
KHOVANOV HOMOLOGY FOR ALMOST
ALTERNATING KNOTS

By

Gabriel Montoya Vega

Thesis submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

in

PURE MATHEMATICS

UNIVERSITY OF PUERTO RICO
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The large quantity of almost alternating knots gives rise to an important category in knot

classification. We thus establish a result, previously given for the span of the bracket polynomial

for almost alternating knots, in terms of the Jones polynomial. The Khovanov complex of a given

knot K is generated by considering a planar projection of the knot with 2n states, each of which

consists of a collection of simple closed curves in the plane. Following results in leading papers,

we find which specific knots differ from others satisfying an equation and we present an alternative

proof of a theorem related to the span of the Jones polynomial of an almost alternating knot; finally,

keeping up our idea of finding invariants, we study their Khovanov homology.



iii

Resumen de Tesis Presentada a Escuela Graduada

de la Universidad de Puerto Rico como Requisito Parcial de los

Requerimientos para el Grado de Maestrı́a en Ciencias

KHOVANOV HOMOLOGY FOR ALMOST ALTERNATING KNOTS

Por

Gabriel Montoya Vega

2017

Consejero: Juan A. Ortiz Navarro

Departamento: Ciencias Matemáticas

La gran cantidad de nudos casi alternantes da lugar a una importante categorı́a en la clasi-

ficación de los nudos. Ası́, se establece un resultado previamente dado para la diferencia entre

las potencias mayor y menor que ocurren en el polinomio bracket de nudos casi alternantes, en

términos del polinomio de Jones. El complejo de Khovanov para un nudo K se genera al con-

siderar una proyeccion planar del nudo con 2n estados, cada uno de los cuales consiste en una

colección de curvas cerradas simples en el plano. Siguiendo resultados de artı́culos destacados,

encontramos los nudos que difieren de otros al no satisfacer cierta ecuación y presentamos una

prueba alternativa para un teorema relativo a la diferencia entre las potencias mayor y menor que

ocurren en el polinomio de Jones para nudos casi alternantes. Por último y manteniendo nuestra

idea de encontrar invariantes, estudiamos la homologı́a de Khovanov para esos nudos.
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1
Introduction

1.1 Justification

It was around the end of the nineteenth century when knot theory gained earnestness. However,

some of the most exciting results in this area have occurred in the last thirty years. A knot (link)

is an embedding of a circle (circles) into the Euclidean space R3 (or the unit sphere S3), that is a

knot (link) is a closed curve that does not intersect itself anywhere [1]. It is defined an alternating

knot as a knot that admits a projection in which the crossings alternate between under and over,

as the diagram is traversed. The main focus of this research is the study of invariants for almost

alternating knots.

A projection K of a link L is said to be almost alternating if one crossing change makes the

projection alternating. A link L is almost alternating if L has an almost alternating projection and

L does not have an alternating projection. Further, we can also take this idea of almost alternating

knots and extend it. Define a projection K of a link L to be m-almost alternating if m crossing

changes produce an alternating projection. A link L is m-almost alternating if it has an m-almost

alternating projection and no (m-1)-almost alternating projection. The number m is called the deal-

ternating number of the projection.

Polynomials are associated to diagrams of knots in order to identify equivalence. The Kho-

vanov bracket is an invariant stronger than the Jones polynomial [4]. Khovanov’s method is to

1
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replace the Kauffman bracket of a link projection with the Khovanov bracket, generalizing it to an

exact chain complex for graded vector spaces where the graded Euler characteristic is the Jones

polynomial. In order to construct the Khovanov bracket, we calculate the states of a diagram of the

knot obtained from resolving all the crossings in all possible ways. Then, each complete smoothing

is identified as a vertex in a n-dimensional cube with a vectorial space associated to it conducive

to obtain a chain group. By last, differential maps are defined in order to get the homology.

1.2 Previous publications

Being the almost alternating knots a particular kind in the sense that they are close of being

alternating, many mathematicians have been trying to generalize results previously obtained for

alternating knots. In [2] Adams et al. showed that all but three of the nonalternating knots up

through eleven crossings and all but two of the nonalternating links up through ten crossings are

almost alternating. They also generalized the fact that for an alternating link L in a n-crossings

reduced connected alternating projection, the bracket polynomial has span equal to 4n. In order

to obtain the generalization of this result they define two new conditions for links: dealternator

reduced and dealternator connected. We used this result for the especific case when m = 1.

In 2013 J. González and P. Manchón presented a general formula for the sum of the number

of components in the extreme states for an m-almost alternating knot. They did it by constructing

a surface S and a graph ΓD associated to the diagram. By using this result, they also provided

geometrical proofs for the results of Adams [2] and Zhu [15], related to the span of the Jones poly-

nomial.

In this work, we followed results given in Adams’ paper in order to identify the almost alter-

nating knots with up to nine crossings, which do not hold an equality. Furthermore, we present

proof of the main result obtained by J. González and P. Manchón related to the span of the Jones

polynomial for m-almost alternating knots.



2
Knots and links

Intituively, a knot is the result from joining the two ends of a rope after knotting it. This is, a

knot is a closed curve that does not intersect itself anywhere.

Definition 2.0.1 Let f : X −→ Y be an injective function. Suppose f ′ : X −→ f (X) ⊆ Y defined

as f ′(x) = f (x) is a homeomorphism, then we say that f is an embedding of the space X into the

space Y .

Definition 2.0.2 A knot is an embedding of a circle S1 into the Euclidean space R3 (or into the

unit sphere S3).

Definition 2.0.3 A link of m components is a subset of S3, or of R3, that consists of m disjoint,

piecewise linear, simple closed curves. Thus, we can define knots as links with only one component.

Figure 2.1 shows an embedding of one and two circles into the Euclidean space.

Figure 2.1: Embeddings-Link with 2 components (Hopf link).

