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Abstract

David Andrés Márquez Viloria

This project presents an approach for the implementation of digital signal pro-

cessing algorithms on hardware computational structures. The implementation

of Discrete Ambiguity Distributions in two dimensions using FPGA (Field Pro-

grammable Gate English Array) is shown as a particular case. This work seeks to

understand the different approaches that can be followed in implementing signal

processing algorithms which can be classified into software implementations, hard-

ware implementations or a combination of both. First, an implementation of hard-

ware/software of a signal generator that uses a digital signal processor is described.

Next, an implementation that combines hardware/software on an FPGA to calculate

the ambiguity function is shown. Both hardware/software implementations are us-

ing the hardware as a component hardware-in-the-loop into the computational cycle

to accelerate the processing. Through the use of operators and Kronecker algebra,

the ambiguity function can be expressed with a matrix structure that facilitates the

implementation in hardware structures and presents an environment for the analysis,

design, implementation, and modification of certain class of signal processing algo-

rithms using an integrated hardware/software approach. This approach consists in

five fundamental stages: 1) Signal processing algorithm development using the nu-

meric computation software package Matlab R©; 2) Formulation of signal processing

algorithms in Simulink R©; 3) Algorithms implementation using System Generator

for DSPTM; 4) Field Programmable Gate Array (FPGA) algorithm simulation and

emulation; 5) Signal processing algorithm validation through Matlab.
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RESUMEN

David Andrés Márquez Viloria

Este trabajo presenta un enfoque hacia la implementación de algoritmos de

procesamiento digital de señales en estructuras computacionales de hardware. Se

toma como caso particular la implementación de Distribuciones de Ambiguedad

Discreta en dos dimensiones usando FPGA (del inglés Field Programmable Gate

Array). Se busca entender los diferentes enfoques que se pueden seguir en la imple-

mentación de algoritmos de procesamiento de señales, los cuales se pueden clasificar

en implementaciones de software, hardware o la combinación de ambos. Primero se

presenta una implementación sobre hardware/software de un generador de señales

que usa un procesador digital de señales. Luego se muestra una implementación que

combina hardware/software sobre un FPGA que calcula la función de ambiguedad.

Ambas implementaciones hardware/software usan el hardware como un componente

dentro del ciclo de computación para acelerar el procesamiento (lo que se denomina

en inglés como hardware-in-the-loop). A través del uso de operadores y apoyados en

algebra de Kronecker podemos expresar la función de ambiguedad con una estruc-

tura matricial que facilita la implementación en estructuras de hardware lo que nos

presenta un entorno para el análisis, diseño, implementación y modificación de cier-

tas clases de algoritmos de procesamiento de señales usando un enfoque integrado

hardware/software. Este enfoque consiste de cinco pasos fundamentales: 1) Desar-

rollo del algoritmo de procesamiento de señales usando el paquete de software de

computación numérica Matlab R©; 2) Formulación usando Simulink R© de los algorit-

mos de procesamiento de señales; 3) Implementación del algoritmo usando System
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Generator for DSPTM; 4) Simulación y emulación del algoritmo sobre el FPGA; 5)

Validación del algoritmo de procesamiento de señales a través de Matlab.
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1. INTRODUCTION

1.1 Justification

In digital signal processing, it is common to find algorithms that are compu-

tationally expensive. This is not a problem if there is unlimited time to process

information and get the required results. However, real time results are needed in

most digital signal processing applications. Current information technologies and

communication systems demand fast algorithms for data processing. Thus, sig-

nal processing researchers must create new tools and develop novel approaches to

improve computational algorithm time. In this respect, Field-Programmable Gate

Arrays (FPGA) have gained attention and new occupy an important place alongside

the Digital Signal Processors (DSP). The DSPs are microprocessors with a special-

ized architecture for digital signal processing. DSPs are programmed by the user to

process a digital signal, i.e. such as filtering. On the other hand, the FPGAs are

integrated circuits whose configuration is determined by the user. On the FPGAs

is possible to employ parallel programming to reduce computation times.

The ambiguity function ([1], [2]) is widely used in radar and sonar applications

in which immediate answers are required. This function relates the transmitted

signal and the reflected signals by the located objects. The ambiguity function

represents the distribution of the power spectral density of the cross-correlation

between the transmitted signal and the reflected signal. The ambiguity function has

been widely studied in time-frequency analysis for several applications. It can be

interpreted as a cross-correlation in time and frequency, and it is useful to determine

1
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important parameters in radar applications such as the time delay and shift between

two signals. Many efforts have been made to compute the ambiguity function faster,

Zhang [3] established a clear relationship between the ambiguity function and the

Fourier transform to exploit the utility of specialized algorithms such as FFT (Fast

Fourier Transform) whose computational complexity is of order O(nlog(n)). This

approach has been explored in previous research described by Hermanek et. al. [4].

Due to the importance of the ambiguity function in several applications such as radar

systems, where the results are required in the shortest time, this project examines

the implementation of an algorithm for the ambiguity function using FPGA.

In addition, this project presents an environment for the analysis, design, im-

plementation, and modification of a certain class of signal processing algorithms

using an integrated hardware/software approach. This approach consists of five

fundamental stages: algorithms: 1) Signal processing algorithm development using

the numeric computation software package Matlab; 2) Simulink formulation of sig-

nal processing algorithms; 3) System generator algorithms implementation; 4) Field

Programmable Gate Array (FPGA) algorithm simulation and emulation; 5) Signal

processing algorithm validation through Matlab.

1.2 Objectives

1.2.1 General Objective

The general objective was to develop an environment for analysis, design, im-

plementation, and modification of several signal processing algorithms using an in-

tegrated hardware/software approach through the implementation of the ambiguity

function on FPGA. This project used a high level tool to incentivize the digital signal

processing community with the use of hardware in implementation and simulation

of signal processing algorithm.
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1.2.2 Specific Objectives

• Design, modeling and simulation algorithms in MATLAB to calculate the ambi-

guity function.

• Implement the ambiguity function on FPGA hardware structures.

• Evaluate the performance of the implementation with respect to computing time

and resources used.

• Present an integrated hardware/software approach.

1.3 Contribution of this work

This project provides a base for the implementation of digital signal processing

algorithms on FPGA. In this work an integrated hardware/software algorithm imple-

mentation approach was developed. The implementations of cyclic cross-ambiguity

functions on FPGAs for large scale signals using BRAM and Pipeline for better

resource manage can serve as a base for other implementation.

Signal generator is another important implementation shown in this work. It

can be used as an educational tool in courses related to communication systems and

signal theory.

In addition, this work examined the use of operators and Kronecker algebra

for the analysis and modification of algorithms facilitating the implementation in

hardware structures.

1.4 Outline

Chapter 2 of this project presents the theoretical background, including the

fundamentals of ambiguity function. In the theoretical framework, the methods for

calculating the ambiguity function are described. Chapter 3 describes the hard-

ware/software algorithm development approach. An example of software algorithm
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development, then a hardware/software algorithm implementation using DSP, and

finally, a hardware/software integration for an algorithm that compute the ambi-

guity function using FPGA. This section describes the hardware/software approach

developed for implementing digital signal processing on FPGA and is the core of

this research. Chapter 4 presents the hardware/Software algorithm development

results. Chapter 5 presents conclusions and recommendations for future work.



