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Mayagüez Campus

2009

Approved by:

Jaime Ramı́rez Vick, Ph.D. Date

Member, Graduate Committee

Pedro I. Rivera Vega, Ph.D. Date

Member, Graduate Committee
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ABSTRACT

A Framework for Ranking Data Sources and Query

Processing Sites in Database Middleware Systems

By

Eliana Valenzuela Andrade

This dissertation presents a novel approach to the problem of finding the char-

acteristics of the data sources and query processing sites in a distributed database

system. We model the network as a graph with nodes representing data sources and

query processing sites, some of which might be replicated.

We introduce a heuristic technique inspired in Ant Colony Optimization The-

ory to dynamically discover, assess, and catalog each data source or query-processing

site. Our goal is to find and update possible paths to access the computational re-

sources or data provided by the highest quality sites.

We define this concept of quality in terms of performance and freshness. We

define the possible mathematical models for each one of these measures. We study

different techniques to launch the ants from each node to explore the system, based

on the idea of rounds. We discuss the development of the “Lazy Ants” approach to

send ants to explore the system, which reduce the number of ants in the system but

keeps a high quality of the metadata.

We discuss our system prototype developed using CSIM and also present per-

formance and freshness studies designed to analyze the quality of paths found by the
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Ant Colony based approach. These experiments show that our algorithm can quickly

discover high quality sites from which data or query processing capabilities can be

consumed.

Finally, we present a summary of results, contributions, and the future work

for this research topic.
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RESUMEN

Un Esquema Para Caracterizar Fuentes de Datos y Sitios de

Procesamiento de “Queries” en Sistemas de Bases de Datos

de Tipo “Middleware”

Por

Eliana Valenzuela Andrade

Esta disertación presenta un novedoso enfoque para caracterizar las Fuentes

de Datos y Sitios de procesamiento de “queries” en un sistema de base de datos

distribúıdos, algunos de los cuales pueden estar replicados. Durante el proyecto mod-

elamos la red como un grafo donde los nodos representan los sitios de procesamiento

de “queries” y las fuentes de datos.

Para lograr el propósito de este proyecto se utiliza una técnica heuŕıstica in-

spirada en la Teoŕıa de Optimización de Colonias de Hormigas (“Ant Colony Opti-

mization Theory” en inglés) para dinámicamente descubrir, evaluar y catalogar cada

fuente de datos ó sitio de procesamiento de “queries”. El objetivo principal es hallar

y actualizar a través del tiempo los posibles caminos de mejor calidad para acceder

a los recursos computacionales ó de datos. También se define el concepto de cali-

dad en términos de desempeño y frescura. Adicionalmente se muestran los modelos

matemáticos usados para estimadar estas métricas. Adicionalmente estudiamos dis-

tintas técnicas para enviar las hormigas desde cada nodo para explorar el sistema,

basado en la idea de rondas. Discutimos el acercamiento de las “Hormigas Vagas”

como técnica novedosa para explorar el sistema y que permite reducir el número de

hormigas enviadas pero mantiene la calidad de los metadatos.
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Explicamos nuestro prototipo desarrollado usando CSIM y también presenta-

mos estudios experimentales sobre desempeo y frescura, para analizar la calidad de

los resultados obtenidos. Estos experimentos muestran que nuestro algoritmo puede

descubrir rápidamente rutas de alta calidad donde data o servicios de “querie” se

pueden consumir.

Finalmente presentamos una resumen de los resultados, las contribuciones de

esta disertación y el trabajo futuro para este tópico de investigación.
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CHAPTER 1

Introduction

The Internet has become a valuable tool for scientists and engineers to publish data

collections produced as part of their research projects. Nowadays, we can find ter-

abytes of data from Biological experiments, Geospatial instruments, atmospheric ob-

servations and so on. These data collections are often replicated to increase their

availability and reliability. Likewise, there are many software tools and computing

environments necessary to process and analyze these data in order to generate new

knowledge. Many of these computing resources are replicated as well, although this

replication might be more in terms of functionality rather than exact computing hard-

ware. For example, two sites might provide a service to analyze satellite images and

extract information about surface radiation, but one site might be a Red Hat Linux

cluster with 128 nodes, whereas the other one is an IBM AIX cluster with 256 nodes.

The users of these data products are interested in more that simply down-

loading the data and running specific algorithms on these. They also want the data

to be join with data from other sites, and even produce new data as a result of this

integration. This requirement has encouraged numerous research activities in data

integration, including the development of database middleware systems to integrate

and access these data collections (see Figure 1.1). Depending on the data model of

the data sources, different approaches have been used to achieve this integration: a)

1
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Navigational integration, b) Warehouse Integration, and c) Mediator Based Integra-

tion (see [17], [35], [50], [61]). In all of these approaches, one or more integration

servers (IS) broker access to the data sources, while a set of wrappers (W) control

access to the data.

db1

W

db2

W

db3

W

db4

W

IS IS IS

IS
Integration Servers

client client client

Figure 1.1. Database Middleware Architecture.

However, this data integration cannot be effective unless the integration system

has accurate information about the contents of the data sources and the performance

characteristics of the sites capable of processing the data. Thus, given a query Q

it is necessary to determine which data sources can provide the data to satisfy the

query and which sites can provide the computing power to generate the query results.

Typically, query optimizers for middleware systems have relied on a catalog system

that has such information. However, little attention has been paid to the fact that

such information might change as the data sources are updated or query processing
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sites become loaded with requests. The distributed nature of the problem makes

it unfeasible to have a solution that relies on system administrators to periodically

update and publish system metadata through the system. Likewise, trying to discover

the information at query time can only slow down query execution and reduce system

throughput.

The proposed solution addresses this problem by proving a methodology to

periodically a) discover the characteristics of the data sources and query processing

sites, and b) establish a new rank of these sites based on their quality at the moment.

Here, quality is a domain and implementation specific qualification. It might be

defined in terms of the raw computing powers, or based on the freshness of the data

or some other characteristic. For example, a simulation application might need to

access the sites with the most processing power. In such a case, quality refers to

raw performance power of available CPU, memory, disk and network. But a stock

market analysis application might require the latest data, and here quality refers to

sites updated with the latest financial information.

Since a distributed system can be modeled as a graph, we can interpret our

problem as a type of “shortest path” search as we can see in Figure 1.2. That is, given

a site q1 that receives a query Q we need to find the shortest paths to data sources

s1, ..., sn and processing sites p1, p2, ..., pk necessary to answer the query. Here a path

represents the interconnection to components participating in solving the query. The

cost of the path might represent response time, resource source usage, or last update

time for the data. These paths can then be fed to a query optimizer as candidate

sub-plans to be examined in search of the global query plan.

1.1 Motivation

Consider a global database schema DB1 with information about protein sequences

and other protein-related information. The relations in this database hold information
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Figure 1.2. Network as a Graph

about sequences, structures and conserved domains. Let us also assume that two

research labs Lab1 and Lab2, have local databases that follow the DB1 schema and

are replicas of each other (with small variations due to out-of date data). A third

research lab Lab3 has a second schema DB2 with relations storing information about

the taxonomy for the species from which a protein sequence has already been derived.

Users of these data need to integrate the two schemas to integrate the protein data

to the species data.

Suppose that a middleware system is used to achieve the data integration.

Consider the following query that is posed by a user at research lab Lab3: Get the

sequence of ten proteins in homo sapiens that are related to diabetes. A client applica-

tion C sends a query to a server on Lab3 which gets the data for the species from the

tables of DB2 at Lab3 . This server must join these data with the corresponding data

from tables of DB1. The question is: which site shall be used: Lab1 or Lab2? Let us

denote the table with species information as R and that with protein information as

S. Then we need to compute the expression R 1 S. Figure 1.3 depicts three possible

scenarios that we might use to resolve the query. We can propose other scenarios and

include all the strategies to select the better way to do the join, but this is irrelevant
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for the purpose of this example.

client

Processing  Site 
(Near to Lab3)

Lab1 (R) Lab3 (S)

client

Processing  Site 
(Near to Lab3)

Lab2 (R) Lab3 (S)

client

Processing  Site 
(Near to Lab3)

Lab3 (S)Lab1 (R)

Processing Site
(Near to Lab1)

(A) (B)

(C)
Figure 1.3. Possible Scenarios to Resolve the Query

The query optimizer must be able to choose from these scenarios, and generate

a final plan. The goodness of this plan will depend on how accurate is the information

regarding the performance or data freshness at sites Lab1 and Lab2, according with

needs, desires, and expectations of the client. Moreover, if a fourth site Lab4 is

deployed with data corresponding to DB1, it is important to discover and characterize

such site. Clearly, an autonomous and de-centralized mechanism must be available

to collect, organize, rank and publish site information.
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1.2 Problem Statement

We can formalize this discussion as follows. Let G(V,E) be a directed graph where

V is a collection of sites and E is a collection of edges that represent connectivity

between sites vu, vv ∈ V . Graph G is directed since connectivity between sites might

be asymmetric (e.g., DSL links). Nodes in V can be classified as data providers (i.e.,

wrappers) or as query processing providers (i.e., integration server). When a query

Q is received at a node vu ∈ V , we need to find the shortest paths to a collection

of nodes U ⊆ V that can be used to solve the query Q. Each path is of the form

(vu, vw, ..., vv), such that vu is a query processing provider whom receives a client query

and vv is a service that can access the data with one or more relations of interest to

the query processing provider vu. Each of these shortest paths leads to high quality

data sources and query processing sites. These paths can then be fed to a query

optimizer as candidate sub-plans to help in finding the actual plan to solve the query.

Given a path P in G, the cost C(P ) of this path is defined by a domain-specific cost

metric m, which can be response time, resource usage or last update time, among

others. This metric characterizes the quality of the solution query plan to answer the

query.

1.3 Contributions

The main contributions of this dissertation can be summarized as follows:

• Development of a de-centralized approach to dynamically characterize data

sources and query processing sites in a distributed database system. Evidence

is presented about its potential benefits in supporting the query optimization

process in distributed and replicated systems that do data integration via mid-

dleware technology.

• Definition of a quality metric for data sources and query processing sites. This
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quality metric can be defined in terms of performance or data freshness. The

goal of this quality metric is to establish a rank for the sites and system from the

perspective of a particular site. Using this rank, the candidate sites for data

extraction and query processing can be chosen and fed to a query optimizer

to generate a query plan. To the best of our knowledge no other middleware

system performs such assessment of data sources.

• The development of heuristic technique based on Ant Colony Theory [22] to

implement the site characterization process. These technique has been shown

to provide good solutions to problems in other areas in Computer Science and

Networking, and we expect to capitalize on this experience in our research

project.

• The study of different techniques to launch the ants from each node to explore

the system, based on the idea of rounds.

• The development of the Lazy Ants approach to send ants to explore the system,

which reduce the number of ants in the system while keeping a high quality

metadata.

• The implementation of a system prototype using Java and CSIM. This imple-

mentation shows that our prototype version of the Ant Colony Optimization

(ACO) algorithm is able to find good paths between the nodes, in a set up where

the cost between nodes changes over time. This implementation experience will

be very useful in our future integration with the NetTraveler [68] Prototype.

• A publication of initial results of AntFinder in the 2009 Asia Modeling Sympo-

sium [67].
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1.4 Dissertation Structure

This Chapter has addressed the introduction of this dissertation; the rest of the

document is organized as follows. We first develop the necessary background theory in

Chapter 2 about Distributed Databases and Middleware Systems and data replication.

Chapter 3 presents an overview on the Middleware architecture used: The NetTraveler

System. Chapter 4 presents an Ant Colony Framework. Then, Chapters 5 and 6

present the framework about the metrics with the experimentation results. Then,

Chapter 7 presents our approach to explore the artificial ants will be launched on

the network and the experimentation results. After that, Chapter 8 considers Ethical

issues and finally Chapter 9 presents the conclusion and future work based on this

dissertation.



CHAPTER 2

Literature Review

2.1 Overview

This Chapter presents relevant work in the areas that form the basis of this disserta-

tion, which include: Distributed Database Systems, Database Middleware Systems,

and Data Replication. An extensive amount of work has been carried out in these

fields; hence this Chapter discusses only the aspects that are more relevant to this

document.

2.2 Distributed Databases

Distributed Database Systems (DDBS) is composed by a collection of Database Man-

agement Systems (DBMS) that are physically apart and connected via a computer

network. Theses DBMS have agreed to form a federation of sites that share their

collections of data and query processing capabilities.

Several DDBSs have been prototyped in the last decades; among the most

interesting we have R* [70] by IBM, and Mariposa [63] developed by the University

of California at Berkley. Figure 2.1 shows the typical architectural organization of

a DDBS. In general, the following assumptions are made by the majority of the

Distributed Database Systems [5, 63, 19, 34, 41]:

9
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Figure 2.1. Typical Distributed Database Architecture

• All sites are independent from one another and autonomous. No central au-

thority dictates what data should be stored at each site or how it should be

accessed.

• All sites follow the same data model, typically the relational model.

• All sites run the same DBMS software or a DBMS for which there is a common

communication protocol.

• Users should be able to make queries without knowing or specifying where the

relations are located.

• Users should be able to perform transactions that affect data at several sites just

as they would execute transactions over a local Database Management System.

• The effects of a transaction across sites should be atomics; all the changes persist

if the transaction commits and none persist if it aborts.

Early DDBS, like R*, assumed that all sites were full-fledged database servers.

Latter, an approach in which the DBMS was divided into a client-server architecture
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was introduced [19]. In this architecture, the server, or back-end component, is re-

sponsible for managing the data and executing transactions. Meanwhile, the client, or

front-end component, has the role of interacting with users, requesting data from one

or more servers. Servers are run in machines with very fast disks, multiple processors

and lots of memory, while clients are run on a vast array of machines, ranging from

workstations to handheld devices. This client-server DBMS architecture became the

most studied in the past two decades because of its simplicity of implementation due

to the clear separation of functionality between client and server. The bulk of the

work done has been related to server-side replication and client-side caching tech-

niques ([19], [64]). The idea behind these techniques is to minimize communication

costs by reducing network access.

Query optimization techniques in DDBSs have resembled that of traditional

DBMSs, pioneered by the System R* prototype [5] developed at IBM. This opti-

mization strategy, described in [30], is based on dynamic programming and follows a

cost-based model to calculate total resource consumption for a query. Each operator

in the plan is given a cost and the overall cheapest plan, calculated by adding the cost

of each operator, is always selected. In a typical, single-site DBMS the cost estimate is

dominated by disk access time. In a distributed environment, however, other factors

such as communication costs and differences in local computational costs must also

be taken into consideration. The R* prototype system was one of the very first to

introduce these additional factors into the cost model. The “classic” cost-model has

been proven useful in optimizing the overall throughput of a system. However, this

type of optimizer will not always find the plan with the lowest response time for a

query in cases where the machines are lightly loaded and the communication channel

is fast, since it cannot take into consideration intraquery parallelism [41]. Intraquery

parallelism occurs when a query plan has several operators that can be evaluated in

parallel because they can be evaluated at different sites. Another model that does
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take into consideration intraquery parallelism is the response-time model [41].

2.3 Database Middleware Systems

Database middleware systems have been used as a solution to integrate heteroge-

neous data from multiple sources. Database middleware arise as an alternative to

Distributed Database Engines such as R* [70], and Mariposa [63], which required

existing data sources to be purged, and their data re-ingested into a DDBMS com-

mon to all sites. Existing database middleware solutions have an architecture based

on a central integration server to provide client applications with a uniform view of

the data, and a single-point of access to the federated sites. The integration server

relies on the capabilities of translators to extract the data from the sources, some

of them replicated, and perform schema mapping operations to convert data from

local schemas into a global schema specified by the client to the integration server.

Once the data items have been translated, they are sent back to the integration server

for further processing. Most of the query processing occurs at the integration server

site and the data sources often act as mere Input/Output (I/O) nodes. A catalog

associated with the integration server provides the metadata necessary to guide the

process to find data sources, schema mapping rules, and query processing strategies.

This topic is discussed in Section 2.4.1.

Two approaches dominate the spectrum of possible database middleware im-

plementation schemes. The first approach is to use a relational DBMS such as Oracle

or IBM DB2 as the integration server, and use database gateways [13, 14, 15, 19] as

the translators that allow the integration DBMS to access distributed data. This ap-

proach has been supported mostly by the commercial sector. In the second approach,

a Mediator System [4, 20, 27, 55, 57] specifically customized for distributed processing

is employed. This second solution features an integration server called the mediator,

and a group of wrappers acting as the data translators. This latter approach has
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been supported mostly by research groups from both industry and academia.

2.4 Database Middleware Architecture

It is, we assume that the database middleware system is based on an architecture on

which one or more integration servers (IS) connect to various wrappers (W) that take

care of extracting the data from the sources, as shown in Figure 2.2. The integration

server layer imposes a global schema on the heterogeneous data sources, and all

queries posed by the user are expressed in terms on this global schema. We assume

an unstructured system, where there is no central coordination site. The nodes form

an overlay network for the purpose of exchanging tuples related to a given query. Each

integration server contains a local catalog with metadata representing its own global

schema, data source sites, users permissions, and so on. Without loss of generality,

and to simplify our presentation, we assume that this schema follows the relational

model and that all queries are expresses in SQL.

A client application sends its queries to one of the integration servers, and this

server connects to other integration servers and wrappers to get the query solved. We

assume that the integration servers have capabilities to either negotiate access to a

query processing infrastructure or provide it altogether by means of a query execution

engine. The integration servers rely on the wrappers to: a) extract the data from the

sources, b) map the data from the local schema into the global schema, and c) execute

some of the query operators necessary to generate the results. The wrappers deliver

their results to the integration server(s). Finally, the integration server originally

contacted by the client, takes care of collecting all results and delivering them to the

client.
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Figure 2.2. Typical Database Middleware Architecture.

2.4.1 Middleware Systems Catalog

System R* [46] and Distributed Ingres [62] relied on the existence of a catalog with

metadata about the characteristics of the system components, without providing

techniques for loading the information into this catalog in an autonomous fashion.

The catalog system in Ingres [62] was located in a central site. In contrast, System

R* used a distributed catalog mechanism, in which, each participating site publishes

metadata about the data it is hosting. The approach that we introduce in this

dissertation provides a mechanism by which the system can discover new sites, rank

them in terms of performance, or some other criteria, and then load these data into

the catalog in an autonomous fashion. Whether the middleware uses a centralized or

distributed catalog, our framework can be used for discovery and ranking of the sites

in the system.

The Mariposa [63] system uses an economic paradigm for query processing. In



15

this scheme, a bid is placed among participating sites in the middleware system to

assign query processing operators. Alternatively, a purchase order is placed for a spe-

cific site to run one or more query operators. Mariposa also assumes the existence of

a catalog to find candidate sites for the bid and relies on an advertisement system in

which servers announce their willingness to run queries. The characteristics of sites

involved in either a bid, or purchase order, are evaluated as part of the offer they

provide, and a decision for query operator assignment is reached based on the best

deal found in the process. The authors in [63] indicate that the bidding process done

at query time results in a somewhat slow process and the authors advocate for the

purchase order concept, in which a site in need for query processing simply submits

a work order to a site for which a pre-order agreement for query processing has been

established. Our ant-based approach differs from this scheme, because the agents

are constantly exploring the system to discover new sites and to update the status

information for already discovered sites. At query time, the catalog has the infor-

mation with the most likely sites that can handle the query in an efficient manner.

Thus, there is no need to go into an expensive biding process to identify sites to run

the query. Moreover, our system can reduce the possibility of falling into the trap of

submitting a purchase order to a site that cannot honor its agreement due to a work

overload (“over booking”), because the ants are constantly evaluating the characteris-

tics of the nodes in the distributed system. Certainly, combining our framework with

the economic paradigm proposed in Mariposa can be an interesting solution because

it opens the possibility for validating “vendors” (i.e., query processing sites) against

their actual behavior, just like vendors are evaluated in online stores such as eBay.

This opens up the possibility for having purchase orders that reflect a more factual

information about current system dynamics.

The Garlic system from IBM [33, 57] explored the issues of data integration

and query optimization across diverse data sources. In Garlic there is a central cat-
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alog with information about remote data sources, and the mediator system explores

the capabilities of those remotes sites at run time. In contrast, our framework uses

the artificial ants to constantly look for sites and assess the capabilities of new or

existing sites so that the query optimization can be started quickly and with accurate

information. Our framework can be coupled with Garlic to enable a more compre-

hensive discovery of the capabilities of remote data sources in a highly heterogenous

environment.

The MOCHA [54] middleware explored the issues of automatic code deploy-

ment at run time, in a effort to load the code needed for query processing at strategic

locations that could result in a reduction of data transfer and increased response time.

Like most of the previous systems mentioned here, MOCHA assumed the existence of

a catalog with metadata about schemas, data sources, and code implementing query

operators. Our framework can be used to extend MOCHA, enabling it to discover

a wider range of code repositories. This can result in a wider selection of functions

and query operators to efficiently run the queries submitted to the user. Recent work

in the AReNA [74] is closely related to this aspect of our work. The authors in this

system investigate mechanisms to obtain latency information from data source and

query processing sites in the system. This information is then aggregated to obtain

a performance profile of the sites, which is stored in the system catalog. The catalog

system itself is distributed throughout the system. Our approach differs in the use of

ACO algorithms to discover and rank the sites. In addition, other performance char-

acteristics such as power consumption (critical in mobile environments) could also be

added into the system.

