
AN FPGA IMPLEMENTATION OF THE IMAGE SPACE
RECONSTRUCTION ALGORITHM FOR HYPERSPECTRAL

IMAGING ANALYSIS

By

Javier Morales Morales

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

January, 2007

Approved by:

Gladys O. Ducoudray, Ph.D Date
Member, Graduate Committee

Miguel Velez Reyes, Ph.D Date
Member, Graduate Committee

Nayda G. Santiago, Ph.D Date
President, Graduate Committee

Mercedes Ferrer, Ph.D Date
Representative of Graduate Studies

Isidoro Couvertier, Ph.D Date
Chairperson of the Department

Abstract of Thesis Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

AN FPGA IMPLEMENTATION OF THE IMAGE SPACE
RECONSTRUCTION ALGORITHM FOR HYPERSPECTRAL

IMAGING ANALYSIS

By

Javier Morales Morales

January 2007

Chair: Nayda G. Santiago
Major Department: Electrical and Computer Engineering

The Image Space Reconstruction Algorithm (ISRA) has been used in hyper-

spectral imaging applications to monitor changes in the environment and specifi-

cally, changes in coral reef, mangrove, and sand in coastal areas. This algorithm is

one of a set of iterative methods used in the hyperspectral imaging area to estimate

abundance. However, ISRA is highly computational, making it difficult to obtain

results in a timely manner. We present the use of specialized hardware in the imple-

mentation of this algorithm, specifically the use of VHDL and FPGAs in order to

reduce the execution time. The implementation of ISRA algorithm has been divided

into hardware and software units. The hardware units were implemented on a Xil-

inx Virtex II Pro XC2VP30 FPGA and the software was implemented on the Xilinx

Microblaze soft processor. This case study illustrates the feasibility of this alter-

native design for iterative hyperspectral imaging algorithms. The main bottleneck

found in this implementations was data transfer. In order to reduce or eliminate this

bottleneck we introduced the use of block-rams (BRAMS) to buffer data and have

ii

data readily available to the ISRA algorithm. The memory combination of DDR

and BRAMS improved the speed of the implementation.

Results demonstrate that the C language implementation is better than both

FPGA’s implementations. Nevertheless, taking a detailed look at the improvements

in the results, FPGA results are similar to results obtained in the C language im-

plementation and could further be improved by adding memory capabilities to the

FPGA board. Results obtained with these two implementations do not have signif-

icant differences in terms of execution time.

iii

Resumen de Tesis Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Maestŕıa en Ciencias

IMPLEMENTACIÓN UTILIZANDO FPGA DEL ALGORITMO DE
RECONSTRUCCIÓN DEL ESPACIO DE LA IMAGEN PARA EL

ANÁLISIS DE IMAGENES HYPERESPECTRALES

Por

Javier Morales Morales

Enero 2007

Consejero: Nayda G. Santiago
Departamento: Ingenieŕıa Eléctrica y Computadoras

El algoritmo de Reconstrucción del Espacio de la Imagen con sus siglas en

inglés (ISRA) es utilizado en aplicaciones para monitoriar cambios en el medio am-

biente, especificamente cambios en coral, mangle y arena en áreas cercanas a la

costa. Este algoritmo iterativo es uno de los más utilizados para estimar abun-

dancia en el estudio de imagenes hiperespectrales. Sin embargo este algoritmo es

altamente computacional haciendo dif́ıcil obtener resultados rápidamente. En este

trabajo se presenta el uso de herramientas especializadas (especificamente VHDL

y FPGA) para implementar este algoritmo. La implementación de ISRA se divide

en dos áreas, una de ”hardware” y la otra de ”software”. La parte de ”hardware”

se implementó utilizando un Xilinx Virtex II Pro XC2VP30 FPGA y la parte de

”software” utilizando el procesador Xilinx Microblaze.

Este estudio demuestra la viabilidad de utilizar FPGA para implementar al-

goritmos que se utilizan para el estudio de imagenes hiperespectrales. Uno de los

iv

problemas encontrados en este tipo de aplicación fué la dificultad de mover la in-

formación de una manera eficiente. Este problema se resolvió utilizando una com-

binación de dos tipos de memorias, DDR y BRAMs. La importancia de la memoria

BRAM es la capacidad de acceso rápido de data, utilizado en las computaciones

matemáticas requeridas. Los resultados demuestran que la implementación creada

en C es superior que las creadas en el FPGA. Sin embargo las mejoras obtenidas en la

implementación apuntan a la posibilidad de obtener mejoŕıas mayores al incrementar

la cantidad de memoria en las tarjetas con las cuales se trabaje el problema.

v

Copyright c© 2007

by

Javier Morales Morales

ACKNOWLEDGMENTS

I would like to extend my gratitude and appreciation to my advisor Professor

Nayda Santiago. Her guidance and instruction has played an invaluable part in my

graduate studies. An special thanks to Professor’s Miriam Lesser (NEU), Gladys

Ducoudray (UPRM), Manuel Toledo (UPRM), and Miguel Vélez (UPRM), for all

their support during this work.

It has been a pleasure to work in the Integrated Circuit Design Laboratory

(ICDL) at University of Puerto Rico, Mayagüez (UPRM) and in the Rapid Pro-

totyping Laboratory at Northeastern University (NEU). Specially thanks to the

students Marcos Mej́ıas, Julio Sosa, Nelson Medero, Aixa Santos, Michael Ort́ız,

Alejandro Fernández, Albert Conti (NEU), and Sherman Braganza (NEU). They

have provided a friendly, encouraging, and supportive environment for me to work.

I would also like to extend my appreciation to The Bernard M. Gordon Center

for Subsurface Sensing and Imaging Systems sponsored by the Engineering Research

Centers Program of the US National Science Foundation under grant EEC- 9986821,

for funding my research.

Finally I would like to recognize the best family anyone could ever ask for, espe-

cially my grandparents Saturnino and Sylvia, my wife Daniela, my mother Lillian,

my uncle Jorge, and my aunt Sandra. I could not have done this without their

unconditional love, support, and understanding.

vii

TABLE OF CONTENTS
page

ABSTRACT ENGLISH . ii

ABSTRACT SPANISH . iv

ACKNOWLEDGMENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

1 INTRODUCTION . 1

1.1 Overview . 3

2 LITERATURE REVIEW . 4

2.1 Hyperspectral Imaging . 4
2.2 Spectral Unmixing . 6
2.3 Image Space Reconstruction Algorithm (ISRA) 7
2.4 Processing Elements . 9

2.4.1 Field Programmable Gate Arrays (FPGAs) 10
2.5 System-on-Chip . 13
2.6 Platform FPGAs . 14

2.6.1 MicroBlaze Architecture 14
2.6.2 Memory Architecture . 15
2.6.3 Floating Point Unit (FPU) 16

2.7 Related Work . 16
2.8 Floating Point Arithmetic . 18

2.8.1 Floating Point Adder . 18
2.8.2 Floating Point Multiplier 18

2.9 Summary . 20

3 OBJECTIVES AND DESIGN METHODOLOGY 21

3.1 Objectives . 21
3.2 Design Methodology . 21

3.2.1 Development Tools . 22
3.2.2 ISRA Implementation Using Double Data Rate (DDR) Mem-

ory Interface . 23

viii

3.2.3 ISRA Implementation Using Double Data Rate (DDR) and
Block RAM (BRAM) data Interface 25

3.2.4 Software Implementation 28
3.3 Summary . 29

4 EXPERIMENTAL RESULTS . 31

4.1 Algorithm Validation . 31
4.2 Technique for Performance Measurement 31
4.3 Implementation Results . 32
4.4 Analysis of Results . 33
4.5 Summary . 37

