifies the parameters for single and double precision floating point
numbers. Single precision has 32-bit representation: 23-bit mantissa, 8-bit exponent, and 1-bit
sign. Double precision has 64-bit representation: 52-bit mantissa, 11-bit exponent, and 1-bit
sign. Both formats have an implicit hidden one as the most significant bit of the mantissa.
Mantissa is normalized in the range [1,2), which helps to make the representation for each
number unique. Denormalized numbers are an optional feature of the standard, which helps
to alleviate the underflows (called also gradual underflow). Special representations are used
for zero, infinity, and not-a-number (NaN). The exponent value ranges from 0 to +255 and 0

to +1045 for single and double precision, respectively [22].

5. FPGA: Field Programmable Gate Array. FPGAs are one of the most evolved type of field

programmable logic. FPGAs have increasingly become a favorite development platform for



many DSP algorithms. One of the major reasons for this trend is that FPGAs offer the

functional efficiency of hardware and the programmability of software [27].

. Pipeline: Technique that allows operating a circuit at high clock rates. It divides a large task
into smaller size sub-tasks and overlaps their execution. Tasks are divided by the insertion of
synchronizing latches. Careful selection of the latch insertion points is an important factor for
obtaining optimal throughput. A pipeline consisting on k stages produces the first result after
k cycles, and successive results at a rate of one per cycle. The pipeline insertion process takes
advantage of those operations that can proceed concurrently, even if there is some sequential

dependency. This allows for parallel processing without the need of extra computing units.

. VHDL: VHSIC Hardware Description Language (VHSIC= Very High Speed Integrated Cir-
cuit). VHDL can be used to model a digital system from top-down and bottom-up design
methodologies. Today, VHDL is an IEEE standard as well and ANSI standard for describing
digital designs. First generated in 1981 under the VHSIC program of the US Department
of Defense. First released in 1985 and standardized in 1987. Also it can be used to develop
complex digital systems, when synthesized and implemented in an ASIC or a programmable

platform.



Chapter 1

Introduction

This project addresses the creation of a set of scalable floating point (FP) operators based on
reconfigurable hardware. These operators are intended for the rapid systems prototyping. FP-
GAs are the reconfigurable hardware implementation choice for these scalable operators. VHDL
was the description language used to generate this set of operators. Scalability in terms of data
size and pipeline granularity is controlled by VHDL generic parameters provided at compile time.

Pipeline granularity adjustments allows controlling operating frequency of the developed operators.

Signal processing, scientific, and engineering algorithms often require a substantial amount of
arithmetic computations to be performed at real-time or near real-time speeds [30]. The main
advantage of FP arithmetic over the fixed-point scheme is the dynamic range for accommodating
extremely large numbers and high precision for very small numbers. This helps to alleviate the
underflow and overflow problems often seen in fixed-point formats [24]. Also it offers a robust
scheme against quantization errors, improves system’s precision for signal acquisition and reduces
errors during internal computations. Quantization effects can be reduced to a negligible level by

choosing longer mantissa and exponent registers lengths [25].

Scalable FP arithmetic cores allow for manipulating range and precision of computations to the
exact user’s needs. In order to achieve the so-called scalability, Hardware Description Languages

(HDL’s) are used. Precision and range of FP numbers can be adjusted by controlling the sizes of



mantissa and exponent fields, respectively, by means of parameters passed to the HDL at compile
time. The implementation of these cores on FPGAs allows for significant reduction in the turnover

time of many applications, enabling their rapid prototyping.

VHDL contains useful elements to describe the behavior or structure of a digital system. This
language provides support for hierarchically modeling a system in a top-down or bottom-up design
methodology. Systems and subsystems can be described at any level of abstraction ranging from
architecture to gate level [3]. A VHDL model can be synthesized and targeted to an Application
Specific Integrated Circuit (ASIC) or to a programmable device like an FPGA. Rapid prototyping
of FP units has become possible thanks to the use of VHDL and FPGA technology [24].

1.1 FPGAs Description

An FPGA is basically composed of an array of configurable logic blocks (CLBs or slices! in
Xilinx’s FPGAs), input-output ports, and programmable routing resources, as seen in Figure 1.1.
The structure of a Xilinx’s CLB contains multiplexers, function generators, fast carry logic and
flip-flops as seen in Figure 1.2 [28]. FPGAs were originally intended to be used for “glue logic”
among ASICs. Small FPGAs in the Xilinx families have from 100 to 400 CLBs, while the larger
ones have over 60,000 slices. It has become possible to build entire computing systems from only
a handful of FPGAs thanks to FPGAs increase in logic density and operating speed [28]. Early
FPGAs were just reaching the point where they were dense enough to support a single FP unit

[14]. Nowadays, FPGAs are capable of supporting several FP units.

The programmability of FPGAs allows implementations to be customized to specific system
needs. An ASIC implementation is often more generic to justify its high development costs, so
it may be less efficient than a specialized one [29]. Unfortunately, the high set-up costs of ASICs
make them unattractive in low volumes. However, the rapid advancement and lowered costs in

FPGA technology offer a viable alternative for implementing high performance DSP and highly

14 slices equals 1 CLB
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re-programmable solutions [29]. FPGAs offer reduced development time and costs compared to
ASICs. Furthermore, many FPGAs use SRAM to store their circuit configuration. This allows for

fast reprogramming, and offers the flexibility of conventional processors [29].

FPGAs are often used as powerful custom hardware for applications that require high-speed
computation [9]. One of the major reasons for this trend is that FPGAs offer the functional effi-
ciency of hardware and the programmability of software [27]. Their fast reprogrammability enables
field upgrade and adaptation of hardware to run-time conditions [1]. Dawwod et Al. state the
importance of FPGAs by affirming that the deployment of FPGA for filter design and implemen-
tation represents the most promising solution as compared to other solutions, including the use of

dedicated DSP processors [6].

1.2 HDL Design Flow

Several typical steps are performed in the process of synthesizing an algorithm or application
from a hardware description languages. The Xilinx’s VHDL design flow is presented in Figure
1.3. Tt starts with an HDL source and ends with a netlist downloadable to a programmable device
like an FPGA. Data related to timing, functionality, and consumed resources is available through
synthesis reports after the circuit is synthesized. FPGA’s configurable logic blocks (CLBs) are in-
terconnected and configured during the download of the synthesized code. Finally the application

is implemented in an FPGA, just like the architecture specified in the VHDL code.

1.3 Fixed-Point Arithmetic Operators

Most VHDL synthesis tools offer support for fixed-point addition/subtraction, and multipli-
cation. There is no embedded support for fixed-point division, square root, and squaring. Im-
plementation of these non-supported units is more complicated because their dependence among

iterations and the complexity of their result generation function. Most of the used division and
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square root algorithms are based on recurrences, producing one digit of the result per iteration [26].

Typical computing applications use addition, subtraction and/or multiplication. Other opera-
tions receive less attention due to their hardware complexity, long processing times, and relatively

less usage. The following arithmetic components are used in FP arithmetic.

e Comparators: Comparators are frequently used in floating point arithmetic. They are used

for operand swapping and decision-making.

e Adders: Addition is a basic arithmetic operation in any computational system. In special
purpose computing (some signal and image processing applications), dedicated adders are
required to have high throughput while latency constraints are not severe. In such cases,
pipelined architectures are widely used. Traditional pipelined adders for parallel addition of

two operands are based on carry save addition [5].

e Multipliers: Pipelined multipliers are useful in systems where arithmetic throughput is



more important than latency [2]. They are also desirable for high-performance arithmetic
applications such as digital signal processing. The most common type of multiplier used for
pipelined applications is the array multiplier. This preference is due to its regular structure

and modular design.

e Dividers: Division operation is a sequential operation because partial remainders are gener-
ated sequentially. Its quotient is produced only after the remainder sign is detected. Division

operation is much slower than multiplication operation [4].

e Square Rooters: Square root is an essential and important operation in science and en-
gineering. It may be rated, in importance, next to the four basic operations: addition,
subtraction, multiplication, and division. Some typical applications are complex variables,
trigonometry, error computation, and statistics. More complex applications include adaptive

filtering, gradient computation for edge detection, and many others [8] [18].

1.4 Fixed-point addition

This operation has been studied extensively. Numerous approaches have been generated to
optimize it. Some of them reduce the carry propagation delay while others reduce hardware con-
sumption. The following paragraphs present some of the most common adder types.

Carry-Ripple Adder: Is the simplest and slowest adder type. Uses full adders as its basic
building block. These are interconnected to create a full chain of adders.

Carry Look Ahead Adder: The fastest adder type, but it is also the most hardware con-
suming. It uses additional combinatorial logic for carry prediction. Carries are computed before
the addition process is performed.

Carry-Save Adder: Uses full adders interconnected in a two dimensional array. Reduces the
carry propagation delay by minimizing the carry propagation chain length. It is slower than the

carry-look-ahead adder, but faster than the carry-ripple adder.



1.5 Fixed-point Multiplication

Multiplication is a computationally intensive operation. Normally this operator calculates sev-
eral partial products and then adds them up. Speed up techniques improve the partial product
stage or uses faster addition schemes. The multipliers described in the following paragraphs are

among the most common ones.

Bit-serial multiplication: It uses shift and addition operations. It is similar to the hand
process for multiplication.

Array multiplication: It uses full adders as it basic building block. Full adders form a
2-dimensional array which calculates the partial products and perform some part of the addition
using carry-save techniques. An adder is needed for the final stage, which normally is a carry-ripple
adder. This multiplier is the most hardware consuming one, but provides good delay characteristics.
It is typically used in ASIC designs

Digit-serial multiplier: Similar to the bit-serial multiplier, but resolves n-bits of multiplica-

tion per cycle, where n is the digit size.

1.6 Fixed-point division and square root

Division and square root are computationally expensive arithmetic operations. Their result
becomes known sequentially, beginning with the most significant bits [22]. This situation has cre-
ated interest in the development of faster and more efficient division and square root algorithms.
Pipelining techniques are also useful to increase their performance. The following subsections de-

scribe some of the most important division and square root algorithms.

1.6.1 Division Algorithms

Division algorithms can be divided into five classes: digit recurrence, very high radix, functional

iteration, table look-up, and variable latency [20]:



Digit recurrence: The oldest class of high speed division. It retires a fixed number of
quotient bits per iteration. Typically has low complexity and relatively high latency. Speed-up can
be accomplished by retiring more bit per iteration, which is called higher radix division. The most
common version of this algorithm is the SRT division which uses subtraction as the fundamental
operator to retire a fixed number of quotient bits in every iteration.

Functional iteration: Utilizes multiplication as its fundamental operation. It has a quadratic
convergence (doubles the correct quotient bits in every iteration), instead of the linear convergence
of the subtractive methods.