2.5 Data Replication

Data replication is a technique used to copy frequently accessed data into several re-

mote server to increase availability of the data by having multiple redundant copies,
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as shown in Figure 2.3. Data replication has been studied extensively in the re-

search literature [29, 71, 39], and in most cases the focus has been on algorithms

to update replicated data collections as efficiently as possible. The work in [24] ex-

plored a mechanism to locate replicated objects in a distributed database by means

of a distributed index but data freshness was not a consideration. Recent work in

replication middleware [10, 52] has focused on middleware solutions that implement

replication schemes atop commercial database engines. Again, the focus is on how to

keep replicas as fresh as possible with respect to the master. Our work differs from

(but complements) these efforts since the problem we are considering is how to pick

the replicated data collection(s) that satisfy the freshness constrains imposed by the

user on a query.

S0 S1 S2 Sk...

Client Client
Client Client

Update Propagation

Client Client

Figure 2.3. Access to replicated data collections.

Data freshness has been studied before in the context of materialized views

and web views. Data freshness based on the currency of data was studied in [52]

as a mechanism to keep materialized views up-to-date. The authors in [42, 43] use

data freshness to guide the update process of materialized web views inside a web

server. The major goal is to use the freshness metric as part of an algorithm to choose
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which web views to materialize and keep fresh. Meanwhile, the authors in [11] use

data freshness to develop strategies to frequently update a local copy of a remote

database. However, these approaches do not address the issue of extracting the data

from a replica that is fresh enough to provide adequate answers to a query.

Various definitions of data freshness are analyzed in depth by the authors

of [7], from which we incorporated and adapted several of these freshness metrics.

Their dissertation presents a taxonomy of data freshness metrics, and analyzes their

applicability for managing replicated or cached data in data warehouses, database

middleware systems, and data caching systems. AntFinder leverages on these metrics,

but also addresses the problem of routing queries to the sources that have data with

the necessary freshness to satisfy the user’s request.

The work in [56] most closely related to our own. This study explored an

approach to route OLAP queries within a database cluster to the database node that

has data fresh enough to satisfy the user request, using an algorithm called Freshness

Aware Scheduling (FAS). The desired level of freshness is specified as a parameter of

the query request, but is not integrated into the SQL string used to specify the query.

Their algorithm also handles routing of updates to database nodes, while keeping

data consistency. However, their approach is more difficult to scale to a wide-area

network since it uses a centralized scheduler to perform all query and update routing.

AntFinder provides a decentralized alternative for database middleware systems that

connect sources over a wide-area network.



CHAPTER 3

NetTraveler System

3.1 Chapter Overview

In this Chapter we present an overview of NetTraveler [68], a database middle-

ware system that is been developed by the Advanced Data Management Group

(ADM) at University of Puerto Rico, Mayagüez, under the supervision of Dr. Manuel

Rodŕıguez-Mart́ınez. NetTraveler is the model database middleware system on which

our AntFinder system operates.

3.2 Architecture Overview

NetTraveler [68] is a middleware system designed for Wide Area Networks (WANs),

which are modeled in NetTraveler as a collection of applications H = {h1, h2, . . . , hn},

each having a specific role in helping a client to solve a given query. The collection

of applications H is running on host computers spread over a group of LANs that

compose the entire WAN environment, as shown in Figure 3.1. These LANs consist

either on wired or wireless technologies, such as Ethernet, DSL, IEEE 802.11b, and

3G networks.

From the set H we have a subset of applications C = {c1, c2, . . . , ci} , i < n,

which have client capabilities to submit queries. These capabilities come from running

19
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Figure 3.1. NetTraveler Architecture

a given interface (most likely a GUI) that the end-user can use to pose queries to the

system. The data to answer those queries comes from another subset S ⊂ H known

as the data sources S = {s1, s2, . . . , sj} , j < n.

Each data source s ∈ S is an application such as a DBMS, Web Server, XML-

based data server, or some other customized server application. When a client c ∈ C

needs to pose a query to sources in S, it needs to contact a server application known

as the Query Service Broker (QSB).

A collection of QSBs B ⊂ H,B = {b1, b2, . . . , bk} , k < n, take on the respon-

sibility of finding the computational resources (data, disk access, CPU time, network

time, etc.) required to extract data from the target data sources in S to answer the

queries posed by the clients in C. QSBs perform query related tasks such as query

parsing, query optimization and query execution. Also, QSBs exhibit Peer-to-Peer

(P2P) behavior since a broker might contact other brokers in B to assist solving a

given query. This is done to prevent a centralized operational model, in which a cen-
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tral broker needs to know all data sources, and becomes a focal point through which

all queries must pass. This would make the system unreliable and inefficient as the

central broker site becomes a single-point of failure and a performance bottleneck.

The QSBs in B can access the data sources in S by means of a server ap-

plication known as the Information Gateway. A collection of Information Gateways

(IGs),G ⊂ H,G = {g1, g2, . . . , bm}, m < n have the role of providing access to the

brokers to the wealth of information contained in the data sources in S. It is at this

level, of the IGs, that data extraction occurs. IGs can currently extract data from

relational databases such as PostgreSQL and MySQL or another information sources,

such as records store on different files. In addition, IGs can execute query operators,

particularly those that can filter out unwanted results, such as predicates. Clearly,

metadata is needed for the brokers to be able to find the required data sources and

their associated IGs. These metadata must be spread throughout the system to adver-

tise the availability of resources. The responsibility for this metadata dissemination

is given to a type of server known as the Registration Server (RS).

The collection of Registration Servers (RSs), R ⊂ H,R = {r1, r2, . . . , rp} , p <

n, deals with the problem of advertising metadata, encoded in XML, describing re-

sources such as: query operators, local tables, global tables, data types, CPU cycles,

data sources, network bandwidth, disk space, and so on. Two or more RSs work as

peers to exchange these metadata, just as network routers advertise routes to each

other to enable future packet forwarding decisions.

The last two elements in NetTraveler are known as the Data Synchronization

Server and the Data Processing Server. A collection of Data Synchronization Servers

(DSSs), D ⊂ H, D = {d1, d2, . . . , dt} , t < n, groups server applications that help

clients in caching query results, obtaining extra disk space, and keeping synchronized

copies of data natively stored by a client which also happens to behave as a data

source from time to time. More importantly, a DSS can become a proxy for a client
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c ∈ C, gathering the results intended for client c if the client goes offline or experiences

some type of failure.

Finally, a collection of Data Processing Severs (DPSs), P ⊂ H, P = {p1, p2, . . . , dv},

p < n, contains the server applications that provide a commodity service for compu-

tational tasks during query processing. These tasks include query execution, sorting,

or any other type of specific computational operation required.

The elements in NetTraveler are logically organized into groups of cooperative

applications known as ad-hoc federations. Federations are ad-hoc because they can

be formed or dissolved over time, based on the decisions taken by its members. A

federation can spawn more than one LAN, and a LAN can have elements that belong

to more than one federation. The simplest federation is one made out of one local

group, which consists of one QSB, one or more data sources and their associated IGs,

one or more clients, oneRS one DSS, and one DPS. In some instances, having a Data

Processing Server might be optional, particularly in cases where the applications

only require simple queries to the data sources. DPSs will be most likely used in

environments that require complex processing capabilities, or which have many low-

powered devices.

Two local groups L1 and L2 can be combined to form a cluster by making the

data broker from L1, BL1 , become a peer of the broker of L2, BL2 . In our framework,

Peer relationship is bidirectional, hence BL1 becomes a peer for BL2 . As a consequence

of these events, the RS in each local group becomes the peer of its counterpart in the

other local group, and they begin exchanging metadata about the resources available

in each local group. A cluster of three local groups can be made by adding a third

local group L3 and making its broker,BL3 , become the peer of either BL1 , BL2 , or

both. The same happens with the RSs in each one of these groups. Larger and

more complex clusters can be constructed in this fashion and, as you can see, clusters

represent complex federations with multiple brokers cooperating to share access to the
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data. Likewise, the RSs in each of the groups exchange the metadata that enable the

brokers to find the resources needed to solve the queries and keep track the location

of client and servers as well.



CHAPTER 4

Ant Colony Framework

4.1 Overview

Our key idea is to map the problem of finding the parameters of the servers in the

middleware system into a problem of finding shortest paths in a graph. The prob-

lem of finding shortest path in a dynamic network is a combinatorial optimization

problem. If the system is relatively small, we can easily apply tools such as dynamic

programming to find a solution. But when the system is dynamic and large, this

type of methodology does not scale well, and some type of heuristic search must be

employed. In fact, we can employ stochastic optimization heuristic algorithms such

as randomized search, tabu search, simulated annealing or some other new method-

ologies such as swarm optimization. In this work, we used the swarm optimization

technique known as Ant Colony Optimization (ACO). This technique fits well

our needs since it is a distributed and de-centralized approach that has been effective

in solving data communication problems [21, 38, 44, 58, 59, 60]. In this Chapter,

we discussed relevant aspects on Ant Colony Theory, which include: Basic Social

Networks Concepts, the mapping between real and artificial ants in our middleware

framework, the original and the adapted algorithm. We also review an extensive

amount of work that has been carried out prior to this dissertation as well a work

24
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done as part of it.

4.2 Behavior of Real Ants

ACO algorithms are inspired by the observation of real ant colonies. Ants are social

insects, which means that the behavior of every ant is based on the survival of the

colony and not on its own survival. One of the most important behavioral features

of ant colonies is their capacity to find shortest paths between food sources and their

nest. This behavior is achieved by an indirect method of communication between ants

based on pheromone trails. Ants leave their nest to find sources of food, and when they

do find food they return to the nest to alert the others. When an ant moves from the

nest and discovers a food source, it returns to the nest leaving a pheromone trail along

along the way. Other nearby ants become attracted to this trail and walk along the

path leaving more pheromones, which in turn makes the path more attractive to other

ants. There might be many paths from the nest to the food source being explored

by different ants, but the shortest path is eventually discovered. The reason for this

is that the shortest path is the one with the strongest and quickest to fill pheromone

trail, as shown in the upper part of Figure 4.1. This communication mechanism

was named stigmergy by French biologist Pierre-Paul Grassé in 1959 [28]. Notice,

however, that a shortest path might become inefficient or unavailable (e.g., blocked

by an obstacle or by a human spraying insecticide). Nature solves this problem by

letting pheromone evaporate and by allowing ants to randomly chose to visit other

paths. Thus, a path would remain good only if the ants continue to use and strengthen

its pheromone level. If the ants abandon the path, the pheromone starts to evaporate

and less ants use it, until it no longer works as a solution. New alternative paths

are found because some ants wander into them and if they do find food, they begin

the pheromone strengthening process again to alert the others. In stigmergy the

communication takes place when individual parts of the system modify their local



26

environment laying down pheromones.

There are several aspects that need to be understood about this social behav-

ior. First, the intelligence that emerges from the social network of ants has a clear

goal: find the shortest path to the food. Second, such social behavior does find opti-

mal or near optimal solutions to the problem [22]. Third, the process is completely

decentralized since each ant is exploring its surrounding at its own pace and following

its own individual path. Fourth, the behavior of the ants is random but biased to-

wards movement on trails with strong pheromone. New paths can be found because

some ants venture into exploring other alternative paths with less pheromone. Hence,

ACO is a stochastic evolutionary process and the solution gets adapted, improved or

changed over time as system dynamics change. Thus, adaptive behavior is built-in

into the process.

Ant Nest

Food

Figure 4.1. Visualization of Ant Behavior
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4.3 Ant Colony Optimization Metaheuristic

According to Glover [26] a metaheuristic refers to a master strategy that guides and

modifies other heuristics to produce solutions beyond those that are normally gener-

ated in a quest for local optimality. In the case of Ant Colony, these metaheuristic

algorithms model the real ants’ behavior and also add some other aspects to improve

the performance and obtain optimal solutions to more complex problems.

Like a real ant, an artificial ant can construct a solution, starting from an

initial state selected according to the problem scope. During this process the artificial

ant can collect information about the problem characteristics and about its own

performance, and uses this information to modify the problem status. A possible

optimal solution is found using the incremental constructive approach. In the same

form real and artificial ants may work concurrently or/and independently, showing a

cooperative behavior. Although, i artificial ant it is necessary to model the stigmergy,

meaning that the artificial ants do not communicate directly between them.

In each problem tackled with ACO it is necessary to define the notion of

neighborhood, and how the artificial ants build a solution by moving through a (finite)

sequence of states in this neighborhood. Moves are selected by applying a stochastic

local search policy directed by (i) ant’s private information (the ant internal state, or

memory) and by (ii) publicly available pheromone trail and a priori problem-specific

local information [22].

In the artificial ants, we can exploit its memory space to track information

about the viability of the solutions. This memory can store information about the

history of explored paths and can avoid taking unfeasible states. Therefore, artificial

ants (as real ants) must build feasible solutions using only knowledge about the local

state and about the effects of actions that can be performed in this local state. The

local information includes both; problem specific heuristic information and knowledge
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coded in pheromone trails, accumulated by all the ants from the beginning of the

search effort. The decision about when the ants should release pheromone on the

artificial “environment” and how much pheromone should be deposited depends on

the characteristics of the problem. Ants can release pheromone while building the

solution (on-line step by step), or after a solution has been built, moving back to

all visited states (on-line delayed), or both. After an artificial ant achieves its goals

of building a solution and depositing pheromone, the ant dies, which means that it

disappears from the system.

In general the quantity of pheromone left by an ant depends of the goodness of

the solution.This goodness must be evaluated based on some metric that characterizes

the path being explored. Some metrics include expected resources usage along the

path, the response time to process the data along the path, or the freshness of the data

along the path. Once the ant gathers enough information to compute this metric,

then it is ready to determine the amount of pheromone to leave at the site. Notice

that it is also necessary to implement the pheromone evaporation mechanisms, which

are run concurrently to the pheromone accumulation process. The pheromone for the

artificial ants is represented by ant-decision tables (stochastic tables), which and are

used by the ants’ decision policy to direct their search toward the better zones. We

shall see more on this in Section 4.5.

The basic ACO metaheuristic has two important components: a) the genera-

tion and activation of artificial ants for pheromone accumulation and b) the pheromone

evaporation mechanism. Some additional components in artificial ant colony are

the called daemon action which use global information and can modify “offline” the

pheromone trial based in a particular behavior of some ants or in specific situations

during the execution of the search process. In Figure 4.2 we can see a high level

description of Ant Colony Metaheuristic in pseudo-code, that includes the genera-

tion and the activity of artificial ants, the pheromone evaporation and the daemon
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activities as well. For each problem the algorithm must be customized to reflect the

constraints and expectations of the particular problem to solve.

4.4 Mapping Real and Artificial Ants

Applying Ant Colony Theory to computational problems involves the definition of

the ants, food sources and the nest. In our database middleware framework, the food

are the data sources. The nest is the site from which the queries are originated. The

path between the nest and the food contains query processing sites that can be used

to process the data. Powerful sites can be seen as members of good paths, whereas

slow sites can be seen as leading through bad paths. In our framework, the ants

are small autonomous programs that visit each node in the network and inspect its

characteristics. As they visit each site, they leave a bit of pheromone at the site.

The amount of pheromone left is directly proportional to the quality of the site. This

pheromone level is incremented as new ants visit the site and find it to be good, thus

leaving even more pheromone. If the site is not good, ants leave less pheromone.

Eventually, the shortest (best) path to reach a set of data sources from a given site s

is found. However, care must be taken to avoid stagnation (premature convergence)

by focusing on local minima. In real ant colonies, Nature solves this problem by

letting pheromone trails evaporate over time and allowing some ants to follow new

paths. If a path remains a good one, ants will follow it and keep the pheromone alive.

If the path becomes bad, the ants will abandon it and the pheromone will evaporate.

Thus, a good path will remain so, only if ants continue to use it. This behavior must

also be incorporated in solutions based on Ant Colony Theory.
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ACO Meta Heuristic()

1 while (termination-criterion-not-satisfied)
2 do schedule activities();

schedule activities();

4 ants generation and activity();
5 pheromone evaporation();
6 daemon actions(); � optional

ants generation and activity();

8 while (available-resources);
9 do schedule the creation of a new ant();

10 new active ant();

new active ant()

12 initialize ant();
13 M ← update ant memory();
14 while (current-state 6= target-state)
15 do A← read local ant-routing table();
16 P ← compute transition probabilities(A,M, problem− constrains);
17 move to next state(next− state);
18 if (Online step-by-step pheromone update)
19 then
20 deposit pheromone on the visited arc();
21 update ant-routing table();
22 M ← update internal state();
23 if (online delayed pheromone update)
24 then
25 evaluate solution();
26 deposit pheromone on all visited arcs();
27 update ant-routing table();
28 die();

Figure 4.2. The Ant Colony Optimization Metaheuristic [22]
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4.5 AntFinder: Ant Colony Algorithm for Data

Source and Processing site Discovery

4.5.1 Middleware Representation

Next, we present conceptualization of our framework, following the mapping exposed

in 4.4. In our approach, the artificial ants will walk on a graph G = (V,E) as a rep-

resentation of our middleware system. An artificial ant uses the artificial pheromone

trails, represented by a pheromone matrix Tu associated with each node vu hosting

the services in the system, that can be visualized, as shown in Figure 4.3. This ma-

trix represents possible paths to move from the node vu to a data source or a query

processing site vv. Thus, Tu is an n ×m matrix with rows representing neighboring

nodes to vu, whereas the columns represent possible destinations. We shall refer to vv

as the destination node. Given a node vu, each pheromone element (w, v) of matrix

Tu is denoted as τuwv and represents the learned desirability for an ant on node vu

and with destination vv to move to service (node) vw (e.g., use vw). The pheromone

element has three indices since the complete problem consists of the solution of many

minimum cost paths: n(n−1)/2. Therefore, an ant on a service vu can have any of the

remaining n− 1 services as destination. Each column of the pheromone matrix com-

plies with the hyper-cube framework proposed by Blum, et al. [6], to automatically

rescale its value to always lie in the interval [0, 1], and complying with:

∑
j∈Ni

τuwv = 1, d ∈ [1, n] and ∀i, (4.1)

where Ni is the set of neighbors of node vu.

Notice that the pheromones represent probabilities to chose the next node to

visit. Hence, the sum of these probabilities must be equal to 1. Thus, the algorithm

cannot simply update pheromone values, but must make sure that it normalizes the
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values to always add up to 1. This implies that the the update of a pheromone value

will result in the update of other related pheromone values. It might be the case that

by increasing the pheromone for a path, we must decrease the pheromone in another

path.

Pheromone 
Matrix

Sta/s/cal 
Model

τu11

Tu

τu12 ... τu1m
τu21 τu22 ... τu1m

.

.

.

.

.

.

.

.

.

.

.

.

τuw1 τuw2 ... τuwm

Mu1 Mu2 ... Mum
Munode u

Figure 4.3. Pherome Matrix and Statistical Model at node u.

In addition to pheromone information, every service vu maintains a parametric

statistical model Mu of the cost of moving information (based on a performance

or freshness metric) around the network as seen by node vu. This model Mu is

updated by the backward traveling ants. It is used to evaluate the paths produced

by the artificial ants, and shall be available for the system to used it during the

query optimization process. The model Mu (µuv, σ
2
uv, Buv, Fuv) is an array with v

elements, one for each known destination node vv from node vu. Each element in this

array is a tuple with five structures of the form (µuv, σ
2
uv, Buv, Fuv). This model is

adaptive and each element in the array is recalculated for every ant that visits the

node. First and second elements are the path sample mean cost µuv and the variance

σ2
uv computed over the trips made by the artificial ants as we will explain later, in

Section 5.3.2.
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The third component is a list that store the better observed paths Buv from

vu to vv, ordered. The last component Fid used to store the information associated

with the freshness of this path between node u and node v.

In summary, variables Tu and Mu, could be visualized as system-wide state

memory stored in nodes capturing different aspects of the network dynamics. The

modelMu maintains metrics of all known service nodes, while the pheromone matrix

Tu gives relative goodness metrics for each source-destination pair under the current

connectivity in the system.

4.5.2 Ants Walk on Database Middleware System

The ACO algorithm that we have developed as part of this work, which is based on the

original AntNet algorithm [23]. It has two sets of artificial ants. The first type of ants

travel in a forward direction saving information about the metrics and status found at

each node in an effort to discover a good path. The second set of artificial ants travel

backwards, placing an updated pheromone trail and storing path-related statistics at

each node, thus updating the variables Ti and Mi at each node vi. Both sets of ants

have the same basic structure but different purpose. A high-level description of the

Ant Algorithm is presented in Figure 4.4 . The algorithm has two main phases, the

Solution Construction Phase and the Structures Update Phase. We will explain these

phases in more detail in the next paragraphs.

As we can see from the Figure 4.4, at each source node vi in the system, arti-

ficial ants are sent to explore paths to the appropriate destination nodes vd. Initially,

system wide information is loaded in the execution environment of each node vi (see

Figure 4.4, Line 8). This information includes loading the list of target destinations

and the initial value of the pheromone matrix. This system-wide information is rep-

resented by variable S in the algorithm. Next, each node vu enters into a loop sending

ants at regular intervals to explore different paths to reach a node vv from itself (i.e.
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node vu). This is shown in lines 9-16 in the Figure 4.4. We shall now focus on the

solution construction phase.