5 CONCLUSION AND FUTURE WORK 38

5.1 Conclusion . 38
5.2 Future Work . 39

BIOGRAPHICAL SKETCH . 44

ix

LIST OF TABLES
Table page

4–1 Timing Results in Minutes of Differents Iterations for the entire Hy-
perspectral Image. 33

4–2 Timing Results in Seconds of Differents Iterations for One Pixel ISRA
Computation of the Hyperspectral Image. 34

4–3 Timing results for simulation using ModelSim. 35

4–4 Execution times when comparing the FPGA with DDR and BRAM
memory implementation with other alternatives. 36

x

LIST OF FIGURES
Figure page

2–1 Hyperspectral Imaging. (Figure taken from NASA JPL) 4

2–2 Two-Stages Unmixing Process Diagram 7

2–3 ISRA Pseudo-Code. 8

2–4 General Structure of an FPGA. 10

2–5 Xilinx’s Virtex II Pro Architecture Overview. (Figure taken from
Xillinx [1].) . 11

2–6 2 Slice Virtex CLB. (Figure taken from Xilinx [2].) 11

2–7 Virtex-II Pro Xilinx Slice Configuration. (Figure taken from Xilinx [2].) 12

2–8 General FPGA Routing Architecture 13

2–9 MicroBlaze Core Block Diagram. (Figure taken from Xilinx [3].) . . . 15

2–10 Floating Point Adder Process . 19

2–11 Floating Point Multiplier Process . 20

3–1 Numerator’s Block Diagram . 24

3–2 Denominator’s Block Diagram . 25

3–3 Complete Hardware Implementation Diagram 26

3–4 Numerator’s Block Diagram . 27

3–5 Denominator’s Block Diagram . 28

3–6 ISRA Block Diagram . 29

3–7 ISRA Architecture Organization . 30

4–1 Hyperspectral Image from Hyperion Sensor 32

4–2 Hyperspectral Image from Ikonos Sensor 33

4–3 CTime results for complete image processing. 34

4–4 One Pixel Timing Results Plot . 35

xi

4–5 ModelSim Results Plot . 36

xii

LIST OF ABBREVIATIONS

FPGA Field Programmable Gate Array.
DSP Digital Signal Processor.
ASIC Application Specific Integrated Circuit.
ISRA Image Space Reconstruction Algorithm.
MB Microblaze Soft Core Microcontroller.
OPB On Chip Peripheral Bus.
HSI Hyperspectral Images.
RAM Random Access Memory.
BRAM Random Access Memory Block.
DDR Double Data Rate Memory.

xiii

CHAPTER 1

INTRODUCTION

Hyperspectral sensors produce images with hundreds of channels of spectral

data and million of pixels. Most image processing algorithms involve large amounts

of data and most of these algorithms present large degrees of parallelism. Most of

this parallelism can not be exploited on a sequential microprocessor and the large

amount of data cause the memory bandwidth to be the bottleneck. An FPGA

architecture for abundance estimation problem is presented that takes advantage of

the parallelism in the algorithm.

In recent years, iterative algorithms used for abundance estimation have played

an important role in the study of hyperspectral imaging [4–6]. Numerous algorithms

exist for abundance estimation, some of which are: Image Space Reconstruction Al-

gorithm (ISRA), Expectation Maximization Maximum Likelihood (EMML), Non

Negative Sum To One (NNSTO), and Non Negative Least Square (NNLS). Unfor-

tunately, the performance of these algorithms is relatively slow and place a heavy

burden on computing systems. Studies of software implementations of ISRA show

that the number of iterations is the main reason behind the long execution times

[4]. Hardware implementations of algorithms related to hyperspectral image studies

have shown considerable speedup, for example 146 percent, when implemented on

FPGAs [7–10].

The Image Space Reconstruction Algorithm (ISRA) has been used in hyper-

spectral imaging applications to monitor changes in the environment and specifically,

changes in coral reef, mangrove, and sand in coastal areas. This algorithm is one of

1

2

a set of iterative methods used in the hyperspectral imaging area to estimate abun-

dance. However, ISRA due to the amount of data is highly computational, making

it difficult to obtain results in a timely manner. Specialized hardware for the imple-

mentation of iterative algorithms, specially the use of FPGAs, may be exploited in

order to reduce execution time. Implementation platforms, which reduce execution

time of these algorithms, allows a scalable analysis of hyperspectral images. This

work illustrates the use of FPGAs as a possible target architecture for hyperspectral

imaging applications and the analysis of pros and cons of this implementation.

There are some important aspects of having hardware implementation of hyper-

spectral imaging algorithms. Hyperspectral images due to their inherent character-

istic of large amount of data are difficult to process in a timely manner. Hardware

units such as FPGAs provide a valuable architecture to overcome problems with

intensive computations and data movements. For faster convergence hardware im-

plementations can perform real time unmixing. If real time algorithms were feasible

for hyperspectral imaging, sensors with real time estimations would be possible.

This work shows the use of FPGAs to speed-up iterative hyperspectral imaging

algorithms.

The abundance estimation algorithm implemented demonstrates the potential

use of FPGA’s in the hyperspectral imaging analysis, specially with iterative or

intensive computational algorithms. We present two differents hardware implemen-

tations of the ISRA algorithm. These implementations are based on data transfer,

arithmetics computations improvements and the introduction of BRAMS memory.

The combination of DDR and BRAM memory on the hardware implementation

provides a considerable improvement on speed.

The use of Xilinx Microblaze Soft Core Microcontroller allows the easy access to

the target peripherals, like Double Data Rate (DDR) Memory, Block-RAM Memory

and the serial port (RS232). The implementation process consisted on first mapping

3

the ISRA equation into hardware implementations. Second, the communication plan

between hardware units was formulated and implemented. Finally, the memory

arrangement was made that best fitted the hardware and communication pattern.

The tradeoffs between speed, area, and memory are presented in this thesis.

1.1 Overview

Chapter 2 contains a literature review, explaining hyperspectral imaging, spec-

tral unmixing, FPGAs, ISRA, and floating point computations. Chapter three,

presents the different hardware and software implementations of the ISRA algo-

rithm and the design methodology. Results of the different implementations are

presented in chapter four. The variable of interest in these results is the execution

time. Conclusions, lessons learned, and future directions of our research are shown

in chapter five.

CHAPTER 2

LITERATURE REVIEW

In this chapter we discuss background material on hyperspectral imaging, Im-

age Space Reconstruction Algorithm (ISRA), and Field Programmable Gate Arrays

(FPGAs).

2.1 Hyperspectral Imaging

Hyperspectral Imaging (HSI) is used for environmental applications such as

mineral detection, vegetation monitoring, etc. In HSI, hundreds of images are taken

at narrow and contiguous spectral bands providing us with high spectral resolu-

tion data that can be used to discriminate between objects based on their spectral

signature [11, 12]. HSI sensors on environmental applications have high spectral

resolution and low spatial resolution, so that, the measured spectral signature is a

mixture of the spectral signatures of the objects in the field of view of the sensor [12].

Figure 2–1: Hyperspectral Imaging. (Figure taken from NASA JPL)

4

5

Figure 2–1 shows how HSI sensor scans an area and the fashion in which the

acquired data can be represented as a three dimensional cube. This data cube

has spatial dimensions and a spectral dimension. Some examples of HSI sensors

are the Airborne Visible/Infared Imaging Spectrometer (AVIRIS) and Hyperion.

Hyperion has a spatial resolution of 30 meters, spectral resolution of 10nm ranging

from 0.4 − 2.5µm and 220 bands. Another example is AVIRIS, it has a spatial

resolution that ranges from 4 − 20m meters depending on the airplane altitude,

spectral resolution of 10nm ranging from 0.4 − 2.45µm and 224 bands.

Hyperspectral sensors provide high spectral resolution but relative low spatial

resolution. Mixed pixels are consequence of low spatial resolution of HSI sensor or

could be as a results of different materials combined in a homogeneous mixture [13].