Lookup tables: Require the use of ROMs or PLAs. They are fast, but their size grows
exponentially with each bit of added accuracy.

Variable latency algorithm: Takes advantages of previously computed results by reusing
them whenever is possible. Also the computations for each stage can be completed sooner than

others.

1.6.2 Square Root Algorithms

Square root and division algorithms are similar in some architectural features. There are
various classes of square root algorithms like the traditional pencil-and-paper method, restoring
shift /subtract, binary non restoring, high radix, and by convergence [22]:

Pencil and paper method: Is the basis for the shift/subtract algorithms. Resolves two-input
bits per iteration.

Restoring shift /subtract: Uses a sequence of shift and subtractions. Restores the remainder
to the correct value if the trial subtraction indicates that the current quotient digit was not the
right choice for a quotient digit.

Binary nonrestoring: Almost equal as the nonrestoring division. Does not restores the
remainder to the correct value if the trial subtraction indicates that 1 was not the right choice for
a quotient digit. In that case it performs addition in the next step instead of subtraction.

High radix square rooting: Uses the same techniques as for high radix division. Retires
multiple bits per iteration.

Square Root by Convergence: Uses Newton-Raphson iterations, which involves division,
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addition and a single bit shift.

1.7 Pipelining in Arithmetic Units

Pipeline implementations may improve the performance of multistep arithmetic computations
while also reducing their hardware cost [22]. The key figure of merit for a pipelined implemen-
tation is its computational throughput, which is defined as the number of operations that can
be performed per unit of time. Most modern microprocessors use pipeline techniques to achieve
the throughput requirements. Pipelining techniques also result especially useful for implementing
floating-point hardware, due to the complexity and number of steps required in such operations
[19] [12]. The performance achieved in pipelined FP operators is highly dependent on the approach
used for introducing pipeline stages into their constituent units such as integer adders, multipliers,
shifters, comparators, and others. Pipelined adders and multipliers have been widely studied and
used for special purpose computing where high throughput is required and latency constraints are
not severe [2]. Pipelined multipliers are desirable for high-performance arithmetic applications.
The most common type of multiplier used for pipelined applications is the array multiplier. This

is due to its regular and modular design.

1.8 FP Arithmetic in FPGAs

FP operations are useful for computations involving large dynamic range, but they require
significantly more resources than fixed-point operations [1]. The wordlength requirements for a
fixed-point algorithm would be significantly higher to support a large dynamic range (which in FP
is achieved via the exponent). For example, a fixed-point CORDIC (Coordinate Rotation by Digi-
tal Computer) implementation requires almost twice the wordlength to achieve the same numerical

performance of an FP implementation [29)].

The use of reconfigurable hardware to perform high precision operations such as IEEE-compliant
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FP has been limited in the past by FPGA resources. Most scientific algorithms require some form
of fractional representation. The only available option in most programming languages is to declare
an FP number. The introduction of high-speed sub-micron technology FPGAs, which offers the
equivalent of over a million programmable gates and increased routing facility, allows system rates

in excess of 150MHz.

1.9 Problem Statement

Many of today’s FP implementations are provided as optimized netlist with prescribed param-
eters or as a non-customizable HDL source code. They offer high operating frequencies and are
typically IEEE 754 compliant. Despite all these good characteristics, there are many applications
where speed and precision constraints can be satisfied with slower and less precise units. For these

cases, the usage of over-specified units has a cost in the consumption of hardware resources.

The problem addressed by this project is that of providing customized FP units for specific
requirements of speed, range, and precision, without the inherent waste of hardware resources cre-
ated by non-customizable pre-synthesized solutions. These units should be obtained with a high
level of reusability that do not require structural modifications or re-coding for satisfying a wide

range of specifications. Also they should be easily portable to multiple hardware platforms.

1.10 Objectives

The main objective of this project was the generation of a set of highly reusable FP cus-
tomizable operators, ready for rapid systems prototyping. The target set of FP operators include
addition/subtraction, multiplication, division, and square root; along with all the underlying fixed-

point arithmetic units and supporting datapath elements.

All units should have adjustable precision and range, including those to satisfy the IEEE-754
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standard for FP arithmetic. Moreover, the target speed of the units should be adjustable such
that only the required hardware for the target speed is included in the synthesis. The operating

frequencies should be competitive with current technologies.

The units should be modular enough to allow easy maintenance and upgrade and yet be portable

to a wide range of synthesis targets.



Chapter 2

Previous work

The implementation of applications requiring dedicated arithmetic hardware are commonplace
nowadays. They can be found in full custom ASICs, general-purpose processors, and particularly

in digital signal processing systems [7].

Arithmetic operations are performed using either fixed-point or FP arithmetic. However, in
those applications where a wide dynamic range is required, fixed point implementations are ruled-

out, leaving FP as the only choice.

FPGAs have emerged as an alternative implementation platform for arithmetic circuits. Al-
though early FPGAs were not a good alternative to implement FP arithmetic due to resources
limitations, contemporary FPGAs have overcome this difficulty. This progress is evidenced in this
literature research. The following sections report relevant previous work on arithmetic hardware
targeting FPGAs. Section 2.1 presents work done on fixed-point arithmetic designs while section

2.2 does the same with FP arithmetic.

13
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2.1 Fixed Point Implementations

The development of high throughput fixed point operators is very important for high perfor-
mance FP units. An FP operator is basically a group of simpler units working together. A number

of approaches have been found to deal with this issue by using pipeline techniques.

Traditional pipelined adders for parallel addition of two operands are typically based on carry
save addition (CSA) or ripple carry adders. CSA operates at higher frequencies than ripple-carry
units at the expense of a greater circuit complexity. Dadda and Piuri proposed a novel approach,

which replaces the ripple-adders by fast adders, obtaining higher throughput than with CSA [5].

Asato et Al. developed a compiler to produce customized, pipelined array multipliers optimized
to operate at a specified clock rate [2]. Their pipeline insertion method introduces rows of latches
through the multiplier structure. It divides the array into rows of cells that operate independently
from each other. The maximum operating frequency is always limited by the ripple-adder (last
row). The results of this approach for a 4-stage, 32 x 32 array multiplier were a 33% area increase

and three times the clock rate compared to a non pipelined array multiplier.

Louie and Ercegovac explored the mapping of digit-recurrence type division algorithms on a
Xilinx XC4010 FPGA [17]. They studied the FPGA structure looking for suitable implementation
techniques for SRT radix-2 division. They also developed a division algorithm which uses carry-
propagate adders (CPA) ! instead of CSA. They proved its usefulness when fast CPA are available,

obtaining a better performance and less resources consumption than with CSA.

2.2 Floating Point Implementations

Early FP implementations on FPGA adopted custom data formats to enable a single FPGA

solution, or involved multiple FPGAs for implementing IEEE 754-compliant, single precision FP

!Carry propagate adder is the same as carry-ripple adder
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arithmetic. The use of serial arithmetic or the avoidance of some IEEE standard features was an-
other way to deal with the early FPGAs limitations [1]. Nowadays, multiple FP units can easily fit
in contemporary FPGAs. Some of the most relevant works on FP units for FPGA implementation
are presented. Also, some data about these implementations like target FPGA, space complexity,

operating frequency and case study architectures are offered.

Narasimhan et Al. implemented an FP adder, which used 82% of the CLBs of a Xilinx XC4005
FPGA and operated at 100 MHz [19]. They used a variation of the IEEE standard (13-bit): 9-bit

mantissa , 4 -bit exponent, and 1-bit sign. Implemented as an 8-stage pipelined design.

Shirazi et Al. developed an FIR Filter (16-bit format: 1-bit sign, 6-bit exponent, and 9-bit
mantissa) and a 2D FFT (18-bit format: 1-bit sign, 7-bit exponent, and 10-bit mantissa) [24].
These deviations from the FP standard were introduced due to limitations on the Splash-2 data
path. They implemented FP addition, subtraction, multiplication, and division. They used division
through multiplication of the inverse. The calculation of the divisor’s reciprocal (mantissa) was
made with the aid of an external memory. Three integer multipliers were tested: the multiplier
from the Synopsys3.0a VHDL compiler, an array multiplier, and various pipelined schemes which
create stages of partial products and a final addition stage. These FP operators have 3 pipeline
stages except for the divider, which has 5 pipeline stages. The FP adder/subtracter, multiplier and
divider operated at 8.6 MHZ, 4.9MHz, and 4.7 MHz, respectively.

Louca et Al. implemented a single precision FP adder and multiplier, using 72% of an Altera
FLEX 8000 series FPGA [16]. This implementation used fixed-point bit parallel adder and digit-
serial multiplier due to space limitations. Digit serial operations have some disadvantages. They
require parallel-to-serial and serial-to-parallel registers and extra clock cycles to complete an opera-

tion. The pipelined version of the FP multiplier produced one result every 6-clock cycle at 15.9MHz.

Walters et Al. presented a pipelined scalable structure adaptable for filtering, convolution, and

correlation tasks [30]. Used 32-bit FP arithmetic and a systolic array configuration. The FP adder
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was an 8-stage pipeline, and the FP Multiplier was a 13-stage pipeline. The implemented filter
could be expanded over multiple boards to implement higher order filters and/or real-time process-
ing. It was verified at 20MHz in a WILDFORCE board which has four XC4036EX-3 FPGAs with
32k x 32 SRAMs. It consumed 98% of the FPGA resources.

Ligon et Al. created a structure for matrix multiplication. It was implemented on a Xilinx
4029E, 4062XL, and 40250XV FPGAs [14]. Deep pipelining (15-stage) was used in order to reduce
processing time, at the expense of latency. The FP single precision adder and multiplier used by
this structure operated at 33MHz and 40 MHz, respectively. They considered four multiplication
schemes for the FP multiplier: array multiplier, bit-serial multiplier, digit-serial multiplier, and

both recoding multiplier.

Souani et Al. implemented FP addition with the 5-bit exponent and 16-bit mantissa [25]. The
implementation target was a Xilinx XC4000 FPGA. Used 108 CLBs and operated at 7.5 MHz.

Richard et Al. presented a scalable, parallel implementation of a weight calculation architec-
ture [29]. They employed custom FP arithmetic optimized for the target application; also created
parameterized fixed-point and FP operators and more complex DSP operators, such as FIR filters,
simple digital down conversion, radar receivers, beamformers, and vector multiply. They used 16-
bit mantissa and the 6-bit exponent (two’s complement representation) on a Xilinx XCV3200E-8
FPGA. Table 2.1 compares their weight calculation architecture with others. ASIC 0.35 pm refers
to the PowerPC 7400(Altivec Processor). ASIC 0.18 ym is an estimated of ASIC 0.35 pym at this

feature size.