2. BACKGROUND RESEARCH

In this project, an implementation of the ambiguity function is developed using

a mathematical formulation based on matrix representation and Kronecker alge-

bra. The next section presents related work which describes the hardware/software

implementation for different digital signal processing and some efforts to improve

algorithm performance. Next, the theoretical framework underlying the ambiguity

function is presented. Finally, a briefly review of FPGA is presented.

2.1 Related Work

Signal processing algorithms have been widely used in the study of SAR(Synthetic

Aperture Radar) systems. In [5] Hilaura Nava described a model for the impulse

response for advanced SAR systems. Nava focesed on processing data obtained

remotely through sensors or sensory data to extract important information. The

impulse response of the SAR system was modeled in a context of time-frequency

analysis. In [6] Yu Teng et al. developed a three-dimesional model for radar ambi-

guity offset. Yu Teng et. al. developed a software tool to evaluate the ambiguity

of a radar offset and resolution properties. The resulted simulation showed that the

degradation of range and doppler resolution depends largely on the system and the

geometry of the target. This article describes the development of the test, calibra-

tion, and results of the initial field tests.

Several efforts to improve the digital signal processing algorithms have been

made. In [7] Ramirez et al. present a theoretical framework for modeling SAR raw

data through the computation of the response function systems impulse and cyclic

5
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convolution operations. Ramirez et al.[7] described hardware/software implementa-

tions of imaging algorithms on DSP including the ambiguity function.

R. Tolimieri and L. Auslander [2] have conducted numerous studies on time-

frequency algorithms, mainly with the ambiguity function and Wigner distribution.

A fast algorithm for computing the ambiguity function was designed using decimated

finite. This method was compared with the direct method to calculate the ambiguity

function. In their work, the count of arithmetic operations is used as a measure of

the efficiency of algorithms to evaluate the performance of the proposed method for

calculating the ambiguity function.

In [4] Hermanek et al. presents an attempt to implement a numerically efficient

and accurate enough accelerator for the calculation of the cross ambiguity function

(CAF) on FPGA. The results demonstrated that this accelerator can be used to

calculate the real-time CAF for PCL(Passive Coherent Location) radar systems. The

design has been implented using PC accelerator cards based on both Xilinx Virtex

and Altera Stratix. The reference presented gives information about the algorithms,

architecture design, and performance acceleration achieved. The possibilities for

future improvements are discussed.

Tolimieri and Winograd [8], consider the calculation of the discrete ambiguity

function. Two simple methods are developed: 1) write the discrete ambiguity func-

tion as a filter and 2) write the discrete ambiguity function as a discrete Fourier

transform. A modification of discrete Fourier transform method produces an ap-

proximation to the discrete ambiguity function, but with increased computational

efficiency.

In 1993, Rodriguez et al. [9] formulated a methodology based on algebraic

methods for the analysis, design, and modifications of time-frequency signal pro-

cessing. These algebraic methods are integrated into a computational mathematics

environment (CME) developed to facilitate the implementation of time-frequency
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algorithms on computational hardware structures. This environment allows the de-

sign of algorithms as a composition of several operators that can be described using

computer mathematical structures, such as algebra tensor products.

2.2 Ambiguity Function: Theoretical Framework

The ambiguity function can be defined as a tool for calculating the generalized

autocorrelation signal for simultaneously estimating the time delay and Doppler

frequency between a transmitted signal and its echo.

This function accepts the signal transmitted and received as inputs and gen-

erates a surface in two dimensions, one dimension is the time and the other the

frequency. These parameters can be used to estimate, through simple algebraic

transformations, the range and cross range (azimuth) in the spatial domain of the

object.

The range and speed, time and frequency corresponding to the peak in the

ambiguity surface can be provided the delay time and frequency offset of the received

signal.

The following mathematical description is based on the formulation presented

by Ramirez-Rodriguez. [7]. The ambiguity function is given by:

A : l2(ZN)× l2(ZN) → l(ZN × ZN) (2.1)

(x, y) → A(x, y) (2.2)

where,

A(x,y)[m, k] =
∑

nεZN

x[n]y∗[〈n+m〉N ]e
−j2πkn/N ;m, k ∈ ZN (2.3)

The ambiguity function can be represented using two methods: 1) Filter Method

and 2) Transform Method.
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2.2.1 Filter Method

Let xT , xR ∈ l2(ZN) to be the discrete ambiguity function of xT and xR is given

by the following expression:

AxT ,xR
[m, k] =

∑

n∈ZN

xT [n]x
∗
R[〈n+m〉N ]e

−j2πkn/N ; for m, k ∈ l2(ZN) (2.4)

Let,

Mk = ψk ∈ Ψ = ψk ψk[n] = ej2πkn/N ; k, n ∈ Zn. (2.5)

The set ψ is called the set of character basis vectors on simply characters. The

action of Mk on the signal xT is defined as follows:

Mk l
2(ZN) → l2(ZN) (2.6)

such that,

(Mk{xT})[n] = xT [n]ψk[n], n ∈ ZN (2.7)

Let,

x∗R{〈−m〉N} = S
〈−m〉N
N {x∗R}. (2.8)

Then,

(

x∗R{〈−m〉N}

)

[n] =
(

S
〈−m〉N
N {x∗R}

)

[n] = x∗R[〈n+m〉N ] allowing 〈−m〉N = 〈N−m〉N = l < N

(2.9)

Thus,

(x∗R{〈−m〉N}) [n] = (x∗R{l}) [n] (2.10)

Gathering expressions results in the following formulation:
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AxT ,xR
[m, k] =

∑

n∈ZN

(M∗
k{xT}) [n] =

∑

n∈ZN

(M∗
k{xT}) [n]

(

Sl
N{xR}

)∗
[n] (2.11)

finally,

AxT ,xR
[m, k] = 〈(M∗

k{xT}) [n]
(

Sl
N{xR}

)

〉 (2.12)

2.2.2 Transform Method

Let xT , xR ∈ l2(ZN) be the discrete ambiguity function of xT and xR is given

by the following expression:

AxT ,xR
[m, k] =

∑

n∈ZN

xT [n]x
∗
R[〈n+m〉N ]W

kn (2.13)

for m, k ∈ l2(ZN)

Let,

S
〈−m〉
N {x∗R} = x∗R{−m} (2.14)

Also, allow

xm = xT �N x∗R{−m} (2.15)

Thus, an evaluation of xm al n ∈ ZN results in:

xm = xT [n]x
∗
R{−m}[n], n ∈ ZN (2.16)

Then,

AxT ,xR
[m, k] =

∑

n∈ZN

xm[n]W
kn
N = ((xm)̂)[k] = X̂m[m] (2.17)

where, X̂m[m] = FN{xm}
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2.3 FPGA

A Field Programmable Gate Array or FPGA is a semiconductor circuit device

that contains configurable logic blocks (CLBs) which can be arranged to perform

sequential or combinatorial functions. Around the CLBs there are input/output

blocks (IOBs) which connect CLB inputs and outputs to pins in the chip package.