4.5.3 Solution Construction Phase

In this phase, we expect to generate and send ants at regular intervals ∆t from each

node vu towards each destination node vv (see lines 10-13 from Figure 4.4). The

purpose of these ants is to discover a feasible low cost path based on the established

metrics and to explore the current quality of such path. The idea is to find the status of

the data sources, and discover possible sites in which the data can be processed along

the way. Forward ants follow the same path as regular query processing requests, and

they can suffer the same problems that a regular query might suffer. When an ant is

located at a node vu, it must decide what is the next node vw to visit in its journey

towards node vv, where is the next step to the ant in the algorithm (see line 22 from

Figure 4.4).

This selection is random but the neighbors with very strong pheromone trails

have higher probability of being chosen since these are more likely to lead to the best

possibility. The pheromone value that is inspected to make this decision represents a

probability for choosing w as the next step in the ant’s journey.

During their forward travel, the ants build a memory of their paths and the

quality of the nodes in that path. This information is kept in a in-memory stack

Stacku→v(w), so it can be recovered for use during the update phase.

The steps that are taken during the Solution Construction Phase can be sum-

marized as follows:

1. At each node vu, each forward ant traveling to node vv, picks the next node vw

to move to, choosing among the neighbors it has not visited before (see line 22

from algorithm). The neighbor vw ∈ Ni is chosen with probability Puwv = τuwv

2. If a cycle is found, it implies that the forward ant returned to an already visited
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AntNet(t, tend)

1 � t current time
2 � tsim simulation end time
3 � u source node
4 � v destination node
5 � w current node
6 for each(S ∈ System) � In parallel
7 do
8 S ← InitServices();
9 while (t ≤ tsim)

10 do
11 � In parallel
12 if (time to lauch ant)
13 then
14 u← Select Source();
15 v ← Select Destination();
16 Launch Forward Ant(u, v);

Launch Forward Ant(u, v);

18 for each(ActiveForwardAnt(u,w, v))
19 do
20 while (w 6= v)
21 do
22 next← Select Next(w, v);
23 move(w, next);
24 memory ←Memorize(next, cost);
25 w ← next;
26 Launch Backward Ant(v, u,memory);

Launch Backward Ant(v, u,memory);

28 for each(ActiveBackwardAnt(u,w, v))
29 do
30 while (w 6= u)
31 do
32 next← POP Memory();
33 move(w, next);
34 w ← next;
35 Update Pheromone Matrix(w, u, v);
36 Update StatisticalModel(w, u, v);

Figure 4.4. Ant Colony algorithm for Data Source and processing Site Discovery
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node, and the cycle is removed from memory. Some other rules for cycle removal

can be implemented, for example, if the length of the cycle is greater than the

complete path already visited, then the ant dies immediately. This is done to

prevent this ant from adding information that is inconsistent due to the fact

that it is trapped in a cycle.

3. When the destination node vv is reached, the forward ant generates a backward

ant, and transfers to the new backward ant the information about the source

node vu and all its in-memory data structures. This is shown in line 26 of

the algorithm. After this step, the forward ant dies (i.e., disappears from the

system).

4. The backward ants follows the same path as its matching forward ant, but in

opposite direction. Also, they are not queued like normal queries and forward

ants, but rather have separate queues with higher priorities, since they are now

updating the nodes with path information previously collected by the forward

ant.

4.5.4 Structures Update Phase

The backward ant follows the same path as its matching forward ant, but in the

opposite direction. A backward ant updates the two major data structures in every

visited node vw: the site statistics Mw and the pheromone trail Tw. When the cost

value obtained by the forward ant for the subpath between node vu and node vw

(where vw ∈ set of nodes visited by the forward ant from vu) is statistically “good”

then it is used to update the corresponding M and T of all nodes in such path.

In contrast, when the cost of any subpath is not statistically “good” (larger than a

specific maximum value δ), those values are not used. For example, a node might

be congested for a short period of time due to some unusual situation, while the

ant happens to visit the node at that moment. Obviously, a bad performance (or
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freshness) value will result from the observation, but we do not wish to penalize the

node because of this rare event. Notice, however if the path continues to be bad,

then by not updating the path, the alternative paths may become stronger, since the

pheromone trail in the bad path will “evaporate”.

Figure 4.5 shows an example in which the forward ant with destination node

v3 moves along the path v1 → v2 → v3 and arrives at node v3. Then, it generates a

backward ant from node v3 to v1, following the path v3 → v2 → v1, as we can see

from figure 4.5. At each node vw, w = 2, 1, the backward ant uses the stack S1→3(vw)

to update the values M and T . Specifically, at node v2, the backward ant updates

the statisticsM2 (µ23, σ
2
23, B23, F23) and the pheromone trail T2 directly at position

τ233 and indirectly all other τ2j3, where j ∈ N2 and j can connect to node v3. Notice

that in the first case, the algorithms just updates the tuple (µ23, σ
2
23, B23, F23) of

statical model M2. In the second case, the entry τ233 of T2 is update directly, and

all other τ2j3 are adjusted because of the normalization necessary to make the sum of

all τ2j3 equal to 1. The same explanation applies for the case node v1, in which the

update is done to:

• M1 (µ13, σ
2
13, B13, F13) and the pheromone trail T1 directly at position τ123 and

indirectly all other τ1j3, where j ∈ N1, and j can connect to node v3.

• M1 (µ12, σ
2
12, B12, F12) and the pheromone trail T1 directly at position τ122 and

indirectly all other τ1j2, where j ∈ N1, and j can connect to node v2.

Next we explain the way the statistical modeM and the pheromone matrix T

are updated for all nodes along the path (vu, vv) traversed by a particular ant. Let vw

be a node in this path, such that vw is either an intermediate node or the destination

node vv. For each node vw in the path (vu, vv), we consider every sub-path (vw, vv),

and we update the statistical model Mw for every node vw. To accomplish this, the

estimated mean µwv and variance σ2
wv are updated using the metodology that we will

explain later, according to equations 5.9 and 5.10, as well as the best value observed
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1 2 3

Forward (1             3)

Backward (3             1)
Figure 4.5. AntNet: Data Structure Update, adapted from Dorigo

Bwv, with cost, and the freshness parameter Fwv′ . The statistical model Mw has to

be able to capture the variability of the system and play a critical role in the updating

process for the pheromone matrix Tw , as explained next.

The pheromone matrix Tw is updated be incrementing the pheromone τwfv,

where f is the next node chosen to be visited in the journey to reach vv. This

action will indirectly decrement the pheromone τwkv, k ∈ Nw, k 6= f , because of

the normalization required for the pheromone values to achieve a sum of 1. Let

ou→v be the cost that the forward ant found for the path (vu, vv). This cost can

represent performance, freshness or some other measure of quality. This cost ow→v

represents the only available explicit feedback signal to score the path (vw, vv). Also

note that the cost ow→v cannot be associated with an exact error measured, given

that the “optimal” trip time is unknown, because it depends on the whole network

load status. For example, if the system is overloaded, all the costs ow→v found in

the trips will score poorly compared to the values observed when the system is under

a low usage situation. Thus, paths that were previously bad now become good and

vice-versa. This is the basis of our adaptive approach, because the algorithm is able

to detect the current system behavior and adapt the statistics accordingly. Notice,

also that under a given load condition and a client specifications, a path P1 with lower

cost than a path P2 will be scored higher.

The cost ow→v′ is used to compute a pheromone reinforcement signal r, that
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modifies the current pheromone value. The reinforcement r is a function of ow→v′ and

Mw, and its values always lie in the interval [0, 1]. An r value close to 1 indicates

that the path is very good with respect to other previously found paths and it gets

reinforced by a good amount (up to 1). In contrast, a value close to 0 indicates

that the path is not very good and the reinforcement of the path is very low, thus

attempting to make it less attractive. We discuss the exact definition of r in the next

Section.

The value r is used by the backward ant moving from node vf to node vw to

increase the pheromone values τwfv′ . The pheromone τwfv′ is increased by amount r

as follows [23]:

τwfv′ ← τwfv′ + r · (1− τwfv′) (4.2)

Notice that, given the same value r, small pheromones values τwfv′ are in-

creased proportionally more than large pheromones values, favoring in this way a

quick exploration of the newly discovered paths that are good. Pheromones τwkv′ for

destination v′ of the other neighbor nodes k, k ∈ Nw, k 6= f , evaporate implicitly by

normalization as we show in equation 4.3. That is, their values are reduced so that

the sum of pheromones on services existing from node vw will remain 1.

τwkv′ ← τwkv′ − r · τjwkv′ (4.3)

It is important to remark that every discovered path (vw, vv′) increases its selec-

tion probability. Additionally, the use of the differential path effect (ants over shortest

trip reinforces the system more frequently) permits that good paths receive either high

reinforcements, independent of their frequency, or low and frequent reinforcements.

In fact, for any load condition, a path receives one or more high reinforcements only

if it is much better than previously explored paths.
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In the next example, we illustrate the pheromone update and implicit evapo-

ration process. Consider a middleware configuration with four nodes v1, v2 , v3 and

v4, as shown in Figure 4.6. Suppose that one ant was sent from node v4 to v1 and it

chose the path (v1, v4) and, then when the backward ant returned to v1, after calcula-

tions usingM1 , obtained that r = 0.35, and using this value, we update pheromone

trail was updated for neighbor v1, and at the same path another neighbor suffer the

evaporation process, in this case v2 (using Equations 4.2 and 4.3), as we show in Table

4.1.

v1 v2

v3 v4 }
v1 v2 v3

0.3 0.2 0.3v1

0.4 0.8 0v2

0.3 0 0.7v3

Destination Nodes

N
ei

gh
bo

r 
N

od
esT4

Figure 4.6. Example of the Pheromone Trail Update

4.5.5 Calculation of reinforcement value r

The calculation of the value r is very important in the system. It must be assigned

after considering three main aspects:

• The aath should receive an increment in their selection probability proportional

to their goodness.

• The goodness is a relative measure, which depends on the load conditions than
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Table 4.1. Calculations for Pheromone Update and Implicit Evaporation Process

Pheromone Values
for Destination v1

Neighbor τbefore τafter

v1 0.3 0.3 + 0.35 ∗ (1− 0.3)
0.545

v2 0.4 0.4− (0.35 ∗ 0.4)
0.260

v3 0.3 0.3− (0.35 ∗ 0.3)
0.195

can be estimated using the statistical models M.

• It is important not to follow all the traffic fluctuations.

That means that is important to have a good trade-off between stability and

adaptivity. Several methods can be used to assign the r value, trying to consider the

above three requirements:

• r as a constant. The simplest way is to set r as constant. Independent of

the result of the trip, the all discovered path are rewarded in the same way.

In this simple but meaningful case the core of the algorithm is based on the

“real” ants behavior to discover shortest paths via stigmergic communication

mediated by pheromone trials. In other words, here we use the differential path

effect. The obvious problem with this approach lies in the fact that, although

ants following longer paths arrive much later than those following shorter paths,

they nevertheless have the same effect on the pheromone matrices as the ants

that found the shorter path.

• r as a discrete function. In this case, we set different values for the reinforce-

ment value r according the goodness of the path based on a confidence interval

[Iinf , Isup] for µwv′ and σwv′ that we store in Mw. Following the Dorigo’s ap-

proach [23], we use the Chebyshev inequality that allows the definition of a
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confidence interval for a random variable following any distribution [51]. Iinf is

set to Bwv′ and we calculate Isup as follows:

Isup = µ̂wv′ +

(
1√

(1− ν)

(
σ̂wv′√
n

))
(4.4)

where,

ν is a selected confidence level and

n is the size of the sample that we consider for the confidence interval

Usually, for specific probability densities, the Chebyshev bound is not very tight,

here its use is justified by the fact that only a raw estimate of the confidence in-

terval is required and that in this way there is no need to make any assumptions

on the distribution of any µ.

The reinforcement value can be set using the values that we present in equation

4.5. It is important to mention that this reinforcement values can be modified

according with the experience and the simulation results.

r =



0.75, If ow→v′ < Iinf

0.10, If Iinf ≤ ow→v′ ≤ µwv′

0.25, If µwv′ < ow→v′ ≤ Isup

0, Otherwise

(4.5)

Also notice that when the value of ow→v′ is greater than Isup, we set the value to

zero to reinforcement r and in this form, we discard this value for the updating

process of the pheromone matrix.

• Dorigo approach. In this case we can use a more elaborate approach proposed

by Dorigo [23] using the same interval confidence definition that we presented

before. The following functional form gave good results in his simulation work:
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r = c1

(
Bwv′

ow→v′

)
+ c2

(
Isup − Iinf

(Isup − Iinf ) + (ow→v′ − Iinf )

)
(4.6)

where

◦ c1 and c2 are parameters which weigh the importance of each term

◦ The first term represent simply evaluates the ratio between the best trip

cost observed store in the system

◦ The second term evaluate how far the value ow→v′ is from Iinf in relation

with the extension of the confidence interval, that is, considering the sta-

bility in the latest trip times. Note that the denominator of this term could

go to zero, when ow→v′ = Iinf = Isup. In this case the whole term is set to

zero.

During the execution of this project we explored all options and we determined

that we obtain the better results using Dorigo approach.



CHAPTER 5

Autonomic Ranking of Data

Sources and Query Processing

Sites using Ant Colony Theory

5.1 Overview

This Chapter presents the framework used by AntFinder for characterizing sites based

on performance. We explain why this is an important issue in the framework. Addi-

tionally we present the metrics and explain how it works over the structures. Finally,

we discuss experiments carried out on an implementation of AntFinder in Java, that

was deployed on a simulation built with CSIM for Java.

5.2 Introduction

Wide-area networks pose many challenges to developers of database middleware so-

lutions for data integration. Very often, data sources have stale or incomplete data,

limited query processing capabilities or restricted access privileges. Likewise, query

processing nodes might become slow because they get overloaded with query requests.

Thus, the cost of processing a given query Q is often hard to predict. If we add

44
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into this mix a few mobile sites that serve data or process queries, then this unpre-

dictability increases since these nodes might change network connectivity, go offline,

or decrease their performance to save battery life. In this scenario, it becomes very

difficult to establish a reliable method to estimate the cost of running a query in the

system. A great deal of effort has been devoted to the problem of optimizing queries

in local and distributed databases [46, 41, 33]. Most of these approaches assume that

a query optimizer will explore a search space of query plans until it finds one with

minimal cost, defined as either response time, resource usage, power costs, or network

cost, among many others.

This optimization process, however, cannot be effective unless the middleware

system has accurate information about the performance characteristics of the data

sources and query processing sites. Thus, given a query Q, it is necessary to determine

which sites can provide the data to satisfy the query and which sites can provide

the computing power to generate the query results. The query optimizer for the

middleware system can then generate an efficient query plan to answer the query.

Typically, query optimizers for middleware systems have relied on a catalog system

that has such information. This is best illustrated in Figure 5.1. As we can see, a

query submitted by a client is first parsed and the catalog is used to validate it. Then,

rewrite rules are applied to simplify and generate a better representation of the query.

Next, the query optimizer can apply its search techniques and optimization rules to

explore the space of candidate plans and find an optimal plan. The catalog is used to

obtain information about the data, performance characteristics and query execution

capabilities of candidates execution sites in the system. This makes the catalog a key

ingredient for the completion of these three initial phases in the processing of a query.

Once an optimal plan has been found, an executable version of the plan is generated

and sent to the target remote query execution sites. These sites generate the query

results and send them to the client application.
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DB

Plan 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Figure 5.1. Query Processing Cycle

Clearly, the job done by the query optimizer will be only as good as the

metadata it uses to guide the optimization process. Yet, most systems assume that

a system administrator will manage the catalog and provide adequate metadata to

populate it. Relatively little attention has been paid to the fact that the metadata

in the catalog is quite dynamic, changing as new mobile sites enter (or leave) the

system, existing data sources are updated, network connectivity changes, and query

processing sites become loaded with requests. The ad hoc and distributed nature of

the problem makes it unfeasible to have a solution that relies on system administrators

to periodically update and publish system metadata throughout the system. Likewise,

trying to discover the information at query time can only slow down query execution

and reduce system throughput.

In this Chaper we propose an autonomic framework for continuously discov-

ering and ranking the sites in a database middleware system for mobile, wide-area
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environments. Our framework, called AntFinder, can help keep the catalog up-

dated, and feed accurate information to a query optimizer to make better decisions

for query operator ordering and placement. Our proposed solution addresses this

problem by proving a methodology to a) discover the performance characteristics of

the data sources and query processing sites, and b) rank these sites based on their

quality. In AntFinder, each site in the system participates in a social network to

continuously share system metadata, discover new sites, and rank the capabilities

of known sites. This social network is built by employing Ant Colony Theory, and

each site exposes its metadata to be inspected by autonomous software robots called

artificial ants [23]. These ants use the information that is found to establish a ranking

of the sites, giving a notion of the quality of a site u as seen by other site v. The goal

of our method is to give the optimizer accurate information about a series of paths

leading from a site v to one or more data sources. These paths include query sites

that can be used to process de data. The optimizer can use these paths as interesting

candidate query sub-plans to be considered for building the final plan.

5.3 Motivation

Since there are many possible sites to supply data or computing power in our Middle-

ware System, the optimizer would need to explore several alternatives and chose the

one with lower costs. If we model the system as a graph G, each alternative plan is a

tree T which happens to be a subgraph of G, T ⊆ G. In our model, G is a connected,

directed graph G = (V,E), where V is a collection of services (every vu ∈ V is a

service that can be a QSB, or an IG) and E is the set of available communications

links between pairs of services. For every edge (vu, vv) ∈ E, we have a weight w(u, v)

specifying the “cost” to connect vu and vv. In this Chapter we shall use (u, v) and

(vu, vv) interchangeably to help keep the equations readable. The cost w(u, v) rep-

resents the effort incurred or benefit received when results are first produced in vv,
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then sent from site vv to site vu and finally consumed at site vu. Figure 5.2a shows

a group of QSBs and IGs interconnected under this scheme. Figure 5.2b shows the

imposition of a query execution tree on a set of QSBs and IGs. The plan represents

a possible solution for the query σ(π(R) ./ S), where R and S are two relations

available in the system. The root of the tree is located on node QSB1, while the leaf

nodes are IG1 and IG2. The join operation is run at node QSB3 and the projection

operation is run at node QSB4. We shall now turn our attention to the method by

which we shall estimate the cost of each w(u, v) in G.

QSB4
QSB3

QSB5

QSB1
QSB2

QSB6

IG2

IG1

IG3

IG4

IG5

(a) System Representation

QSB4
QSB3

QSB5

QSB1
QSB2

QSB6

IG2

IG1

IG3

IG4

IG5

R

π

S

(b) Execution Tree
Figure 5.2. Graph Representation.
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5.3.1 Performance Definition

The performance metric is used to charactize the quality of a given site based on the

raw computational capabilities available to process operators in the query plan. This

concept is also called Quality of Service, QoS, because it attempts to provide a

notion on how fast or efficient can the system be when executing query operators in a

query plan. QoS can be defined in terms of resource usage as a way to indicate how

efficient a plan is in minimizing the amount of resources (e.g., disk, memory, network

bandwidth, battery) that must be spent solving a query. Alternatively, QoS can be

defined in terms of response time, which indicates the total time elapsed to produce

the query results. In this case, the shorter the response time the better the plan is.

We can consider different approaches and parameters to estimate QoS for a

given plan, broadly classifying in terms of local and network resources :

• Local resources: For a query operator this is the time that we expect to spent

to complete the processing of tuples using the resources on a given host. We

can consider:

◦ Execution time: CPU processing time.

◦ Input/Output time (disk time or tape time): Time to retrieve the necessary

information from the disk to resolve a query.

• Network resources: For a query operator, this is the time that we expect to

spent fetching tuples from the producer site. Different parameters can be use:

◦ Network traffic

◦ Bandwidth

◦ Latency

In the optimization process for a query, sometimes local resources can be

omitted if the network costs far exceed local costs. However, recent advances in CPU

and network technologies make it necessary to consider both elements in the systems.
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5.3.2 Forecast Model for Performance

We now present several alternative models to estimate the performance metric of the

system. Since we are measuring this performance in terms of time, either response

time or resource usage time, we assume this metric to be a continuous variable. In

the simplest model, we can use a fixed value as the performance estimator cost p̂ for

every edge (u, v) present in our system. We can use a value based in experience about

the system, as we see in the following equation.

p̂(u, v)t = vu,v (5.1)

where vu,v is the performance constant cost between services u and v, valid for time

period t. In this case, we use a static model, and then the changes in the system do

not be considerate.

If we need to have a better estimator of the performance of the system, in-

cluding the dynamic changes in the topology, we could include past information so we

can infer future behavior with more accuracy. If we just want to use a single previous

observation, we may estimate the performance using the following structure: The

first time that the cost of a service needs to be determined we use a constant value

vu,v as the estimator. This constant value is obtained from either past experience or

some calibration of the system. After that, we use as estimator of the service cost

the last value measured for an operation in this node. This scheme is summarized in

the following equation:

p̂(u, v)t =

 vu,v, t = 0

p(u, v)t−1, t > 0
(5.2)

where p(u, v)t−1 is the previously observed value.