Allan et Al. developed a method on Handel C language to produce technology independent,
and variable pipelined designs [1]. This allows for parameterization of design’s precision and range,
and optional inclusion of IEEE-754 FP features at compile time. Single precision FP Adder and
Multiplier were implemented in a Xilinx XCV1000 device, achieving 28MFLOPs. FP units were

used for Two-Dimensional Fast Hartley Transform (an optimization of the FFT when only real
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Architecture Clock (MHz) | Number of processors | MFLOPS
PDSP TMS320C6701 167 1 250
ASIC 0.35 pm 100 21 32,900
ASIC 0.18 pm 190 74 225,000
FPGA XCV3200 E-8(0.18ym) 150 9 20,850

Table 2.1: Maximum throughput in weight calculation for different architectures.

numbers are required). The FHT was implemented for 1024 elements data sets; using around 59%
of a Xilinx XCV1000 for single precision FP format. The design could be clocked up to 22 MHz,
producing the 2D FHT of a 1024 elements data set in around 254 us. Table 2.2 compares the time

for 1K-point transform with other implementations.

Processor Clock speed(MHz) | Clock Speed (MHz) | Time for 1K-point transform (u s)
Double BW power FF'T 128 10
Texas Mem Sys TM-66 50 65
FHT Processor (Allan et Al) 22 254
Sharc ADSP-21061 40 460
Pentium-III 800 469

Table 2.2: Comparison between the FHT processor and other systems. The first two are dedicated

FFT devices while the rest are programmable DSP or supercomputers.

Three companies which offer commercial FP Cores were found. They provide the designs upon
customer request at several fixed operand sizes. These cores work for the Xilinx Virtex series FP-

GAs. Their performance and resource usage is presented in the following paragraphs.

Designers at Dillon Engineering Inc. used ParaCore Architect IP Core to generate IEEE-754
compliant FP addition, subtraction, multiplication, division, square root, reciprocal, and conversion

units (single and double precision). These units were designed for any exponent and mantissa width



18

[11]. Pipeline stages are configurable via ParaCore parameters. Used Goldschmidt’s algorithm for
division, square root and inverse. Maximum operating frequency is not specified for each operator,
although operating frequencies over 100MHz are claimed on Xilinx Virtex II FPGAs. Table 2.3

presents the slice consumption of the units for different operand sizes.

Floating Point Unit Parameters Size
mantissa width | exponent width | Slices

FP Adder 24 8 385

53 11 1124

FP Subtraction 24 8 385
53 11 1124

FP Divider 24 8 686
53 11 3858

FP Multiplier 24 8 215
53 11 783

FP Square Root 24 8 700
53 11 3500

Table 2.3: Floating Point Cores area usage in a Virtex II FPGA by Dillon Engineering Inc.

Nallatech Limited Inc. offers IEEE 754-compliant Floating Point Cores which includes single
precision addition and subtraction, multiplication, division, square root, float to integer conversion
and integer to float conversion [15]. Cores are provided as optimized netlist. Operating frequency,

latency, and resource consumption are provided in Table 2.4.

QuinetiQ Ltd. offers variable wordlength TEEE-754 compliant FP units[23], implemented as
fully pipelined FP addition/subtraction, multiplication, and division, and square root. Used a
fixed-point core for division and square root. Table 2.5 presents the main characteristics of these

cores.
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Floating Point | Operating Frequency (MHz) | Size Latency

Core SG -6 | SG -7 SG -8 (Slices) | (Clock cycles)
Adder 115 129 147 376 15
Subtraction 115 129 147 376 15
Multiplier 116 130 152 593 23
Square Root 121 135 154 543 34
Division 120 133 155 980 35
FP to integer 143 162 171 134 4
Integer to FP 155 164 178 106 3

Table 2.4: Floating Point Cores area usage and performance in a Virtex II FPGA by Nallatech
Limited Inc., tested at different speed grades (SG)

2.3 Previous work overview

The previous sections reported the most relevant work related to this project. Some of the main

points are summarized:

e A time effective design should include pipeline insertion to achieve high throughput units.

Almost every consulted work uses pipeline techniques and demonstrated their usefulness.

e The internal FPGA structure should be carefully studied to obtain optimal designs when

targeting this implementation platform.

e Addition is a very common operation. FPGAs support very well this operation. CSA can be

replaced by fast CPA offered by the FPGAs.

e Resource limitations should be observed carefully when dealing with speed-area trade off.
Some implementations use custom data sizes different from that of the IEEE standard, when

resource consumption is an important constraint.
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Floating Point Parameters Frequency (MHz) | Size Latency
Unit mantissa width | exponent width | SG -6 SG -8 Slices | Clock cycles
FP Adder 8 6 153 199 121 10
12 6 143 193 158 10
16 6 153 188 208 11
20 6 147 182 247 11
14 8 137 169 306 11
FP Divider 8 6 202 259 124 11
12 6 182 238 220 15
16 6 166 216 348 19
20 6 154 203 512 23
24 8 142 189 711 27
FP Multiplier 8 6 130 164 67 5
12 6 129 165 119 6
16 6 125 157 229 6
24 8 122 165 171 6
20 6 122 152 326 6
FP Square Root 16 6 173 191 620 19

Table 2.5: Floating Point Cores area usage and performance in a Virtex II FPGA by QuinetiQ 1td,

tested at different speed grades (SG)
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e Serial arithmetic leads to hardware savings, but requires parallel-serial interface and longer

processing time.

e Designs can be expanded over multiple FPGAs when resources limitations occur. The major
drawback is that partitioning and routing gets more complicated. Also interconnection delays

between FPGAs are generally higher, which limits the maximum operating frequency.

e Nallatech Limited Inc., QuinetiQ ltd, and Dillon Engineering Inc. appear to be the best
FP units implementations. They have commercial designs with operating speeds exceeding
100MHz and provide a set of FP units and DSP solutions. Their designs are not provided
as VHDL source code. Each core is sold with fixed features and does not provides so much
flexibility. Also, these cores are less portable because they use dedicated resources from

specific FPGA families.



Chapter 3

Design Methodology

The prototypes of the integer and FP units were designed as structural descriptions composed
of several design hierarchies. A bottom-up design methodology has been followed using VHDL.
Each design is accessed as a structural COMPONENT which accepts the sizes of the operand fields
as GENERIC parameters. These parameters are passed along the hierarchical structure specifying
the widths of the mantissa, exponent fields, and pipeline parameters; and accordingly, generating
the appropriate sized units. This allowed for a modular and highly reusable set of units. The
developed FP prototypes are adjustable to meet the IEEE 754 standard. Units were designed for

parallel input/output interface. Xilinx FPGAs were used as synthesis target.

FPGAs unit’s building blocks were developed and carefully inspected looking for improvement
opportunities. Section 3.1 presents some of the improvement procedures, focusing on those of major

impact in the FP units performance.

Array-type architectures were extensively used. They allow for an efficient implementation of
pipeline insertion algorithms, but they consume more hardware resources than other architectures.
Pipelining in these structures is accomplished by latch insertion between array’s rows’s and syn-
chronizing the input/output ports. Pipeline techniques were used to increase the units throughput
and to control their granularity. A detailed description of the developed pipeline insertion algo-

rithm is presented in Section 3.2. Section 3.3 shows how these methodologies were used in the

22
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implementation of the FP units.

3.1 Operand Improvement Techniques

The general improvement procedure was based on careful inspections of the FP units VHDL
code. For example, a for-loop is a typical resource consuming structure. That is because the
synthesis tools unroll all loops and generate hardware for each loop iteration. Another procedure
was the inspection of components, focusing on the most commonly used by the FP operators. For
example, some structures can be substituted by fast adders, which have good support in current
FPGAs. Improvements in square root and division operators were made by changing the rows of
basic cells by fast adders. Some of the basic cell’s functionality was moved outside the array in
order to allow the use of fast adders. In the case of square root, the majority of the XORs receive a
combination of input operands that allowed for additional simplifications. These implementational

changes are explained in Sections 4.1.6 and 4.1.7.

Pipeline stages were inserted as rows of latches though the array structures, improving their
timing characteristics. This task was done using the variable pipeline insertion algorithm presented
in [21]. Pipeline depth and operand size were controlled by means of VHDL generic parameters,

specified at compile time.

3.2 Pipeline Techniques

An algorithm for pipeline insertion in structures such as adders, multipliers, and multi-stage
operators was developed. It receives two main parameters, which include the number of circuit
stages (s) and the number of pipeline stages (p). The algorithm generates (z) cells of granularity
(91) = [s/p] where x = mod(s/p) and (p — z) cells of granularity (92) = [s/p]; where [.] and |.]
denote the ceiling and floor of the enclosed expression. This technique has been used for the fixed-

point adder, multiplier, divider, square root, barrel shifter, normalizer, and shift register. These
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pipelined operators form part of the developed FP units. Under this technique, the granularity of

each component of an FP unit can be independently adjusted.

The selection of the pipeline depth parameters involves multiple steps. These steps, which are
performed manually, are summarized in Figure 3.1 . Once the desired operating frequency is estab-
lished, an initial implementation is obtained using minimal values for the pipeline parameters. An
analysis on the timing reports is done identifying the design’s bottlenecks. Pipeline parameters are
increased until either the desired operating frequency is obtained or the finest possible granularity
of the component is reached. Several refinement cycles might be required until reaching this point.
The desired frequency might not be achieved when the pipelining capacity of the component is

exhausted.

dLns?:g d Set pipeline
. parameters to minimal
operating deoth
frequenc s
y
Increase pipeline
parameters for .| Synthesis and
components in critical | Implementation
delay path
No

Were frequency
requirements met?

Was pipeline capacity in
critical delay path exahusted?

Identify critical

delay paths [No

Figure 3.1: Pipeline Improvement Algorithm
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3.3 Architecture of FP Units

The following sections describe the main architectural features of the developed arithmetic units.
Discussion is made by FP units and their subcomponents. Data related to operating frequency and

FPGA slices consumption are presented.

3.3.1 Floating Point Adder

The basic structure of the FP adder has been designed to provide scalable mantissa and ex-
ponent fields as well as a variable number of pipeline stages. Figure 3.2 shows the basic adder’s
structure. Exponent and mantissa field widths are specified through parameters ebit and mbit,
respectively. The amount of pipeline stages is specified through five parameters (pip1, pip2a, pip2,
pip3a, pip3b). An example of FP addition with ebit = 3 and mbit = 9 is presented in Table 3.1.
Descriptions of the main operators, components and processes used by the FP Adder, along with

their associated pipeline parameters are provided in the following sub-sections.