The CLBs can be connected to each other using programmable routing channels.

The function of the user is to define the logic functions of each CLB and how the

IOB should work, and interconnect. This configuration can be programmed using

either a Hardware Description Language (HDL) such as VHDL (Very High Speed

Integrated Circuit Hardware Description Language), or Verilog, or a schematic.

The FPGA supports parallel programming easily for its architecture. However,

the algorithms are developed in serial approaches in most cases. Serial programming

are widely used due to the conventional hardware structures that are characterized

to limite parallel process. Multicores processor, GPU (Graphical Processor Unit)

and FPGA have stimulated the development of new tools for simulation, testing and

evaluation of parallel programs such as pMatlab [10].



3. HARDWARE/SOFTWARE ALGORITHM

DEVELOPMENT APROACH

The following presents a software implementation of the ambiguity function us-

ing Matlab and pMatlab. The implementation of a signal generator using software

and hardware is also described. The signal generator was designed using Matlab,

Code Composer Studio R©and a Texas Instrument DSP board. The implementation

is described and the importance in the use of hardware for the digital signal pro-

cessing algorithms is established. Finally, the hardware/software implementation of

the ambiguity function and the approach used to develop that implementation are

described. The five stages proposed for the implementation of digital signal process-

ing algorithms using hardware and software followed in the implementation of the

ambiguity function using on FPGA are identified.

3.1 Software Algorithm Development

Software development algorithm in this work means primarily implementations

that run on computational structures with an operating system. Hence the final

decisions on resource management is left to the operating system even when pro-

grammer has a good grasp of the architecture and the data transmission process.

In general, digital signal processing algorithm implementations that use this

type of development reduce design time. Matlab has powerful graphics tools. Array-

based programming is very intuitive for most algorithms. pMatlab (a toolbox design

for Matlab) allows multicore simulation and implementation of parallel structures.

3–1 shows the implementation for calculating the ambiguity function of a square

11
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Figure 3–1: Ambiguity Function Square Pulse using Matlab

wave. Figure 3–2 presents the implementation of that ambiguity function in pMat-

lab.

Figure 3–2: Ambiguity Function using pMatlab

Using these tools in the algorithm design can cause the use of multiple resources

and them management by the operating systems can result in very high computation

times. For algorithms like these of the ambiguity function that can make real time

results difficult or impossible. That is the key reason to combine hardware and soft-

ware. Thereby allowing better computer simulation time well as leading to possible

real time implementation. The first stage is to use a DSP microprocessor a defined
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architecture that is programmable in C. Implementation with a DSP microprocessor

allows a close analogy to the algorithm software development. The next stage to use

an FPGA. The FPGA allows greater flexibility it does not have a defined structure

and the user builts the required hardware.

3.2 Hardware Algorithm Development

This section shows a hardware algorithm implementation of a signal gener-

ator using a DSP. The signal generator produces a linear frequency modulated

signal (generally called a Chirp signal) added to several sinusoidal signals. The

TMS320C6713 DSP board and the Code Composer Studio (CCS) were used in this

signal generator implementation. A graphical interface using Matlab was designed

to provide easier interaction with the signal generator.

In this implementation the user can insert the signal parameters such as am-

plitude, frequency and phase. When the application starts the signal generator

produces a signal with the default parameters. When new parameters are entered

the application produces without halting the signal generator. The interface shows

the spectrum and the time-frequency spectrogram. The Chirp signal was used be-

couse its time-frequency characteristics are widely known. The signal generator can

be developed used in applications that use chirp signals such as filter design, radar

systems, and imaging. The implementation not only generates Chirp signals, the

signal generator can generate in real time several waveforms that are sums sinusoidal

signals. The signal generator can also be used as an educational tool communication

systems and signal theory, related courses.

The most important result the implementation of the real time signal generator

in hardware. The Texas Instrument DSP board TMS320C6713 of commonly known

as 6713 is used. This DSP board comes with a user-friendly for entering the signal

generator data.
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The next sections show the system design in detail, including the routines used

and how to use the system generator. First a description of the Chirp signal is

provided. Next a description of the DSP board 6713 is presented. In section 3.2.3,

the implementation of the signal generator is described.

3.2.1 Chirp signal

Chirp signals are characterized by the changing their frequency over time. These

signals are widely used in several applications such as radar systems. Chirp signals

are valuable tools for evaluating filters.

Figure 3–3: Diagram of Chirp Signal

The frequency of a linear chirp signal can be expressed as a function of the time

t by:

f(t) = f0 + kt

where f0 is the initial frequency (the frequency at time t=0), and k is the

frequency growth rate often called “Chirp Rate” (the instantaneous rate of change

in wave frequency).
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For example, a sinusoidal wave defined by the form:

x(t) = sin((φ(t))),

the instantaneous frequency is given by:

f(t) =
1

2π

dφ(t)

dt

and the Chirp Rate of the wave is defined by:

c(t) =
1

2π

d2φ(t)

dt2

Now the sinusoidal linear Chirp function can be written as:

x(t) = sin

(

2π(f0 +
k

2
t)t

)

A practical way to observe the Chirp signal is as a spectrogram (time-frequency

representation based on the short time frequency transform STFT). The spectogram

for a sinusoidal linear Chirp signal is shown in the figure 3–4. (See source-code in

the appendix A.1).

Figure 3–4: Chirp Spectrogram
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Figure 3–5 shows the spectrum for the sinusoidal linear Chirp signal.

Figure 3–5: Chirp Spectrum

It is not possible to observe a temporal graphic of the full signal because the

sampling frequency is very high. Three sections of the signal are shown in Figures:

3–6, 3–7 and 3–8. Figure 3–6 shows the signal generated from 0 to 5 milliseconds.

Figure 3–7 shows the signal generated between 345 and 350 milliseconds and the

Figure 3–8 shows the signal from 1000 to 1005 milliseconds. Note as the frequency

increases with the time.

3.2.2 Characteristics of DSP 6713

Texas Instruments DSP board TMS320C6713 used in this project. Figure 3–9

shows a picture of the Texas Instrument DSP 6713.

The main technical specifications of the DSP 6713 are:

• Operates at 255 MHz.

• AIC23 stereo codec.

• 8 Mbytes of synchronous DRAM.

• 512 Kbytes of nonvolatile Flash memory (256 Kbytes usable in default).
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Figure 3–6: Chirp 0 to 5 milliseconds

Figure 3–7: Chirp 345 to 350 milliseconds

• 4 LEDs and DIP switches accessible by the user.

• Software board configuration through registers implemented in CPLD.

• Configurable boot options.
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Figure 3–8: Chirp 1000 to 1005 milliseconds

Figure 3–9: Texas Instruments TMS320C6713

• Standard expansion connectors for daughter board.

• JTAG emulation through the emulator on board with USB interface or external

emulator.