Definition 2.0.4 A knot K is said to be the unknot if it bounds an embedded piecewise linear disc

in S3.

3
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Projections into the plane R2 are made, in order to represent a knot. In such a projection, the

crossings are identified as the areas in which one of the strands interrupts its way (understrand).

In Mathematics we are always interested in defining operations among objects sharing certain

characteristic, and indeed this is the case for knots.

Definition 2.0.5 Two knots K1 and K2 can be added to obtain their sum (composition), K1 +K2,

as follows. Suppose the knots to be in distinct copies of S3, remove from each a ball that meets the

knot in an unknotted spanning arc, and then identify together the resulting boundary spheres and

their intersections with the knots, so that they match up.

Definition 2.0.6 A diagram D ⊂ S2, of a link other than the unknot, is a prime diagram if any

simple closed curve in S2 that meets D transversely at two points bounds, on one side of it, a disc

that intersects D in a diagram U of the unknotted ball-arc pair. D is strongly prime if such a U is

always the trivial zero-crossing diagram.

In other words, a diagram D is strongly prime if we can not find a circumference intersecting it

transversely, such that the diagram has crossings in both sides of the circumference. As noted, in

Figure 2.2 a knot that is not prime is shown.

Figure 2.2: A not prime knot.
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2.1 Equivalence

One of the most fundamental questions in the theory of knots is how to identify whether or not

two projections are equivalent, that is if they represent the same knot.

Since a knot is a closed curve, an orientation can be assigned. As it is customary, an orientation

is defined by the choice of a direction to go over the knot, and it is noted by arrows in the curve

(Figure 2.3).

Figure 2.3: An oriented diagram.

Definition 2.1.1 Links L1 and L2 in S3 are equivalent if there is an orientation preserving piece-

wise linear homeomorphism h : S3 −→ S3, such that h(L1) = L2.

Definition 2.1.2 A homotopy between two continuous functions f : X −→ Y and g : X −→ Y is a

continuous function F : X× I −→ Y , such that F(x,0) = f (x) and F(x,1) = g(x).

Definition 2.1.3 A homotopy F : X × I −→ Y is called an isotopy if F |X×{t} is a homeomorphism

for all t ∈ I.

The word isotopy refers to a deformation of a space X , which does not modify the topology

of X . In knot theory there is particular interest in knowing when two embeddings of a space Y in

another space X can be deformed to each other by an isotopy of the space X containing them.

Definition 2.1.4 If f : Y −→ X and g : Y −→ X are embeddings of Y into X, then f and g are

ambient isotopic if there is an isotopy F : X × I −→ X such that F(x,0) = x for all x ∈ X and

F( f (y),1) = g(y) for all y ∈ Y . The space X is called the ambient space and the function F is

called an ambient isotopy.
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Definition 2.1.5 Two knots f ,g : S1 −→ R3 are equivalent if they are ambient isotopic.

Definition 2.1.6 A planar isotopy is a piecewise-linear isotopy of the plane.

Planar isotopy deforms a knot projection to another projection of the same knot without chang-

ing the topological structure of the knot. Although planar isotopy certainly modifies the distances

between crossings, it neither can change the number of crossings nor which crossings are con-

nected by which string of the projection.

In 1926, the German mathematician Kurt Reidemeister [1] proved that if we have two distinct

projections of the same knot, we can get from one projection to the other by a series of moves.

Definition 2.1.7 A Reidemeister Move is one of the three possible forms of changing a projection

of a knot, by varying the relationship between the crossings. Two diagrams are said to be equiva-

lent if one of them can be transformed into the other by following a finite sequence of Reidemeister

Moves.

Figure 2.4: Reidemeister moves.
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Theorem 2.1.8 Reidemeister’s theorem [5]. Two knots are equivalent if and only if there is a

finite sequence of planar isotopies and Reidemeister moves taking a knot projection of one to a

knot projection of the other.

2.2 Types of knots

Several ways exist to classify knots. For instance based on the number of crossings or in the

surface in which the knot lies.

It is our main criterion of classification the alternation of the cords in each crossing between

under and over, as we go over the projection of the knot in a certain direction. Thus, if this alter-

nation occurs the projection is said to be alternating. Thereby, a knot which admits a projection

of this kind is called an alternating knot. Figure 2.5 shows an example, known as the trefoil knot.

Figure 2.5: The trefoil knot.

2.2.1 Almost alternating knots

Maintaining the idea of alternation of the crossings, Adams et al. [2] introduced a new knot

type, looking for a generalization for the concept of alternating knots.

Definition 2.2.1 A projection of a knot is almost alternating if one crossing change makes the pro-

jection alternating. Hence, a knot K is said to be almost alternating if K has an almost alternating
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projection and K does not have an alternating projection. An example is presented in Figure 2.6.

Figure 2.6: An almost alternating projection.

As a matter of fact, in [2] the authors showed that of the 393 nonalternating knots and links of

eleven or fewer crossings, all but five, three knots and two links, are almost alternating. Then in

1999, H.Goda, M.Hirawasa and R.Yamamoto found almost alternating projections for one of each

of the remaining knots and links. This means, of the nonalternating knots and links of eleven or

fewer crossings, there are only two knots and one link which may not be almost alternating.

The concept of almost alternation can be taken beyond one crossing change needed to obtain an

alternating projection. The following definition divides all knots into separate categories depending

on the value of m.

Definition 2.2.2 Define an m-almost alternating knot to be a knot that has a projection where m

crossing (called the dealternators) changes would make the projection alternating, and the knot

has no projection that could be made alternating in fewer crossing changes.

The number m measures how far a knot is from being alternating. Following this definition, we

consider alternating knots to be 0-almost alternating and almost alternating knots to be 1-almost

alternating. An example of a 2-almost alternating knot is the white double of the trefoil knot,

showed in Figure 2.7.
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Figure 2.7: A 2-almost alternating projection.