Operation Operand 1 Operand 2

Sign 1 | Exponent 1 Mantissa 1 Sign 2 | Exponent 2 Mantissa 2

Initial inputs 0 010 011011010 1 100 010011101

Operand swapping 1 100 010011101 0 010 011011010

Result sign(larger operator’s sign) Sign is 1. Subtraction instead of addition (opposite signs)
Appending mantissa’s implicit one 1 ‘ 100 ‘ 1.010011101 ‘ * ‘ 010 ‘ 1.011011010
Exponent subtraction (ebitl — ebit2) 100-010=010 (24)

Shift mant2 2 places to the right 1 ‘ 100 ‘ 1.010011101 ‘ * ‘ *okk ‘ 0.010110110

Mantissa Addition

1.010011101 - 0.010110110 = 0.111100111 (subtraction because of opposite signs)

Leading zero detection (1 zero) 1

010

0.111100111

*

*kk

*okokokokskokokokk

Mantissa normalization 1

010

1.111001110

*

*kk

*okokokokskokokokk

Exponent adjustment

leading zero amount is subtracte:

d to resultant exponent:

010-001=001

Implicit one removal 1

001

*.111001110

*

ko

shksdeokokokskokkok

Final result 1

001

111001110

*

ko

shksdeokokokskokkok

Table 3.1: Floating Point Addition example
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Figure 3.2: Base structure of pipelined FP Adder.
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Operators:

Comparator: This operator is used in various stages of an FP unit. There are multiple com-
parator architectures. Four schemes were tested, which include: comparison by subtraction, using
the synthesis tool’s comparator, two modular approaches based on 2-bit number comparator, and

a behavioral scheme which is further described.

The subtraction scheme subtracts both numbers and evaluates the result’s sign to determine
the comparison result. The modular comparator is based on 2-bit two-number comparator, ar-
ranged as a binary tree, as seen in Figure 3.3. The internaloperationof each module is explained in
Table 3.2. Each stage reduces the size of the numbers to be compared through, while maintaining
their relative magnitude. The process is completed when both numbers are reduced to 1-bit. A
variant of this scheme uses the synthesis tool to implement the basic cell, while maintaining the
same structure of the modular comparator. The synthesis tool seems to use a scheme similar to the
subtraction scheme because their performance is similar as the operand sizes are increased. The
behavioral scheme used a VHDL function that converts incoming vectors types to integers types.

The result for this comparator is set by using VHDL properties for integer types.

Input Condition | Output B | Output A
B1Bo > AjAp 1 0
B1By < A1Ap 0 1
B1Bo = AjAp 0 0

Table 3.2: Internal operation of each module of the modular comparator

Adder: Figure 3.4 contains the selected architecture for pipelined fixed-point addition, which
provides scalability in terms of data size and pipeline stages. This architecture reduces the carry
propagation chain length by inserting latches across it. Fast adders are used for each stage. The
synthesis tool adder is used for this purpose because of its advantage over the CLA adder. Ad-

ditional latches are used to propagate inner stage carry and input data to be used on subsequent
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29

stages. These latches also balance the output delays. Similar pipelined adder’s architectures have
been proposed by Dadda and Piuri [5]. One of them is similar to the developed approach except
for the use of a ripple-carry adder instead of a fast adder. The other architecture is based on carry
save addition (CSA). The CSA scheme has greater circuit complexity than the selected scheme
when implemented in FPGAs. On the other hand, the CSA scheme has better delay characteristics

when implemented in ASICs. These CSA uses half adders which are faster than full adders in ASIC

implementations.
A By A Bo ABy A By A B A B A B A

Two

stages of

79 777 -
Three

stages of

sizeg,

Cou Si S S, S, S, S S5
Full Adder with latched Full Adder with latched () Fiip-Flop
sum output outputs

Figure 3.4: 12-bit pipelined fixed-point adder: s = 12,p = 5.

Shifter: A right shifter is used to denormalize the smaller mantissa as required by the exponent
equalization step. The shifter, whose structure is illustrated in Figure 3.5, uses a log-2 right shift
scheme based on multiplexers. This scheme was found to be similar to that proposed by Heo [10].
The implemented structure is scalable in terms of data size and pipeline stages. It has two inputs
and one output. I N is an input bit vector of size n; the one to be shifted. SHIFT is an input bit
vector of size m; it specifies the number of shiftings to be made. The maximum value of m is given
by m = loga(n). Also m is the amount of multiplexer stages (s) needed to implement the shifter.

OUT is an output bit vector of size n; it represents the I N shifted SHIF'T times to the right.
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The idea behind this type of shifter is the fact that for vector E, each bit has its own shift
weight. Bit 0 specifies 0 or 1 shifting, bit one specifies 0 or two, bit 2 specifies 0 or 4, etc. So each
one of these bits control a multiplexer in which one input is a bit vector and the other is the same
bit vector with inserted zeros at the left and a right displacements of bits equal to the amount of

inserted zeros.

The advantages of this scheme are that for given values of n and m, shiftings are made in the
same period of time, no matter the amount of shifting needed. Also it uses less hardware than
a traditional barrel shifter because of it’s logarithmic grow which is a function of the size of the
data. An example of a 24-bit input number (101101011001010001101011) and a shift amount of
114 (01011) is presented in Table 3.3.

Multiplexer Stage | Shift Amount (binary format) Input operand
101101011001010001101011
1 0 (bit #4) 101101011001010001101011
2 1 (bit #3) 000000001011010110010100
3 0 (bit #2) 000000001011010110010100
4 1 (bit #1) 000000000010110101100101
5 1 (bit #0) 000000000001011010110010

Table 3.3: Example of the right shifter. Shifting amount is 11.

Normalizer and leading zero detector: IEEE standard for FP numbers specifies that FP num-
bers should be normalized (mantissa value is in the range [1,2) ). However, FP addition requires
denormalized numbers in their internal structure. A leading zero detector is needed to detect how
many shifts are necessary to normalize a number. The normalizer uses that information to elim-
inate all the leading zeros by left shifting. A topology, shown in Figure 3.6, has been developed,
which follows a structure similar to that of the shifter. The last multiplexer’s output is the nor-

malized version of the unit’s input. The result of each multi-input nor-gate is combined to form
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Figure 3.5: Scalable pipelined shifter.
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the total leading-zero amount. This topology improves over previous approaches by performing
the zero leading detection and mantissa normalization in a single step, without the requirement
of independent operations. Also flip-flops can be inserted at the multiplexer’s and comparator’s
output, allowing the operation of the circuit at higher frequencies. A numerical example of this

unit with input operand (000000000000000001101011) and 17 leading zeros is presented in Table 3.4.

Multiplexer Stage Operand transformations Leading zero amount (5-bit)
000000000000000001101011 ook
1 011010110000000000000000 1Rk
2 011010110000000000000000 10%**
3 011010110000000000000000 100**
4 011010110000000000000000 1000*
5 110101100000000000000000 10001

Table 3.4: Example of the normalizing and zero detection unit.

FP Adder Components:

Sbb_expo (pipl): Subtracts both exponents to determine the number of shifting positions when
denormalizing the smaller mantissa.

Latchexp (pipl, pip2a, pip2, pip3a): Adds one to the greater exponent to allow shifting the binary
point of the mantissa by one place to the left.

Shift_ mantissa (pip2a): Right shifts the mantissa of the smaller input operand. The shifting
amount is specified by the result of the exponent subtraction.

Sum _mantissa (pip2b): Mantissa addition or subtraction depending on the sign of the input
operands.

Normalizer (pip3a): Detects leading zeros on the mantissa and normalizes it.

Post_norm (pip3b): Adjusts the exponent result by subtracting the number of leading zeros pro-
vided by the normalizer.

Bus_latches: Maintain the data integrity through the pipeline.
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Figure 3.6: Normalizing and zero detection unit.
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FP Adder Processes:

Fpa pipel: Compares the input operands and swaps them if necessary. Also adds the implicit

hidden one to the mantissas.

3.3.2 Floating Point Multiplier

The basic structure of the FP multiplier has been designed to provide scalable mantissa and
exponent fields as well as a variable number of pipeline stages. Figure 3.7 shows the general orga-
nization of the FP multiplier. Exponent and mantissa widths are specified through parameters ebit
and mbit, respectively. An example of FP Multiplication with ebit = 3 and mbit = 9 is presented in
Table 3.5. The number of pipeline stages is specified through three parameters (pipl, piplb, pip2).
Descriptions of the main operators, components and processes used by the FP Multiplier, indicating

their associated pipeline parameters are provided in the following sub-sections.

Operation Operand 1 Operand 2
Sign 1 | Exponent 1 Mantissa 1 | Sign 2 | Exponent 2 | Mantissa 2
Initial inputs 0 010 011011010 1 100 110011101
Appending mantissa’s implicit one 010 1.011011010 1 100 1.110011101
Result sign(XOR of the signs) 1 010 1.011011010 * 100 1.110011101
Exponent addition 1 110 1.011011010 * Fokok 1.110011101

Mantissa multiplication (upper half)

1.011011010 x 1.110011101 = 10.100100110110110010

Mantissa normalization

10.10010011 = 1.010010011

Post-normalization exponent adjustment

Add one in the next step due to mantissa normalization

Exponent bias subtraction

110-011+1=100 Exponent bias is 011(3;)

Implicit one removal

100

*.010010011 * *k

shkodeokokokskok ok ok

Final result

100

010010011 * *k

shkodeokokokskok ok ok

Table 3.5: Floating Point Multiplication example

Operators:

Array multiplier:

tiplier. Its architecture is scalable in terms of data size and pipeline stages. Its structure resembles

Figure 3.8 shows the method used to insert pipeline stages to the array mul-




fp1 fp2
| 1 3
Process: Process: Process:
> sign_pipe1 > expo_pipe1 > mant_pipel
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(pipia) (pip1a) (pip Ta-+pip1b) 7pnp}4a,ﬂgﬁs
. expo_latch1 .
sign_latch1 ” mant_latch1(mbit+1)
zero_] mant_latch1
A,
Process: Process: Process:
> sign_pipe2 > expo_pipe2 > mant_pipe2
=ile]
. zero_fl2toff expo_bbuff2
signo2 expo_sbuff2 mant_latch2toff
Latchsig2: Latchzflag: A d@ay Latchmant2:
bus_!atches bus_latches sum—ipelir.le bus_latches
(pip2) (pip2) Bip2) (pip2)
expo_latch2
sign_latch2 mant_latch2
Zer0_f2 expo_lajch2(ebit+1 downto ebit)
Process: Process: Process:
> sign_pipe3 > expo_pipe3 > mant_pipe3
_— stat fpr(mbit-1 downto 0)
fpr(ebit+mbit)

fpr(mbit+ebit-]1 downto mbit)

Figure 3.7: Base structure of pipelined FP Multiplier.
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the manual process for tree multipliers, which appears in Figure 3.9. Some features are based on the
scheme proposed by Asato [2]. Asato et Al. created a compiler to determine the pipeline insertion
point for an array multiplier, given its data size and desired operating frequency. Pipeline stages

were inserted as rows of latches between the multiplier’s rows.