The measure spectral signature is a mixture of the signatures of the objects of the

field of view of the sensor [11]. Spectral unmixing is the procedure of decompose

the measure spectrum of mixed pixels into a set of spectra, endmember, and a

set of corresponding abundance fractions [13], [12]. When any knowledge of the

endmembers and the abundances is not known, the unmixing process is referred as

Full Unmixing Problem (FUP). When a priory information of the endmembers is

known, the process is referred as Abundance Estimation Problem (AEP). In the

literature, different approaches to solve the unmixing problem are presented but

most of them are based on the Linear Mixing Model (LMM) [12], [13], [14], given

by:

b =

n∑

i=1

xiai + w = Ax + w (2.1)

6

where A is the matrix of the endmember and A ǫ ℜm×n
+

1 is the matrix of

the endmember. The spectral signature of the i-th endmember is denoted as aij and

x ǫ ℜn
+ is the vector of the abundances. The measured pixel spectrum b ǫ ℜm

+ and the

noise vector is denoted as w. The number of endmember is n and m is the number

of spectral channel of the sensor [12], [13]. Variables A and b are constrained to be

positive in order to have physical meaning; in addition, the abundance vector needs

to satisfy x > 0 and
∑

n xi ≤ 1.

The abundance estimation problem (AEP) can be viewed as a constrained Dis-

tance Minimization Problem (DMP) given by:

x̂ = arg min
x

D (b,Ax) ; If x ≥ 0. (2.2)

where D(b;Ax) is a ”distance” function, A is the endmember matrix, b is the

pixel observed and x is the abundance vector.

2.2 Spectral Unmixing

An important challenge in HSI processing is to decompose the mixed pixels into

the materials that contribute to the pixel (endmember) and a set of corresponding

fractions of the spectral signature in the pixel (abundances). This problem is known

as the unmixing problem [12, 13]. Mixed pixels are caused by a low spatial resolution

of HSI sensor or as a result of different materials combined in a homogeneous mixture

[13]

Pixel unmixing has important applications such as object quantification, min-

eral identification, plants health, automatic materials detection, and others [13, 15].

In addition, it can be used to generate a training set for image classification. Pixel

1 A ǫ ℜm×n
+ : A is and m x n matrix with positive real numbers.

7

unmixing algorithms can be partitioning in two main components: endmember de-

termination and abundance estimation algorithms. Endmember determination is

the process of determining signatures which can be considered pure. Endmember

determination methods require a trained analyst or a-priori information to interact

with the algorithms [13]. Abundance estimation methods are highly automated; lit-

tle human interaction is required for the algorithms to execute. This is illustrated

in Fig. 2–2.

Spectral
Library

Abundance
Estimation

Abundance Maps
Hyperspectral

Image

Endmember

Determination

Endmember

Spectral
Library

Abundance
Estimation

Abundance Maps
Hyperspectral

Image

Endmember

Determination

Endmember

Spectral
Library

Abundance
Estimation

Abundance Maps
Hyperspectral

Image

Endmember

Determination

Endmember

Figure 2–2: Two-Stages Unmixing Process Diagram

The most common type of iterative abundance estimation algorithms assume

the endmembers are known and only estimate the abundances, this is called super-

vised classification [13]. This type of classification is when a-priori information is

known.

2.3 Image Space Reconstruction Algorithm (ISRA)

The Image Space Reconstruction Algorithm (ISRA) is used to estimate the

proportion of each endmember (A) present in a pixel (b) of a hyperspectral image.

The abundance problem can be seen from the perspective of a distance minimization

problem where the distance between the measured pixel or spectra and the estimate

is the smallest. ISRA it is an iterative algorithm and an example of a Positive

Constraint Only Algorithms. This means that only non negative constrains are

8

consider. This algorithm guarantees positive values in the result of the abundance

and the convergence of the algorithm.

LS (Ax,b) = ‖Ax− b‖2

2
(2.3)

ISRA is used in many applications such as image reconstruction in emission

tomography [16] and HSI data unmixing [12]. ISRA is a supervised classification

method. These means a priory information of the endmembers is known. Equa-

tion 2.4 describes the base algorithm:

x̂k+1

j = x̂k
j

m∑
i=1

biaij

m∑
i=1

aija
T
i x̂k

(2.4)

The number of bands and the number of endmembers are represented by m and

n, respectively. Matrix A ǫ ℜm×n
+ is the endmembers matrix (m × n), where aij is

an element of A and ai is a vector of the spectral response of an endmember in all

bands i. The term b ǫ ℜm
+ is the pixel in observation (m), and x̂ is the abundance

vector. Figure 2–3 shows a pseudo-code for the ISRA algorithm.

Figure 2–3: ISRA Pseudo-Code.

9

In this pseudo-code the variable P and MAX ITER means the pixel quan-

tity and the maximum iterations per pixel in the analysis, respectively. The ISRA

equation is separated into the numerator computation and denominator computa-

tion. When these are obtained, they are divided and multiplied by the previous

abundance X.

2.4 Processing Elements

Modern day designers have several devices to choose from as the implementation

fabric for their application. These devices can be classified as either general purpose,

application specific hardware, or reconfigurable hardware.

General-purpose hardware is a term used to describe devices that are capable

of understanding instructions issued by a programmer. A general-purpose processor

(GPP) is a microprocessor that has been optimized to offer moderate performance

in a wide range of application domains. A programmer can issue a command to tell

the device to perform any one of its pre-determined instructions at any given time.

General-purpose hardware is suitable for a variety of applications but they may

fail to provide an implementation platform that is capable of meeting the system

requirements for higher performance applications. In those cases, designers use ap-

plication specific hardware. Application specific hardware usually takes the form

of an application specific integrated circuit (ASIC). ASICs are optimized to per-

form only the specific function they were designed for. Reconfigurable hardware

attempts to couple the performance of ASICs with the flexibility of general-purpose

hardware. The most common type of reconfigurable hardware uses an array of

field programmable gates (FPGAs). These gates can be configured to perform spe-

cific boolean operations. The gates are interconnected through the devices repro-

grammable interconnect fabric.

10

2.4.1 Field Programmable Gate Arrays (FPGAs)

FPGAs are chips that can be electrically programmed and reprogrammed to

implement complex functions in digital logic [17]. An ASIC implementation is often

more generic to justify its high development cost, so it may be less efficient than

specialized one [18]. The high set-up costs of ASICs make them unattractive in

low volumes. However, the lowered costs and the rapid development of applica-

tions in FPGAs offer an alternative for implementing DSP and re-programmable

solutions [18]. FPGAs demonstrate that they are powerful custom hardware for ap-

plications that require intensive computations [8, 9]. They have the programmability

of software and the functional efficiency of hardware. They can be customized by

the end user for a specific application. FPGAs is basically composed of an array of

input-output ports, programmable routing resources, and configurable logic block’s

(CLB). Figure 2–4 presents a general structure of an FPGA and Figure 2–5 shows

an architecture overview of Xilinx’s Virtex II Pro.

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

I/O Blocks

Routing Channels

Logic Block

Figure 2–4: General Structure of an FPGA.

Configurable logic blocks are the fundamental part present on FPGAs. Fig-

ure 2–6 present 2-slide Virtex CLB. The functionality of CLBs can be changed by

reconfiguring the contents by itself. Each CLB contains 4 slices and 2 tri-state

11

Figure 2–5: Xilinx’s Virtex II Pro Architecture Overview. (Figure taken from
Xillinx [1].)

buffers. Each slice is identical to the others contained within the CLB. A single

slice, seen in Figure 2–7, provides two function generators, two storage elements,

arithmetic logic gates, multiplexers, and fast carry logic [19]. The function genera-

tors may be configured as 4-input look-up tables (LUTs), as 16-bit shift registers, or

as 16-bit distributed SelectRAM+ memory. In addition, either storage element may

be configured as an edge-triggered D flip-flop or a level sensitive latch. Each CLB

has its own internal interconnect, as well as access to general routing resources.