2.3 Invariants of knots

Definition 2.3.1 A knot invariant is a function

K −→ f (K)

which assigns to each knot K an object f (K) (i.e, a numerical value, polynomial, group, etc) in

such a way that knots of the same type are assigned equivalent objects.

Hence, given that two projections determine different values for a specific invariant, we can

state that the knots they represent are not the same.

2.3.1 Jones Polynomial

Among knot and link invariants, we are going to work on the polynomials associated to a dia-

gram, especially with the Jones polynomial for an oriented link L, which construction is based on

the bracket polynomial.

Let L be an oriented knot projection with n crossings, labeled arbitrarily. Each crossing can

be solved (smoothed) in two different ways, as showed in Figure 2.8, using a 0− smoothing or

a 1− smoothing. A 0− smoothing is the way of solving the crossing connecting the two regions

that the overstrand passes over, when rotated counter-clockwise until it reaches the understrand.
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Similarly, a 1− smoothing connects the two regions that the overstrand passes over when rotated

clockwise until it reaches the understrand. Solving a crossing is choosing between a 0- or 1-

smoothing.

Figure 2.8: 0− smoothing and 1− smoothing.

Definition 2.3.2 A state is a choice of how to smooth all of the crossings in the projection of a link.

Definition 2.3.3 The Kauffman bracket is a function from unoriented link diagrams into the ori-

ented plane (S2) to Laurent polynomials with integer coefficients in an indeterminate variable q. It

maps L to 〈L〉 ∈ Z
[
q,q−1] and follows the relations:

At every crossing of an oriented projection, we have either a +1 or −1, as shown in Figure

2.9. Let n+ and n− denote the number of positive and negative crossings respectively. Then,

n = n++n−.

Figure 2.9: +1 crossing and -1 crossing.



2.3. INVARIANTS OF KNOTS 11

The sum of those +1 and −1 is called the writhe of the projection. From the axioms above,

we define the unnormalised Jones polynomial (J̃) as

J̃ (L) = (−1)n− qn+−2n− 〈L〉

The Jones polynomial is obtained from J̃ by dividing it by the term q+q−1, thus

J (L) =
J̃ (L)

q+q−1

However, notice that if the orientation of each of the components of a link L is changed, the

sign of the crossings are not modified. Thus, the Jones polynomial does not depend on the orien-

tation chosen for the knot.

As we stated before, the crossings of the diagram L are ordered by 1,2,3,4, ....,n, then each of

the 2n states obtained by resolving each crossing either by a 0-smoothing or a 1-smoothing, can be

indexed by a word of n zeros and ones, i.e an element of {0,1}n.

Following the crossings order, the set {0,1}n is the vertex set of a hyper-cube as shown in

Figure 2.10 (in this case, for a projection with three crossings), with an edge between words dif-

fering in exactly one place. We think of the resolution cube as increasing from the states with all

the crossings solved by a 0-smoothing to the state with all the crossings solved with a 1-smoothing

(also called the extreme states).

Figure 2.10: Hyper-cube.
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To each vertex α of the hyper-cube it is assigned a state Sα (union of k planar cycles) of the

diagram L. Then, to each Sα corresponds a term of the form (−1)r qr (q+q−1)k, where r is the

number of 1-smoothings used in the state (the height of the smoothing). Now, the unnormalised

Jones polynomial is obtained from the sum of all these terms over all α ∈ {0,1}n and then, multi-

plying by the normalization term (−1)n− qn+−2n− .

For the trefoil knot, the process can be depicted as follows

(
q+q−1)2 −3q

(
q+q−1) +3q2 (q+q−1)2 −q3 (q+q−1)3

= q−2 +1+q2−q6

then, J̃ (L) =
(
q−2 +1+q2−q6)((−1)0 q3

)
= q+q3 +q5−q9 and thus,

J (L) = q2 +q6−q8

Definition 2.3.4 The span of a polynomial is the difference between the highest power and the

lowest power that occurs in the polynomial. For instance, the span of: A3 + A2− 1− A−2 is
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3− (−2) = 5

The bracket polynomial is not an invariant for knots since it is modified by a Type I Reide-

meister move [1], in fact this move multiplies the bracket either by A−3 or A3. Nevertheless, if we

calculate the bracket polynomial from any projection of the knot and then calculate the span, we

will always get the same number:

In effect, having K1 and K2 two different projections of the knot K, there exists a series of Rei-

demeister moves taking from K1 to K2. Reidemeister moves II and III do not modify the bracket

polynomial, hence they do not change the span either. A Type I move increases (decreases) the

highest (lowest) power in the polynomial by 3 (−3), such that the difference between them is un-

changed. That is, the span of the bracket polynomial is an invariant for knots.

Some definitions and relevant results of alternating knots are presented. In [2] there were

proven some generalizations of these results for almost alternating knots.

Definition 2.3.5 We call an alternating projection reduced if there are no unnecessary crossings in

the projection (as in Figure 2.11), this is, there is no obvious way to lower the number of crossings

by a type I Reidemeister move.

Figure 2.11: Removable crossing.

Next results were shown by Louis Kauffman, Morwen Thistlethwaite and Kunio Murasugi in

1986. Together they imply that we can determine the crossing number for any alternating knot.

Proofs ar referred to [1,1,9] respectively.

Lemma 2.3.6 If K has a reduced alternating projection of n crossings, then span(< K >) = 4n.
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Theorem 2.3.7 Two reduced alternating projections of the same knot have the same number of

crossings.

Theorem 2.3.8 A reduced alternating projection of a knot has the least number of crossings for

any projection of that knot.

2.4 Tabulating knots

2.4.1 Conway’s notation

In this section, we introduce Conway’s notation for knots [6]. This was the notation used to

tabulate the prime knots through 11 crossings and prime links through 10 crossings in 1969. By

studying this notation for knots, the authors in [2] were able to identify whether a knot is alternating

or almost alternating.