Y Y Y Y Y X X X X X,
0 1 2 3 4 0 1 2 3
‘ \ | ‘ ‘
C O 0 J—f H L\/ jl‘ o /
=R “ ‘ ‘
‘ H . N
1\

AND Gate Flip-Flop OO O \;T J%
Bz Cin A B C SONNE \l O

Full Adder with AND gate  Full Adder with T 9 ¢
(B, and B)) with latched latched ouputs. l ‘
ouputs. 9 ZS Z7 26 Z Z4 Z3 Z2 Z1 ZO

Figure 3.8: 5x5 full-pipelined array multiplier.

Adder: Uses the same structure as those in the FP Adder.
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a, a, a, a,; a,
X X, Xy X, X, X,
a,x%, a;xX, a,X, a, X, a,X,
a,x,; azx, a,x,; ax, a,%,
a,x, a;x, a,x, a;x, a,Xx,
a,X; 83X, a,x, a, X, a,X,

+ a,x, azx, a,x, a;x, ayx,

p9 ps p7 p6 p5 p4 p3 p2 pl po

Figure 3.9: 5-bit X 5-bit multiplication example

FP Multiplier Components:

Mult_mant (pipla, piplb): This is an (mbit+1)-wide pipelined array multiplier. The top-portion of
the array has pipla stages. The bottom-portion has piplb stages. Performs mantissa multiplication.
Add_expo (pipla, piplb): Performs exponent addition using ebit as the operand width.

Add bias (pip2): This is an (ebit + 2) bit adder. Performs exponent adjustments due to mantissa

normalization and the subtraction of the exponent bias.

FP Multiplier Processes:

Sign_pipel: Performs XOR of the signs.

Expo_pipel: Pass the exponents.

Mant_pipel: Zero detection and adds the implicit hidden one to the mantissa.

Sign_pipe2: Pass the zero flag and the sign.

Expo_pipe2: Prepares the operands for exponent bias subtraction by selectively performing two’s

complement.
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Mant_pipe2: Normalizes the mantissa.

Sign_pipe3: Modifies the sign in case of zero result.

Expo_pipe3: Modifies the exponent in case of overflow or underflow or zero result. Also set the
status overflow and zero flag.

Mant_pipe3: Set overflow and underflow conditions.

3.3.3 Floating Point Division

The basic structure of the FP divider provides scalable mantissa and exponent fields as well as
a variable number of pipeline stages. The general organization of the FP divider, which resembles
the structure of the FP Multiplier, is presented in Figure 3.10. Exponent and mantissa widths
are specified through parameters ebit and mbit, respectively. An example of FP Division with
ebit = 3 and mbit = 9 is presented in Table 3.6. The amount of pipeline stages is specified through
two parameters (pipl,pip2). Descriptions of the main operators, components and processes used
by the FP Divider, indicating their associated pipeline parameters are provided in the following

sub-sections.

Operation Operand 1 Operand 2

Sign 1 | Exponent 1 | Mantissa 1 | Sign 2 | Exponent 2 | Mantissa 2

Initial inputs 0 110 110011101 1 010 011011010
Appending mantissa’s implicit one 0 110 1.110011101 1 010 1.011011010
Result sign(XOR of the signs) 1 110 1.110011101 * 010 1.011011010
Exponent subtraction 1 100 1.110011101 * *kk 1.011011010

Mantissa division 1.110011101 <+ 1.011011010 = 1.010001000
Mantissa normalization (not needed here) 1 100 1.010001000 ‘ * ‘ *k ok kk
Exponent bias addition 1004+-011=111 Exponent bias is 011(34)

Implicit one removal 1 111 *.010001000 * *kk Frkkokkkkkok

Final result 1 111 010001000 * Hokok Frkkkdok kK

Table 3.6: Floating Point Division example
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Process: Process: Process:
> sign_pipel > expo_pipel > mant_pipel
. — [ [
signo(0) expoi eproz mant!l mant2
l zero_fl |
latchsig1: latchsig1: resBepo: ; .
po: divmant;
bus(ﬁ %ggc)hes bus_!atches sumherr n{ _div'ssor
(pip1) (pip1) pip1
sign_|atch1 expo_latch mant_latch1 (mb|t+1)
mant_latch1
zero_fl1
Process: Process: Process:
> sign_pipe2 > expo_pipe2 > mant_pipe2
L
nrm_flg
i zero_fl2toff expo_bbuff2
signo2 — eXPO_Sle mant_latch2toff
latchsig2: latchzflag: ad d@a s: latchmant2:
bus_latches bus_latches — bus_latches
in2 Bip2 sum_pipeline i E
(PIp2) (Pip2) D) )
expo] latch2(ebit+1 downto ebit)
zero_fl2
sign_latch2 expo_latch2 mant_latch2
Process: Process: Process:
> sign_pipe3 > expo_pipe3 > mant_pipe3

fpr(mbit+ebit-1 downto mbit)

fpr(ebit+mbit) .
stat | ¢ prT fpr(mbit-1 downto 0)

Figure 3.10: Base structure of pipelined FP Divider.
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Operators:

Non Restoring Array Divider: The selected architecture for fixed-point division is a non-
restoring array divider, as seen in Figure 3.11. It belongs to the digit-recurrence class. It is obtained
by unfolding the iterations of a radix-2 digit-recurrence divider. The basic structure of this divider
is a controlled adder/subtracter (CAS). The major drawback of this divider is that the carry signal
propagates through each row of the array until it arrives to the leftmost bottom corner of the array.
This scheme was selected because of its regular structure, suitability for a scalable implementation,

and further pipeline insertion. Pipeline insertion between rows improves its timing characteristics.

The array divider inputs are the dividend and the divisor; its outputs are the quotient and
the remainder. Note that the divisor, quotient, and remainder posses the same bit-length (n-bit)
while the dividend is of (2n — 1-bit). The first row performs subtraction. The other rows perform
subtraction or addition depending on the sign of the previous partial remainder. If the partial re-
mainder is negative, the next row performs addition instead of subtraction. The correct remainder

is restored in the next row. An example of this process is presented in Figure 3.12.

Adder: Uses the same structure as those in the FP Adder.

FP Divider Components:

Div_mant (pipl): This is a (mbit + 1)-bit pipelined array divider. Performs mantissa division.
Res_expo (pipl): Performs exponent subtraction using ebit as the operand width.

Add_bias (pip2): This is an (ebit + 2) bit adder. Performs exponent adjustments due to mantissa
normalization and exponent bias addition. The exponent bias addition compensates for the prob-

lem created by the exponents subtraction stage.

FP Divider Processes:

Sign _pipel: Performs XOR of the signs.

Expo_pipel: Prepares exponents for subtraction.



dividend (6) dividend (5) dividend (4) dividend (3)
divisor(3) divisor(2) divisor(1) divisor(0)
—>
CAS CAS CAS CAS
qoutient(3) dividend (2)
CAS CAS CAS CAS
goutieni(2) dividend (1)
4
CAS CAS CAS CAS
qoutient(1)
dividend (0)
B A l
ps -
XOR CAS CAS CAS CAS
outient(0) «——
carry<7°u': Full Adder| ¢ | carry in a ©)
CAS | remainder(3) remainder(2) remainder(1) remainder(0)
Sum/Dif
Figure 3.11: Nonrestoring Array Divider [22]
0 1 1 1 0 0 Dividend
| |
+ 0 1 1 | | Divisors 2's complement
Cout v | (Initial subtraction)
0 1 1 0 1 |
i
i
+ 1 0 0 | Divisor (Cout=0 in
C N . .
out previous operation)
1 0 1 1 0
i + 0 1 0 Divisors 2's complement
| Cout (Cout=1 in previous operation)
§ 1 0 0 0 0
| |
| | 1 1 0 Divisors 2's complement
| | Cout (Cout=1 in previous operation)
| | o 1 1 0
N N N .
Remainder
g ! 1 Y Quotient

Figure 3.12: Example of a 7-bit dividend(60;), 4-bit divisor(104) NR division
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Mant_pipel: Zero detection and adds the implicit hidden one to the mantissa.

Sign_pipe2: Pass the zero flag and the sign.

Expo_pipe2: Prepares the operands for exponent bias addition.

Mant_pipe2: Normalizes the mantissa.

Sign_pipe3: Modifies the sign in case of zero result.

Expo_pipe3: Modifies the exponent in case of underflow or zero result. Also set the status flags.

Mant_pipe3: Set underflow conditions.

3.3.4 Floating Point Square Root

The basic structure of the FP square root provides scalability in terms of mantissa, exponent
fields, and variable number of pipeline stages. Figure 3.13 shows the general organization of the
FP square root. Exponent and mantissa widths are specified through parameters ebit and mbit,
respectively. An example of FP Square Root with ebit = 3 and mbit = 9 is presented in Table 3.7.
The number of pipeline stages is specified through one parameter (pipl). Descriptions of the main
operators, components, and processes used by the FP Square Root, indicating their associated

pipeline parameter are provided in the following sub-sections.

Operation Operand

Sign | Exponent Mantissa

Initial input 0 111 110011101
Appending mantissa’s implicit one 0 111 1.110011101
Result sign(input sign should be +) 0 111 1.110011101
Left shift mantissa one place (if exponent is odd) 0 111 11.100111010
Subtract one to the exponent (if it is odd) 0 110 11.100111010
Right shift exponent (one place if it was odd) 0 011 11.100111010

Mantissa Square Root 4/11.100111010 = 01.1110

Mantissa already normalized in the range (2,1] 0 011 01.111000000
Implicit one removal 0 011 ** 111000000

Final result 0 011 111000000

Table 3.7: Floating Point Square Root example



fpr(mbit+ebit{1 downto mbit)

fo1
Q
Process: Process: Process:
> sign_pipe1 > expo_pipe1 > mant_pipe1
expoi
signo(0) mant1
zero_fl
. A
latchsig1 latchzero1 latchexp
bus_latches bus_latches bus_latches s%ritp_sm?tnt
(pip1) (pip1) (pip1) (pip1)
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Figure 3.13: Base structure of pipelined FP Square Root
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Operators:

Non Restoring Array Square Root: The structure of the non-restoring Array Square root is
similar to the Nonrestoring Array Divider, as seen in Figure 3.14. It was selected for implemen-
tation for its suitability for pipeline insertion. This design uses a CAS as its basic building block.
The amount of CAS is equal to N = (n? + (n/2)) where n is the size of the input operand. The
value of n is restricted to positive and even integers. That is because each row of the array accepts

two bits from the input operand. The input operand is Numin (n-bit) and the output operand

numout has a bit size of n/2.

numin(7)

L

numin(6)
A
1 i -
'leas CAS 2N
numout(3) :‘ numin(5) numin(4) ca t . CAS
i myout, | FuIIAdLer—‘«L—cany in
Dif
leas cAS cAS cas|_| Sum
numout(2) - numin(3) numin(2)
0 1
-
CAS CAS CAS CAS CAS cAs | _ |
numout(1) numin(1) numin(0)
0 0 1 ’I
-
CAS CAS CAS CAS CAS CAS CAS CAS
numout(0)

Figure 3.14: Nonrestoring Array Square Root [13]

The partial results of the integer square root are generated sequentially, just like division. The
data flow in this architecture is sequential, i.e., when an input is applied, a valid output appears
as the carries propagate along the entire structure of CAS. This carry propagation sets the critical

delay path. Pipelining can be applied by inserting latches between rows. An example of a non-

restoring square root operating is presented in Figure 3.15.