• Single power supply +5V.

The DSP 6713 has a USB port that can be used to transmit data between the

DSP and the PC for real time operation. Texas Instruments has a package for the
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Code Composer Studio (CCS) containing Real Time Data Exchange (RTDX) to

allow users to exchange real time data between the board and the PC. This toolbox

allows the simulation of input and output data, which can be used as feedback for

a variety of DSP applications. The input and output signals are stored in buffers

allowing the transmission of large data packages.

3.2.3 Implementation of Signal Generator: Frequency Modulated Lin-
ear and Harmonic signals

The signal generator developed produces two groups of signals, one is the sum

of the harmonics and the other is the Chirp signal. The user can select between

generating a pure cosine signal or the sum of several cosine signals and between

generating a Chirp signal or a combined harmonic and Chirp signal.

Harmonic signal implemented in the signal generator is given by :

x1(t) =
N
∑

k=1

Ak cos(2πfkt+ φk)

letN = 5

x1(t) = A1cos(2πf1t+ φ1) + A2 cos(2πf2t+ φ2)

+A3 cos(2πf3t+ φ3) + A4 cos(2πf4t+ φ4) + A5 cos(2πf5t+ φ5)

In this case, the user can enter the amplitude A, the frequency f and the phase

φ.

The Chirp signal is given by:

x(t) = A cos(0.5at2 + bt+ c)

The user can enter values for the amplitude A, the initial frequency fa , the

final frequency fb, and the constant c.

A Matlab GUI (Graphical User Interface) was developed as an interface for the

implemented signal generator. All CCS functions such as open a project, load a
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project in the board, and run the program are controlled from Matlab Figure 3–10.

The integration of CCS, Matlab and the DSP 6713 in a block diagram Figure 3–10.

Figure 3–10: Signal Generator Block Diagram

The functional diagram shown in Figure 3–11 illustrates how the routines on

Matlab and CCS platforms. The primary purpose of the Matlab platform is to

produce a ∗.m file (called signal generator.m in Figure 3–11). The ∗.m file contains

all the information generated by the graphical user interface (GUI). The GUI is

stored in a file with the same name as the main function except with extension

∗.f ig. The classes for each component in the GUI (e.g. checkbox, pushbutton, edit,

axis) are included in the signal generator.m as well as the loading data, input data

verification, results plot and communication routines.

The CCS routines are managed for the project signalgenerator.pjt(SeeF igure).
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Figure 3–11: Signal Generator Functional Diagram

Figure 3–12 presents the start windows for the Matlab implemented signal gen-

erator GUI.

When the start button is pressed, the routine verifis the DSP to be sets up the

RTDX, runs CCS, opens, download and run the project in the DSP. This button

uses the routine described in appendix . The stop button ends the program and

breaks communication with the CCS. After pressing stop, restart is required. The

stop button routine is included in appendix A.2.

The user enters the signal parameters with the edit buttons provided in the

signal generator GUI. The duration parameter is the signal duration. The number

of point to be generated and the rate of frequency increase are determined from the

duration parameter. The Fs parameter is the sampling frequency to be used in the

generated graphics. Two checkboxes are provided in the GUI. If the first option is
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Figure 3–12: GUI Signal Generator

selected, then one cosine or the sum of several cosine signals is generated. If the

second checkbox is selected, then a Chirp signal is generated. If both checkboxes

are selected, then the output is a combination of cosine and chirp signals. Cosine

signals require amplitude, frequency and phase parameters. Since the sum of several

cosine signals requires multiple sets of parameter, the Matlab entries can be vectors

for the amplitudes, frequencies and phases. For example, the data can be entered

in any of the following forms:

1

0.56
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-1

-2.57

[1 0.56 -1 -2.57]

[1 0.56 -1 -2.57 35 0.002 4 -100 10000]

Clearly, the number of amplitudes entered must equal the number of frequencies

and phases. The chirp signal requires for parameters: amplitude M , the initial

frequency fa, and the final frequency fb, and the phase (c). Note that one only

chirp signal can be generated at a time.

The button calculate executes the routine to accept the user entered data,

pastes the data into an array and sends it to the DSP. Then the DSP generates

a signal with the specified parameters which is displayed. It also send a signal to

the audio output of PC to produce a sound to associate with the visual output.

The routines used in this whole process are presented in appendix. The ∗.c file

implemented for the CCS is included in appendix A.2.

When the Matlab program is initiated, the application is ready to receive data.

The CCS displays “Waiting to read”. Once the signal parameters are entered Matlab

prepares and transmits the data. The CCS indicates a label of “Read Completed”

as in Figure 3–13.

Once the data is read, the program generates a signal point by point and sends

it to the analog output. Each time a new signal point is calculated the CCS updates

all the variables. The program continues until the stop button is pressed.

Figure 3–14 presents the results produced with the signal generator combining

a Chirp and a cosine signal. Signal generated by the sum of five cosine signals is

shown in Figure 3–15. Figure 3–16 shows a single Chirp signal and Figure 3–17

shows the signal produced by the sum of that Chirp signal with the sum of the five

cosine signal.
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Figure 3–13: Running Code Composer Studio CCS

Figure 3–14: Sum of Chirp and Cosine



25

Figure 3–15: Sum of Cosines

The GUI signal generator GUI developed is a user-friendly graphical interface

that facilitates the DSP signal generation. The users do not need to work directly

with the CCS, they only have to introduce the signal parameters and select one of

the three signal generator options: chirp signal, sum of cosine signals, or sum chirp

and cosine signals. The number of cosine signals that can be summede was limited

to 17 by the buffer size. Note that once the application begins to generate signals,

these are generated continuously without interruption, even when the user updates

the signal parameters.

3.3 Hardware/Software Integration for Algorithm Development

The ambiguity function is widely used in the analysis of radar and sonar signals

where fast computation is required. Researchers in the signal processing field have

proposed an algorithm based on the Fast Fourier transform (FFT). In this section
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Figure 3–16: Chirp Signal

the implementation of the ambiguity function based on the FFT over a Field Pro-

grammable Gate Array (FPGA) is described. The implementation was designed

using pMATLAB in order to paralleliza the algorithm. Signals of several legths

were used to test the ambiguity function implementation with signals of up to 16384

points.

In addition, this section presents an environment for the analysis, design, imple-

mentation, and modification of a certain class of signal processing algorithms using

an integrated hardware/software approach. This approach consists in five funda-

mental stages: 1) Signal processing algorithm development using the numeric com-

putation software package Matlab R©; 2) Formulation of signal processing algorithms

in Simulink R©; 3) Algorithms implementation using System Generator for DSPTM;

4) Field Programmable Gate Array (FPGA) algorithm simulation and emulation; 5)
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Figure 3–17: Sum of a Chirp Signal and Multiple Cosine Signals

Signal processing algorithm validation through Matlab. The next section provides

a concrete example of a successful signal processing algorithm design and imple-

mentation using this FPGA hardware/software approach. The example belongs to

the class of signal processing algorithms known as time-frequency distribution. In

particular, the example deals with the computation of the cross-ambiguity function

for a transmitted signal and its return echo ([1], [2]). The radar cross-ambiguity

function was successfully implemented on a Virtex 5 field programmable gate array

unit using this approach.