We can include far more information in the calculation of our estimators.
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In fact, we can use some short-range time series forecast models such as Moving

Average, Weighted Moving Average or Exponential Smoothing, as we shall explain

next. Clearly, our assumption here is that our performance metric estimator can be

modeled using short-range time series. However, if our performance evaluation show

that these inference methods are inaccurate, we can try to implement more complex

models that include cycles, trends and seasonality of our metric, using time series

theory.

5.3.2.1 Moving Averages

In this model, we define the forecast cost for the next period of time as the arithmetic

average of a specific past range of measured values. For example, if we choose as our

past range the three previous periods (or measures over three past observations), we

can mathematically express the model as follows:

p̂(u, v)t =

 vu,v, t ≤ 3P(t−1)
k=(t−3)

p(u,v)k

3
, t > 3

(5.3)

As we can see from the previous equation, the estimator is computed as a constant

value vu,v for the first three requests. The reason for this is that there are not enough

measured values to compute an average. After that, the estimator is computed based

on the previous three measured values for the given performance metric. In general,

if wish to use this method to estimate a performance metric based on n previous

measures, the equation becomes:

p̂(u, v)t =

 vu,v, t ≤ nP(t−1)
k=(t−n)

p(u,v)k

n
, t > n

(5.4)
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5.3.2.2 Weighted Moving Average

This model is similar to the moving average model described before, but instead of

using an arithmetic average of the past n performance parameters, it uses a weighted

average of the past n performance parameters. Typically, more weight is placed on

the most recent time periods. For example, if we choose as our past range the three

previous periods (or measures over three past observations), we can mathematically

express the model as follows:

p̂(u, v)t =

 vu,v, t ≤ 3

α1p(u, v)t−1 + α2p(u, v)t−2 + α3p(u, v)t−3, t > 3
(5.5)

Here αt is the weigth for the period t that we choose. Also notice that the weight

of α1 > α2 and α2 > α3. In general, if we wish to use this method with n previous

observations, we have:

p̂(u, v)t =

 vu,v, t ≤ n

α1p(u, v)t−1 + α2p(u, v)t−2 + ...+ αnp(u, v)t−n, t > n
(5.6)

where, αm < αm−1∀m 3 2 ≤ m ≤ n. Also, it holds that
∑n

k=1 αk = 1 for n > 1.

5.3.2.3 Exponential Smoothing

The third model that we present is also a short-range time series forecasting model

used to estimate a performance metric for the next time period. In this model, the

estimated performance metric for a period t is obtained by combining the estimated

value of the previous period t − 1 with a correcting error term. This latter term is

obtained by subtracting the actual measured performance metric at time t − 1 with

the estimated value at t − 1. This error is multiplied by a constant α to weight in
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the relevance in this error term. Mathematically, we can express this model by the

following recurrence:

p̂(u, v)t = p̂(u, v)t−1 + α
(
p(u, j)t−1 − p̂(u, v)t−1

)
(5.7)

which also can be expressed with the alternative recurrence:

p̂(u, v)t = αp(u, v)t−1 + (1− α)p̂(u, v)t−1 (5.8)

where:

• p̂(u, v)t is the performance metric estimator for period t (the current period)

• p̂(u, v)t−1 is the performance metric estimator for period t − 1 (the previous

period)

• p(u, v)t−1 is the actual performance metric measured in the system por period

t− 1 (the previous period)

• α is the smoothing constant, from 0 to 1. Good values for this constant must

be obtained tuning the system.

5.3.3 Using the Forescast Model in the Update Phase

Given a node vu, then for each destination node vv in the system, we need to have

an estimate of the cost of the path connecting vu and vv. Since there might be many

possible paths, it is important to track not only the cost and structure of the best

path from vu to vv but also a measure of the average cost of all paths connecting vu

and vv. This latter statistic will be used in the algorithm to update the pheromone

trail and measure the variability in the system. Notice that the ants are constantly

being sent to explore the system. Thus, we need to have a mean estimator for cost

of paths connecting each node vu to a destination node vv. Let us denote this sample

mean between nodes vu and vv by µ̂uv. Likewise, let us denote the variance of this
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sample mean by σ̂2
uv. Then, the estimated cost mean µ̂uv and variance σ̂2

uv give a

representation of the expected cost from node vu to node vv and the stability of such

cost.

µ̂uv ← µ̂uv + α (ou→v − µ̂uv) , (5.9)

σ̂2
uv ← σ̂2

uv + α
(
(ou→v − µ̂uv)2 − σ̂2

uv

)
, (5.10)

Where: ou→v is the new observed (measured) cost from node vu to destination vv.

Thus, the value µ̂uv is updated based on its current value and the error observed from

the current measured cost ou→v. This error is contained in the term α (ou→v − µ̂uv).

The factor α weights how much the number of most recent samples will affect the

average. The same scheme applies to the update of the variance σ̂2
uv [16, 23, 37]. In

the next example, we illustrate these concepts. Consider a middleware configuration

with four nodes v1, v2, v3 and v4, as shown in Figure 5.3a. Suppose that we are

interested in paths connecting v1 and v4. From Figure 5.3a, you can observe that the

ants could discover two different paths connecting source node v1 and the destination

node v4.

v1 v2

v4 v3

ρ(1,2)

ρ(3,4)

ρ(1,4)
ρ(2,3)

(a) Initial Conditions

v1 v2

v4 v3

(b) Ants Behavior
Figure 5.3. Example of the calculations for µ1,4 and σ2

1,4

Now suppose we launch tree ants at different moments of time, represented



55

Table 5.1. Results for ants explorations in figure

Path Color Explored Path Associated Cost

green (v1, v4) 3.2
red (v1, v2, v3, v4) 4.8
blue (v1, v4) 3.6

by different colors in figure 5.3b. As we show in Table 5.1, in the first attempt,

represented by a green line, the ant found the path (v1, v4) and stores the cost during

the trip (we could think of it as the performance cost associated with path or as a cost

associated with freshness) and the nodes visited during the trip. After that, the ant

chooses another path using a stochastic decision process, and this path is represented

by the red line. In this case, the path was (v1, v2, v3, v4). Finally, the last ant chooses

again the path (v1, v4) represented by blue line.

Based on this scenario, each ant travels backwards from destination node vd

to source node vi along the path just explored. Each step of the way, the ant will

update the pheromone and other state statistics (to be described shortly) contained

in each node of path. For now we just illustrate the calculation of the mean µ̂1,4 and

variance σ̂2
1,4 over the path with source v1 and with destination v4 (the ants update the

information for all the subpaths too). The first time, the system does not have any

statistics, then, for the mean µ̂1,4 the system assigns the value that the ant stores in

the trip, and for variance σ̂2
1,4, according with the experience it assigns a constant, we

will use σ̂2
1,4 = 1 (since it is not possible calculate the variance with one value). Then,

when the second and third ants go back, they use the information already collected,

the weight factor α (for this case we will use α = 0.4 ) and the stored information in

the statistics module to calculate the new mean µ̂1,4 and sigma σ̂2
1,4, as we show in

theTable 5.2.
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Table 5.2. Calculations for µ1,4 and σ2
1,4

Path Color Explored Path Cost µ1,4 σ2
1,4

green (v1, v4) 3.2 3.2 1
blue (v1, v2, v3, v4) 4.8 3.2 1+

+0.4(4.8− 3.2) 0.4((4.8− 3.2)2 − 1)
= 3.84 = 1.62

red (v1, v4) 3.6 3.84 1.62+
+0.4(3.6− 3.84) 0.4((3.6− 3.74)2 − 1.62)

= 3.74 = .99

5.3.4 Java CSIM Simulation

We have implemented a detailed Java CSIM simulation of AntFinder based on the

NetTraveler system architecture. Each QSB and IG site is an object server called

the ant host, which serves as a hosting environment to receive ants. Each ant is an

object that can be created, migrated or destroyed. Movement of an ant between

nodes is implemented by having the ant create a copy of itself at the next node

to be visited, and then transferring all its internal variable to this copy. The site

statistics Mu and the pheromone trail Tu are implemented using adjacency lists,

and the paths between nodes are implemented with linked lists. These structures

are backed by database tables, which are accessed via Hibernate. For evaluation

purposes, we choose Pareto Bounded as a probability distribution to simulate the

service time at any node and to the travel time, since in [40] and [65] presented this

option as better than exponential o regular Pareto. By other other hand, we sent the

ants using the exponential distribution since it has been shown to successfully model

the traffic over the network [40, 65, 53].

5.3.5 Feasibility

The first question that we must answer is whether our approach can actually find

optimal or near optimal solutions to the problem of finding a path between a QSB vu

and and another QSB or IG vv. To accomplish this we built several configurations
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of NetTraveler nodes in our Java CSIM simulation. We developed different models

for our database middleware system, each one having a different number of servers

and connectivities between these. For example, one model had sixteen servers, the

second had twenty two servers, the third one had thirty four servers, the fourth one

had sixty servers, and the fifth one had five hundred servers. We will focus on the

model with thirty four servers, which had twenty six QSBs and nine IGs as show in

Figure 5.4.

The performance cost metric used was the cost of processing a page with 4KB

worth of tuples, and then send these across the network. Intermediate nodes in the

path acted as relays, but in a more complex setting these nodes would have query

processing operators that must be applied to the page of tuples. Notice that the path

forms a execution pipeline for tuples from an IG to a QSB. We used Exponential

Smoothing as the mechanism to estimate costs and update both the pheromone matrix

and the statistical model on each node in the system since has less storage necessities

and shows better results during the setup process. Each node in the network was

a modeled as a host with 1GB of RAM, 3GHZ CPU and 100 GB of disk. From

each QSB we sent ants to discover how to reach IGs in the system. We sent ants

concurrently, and we ran trials in which each QSB would sent 20, 40 and 80 ants in

each trial, at random order. We repeated each trial 10 times and then took averages

on the following percentages: a) success in finding the best path, b) consistency of

pheromone trail to lead to the shortest path, c) number of routes in the system that

were explored, d) amount of ants that were lost in loops and e) average amount of

ants served by node.
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Table 5.3. General Experiments Results (Part 1)
% % %

Ants Pheromone Success in Finding Success in Finding
Consistency Best Paths Paths with Similar Cost

20 89.9 84.0 89.8
40 91.5 90.2 96.8
80 9.43 92.9 98.8

Table 5.4. General Experiments Results (Part 2)
Ants Average Number of Ants Percentage of

Visiting each Node Explored Routes

20 47 85.3
40 94 90.4
80 186 93.3

Tables 5.3 and 5.4 and Figures 5.5 and 5.6 show the general results of the

experiments. As we can see from the figure, AntFinder can find the best path over

89% of time, and the pheromone trails are over 85% of time consistent with the

shortest path. Notice that the pheromone consistency increases with the number of

ants, since each node is accumulating more samples and hence its accuracy increases.

Also, the percentage of the network that is explored improve as the number of ants

increases. Notice also, that the average number of ants visiting each node increases,

with the ants sent, as expected. In Chapter 7 we will discuss a improvement method

to launch the ants.

We chose to send a constant quantity of ants per node, regardless the number

of destinations that can reach each one. For this reason, the results of nodes with

fewer destinations as QSB8 (see Figure 5.7a and 5.8a) are better than for the nodes

that access more destinations as QSB6 (see Figures 5.7b and 5.8b). In Chapter 7 we

will discuss an improvement method to launch the ants, and in this way resolving the

issue.
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5.3.6 Efficiency

The next question that must be raised is how efficient our approach is, when compared

to the alternative of dynamically finding the paths at run time. For this purpose, using

the same system than before, we compare our method with two variants based on

Dijkstra’s algorithm for shortest paths search. In the first variant, there is a central

catalog with information about current cost of edges in the system, in our case, we

use the theoretical expected value for a distribution as a estimator of the cost on the

node and over the links. Then, having this catalog, each QSB could ask on-line for

the each link cost of the system or for the average service time on every node. Once

the statistics arrive, they run Dijkstra’s algorithm to find the shortest path. In the

second variant, the catalog is partitioned at each QSB. Each QSB could ask on line

for the each link cost of the system to other node on the system or or for the average

service time on every node (in parallel). Then, all the statistics are sent to the QSB,

and this node will run Dijkstra’s algorithm to find the shortest path. In our case, we

just ask to Statistical Model about the best path for the desire destination, but this

time, the calculation were done offline.

We ran experiments over the constructed system, and we obtained similar

results overall. We present the results for the system used before, when we sent 80

ants by each node. We did the same with both variants that use Dijkstra’s algorithm

to find shortest paths at query time. We ran each experiment ten (10) times and we

present average values from those runs. Figure 5.9a shows the general and specific

result for one QSB (QSB6). The figures show the average time to found the best path

with AntFinder and using the variants based on Dijkstra’s algorithm. The Time is

the estimated number of milliseconds that are required to process a page of tuples of

4KB along the path. Note that the overhead incurred for both variants, is at least

of an order of magnitude larger (for distributed catalog) for the variants based on
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Dijkstra’s algorithm. Figure 5.9b shows how the results on each node are consistency

with the general results, having the same behavior and showing promissory results

for our approach

Although we just compared the first path offered by AntFinder with the vari-

ants based on Dijkstra’s algorithm, our system may offer for the same source vu more

than one path to reach destination vu instantaneously and neither a Centralized Cat-

alog or Distributed Catalog could offer the same. Notice that since the ants work

in parallel to the query execution process, a path lookup only required a local query

in the catalog of the QSB. Thus, our approach is accurate with respect to path

information and yet involves little extra overhead in the process. As the number of

nodes increases, we can expect an increase in these overhead differences between our

method and any method that finds paths at run time.

5.4 Summary

In this Chapter we proposed an autonomic framework for continuously discovering

and ranking the sites in a database middleware system for mobile, wide-area environ-

ments. Our framework, called AntFinder, can help keep the catalog updated, and feed

accurate information to a query optimizer about paths with sites for query operator

placement. We proposed a framework for characterizing sites based on performance.

Then, we presented an adaptation of the ACO algorithm to explore the system and

rank the characteristic of each site. We used Exponential Smoothing as the mech-

anism to estimate costs and update both the pheromone matrix and the statistical

model on each node in the system since has less storage necessities and shows better

results during the setup process. The obtained values after a setup process is show

in Appendix A. This framework is fully de-centralized and can scale to large number

of nodes. Finally, we presented the results of a performance study carried out on a

simulation of the system. These experiments show that our framework can find near
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optimal paths in over 90% of the cases. In addition, we can say that our method

is far superior to approaches that try to determine shortest paths at run

time. Our solution combines de-centrelized behavior with accurate prediction of the

paths, and accurate ranking the best sites to answer a query.



CHAPTER 6

Finding Fresh Data in Database

Middleware Systems

6.1 Overview

This Chapter presents the AntFinder system which features autonomic and decentral-

ized exploration of data freshness. We present the definition of a series of freshness

metrics that capture different update events in the system. We provide a mechanism

by which the ants can visit the nodes and gather freshness data. Also, we explain

how these data structures can be used to track freshness and chose the data source(s)

that comply with a freshness constraint. Additionally, we propose a notation to ex-

press freshness constraints in SQL. Finally, we discuss experiments carried out on an

implementation of AntFinder in Java, deployed on a simulation built using CSIM for

Java.

6.2 Introduction

Database middleware systems [57, 54, 68] enable the development of applications

that integrate data from multiple data sources that have very different schemas and

query processing capabilities. In the context of a wide-area network, a database

68
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middleware system is a key element to realize data and component re-use while at

the same time adding value by supporting new applications. Data replication and

mirroring are widely used in database middleware systems (as well as in distributed

databases) as a mechanism to improve query performance and data availability to a

pool of users [29, 10]. By using replication, the data contained in a data source S0 is

copied into one or more replicas S1, S2, ..., Sk, as depicted in Figure 6.1. A client site

can then fetch the data of interest from either the master site S0 or from any replica

Si ∈ {S1, S2, ..., Sk}. This approach can be used to replicate many sites and data

collections throughout the system. The result is a more robust system since a failure

at the master site or any replica can be overcome by fetching data from any of the

remaining sites. Recently, replication middleware has been studied as a mechanism to

provide replication in: a) wide-area environments running a distributed database or

a database middleware integration tool [10], and b) clusters of databases supporting

OLAP workloads [56].

S0 S1 S2 Sk...

Client Client
Client Client

Update Propagation

Client Client

Figure 6.1. Client access to replicated data collections.

Notice, however, that replication comes at a price, since a query Q that is

posed over a set of tables R0, R1, ..., Rn might yield different results depending on the

sources used to read the data. If the system uses synchronous replication, this is not
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an issue since any update at the master copy S0 is immediately propagated to all the

replicas. But the overhead of this approach is far too high to be used in a wide-area

network, and asynchronous replication would be the more common mechanism to

manage the replicas. Thefore, the replicas will likely be out of sync with the master

at various times during the daily operation of the system. This means that the same

query Q can return different answers depending on which sources are used to extract

the data. Ideally, the query should be routed to fetch data from either the master

source S0 or from replicas that are almost as good (up-to-date) as the master.

Given this scenario, the current state of the replicas and the Quality of the

Data (QoD) they store now becomes an issue. Data freshness has been introduced as

a metric to characterize the up-to-date status of the replicated data. The authors in

[42, 43] use data freshness to guide the update process of materialized web views inside

a web server. Meanwhile, the authors in [11] use data freshness to develop strategies

to frequently update a local copy of a remote database. However, these approaches

do not address the issue of extracting the data from a replica that is fresh enough to

provide adequate answers to a query. The work in [56] explored an approach to route

queries within a database cluster to the database node that has data fresh enough to

satisfy the user request. The desired level of freshness is specified as a parameter of

the query request. But this approach is more difficult to scale to a wide-area network

since it uses a centralized scheduler to perform this routing. The piece that is still

missing is a scalable mechanism that enables a database middleware to find replicas

with data compliant with a required freshness value given by the user.

In this Chapter we explain how our approach finds the data collections that

satisfty data freshness constrains specified by the user as part of the query submitted

to a database middleware system. AntFinder is not a query optimization frame-

work, but rather a freshness management framework. The information gathered by

AntFinder can be used by a query optimizer to decide which nodes should be consid-
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ered as alternatives from which data can be read to answer a query. In AntFinder,

the user explicitly specifies the desired freshness level for each table as part of the

SQL string sent to the system. Based on this freshness request, AntFinder locates

the data sources that can participate in the query. This is done by performing a local

lookup in the metadata catalog used by the server site that first receives the query

from the client. After this step, query optimization can proceed as discussed in [30].

6.3 System Overview

In this case, we assume that the database middleware system is based on an architec-

ture on which one or more integration servers (IS) connect to various wrappers (W)

that take care of extracting the data from the sources, as shown in Figure 6.2. The in-

tegration server layer imposes a global schema on the heterogeneous data sources, and

all queries posed by the user are expressed in terms on this global schema. We assume

an unstructured system, where there is no central coordination site. The nodes form

an overlay network for the purpose of exchanging tuples related to a given query. Each

integration server contains a local catalog with metadata representing its own global

schema, data source sites, users permissions, and so on. Without loss of generality,

and to simplify our presentation, we assume that this schema follows the relational

model and that all queries are expresses in SQL.

A client application sends its queries to one of the integration servers, and this

server connects to other integration servers and wrappers to get the query solved. We

assume that the integration servers have capabilities to either negotiate access to a

query processing infrastructure or provide it altogether by means of a query execution

engine. The integration servers rely on the wrappers to: a) extract the data from the

sources, b) map the data from the local schema into the global schema, and c) execute

some of the query operators necessary to generate the results. The wrappers deliver

their results to the integrations server(s). Finally, the integration server originally
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contacted by the client takes care of collecting all results and delivering them to the

client.

db1

W

db2

W

db3

W

db4

W

IS IS IS

IS
Integration Servers

client client client

Figure 6.2. Typical Database Middleware Architecture.

6.3.1 Problem Description

The basic problem that we address in this Chapter is how to find the data sources

that provide data that complies with a freshness value specified by the user for a

query he/she needs to answer. Consider a query Q submitted to the system at time

t0. This query must access data from a set of n tables R = {R0, R1, ..., Rn} that are

spread over the middleware system. Each table Ri can be read from a data source Si
j

in a collection of k sources S i = {Si
0, S

i
1, ..., S

i
k}, where Si

0 is the master copy of the

data collection and every other Si
j, j 6= 0, is a replica. The system uses asynchronous

replication to manage updates, and the master copy does not track the status of the

replicas, making the system a pull-based replication scheme. Each replica Si
j has an

average update frequency U i
j that denotes the average time interval on which the

replicas visit the master copy to obtain updates. The following example illustrates

this problem:
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Example 6.3.1 Let R(a, b, c) be a global relational schema and consider the query

SELECT R.a, R.b FROM R WHERE R.a >10. Table R can be located in three sites,

a master copy in New York, and two replicas in Los Angeles and New Jersey. The

replica in Los Angeles was updated 30 minutes ago, while the replica in New Jersey

was updated two hours ago. The user is interested in accessing either the master

copy or a replica of R that was last updated one hour ago. In this case, only the

replica at Los Angeles meets the freshness constrain expressed by the user. Hence, the

middleware system should only use data that comes from either the master copy in

New York or the the replica in Los Angeles to answer the query.

Our goal is to let the user specify this freshness constrain and provide the infrastruc-

ture that enables the system to automatically locate the source(s) that most closely

match this freshness value. In this example we have expressed the freshness constrain

in terms of time of last update. But there might be other types of freshness con-

strains. For example, the user might request that the replica might not differ from

the master by more than one thousand tuples. In this case, freshness is represented

as the number of updates yet to be applied to the replica. Likewise, the user’s request

might be expressed in terms of the percentage of tuples that must be up-to-date with

respect to the master. In Section 6.4 we present three specific freshness metrics that

are used in AntFinder.