Figure 2–6: 2 Slice Virtex CLB. (Figure taken from Xilinx [2].)

12

Figure 2–7: Virtex-II Pro Xilinx Slice Configuration. (Figure taken from Xilinx [2].)

Although CLBs remain the fundamental building block of an FPGA, increas-

ing device densities have allowed additional resources into their FPGA architec-

tures. Modern FPGA devices, such as the Virtex-II Pro, contain other reconfig-

urable elements such as BlockRAMs, multipliers, and general-purpose processors.

Each BlockRAM provides an 18Kb dual-ported memory structure with two inde-

pendently clocked and independently controlled synchronous ports that access a

common storage area. Each multiplier element provides an 18-bit by 18-bit signed

multiplier. They are optimized for high speed operations and have low power con-

sumption compared to an equivalent multiplier implementation using CLBs. Finally

soft cores processor, such as Microblaze, provide a multi-stage instruction pipeline

capable of executing stored instructions. Soft processor is an intellectual property

(IP) core implemented using the logic primitives of the FPGA.

Figure 2–8 illustrates a routing architecture model which describes or represents

several commercial FPGA routing architectures. Important parts present in this

figure are:

13

• A wire segment is a wire unbroken by programmable switches. One or more

switches may attach to the wire segment. Each end of a wire segment typically

has a switch attached.

• A track is a sequence of one or more wire segments in a line.

• Routing channel is a group of parallel tracks.

• Connection block provides connectivity from the inputs and outputs of a logic

block to the wire segments in the channels. There can be connection blocks in the

vertical direction and in the horizontal direction.

• The switch block, which provides connectivity between the horizontal and the

vertical wire segments. In Figure 2–8, the switch block provides connectivity among

the wire segments incident to its four sides.

Track

Routing
Channel

Logic
Block

Connection
BlockSwitch

Block

Logic
Block
Pins

Wiring
Segments

Figure 2–8: General FPGA Routing Architecture

2.5 System-on-Chip

Advances in semi-conductor industry, specifically on silicon devices, allow to

designers the integration of all components present in a computer or other electronic

14

system into a single chip, this concept that has been termed System-on-Chip (SoC).

The most common application for SoC is in the embedded systems area.

SoC may contain digital, analog, mixed-signal, and often radio-frequency func-

tions, all on one chip. A typical SoC consists of: one or more microcontroller,

microprocessor or DSP core, memory blocks (ROM, RAM, EEPROM and Flash),

ADCs and DACs, timing sources (oscillators and phase-locked loops), peripherals

(counter-timers, real-time timers and power-on reset generators), external interfaces

(USB, FireWire, Ethernet, UART, etc), voltage regulators and power management

circuits.

This integration has the potential to offer increased reliability, increased per-

formance, lower resource utilization, and lower cost. However, such a high level of

transistor density makes design and verification of these systems difficult [20]. To fa-

cilitate the design of SoC systems, the systems are build using existing components

that have well-defined contents and interfaces. This use of existing components

decrease development costs and time to market.

2.6 Platform FPGAs

FPGA manufactures, such as Xilinx, have begun introducing FPGAs with ar-

chitectures capable of providing complete on-chip solutions. These platform FPGA

architectures contain clock managers, arithmetic units, embedded memories, pro-

cessors, high speed I/O etc. The Virtex-II Pro FPGA in addition to containing the

traditional elements that are characteristic of previous Platform FPGA generations,

contains the MicroBlaze Soft Core Processor Block.

2.6.1 MicroBlaze Architecture

The Microblaze (MB) is a soft processor system designed by Xilinx. This proces-

sor is an intellectual property (IP) core that is implemented using the logic primitives

of the FPGA. The architecture is shown in Figure 2–9.

15

Figure 2–9: MicroBlaze Core Block Diagram. (Figure taken from Xilinx [3].)

The Microblaze is a processor system that introduces an integrated single preci-

sion, IEEE-754 compatible Floating Point Unit (FPU). Its core is a 3-stage pipeline,

32-bit RISC Harvard architecture soft processor core with 32 general purpose regis-

ters, Arithmetic Logic Unit (ALU), and an instruction set optimized for embedded

applications. It supports both on-chip block RAM and external memory. The Mi-

croBlaze has the On-Chip Peripheral Bus (OPB) to interface all the different devices

and custom logic. Depending on the configured options, the MicroBlaze will use be-

tween 900 and 2600 Look-Up Tables (LUTs) and the number of processors on a

single FPGA is only limited by the size of the FPGA.

2.6.2 Memory Architecture

MicroBlaze has a Harvard memory architecture. The term of Harvard Memory

architecture is used to describe machines with separate memories or machines that

have one main memory but when separate caches for instructions and data [21]. Mi-

croblaze, in this case the instruction and data accesses are done in separate address

spaces. Each address space has a 32-bit range and handles up to 4 GByte of instruc-

tions and data memory. The instruction and data memory ranges can be made to

overlap by mapping them to the same physical memory. Both instruction and data

16

interfaces of MicroBlaze are 32 bit wide and use big endian, bit reversed format.

The MicroBlaze supports word, halfword, and byte accesses to data memory [3].

2.6.3 Floating Point Unit (FPU)

The Microblaze introduces an integrated single precision, IEEE-754 compatible

Floating Point Unit (FPU). Applications created using floating-point operations in

software have a higher execution time. FPU has a low latency resulting very useful

in these cases. Key features for FPU are: 6 cycles for addition, subtraction, and

multiplication, 30 cycles for division, 3 cycles for comparison operations, status

and exceptions support (illegal operation, divide by zero, overflow, underflow, and

denormalized). Other features of the FPU is the IEEE-754 format 32-bit float

including infinity, not-a-number, and signed zero [22].

2.7 Related Work

Some algorithms used in image classification and dimensionality reduction have

been implemented on FPGAs. Hongtao and Hairong implement a version of Inde-

pendent Component Analisys (ICA) called Parallel Independent Component Analisis

(pICA) [8]. The implementation of ICA algorithm (used for hyperspectral images

reduction) in hardware provides an optimal parallelism environment and potential

faster real time solution. The pICA algorithm was synthesized on a Xilinx VIR-

TEX V1000E. The FPGA maximum frequency is 20.161 MHz. It uses a pilchard

board (max freq. 133 MHz) to transfer data to the CPU on a 64 bit memory bus.

The pICA uses 92 percent of slices of the Xilinx V1000E. The pICA algorithm was

divided into three temporally independent functional modules. The three modules

are: unit estimation, internal/external decorrelation, and selection. Nordin et al. [7]

proposed a pipeline structure for ICA implementation on FPGAs. This implemen-

tation can provide improvements of speed up to 146 percent.

Wei and Charoensak in [10], use a non iterative ICA version to determine or

detect difference in sequence of images. In this work, FPGA does not offer an

17

optimized hardware implementation when compared to Application Specific Inte-

grated Circuit (ASIC). Wei and Charoensak work in [10], allows short development

time and enables verification of algorithms in hardware at a low cost. ICA has

been successfully applied in various signal processing applications such as audio

signal processing, EEG, ECG, watermarking and financial signal analysis. Due

to intensive computation, ICA has not been applied very successfully in real time

applications.

Hyperspectral images have a considerable quantity of information but this data

must be reduced to identify the useful information. Leeser et al. [9] implemented

on FPGA the k-means algorithm. This algorithm clusters pixels into classes, based

on the spectral similarity of each pixel to other members of the class. FPGA can

provide a considerably speedup and provides ease of testing of variant and trade

offs. Clustering the data provides an organization very useful for other processing

downstream. Each k-means iterations require a distance computation between every

data point and the clusters, it uses an FPGA to accelerate this computation. FPGAs

are very useful for this application for the amount of parallelism and processing bit

widths that can adapted to the task.