3.3.1 Ambiguity Function Formulation

The mathematical formulation of the cross-ambiguity function follows. The

ambiguity function is a two-dimensional function that shows the time delay and

Doppler frequency Af,g [m, k] based on the reflected pulse distortion caused by the
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receiver match filter. Woodward first introduced the ambiguity function in his sem-

inal book Probability and Information Theory with Applications to Radar as the

means to solve the radar measurement problem. The ambiguity function can be

viewed as a linear operator problem as described in [9]. The following formulation

is based on this approach.

The narrowband continuous formulation of ambiguity function is given by the

expression:

Af,g (m, k) =

∫ ∞

−∞

f (n) g∗ (n−m) e−jtkdn

where f(n) is the broadcast signal, g(n) is the return signal, g∗ (n) is the

complex conjugate of the return signal, m is the delay between both signals and k

represents the Doppler frequency.

Discrete formulation of the ambiguity functions is given by the expression:

Af,g [m, k] =
∑

n∈ZN

f [n] g∗ [〈n+m〉N ] e
−j 2π

N
kn

Af,g [m, k] = (IN ⊗ FN) v =










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
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


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=



















FNh0

FNh1

...

FNhN−1
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...
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


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











N2×1

Gathering this result, we have:

Af,g [m, k] = (IN ⊗ FN ) v →

[

H0 H1 . . . HN−1

]

N×N

We can observeN independent processes, making this approach a true Parallel Operation.

This may be implemented as distributed matrices in pMatlab.

For the Ambiguity Function has the following formulation:

Af,g [m, k] =
∑

n∈ZN

f [n] g∗ [〈n+m〉N ] e
−j 2π

N
kn

let hm [n] = f [n] g∗ [〈n+m〉N ]

Then, Af,g [m, k] =
∑

n∈ZN
hm [n]W kn

N , where W kn
N = e−j 2π

N
kn
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If the Shift Operator SN acts recursively on g∗, we have:

SN{g
∗} [n] = d [n] = g∗ [〈n− 1〉N ] → SN{SN{g

∗}} = S2
N{g

∗ [〈n− 2〉N ]

In general, Sm
N {g∗} = g∗ [〈n−m〉N ]

Substituting −m by m, yield S−m
N {g∗} = g∗ [〈n+m〉N ]

Thus, hm [n] = f [n]S−m
N {g∗} [n].

In general, hm = fS−m
N {g∗}

Let δ{m} be mth orthonormal basis vector in a vector space of N dimensions. So,

δ{0} =



















1

0

...

0



















N×1
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
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Let v =
∑

m∈ZN
δ{m} ⊗ hm =

∑

m∈ZN
δ{m} ⊗

(

fS−m
N {g∗}

)

Where δ{m} [n] = δ{0} [〈n−m〉N ] = {
1, n = m

0, m 6= n

n,m ∈ ZN
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Then, v =


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3.3.2 MATLAB Algorithm Development

The following section describes the Matlab algorithm development. Matlab

is a powerful tool to simulate the ambiguity function and refine the algorithm. Its

toolboxes and ease of plotting facilitate peforming a variety of tests as well as making

quick adjustments to the algorithm implementation.

Figure 3–18 shows the simulation results for a 1024 sample Chirp pulse with zero

padding. The sampling frecuency for Chirp signals was 500 Hz. The instantaneous

frequency at time 0 was 0 Hz and the instantaneous frequency at 1 Seconds was 200

Hz. Hence, the chirp rate was 0.4 Hz. The ambiguity function was calculated and

plotted assuming that the received signal had a delay of 520 samples in this case.

At this point, pMatlab was used to parallelize the algorithm and move a step closer

to FPGA algorithm implementation.

3.3.3 Simulink Algorithm Formulation

This section describes the Simulink algorithm formulation stage. After design-

ing the ambiguity function algorithm in Matlab, the next step was to implement

the algorithm in the Simulink environment. Simulink has a graphical block dia-

gramming tool interface that allows developing models through multiple predefined

blocks.

Figure 3–19 shows the Simulink algorithm implementation. The ambiguity

Function subsystem shown contains the blocks nedeed to do the calculation, to send

control signals to the scope, and to send the data produced to the to Workspace
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Figure 3–18: Ambiguity Function for a Chirp pulse

Figure 3–19: Implementation of Ambiguity Function in Simulink

subsystem (see Figure 3–20). This allows visualization of the data in Matlab for

comparison with the original algorithm in section 3.3.2.

3.3.4 System Generator Stage

This section describes the System generator stage. The development system

used was Xilinx. The Xilinx System Generator for DSP [11] is a powerful tool for



33

Figure 3–20: Possible Simulink Ambiguity Function Implementation Scheme

design, simulation, and hardware co-simulation of algorithm of FPGA algorithm. It

does not replace VHDL programming, but it helps reduce design time. This tool

adds new Simulink blocks that can be converted to VHDL code and downloaded

to on FPGA, and direct hardware interation using Co-simulation, see Figure 3–20.

In/Out Blocks allow communication with the exterior of the FPGA and Block RAM

and FIFOs to manage data transmission between the hardware and the Simulink.

Various pre-designed blocks are included and using them reduces the implementation

effort and accelerates the testing process (Figure 3–21). Figure 3–22 shows what an

implementation looks like System Generator development system.

3.3.5 FPGA Simulation/Emulation Stage

This section describes the FPGA simulation and emulation stage. When the

design is ready to be tested, it can be simulated or emulated. In the simulation case

(see Figure 3–23), Simulink interprets all components of Xilinx System Generator,

and calculates latency and computation times for each simulated component. The

results can be viewed in Simulink or exported directly to Matlab, or as .mat file,

for subsequent analysis. In the case of emulation, or hardware co-simulation, Sys-

tem Generator creates a new component (see Figure 3–24) from the specific FPGA

configuration.
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Figure 3–21: Some Blocks used in Ambiguity Function implementation in System
Generator for DSP

Parameters include card type, communication type, speed and physical clock

location, and any hardware information needed. The FPGA must be on and con-

nected, so the new component can operate the binary program in the FPGA.

The advantage of System Generator is its ability to communicate and share

data with Simulink and thereby Matlab. It can also save the results in text files

making it more convenient to validate the same.

3.3.6 MATLAB Algorithm Validation

This section describes the Matlab algorithm validation stage. The algorithm

can be validated in a timely manner. A matlab program was used to compare the
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Figure 3–22: Appearance of an Implementation in System Generator

Figure 3–23: FPGA Simulation/Emulation Stage
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Figure 3–24: Hardware Co-Simulation

ambiguity function results presented in Section 3.3.2 with FPGA implementation.

Figure 3–25 shows validations results through reconstruction of large scale signals

shown in [12].