Now let us turn our attention to possible solutions to the problem we have

just described. One possibility is to build a catalog with freshness metadata that can

provide freshness information to the integration servers performing query processing.

If there are n data collections and if m is the average number of replicas per data

collection, then the catalog must keep information records in the order of O(nm).

But this approach involves centralization of this catalog into a server or group of

well-known servers. This scheme adds overhead to the query execution process since,

for every query, an integration server must access this global catalog to find freshness
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values for each table. In addition, it adds a single point of failure in the system.

Notice also that there must be a mechanism to collect freshness statistics from all the

replicas, and the catalog must track specific update frequencies for each replicated

collection. This is necessary to maintain freshness statistics by frequently visiting

each data source to fetch current freshness values. This means O(nm) connections

to get up-to-date statistics. As the number of sites increases, this approach becomes

unfeasible because of its management complexity and performance overhead.

A second alternative is to simply query each candidate data source to ask its

current freshness value for a given target table. That is, given a table Ri, we can

contact each source Si
j and ask for its current freshness value for table Ri. This

approach guarantees accurate freshness information. However, it cannot scale to a

large number of sites and replication schemes for a number of reasons. First, it would

be necessary for each server in the system to track all possible replicas for each data

source. Second, for each table Ri in each query Q and each data source Si
j, the server

that gets the query Q would have to establish a connection to ask each source Si
j for

its freshness value. This means O(nm) connections to the target replication sites,

as mentioned earlier. This approach would consume much of the server’s network

resources on ancillary activities and not on obtaining result tuples from the sources.

In addition, it increases response time as the integration server that gets query Q

needs to wait for the responses from each Si
j before any optimization and query

execution can begin.

A third approach would be to deploy an advertisement system to announce

data freshness at a source Si
j for table Ri. In this scheme, the servers would send

advertisement messages M = (Ri, S
i
j, F, t) indicating the freshness F at time t for

table Ri at source Si
j. Each server can cache some of these messages and use them for

freshness information. The problem here is how to tune the advertisement frequency

of the message for each sources. If the message are sent infrequently, the freshness
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metric F becomes stale and useless to estimate current freshness. If the messages

are sent too frequently, the freshness is more accurate but there is extra overhead by

the excessive message passing. Moreover, some flooding technique would be needed

to propagate freshness information throughout the system. In steady state, O(nm)

messages will be sent at regular intervals, and these need to be received and re-

trasmitted (if necessary) by all nodes in the system.

The approach that we present here involves sharing freshness metadata by

means of an autonomic operational scheme. In it, the integration servers of the

database middleware continuously search for data freshness metadata and share these

values with other servers autonomously and by an indirect method of communication.

Although individual integration servers might need to store up to O(nm) freshness

records, they do not need to make O(nm) connections to accomplish this. Instead, an

integration server only looks for the metadata items that their client population needs

but learns about most of the data collections and replicas from the social network build

by all nodes in the system. The search for metadata occurs independent from and

parallel to the query optimization/evaluation process. Hence, when a query request

is received, the catalog already has accurate data freshness metadata. Our approach

has several important properties that help it scale to a wide-area environment. First,

the mechanism is decentralized since each integration server independently tracks the

values of the freshness metrics for the data collections that its clients need. Second,

each server explores the system at its own pace. Third, the addition or removal of

data sources and replicas is handled gracefully by evolving the freshness metadata as

time progresses. Fourth, accurate freshness metadata from the system is given to the

user with a simple query lookup into the local catalog of the integration server. Thus,

when a query Q is posed to a server, the freshness information can be found locally

and handed immediately to the query optimization component. In the next Sections,

we elaborate more on the overall operational mode of AntFinder.
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6.3.2 Middleware Architecture

Applying the ACO methodology to computational problems involves, first of all, the

development of a mapping of the problem to a shortest path problem in a graph.

In addition, we need to define what are the food sources, the nest, the ants and the

distance metric used to evaluate the goodness of each path. To accomplish this we

need to have a system architecture that facilitates this mapping. In Figure 6.3 we

present the architecture of the middleware system associated with AntFinder, which

follows the system organization and components presented before. In AntFinder, the

nest is the integration server that receives queries from the client. These integration

servers are called Query Service Brokers (QSB) because their role is to get queries

and find data and computational resources to solve these queries. Each QSB has

a local catalog (denoted by the disk with the letter C in the figure) used to track

metadata about the system. The QSB also has a query execution engine to process

selection, projection and join queries.

IG

db

QSB

C

IG

db

IG

db

QSB

C

QSB

C

QSB

C

QSB

C

QSB

C

client

client

client

client

DC

NY

NJ
NJ

SF
SF

LA

SD

DC

Figure 6.3. Database Middleware Architecture
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Next, we have the food sources which are the data sources in the system.

Each data source is composed of an Information Gateway (IG) and a database. The

database can be a commercial relational engine, an XML store, or any other server

capable of exporting data that can be mapped to a relational model. The IG has

the role of the wrapper, mapping data from the local schema into the global schema

used by system. In addition, the IG has query execution capabilities to help QSBs

execute queries. The IG also keeps track of freshness metadata related with the data

collections of its associated database.

The IG and QSB are interconnected to form a Peer-to-Peer (P2P) social

network for sharing data and computational resources. This network can be viewed

as a graph G = (V,E), where each u ∈ V is either a QSB or IG, and each (u, v) ∈ E

indicates that u ∈ V is a peer of v ∈ V . This peer relation indicates that node u

can call node v to ask for tuples or computing time to process tuples. For example,

the QSB at NY might talk with the QSB at SF to ask for help running a join or

to facilite the extraction of tuples from the IG at SF. Likewise the QSB in DC

might talk with the IG in NJ to get tuples for a given table. The interconnection of

nodes provides the pipeline by which tuples are extracted from the local databases,

transmitted and process to QSBs and then delivered to the client. A pipelining

path Pz ∈ G,Pz =< u,w0, w1, ..., v >, represents a possible pipeline on which tuples

from IG v can reach QSB u. Figure 6.4 shows two alternative pipelining paths

P1, P2 to reach sources for a table R from a QSB in DC. Each copy has a different

freshness value, denoted by the different shades in the box representing table R. Each

intermediate server wk is a QSB that either simply forwards the tuples or applies some

query operator to tuples before forwarding them to next stop node.

The cost of a pipelining path is evaluated in terms of the freshness metric F for

the table Ri located at the IG Si
j that ends the path. If two different paths P1, P2 lead

to two different replicas of table Ri, AntFinder tells the integration server which path
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Figure 6.4. Paths explored by Ants.

is best, based on the freshness information. Hence, for each table Ri in a query Q, the

QSB that first receives the query has to figure out three key pieces of information.

First, the QSB must determine which paths are available to reach a data source Si
j

for table Ri. Second, the QSB must evaluate the cost of the path, which is equal to

the freshness F of table Ri at source Si
j. Third, if multiple sources are available to

serve table Ri, the QSB must choose one that complies with the freshness constrains

on table Ri. With this information, the QSB can determine which source has the

most fresh data to satisfy the user request for each table in query Q. Notice that a

path P might lead to two tables Ri, Ri′ , which means that they are both stored in the

same IG. But since freshness information is independently measured for each table,

the paths are evaluated independently as well.

The final element in our mapping are the ants, which we shall call artificial

ants. These artificial ants are software robots that are launched from a QSB B

to explore the network and find the freshness metadata for each table Ri that the

QSB typically accesses to serve queries to its clients. These ants also gather other

information such as new data sources, and new nodes that lead to data sources.
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An ants moves from QSB to QSB until it reaches an IG Si
j that has the table Ri

whose freshness is being sought, as shown in Figure 6.5. The movement of the ant is

controlled by the pheromone it detects as it moves between QSBs. The pheromone is

represented by a data structure already discussed in Section 4.5. Once the ant reaches

the IG Si
j, it reads the current freshness F for Ri and travels back along the same

path used to reach the IG Si
j, and stops when it reaches the QSB B. Once there,

the ant will store the updated freshness information into the local catalog. But, as

this ant moves back to its QSB B, it updates the pheromone at each QSB along its

path to account for the current freshness value F of Ri at the IG Si
j . Any follow

up ant launched by any QSB will get to see this updated pheromone value and get

influenced by the experience of previous ants at the IG Si
j. Thus, if this IG has very

fresh data for Ri, other ants looking for this table will get attracted to IG Si
j, visit it

and acquire its current freshness information.
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Figure 6.5. Ants exploring the system.
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6.3.3 System Operation

We can break down the operation of the system in terms of two phases experienced

by the QSB, namely initialization and steady-state operation.

Initialization: When the QSB gets initialized it has to be given a list of its

initial peer QSBs and IGs. Alternatively, some auto-discovery protocol can be used

in which the QSB starts to advertise its information, schemas, etc.. The QSB is also

given a set of initial tables that need to be used in queries, and the sources for these

tables. The QSB then begins to send ants to investigate the freshness of these tables

in each of their available data sources. This freshness information gets stored into the

local catalog. During this phase, any query that is received by the QSB would have

to be processed based on some initial freshness values that are configured (or guessed)

for this purpose, much like a query optimizer guesses selectivity factors when such

information is not available in the catalog [30]. Alternatively, the QSB might refuse

queries until its catalog becomes “hot” with updated freshness information.

Steady-State Operation: Each QSB keeps track of the set of relations

R = {R0, R1, ..., Rn} that are used by its clients. These can be all the relations

defined in the portion of the global schema stored in the QSB′s local catalog. Another

option is to track freshness for the top N percent of the tables, ranked by frequency

of usage (e.g., only the top 10% in terms of requests). This can be inferred from the

global schema defined in the catalog at the QSB and logs tracking target tables in

the queries posed by the user. At various times {t0, t1, ..., tk} during its normal daily

operation, a QSB would send an ant to find the current freshness value for table

Ri at source Si
j. The ant travels by following the pheromone trail that guides its

movement between QSBs until it reaches the IG associated with Si
j. The ants get

the freshness information, and returns back, updating both the pheromone trail and

the local catalog of the originating QSB. When a query Q is posed to a QSB, it
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will make a lookup into its local catalog to fetch the freshness information. For each

table Ri, the source that has the freshness value that complies with the user request

is chosen. This information is then passed to the query optimizer which takes care

of generating the optimal query plan to run the query. After that, query execution

begins and the clients receives tuples from the fresh data sources.

It is important to point out that a different ant is sent to visit each source Si
j

for table Ri. These ants are not necessarily sent at the same time from each node, and

the frequency to launch ants depends on many factors such as the update frequency

of the data sources, demand for the data, connectivity of the QSB, path length from

QSB to the target IG, current system load, and so on. Moreover, a QSB might sent

just a few ants and still get accurate information about freshness. Why? Because

the ants use the pheromone trail built by other ants in the social network. Hence, if

a QSB B has many peers and these peers sent many ants, then the ants from QSB

B benefit from the exploration done these other ants. The key benefits of the ACO

methods is that individual ants leverage on the experience and work of others to

make intelligent desicions. For the time being, the reader should focus on the overall

architecture and operation. The details of the how frequent ants are launched are

described later on, and future directions on how to tune these one presented as well.

6.4 Data Freshness Metrics

The purpose of the data freshness metric is to measure the up-to-date state of the

replica of table Ri at each source Si
j. This information is then used to choose the

replica that satisfies the freshness constrains of the query Q at hand. The most basic

freshness metric F , presented in [11], indicates whether Si
j is up-to-date with respect
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to the master copy Si
0 at time t:

F (Ri, S
i
j, t) =

 0 Ri is up-to-date at time t,

1 otherwise .
(6.1)

This metric is a binary metric in the sense that that replica is either synchronized with

the master or it is stale. However, in a wide-area network the most likely occurrence

is that the replica will be somewhat out of synch with respect to the master. The

key issue is to find a replica that is good enough to answer the query. If no such

replica can be found, then the query must be submitted to the master source. We

now present alternative freshness metrics, based on the work presented in [7]. We

customize these metrics to the specific environments in which AntFinder operates.

The treatment of the adequacy of these three freshness metrics for specific application

domains and their relative strengths is beyond the score of this project.

6.4.1 Data Update Rate

We can define data freshness in terms of the update rate at which the replica Si
j

updates against the master Si
0. In this sense, the replica Si

j frequently connects to

the master copy Si
0 to download the updates that must be applied to Ri. Let tu

denote the average time period between successive updates for table Ri at replica Si
j.

Similarly, let tl denote the time of the last update for Ri at Si
j. We can define data

freshness based on update rate as follows:

F (Ri, S
i
j, t) = min

{
t− tl
tu

, 1

}
(6.2)

Notice that F (Ri, S
i
j, t) ∈ [0, 1], with a value of 0 indicating a replica that is up-to-

date with the master, and a value of 1 indicating a completely stale replica. This

metric assumes a certain periodicity in the system, since new data is expected to be
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available at certain periods of time. Let t0, t1, ..., tn denote a sequence of time stamps

at which Si
j gets updated. The behavior of the update-rate data freshness metric can

be observed in Figure 6.6.

T0 T1 T2 T3
Time

Up
da

te
 R

at
e

0

1

Figure 6.6. Changes in update rate freshness.

Clearly, this metric is adequate for applications in which the replicas frequently

(but not necessarily within a fixed time period) visit the masters to get updates.

Examples include data sources that distribute stock market quotes every two to three

minutes, scores from sporting events, and temperature readings. The key issue in

these examples is that updates are expected as time progresses and the replicas are

expected to visit the master to get all the necessary updates to get back in sync.

6.4.2 Data Currency

Data currency measures the freshness of the data in terms of its age, which can be

used by the application to determine if the data is good enough to answer the query

at hand. For example, consider a football game between SF and NJ that is currently

in progress. If a data source S1 was updated a minute ago with the scores of the

game, and data source S2 was updated fifteen minutes ago, then S1 is more suitable

to answer the query: Get the current score for the game between SF and NJ. But if
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the game ended thirty minutes ago, then either replica has suitable data to answer it.

As before, let tl denote the time of the last update for Ri at Si
j. We can define

data freshness based on currency as follows:

F (Ri, S
i
j, t) = t− tl (6.3)

This is often called the age of the data [8]. In this case, the application needs to

specify what is the maximum value that is acceptable.

6.4.3 Data Obsolescence

Another method to express data freshness relies on knowing how many tuples have

changed at the master Si
0. This is the case for many append-only data sources, such

as weather trackers, movie clip databases (e.g., YouTube) or any other applications

in which the important issue is to have as many updates as possible. For example,

during an election night a user would like to know the results for a given candidate

but only if no more than 3,000 votes are missing from the master in order to establish

a winning tendency. Let ψ denote the average number of updates transactions that

are applied to a source Si
j per unit of time. Then we can define freshness at time t

based on the value ψ and the last update time tl as follows:

F (Ri, S
i
j, t) = (t− tl) ∗ ψ (6.4)

In this case, the closer we are to tl to more fresh the data source is.

6.4.4 Expressing Freshness in SQL

We can extend the syntax of SQL to support user constrains on the freshness of the

tables by introducing the notation FRESHNESS AT to qualify the freshness required by

the user. The proposed syntax is as follows:



85

SELECT [column list]

FROM [R1 FRESHNESS AT r], [R2 FRESHNESS AT s], ...

WHERE [predicate]

In this syntax, each table has an associated freshness value that must be met by the

data source selected to serve tuples. The specific freshness metric must be configured

as a system parameter. The following example illustrates this for the update rate

metric.

Example 6.4.1 A QSB at NY receives the following query:

SELECT R.a, R.b

FROM R FRESHNESS AT 0.2

WHERE R.a > 10

The replica at SD has an update rate of 0.1, while the data at NJ has an update

rate of 0.8. The master copy at SF has an update rate of 0. The middleware system

can serve the data from the copy at SD since it satisfies the constrain, or go to the

master copy. The replica at NJ does not satisfy the user request.

6.5 Experiments

In this Section we present a series of experiments that illustrate the benefits of using

AntFinder to help find fresh data in a middleware system. There are several questions

that must be answered before venturing into deploying a system like AntFinder into

a real setting. The first question to be raised is whether AntFinder is worth the

effort or if we are better off by simply asking each source for its current freshness.

Using either a centralized solution or flooding for finding freshness metadata are not

scalable options, so we focus on comparing our effort with the option of asking for

the metadata at run time. Notice that this is the most accurate method to find the

metadata. This leads to the second question, does our approach gives a QSB an

accurate picture about the data freshness of the data collections reached by one IG?.
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Next, we need to figure out if the freshness values of data collections at an IG are seen

consistently across the system by each interested QSB. Finally, we need to consider

if AntFinder can pick the data source that satisfies the freshness constrains expressed

by the user. The goal of this Section is to show initial evidence on the affirmative for

each these questions, and lay down the foundation for future research studies to gain

a more in-depth understanding of the system.

6.5.1 Simulation Environment

We implemented the code for AntFinder as a set of Java libraries (packages) inde-

pendent of the specific platform that is used for the database middleware system. We

used CSIM for Java to construct a detailed simulation environment for a database

middleware system, based on the architecture presented in Section 6.3.2. The main

reason for using this simulation is to better understand and control system dynam-

ics, under an environment that allows us to easily change critical parameters, repeat

tests, and quickly generate data for analysis. As part of our future work we plan on

coupling the system with a real prototype for a middleware system.

We developed five different models for our database middleware system, each

one having a different number of servers and connectivity between these. The first

model had sixteen servers, the second had twenty two servers, the third one had thirty

four servers, the fourth one had sixty servers, and the fifth one had five hundred

servers. Due to lack of space and in the interest of showing easy-to-follow charts we

will focus on the model with thirty four servers. This model has twenty six QSBs

and nine IGs.

We wrote all code in Java 1.5 SE using the Eclipse 3.4 IDE. The local catalog

used to store data freshness metadata was implemented as a relational database

managed with MySQL 5.0. The communication between the AntFinder code and

MySQL 5.0 was done via JDBC. The machine used to carry out these experiments
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was an Apple iMac running MacOS 10.5 (Leopard) with a 1.83 GHz Intel Core 2 Duo

CPU and 2GB of RAM.

6.5.2 Overhead in Freshness Lookup

The first set of experiments was designed to measure the overhead of simply asking for

the freshness from the each data source versus using the estimated freshness obtained

from the local catalog managed by AntFinder. For this purpose, we configured the

system to maintain a set of ten tables dispersed at random over the IGs, such that

each table was kept by at least two different IGs. Each IG would register an update

to each table at least once per hour, and not all tables were updated at the same

time. Each QSB selected at random the table whose freshness had to be inspected

and one IG that replicated that table. Then, the QSB sent ants to find the freshness

value for that table at that IG. We let the simulation run for a simulation time of

five weeks, and we present average values from ten independent trials.

Figure 6.7a shows the overhead in freshness lookup seen by QSB6, which we

chose to present here to illustrate what happens to a QSB that is located right in the

middle of the network. We present the update rate metric as the freshness metric.

The option labeled Run Time represents the average time (milliseconds) it takes

to directly ask for the freshness information for tables in each of the IGs targeted

by QSB6. The option labeled AntFinder corresponds to the time is takes to make

a local lookup. As we see, the option of using AntFinder is almost negligible since

we are simply making a local catalog lookup. As the size of the system grows and

the number of tables increases, and the distance between the QSB and target IG

increases and has more hops, the difference between these two options increases and

we start to get into the seconds range. Figure 6.7b shows similar information, but

this time as measured from the perspective of IG1. The results for the other metrics

were similar. Not surprisingly, making a local catalog lookup is the better option.
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Figure 6.7. Overhead incurred in looking for freshness.
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But, is this freshness information accurate? The next Sections address this issue.
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(b) One ant every half-hour.
Figure 6.8. Data Freshness behavior seen by QSB6.

6.5.3 Accuracy: the QSB Perspective

The second set of experiments was designed to compare the freshness value obtained

by ants sent from a QSB to a given IG, versus the real freshness value at that IG

obtained from a direct lookup. Figure 6.9 and Figure 6.8 show the results seen by
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QSB6. Figure 6.8a presents the update rate metric value for each target table Ri

in their associated IG Si
j. We ran experiments in which ants were launched every

hour and ever half hour. The dark bar depicts the real update rate value for the

target table at each IG and the pale bar shows the freshness given by the ants.

Figure 6.8b illustrates the results for the same setting but this time, the ants are

sent every half-hour. As we can see, when more ants are sent the accuracy of the

estimates increases. But notice the behavior with IG4 and IG6 in these two figures.

There is little difference in the two scenarios. The reason for this has to do the with

cooperative behavior of the ants. IG4 and IG6 are connected to QSBs located in

the middle of the network, having many peers. As a result, they are visited by many

ants from many other QSBs. Despite the fact the QSB6 sent ants less frequently

in the first case, its ants benefited from the trails formed by ants from other QSBs,

and were able to get a better picture of the freshness at these two IGs. This raises

an interesting issue in terms of how to tune the number of ants sent by each QSB. It

becomes clear that the update frequency of the sources, the number of hops to reach

a source, and the number of peers of the servers along the path have an influence

in this parameter. Figures 6.9a shows the results of the same experiments using the

currency metric and ants launched every half-hour.