An important field that incorporates the uses of FPGAs is the compression of

hyperspectral image. Miguel et al. in [23], proposed a reduced-complexity coding

for the Set Partitioning in Hierarchical Trees (SPIHT) algorithm. SPIHT is a pro-

gressive image coder, which approximates an image with a few bits of data, and then

improves the quality of approximation as more information is encoded. The authors

explain that with the use of more FPGAs they achieve a very good compression

ratio.

In all these implementations the authors demonstrates the importance of using

FPGAs on hyperspectral and image processing analysis.

18

2.8 Floating Point Arithmetic

In this section we discuss the different floating point operations required to

implement the Image Space Reconstruction Algorithm. Once the algorithm was

analyzed, the following primitive operations were identified as consuming most of

execution time: multiplication and addition. In the following sections we present

each operation in details.

2.8.1 Floating Point Adder

The floating point adder uses the IEEE Standard 754 [24]. The process to add

or subtract two floating point operands are as follows:

• Decode or unmix, each operand is separated in three parts sign, exponent and

mantissa.

• Add an implicit 1 to the MSB of each mantissa operand.

• Align both mantissa using Exponent Rule (e1 − e2).

• Compare both operands.

• Compute signs, add or subtract the mantissa.

• Normalize the mantissa, this process eliminate the implicit 1 added in the second

step.

• Compute the exponent.

• Encode (mix) the three components of the number.

The complete process is shown in Fig. 2–10.

2.8.2 Floating Point Multiplier

A Floating Point Multiplier (FPM) is required to implement ISRA. The floating

point libraries developed by Miriam Leeser and Pavle Belanovic [25] were modified

to match our needs. These libraries are available to be distributed under General

Public License (GPL). The FPM behavior is as follow:

• Decode or unmix, each operand is separated in three parts sign, exponent and

mantissa.

19

DEMUX

SIGN
COMPUTATION

EXP.
SUBTRACTOR SWAP

ABS. VALUE RIGHT
SHIFTER

EXP.
COMPUTATION

MANTISSA
ADDER

MUX

FP ADDITION RESULT

E1
E2

M1 M2
S1 S2

Op1 Op2

Figure 2–10: Floating Point Adder Process

• Add an implicit 1 to the MSB of each mantissa operand.

• Mantissas of the two operands are multiplied using a fixed point multiplier.

• Exponents are added.

• A bias (127) is removed from the value of the exponent addition.

• Sign bit is calculated using a XOR.

• Normalize the mantissa, this process eliminate the implicit 1 added in the second

step.

• Encode (mix) the three components of the number.

A complete representation of floating point multiplication is given in Fig. 2–11.

20

DEMUX

IMPLIED 1ADDXOR

MULTIPLIER
SUBTRACT

SHIFTER

SUBTRACT

ADD

127 (bias)

1

MUX

FP_result_multiplied_#

S3
E3

M3

Sh
Eaux1

E3_aux

M2M1E2E1S2S1

Op1 Op2

Figure 2–11: Floating Point Multiplier Process

2.9 Summary

This chapter begins with an introduction to hyperspectral imaging, FPGAs and

how they differ from other modern processing elements. It then introduces System-

on-Chip and FPGA’s platforms. Next, a survey of related work is presented and

finally, an introduction of floating point arithmetics is presented.

CHAPTER 3

OBJECTIVES AND DESIGN METHODOLOGY

In this chapter, the objectives and development tools used in this thesis is

presented. A detailed description of the different implementations of ISRA algorithm

is included.

3.1 Objectives

The main objective on this research is to reduce the execution time of iterative

abundance estimation algorithm. Different design methods in the process of mapping

the application are presented. To achieve this goal the following objectives must be

accomplished:

• Develop a process or methodology to implement iterative abundance estimator

algorithms on an FPGA hardware platform.

• Implement Image Space Reconstruction Algorithm (ISRA) that incorporates the

proposed methodology or process.

• Present different design methods in order to reduce the execution time of this

algorithm.

• Evaluate, verify, and assess the proposed methodology or process.

• Devise a set of experiments to evaluate the execution time of iterative abundance

estimators algorithms.

3.2 Design Methodology

In the following sections different methodologies to accomplish the objectives

of the proposed research work are presented. The tools used during research were

21

22

MATLAB 7.1, Microsoft Visual C++ 6.0, Virtex II Pro FPGA, ModelSim SE 6.2b,

Xilinx ISE 7.1i and Xilinx XPS 7.1i. All this equipments and tools are located at

the Integrated Circuit Design Laboratory (ICDL) of the University of Puerto Rico

at Mayaüez.

3.2.1 Development Tools

The implementation of the ISRA algorithm was subdivided into two separate

problems:

• The implementation of the ISRA equation using VHDL.

• The creation of the Xilinx Microblaze soft core microcontroller in order to work

with the data transfer to and from the ISRA equation.

Each implementation utilizes a separate design flow. In the final stages of

the design process, the implementation of the ISRA equation and Microblaze were

merged together to form a complete application.

The implementation of the Microblaze required the use of Xilinx’s Embedded

Development Kit (EDK). The EDK is a development environment that provides

application designers with the tools necessary to build embedded soft cores proces-

sor systems. The steps within the EDK that are necessary to build the embedded

processor system include: hardware platform creation, software platform creation,

and software application creation. The hardware platform is defined by the Mi-

croprocessor Hardware Specification (MHS) file. The MHS file defines our system

architecture, memory modules, and embedded processors. It also defines the sys-

tems connectivity as well as the configurable options and the address map for each

memory module in our system.

The Platform Generator (platgen) parses the MHS file and generates the ap-

propriate netlists and HDL wrappers. These files are then imported into Xilinxs

ISE Project Navigator, where they are instantiated in the application.

23

The software platform is defined by the Microprocessor Software Specification

(MSS) file. The MSS file defines driver and library customization parameters for

peripherals, standard I/O devices, interrupt handler routines and other software

features. The Library Generator (libgen) tool parses the MSS file and configures

the libraries and drivers that are required for the application.

Software application creation involves the creation of the Data transfer to and

from the ISRA equation that executes on the embedded processor. The code is

written in C. Once the source files are created, they are compiled and linked to

generate executables in the Executable and Link (ELF) Format.

The ISRA equation was developed using a different design flow. First, ModelSim

is used to develop a VHDL description and test the ISRA equation. The appropriate

project files that enable the design to be imported into the Xilinx’s ISE Project

Navigator were created.

In the final stages of the design flow the ISRA equation and the Microblaze are

imported into Xilinxs ISE Project Navigator. Implementation specific interfaces are

then instantiated to connect the ISRA equation and the Microblaze. Finally the

design is synthesized, placed and routed.

3.2.2 ISRA Implementation Using Double Data Rate (DDR) Memory
Interface

This section describes a first approach to implement the ISRA algorithm. ISRA

algorithm is divided in two main blocks, numerator and denominator. In this section

we present details about implementation of these main blocks. In order to create the

numerator and denominator blocks the floating point libraries presented in [25], were

modified and adapted to the specific application. Created peripherals was necessary

to build numerator and denominator parts and then used to adapt these parts to

the entire system.

24

The numerator of the ISRA algorithm consists of an array of adders and mul-

tipliers arranged to accomplish a dot product operation. Figure 3–1 shows this

arrangement. This figure shows the use of a register. This register accumulates the

partial results of the previous multiplication.