3.4 Ambiguity Function implementation in FPGA

The main purpose of this development is processing large scale signals. To this

end, the FPGA implementation was done pipeline, trying to save as many slices and

logic components as possible to use in future parallelizations. Shared memory was

used to store data during processing. This allowed the implementation to use all

available memory and compute the ambiguity function for input signals of size up

to 16384 samples. Figure 3–26 shows the flow diagram for the ambiguity function

implementation.

The FPGA’s Ambiguity Function Implementation Architecture has a universal counter

synchronizes the computation process. The f and g input signals are stored in shared
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Figure 3–25: MATLAB Algorithm Validation

memories, where the size of each memory is N . The f and g signals are complex,

thus four memory blocks are used: two for each signal where the real and imaginary

part are stored separately. Since the f and g signal cannot change during the pro-

cess, write control blocks were used to disable writing to this memory to prevent the

loss of data. Two write control blocks are used one for each signal. Each block is

responsible to address and write either the real or the imaginary part of the signal.

A shifter block is included to do circular shift on the g signal. The shifter block is

based in several counters in cascade that determine the memory address to read the

signal with a shifted m, it block is connected to the write control. Since the complex

conjugate must be computed for the g signal, a block is incorporated in the output

share memory for the imaginary part of the signal. Then, Hadamard product is

calculated in a block based on a complex multiplier. This result can be loaded into

the Fast Fourier Transform block to produce an N-point Fourier transform. This
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block is based in the Fast Fourier Transform V7.0 block of Xilinx System Genera-

tor [19]. This block has a comprehensive interface that allows full configuration for

multiple applications. Finally, a memory of size N is used to store each column of

the computed absolute value of the ambiguity function surface. The data is updated

each time a new column is computed. This shared memory allows another device

to take the data computed for visualization and analysis. The data is overwritten

in the computation of each column. A universal counter is used to sinchronize all

process as showed in the flow diagram in Figure 3–26.

In order to work with a large scale numeric sequence, its length should be greater

than 212 after the zero padding procedure. To achieve this, the pipeline method

was used integrating the shared memory to write the data during the process. The

maximum length of the numeric sequence produced by this process was 214. The

computation of the ambiguity function is an extension of the work presented by

Rodriguez et al. in ([13], [9], [14], [15]), and by Rodriguez in ([16], [17], [18]).

Figure 3–26: Ambiguity Function Diagram



4. HARDWARE/SOFTWARE ALGORITHM

DEVELOPMENT RESULTS

In this work, pMATLAB was used to design and to develop an algorithm for

computing the ambiguity function (AF) based on the FFT. The algorithm was im-

plemented on FPGA. The high-level design tool Xilinx System Generator [11] was

used, to take adventage of Matlab Simulink environment. This environment allows

to send the results to the Matlab workspace. Simulink allows to use subsystems,

upload VHDL and Matlab codes, and the Simulink block-type can be incorporated

in larger deployments. The use of System Generator produced significant time sav-

ings in the programming and testing phase. With its building blocks such as adders,

multipliers, and registration questions, System Generator can be used in complex

designs, since it includes blocks that handle digital signal processing task such as

FFT filtering. Taking advantage of the relationship between the ambiguity function

and FFT, an algorithm to compute the ambiguity function was designed in pMatlab

and implemented on an FPGA.

The ambiguity function algorithm was implemented and executed in both pMAT-

LAB and FPGA to compare large scale signal computation times. The next section

describe the experiments conducted and show the results of these test.

4.1 pMATLAB Implementation

The ambiguity function implemented in pMATLAB was done to understand the

improvement in the computation using a parallel approach. Parallel implementation

was simulated for 1,2,4,6 and 8 processors. Two complex signals with 1024, 2048,

and 4096 samples of 32 bits for the real part and 32 bits for the imaginary parts

39
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were used. Table 4–1 shows the average computational time in seconds for each

simulation and the sums of the launch and computation times. The implementations

were tested on a Intel Core 2 Duo CPU E8400 running at 3.00GHz with 3.25GBytes

of RAM. MatLab 7.8.0.347 (R2009a) and pMatlab Parallel Matlab Toolbox v1.0.1

were used. The improvement in the computation times as the number of processors

increases can be seen in Table 4–1. For example, the average time using 1 processor

and a sample of length 4096 was 1.13 seconds, versus 0.18 seconds for 8 processor.
Table 4–1: pMatlab Ambiguity Function Times

Number of Cores 1024 points 2048 points 4096 points
Computation Time Computation Time Computation Time

(Seconds) (Seconds) (Seconds)

1 0.049813 0.31766 1.1349
2 0.035858 0.17826 0.5247
4 0.028979 0.10975 0.3046
6 0.028209 0.085887 0.2291
8 0.027989 0.072661 0.1844

4.2 FPGA Implementation

A Virtex 5 XUPV5-LX110T on the Xilinx ML505 evaluation platform board

with a clock of 100 MHz was used for computing the ambiguity function. The Xilinx

System Generator was used for implementation. Two complex signals with 256, 512,

1024, 2048, 4096, 8192, and 16384 samples of 16 bits for the real part and 16 bits

for the imaginary part were used. Table 4–2 presents the computation and latency

time for each sample length. Performance was faster than using pMATLAB. For

example, the average computation time for the 1024 signal sample was 0.0102 sec-

ond on FPGA in comparison to the 0.0279 seconds with pMATLAB. Similarly, the

FPGA implementation was faster for the 2048 and 4096 signals samples than the 8

processor pMATLAB implementation. FPGA implementation computational times

were 0.0420 and 0.168 seconds for 2048 and 4096 signals samples respectively versus

0.0726 and 0.184 seconds with the 8 cores pMATLAB implementation. Figure 4–1

shows the percentages of slices and Block RAM/FIFO of FPGA used in the com-

putation. Note that the slices used for the computation do not change significantly
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as the number of points increases. However the Block RAM/FIFO used appears to

increase exponentially.
Table 4–2: FPGA Ambiguity Function Implementation Times

Number of Points Latency(Seconds) Computation Time(Seconds)

256 6.32E-06 6.62E-04
512 1.16E-05 2.63E-03

1024 2.19E-05 1.05E-02
2048 4.25E-05 4.20E-02
4096 8.35E-05 1.68E-01

8192 1.66E-04 6.71E-01
16384 3.29E-04 2.68E+00

Figure 4–1: Percenteges of Used Slices and Block RAM/FIFO

Figure 4–2: Multiple Pulses 1024 points Ambiguity Function
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Figure 4–3: Diagram Ambiguity Function

Figure 4–4: Cycles Latency and Total Computation

Figure 4–5: Diagram 3 target 16384 points Ambiguity Function



5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

This work presents a process for analyzing, designing, implementing, and modi-

fying certain class of signal processing algorithms using integrated hardware/software.

This consists of five stages: algorithms:1) Signal processing algorithm development

using the numeric computation software package Matlab; 2) Simulink formulation

of signal processing algorithms; 3) System generator algorithms implementation; 4)

Field Programmable Gate Array (FPGA) algorithm simulation and emulation; 5)

Signal processing algorithm validation through Matlab.