Definition 2.4.1 A tangle in a knot or link projection is a region surrounded by a circle such that

the knot or link projection crosses the circle exactly four times. The four points where the knot or

link projection crosses the circle are identified as occurring in the four compass directions NW,

NE, SW, and SE.

Figure 2.12: Tangle.
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Constructing Tangles

Tangles are the elementary units of knot and link projections. As expected, two tangles are

equivalent if we can get from one to the other by a sequence of Reidemeister moves. Furthermore

the four endpoints must remain fixed and the strings of the tangle never journey outside the circle

defining the tangle. Two of the simplest tangles are the one with two vertical strings, noted as the

∞− tangle and the one with two horizontal strings, noted as the 0− tangle (Figure 2.13).

Figure 2.13: The ∞-tangle and the 0-tangle.

Those tangles define the starting point in the construction of more complex tangles. We could

wind, for example, two horizontal strings around each other to get the next figure, and we denote

this tangle by the number of left-handed twists we put in. In this case, the number is 2.

Figure 2.14: The 2-tangle.

If these two horizontal strings were twisted the other way around, we would have denoted the

tangle by a −2. Note that for a positive-integer twist, the overstrand always has a positive slope.

The idea in this section is to understand Conway’s notation for knots and links, so that we

would be able to identify alternating and almost alternating knots. In order to accomplish this, a

rational tangle is constructed.

Starting with, let us say a−3 tangle, first we reflect the tangle through the NW and SE diagonal
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line. Note that the two ends of the tangle along the diagonal are fixed when we perform the

reflection and the two other that are not on the diagonal are switched. It is sometimes difficult to

picture what happens to the crossings under the reflection but, we can figure out what happens to

one crossing and then we can infer what must happen to the other crossings. Now we wind the two

right-hand ends of the tangle around each other, let us say −2 times and we will obtain the tangle

−3 −2 showed in Figure 2.15.

Figure 2.15: Tangle -3 -2

If we perform another reflection about the NW and SE diagonal, and then wind again the two

right-hand ends, let us say −1 times, we will obtain the −3 −2 −1 tangle, as seen in Figure 2.16.

Figure 2.16: Tangle -3 -2 -1

Any tangle constructed in this way is called a rational tangle. If the ends of a rational tangle

are closed off, a rational link results.

Definition 2.4.2 This notation for rational links is what is called the Conway’s notation.



3
Khovanov homology

Khovanov’s idea is to replace the Kauffman bracket 〈D〉 of a link L by what is called the

Khovanov bracket, JDK . This bracket is a chain complex of graded vector spaces whose graded

Euler characteristic is 〈D〉.

3.1 Khovanov complex of a link diagram

Khovanov develops a way to take an oriented link diagram D into a bi−graded chain complex,

C∗,∗(D), the homology of which is the Khovanov homology of D. Let us take the diagram used to

calculate the Jones polynomial of the trefoil knot as the starting point.

D Khovanov−−−−−→C∗,∗(D)
homology−−−−−→ KH∗,∗(D)

In essence, by replacing the variable q with this chain complex, an algebraic object, he is

categorifying the unnormalised Jones polynomial. Moreover, the following properties are satisfied:

• If D is equivalent to another diagram D′, then there is an isomorphism such that:

KH∗,∗(D)∼= KH∗,∗(D′)

17
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• The graded Euler characteristic is the unnormalised Jones polynomial, that is:

∑
i, j∈Z

(−1)iq jdim(KH i, j(D)) = J̃(D)

Now, it will be given some necessary definitions related to graded vector spaces.

Definition 3.1.1 A graded vector space W is a vector space having a decomposition W =
⊕

Wm,

over m ∈ Z. {Wm} is the set of the homogeneous components.

Definition 3.1.2 The graded (or quantum) dimension, qdim, of a graded vector space W =
⊕

mW m

is the polynomial in q defined by:

qdim(W ) = ∑
m

qmdim(W m)

Definition 3.1.3 For a graded vector space W and an integer l, it can be defined a new graded

vector space W {l} (a shifted version of W) by:

W {l}m =W m−l

Notice that qdim(W {l}) = qlqdim(W ).

Definition 3.1.4 A chain complex is a sequence of homomorphisms of abelian groups with differ-

ential maps d:

where dn ◦dn+1 = 0 for each n.

Definition 3.1.5 Likewise, if C̄ is a chain complex · · · −→ C̄rα
dr

α−→ C̄rα+1 · · · of vector spaces (pos-

sibly graded) and if C = C̄[s], then Crα = C̄rα−s (with all differentials shifted accordingly).
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Definition 3.1.6 The homology of a chain complex is the set of modules, Hn(C) given by

Hn(C) =
Ker dn

Im dn+1

Definition 3.1.7 The elements of Ker dn are called cycles. The elements of Im dn+1 are called

boundaries.

Definition 3.1.8 The graded Euler characteristic of the chain complex C∗,∗(D) is given by

χq(C(D)) = ∑(−1)iq jdim(Ci, j)

3.2 Constructing Khovanov homology

Consider a diagram L with crossing number n. Let V be a vector space spanned by the ele-

ments v+ with degree +1, and v− with degree−1. Thus V is a vector space with graded dimension

q+q−1.

In analogy to the process described in order to get the Jones polynomial, to each vertex α of the

hyper-cube there is associated a graded vector space Vα =V
⊗

k {r}, with k and r as in the previous

section. In this way, the rth chain group JLKr with r ∈ [0,n], is the direct sum of the vectors at the

height r. That is,

JLK :=
⊕

α:r=|α|
Vα (L)

It is needed now a differential turning C (L) := JLK [−n−]{n+−2n−} into a chain complex.