Adder: Uses the same structure as those in the FP Adder.
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1 0 0 1
\101 01 11 11 . 00

nd  pit is a 0

rd bit is 0

th pit is 1

Figure 3.15: 8-bit NR Square Root Example

FP Square Root Components:

Sqrt_mant (pipl): This is a [(mbit + 1) + mod((mbit + 1)/2)]-bit pipelined array square root.

Performs mantissa square root.

FP Square Root Processes:

Sign _pipel: Pass the signs.

Expo_pipel: Right shift the exponent by 1-bit position. This is the same as dividing the exponent
by two.

Mant_pipel: Zero detection and addition of the implicit hidden one to the mantissa. Left shift
the mantissa by one place if the exponent is odd.

Sign_pipe2: Modifies the sign in case of zero result.

Expo_pipe2: Modifies the exponent in case of underflow or zero result. Also sets the status flags.

Mant_pipe2: Sets underflow conditions.



Chapter 4

Synthesis and Improvement Results

Developed units were tested using test data, looking for correct handling of exceptions and nu-
merical results. This task was made by running testbenches using the simulation tools from ALDEC
Active HDL. Test values were converted to FP format and added to the testbench. Testbench re-
sults were converted back to decimal format for numerical verification. Also architectural tests were
made by comparing the architecture obtained after synthesis and the initial architectural design.
Finally, the units were synthesized and implemented for various data sizes and pipeline depths.

This allowed for a better analysis on the units scalability.

Some of the developed units were achieved with the aid of the VHDL synthesis tool. This tool
supports operations like carry propagation and multiplication. This contributed to the creation
of improved components for FP operators. Other improvements were obtained by custom designs
and modifications to existing arithmetic architectures. Improved components were integrated to
the FP operators, yielding better synthesis results than with the previously used structures. Area
reduction was enabled through the modifications. Delay reductions were achieved in all the struc-

tures with the aid of pipeline insertion.

Operating frequency and slice consumption data are provided for each designed unit. Sections
4.1 and 4.2 offer the details for non-pipelined and pipelined structures, respectively. Section 4.3

provides these details for FP units, using pipelined components. A comparison between the devel-

46



47

oped units and commercial implementations is made is Section 4.4.

4.1 Non-Pipelined Integer Units

Non-pipelined operators offer a lower bound for the operating frequency of the designed units.
This section presents each non pipelined integer operator with a brief comparison of other consid-

ered schemes. Justification is given for the selected schemes.

4.1.1 Comparators

The comparators were designed as simple combinational blocks where pipeline insertion was not
considered a priority. Initially, the comparators were not identified as bottleneck in the FP units.
However as the FP units performance grew up, the comparator’s speed became relatively slow. The
synthesis tool’s comparator and the modular comparators were the best in terms of delay and slice
usage as seen in Figure 4.1 and Figure 4.2, respectively. The selection between these approaches
should be done considering the data size, maximum allowable area, and delay of the design. The
synthesis tool’s comparator was selected to be incorporated into the FP units because of overall

advantages.

4.1.2 Adder

Two alternatives were evaluated: Ripple-connected Carry Look Ahead (RCLA) and the one
provided by the synthesis tool. The RCLA adder is configured as a chain of a 4, 3, 2 or 1 bit
carry-look-ahead adders. The purpose of four types of adders is to compose an adder with the
desired size using the minimum amount of carry-look-ahead adders connected in carry-ripple way.
In this way some advantages of the carry-look-ahead scheme were obtained while low amount of

levels of logic is maintained.
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The synthesis tool’s fixed-point adder was selected instead of the RCLA. Figure 4.3 shows that
this fixed-point adder has a better performance and uses less FPGA slices than the RCLA adder.
This last observation can be obtained from Figure 4.4. These advantages of the synthesis tool’s
adder come from the support provided by the FPGA through the fast carry propagation logic. The

synthesis tool’s adder was a component for the pipelined adder.

RCLA Adder —+—

180 T T
! Synthesis Tool Adder —<—
|

160
140
120

100

Operating Frequency (MHz)

80

60

40

70

Data size (bits)

Figure 4.3: Operating frequency of two addition schemes

4.1.3 Multiplier

Two multiplier schemes were tested: array multiplier and the synthesis tool’s multipliers. The
synthesis tool’s multiplier performance is better than the array multiplier’s in terms of speed and
resources, which is seen on Figure 4.5 and Figure 4.6. The synthesis tool multiplier’s disadvantages
are its inability to support variable pipelining and its dependence on the 18x18 hardware mul-
tipliers provided by the target FPGA. The synthesis tool’s multipliers uses a variable amount of
hardware multipliers depending on the operand sizes, as seen in Table 4.1. These were the reasons

for choosing the array multiplier instead of the synthesis tool’s multiplier.
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Figure 4.6: FPGA slices consumption of two multiplication schemes. Note that the synthesis tool

multipliers use dedicated hardware multipliers as seen in Table 4.1

Data size range | 18x18 Hardware multipliers Slices
4 to 17 bits 1 0
18 to 34 bits 4 22 to 52
35 to 51 bits 9 92 to 137
52 to 64 bits 16 213 to 262

Table 4.1: Synthesis tool’s multiplier usage of hardware multipliers. The target FPGA has 48

hardware multipliers
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4.1.4 Shifter

This scheme allowed parallel shifting with operating frequency independent from the amount of
shifting positions. Figure 4.7 shows its performance at different data sizes, which decreases because
of the additional multiplexers and routing resources needed to increment it’s data size. Its space
complexity grows linearly with its data size as seen in Figure 4.8. Furthermore, this shifter is easily
pipelined by inserting latches at multiplexer’s outputs. This shifter replaced a previously used
design which created each of the shifting possibilities, and used a multiplexer to select that corre-

sponding to the desired number of positions. It was discarded because of its high space consumption.
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Figure 4.7: Operating frequency for the shifter

4.1.5 Normalizer and leading-zero detector

This new topology was designed as a scalable pipelined unit. This scheme was incorporated
into the FP Adder, enabling operation over 150 MHz. Figures 4.9 and 4.10 present the operating
frequencies and slice usage at different data sizes, which are affected by the additional multiplexers,

multi-input NOR gates, and routing resources needed to increment it’s data size.
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Resource consumption (FPGA slices)

Data size (bits)

Figure 4.8: FPGA slices consumption of the shifter

The previously used scheme consisted of a for-loop, which tested each of the mantissa bits, and
another for-loop for the mantissa normalization. A similar scheme was used by Athanas et Al. to
locate the leading-one [30]. In this approach they created a 6-bit word to indicate in which of the
six mantissa nibbles the leading-one resides, if any. Another stage built the shift value based on the
6-bit word and the identified nibble. Finally the shift value was used to adjust the FP exponent
and perform mantissa normalization. This scheme caused a bottleneck in the FP Adder, limiting

its operating frequency at 30-40 MHZ.

4.1.6 Divider

Improvements to the basic structure of the NR divider were made by changing the rows of basic
cells by fast adders. Part of the cell functionality was moved outside the array in order to allow
the use of fast adders. The architecture of the improved divider is shown in Figure 4.13. These
modifications produced improved results in terms of operating frequency and slice consumption as

seen in Figures 4.11 and 4.12, respectively. Additional performance improvement can be achieved
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Figure 4.10: FPGA slices consumption for the normalizing and zero detecting unit
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by the insertion of pipeline stages in each fast adder (just when all the rows are pipelined). Slice
occupation increased almost linearly for the division operator. Slice consumption was half the con-

sumption of the non-improved NR array divider.
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Figure 4.11: Operating frequency for the division units

4.1.7 Square root

The square root was subjected to the same optimizations made on the division unit. Ad-
ditionally, the majority of its XORs receive inputs like the ones on Table 4.2 which allow for
simplifications. The improved square root unit is presented in Figure 4.14. These modifications
made the square root yield a better improvement percent than the divider’s, as seen in Figures 4.15

and 4.16. Also slice occupation increased linearly for the modified square root operator.
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Figure 4.12: FPGA slices consumption for the division units
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Figure 4.13: Improved Nonrestoring Array Divider (4-bit divisor, 7-bit dividend).

56



57

Input operand combination | Output
A=B 0
A#B 1
A=1 B
A=0 B

Table 4.2: Properties of 2-inputs (A and B) XOR gates

In In  In, In In In In In
1 Ol .
Cout | 5 bt adder }ﬂn( O O O
0 T T
} |
Cout | 4bit adder YOO O O
<> O I - {Xor 0 1 E@
N .
S h o Cout 6-bit adder }—CﬂQ O
r —plXor] [ IXor] | i E@
IR NN NN
O b O o et m
O Flip-flop

Out3 Out2 Out1 Out0

Figure 4.14: Improved Nonrestoring Array Square Root (8-bit input, 4-bit result)
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Figure 4.15: Operating frequency for the square root units
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4.2 Pipelined Integer Units

The behavior of the integer units provides information on how their FP counterpart will work.
Information related to operating frequency and resource consumption is offered in Figure 4.17 and
4.18, respectively. These data were taken by implementing fixed-point units at data sizes required

for a single precision FP unit.

300

T
24-bit square root ——
24-bit shifter —<—
25-bit normalizer —x—
24-bit array multiplier —=—
24-bit array divider —=— _|
24-bit adder ——

250

Operating Frequency (MHz)
- N
(9. (=]
(=] (=]

=
(=3
o

50

25

Pipeline stages

Figure 4.17: Fixed Point Units Operating Frequency Results

All the units increased their performance when the pipeline granularity was increased. Note
that the square root goes up to 12 pipeline stages because every stage retires two bits. It achieves
operating frequencies up to 211MHz. Operands can not exceed certain amount of pipeline stages
depending on architectural limitations. The irregularities in the operating frequency plots are due
to the variability in the interconnection delays in FPGAs, which sometimes counts for a 50% of the

critical delay path.