Figure 6.10 shows the percentage of error in the estimates for the freshness

metrics in all the QSBs in the model. The dark bars show the error for the cases

in which ants were sent every two hours, and the pale bars corresponds to the case

in which ants were sent every half-hour. We can see from Figure 6.10a that the

percentage of error goes down without having to send ants at the level of minutes or

seconds. In fact, by sending ants every half-hour we can bring the error below 10%.

The same pattern is observed for the currency metric in Figure 6.10b and obsolescence

metric in Figure 6.10c.
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Figure 6.10. QSB Cumulative Estimation Error.
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6.5.4 Uniformness: the IG Perspective

The next experiments aim at determining if the freshness of a given IG is seen con-

sistently by a group of QSBs that have interest on it. In this case, we chose a table

stored at an IG and then sent ants from a set of QSBs to find out its freshness. Like

in the previous example, the IG would register an update to each table at least once

per hour, and each QSB sent its ants at different times. We let the simulation run for

a simulation time of five weeks, and we present average value from ten independent

trials.

Since the trends are similar in every IG, we only show here the results for IG1

in Figure 6.11 and Figure 6.12, the other ones can be found in Appendix A. Figure

6.11a shows the results for the update rate metric when the QSBs sent one ant every

two hours, and Figure 6.11b corresponds to the case in which ants are sent every

half-hour. Notice how consistent is the picture about the freshness of our target table

among all five QSBs. The values in Figure 6.11b are more accurate than those in

Figure 6.11a because more ants are sent to explore freshness. But as in the results

from Section 6.5.3, we see from Figure 6.11a that some QSB see a very accurate

freshness despite sending few ants. These are QSB12 and QSB7. Once again, the

cooperative behavior of ants benefits these QSBs. Figures 6.12a and 6.12b show the

results for the currency and obsolescence metric, respectively.

6.5.5 Choosing the Right Replica

The final set of experiments was made with the goal of finding out if AntFinder would

tell a QSB the correct data source to use to accommodate freshness requirements.

For each QSB that had access to tables that were replicated, we generated lookups

into the local metadata generated by AntFinder to ask for the data with smallest

freshness values that satisfy the specific freshness constrains in a randomly generated

query. This processes generated a total of twenty nine different requests throughout
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Figure 6.11. Data Freshness for IG1 as seen by the system (Part 1)
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Figure 6.12. Data Freshness for IG1 as seen by the system (Part 2).
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the system. For each query, we recorded the answer provided by the AntFinder lookup

operation and compared it the with right answer, which we obtained by inspecting

the actual freshness value at the target IG. We repeated this process ten times for

each of the three metrics. The results are presented in Figure 6.13. As before, we

present results for cases in which ants were sent once every two hours and once every

half-hour. Notice that the system is more successful when the freshness metric is

update rate or currency. Also notice that even if the actual freshness in the QSB

is somewhat off with respect to the actual value (see Section 6.5.4), the important

issue is to be able to choose the source with the smallest freshness that satisfies the

request. Thus, precise freshness values appear not to be as important as the getting

right which source is the one with most fresh data.

!"#$ %&''$()* +,-./$-)$()$

01.23.&'- !!" !!" !#"

3"/423.&' $%%" $%%" !!"

5$#'6)
7)$("'6.

Figure 6.13. Success rate for choosing the right replica.

6.6 Discussion

There are several issues that must be addressed in order to improve the capabilities

of AntFinder. This discussion provides some perspective of these issues and raises

possible research that should be conducted.

Strategies to launch ants: The number of ants that reach an IG influences

the accuracy of the freshness metrics. Our results indicate that by increasing the

number of ants sent by the QSB the value of the freshness is much better approxi-

mated. But this is not the only factor to take into consideration. A QSB that has

many peers benefits from the work done by the ants sent from its peers. In addition,
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the number of hops between an IG and QSB influence the travel time of the ant.

The longer this path is, the more time is takes the ant to get back to the QSB to

update the freshness statistics and accuracy is affected. There is a need for an adap-

tive method to control the process that launches ants from each QSB. One approach

would be to monitor the error between the current observation of an ant that reaches

an IG Si
j from a QSB B and the value stored in the catalog at B. If this error goes

above a threshold ε then the rate at which ants are sent from QSB B to IG Si
j gets

increased. Conversely, if the error is very small, then the QSB might opt to reduce

the rate of launching and see from the next round of ants if the error is still within

acceptable limits.

Overhead of the ants: An individual ant carries little overhead since it only

inspect in-memory data structures (i.e., the pheromone matrix and statistical model)

and updates a few tuples in the catalog of the QSB. But still, this overhead is not

zero and it can accumulate rather fast if way too many ants are launched on the

system. By sending ants to inspect the current freshness state of the system we end

up consuming network, CPU, memory and disk resources that could otherwise be

used to process queries. Care must be taken not to overflow the network with too

many ants, resulting in reduced system throughput. The tradeoff we are seeking is to

incur in a small overhead in order to access fresh data to satisfy user requests. If we

run queries on stale data then we are also wasting resources since the query results

have little value for the user. We need to characterize the overhead incurred by the

ants and compare it with the cost of giving the wrong answer to figure out a control

mechanism to hit the break on the processes of launching ants.

Space requirements for the pheromone matrix: We have assumed that

the pheromone matrix is an in-memory data structure. Still, we need to investigate

the space requirements of this matrix as the number of tables, data sources and

QSBs increases to determine if this is a feasible solution. If not, we need to explore
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techniques to only load into memory those portions of the matrix that are most

frequently used and read the rest from disk as needed.

Integration with performance metrics: In addition to using fresh data,

the user most likely wants to get his/her query resolved quickly. Hence, performance

must be taken into consideration at the moment of choosing the data sources that will

be handed to the optimizer for plan generation. There must be a balance between

the freshness of the data sources and their performance. Moreover, we must also take

into consideration the performance of the QSBs. It would be unfortunate to give

the optimizer a list of data sources with very fresh data but severely overloaded with

query requests. We are currently investigating this issue by defining a cost metric

that weights in the freshness of the data with the performance of the candidate sites

to run the queries. We expect to report on this issue in a future paper.

Ability to meet desired freshness: The master copy always has the latest

updates, and could be used to answer queries if no other replica meets the freshness

constrains imposed by the user. However, if the replicas are slow to get updated,

then care must be taken not to route all queries to the master copy since it will get

overloaded. In fact, if every request has to go to the master, then the replication effort

is not useful at all. We need a protocol to control when can the freshness guarantee

be met, and when should the system simply return an empty result set indicating

that no sources could be found to meet the freshness constrains. Alternatively, the

system might enqueue the query to be executed at a later time when the sources get

updated or the master gets unloaded. In any event, the user should receive feedback

and the application must be designed to handle this situation.

Security: Having ants move between QSBs and IGs opens the door for a

malicious ant to damage the pheromone matrix or consume local resources at the

host QSB. In our implementation, the ant moves by simply creating a copy at the

destination and transferring its memory state. Still, the potential for security breaches
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is there. We need to develop a security model and sandbox architecture to make sure

ants do not pose a threat to the QSBs and IGs. Right now, AntFinder runs as a

separate thread inside the QSB or IG. Alternatively, we can run AntFinder as a

separate process form the QSB or IG. A third approach is to run AntFinder in a

machine different from the QSB or IG but located in the same LAN. Admittedly, we

need more research into the security aspects of AntFinder.

6.7 Summary

In this Chapter we have explored the problem of developing a scalable mechanism that

enables a database middleware to find replicas with data compliant with a required

freshness value given by the user. As solution to this problem, we have presented

AntFinder, a decentralized framework for finding the data collections that satisfty

data freshness constrains. When a query Q is submitted into an integration server,

this server makes a local catalog lookup to find the freshness of the candidate data

sources and picks the one that satisfies the freshness constrains in the query. To

maintain freshness information in their local catalogs, the data source servers and

query processing servers form a social network that empowers them to share freshness

metadata from multiples sites in the system. The freshness metadata are collected by

autonomous software robots called artificial ants, that mimic the behavior of real ants,

as modeled by the Ant Colony Optimization (ACO) paradigm. The behavior of these

ants enables autonomic operation because the ants autonomously move around the

system discovering data source sites and data freshness values associated with target

data collections. We implemented AntFinder as a Java library and tested it with

a CSIM for Java simulation of a database middleware system. We have conducted

experiments that indicate that the freshness values obtained by the ants are accurate

when compared with the real values at the sources. In fact, we can obtain an error

of less than 10% for the estimate of freshness values. Moreover, AntFinder picks the
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right data source to serve the fresh data for a given table in at least 98% of the cases

we tried. This shows promise as a solution for a wide-area environment and more

research shall be conducted to improve the capabilities of AntFinder.



CHAPTER 7

Strategies for Launching Ants and

Sharing System Knowledge

7.1 Overview

This Chapter presents the issues related with the problem of how to find a good strat-

egy to launch the artificial ants over a middleware system. First, we explain every

strategy used and explain how could each one be improved. Then, we discuss experi-

ments carried out on an implementation of AntFinder in Java, that was deployed on

a simulation built with CSIM for Java.

7.2 Introduction

Finding metadata about the performance characteristics of servers and data freshness

of the data sources involves overhead since one must visit the servers to inspect the

appropriate parameters. This means that the process of finding the metadata steals

computational resources and network bandwidth from the jobs that perform query

processing. The tradeoffs that one must explore is how to collect these metadata

while being as little intrusive as possible. In the area of performance evaluation this

effect is called perturbation, and methods are proposed to reduce the level of system

101
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intrusion while instrumenting a system to collect performance data [48, 31, 66].

In the work on AntFinder that we presented so far, we have not considered the

effect of this overhead. However, our experimental results indicate that by increasing

the number of ants we get a more accurate picture of the system. But, how many

ants should be sent to ensure accurate results yet not stall query processing? Recall,

that in the Chapter 6 we presented results that indicate that a QSB located in the

middle of the network does not need to send as many ants as others located on the

edges. What are the strategies needed to launch ants?

Another question that must be raised in whether an ant needs to complete

its journey from site u to site v to collect the metadata or if it can simply read

this information from some cache located in the network. If so, how accurate is the

metadata compared with the ants that complete a full trip? In this Chapter, we

investigate these two questions.

7.3 Ant Launching Strategies

In this Section we discuss several strategies that can be used to launch ants to the

system from each QSB u ∈ V . The basic idea is to discretize the process of launching

ants in terms of a sequence of rounds ρ0, ρ1, ..., ρt−1, ρt, ρt+1, ..., such that χ number

of ants are launched during each round ρt. This scheme is illustrated in Figure 7.1.

Recall that AntFinder is a decentralized system. Hence, each QSB has its own set of

rounds occurring at different intervals. That is, given two QSB u, v ∈ V , the rounds

of u are not synchronized with the rounds of v. Each one is sending ants at its own

pace without knowledge of ants from rounds belonging to other QSBs. Rounds can

occur in serial mode and concurrent mode. When the QSB operates in serial mode a

round ρt cannot begin until the round ρt−1 completes, as shown in Figure 7.1. Thus,

the ants from round ρt cannot be launched until the ants from the round ρt−1 complete

their trip to the target destinations. This schemes simplifies the implementation, but
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its major drawback is that it limits the speed at which the system can be explored.

For this reason, we used a concurrent mode, where two rounds ρt and ρt′ can overlap,

as illustrated in Figure 7.2. In fact, more than two rounds can overlap and these need

not be consecutive. This enables the metadata from rounds that complete quickly to

be incorporated into the system as soon as possible, while rounds from ants that visit

remote locations take longer to be completed. One of the advantages of this scheme

is that ants that follow an efficient path quickly influence the pheromone matrix and

the statistical model of the nodes on that path.

Time

ρ1 ρ2 ρ3 ρ4

Figure 7.1. Rounds for launching ants (serial mode).

There are two options to determine the number of ants χ launched from each

QSB site u. The first option is to let χ be a constant value c, which can be a global

parameter for all QSBs, or can be locally defined parameter tuned specifically for

each QSB. The second option is let χ be a number drawn from an exponential

random variable X with a mean µ, emulating ants as packets travel through the

network [40, 65, 53]. In this case, the mean µ can be a global parameter, or a local

one specific to each QSB. In this work, we use the second option with µ being a

global parameter. Developing a methodology for finding the right value for constant

c or mean µ is beyond the scope of this dissertation.

7.3.1 First strategy: One Ant per Round

In this first strategy, illustrated in Figure 7.3, given a QSB u we sent one ant to

a destination IG v that is chosen randomly from a pool of b possible destination

IGs. Note that if u can reach b destinations, then we need to run at least b rounds
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Figure 7.2. Concurrent mode for rounds to launch ants.

to obtain information about all these destinations. Clearly, the information about

the system could be of poor quality if multiple changes in freshness or remote server

performance metrics occur during the current time window. When we implemented

this strategy, we were concerned about possible bias resulting if the system sent ants

in a particular order that could lead to a cyclic order of visits. Also, we were concerned

about repeating the same server multiple times if the selection was totally random.

For these reasons, our approach was to plan a set of b rounds, execute them, and

then plan the next b rounds. During each planning phase, a given destination v is

associated with a given round ρt, such that every destination is visited once in each

set of b rounds. The order in which a destination v gets visited is different between

successive groups of rounds.

Table 7.1 contains an example explaining the ideas presented above. Consider

a situation as illustrated in Figure 7.3, where QSB1 is sending ants with this strategy

to three IGs: IG1, IG2, IG3. First, the QSB1 finds all known destination IGs at

that moment in time, extracting the column identifiers from the pheromone matrix

Tu. Then it plan a series of rounds to visit the system. In this case, obtaining

the metadata (about a desired metric) from all destinations would take three rounds.

Thus, it first plans three rounds, executes them, plans the next three rounds, executes

them, and so on. Table 7.1 show the process for rounds divided in groups of three,

required to visit the IGs IG1, IG2, and IG3. As we see in Table 7.1, the order used
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Figure 7.3. One ant per round.

by the QSB to send ants over the rounds is changing, and by doing this, we can

ensure that the ants are trying to reach all possible destinations during a number of

b cycles, 3 in this case.

Table 7.1. Example of Ant Launcher Schedule using One Destination per Round

Round Destination

ρt IG1

ρt+1 IG2

ρt+2 IG3

ρt+3 IG2

ρt+4 IG1

ρt+5 IG3

ρt+6 IG1

ρt+7 IG3

ρt+8 IG2

We consider this strategy to be the least invasive, having the smallest level of

intrusiveness and impact on the query workload of the system. However, it has its

drawbacks, particularly if the system is large and each node has many destinations.

For nodes that can reach many destinations this strategy is particularly weak because
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many rounds must occur before reliable metadata are obtained. In contrast, nodes

with fewer destinations can trust their metadata earlier. This means that the quality

of the metadata can be quite variable between different nodes at a given point in time

t.

7.3.2 Second Strategy: One Ant per Destination per Round

In this strategy, given a QSB u we send one ant, in random order, to every destination

IG v that can be reached from u (i.e., those IGs with data that QSB u needs to

access). Figure 7.4 illustrates the strategy. In this case, in just one round we get

metadata about all the nodes that can be reached from u. Of course, an ant might

die in the her trip, so getting metadata from all target sites in a given round ρt is

a best case scenario. Notice that for each combination of nodes u, v ∈ V we are

exploring one possible path in any given round ρt. Successive rounds will enable the

system to explore alternative paths for each combination of nodes u, v ∈ V . Thus,

during the normal operation, the first round ρt for a QSB u would yield metadata

about its target IGs, but the consistency of the metadata is uncertain. Successive

rounds will make the metadata more consistent with the real behavior of the system

parameter (i.e., performance, freshness).

Table 7.2 depicts the process to send an ant per destination in a given round.

As before, the first step is to inspect the pheromone matrix TQSB1 to build a list with

the identifiers of all target destination IGs. Then, the QSB schedules a different ant

to visit each destination v in this list. We have two options to control this process.

In this first option, the QSB can send all ants at the same time. Since AntFinder

is a multi-threaded system, the QSB would need to allocate one thread of execution

to each ant. This means that a QSB with many destinations (IGs) will have to

spend many threads to complete this process, and a lot of computing resources will

be spent. A second option, is to group the ants into smaller groups and send these at
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Figure 7.4. One ant per destinations per round.

the same time. For example, suppose we are currently in round ρ2 at a QSB u with

twenty destination IGs. Rather than sending all twenty ants at the same time, we

can divide the process into first sending ten ants and then sending the remaining ten.

This way, we control the amount of threads of executions consumed by AntFinder.

In our implementation, we used the second option. In fact, we had to used it because

we were getting errors at run time because the Java Runtime Environment (JRE) ran

out of threads for QSBs with many destination IGs.

Table 7.2. Example of Ant Launcher Schedule using One Ant per Destination per
Round

Round Destination

ρt IG1, IG2, IG3

ρt+1 IG2, IG1, IG3

ρt+2 IG3, IG1, IG2

ρt+3 IG2, IG2, IG1



108

This strategy is more invasive than the first one and therefore the level of

intrusion of the ants in the system workload increases. However, it has the advantage

that in a few rounds, it obtains information on every IG. Notice that since many

QSBs are launching ants from different location in the system, the pheromone ma-

trices at these QSBs get updated more frequently and their consistency gets better

in a shorter period of time.

7.3.3 Third Strategy: Multiple Ants per Destination per

Round

In the third strategy we randomly sent Ku ants to every destination v that can be

reached from a QSB u in each round ρt. Recall that the ants choose the paths in the

forward direction using the pheromone trail. Hence, we can only guarantee that the

number of ants that are sent during a round ρt from a node u to a destination v is

proportional to the number of possible neighbors that can reach node v, and which

have been previously discovered by the ants and stored in the pheromone matrix.

Now we will explain this methodology in detail. This strategy requires two

steps: preparation phase and shipping phase. During the preparation phase we must

define the destinations to be visited by the ants. Also, we need to establish the

number of ants that should be sent to each destination. The destinations to which

the ants can go are given by the identifiers of each column of the matrix of pheromone

Tu. Furthermore, we define the number of ants sent to a destination v as the number

of positions that have the column v of the pheromone matrix Tu greater than zero.

This actions complete the first phase, then we know how many ants to sent to each

destination during the round. During the second phase, there are two options: to send

all ants at the same time, or to sent the ants concurrently in random order during

the round. In our implementation we used the second method to reduce the number

of required threads of execution, reduce congestion during shipping, and avoid the
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negative impact on the workload of the node.

Figure 7.5 illustrates what would happen in a full round when we use this

strategy. In the preparation phase the system generates the information shown in

Table 7.3. Meanwhile, Table 7.4 shows an example of how the ants would be sent

during the round. In this particular example we have three potential outcomes for a

destination v after the round:

• There is only one path available to reach destination v, and only one ant is sent

along this route, as in the case of IG3.

• There are multiple paths to reach destination v, and ants are sent to all pos-

sible available neighbors to reach node v from node u. This is the case of the

IG1, where two ants were sent and they took different paths (QSB1, IG2) and

(QSB1, QSB3, IG2) to be explored.

• There are multiple paths to reach destination v, and ants are only sent to several

but not all of the them. In fact, it might be the case that two different ants

follow the same route. This situation happens in the case for IG2, where two

ants were sent during this round and they will generate information about the

path (QSB1, QSB2, IG1) but not about the path (QSB1, QSB3, IG1) .

This strategy launches many ants per round, and we can expect the pheromone

matrix and statistical model at each node u to get accurate values in a short period of

time. But the strategy is the most invasive of all and therefore the level of interference

may affect the service quality for the workloads of the system.

Table 7.3. Phase 1 Results using Multiple Ants per Destination

Destination IG1 IG2 IG3

Number of Ants 2 2 1
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Figure 7.5. Multiple Ants per Destinations per Round.

Table 7.4. Example of Ant Launcher Schedule using Multiple Ants per Destination

Round Destination

ρt IG1, IG2, IG3, IG1, IG2

ρt+1 IG2, IG1, IG1, IG3,IG2,
ρt+2 IG1,IG3, IG2, IG1, IG2

7.3.4 Launching Frequency

The final item to be discussed in the Section is the frequency by which we begin

rounds. As mentioned before, was cannot guarantee that a round ρt will have a

specific time duration T . Instead, we can control how frequent rounds are started at

each QSB u. We call this parameter the round frequency, which is measured in time

and denotes the frequency for starting new rounds. For example, a QSB u might have

a round frequency of thirty minutes. This means that new rounds are started every

thirty minutes. Other QSB u′ might have a round frequency of one hour. Notice

that it might be the case that a round ρt+1 gets started before a previous round ρt
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completes. This is a natural consequence of the fact that the paths between nodes

have variable size and the time it takes for the ants to traverse these paths is variable

as well.

7.4 Collecting Parameters from Caches in the Sta-

tistical Model

We have already discussed how AntFinder can be used to find metrics such as per-

formance and freshness on the middleware system. We recognize that the number

of ants to be launched by every node u per unit time and the strategy used to send

them greatly influences the accuracy of the estimated metrics.

Our results show that by increasing the number of ants sent by each QSB

we get an increase in the expectations for estimators approximating the reality (i.e.,

reduced error). However, we observed as well that some nodes had more visitants

and launched more ants than others. For example in Figure 7.6, QSB1 has many

connections and hence a heavy load situation unlike other nodes with less connections

such as QSB9 that has a lighter load situation. Consequently, we must be careful to

not overflow some nodes with too many ants, resulting in reduced system throughput,

while in other cases underflowing some nodes, diminishing the quality of estimators

for some areas on the middleware system. Next we explain our approach to deal with

this issue and the possible scheme to improve the our basic ACO-based approach for

estimating freshness and performance parameters.