To each edge of the cube we associate a cobordism (an orientable surface whose boundary is the

union of the circles in the smoothings at either end). Edges of the cube can be labelled by a string

of zeroes and ones with a star (?) at the position that changes. For instance, the edge joining 0100

to 0110 is denoted as 01?0. We can also turn edges into arrows following the rule that, ?= 0 gives

the tail and ?= 1 gives the head. The height of the arrow is the height of the tail. Thus, the maps
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with the same height, say dζ , are collapsed in

dr := ∑
|ζ |=r

dζ

For an arrow α
ζ−→ α ′, note that the smoothings α and α ′ are identical except for a small disc

(the changing disc) around the crossing that changes from 0− smoothing to a 1− smoothing (the

one marked by a ? in ζ ). In other words, there are two options, either two circles merge into one

or a circle splits in two.

Definition 3.2.1 For any ζ , let dζ be the identity on the tensor factors not modified and let

m : V
⊗

V 7−→V and ∆ : V 7−→V
⊗

V maps defined as

Recall that the Euler characteristic χq(C) of a chain complex C is the alternating sum of graded

dimensions of the chain groups. Now, C (L) := JLK [−n−]{n+−2n−} is in fact a chain complex.

Theorem 3.2.2 The graded Euler characteristic of C(L) is the unnormalised Jones polynomial of

L:

χq(C(L)) = J̃(D)

Proposition 3.2.3 The sequences JDK and C(D) are chain complexes.

Proofs:[4]
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Define Kh(D) as the Poincaré polynomial of the complex C(D) in the variable t where Hr(D)

is the r-th cohomology of the graded vector space C(D):

Kh(D) := ∑
r

trqdimHr(D)

Theorem 3.2.4 (Khovanov). The graded dimensions of the homology groups Hr(D) are link in-

variants, and hence Kh(D), a polynomial in the variables t and q, is a link invariant that specializes

the unnormalised Jones polynomial at t =−1.

Proof:[4]

Figure 3.1 shows the process described above for the trefoil knot.

Figure 3.1: Diagram for the Trefoil knot.
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Kh for almost alternating knots

4.1 Knots up to nine crossings

The generalization of the result proven by Kauffman, Thistlethwaite and Murasugi concerning

the span of the bracket polynomial of an alternating link [1], is presented for the case of m-almost

alternating links. It turns out that an equality holds for all but three of the almost alternating knots

of nine or fewer crossings [2]. Those knots were identified and then their Khovanov bracket was

studied, as to realize what aspects from these knots are different.

Let Kp be a reduced, connected m-almost alternating projection of a link K. Let D be the set of

all 2m alternating projections obtained by polynomial descomposition at the dealternators of Kp.

Let Li = {L ∈ D|L has i dealternators with A− channel splits}.

Definition 4.1.1 Kp is said to be dealternator reduced if for all L ∈D, the projection L is reduced.

In general terms, a diagram D is called dealternator reduced if there is no simple closed curve

(called dealternator reducibility path) intersecting the projection of D in exactly one non-dealternator

crossing and possibly in some dealternators.

Definition 4.1.2 Kp is said to be dealternator connected if for each L ∈ D, L is connected.

In other words, a diagram D is called dealternator connected if there is no simple closed curve

(called dealternator severing path) intersecting the projection D in a nonempty set of dealternators.

22
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Note that if an m-almost alternating projection is not connected and reduced, it cannot be

dealternator connected and reduced. We are assuming, however, that Kp is reduced and connected.

The following lemma gives the tools needed for the main theorem in the paper.

Lemma 4.1.3 If Kp is dealternator reduced and dealternator connected, then for links L and M ∈

Li and L′ in Li+1, the following hold:

• maxdeg < L >= maxdeg < M > and mindeg < L >= mindeg < M >.

• maxdeg < L′ >= maxdeg < L >−2 and mindeg < L′ >= mindeg < L >−2.

Proof:[2]

Previously we stated a result for alternating knots developed in [1], related to the span of

their bracket polynomial. The following theorem is the generalization of this result for m-almost

alternating knots.

Theorem 4.1.4 If a link K has n crossings in a dealternator reduced and dealternator connected

m-almost alternating projection Kp, then span(< K >)≤ 4(n−m−2).

Proof:[2]

Corollary 4.1.5 If an almost alternating link L has n crossings in an almost alternating projection

L, then span(< L >)≤ 4(n−3)

Proof:[2]

It is preferred to have the last results in terms of the Jones polynomial rather than the bracket

polynomial, due to the fact that we are going to study the Khovanov homology of the given knots.

Suppose there is a knot K and < K >= Aq + .....+Ap, where q and p denote the highest and

the lowest power of the bracket polynomial, respectively. Hence, span(< K >) = q− p. Let us

construct the X polynomial [1] of K in order to obtain the Jones polynomial. Thus,

X(K) = (−A3)−w(K) < K >= (−A)−3w(K) < K >
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where w(K) denotes the writhe of K. If we replace the bracket polynomial of K in the last equation,

the following results:

X(K) = (−A−3w(K)Aq)+ · · ·+(−A−3w(K)Apm)

= (−A−3w(K)+q)+ .....+(−A−3w(K)+p)

The Jones polynomial is obtained from the X polynomial by replacing the variable A by t−
1
4 .

Therefore,

VK(t) = (−(t−
1
4 )−3w(K)+q)+ .....+(−(t−

1
4 )−3w(K)+p)

= (−t
3
4 w(K)− q

4 )+ .....+(−t
3
4 w(K)− p

4 )

Then,

span(VK(t)) = (
3
4

w(K)− p
4
)− (

3
4

w(K)− q
4
)

=
q
4
− p

4
=

1
4
(q− p)

Hence, 4 span(VK(t)) = span(< K >). In this way, the following statement results: if a link K

has n crossings in a dealternator reduced and dealternator connected m-almost alternating projec-

tion Kp, then span(VK(t)) ≤ n−m−2. Moreover, if an almost alternating link has n crossings in

an almost alternating projection Lp, then span(VK(t))≤ n−3.