Almost all the units overpass 200MHz of operating frequency. Also the array divider and array

multipliers were the most resource consuming structures. Increase in slice usage is mainly due to
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1200
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24-bit square root —+—
24-bit shifter —>—
25-bit normalizer —x—
24-bit array multiplier —=—
1000 | 24-bit array divider —=— _ _ _ _ _ _
24-bit adder ——

Resource consumption (FPGA slices)

Pipeline stages

Figure 4.18: Fixed Point Units Slice Usage Results

the increased in latches usage when inserting pipeline stages.

4.3 Floating Point Units

The FP unit performance data presented in the following subsections were obtained by using the
pipeline insertion method presented in Section 3.2. Pipeline techniques were successful in achieving

higher operating frequencies.

4.3.1 FP Adder

The effect of varying the number of pipeline stages on the speed of the FP adder is illustrated
in Figure 4.19. This graph shows that increasing the number of stages does effectively increase
the operating frequency. Maximum operating frequency reached about 170MHz as seen in Figure
4.20. The slowest component in the FP adder was the normalizer. Each stage of the normalizer

performs a comparison, in addition to the shifting made at each stage. Also increasing the number
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of pipeline stages increases the consumption of FPGA resources through the slice occupation.

180

FP Adder —+—

160

140

=
N
o

Operating Frequency (MHz)
® 2
(=] (=]

60

40

20

Pipeline stages

Figure 4.19: Pipelined FP Adder Operating Frequency

4.3.2 FP Multiplier

It reached a maximum operating frequency of 175 MHz, as seen en Figure 4.21. The array
multiplier is the main contributor for the slice consumption behavior, as seen when comparing its

slice consumption in Figure 4.22 with that of the array multiplier in Figure 4.18.

4.3.3 FP Divider

The FP divider operating frequency increases at a lower rate compared to the other units until,
a high pipeline granularity value is reached. It reached a maximum of 155MHz, as seen in Figure

4.23. Additionally it presents an almost constant increase in the slice usage as seen in Figure 4.24.
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Figure 4.21: Pipelined FP Multiplier Operating Frequency
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Figure 4.24: Pipelined FP Divider Slice Consumption

4.3.4 FP Square Root

This is the fastest FP unit, compared with the other developed units. Reached a maximum of
210MHz, which can be observed in Figure 4.25. Additionally it is the less resource consuming FP

unit because of the improvements in the array square root, which is seen in Figure 4.26.

4.4 Results discussion

Implementations of single-precision, IEEE-754 compliant adder, multiplier, divider, and square
root units were found to operate at 1'70MFLPOS, 175MFLOPS, 158MFLPOS, and 204MFLPOS,
respectively. These speeds are competitive with those of highly refined, pre-routed core compo-
nents commercially available from several vendors. In terms of area, it results difficult to establish
meaningful comparisons since the reference implementations use dedicated Virtex-II resources other
than slices, like hardware multipliers. Although a Virtex-II platform was chosen for reporting our
results, the code is general enough to be easily ported to any other general FPGA platform. Our

approach tries to avoid the usage of such special resources in order to keep the units portable to
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other targets and to maintain the flexibility of adjustable range, precision, and pipeline granularity.
Table 4.3 summarizes the obtained results along with typical speeds and resource utilization on the

fastest commercial implementations found during the development of this work.

FP unit Source Freq. | Slices | Latency | mbit | ebit
Adder Nallatech [15] | 184 | 290 14 24 8
Quixilica [23] 147 121 11 20 6
Ours 170 467 11 24 8
Multiplier | Nallatech [15] | 188 126 6 24 8
Quixilica [23] | 122 | 326 6 24 | 8
Ours 175 973 13 24 8
Divider Nallatech [15] | 179 730 26 24 8
Quixilica [23] | 176 | 738 27 24 | 8
Ours 158 870 24 24 8
Square Root | Nallatech [15] | 181 330 27 24 8
Quixilica [23] | 222 | 675 27 24 | 8
Ours 204 302 15 24 8

Table 4.3: FP units’ comparation

The slowest components in the FP Adder are the normalizer and in the FP multiplier is the
array multiplier. The slowest one in the FP Divider is the array divider, while in the FP square
root the bottleneck is created by the array square root. These components have priority in the as-
signment of pipeline parameters in order to achieve a higher throughput. The throughput increase
has a variable rate mainly due to the routing delay, which sometimes achieved values over 50% for
the worst delay path, just like pipeline integer units in Figure 4.17. Also, it can be noticed that a
unitary increase in a pipeline parameter does not necessarily increase the operating frequency of
an operator. An example of this can be founf in Figure 4.25 for pipeline values of 7 and 9. This
is seen in many of the frequency Vs Pipeline stages plots. Note also that FP operands work at a
lower frequency than its components because of the extra logic needed for FP arithmetic. Adition-

ally, increasing the number of pipeline stages increases the consumption of FPGA resources. This
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increase is mainly due to the increased usage of latches.

Selecting the appropriate pipeline depth of an FP unit has a trade off. Higher operating fre-
quencies are achieved by incrementing the pipeline granularity, but the FPGA slices usage increases
too. Depending the target application, the user can choose high throughput or low resources con-

sumption.



Chapter 5

Conclusion and Recommendations

A set of FP, scalable operators, adjustable to any custom data size (mantissa and exponent
fields) and pipeline depth has been developed. Several fixed-point operators were built using this
algorithm, achieving operating frequencies well above 200MHz. The developed integer structures
were integrated to the FP Adder, Multiplier, Divider, and Square Root, obtaining scalable pipelined

FP units.

Pipeline insertion was accomplished using a pipeline insertion algorithm. This algorithm works
on regular structures such as adders, multipliers, and multi-stage operators. Frequency increase

was achieved in all the units in which it was applied.

Operating frequency resulted competitive with commercially available implementations. Im-
plementations of single-precision FP, IEEE-754 compliant adder, multiplier, divider and square
root units were found to operate at 170MFLPQOS, 1756MFLOPS, 158MFLPOS and 204MFLOPS,
respectively. Their advantage is the flexibility of scalable pipeline, mantissa, and exponent fields
as well as portability to a wide range of FPGA targets. This flexibility is helpful for rapid pro-

totyping. In the case of the divider, there is room for improvement in terms resources consumption.

Improvements were obtained in the integer adder, divider, and square root. These helped the

development of more efficient FP units. New topologies for several integer units were developed,
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like the shifter and the normalizer.

A shifter with shifting time independent from the shifting positions was developed. Also, its
resource consumption grows logarithmically with the data size. Also, a new topology for a mantissa
normalizer was developed, which performs leading-zero detection and mantissa normalization in a
single step without requiring an extra unit. Scaling the number of stages in the normalizer and
shifter was found to have minimal effect on the overall area due to suitability of their structures to

support pipelined operation.

Pipeline techniques have been used extensively for the development of high speed arithmetic

hardware, with main application on rapid system prototyping.

Although pipeline insertion was not applied to the comparators, the modular comparator struc-
ture is suitable for it. Latches can be inserted at each module’s output. This would allow the FP

Adder to increase its performance, easing the bottleneck created by the comparator.

The FP divider and square root could also be further improved. This can be obtained by insert-
ing pipeline stages in each row, after all the rows are pipelined. This has the potential of doubling

the divider performance.

An important extension of this project would be the automation of the pipeline insertion pro-
cess for FP units. In this process, the end-user would specify the desired operating frequency. The
FP unit would be synthesized ans iteratively improved, letting the pipelining algorithm determine

the necessary pipeline depth.
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Appendix A

FP Units’s Manual

These FP units were designed following several guidelines to assure the easiness on reuse. They
offer high flexibility for rapid prototyping. Basic VHDL knowledge is needed to use these units.
Some VHDL tools like Active HDL! allow for design entry using a GUI based environment. The
design entry is similar to a schematic entry application in which the user graphically instantiates
and interconnects the component. Here we describe the VHDL entry method.

The FP units can be used as stand alone units and/or as components for more complex designs.
If the units are used alone, the user only has to specify the input/output pins for the FPGA. If
the units are used as a components, the user should specify the unit’s interface and set the generic

parameters which control the mantissa and exponent width, and the pipeline granularity.

A.1 General Use Guide

All FP units accept normalized data according the IEEE-754 standard. Each FP unit has
generic parameters controlling the mantissa (mbit) and exponent (ebit) width, and its pipeline
granularity. Increasing the mantissa and exponent widths will also increase the numeric precision
and dynamic range, respectively. Increasing any of these two parameters will also increase the
resource consumption. Internal adjustments to meet the specified mbit and ebit are performed

automatically.

! Active HDL is a trademark of ALDEC Inc.
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Additional generic parameters are used to increase the pipeline granularity of the unit, and
therefore its operating frequency. These parameters will also increase resource consumption. The
number of pipeline parameters varies between one and five, depending on the FP unit. Pipeline
parameters should be increased carefully because of speed-area trade offs. These parameters are
modified near the beginning of the FP unit’s VHDL code inside the entity declaration when used
as a stand alone unit. When used as a component, these parameters are modified in the component

instantiation section of the entity which uses the FP unit.

A.2 Parameter Specification for Floating Point Units

This section explains how to select the values for the pipeline parameters associated to each
FP unit. It also specifies which internal components are affected by each pipeline parameter along
with other usage hints. Most of the FP units have more than one generic parameter to control the
pipeline granularity. For those units, the procedure specified in Figure 3.1 is recommended for the

selection of the pipeline parameters to satisfy a desired speed specification.

A.2.1 Floating Point Adder

This FP operator uses fixed-point adders, a logarithmic shifter, and a normalizer (which also
performs leading zero detection). The total amount of pipeline stages is given by the sum of five
pipeline parameters plus two stages provided by two VHDL processes. These VHDL processes set
a lower bound of two pipeline stages for the FP unit. The following list describes the function of

the components affected by these pipeline parameters.

e pipl: Controls the number of pipeline stages of the exponent subtractor, which determines

how many shiftings are needed for the mantissa.

e pip2a: Controls the number of pipeline stages of the shifter. It right shifts the smaller numbers

mantissa to compensate for exponent equalization.

e pip2b: Pipeline stages of the mantissa adder.
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e pip3a: Controls the number of pipeline stages of the normalizer and leading zero detector.

Detects leading zeros of the mantissa result and normalizes it.

e pip3b: Controls the number of pipeline stages of the post-normalization exponent subtractor.

Uses the amount of leading zeros detected to adjustment the exponent.