7.4.1 Cooperation between ants with Polydomy

The basic biological model used during the development of this thesis was based on a

colony of ants in one nest or monodomy. The system consisted on several independent

colonies, each having one nest, located at a QSB. Cooperation between the ants was

limited to influencing the pheromone matrix and statistical model in each QSB.
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Figure 7.6. Variable Loads Example

However, our computational problem, in this case seeking metadata throughout a

system of distributed databases, is considered more broad and complex. The question

that must be raised is whether we can add more cooperation between the ants without

having direct communications between individual ants. When searching for a similar

biological model to help us find better solutions, we found a model for ant behavior

known as polydomy.

The authors in [18] define polydomy as an arrangement of an ant colony in

at least two spatially separated nests, as illustrated in Figure 7.7. By acquiring a

polydomous structure, a colony may increase its rate for capturing of resources (food

or nest sites) by the expansion of its foraging area and increased efficiency of foraging.

Ants from one nest might visit another nest belonging to the same colony to get food.

In fact, ants from one nest that has little food might go to another nest (from the

same colony) with plenty food and transport the food back to their food deprived

nest.

By allowing the colony to forage over a greater area, polydomy also allows the
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diversification of food resources, and thereby strengthens opportunism in foraging

and the stability of the colony’s food supply. Social insect colonies have frequently

been considered as central-place foragers, similar to some solitary animals [36]. How-

ever, polydomous ant societies diverge from the classic central-place model because

the different nests of a colony are often not aggregated in one central place. This

real behavior maps better our middleware architecture, and provides a framework

to extend our notion of food. Now the food will not only be the metadata at the

IGs, but also cached metadata located at QSBs belonging to the same federation

of cooperative QSBs. This cached metadata will be used by ants to avoid making a

full trip to the target IGs. Instead, the ant will inspect the cached metadata record

and if it is still valid, the ant will use this metadata record to update the pheromone

trails and statistical model of the nodes in its path back to the QSB that launched

it.

Nest 1

Nest 2

Nest 3 ANT COLONY

Nest 4

Figure 7.7. Polydomy in Ants
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7.4.2 Lazy Ants: Improved Search Algorithm

Polydomy enables us to enhance the ants’ cooperative behavior without breaking the

indirect communication assumption, and then we can take advantage not only of the

pheromone matrix Tu, but also explode the statistical model Mu as a cache tool,

in an effort to improve the ant launching strategies. Specifically, the behavior that

we desire is for an ant X traveling from node u to node v to reach intermediate

node w and inspect the statistical model Mw. In this object Mw there will be a

cache containing recent observations from the system. If this cache has an entry

for the value parameters of w and this entry is not expired, then the ant X takes

this value as good, and then generates the backward ant Y to begin the process of

updating the pheromone trail and statistical model along the return path. If the

cache item is expired, the forward ant X will continue the journey as usual until it

reaches destination v, as shown in Figure 7.8. But, if the cache item is valid the trip

is shortened and the ants returns earlier, as shown Figure 7.9. We call this method

lazy ants since the ants attempt to avoid doing the whole trip to the destination.

This new methodology produces changes in the original algorithm in both

phases: the Solution Construction Phase and on Update Phase. Figure 7.10 presents

the original search algorithms, while Figure 7.11 shows the lazy ants approach. In

the original algorithm, an ant going from node u to node v only stops searching when

it reaches the node v, as shown in Figure 7.10, line 3. In the new algorithm, the ant

that goes from node u to node v stops searching when:

• it reaches the node v or,

• it stops earlier if one of the nodes w found during the trip has unexpired cached

information about the destination v

This is illustrated in Figure 7.11, line 3. If this ant finds information that is not

expired, she stores in its memory and then she starts the Update Phase and refreshes
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the Pheromone Matrices T and the Statistical ModelsM over all path, as would occur

when the ant reaches the destination v. At this stage there are also differences between

the algorithms, although not seen directly on Figure 7.11. as would occur when the

ant reaches the destination We explain the differences next, using an example.

u

vwantX

antY

u→v

Figure 7.8. Traditional Ants Behavior

Figure 7.12a shows an example in which the forward ant with destination node

v4 moves along the path v1 → v2 → v3 and arrives at node v4. Then it generates a

backward ant from node v4 to v1, following the path v4 → v3 → v2 → v1, as we can

see from figure 7.12a, we explain the details of the Update Phase before in Section

4.5. Now, we illustrate one example with the Lazy Ants Algorithm. Figure 7.12b

shows an example in which the forward ant with destination node v4 moves along the

path v1 → v2 and there, she find information not expired about node v4. Then it

generates a backward ant from node v2 to v1, following the path v2 → v1, as we can

see from figure 7.12b.

At each node vi, i = 2, 1, the backward ant uses the stack S1→4(vi) to up-

date the values M and T . Specifically, at node v2, the backward ant updates the

u

v
wantX

antY

u→v

Figure 7.9. Cooperative Ants Behavior
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Launch Forward Ant(u, v);

1 for each(ActiveForwardAnt(u,w, v))
2 do
3 while (w 6= v)
4 do
5 next← Select Next(w, v);
6 move(w, next);
7 memory ←Memorize(next, cost);
8 w ← next;
9 Launch Backward Ant(v, u,memory);

Figure 7.10. Initial Approach

Launch Forward Ant(u, v);

1 for each(ActiveForwardAnt(u,w, v))
2 do
3 while ((w 6= v)||(newInfo == NULL))
4 do
5 newInfo← Search Information(w, d);
6 if (newInfo == NULL)
7 then
8 next← Select Next(w, v);
9 move(w, next);

10 memory ←Memorize(next, cost);
11 w ← next;
12 else
13 memory ←Memorize(newInfo);
14 Launch Backward Ant(v, u,memory);

Figure 7.11. Lazy Ants Approach
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statisticsM2 (µ24, σ
2
24, P24, F24) and the pheromone trail T2 directly at position τ234

and all other τ2j4, where j ∈ N2 and j can connect to node v4. Notice that in the

first case (i.e., w = 2), the algorithm just updates the tuple (µ24, σ
2
24, P24, F24) of

statistical model M2. In the second case, the entry τ234 of T2 is update directly, and

all other τ2j4 are adjusted because of the normalization necessary to make the sum

of all τ2j4 equal to 1. In the original schema, the backward ant should have updated

M2 (µ23, σ
2
23, P23, F23) and the pheromone trail T2 directly at position τ233, and all

other τ2j3 are adjusted because of the normalization necessary to make the sum of all

τ2j4 equal to 1, but she does not have this information, since they just have aggregate

information about the path between v2 and v4.

The same explanation applies for the case node v1, in which the update is done

to:

• M1 (µ14, σ
2
14, P14, F14) and the pheromone trail T1 directly at position τ124 and

indirectly all other τ1j4, where j ∈ N1, and j can connect to node v4.

• M1 (µ12, σ
2
12, P12, F12) and the pheromone trail T1 directly at position τ122 and

indirectly all other τ1j2, where j ∈ N1, and j can connect to node v2.

And because lack of information, the update is not done to:

• M1 (µ13, σ
2
13, P13, F13) and the pheromone trail T1 directly at position τ123

This new algorithm can launch ants using any of the strategies presented in

Section 7.3 and then the question here is: when we use it, is it the quality of the

results the same as when we used the original ACO-based algorithm? Is it the new

amount of ants enough to reduce congestion and interruptions on the workload in the

system? We shall answer these questions in the next Section.
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1 2 3 4

Forward (1             4)

Backward (4             1)

(a) Original

1 2 3 4

Forward (1             2)

Backward (2             1)

(b) Improved
Figure 7.12. Structures Update Phase.

7.5 Experiments

In this Section we present a series of experiments that validate the ideas presented in

Sections 1,2 and 3 of this Chapter. Initially we will explore the differences between

the three methodologies to send ants by using a fixed round frequency. Next, we

show the behavior of our approach when the round sending times are changing and

finally label we want to explore how work the algorithm of cooperative ants. The first

question is whether the quality of the metadata found by the ants using our original

algorithm is superior to the metadata discovered by the new algorithm? The second

question, there is a significant reduction in sent ants when they new algorithm? The

last question is whether the ants cooperating to reduce congestion and the intrusion

into the system without drastically deteriorated the quality of metadata obtained. In

all cases, also we using this simulation tool, before venturing into deploying a system

like AntFinder into a real setting.
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7.5.1 Simulation Environment

We implemented the code for AntFinder as a set of Java libraries (packages) inde-

pendent of the specific platform that is used for the database middleware system. We

develop five different models for our database middleware system, each one having a

different number of servers and connectivity between these. The first model had six-

teen servers, the second had twenty two servers, the third one had thirty four servers,

the fourth one had sixty servers, and the fifth one had five hundred servers. We will

focus on the model with thirty four servers. This model has twenty six QSBs and

nine IGs.

7.5.2 Basic Ant Launchers

The first set of experiments was designed to compare the three basic strategies to

launch the ants throughout the network. For this purpose, we let the simulation

run for a simulation time of four weeks, and we present average values from ten

independent trials. In this case, as in Section 5.3.5, we choose Pareto Bounded as a

probability distribution for simulate the service time at any node and to the travel

time and we sent the ants using the exponential distribution [40, 65, 53]. In all trials

we used one hour as frequency round.

One variable to explore is the average number of ants that visit each node

u ∈ V . Our hypothesis on this variable is that average number of ants visiting each

node is statistical different for each strategy, and warrants further investigation to

determine different tradeoffs in the presence of different update rates for the freshness

and performance statistics. Figure 7.13 shows how the first strategy sends fewer ants

during each round, and therefore is the least invasive. On the other hand, the third

strategy is the more invasive since with it, we send considerable more ants during

each round. Using One-Way Analysis of Variance (ANOVA) as a way to test the

equality of three means at one time by using variances, we can conclude that this
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difference has statistical significance, given that the p value is less than 0.05 at the

95% of confidence level. (see Figure 7.14).
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Figure 7.13. Average Attended Ants by Node

Another variable that we want to explore is the quantity of nodes that suffer

some level of congestion. To explore this situation we store the number of nodes (QSB

or IG′s where the ant needed to wait for service (when the queue length was greater

than zero). Our hypothesis on this variables is that average of this measure is different

for each strategy. As expected, the first strategy presents the lowest value and the

third one highest. Figure 7.15 validates our reasoning and using a Anova One Way we

can conclude that this difference has statistical significance at the 95% of confidence

level, given that the p value is less than 0.05. (see Figure 7.16). Then, again we

conclude for this scenario that the first strategy is the less intrusive and the second

and third are the more intrusive. Additionally, we did not find differences between the

second and third strategies. In this case, all the runs for this two strategies presents

the same number of nodes with queue length greater than zero.

In terms of the quality of the metadata obtained by the ants, we next measure

the pheromone matrix consistency, which measures how often the pheromone trail

leads to the shortest path that is found using Dijsktra’s Shortest Path algorithm.

This measure is a percentage of the how frequent these two paths coincide. We expect



121

Analysis of Variance for Attended Ants by Node

Source DF SS MS F P

Strategy 2 535216481 267608240 2.6E+05 0.000

Error 27 27779 1029

Total 29 535244260

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ---+---------+---------+---------+---

0 10 2137.1 16.0 *

1 10 8878.4 41.6 *

2 10 12304.8 33.2 *

---+---------+---------+---------+---

Pooled StDev = 32.1 3000 6000 9000 12000

Figure 7.14. One-way ANOVA: Attended Ants versus Strategy
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Figure 7.15. Nodes with Queue Length greater than zero.

Analysis of Variance for Node with Queue Length greater than zero

Source DF SS MS F P

Strategy 2 2148.067 1074.033 7631.29 0.000

Error 27 3.800 0.141

Total 29 2151.867

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev -----+---------+---------+---------+-

0 10 13.100 0.568 *)

1 10 31.000 0.000 *

2 10 31.100 0.316 *)

-----+---------+---------+---------+-

Pooled StDev = 0.375 15.0 20.0 25.0 30.0

Figure 7.16. One-way ANOVA: Node with Queue Length greater than zero.
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on this variable that the average of this measure is different for every strategy, and we

anticipate that the first present the the lowest value and the third one highest. Figure

7.17 shows the consistency for each of the strategies. Meanwhile, Figure 7.19 shows

similarity between in the total cost of paths found by the ants and the shortest path

given by Dijsktra. Figure 7.17 and Figure 7.19 validate our ideas but the difference

between them is less than expected, since in this case this diference is the less than

1.5 % in average. Using a Anova One Way we can not conclude that this difference

has statistical significance, given that the p value is more than 0.05. (see Figures 7.18

and 7.20).

We expected the results from the first strategy to be worst than the rest.

But these results contradict our assumption. This lead us to further investigate the

issues, and we found that the average measurements were favoring the first strategy.

Specifically, we found that nodes that had many destinations had poor values while

nodes with few destinations did when we used the first strategy. Thus, the good

results from nodes with few destinations were hiding the problems at nodes with

many destinations.
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Figure 7.17. Pheromone Consistency for Basic Launch Strategies
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Analysis of Variance for Pheromone Consistency

Source DF SS MS F P

Strategy 2 0.000702 0.000351 2.89 0.073

Error 27 0.003282 0.000122

Total 29 0.003984

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ---------+---------+---------+-------

0 10 0.97660 0.01208 (--------*--------)

1 10 0.98830 0.01369 (--------*--------)

2 10 0.98404 0.00561 (--------*--------)

---------+---------+---------+-------

Pooled StDev = 0.01103 0.9760 0.9840 0.9920

Figure 7.18. One-way ANOVA: Pheromone Consistency versus Strategy.
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Figure 7.19. Similar Cost Paths for Basic Launch Strategies

Analysis of Variance for Percentage of Cost lest than expected

Source DF SS MS F P

Strategy 2 0.000845 0.000423 1.18 0.323

Error 27 0.009676 0.000358

Total 29 0.010521

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev --------+---------+---------+--------

0 10 0.93936 0.01946 (---------*---------)

1 10 0.94787 0.01769 (---------*---------)

2 10 0.95213 0.01958 (---------*----------)

--------+---------+---------+--------

Pooled StDev = 0.01893 0.936 0.948 0.960

Figure 7.20. One-way ANOVA: Percentage of Cost lest than expected.



124

7.5.3 Effects by Changes on the Round Frequency

All the experiments presented until now use one value for round frequency, but we

want to explore the impact of this variable over each strategy. When rounds frequency

is varied, we observed the following changes:

• the quality of metadata decreases as the round frequency decreases (using the

same measures as before), although all them are above 90%. (see Figure 7.21).

• the number of ants that visit each node increases, but strategies two and three

show similar numbers (see Figure 7.22). It appears that the method of capping

the number of ants based on the available threads controls the number of ants

that can be sent, and we do not observe

• the nodes with queue length greater than zero decrease far rapidly for strategy

one, but the other two take longer to reach zero (see Figure 7.23).

The ANOVA plots for each of these three figures that we just presented can be found

in Appendix C.
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7.5.4 The Lazy Ants Evaluation

This set of experiments were designed to compare the three basic strategies to launch

the ants throughout the network with the new improved algorithm presented in Sec-

tion 7.4. For this purpose, we let the simulation ran for a simulation time of four

weeks for both versions, after a warm up period of twelve hours and we present av-

erage values from ten independent trials. Besides, we run these algorithms changing

the round frequency.

Our hypothesis about congestion(i.e., nodes with queue length greater than

zero) was that this measure is significantly less for the lazy ants approach. The new

algorithm reduces the average but this measure does not have the same behavior for

all strategies. This results is expected, given we do not evaluate the size of the queue.

In this case, we suggest new experiments as future work to investigate more details

about it.

Our hypothesis about the average ants visiting each node, was that this mea-

sure is less for for the new algorithm. The new algorithm reduces the average attended

Ants by Node in the first strategy approximately 40% of the attended Ants by Node,

in the second one approximately to 65% and in the third one approximately 67% , as

show figures 7.25a, 7.27a and 7.29a. This results is quite promissory, since the level

of intrusion is reduced too, independently of the ant strategy to be use.

Our hypothesis about the quality of metadata, was that this measure is similar

both algorithms. The new algorithm reduces the quality of the metadata, base in the

used metric for this experiments in the first strategy approximately in 0.5%, in the

second and third case one less than to 1.5% , as show figures 7.24b, 7.26b, 7.28b,

7.24a, 7.26a and 7.28a. This results is quite promissory, since the decrease on quality

metric is acceptable, independently of the ant strategy to be use.

From these results we see that the lazy ants approach reduces the overhead
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in the system while keeping good quality for the pheromone consistency. Mean-

while, strategy two appears to provide the best tradeoff between number of ants sent,

pheromone consistency and congestion in the system.
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Figure 7.24. Experiments Results for One Ant per Round Strategy

7.6 Summary

In this Chapter we have presented several alternative strategies to launch ants to the

system. We have introduced the concept of a round as a mechanism to schedule the

ants to be launched from a source node u to each destination node v. Based on the

idea of rounds, we defined the following strategies to launch ants: a) one ant per
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round, b) one ant per destination per round, and c) multiple ants per destination per

round. We also presented the concept of polydomy, where ants can have a colony

with multiple nests in different locations. Ants from one nest might visit another

nest from the same colony to get food and transport the food to their original nest.

We use this feature to introduce the idea of lazy ants, whereby the statistical model

at a node caches performance or freshness information from target IGs. Ants that

visit a node u look for this metadata as if it was food. If the cached metadata is

still valid, the ants cut their trip short and use the metadata to begin the backward

trip updating the pheromone trails and statistical modes of the nodes in the path.

Our experimental results show that the strategy for launching one ant per destination

per round provides the best tradeoff between good pheromone consistency and low

overhead. By adding the lazy ants we improve things by further reducing the overhead

of the ants while keeping the pheromone consistency at over 90%.



CHAPTER 8

Ethical Considerations

Computer Ethics is an important topic in computer applications. As researchers, we

must be aware of the wide range of ethical responsibilities that come with doing any

type of research. In this Chapter we explore some concepts and issues related with

ethic in computer sciences, databases and autonomic agents that would be relevant

to this dissertation.

8.1 Computer Ethics

Computer Ethics is a branch of practical philosophy which deals with how computing

professionals should make decisions regarding professional and social conduct. The

term ”computer ethics” was first coined by Maner [49]. He expressed that Computer

ethics is an academic field in its own right with unique ethical issues that would not

have existed if computer technology had not been invented. He explained six levels

of justification for the study of computer ethics:

• We should study computer ethics because doing so will make us behave like

responsible professionals.

• We should study computer ethics because doing so will teach us how to avoid

computer abuse and catastrophes.

134
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• We should study computer ethics because the advance of computing technology

will continue to create temporary policy vacuums.

• We should study computer ethics because the use of computing permanently

transforms certain ethical issues to the degree that their alterations require

independent study.

• We should study computer ethics because the use of computing technology

creates, and will continue to create, novel ethical issues that require special

study.

• We should study computer ethics because the set of novel and transformed

issues is large enough and coherent enough to define a new field.

All of this levels are important and we deal with all of these during the exe-

cution of this dissertation. Is important to mention that one of our motivations was

try to produce accurate metadata that follow certain level of quality and in this way,

the middleware could do a better job during the optimization of any query received.

8.2 Ethics in Computer Sciences

According with Wright [73], science and engineering are commonly distinguished as

two different kind of activities. Sciences produces more theorical results, while engi-

neering seeks to apply those results through the creation and refinement of technol-

ogy. Computer Science, as it generally presented, taught, and researched, stands in

a unique position, intimately involved in both theoretical and applied. Given that

engineering requires an ethical position beyond codes of conduct [9], then a disci-

pline that spans both theory and application, an that impact so many aspects of life,

should be grounder ethical foundation. The social contract between modern scientific

research and society rest upon a threefold foundation: the responsible conduct of

research; clear and complete recording of research procedures, results, and analysis;
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and respect for those that may be affect by that research.

8.2.1 Responsible Conduct of Research

Empirical science relies on measurements and observation to corroborate or disprove

research hypotheses. In computer science, metrics and analysis methods are the

primary instruments for measuring software systems. The uses of these instruments

is complicated by the diverse and dynamic nature of computing, and often by the

necessity under integrating the measurement tool in to the system under observation.

This is further complicated by a lack of consensus on the topic and minimal attention

to the quality of measurement results [1].

This ethical concern was a point of motivation in our work, since we want

to provide a tool inside the middleware that has the potential to create accurate

metadata relate with the query processing site and the data sources itself and in this

form to pull out the responsibility on the system administrator to feed the catalog

with with recent information about the network and sites behavior.

Additionally, we use simulation as a tool that allow us to manage bias and

variability of the system and has a controlled situation.

Another area of bias in software is the actual implementation of the software

itself. Different programing languages have features and semantics that offer more

efficient ways to implement certain operations. While these features are generally

obvious to the research, the optimizations that compilers can perform are often far less

visible, and can vary among computer platforms (hardware and operating systems).