MULTIPLIER MULTIPLIER

ADDER

ADDERREG-ACC

OPB

Bi Aij
I=1

Bi Aij

Bi*Aij Bi*Aij

Bi*Aij+Bi*Aij

Bi*Aij

M

Figure 3–1: Numerator’s Block Diagram

The second main block is the denominator. The denominator is composed

of two multipliers, an adder and, an accumulator register. We can create with

these arrays of adders and multipliers two dot product computations. The first dot

product computation is shown by AT X̂k and the other dot product is the result of

AT X̂k with Aij . As in the numerator, a register accumulates partial results of each

multiplication. A C-program controls the register, so that when the final result

is obtained, the accumulation stops and the register is reset. Figure 3–2 present

denominator arrangement.

A global view of the complete hardware implementation of ISRA algorithm

on this first implementation is shown on Figure 3–3. This figure shows the two

main blocks, numerator and denominator presented previously. Two important

25

MULTIPLIER

ADDER

REG-ACC

Denominator Result

Ai
T

X
K

I=0

M

AijAi X
T^

MULTIPLIER

Aij

Figure 3–2: Denominator’s Block Diagram

units present in this figure are a multiplier and the Xilinx Microblaze Soft Core

Microcontroller. Microblaze has an important role on this implementation. It is

used to send and receive data to and from the different I/O pins, and to compute

the floating point division required by the ISRA equation. The Microblaze waits

for the numerator and denominator computation to finish in order to compute a

floating point division, and then sends the corresponding result using the OPB bus

to the multiplier block show on Figure 3–3 in order to complete the computation.

3.2.3 ISRA Implementation Using Double Data Rate (DDR) and Block
RAM (BRAM) data Interface

A second approach to implement ISRA was studied. Important modifications

were made to this implementation to reduce execution time. The most important

implementations is as follows:

• Floating point libraries developed by Miriam Leeser and Pavle Belanovic in [25]

was used, to implement arithmetic units required by ISRA.

26

MICROBLAZE

FPU

REG

fdiv()

OPB Ön-chip Peripheral Bus

NUMERATOR

OPB Peripheral #1

DENOMINATOR

OPB Peripheral #2

MULTIPLIER

OPB Peripheral #3

Figure 3–3: Complete Hardware Implementation Diagram

• A second modification was the use of BRAMs in order to reduce the data transfer

bottleneck created by the Double Data Rate DDR memory.

Similar to the previous implementation of ISRA, the algorithm is divided in two

main blocks, numerator and denominator. In this section we present details about

implementation of this main blocks.

As in the previous section, the numerator part consist of a dot product oper-

ation. To develop a dot product computation using Leeser and Belanovic floating

point library [25] we need denorms, floating point multiplier, round norm and,

accumulator block as shown on Fig. 3–4.

The ISRA denominator consist of two dot products computations. The first dot

product was the calculation of aT
i X̂k and the second was the result of aT

i X̂k times

aij . The denominator part is shown on Fig. 3–5.

In this figure the numerator block represent the dot product computation. A

register is used in order to synchronize the data movement for the calculation of the

second dot product. After due aT
i X̂k computation is completed the register sends

the aij value to calculate the second dot product.

A complete block diagram of the Image Space Reconstruction algorithm is

shown in Fig. 3–6. In this figure we use the numerator and denominator blocks

27

Denorm Denorm

Fp_mult

Round Norm

Denorm

Accumulator

Result

B A

Figure 3–4: Numerator’s Block Diagram

discussed previously in this section and incorporate to the design a new floating

point divider and multiplier. We used a floating point divider created by the Xil-

inx CORE Generator. This divider was a single precision floating point divider

optimized for space.

On Figure 3–7, present the different components required to accomplish the

architecture organization of ISRA for this second implementation. This architecture

is composed of DDR memory, Xilinx Microblaze soft core microcontroller, OPB Bus,

BRAM controllers, BRAMs, and the ISRA logic.

The purpose of the DDR memory is to store the hyperspectral image, the end-

members, and the abundances. To begin the first ISRA computation the system

have to wait until microblaze feeds the different BRAMs with the endmembers, first

abundances and, the first two pixels in observation in order to begin the compu-

tation. An important fact to create this implementation is to fit ISRA algorithm

onto the FPGA. For FPGA and memory capacity problems only stores two pixels

in a BRAM. When ISRA finish with the analisys of the first pixel, has the second

28

Numerator
Block

A X

Register

A
KT

Round Norm

Numerator
Block

Result

Figure 3–5: Denominator’s Block Diagram

pixel available to continue with the second pixel analisys. When ISRA begins with

the second pixel analysis, the microblaze has the task of feed the BRAM with a

new pixel in the position of the analyzed pixel without interrupting the pixel anal-

isys process. This process reduces the data transfer bottleneck created by the DDR

memory.

3.2.4 Software Implementation

The Microblaze is a processor system designed by Xilinx that introduces an

integrated single precision, IEEE-754 compatible Floating Point Unit (FPU). The

MicroBlaze core is a 3-stage pipeline, 32-bit RISC Harvard architecture soft pro-

cessor core with 32 general purpose registers, Arithmetic Logic Unit (ALU), and

an instruction set optimized for embedded applications. It supports both on-chip

block RAM and external memory.

A C program was created to send and receive data to and from the different units

created in hardware. To develop the first methodology we use the floating point

unit on Microblaze to make the floating point division required by ISRA algorithm.

29

Numerator

B

Denominator

A

Round Norm Round Norm

A A X
KT

FP_Divider
Xilinx Coregen

Denorm

Denorm

FP_Mult

Round Norm

Abundance

X
K

J

Figure 3–6: ISRA Block Diagram

The C program and all VHDL codes were compiled by Xilinx compiling tools and

downloaded into the FPGA.

3.3 Summary

This chapter begins with an explanation of the differents designs methodologies

and implementation to accomplish the objectives. Finally, we provide an explanation

on the software used for this purpose.

30

DDR

Xilinx MicroBlaze Soft Core

Image

Space

Reconstruction

Algorithm

(ISRA)

OPB Bus

B
R
A
M

B
R
A
M

C
o
n
t
r
o
l
l
e
r

Figure 3–7: ISRA Architecture Organization

CHAPTER 4

EXPERIMENTAL RESULTS

This chapter begins by describing the technique that was used to measure the

performance of the implementations presented and the HSI data use to test and

compare the different implementations of ISRA algorithm. The performance results

were presented for each implementation that was discussed in Chapter 3. Finally, the

similarities and differences between the performance results for each implementation

is analyzed.

4.1 Algorithm Validation

In order to verify that the correct results were obtained from the FPGA im-

plementation, the following steps were taken. First, results obtained from a Matlab

implementation of the algorithm were compared with those published in [4]. Second,

the results obtained using the FPGA were compared with those obtained in Matlab.

Once we verified that we were obtaining the correct results, then we proceeded to

study the algorithm scalability and obtaining timing results.

4.2 Technique for Performance Measurement

The main variable of interest when measuring performance is execution time

which is directly proportional to the number of iterations. A counter was used to

measure the execution time of ISRA algorithm. In software implementations a timer

function available in the system was used. In C-language and Matlab, the library

time.h and the functions tic and toc were used. For the hardware implementations,

a counter was used to obtain the execution time. A 32-bit register counter was

incremented synchronously with the Microblaze’s clock. This counter was initialized

31

32

at zero then, the value of the counter was read before starting and after ending the

computations. The execution time is the number of clock cycles elapsed multiplied

by the clock period (inverse of clock frequency).

4.3 Implementation Results

Real HSI data was used to test and compare the differents implementations

of Image Space Reconstruction Algorithm. The HSI data used for the validation

of the algorithms was taken by Hyperion HSI sensor in La Parguera, Puerto Rico.

The Matlab implementation of the algorithm was done using Matlab 7.0. Both the

Matlab and the C implementations were done on a Pentium 4 3.06 GHz computer

with 1G RAM running the Windows XP operating system.