When using the FP adder as a stand alone unit, the pipeline parameters can be modified in the
line which begins with the generic VHDL command. The following VHDL code correspond to the
entity declaration section of this FP unit, where generic parameters can be modified.
entity fp_adder_pip is

generic(ebit:Integer:=8; mbit:Integer:=23; pipl:Integer:=0 ; pip2a:Integer:=0 ;

pip2b:Integer:=0 ; pip3a:Integer:=0 ; pip3b:Integer:=0);

port(fpl,fp2 : in std_logic_vector(ebit+mbit downto 0);

clk : in std_logic;
stat :out std_logic_vector(l downto 0);

fpr : out std_logic_vector(ebit+mbit downto 0));
end fp_adder_pip;

When using the FP adder as a component, the pipeline parameters can be modified in the
component instantiation section of the top level unit which uses the FP units as a component.
The following VHDL code presents an example of an FP Adder instantiation. Generic parameters
can be modified in the line which begins with the generic map VHDL command. This example
assigns 8, 23, 1, 2, 3, 4, and 5 to ebit, mbit, pipl, pip2a, pip2b, pip3a, and pip3b, respectively.
fpadd: fp_adder_pip

generic map (8,23,1,2,3,4,5)
port map(to_fpl,to_fp2,to_clk,to_stat,to_fpr);

The following VHDL files are used by the FP adder (fp_adder_pip) as VHDL components and
should be placed in the same VHDL design folder.

e bus_latches.vhd : Row of latches of variable width.
e bus mux.vhd : Two-input multiplexer which accepts variable width input operand.
¢ bus_mux_pip.vhd : Two-input multiplexer which accept variable width input operand. Its

output is latched.
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ff bus_reset.vhd : Flip-flop with reset, also manages variable data width.
latch_chain.vhd : Array of latched buses used for pipelined structures. Pipeline stages for
each data-bit is variable.

latch_chain_down.vhd :Array of latched buses used for pipelined structures. Pipeline stages
for each data-bit is variable.

latch _chain norm.vhd :Array of latched buses used for pipelined structures. Pipeline stages
for each data-bit is variable.

latch_chain_shift.vhd :Array of latched buses used for pipelined structures. Pipeline stages
for each data-bit is variable.

normalizer.vhd : Detects leading zeros on it input operand and normalizes it.
shift_pip.vhd : Right shift the input operand as specified on its other input.
sum_chain.vhd : It is the pipelined fixed point adder without the synchronizing input and
output array of latches.

sum_pipeline.vhd : Pipelined fixed point adder with variable data width. Add additional
latches to the output when pipeline capacityis exhausted.

sum_pipeline_arr.vhd : Pipelined fixed point adder with variable data width.
sumherr.vhd : Fixed point adder with variable data width.

sumherrpip.vhd :Fixed point adder with variable data width with latched output.

sumres_pip.vhd :Unit which performs addition or subtraction. Includes one pipeline stage.

utility.vhd : Utility package used by some components to calculate design parameters. It

must be compiled before the others components.

A.2.2 Floating Point Multiplier

This FP operator uses fixed-point adders, and an array multiplier. The total amount of pipeline

stages is given by the sum of three pipeline parameters plus three stages provided by three VHDL

processes. These VHDL processes set a lower bound of three pipeline stages for the FP unit. The

following list describes the function of the components affected by these pipeline parameters.

e pipla,piplb : The parameter pipla controls the pipeline stages of the top half of the array

multiplier while (pip1b) controls the lower half of the array multiplier. This array multiplier
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performs mantissa multiplication. The pipeline stages of the exponent addition are controlled

by pipla + pilb.

e pip2 : Determine the amount of pipeline stages of the exponent bias subtractor. This com-

pensates for the exponent addition section.

When using the FP multiplier as a stand alone unit, the pipeline parameters can be modified
in the line which begins with the generic VHDL command. The following VHDL code correspond

to the entity declaration section of this FP unit, where generic parameters can be modified.

entity fp_mult is
generic (ebit : integer := 8; mbit : integer :=23; pipla: integer := 0;
piplb: integer := 0; pip2: integer := 0);
port(fpl,fp2 : in std_logic_vector(ebit+mbit downto 0);
clk : in std_logic;
stat : out std_logic_vector (1 downto 0);
fpr : out std_logic_vector(ebit+mbit downto 0));
end fp_mult;

When using the FP multiplier as a component, the pipeline parameters can be modified in the
component instantiation section of the top level unit which uses the FP units as a component. The
following VHDL code presents an example of an FP multiplier instantiation. Generic parameters
can be modified in the line which begins with the generic map VHDL command. This example
assigns 8, 23, 1, 2, and 3 to ebit, mbit, pipla, piplb, and pip2, respectively.
fpadd: fp_mult

generic map (8,23,1,2,3)
port map(to_fpl,to_fp2,to_clk,to_stat,to_fpr);

The following VHDL files are used by the FP multiplier (fp.mult) as VHDL components and
should be placed in the same VHDL design folder.

e arr_cell.vhd : Array multiplier cell
e arr_cell _carrpip.vhd :Array multiplier cell with pipelined carry output

e arr_cell pip.vhd :Array multiplier cell with pipelined output
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arraymult_pipe.vhd : Pipelined array multiplier

arrmult_sum.vhd : It is the adder at he final stage of the array multiplier

dff arr.vhd : Rectangular array of flip-flops

fa_latch.vhd : Full adder cell with latched output

e full adder.vhd : Full adder cell

e pipe_latchout.vhd : Aray of latches for the final stage of the array multiplier.

These other components are also used by the FP multiplier; they are defined in the last part of
Section A.2.1

e bus_latches.vhd

e ff bus_reset.vhd

e latch_chain.vhd

e latch_chain_down.vhd
e sum _chain.vhd

e sum _pipeline.vhd

e sum_pipeline_arr.vhd
e sumherr.vhd

e sumherrpip.vhd

e utility.vhd

A.2.3 Floating Point Divider

This FP operator uses fixed-point adders, and an array divider. The total amount of pipeline
stages is given by the sum of two pipeline parameters plus three stages provided by three VHDL
processes. These VHDL processes set a lower bound of three pipeline stages for the FP unit. The

following list describes the function of the components affected by these pipeline parameters.

e Pipl : Specifies the number of pipeline stages mantissa divider and exponent subtractor.

e Pip2 : Specifies the number of pipeline stages of the exponent bias adder. This compensates

for the exponent subtraction section.
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When using the FP divider as a stand alone unit, the pipeline parameters can be modified in
the line which begins with the generic VHDL command. The following VHDL code correspond
to the entity declaration section of this FP unit, where generic parameters can be modified.
entity fp_divisor_pip is

generic(mbit: integer := 23; ebit: integer := 8; pipl: integer := 24;

pip2: integer :=1);

port(fpl,fp2 : in std_logic_vector(ebit+mbit downto 0);

clk : in std_logic;
fpr : out std_logic_vector(ebit+mbit downto 0);

stat : out std_logic_vector(l downto 0));

end fp_divisor_pip;

When using the FP divider as a component, the pipeline parameters can be modified in the
component instantiation section of the top level unit which uses the FP units as a component.
The following VHDL code presents an example of an FP divider instantiation. Generic parameters
can be modified in the line which begins with the generic map VHDL command. This example
assigns 8, 23, 1, and 2 mbit, ebit, pipl, pip2, respectively.
fpadd: fp_divisor_pip

generic map (8,23,1,2,3)
port map(to_fpl,to_fp2,to_clk,to_stat,to_fpr);

The following VHDL files are used by the FP divider (fp_divisor_pip) as VHDL components
and should be placed in the same VHDL design folder.

e array divider.vhd : Fixed point divider
e sumherr_half pip.vhd : Fixed point adder with latched sum output

e xorarray.vhd : Arraqy of three input XORs

xorcell.vhd : Three input XOR

xorcellpip.vhd : Pipelined three input XOR

These VHDL files are also used by the FP multiplier and defined in the last part of Section
A21

e bus_latches.vhd
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e ff bus_reset.vhd

e latch_chain.vhd

e latch _chain down.vhd
e sum_chain.vhd

e latch_chain_shift.vhd
e sum _pipeline.vhd

¢ sum_pipeline_arr.vhd
e sumherr.vhd

e sumherrpip.vhd

o utility.vhd
This component is also used by the FP multiplier and defined in the last part of Section A.2.2

e pipe_latchout.vhd

A.2.4 Floating Point Square Root

This FP operator uses fixed-point adders, and an array square root unit. The total amount
of pipeline stages is given by the sum of one pipeline parameters plus two stage provided by two
VHDL processes. These VHDL processes set a lower bound of two pipeline stages for the FP unit.

The following list describes the function of the components affected by these pipeline parameters.
e Pipl : Specifies the amount of pipeline stages of the mantissa square root unit.

When using the FP square root as a stand alone unit, the pipeline parameters can be modified
in the line which begins with the generic VHDL command. The following VHDL code correspond

to the entity declaration section of this FP unit, where generic parameters can be modified.

entity fp_sqrt_pip is
generic(mbit: integer := 23; ebit: integer := 8; pipl: integer := 13);
port(fpl : in std_logic_vector(ebit+mbit downto 0);
clk,reset : in std_logic;
fpr : out std_logic_vector(ebit+mbit downto 0);
stat : out std_logic_vector(l downto 0));
end fp_sqrt_pip;
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When using the FP square root as a component, the pipeline parameters can be modified in the
component instantiation section of the top level unit which uses the FP units as a component. The
following VHDL code presents an example of an FP square root instantiation. Generic parameters
can be modified in the line which begins with the generic map VHDL command. This example
assigns 8, 23, and 1 to mbit, ebit, and pipl, respectively.
fpadd: fp_divisor_pip

generic map (8,23,1,2,3)
port map(to_£fpl,to_fp2,to_clk,to_stat,to_fpr);

The following VHDL files are used by the FP square root (fp_sqrt_pip) as VHDL components
and should be placed in the same VHDL design folder.

e latch_chain sqr.vhd : Array of latches for the pipelines fixed point square root.
e latch down sqrt.vhd : Array of latches for the pipelines fixed point square root.
e pipsqrt.vhd : Fixed point square root unit.

These other VHDL files are also used by the FP multiplier and defined in the last part of Section
A21

e bus_latches.vhd

e ff bus_reset.vhd

e latch _chain down.vhd
e sumherr.vhd

o utility.vhd
This component is also used by the FP square root and defined in the last part of Section A.2.3

e sumherr_half pip.vhd

A.3 VHDL source codes

The VHDL codes for the developed FP units and their components are recorded in the attached
CD. It has four folders. Each one of them contains the required VHDL code for each FP unit. In
order to use an FP unit, it is only required to paste the folder’s content into a VHDL project and

to set the FP unit’s VHDL code as the top level entity.