4.1.1 Identifying almost alternating knots

In [2], the authors state that in fact, all but three of the almost alternating knots of nine or fewer

crossings satisfy the equality span(VK(t)) = n−3. The following results constitute the key in the

task of finding which of the knots up to nine crossings are almost alternating.

Theorem 4.1.6 An algebraic knot with Conway notation containing no negative signs must be an

alternating knot.

Proof:[2]
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Theorem 4.1.7 A link has an almost alternating projection provided if its Conway notation in-

cludes only one negative sign.

Proof:[2]

According to the Conway’s notation presented in Rolfsen’s table [14], we see that the almost

alternating knots up to nine crossings are: 819, 820, 821, 942, 943, 944, 945, 946, 947, 948 and 949.

Now, we would like to state which knots do not hold the equality span(Vt) = n−3, where n repre-

sents the number of crossings. We study the possible number of crossings in an almost alternating

projection of the knots and the results are the following.

• The 819 knot has an almost alternating projection with nine crossings, presented in [1]. We

are assuming, however, that no almost alternating projection of the 819 is minimal, as sug-

gested by [9]. Furthermore, span(V819(t)) = 5 < n− 3, with n = 9. Since span(V820(t)) =

6= span(V821(t)), it is possible to find a nine-crossing almost alternating projection for these

knots and in this way satisfy the statement.

Figure 4.1: Almost alternating projection for the 819.

• For 942 and 946 knots, we have span(V942(t)) = 6 = span(V946(t)). Note that the minimum

crossing number for a projection of these knots is n = 9, so that any almost alternating

projection of 942 and 946 will have more than nine crossings, thus 6 < n−3. For the others

nine-crossing almost alternating knots, span(VK(t)) = 7. That is, finding a ten-crossing

almost alternating projection for those knots, make the equality hold.
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Figure 4.2: 942 and 946 knots.

4.2 Remarks for 819 and 942 knots

1. In [4], the author together with M.Khovanov and S.Garoufalidis formulated the following

conjectures. First, they found out that KhQ(L) can be written in terms of another polynomial

Kh′(L), which contains less terms. Thereby is logic tabulate Kh′(L) rather than KhQ(L).

KhQ(L) = qs−1(1+q2 +(1+ tq4)Kh′(L))

All prime knots with up to eleven crossings are in complete agreement with these conjec-

tures. Actually, just a few non-alternating knots fail in holding the conjectures.

Conjecture 4.2.1 For prime alternating L the integer s(L) is equal to the signature of L and

the polynomial Kh′(L) contains only powers of tq2.

Analyzing the Khovanov homology tables, we can note that

• s(L) is often equal to the signature of the knot σ = σ(L).

• Most monomials in most Kh′(L)’s are of the form trq2r for some r.

Among the non-alternating knots of nine or fewer crossings the only two with exceptions are

819 and 942.

In effect: for the 819, our first knot, we have Kh′(819) = t2q4 + t4q6 + t4q8. It is clear that
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this knot does not have the second property.

For 942, we have Kh′(942) =
1

t4q6 +
1

t2q2 +
1
t
+ tq4 and thus, we can note that this knot

does not have the second property. Moreover, we can affirm that s(942) = 0 and σ(942) = 2.

Hence, 942 does not have the first property either. Actually, the 942 knot among the knots

with nine crossings or fewer, is the only one that has exception to the two properties stated

from [4].

2. From [4] we see that for all but 12 of the 249 prime knots, the nontrivial cohomology groups

lie on two adjacent diagonals. Those knots are called homologically thin (H-thin). As we

may expect, knots that are not H-thin are called H-thick, this is homologically thick.

As a matter of fact, there are 12 H-thick knots up to 10 crossings [10]: 819, 942, 10124,

10128, 10132, 10136, 10139, 10145, 10152, 10153, 10154, and 10161. Thus, 819 and 942 are the

only knots up to nine crossings with off-diagonal elements in their Khovanov homology

tables.

3. 819 is the only non-hyperbolic knot with 8 crossings (it is the (3,4)-torus knot). 942 has

the second smallest volume (≈ 4.05686) among all 48 hyperbolic knots with 9 crossings.

Moreover, 942 has the smallest determinant (number calculated from the Seifert surface)

among 9-crossing knots.

Coincidentally, 942 has the same volume as 10132 (another H-thick knot). This is the pair

with the second smallest volume. The pair with the smallest volume is conformed by 52 and

the (-2,3,7)-pretzel knot.
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Span of the Jones polynomial

Let us denote as SAD (SBD) the state with all crossings solved with an 0-smoothing (1− smoothing).

In this way, |SAD| is the number of components in the state SAD. For instance, next picture shows

a projection of the 819 and the SA(819) and SB(819) states.

Figure 5.1: Extreme states.

It is desired to have a boundary for the span of the Jones polynomial for a link diagram D in

terms of the number of components in the extreme states, this is SAD and SBD. If we denote a

crossing by i, in a state s we assign a +1 or −1 depending on how the crossing is smoothed, as

indicated by next figure.

28
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Figure 5.2: Values in a crossing.

Definition 5.0.1 A diagram D is plus-adequate if |SAD|> |sD| for all state s with
n

∑
i=1

S(i) = n−2.

Likewise, D is called minus-adequate if |SBD|> |sD| for all state s with
n

∑
i=1

S(i) = 2−n. If D holds

both conditions, D is said to be adequate.

There is another form of determining if a diagram is plus or minus adequate: If the two seg-

ments replacing any crossing in SAD never belong to the same component, the diagram is said to

be plus adequate. Analogously for SBD, detects minus adequacy. For instance, the trefoil is an

adequate knot.