The HSI date used to validate the different implementations of the ISRA algo-

rithm consists of real data taken with the Hyperion sensor over the Cayo Enrique

Reef in La Parguera at Lajas, Puerto Rico. The following figures 4–1 and 4–2, shows

a segment of the Hyperion Image, along with an Ikonos Image for better identifi-

cation of the endmembers. The data used in this work consisted of 1632 pixels of

the image and 4 endmembers spectra with 102 bands each. The endmembers were

assumed to be in the image were sea grass, coral reef, sand, and sea water.

Figure 4–1: Hyperspectral Image from Hyperion Sensor

33

Figure 4–2: Hyperspectral Image from Ikonos Sensor

To measure the performance of the software’s and hardware’s implementations

for both one pixel and complete HSI analysis, the following cases were chosen : 50,

150, 250, and 350 iterations. Once the clock cycle consumption of each implementa-

tion is measured, they were compared to one another. Tables and figues 4–1, 4–3, 4–2

and 4–4 presents the execution time of the abundance estimation analysis for the

complete hyperspectral image and for only one pixel. Table and figure 4–3, 4–5,

show the results that were obtained from the simulation of a complete HSI and for

one pixel analysis. ModelSim 6.0 was used for the simulation and verification pro-

cess. These tables show the performance of the different implementations presented

in this work.

Table 4–1: Timing Results in Minutes of Differents Iterations for the entire Hyper-
spectral Image.

Iterations
Implementations 50 150 250 350

Matlab 7.984 23.013 38.099 54.141
C 0.067 0.171 0.267 0.367

FPGA with DDR 61.200 197.200 394.400 537.200
FPGA with DDR + BRAMS 1.563406 1.563423 1.563431 1.563439

4.4 Analysis of Results

Results show that the best execution times were obtained using C in both cases.

However, the FPGA implementation using DDR and BRAMs present competitive

34

Figure 4–3: CTime results for complete image processing.

Table 4–2: Timing Results in Seconds of Differents Iterations for One Pixel ISRA
Computation of the Hyperspectral Image.

Iterations
Implementations 50 150 250 350

Matlab 0.0002014 0.0155 0.03225 0.0595
C 0.0025 0.00675 0.01075 0.01525

FPGA with DDR 2.25 7.25 14.5 19.75
FPGA with DDR + BRAMS 0.057478 0.0574788 0.0574791 0.0574793

results. Table 4–4, resumes a comparison of the second FPGA implementation

(FPGA with a combination of DDR and BRAM memory) with others implementa-

tions (hardware and software) presented in this work.

Results shown in Table 4–4, present the improvements in how many times the

second FPGA implementation is faster in comparison with the others implementa-

tions presented in this work. The negative values means that no improvements are

present with this comparison. In other words, the hardware implementations doesn’t

present an improvement. If we compare both FPGA’s implementations, specially in

35

Figure 4–4: One Pixel Timing Results Plot

Table 4–3: Timing results for simulation using ModelSim.

Iterations
Implementations 50 150 250 350

One Pixel 2.50E-07 7.50E-07 1.25E-06 1.75E-06
Complete Hyperspectral Image 4.08E-04 1.22E-03 2.04E-03 2.86E-03

the worst case (350 iterations) we see an 343 times improvement in the execution

time when we use a combination of BRAM and DDR instead if we only use DDR

memory.

The FPGA implementation using DDR memory only has a larger execution

time when comparing with other implementations. We have to take important de-

tails in consideration in order to analyze this results. One of the important factors

to consider is the floating point single precision divider required to complete each

interaction done in software. The software divider takes more than 35 clock cycles

to get a valid result. This process introduce a considerable delay in the analysis.

Another important detail is the bottleneck in the data transfer formed by the OPB

36

Figure 4–5: ModelSim Results Plot

Table 4–4: Execution times when comparing the FPGA with DDR and BRAM
memory implementation with other alternatives.

Iterations
Comparison 50 150 250 350

Matlab 5.11 14.71 24.37 34.63
C -0.43 -0.11 -0.17 -0.23

FPGA with DDR 39.15 126.13 252.27 343.60

bus. The On Chip Peripheral Bus (OPB) is the principal bus of the Microblaze

(MB). All peripheral presents in the MB are attached to this bus, creating a bot-

tleneck in the data transfer. Considering the delay formed by the software divider,

data transfer bottleneck created in the OPB bus, and the delay formed by the data

transfer of the DDR memory to the microblaze explains some of the large delays in

the implementation.

The second hardware implementation has a large improvement in execution

time. Most of the problems occurring in the last implementation were solved. In

this later hardware implementation the floating point libraries presented in [25] and

37

the floating point divider created by the Xilinx Core Generator were used. The large

delay caused by the software floating point divider was eliminated.

In this variation of the solution, the data is readily available in the BRAMs

for the computation of the ISRA equation. The most important tasks of the MB is

maintaining the BRAMs with the required data to make the mathematical compu-

tations. When these results are studied, can deduce that taking into consideration

the architectural features of the FPGAs, timing improvements can be made, making

this hardware feasible for the algorithm implementation. Taking advantage of this

access, the data transfer bottleneck was eliminated using a combination of DDR and

BRAM memory.

4.5 Summary

This chapter present the performance results for all of the implementations. It

can be seen that the C language implementation provide the fastest results. The

FPGA’s implementation provides comparable performance to the C language im-

plementation when the DDR and BRAM memory is used. Analyzing the results, it

can be seen the importance of the use of appropriate memory schemes in the im-

plementation. Finally, the simulated results for the complete HSI and for one pixel

analysis were presented.

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis presents the comparison between two hardware implementations of

ISRA algorithm on FPGAs. These implementations demonstrate the feasibility of

the use of FPGA’s in the hyperspectral imaging analysis specially with iterative or

intensive computational algorithms. The hardware implementations were used for

abundance estimation analysis of HSI data. We have noticed that each algorithm

should be mapped to the hardware that it runs on in order to obtain appropriate

timing results.

Results show that better results are obtained when implementing the ISRA

algorithm in C. However, even though the C implementation is better, when ana-

lyzing results we can observe that if we had a board with larger memory available,

we could possibly obtain better results, making the FPGA an adequate alternative

for algorithm acceleration in hyperspectral imaging. The particular details on the

FPGA board will influence the results obtained in the algorithm implementation.

The results of this work demonstrate that the main bottleneck that limits improving

execution time is the board’s memory capacity and data transfer.

ASIC implementations are another alternative to accelerate HSI algorithms.

However, since the cost of producing an ASIC is large in terms of price and time,

this alternative is not appropriate for algorithm testing and development. FPGAs

are simple to be reprogrammed, their configuration can be easily changed, and they

are cost effective. One of the disadvantages of FPGA implementations is that it is

38

39

highly dependent on memory capacity. If the FPGA does not have enough avail-

able memory, its important to find alternatives to fit the algorithm to the available

memory on the board. FPGA’s boards that have large memory spaces are expen-

sive. This thesis was developed with the Xilinx XUP FPGA Board that contains

one Virtex-II Pro XC2VP30 FPGA.

The board we used has 306 kB of BRAM and 13, 696 slices. The first imple-

mentation used 89 percent of slice and the second implementation used 98 percent

of BRAM and 93 percent of slice. Memory and slices available in the FPGA is an

important constraint since they limit the design process. For that reason we have

to limit the size of HSI and the endmembers to a maximum of 700 kB and the

parallelism to two ISRA computations at the same time. The use of DDR mem-

ory to store the complete image and the endmembers and send only two pixels for

the BRAMS at the computation time eliminates the data transfer bottleneck of the

system. This was possible because ISRA computes the analysis pixel by pixel. This

alternative may bye used when the FPGA does not have enough memory available

and acceptable performance is needed in terms of time.

Our main contributions are:

• We demonstrated the feasibility of the use of FPGA’s in the hyperspectral imaging

analysis specially with iterative or intensive computational algorithms.

• We demonstrated that the main bottleneck that limits improving execution time

is the board’s memory capacity and data transfer.