An ambiguity function implementation on FPGA was described. Experiments

with several signal lengths were carried out showing improved computation times

when compared with pMATLAB implementation. As an algorithm design tool,

pMATLAB is useful for examining each implementation stage in a parallel frame-

work. The described implementation can be easily parallelized with either multiples

cores or partitioning the data into the same core.

5.2 Future Work

The signal processing algorithm development and implementation approach pre-

sented could be used for FPGA implementation of other time-frequency distribu-

tions. In particular, the short-time Fourier transform for near real-time analysis of

bioacoustic signals for environmental surveillance monitoring applications is of great

interest.
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APPENDIXA. SOURCE CODES

A.1 Ambiguity Function Matlab

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calcula: Ambiguity Function

%By David Marquez

%February 23, 2010 6:21:38.490 PM

%%%%%%%

%La funcion genera una seal transmitida St de "unos",

%y basado en un delay ingresado por el usuario genera

%la seal recibida Sr. Realiza zero padding a la proxima

%potencia de 2, teniendo encuenta la suma de las 2

%seales y el delay de Sr.

%%%%%%%

%Ejemplo:

%A=ambiguityfun(Length_St,Delay)

%A=ambiguityfun(4,3);

%La seal St seria igual a:

%St=[1 1 1 1]

%La seal Sr se crea con el Delay=3:

%Sr=[0 0 0 0 0 0 0 1 1 1 1]

%Realiza zero padding a 16:

%St=[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]

%Sr=[0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0]
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%El resultado se almacena en A

function A=ambiguityfun(Length_St,Delay)

close all

%-------Genera las seales

if nargin == 1

Delay=3;

end

%St=ones(Length_St,1);

%Si se quiere probar con otras seales especificas deben

%debe cambiarse la linea anterior St por la seal que se

%quiera generar, tambien se necesita Length_St y Delay

%y el algoritmo funcionara de igual forma. Las seales

%pueden ser complejas.

%Ejemplo

%Si Length_St=4 y Delay=3

%Podemos usar la siguiente seal compleja:

%

%%%% St=complex(ones(Length_St,1),5*ones(Length_St,1));

%

%Lo que nos daria como resultado:

%St=[1+5i 1+5i 1+5i 1+5i]

%La seal Sr se crea con el Delay=3:

%Sr=[0 0 0 0 0 0 0 1+5i 1+5i 1+5i 1+5i]

%Realiza zero padding a 16:

%St=[1+5i 1+5i 1+5i 1+5i 0 0 0 0 0 0 0 0 0 0 0 0]

%St=[0 0 0 0 0 0 0 1+5i 1+5i 1+5i 1+5i 0 0 0 0 0]

%El resultado se almacena en A
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%

%sine

%St=sin(2*pi*2*[0:1/100:1])’;

%chirp

St=chirp(0:1/500:1,0,1,200)’;

Sr = [zeros(Length_St + Delay - 1,1);St];

Length_Sr=size(Sr,1);

N = 2^nextpow2(Length_Sr);

St = [St;zeros(N-Length_St,1)];

Sr = [Sr;zeros(N-Length_Sr,1)];

%----------

%-------Calculo de Ambiguity Function

A=zeros(N,N);

for i=0:1:N-1

Sr_Shift=circshift(Sr,N-i);

A(:,i+1)=fftshift(fft(St.*conj(Sr_Shift)));

%A(:,i+1)=(fft(St.*conj(Sr_Shift)));

%pause(0.001)

end

subplot(2,1,1);

%stem([0:(length(St)-1)],St,’--*r’);

plot([0:(length(St)-1)],St,’r’);

hold on

%stem([0:(length(St)-1)],Sr_Shift)

plot([0:(length(St)-1)],Sr_Shift)

hold off
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title(’Chirp Pulse’)

subplot(2,1,2)

[X,Y] = meshgrid(-N/2:1:N/2-1);

mesh(X,Y,abs(A)/max(max(A)));

xlabel(’Delay’);

ylabel(’Doppler’);

% contourf(X,Y,abs(A));

% grid on;

% xlabel(’Delay’)

% ylabel(’Doppler’);

%mesh(abs((A))); %Para visualizar en 3D

%imagesc([0:(length(St)-1)],[0:(length(St)-1)],(abs(A)));

title(’Ambiguity Function - Chirp Pulse’)

A.2 Signal Generator

Spectrogram of a Sinusoidal Linear Chirp Signal

Fs=44100;

Ts=1/Fs;

tinc=Ts;

Tm=60*Ts;

m=1000;

V=m*Tm;

N=V*Fs;

t=0:tinc:V-Ts;

finc=Fs/N;

f=-(Fs/2):finc:(Fs/2)-finc;
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M=1;

a=2*pi*4000;

b=1000;

c=0.25*pi;

%****************************************************************

%Signal Computation

%****************************************************************

x=M*cos((0.5*a)*(t.*t)+2*pi*b*t+c);

Star bottom routine in the Initial windows of GUI for the Signal Generator

global cc;

ccsboardinfo %board info

cc = ccsdsp(’boardnum’,0); %set up CCS object

reset(cc) %reset board

visible(cc,1); %for CCS window

enable(cc.rtdx); %enable RTDX

if ~isenabled(cc.rtdx)

error(’RTDX is not enabled’)

end

cc.rtdx.set(’timeout’, 20); %set 20sec time out for RTDX

open(cc,’signal_generator.pjt’); %open project

load(cc,’./debug/signal_generator.out’); %load executable file

run(cc); %run

configure(cc.rtdx,1024,4); %configure two RTDX channels

Stop bottom routine in the Initial windows of GUI for the Signal Generator

global cc;

if isrunning(cc), halt(cc); %if DSP running halt processor

end
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disable(cc.rtdx); %disable RTDX

close(cc.rtdx,’ichan’); %close input channel

close(cc.rtdx,’ochan’); %close output channel

clear all

Calculate bottom routine in the Initial windows of GUI for the Signal Generator

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global cc;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

val_a=str2num(get(handles.edit5,’string’))*2*pi;

set(handles.text12,’string’,num2str(val_a));

val_b=str2num(get(handles.edit6,’string’))*2*pi;

set(handles.text13,’string’,num2str(val_b));

%Lectura de todos los valores

V = str2num(get(handles.edit8,’string’));

Fs = str2num(get(handles.edit9,’string’));

Ts=1/Fs;

tinc=Ts;

t=0:tinc:V-Ts;

N=V*Fs;

A = str2num(get(handles.edit1,’string’));

f = str2num(get(handles.edit2,’string’));

phi = str2num(get(handles.edit3,’string’));

% x1=A*cos(2*pi*f*t+phi);

%calcula se?al para uso en Matlab

x1=zeros(1,N);

for i=1:length(A)

x1=A(i)*cos(2*pi*f(i)*t+phi(i))+x1;
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end

%coloca ceros a la amplitud para cancelar la se?al cuando no esta

%seleccionada

if get(handles.checkbox1,’value’) == 0

A=0;x1=zeros(1,N);

end

M = str2num(get(handles.edit4,’string’));

fa = str2num(get(handles.edit5,’string’));

fb = str2num(get(handles.edit6,’string’));

c = str2num(get(handles.edit7,’string’));

m=2*Fs;

finc=Fs/N;