Figure 5.3: Adequate knot.
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Lemma 5.0.2 (10, Lemma 5.4) Let D be a link diagram with n crossings. Then

1. M〈D〉 ≤ n+2|SAD|−2, with equality when D is plus-adequate, and

2. m〈D〉 ≥ −n−2|SBD|+2, with equality when D is minus-adequate.

Where M〈D〉 (m〈D〉) denotes the maximum (minimum) power in 〈D〉.

So that, we have the following boundary for the span of the bracket polynomial, consequently

for the Jones polynomial, for a link diagram with n crossings:

span〈D〉 ≤ (n+2|SAD|−2)− (−n−2|SBD|+2)

=⇒ span〈D〉 ≤ 2n+2(|SAD|+ |SBD|)−4

Lemma 5.0.3 (10, Lemma 5.7) Let D be a connected n-crossing diagram.

1. If D is alternating, then |SAD|+ |SBD|= n+2

2. If D is non-alternating and strongly prime, then |SAD|+ |SBD|< n+2

5.1 Span for almost alternating knots

In [8] the authors stated that the number of components in the extreme states of a m-almost

alternating diagram is given by |SAD|+ |SBD|= n+2−2m, where n is the number of crossings in

the diagram. We present a proof for the case of the almost alternating knots (m = 1).

Theorem 5.1.1 For a connected, strongly prime, almost alternating diagram D with n crossings

|SAD|+ |SBD|= n

.
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Proof. Having an almost alternating diagram D, let D∗ be the alternating diagram obtained

from D by changing the dealternator crossing. Thus, D∗ is connected and alternating. Hence

|SAD∗|+ |SBD∗|= n+2

Given that D and D∗ are identical everywhere but in the dealternator crossing, by constructing

the SA and SB states, the number of components (cycles) will differ just by one. Thus, we have the

following possibilities:

1. |SAD|= |SAD∗|+1 and |SBD|= |SBD∗|+1

2. |SAD|= |SAD∗|+1 and |SBD|= |SBD∗|−1

3. |SAD|= |SAD∗|−1 and |SBD|= |SBD∗|+1

4. |SAD|= |SAD∗|−1 and |SBD|= |SBD∗|−1

Indeed the actual situation is the last one. Suppose the first option holds, then

|SAD|+ |SBD|= |SAD∗|+ |SBD∗|+2

= n+4(?)

Now suppose the second or third option hold, then

|SAD|+ |SBD|= |SAD∗|+ |SBD∗|

= n+2(•)

By Lemma 5.7 Lickorish, we have that |SAD|+ |SBD| < n+ 2 for a connected, non-alternating,

strongly prime diagram D with n crossings. Thus, (?) and (•) can not occur.
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Notice that, the option 4 tells us that

|SAD|+ |SBD|= |SAD∗|+ |SBD∗|−2

= n+2−2 = n

�

Next graph shows an example of the result shown,

Figure 5.4: Components in the extreme states.

Corollary 5.1.2 [18, Zhu] If D is a dealternator connected, almost alternating diagram with n

crossings, then

span(VD(t))≤ n−1

Proof. Remember that the bracket polynomial is bounded by

span〈D〉 ≤ 2n+2(|SAD|+ |SBD|)−4

=⇒ span〈D〉 ≤ 2n+2(n)−4 = 4n−4

=⇒ span〈D〉 ≤ 4(n−1)

=⇒ 4span(VD(t))≤ 4(n−1) (span〈D〉= 4span(VD(t)))

and thus, span(VD(t))≤ n−1 �
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Adams et al. [2] established a boundary for the span of the bracket polynomial (and thus, for

the Jones polynomial) by considering a diagram which is dealternator connected and dealternator

reduced as well. So far, we have not considered the diagram to be dealternator reduced; in this

section, we will. Let us introduce some results in order to obtain a proof of the result of Adams by

calculating the number of components in SAD and SBD.

Theorem 5.1.3 (Lickorish) Let D be an n-crossings adequate diagram. Then

• The term of the highest degree in the Kauffman bracket is (−1)|SAD|−1AM

• The term of the lowest degree in the Kauffman bracket is (−1)|SBD|−1Am

where M and m are defined as before.

It is well known that each of the terms in the bracket polynomial is congruent module 4 with

m and M [8]. Thus, the bracket of D can be explicitly written as

〈D〉= amAm +am+4Am+4 + · · ·+aM−4AM−4 +aMAM (∗)

where some of the coefficient may be zero and aM (am) denotes the maximal (minimal) coefficient

of 〈D〉.

Lemma 5.1.4 Suppose D is a dealternator connected almost alternating diagram with n crossings.

• Let D1 (resp. D2) be the diagram obtained by A-smoothing (resp. B-smoothing) the dealter-

nator crossing. Then,

|SAD1|= |SAD|, |SAD2|= |SAD|+1, |SBD1|= |SBD|+1, and |SBD2|= |SBD|

• Let aM (resp. aM1 , aM2) be the hypothetic maximal coefficient of 〈D〉 (resp. 〈D1〉, 〈D2〉).

Likewise, let am (resp. am1 , am2) be the hypothetic minimal coefficient of 〈D〉 (resp. 〈D1〉,

〈D2〉). Then,

aM = aM1 +aM2 and am = am1 +am2
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Proof. Let us prove the first part of the lemma. Clearly SAD is identical to SAD1 and SBD is

identical to SBD2.

For |SAD| and |SAD2| we have the following possibilities:

|SAD2|= |SAD|+1 or |SAD2|= |SAD|−1

Suppose |SAD2| = |SAD|− 1, then |SAD2|+ |SBD2| = |SAD|+ |SBD|− 1. Since the diagram D is

almost alternating, D2 is an alternating diagram with n− 1 crossings. Thus, |SAD2|+ |SBD2| =

(n−1)+2 and |SAD|+ |SBD|= n. Therefore,

(n−1)+2 = n−1 (�)

Hence, |SAD2|= |SAD|+1.