• Finally, we have shown that if an FPGA does not have enough available memory,

its important to find alternatives to fit the algorithm to the available memory on

the board and minimize communication bottlenecks.

5.2 Future Work

In this research, a hardware implementation of Image Space Reconstruction

Algorithm was addressed, so this allows for future work in the following topics:

40

• The use of larger and fasters FPGA chips, such as the Wildstar II Pro can signifi-

cantly improve the results that may be obtained.

• Use FPGA’s with large memory spaces available in order to explore this type of

analysis using biomedical imaging. High memory FPGA’s can be used to analyze

larger images.

• The implementation of this algorithm using the PowerPC soft core instead of the

Microblaze.

• Eliminate the complete use of microcontroller’s in the design and test its effect on

the design.

• Implement additional hyperspectral algorithms on FPGA based on the conclusions

of this thesis.

REFERENCE LIST

[1] Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data

Sheet, 2005. http://direct.xilinx.com/bvdocs/publications/ds083.pdf.

[2] The Xilinx Corporation. Design Tips for HDL Implementation

of Arithmetic Functions., June 2000. Accessed September 2006.

http://www.xilinx.com/bvdocs/appnotes/xapp215.pdf.

[3] The Xilinx Corporation. MicroBlaze Processor Refer-

ence Guide, October 2005. Accessed September 2006.

http://www.xilinx.com/ise/embedded/mb ref guide.pdf.

[4] Samuel Torres Rosario. Iterative algortitms for abundance estimation on un-

mixing of hyperspectral imagery. Master Thesis, University of Puerto Rico,

2004.

[5] W. Worstell H. Kudrolli and V. Zavarzin. SS3D - fast fully 3d PET iterative

reconstruction using stochastic sampling. Nuclear Science, IEEE Transactions,

49(1):124 –130, Feb 2002.

[6] A. R. De Pierro. On the relation between ISRA and the EM algorithm for

positron emission tomography. IEEE Transactions on Medical Imaging, 12(2),

June 1993.

[7] Hsu C. Nordin A. and Szu H. Design of fpga ica for hyperspectral imaging

processing. Proceedings of the SPIE. The International Society for Optical En-

gineering, 4391:444 – 454, 2001.

[8] Hongtao Du and Hairong Qi. An FPGA implementation of parallel ICA for

dimensionality reduction in hyperspectral images. Proceedings of IEEE Inter-

national, Geoscience and Remote Sensing Symposium. IGARSS 04, 5:3257 –

41

42

3260, Sept. 2004.

[9] M. Estlick M. Leeser, J. Theiler and J. J. Szymanski. Design tradeoffs in a

hardware implementation of the K-Means clustering algorithm. Proceedings of

the IEEE. Sensor Array and Multichannel Signal Processing Workshop., pages

520 – 524, March 2000.

[10] Yu Wei and C. Charoensak. FPGA implementation of non-iterative ICA for

detecting motion in image sequences. In Control, Automation, Robotics and

Vision, 2002. ICARCV 2002. 7th International Conference on, volume 3, pages

1332–1336, December 2002.

[11] Miguel Velez-Reyes, Luis O. Jimenez-Rodriguez, Daphnia M. Linares, and Hec-

tor T. Velazquez. Comparison of matrix factorization algorithms for band se-

lection in hyperspectral imagery. Algorithms for Multispectral, Hyperspectral,

and Ultraspectral Imagery VI, 4049(1):288–297, 2000.

[12] Miguel Velez-Reyes, Angela Puetz, Michael P. Hoke, Ronald B. Lockwood, and

Samuel Rosario. Iterative algorithms for unmixing of hyperspectral imagery.

Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral

Imagery IX, 5093(1):418–429, 2003.

[13] Keshava N. and Mustard J. F. Spectral unmixing. IEEE Signal Processing

Magazine, 19:44 – 57, January 2002.

[14] Plaza A.; Martinez P.; et.al. Spatial-spectral endmember extraction by multi-

dimensional morphological operations. IEEE Transactions on Geoscience and

Remote Sensing., 9:2025 – 2041, 2002.

[15] Kruse F.A. Visible-infrared sensor and case studies. Remote Sensing for the

Earth Sciences: Manual of Remote Sensing, page 3, 1999.

[16] Daube-Witherspoon M.E. and Muehllehner G. An Iterative Image Space Re-

construction Algorithm Suitable for Volume ECT. In IEEE Transactions on

Medical Imaging, (2), June 1986.

43

[17] S. Hauck. The roles of FPGAs in reprogrammable systems. Proceedings of the

IEEE, 86(4):615–638, 1998.

[18] Smith R.W. Walke R.L. and Lightbody G. 20 gflops qr processor on a xilinx

virtex-e fpga. Proceedings of the SPIE. The International Society for Optical

Engineering, 4116:300 – 310, 2000.

[19] H. Verma. Field programmable gate arrays. IEEE Potentials, 18(4):34–36,

1999.

[20] Joshua Noseworthy. Enabling communications between an fpga’s embedded

processor and its reconfigurable resources. Master Thesis, Northeastern Uni-

versity, 2005.

[21] Hennessy J.L and Patterson D.A. Computer Organization and Design, The

Hardware/Software Interface. Morgan Kaufmann Publishers, Inc, second edi-

tion, 1998.

[22] The Xilinx Corporation. MicroBlaze Frequently

Asked Questions. Accessed September 2006.

http://www.xilinx.com/ipcenter/processor central/microblaze/doc/mb faq.pdf.

[23] Chang A. Hauck S. Ladner R.E. Miguel A.C, Askew A.R. and Riskin E.A.

Reduced complexity wavelet-based predictive coding of hyperspectral images

for fpga implementation. Proceedings DCC. Data Compression Conference,

pages 469 – 478, 2004.

[24] IEEE Standards Board and ANSI. IEEE standard for binary floating-point

arithmetic. IEEE STD 754-1985, 1985.

[25] P. Belanovic and M. Leeser. A library of parameterized floating-point modules

and their use. Proceedings of the Reconfigurable Computing, 12th International

Conference on Field-Programable Logic and Applications, 2438:657, 2002.

BIOGRAPHICAL SKETCH

Javier Morales was born in August 9, 1981 in Humacao, Puerto Rico. Javier is

son of Saturnino and Sylvia Morales. In December of 2004 he obtained his bachelor’s

degree in Electrical Engineering with specialization in Electronics on University of

Puerto Rico, Mayagüez Campus. In January 2005, he started his graduate educa-

tion. He worked under the supervision of Dr. Nayda G. Santiago. Javier spent two

years doing research in the area of remote sensing and FPGA’s. His areas of interest

are field programmable gate array (FPGA’s), design, simulation, debugging, and

analysis of digital circuits, algorithms acceleration, remote sensing, and embedded

systems.

44

	ABSTRACT ENGLISH
	ABSTRACT SPANISH
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Overview

	LITERATURE REVIEW
	Hyperspectral Imaging
	Spectral Unmixing
	Image Space Reconstruction Algorithm (ISRA)
	Processing Elements
	Field Programmable Gate Arrays (FPGAs)

	System-on-Chip
	Platform FPGAs
	MicroBlaze Architecture
	Memory Architecture
	Floating Point Unit (FPU)

	Related Work
	Floating Point Arithmetic
	Floating Point Adder
	Floating Point Multiplier

	Summary

	OBJECTIVES AND DESIGN METHODOLOGY
	Objectives
	Design Methodology
	Development Tools
	ISRA Implementation Using Double Data Rate (DDR) Memory Interface
	ISRA Implementation Using Double Data Rate (DDR) and Block RAM (BRAM) data Interface
	Software Implementation

	Summary

	EXPERIMENTAL RESULTS
	Algorithm Validation
	Technique for Performance Measurement
	Implementation Results
	Analysis of Results
	Summary

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	BIOGRAPHICAL SKETCH