% f=-(Fs/2):finc:(Fs/2)-finc;

a=2*pi*fa;

b=2*pi*fb;

c=c*pi;

%calcula se?al para uso en Matlab

x2=M*cos((0.5*a)*(t.*t)+b*t+c);

%coloca ceros a la amplitud para cancelar la se?al cuando no esta

%seleccionada

if get(handles.checkbox2,’value’) == 0

M=0;x2=zeros(1,N);

end

x=x1+x2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%se acomodan los datos a enviar

envio=length([V Fs length(A) A f phi M fa fb c]);
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%se rellena con zeros el vector para lograr su tama?o de 60

indata=[V Fs envio A f phi M fa fb c zeros(1,(60-envio))];

open(cc.rtdx,’ichan’,’w’); %open input channel

open(cc.rtdx,’ochan’,’r’); %open output channel

pause(3) %wait for RTDX channel to open

enable(cc.rtdx,’ichan’); %enable channel TO DSK

if isenabled(cc.rtdx,’ichan’)

writemsg(cc.rtdx,’ichan’, single(indata)) %send 16-bit data to DSK

pause(3)

else

error(’Channel ’’ichan’’ is not enabled’)

end

%****************************************************************

%Plots

%****************************************************************

if max(x)~=0

fx=fft(x);

sfx=fftshift(fx);

asfx=abs(sfx);

finc=Fs/N;

f1=-(Fs/2):finc:(Fs/2)-finc;

axes(handles.axes1);

plot(f1,asfx)

grid

xlabel(’Frequency in Hertz’)

ylabel(’Magnitude’)

title(’Spectrum of Signal x(t)’)
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axes(handles.axes2);

[Y,F,T,P] = spectrogram(x,128,120,256,Fs);

%[Y,F,T,P] = spectrogram(,256,250,F,1E3,’yaxis’);

% The following code produces the same result as calling

% spectrogram with no outputs:

surf(T,F,10*log10(abs(P)),’EdgeColor’,’none’);

axis xy; axis tight; colormap(jet); view(0,90);

xlabel(’Time’);

ylabel(’Frequency (Hz)’);

sound(x,Fs);

%wavwrite(x,Fs,’chirp3.wav’)

end

signal generator.c:

#include "dsk6713_aic23.h"

Uint32 fs=DSK6713_AIC23_FREQ_44KHZ;

#include <rtdx.h> //RTDX support file

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define PI 3.141592653589793

float buffer[60] = {0}; //init data from PC

float V,Fs,A,f,phi,salida,M,fa,fb,c;

float a,b;

float Ts;

int N,numdatos,numcos;

RTDX_CreateInputChannel(ichan); //data transfer PC-->DSK

RTDX_CreateOutputChannel(ochan); //data transfer DSK-->PC
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/*

interrupt void c_int11() //ISR

{

if (!RTDX_channelBusy(&ichan))

RTDX_read(&ichan,buffer,sizeof(buffer));

return;

//return to calling function

}

*/

void main(void)

{

int i,j;

comm_poll();

IRQ_globalEnable();

IRQ_nmiEnable();

while(!RTDX_isInputEnabled(&ichan)) //for MATLAB to enable RTDX

puts("\n\n Waiting to read "); //while waiting

RTDX_read(&ichan,buffer,sizeof(buffer));//read data by DSK

puts("\n\n Read Completed");

//comm_intr();

while(1) {

if (!RTDX_channelBusy(&ichan)) {

RTDX_readNB(&ichan,buffer,sizeof(buffer));}

V = buffer[0];

Fs= buffer[1];

numdatos = buffer[2];

numcos=(numdatos-7)/3;
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M = buffer[numdatos-4];

fa= buffer[numdatos-3];

fb= buffer[numdatos-2];

c = buffer[numdatos-1];

Fs=44100;

Ts=(1/Fs);

N=V*Fs;

a=2*PI*fa;

b=2*PI*fb;

c=c*PI;

for (i = 0; i < N; i++)

{

salida=M*cos((0.5*a)*((float)i/Fs*(float)i/Fs)+b*(float)i/Fs+c);

for (j = 0; j < numcos; j++)

{

A=buffer[3+j];f=buffer[3+numcos+j];phi=buffer[3+2*numcos+j];

salida=A*cos(2*PI*f*((float)i/Fs)+phi)+salida;

}

output_sample((short)(salida*5000));

};

} // infinite loop

}

A.3 Visualizer of the output from FPGA for the Ambiguity function

close all

clc

L = 128;

Fs =1;
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NFFT = 2^nextpow2(L);

f = Fs/2*linspace(0,1,NFFT/2);

%%%%%%%%%%

syncro = find(simout(:,2) == 0); % take the starting index of valid fft from xilixn

out=(simout(:,1).^2+simout(:,3).^2)/L;

K=L;

cols=size(simout,1)/K;

A=zeros(K,cols);

for j=1:cols

%if(j~=K/2+1)

for i=1:L

aux=simout((j-1)*K+i,1).^2+simout((j-1)*K+i,3).^2;

A(i,j)=aux/K;

end

%end

A(:,j)=fftshift(A(:,j));

end

surf(B)



APPENDIXB. HARDWARE

COMPUTATIONAL STRUCTURES

B.1 Xilinx FPGAs Architectures

All Xilinx FPGAs contain the same basic resources:

• Slices grouped into Configurable Logic Blocks (CLBs). Contain combinatorial logic

and register resources.

• IOBs. Interface between the FPGA and the outside world.

• Programmable interconnect.

• Other resources.

Memory.

Multipliers.

Global clock buffers.

Boundary scan logic.

Figure B–1: Virtex II Architecture
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B.1.1 CLB and Slices

Combinatorial and sequential logic implemented here. Each Virtex.-II CLB

contains four slices.

• Local routing provides feedback between slices in the same CLB, and it provides

routing to neighboring CLBs.

• A switch matrix provides access to general routing resources.

Figure B–2: CLB and Slices

B.1.2 Slice Resources

Each slice contains two:

• Four inputs lookup tables.

• 16-bit distributed SelectRAM.

• 16-bit shift register.

Each register:
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• D flip-flop.

• Latch.

Dedicated logic:

• Muxes

• Arithmetic logic

• MULT AND

• Carry Chain

Figure B–3: Slice Resources

B.1.3 Look-Up Tables

Combinatorial logic is stored in Look-Up Tables (LUTs).

• Also called Function Generators (FGs).

• Capacity is limited by the number of inputs, not by the complexity.

• Delay through the LUT is constant.



60

Figure B–4: Look-Up Tables

B.1.4 Distributed RAM

• LUTs used as memory inside the fabric.

• Flexible, can be used as RAM, ROM, or shift register.

• Distributed memory with fast access time.

• Cascadable with built-in CLB routing

• Applications

Linear feedback shift register

Distributed arithmetic

Time-shared registers
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Figure B–5: Distributed RAM
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