Now, suppose |SBD1| = |SBD| − 1. Then |SBD1|+ |SAD1| = |SBD|+ |SAD| − 1. Following

the same reasoning as above, we obtain the equality (n− 1)+ 2 = n− 1, which is false. Hence

|SBD1|= |SBD|+1.

In order to show the second part of the lemma, remember that by definiton

〈D〉= A〈D1〉+A−1〈D2〉

Since D1 and D2 are diagrams with n−1 crossings the highest terms of their bracket polynomials

are given by (−1)|SAD1|−1AM1 and (−1)|SAD2|−1AM2 respectively. By the previous lemma we

know that |SAD1|= |SAD| and |SAD2|= |SAD|+1, thus

(−1)|SAD1|−1AM1 = (−1)|SAD1|−1A(n−1)+2|SAD|−2 and

(−1)|SAD2|−1AM2 = (−1)|SAD2|−1A(n−1)+2|SAD|+2−2
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therefore,

(−1)|SAD1|−1AM1 = (−1)|SAD1|−1AM−1 =⇒M1 = M−1 and

(−1)|SAD2|−1AM2 = (−1)|SAD2|−1AM+1 =⇒M2 = M+1

Now, considering just the highest powers in 〈D〉= A〈D1〉+A−1〈D2〉 we have

aMAM = A(aM1)A
M1 +A−1(aM2)A

M2 =⇒ aMAM = aM1AM1+1 +aM2AM2−1

=⇒ aMAM = (aM1 +aM2)A
M

and thus, aM = aM1 +aM2 . Analogously, am = am1 +am2 . �

Theorem 5.1.5 (Adams et al.) If D is a dealternator connected and dealternator reduced almost

alternating diagram with n crossings, then

span(〈D〉)≤ 4(n−3)

Proof. It is already known that the maximal value for the span(〈D〉) is

M−m = 2n+2(|SAD|+ |SBD|)−4 = 4(n−1)

Recall that 〈D〉 can be written as in (∗). Suppose we have D1 and D2 as above. Since D1 and

D2 are alternating and reduced diagrams, they are adequate as well. Then, we do know how the

coefficients of their highest degrees look like,

aM1 = (−1)|SAD1|−1 = (−1)|SAD|−1 and aM2 = (−1)|SAD2|−1 = (−1)|SAD|

respectively, and thus aM = aM1 +aM2 = 0.

The same reasoning for am1 and am2 results in am = 0. Therefore, span(〈D〉) is at most
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(M−4)− (m+4) = M−m−8, hence

span(〈D〉)≤ 4(n−1)−8

=⇒ span(〈D〉)≤ 4(n−3)

�

Notice that, since span(〈D〉) = 4span(VD(t), the last result implies span(VD(t)≤ n−3.

Remark 5.1.6 A new type of knots, virtual knots, first introduced by Kauffman in 1996, shows the

connection between having the boundaries for the span of the bracket polynomial and Khovanov

homology. Virtual knot theory is a generalization of the classical knot theory, considering the em-

beddings into thickened orientable surfaces of genus not necessarily zero.

The boundary for the span(〈D〉) allowed the author in [13] to state the conditions for a dia-

gram be minimal by studying the thickness of the Khovanov complex.

A virtual link is defined as a link allowing a new type of crossing: a 4-valent vertex with a

circle around it (called a virtual crossing).

Figure 5.5: Virtual crossing.

The main result states that for an orientable virtual link which is 1−complete and 2−complete,

the diagram is minimal.



6
Conclusions and Future Work

6.1 Conclusions

Throughout the work, we have stated that our focus of study are the almost alternating knots.

Using results referring to the Conway’s notation and the Rolfsen table [14], we identified the three

knots that do not hold the equality related to the span of the bracket polynomial presented in

Adams’ work [2]. By studying the Khovanov bracket there were found some interesting aspects

for those three knots, in the sense of discrepancy with respect the others almost alternating knots

up through nine crossings. Thus, by noting that the last height in the resolution cube were not

contributing to the span of the polynomial, it was decided to look for a better boundary for this

number just knowing the number of components in the extreme states.

We then established the inequality in terms of the Jones polynomial and presented proofs of

the results of Adams’ [2], and González and Manchón [8] for almost alternating knots, by study-

ing the number of components in the extreme states. It turned out that the result from González

and Manchón [8] for the case m = 1 yields the boundary found by Zhu [18], and then we were

able to conclude the main bound considering a diagram which is both dealternator connected and

dealternator reduced.

Although by using the Khovanov tables we were not able to identify a distiction for the 946

knot, by studying surfaces we found that this knot was the only one with genus 1. Indeed, this fact

37
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highlights a difference between this knot and the others in question, since the 946 is the only one for

which it is possible to obtain a Seifert surface (an orientable surface that appears in the complement

of any knot with one boundary component such that the boundary circle is that knot, [1]), that

resembles a torus. Furthermore, 944 and the 946 are the only knots for which the signature, which

is a topological invariant computed from the Seifert surface, is zero [4].

6.2 Future work

As future work, it is suggested:

• To study in a deeper way the Khovanov complex of the 819 and the 942, looking for improve-

ment of the boundary for the span of the Jones polynomial for knots with similar properties.

• To continue in the task of exploring the quantum properties of this knot in order to establish

some rule that makes 946 differ from the other almost alternating knots of nine or fewer

crossings.

• To study the concept of the signature of a knot in order to find more information about 946.

• To find a relation between the (3,k)-torus knots and the almost alternating knots. We verified

that for an almost alternating, (3,k)-torus knot D up to 10 crossings span(Vt(D))< n−3.

• To study the relation between the boundaries for the span of the Jones polynomial and the

concept of virtual links, in order to realize more aspects about the homological minimality

of the diagram.
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