Some studies applied over different benchmarks, shown different results depending

on the language and compilers on different platforms [45]. Other author found that

compiler can create differences in performance using the same program source code

as well as compiling and execution on the on the same platform [32]. In our case, we

avoid this issue using always the same type of computers to do out experiments and
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our programs to evaluate the performance and to do conclusions.

8.2.2 Documenting and Reporting Research

The ability to duplicate the work of other researchers is perhaps the most fundamental

principle and responsibility of science. Repeating an experiment allow new result to

corroborate or refuted, as well as providing the means to restate or refine the problem

under consideration. Duplicating previous work of other research is often more than

simple recreating earlier experiments: the later research should also be looking for

new results that extend or clarify early work, or be seeking some case where there

exist theory does not apply.

In out work, we used previous knowledge and background from various scopes,

and these with this information we construct a framework applied to the middleware

system. We also document all the theoretic aspects in this dissertation related with

our formulation necessary that cannot be included in our research papers, due to

space limitations. We also make proper references to the ideas and work of previous

researchers thorough all the prepared documents.

8.2.3 Human Participation in Computer Research

In computer science, this topic is probably most closely associated with the study

of human-computer interaction, with the evaluation of computer science educational

methods and software development techniques following closely behind.

Most research institutions have some form of a review board that evaluates

research proposals involving human subjects. Key requirements for approval include

obtaining uncoerced informed consent to participate from research subjects, and pro-

viding the option to withdraw from the study at any time and for any reason without

penalty. However, there are areas of computer science research that involve humans

in more subtle ways but that can still put individuals at risk to harm. Some of the

aspect that Wright [72] mention and can be applied to our project are:
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1. Knowledge Discovery and Data Mining (KDDM): Large and diverse data sets

are examined and manipulated for the purpose of extracting hidden knowledge

and patterns not otherwise observable, often using agents as faster and tireless

human surrogates. The potential exists for the invasion of personal privacy.

There is also the possibility of misleading results (agents or pro-grams are look-

ing for particular kinds of patterns that a researcher expects to nd in a particular

data set, etc.) that could cause harm to individuals or groups.

2. Networking: There is also the risk of potential invasion of privacy when mon-

itoring live networks. An ethicist might also ask if the users of a computer

network that is a subject of study are themselves subjects in the study? After

all, it is their usage that creates the patterns of trafic that are of interest to a

researcher.

3. Software Engineering: A signicant amount of research in this area is very

human-involved, since it is humans that design, implement, use, and main-

tain software systems. Research often involves observing individuals, groups,

and entire organizations, with the associated risks of harm.

We already considered this aspect during the execution. Our external agents

(the artificial ants) never have access to the data sources or the processing data and

work in autonomic form. Although, the ants store information on run time about the

network, this kind of data is anonymous and no body can be identified using it. Also

every agent is deleted after reach the source site. In relation with the data sources, we

had assumed that all of that accomplish ethical aspects related with privacy. Finally,

we explored codes of ethics and professional conduct ([3, 2]) during the realization of

this research work.



CHAPTER 9

Conclusions

In this Chapter we provide a summary of the conclusions and contributions of this

dissertation. In addition, we point to directions in future work.

9.1 Summary of Results

• Chapter 1 Introduction: In this Chapter we presented the motivation to this

project and a problem statement.

• Chapter 2 Literature Review: In this Chapter we presented relevant work in

the areas that form the basis of this dissertation, which include: Distributed

Database Systems, Database Middleware Systems, and Data Replication.

• Chapter 3 NetTraveler System: In this Chapter we presented an overview of

NetTraveler, the model database middleware system on which our framework

operates.

• Chapter 4 Ant Colony Framework: In this Chapter, we discussed relevant as-

pects on Ant Colony Theory, which include: Basic Social Networks Concepts,

the mapping between real and artificial ants in our middleware framework, the

original and the adapted algorithm. We also review an extensive amount of

work that has been carried out prior to this dissertation as well a work done as

part of it.
139



140

• Chapter 5 - Autonomic Ranking of Data Sources and Query Processing Sites

using Ant Colony Theory: In this Chapter we proposed an autonomic framework

for continuously discovering and ranking the sites in a database middleware

system for mobile, wide-area environments. Our framework can help keep the

catalog updated, and feed accurate information to a query optimizer about

paths with sites for query operator placement. We proposed a framework for

characterizing sites based on performance. Then, we presented an adaptation

of the ACO algorithm to explore the system and rank the characteristic of each

site. This framework is fully de-centralized and can scale to large number of

nodes. Finally, we presented the results of a performance study carried out

on a simulation of the system with twenty six query processing sites and nine

information gateways. These experiments show that our framework can find

near optimal paths in over 90% of the cases. In addition, they demonstrate

that our method is far superior to approaches that try to determine shortest

paths at run time. Our solution combines de-centrelized behavior with accurate

prediction of the paths, and accurate ranking the best sites to answer a query.

• Chapter 6 - Finding Fresh Data in Database Middleware Systems: In this Chap-

ter we explored the problem of developing a scalable mechanism that enables

a database middleware to find replicas with data compliant with a required

freshness value given by the user. As solution to this problem, we presented

AntFinder, a decentralized framework for finding the data collections that satis-

fty data freshness constrains. When a query Q is submitted into an integration

server, this server makes a local catalog lookup to find the freshness of the can-

didate data sources and picks the one that satisfies the freshness constrains in

the query. To maintain freshness information in their local catalogs, the data

source servers and query processing servers form a social network that empow-

ers them to share freshness metadata from multiples sites in the system. The
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freshness metadata are collected by autonomous software robots called artifi-

cial ants, that mimic the behavior of real ants, as modeled by the Ant Colony

Optimization (ACO) paradigm. The behavior of these ants enables autonomic

operation because the ants autonomously move around the system discovering

data source sites and data freshness values associated with target data collec-

tions. We implemented AntFinder as a Java library and tested it with a CSIM

for Java simulation of a database middleware system. We have conducted exper-

iments that indicate that the freshness values obtained by the ants are accurate

when compared with the real values at the sources. In fact, we can obtain an

error of less than 10% for the estimate of freshness values. Moreover, AntFinder

picks the right data source to serve the fresh data for a given table in at least

98% of the cases we tried. This shows promise as a solution for a wide-area

environment and more research shall be conducted to improve the capabilities

of AntFinder.

• Chapter 7 - Strategies for Launching Ants and Sharing System Knowledge: In

this Chapter we have presented several alternative strategies to launch ants

to the system. We have introduced the concept of a round as a mechanism to

schedule the ants to be launched from a source node u to each destination node v.

Based on the idea of rounds, we defined the following strategies to launch ants:

a) one ant per round, b) one ant per destination per round, and c) multiple ants

per destination per round. We also presented the concept of polydomy, where

ants can have a colony with multiple nests in different locations. Ants from one

nest might visit another nest from the same colony to get food and transport

the food to their original nest. We use this feature to introduce the idea of lazy

ants, whereby the statistical model at a node caches performance or freshness

information from target IGs. Ants that visit a node u look for this metadata

as if it was food. If the cached metadata is still valid, the ants cut their trip
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short and use the metadata to begin the backward trip updating the pheromone

trails and statistical modes of the nodes in the path. Our experimental results

show that the strategy for launching one ant per destination per round provides

the best tradeoff between good pheromone consistency and low overhead. By

adding the lazy ants we improve things by further reducing the overhead of the

ants while keep the pheromone consistency at over 90%.

9.2 Summary of Contributions

The main contributions presented in this dissertation can be summarized as follows:

• Development of a de-centralized approach to dynamically characterize data

sources and query processing sites in a distributed database system. Evidence

is presented about its potential benefits in supporting the query optimization

process in distributed and replicated systems that do data integration via mid-

dleware technology.

• Definition of a quality metric for data sources and query processing sites. This

quality metric can be defined in terms of performance or data freshness. The

goal of this quality metric is to establish a rank for the sites and system from

a the perspective of a particular site. Using this rank, the candidate sites for

data extraction and query processing can be chosen and fed to a query optimizer

to generate a query plan. To the best of our knowledge no other middleware

system performs such assessment of data sources.

• The development of heuristic techniques based on Ant Colony Theory [22] to

implement the site characterization process. This techniques have been shown

to provide good solutions to problems in other areas in computer science and

Networking, and we expect to explode this experience in our research project.

• The study of different techniques to launch the ants from each node to explore
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the system, based on the idea of rounds.

• The development of the lazy ants approach to send ants to explore the system,

which reduce the number of ants in the system but keeps a high quality of the

metadata.

• The implementation of a system prototype using Java and CSIM. This imple-

mentation shows that our prototype version of the ACO algorithm is able to

find good path between the nodes, in a set up where the cost between nodes

changes over time. This implementation experience will be very useful in our

future integration with the NetTraveler [68] Prototype.

Also, we have a publication of initial results of AntFinder in the 2009 Asia Modeling

Symposium [67].

9.3 Future Work

We conclude this dissertation with a series of task that can be carried out as future

work to complement this work.

9.3.1 Autonomic Discovery and Assessment of Metrics

AntFinder enables a database middleware to find critical metrics for scheduling query

operators in a decentralized and automated fashion. This behavior shall result in

better performance and data freshness for the queries submitted by the user. There

are three main issues that we wish to explore to better understand the impact of ants

on query processing:

• What are the metrics that can be accurately measured by the ants? How can

we balance performance and data freshness? Should we model this issue as a

multi-objective optimization problem, or should one metric be optimize before

the other?
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• Can the ants provide accurate information on system dynamics? How can we

control the rate at which ants are send to prevent them to cause undesired

overhead? What would be the impact on the pheromone matrix if an existing

site leaves the system or a new one arrives? How quickly is the pheromone

matrix stabilized?

• Since the ants are moving around the system, can they be used to carry the

tuples and ask nodes to run operators on these tuples? How can the ants quickly

establish a pheromone trail for query processing? How can query operators be

scheduled along different paths?

9.3.1.1 Task 1: Balancing the Performance and Data Freshness Metrics

Users are interested in getting their data from fresh sources, but they also wish

these data to be delivered fast and efficiently. Thus, performance must be taken into

consideration to provide a set of data sources that are fresh but also powerful enough

to solve the query in a timely manner. Likewise, the query processing services that

are chosen to participate in the query must be efficient as well. In short, the query

optimizer must be provided with a set of good data sources and query services to be

used in the optimization process for operator placement. Since the system is dynamic,

we need to make sure that the performance estimates are accurate enough and we

must adapt them as time progresses to reflect current dynamics.

9.3.1.2 Task 2: Ant-based Query Processing

Despite the fact that ants continuously provide system metadata in decentralized

fashion, the optimization process is done by the QSB that first gets the query, and

it decides on operator placement once and in a centralized fashion. Since the ants

are traveling around the system, the question that must be raised is whether the

ants can do query optimization and processing on-the-fly. The work in [12] explored

how to change query plans on the fly, and the work in [47] developed methods to
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continuously adapt query operators. But, these methods rely on either the having

a point in time in which operators are reorder, or the addition of synchronization

operators that route the tuples to destination sites. Can we use the ants to find the

sources and the best place to put the operators? Can the ants find the proper order

of evaluation for the operators? These are the issues we shall start to explore in this

task.

9.3.2 System Modeling and Self-Steering

Distributed database systems behave as complex systems and their intrinsic oper-

ation resemble the behavior of grid computing systems. Obtaining a general view

of the behavior of the collective components of the middleware system and tuning

its dynamic behavior to accomplish a set of performance goals poses an interesting

challenge and a set of questions arise:

• How to model the system behavior? What is the best model for distributed

systems that will allow us to understand the general behavior of the system?

Should it be a centralized or decentralized model or maybe a combination of

both?

• How to measure and optimize this behavior to meet a particular performance

goal? What type of instrumentation should we use? Should measurements from

the database status be collected event in an event-based mode or sampled at

regular intervals?

• Once the general behavior of the system is assessed, how to automatically steer

the system so that it autoregulates to meet the objectives? Here steering refers

to performance steering [69], that is monitoring the state of a system and en-

abling parameter changes to provoke a change in the behavior of the system.
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9.3.2.1 Task 1: Modeling the Dynamics of the System

The query plans used for completing a query are based on the information that the

middleware knows about the basic performance measurements from the distributed

system. Simple to calculate metrics are typically used to ensure fast response. Initial

decisions on the query plan should change with the dynamics of the system. On

the other hand, a performance measurement does not provide information on itself

but rather based on the model of the system it is resembling. Which model is the

best one to ensure that an operational database middleware system is adequately

represented? Diverse applications may require a different model. Since this type of

application entertains an observational model, should it be a function fitting model,

a time series, or a probabilistic model [25]?

9.3.2.2 Task 2: System Intrusion Measurement/Perturbation Analysis

The use of software tools or agents (e.g., the ants) to identify the status of a software

system creates contention for the resources that are available for the database mid-

dleware system. Perturbation or intrusion on the behavior of the database may cause

undesirable behavior. AntFinder parameters such as the rate at which the ants are

sent may adversely affect the performance.

9.3.2.3 Steering the Behavior of the Database Middleware System

Vetter et al classify computational steering into application and performance steering

[69]. In the former, parameters of an application are modified to change the outcome

of the program. Performance steering on the other hand refers to monitoring the

state of a system and enabling parameter changes to provoke a change in the behavior

of the system [31]. For example, a new replicated service might be deployed by the

system to maintain the throughput at an acceptable level. Vetter designed Magellan, a

computational steering system to monitor and control parallel computing applications

and systems [69]. However, the software architecture of Magellan may not appropriate
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for distributed systems. In these systems a combination of distributed and centralized

data collection and actuation may be more appropriate.
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APPENDIX A

Simulation Parameters

/************************************************************************

* NetTraveler Project - Ant System Approach

* Copyright (C) 2007

* Eliana Valenzuela-Andrade Manuel Rodriguez-Martinez

* University of Puerto Rico, Mayaguez

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2, or (at your option)

* any later version.

*

* This program is distributed in the hope that it will be useful, but

* WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU General Public License
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* along with this program; if not, write to the Free Software

* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA

* 02110-1301, USA.

*************************************************************************/

package edu.uprm.admg.nettraveler.ants.CSIM;

public class Constants_CSIM {

public final static String DATABASE = "PAPERMODEL";

public final static String DATABASELOGIN = "root";

public final static String DATABASEPASS = "";

public static final String runNumber = "1";

public static long seed = 19721106;

//public static final String runNumber = "2";

//public static long seed = 91287364;

//public static final String runNumber = "3";

//public static long seed = 20002008;

//public static final String runNumber = "4";

//public static long seed = 2345678;

//public static final String runNumber = "5";

//public static long seed = 324234;

//public static final String runNumber = "6";

//public static long seed = 47854151;

//public static final String runNumber = "7";

//public static long seed = 1247825;

//public static final String runNumber = "8";

//public static long seed = 9874521;
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//public static final String runNumber = "9";

//public static long seed = 541247;

//public static final String runNumber = "10";

//public static long seed = 0611172;

// Define initial values for statistics

public static final double INITIAL_VARIANCE = 1.0;

static final double ALPHA = 0.5;

static final double ALPHA_IND = 0.15;

public static final double C1 = 0.35;

public static final double C2 = 0.25;

public static final double CONFIDENCE_LEVEL = 0.90;

public static final double CONFIDENCE_LEVEL_IND = 0.90;

public static final double A = 10.0;

public static final int MAX_LOOPS = 5;

public static final double EVAPORATION = -0.35;

public static final double VARHPEXP = 2.0;

public static final double VAR_PATHS = 1.0;

public static final boolean LazyAnts =false;

public static final double THFresh =0.5;

public static final double kparameterNetwork_pareto = 0.58;

public static final double kparameterCPU_pareto = 0.60;

public static final double kparameterNetwork_paretobounded = 1.1;

public static final double kparameterCPU_paretobounded = 1.2;

}
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Figure B.1. Currency Metric behavior seen by QSB1.
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Figure B.3. Obsolescence Metric behavior seen by QSB1.
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Figure B.4. Currency Metric behavior seen by QSB3.
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Figure B.5. Rate Metric behavior seen by QSB3.
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Figure B.6. Obsolescence Metric behavior seen by QSB3.
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Figure B.7. Currency Metric behavior seen by QSB10.
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Figure B.9. Obsolescence Metric behavior seen by QSB10.
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(b) One ant every two hours.
Figure B.13. Currency Metric for IG6 as seen by the system.
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Figure B.14. Rate for IG6 as seen by the system.
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(b) One ant every two hours.
Figure B.15. Data Freshness for IG6 as seen by the system.
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(b) One ant every two hours.
Figure B.16. Currency Metric for IG7 as seen by the system.
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(b) One ant every two hours.
Figure B.17. Rate for IG7 as seen by the system.
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(b) One ant every two hours.
Figure B.18. Data Freshness for IG7 as seen by the system.
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Analysis of Variance for Pheromon

Source DF SS MS F P

Frecuenc 6 0.060703 0.010117 24.77 0.000

Error 63 0.025736 0.000409

Total 69 0.086439

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ---+---------+---------+---------+---

0.25 10 0.98617 0.00718 (----*---)

0.50 10 0.97660 0.01488 (----*---)

1.00 10 0.97660 0.01208 (----*---)

3.00 10 0.96809 0.01504 (----*---)

6.00 10 0.94681 0.02243 (----*---)

12.00 10 0.91809 0.03755 (---*---)

24.00 10 0.90426 0.01737 (---*----)

---+---------+---------+---------+---

Pooled StDev = 0.02021 0.900 0.930 0.960 0.990

Figure C.1. One-way ANOVA: Pheromone Consistency versus Round Frequency.

Analysis of Variance for Similar

Source DF SS MS F P

Frecuenc 6 0.093911 0.015652 60.76 0.000

Error 63 0.016229 0.000258

Total 69 0.110140

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ----------+---------+---------+------

0.25 10 0.9957 0.0103 (-*--)

0.50 10 0.9936 0.0090 (--*--)

1.00 10 0.9968 0.0051 (--*--)

3.00 10 0.9894 0.0087 (--*--)

6.00 10 0.9766 0.0172 (--*--)

12.00 10 0.9511 0.0225 (--*--)

24.00 10 0.8883 0.0267 (--*--)

----------+---------+---------+------

Pooled StDev = 0.0161 0.910 0.945 0.980

Figure C.2. One-way ANOVA: Similar Cost versus Round Frecuency.
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Analysis of Variance for Ants

Source DF SS MS F P

Frecuenc 6 571378444 95229741 2.3E+05 0.000

Error 63 25595 406

Total 69 571404040

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ----------+---------+---------+------

0.25 10 8439.5 37.8 *

0.50 10 4265.1 32.5 *

1.00 10 2137.1 16.0 (*

3.00 10 719.8 8.0 *

6.00 10 364.7 4.4 *)

12.00 10 188.0 3.3 *

24.00 10 96.5 3.0 *

----------+---------+---------+------

Pooled StDev = 20.2 2500 5000 7500

Figure C.3. One-way ANOVA: Ants versus Round Frecuency.

Analysis of Variance for Nodes with Queue

Source DF SS MS F P

Frecuenc 6 11228.09 1871.35 1.6E+04 0.000

Error 63 7.40 0.12

Total 69 11235.49

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev -+---------+---------+---------+-----

0.25 10 34.000 0.000 *

0.50 10 22.500 0.707 (*

1.00 10 13.100 0.568 *

3.00 10 1.000 0.000 *

6.00 10 -0.000 0.000 *

12.00 10 -0.000 0.000 *

24.00 10 -0.000 0.000 *

-+---------+---------+---------+-----

Pooled StDev = 0.343 0

Figure C.4. One-way ANOVA: Nodes with Queue versus Round Frecuency.
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Analysis of Variance for Pheromon

Source DF SS MS F P

Frecuenc 6 0.003298 0.000550 3.86 0.002

Error 63 0.008963 0.000142

Total 69 0.012262

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ----------+---------+---------+------

0.25 10 0.98830 0.00785 (------*-------)

0.50 10 0.98511 0.01249 (------*-------)

1.00 10 0.98830 0.01369 (------*-------)

3.00 10 0.97660 0.00978 (-------*------)

6.00 10 0.98404 0.01149 (------*-------)

12.00 10 0.97766 0.00931 (-------*------)

24.00 10 0.96809 0.01663 (------*-------)

----------+---------+---------+------

Pooled StDev = 0.01193 0.970 0.980 0.990

Figure D.1. One-way ANOVA: Pheromone Consistency versus Round Frequency.

One-way ANOVA: Similar Cost versus Frecuency Round

Analysis of Variance for Similar

Source DF SS MS F P

Frecuenc 6 0.0014680 0.0002447 3.55 0.004

Error 63 0.0043459 0.0000690

Total 69 0.0058139

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ---------+---------+---------+-------

0.25 10 0.99894 0.00336 (------*-------)

0.50 10 1.00000 0.00000 (-------*------)

1.00 10 0.99787 0.00449 (-------*------)

3.00 10 0.99787 0.00449 (-------*------)

6.00 10 0.99255 0.00876 (-------*------)

12.00 10 0.99255 0.00876 (-------*------)

24.00 10 0.98617 0.01667 (-------*------)

---------+---------+---------+-------

Pooled StDev = 0.00831 0.9870 0.9940 1.0010

Figure D.2. One-way ANOVA: Similar Cost versus Round Frecuency.
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Analysis of Variance for Ants

Source DF SS MS F P

Frecuenc 6 1.002E+10 1.670E+09 9.0E+05 0.000

Error 63 117039 1858

Total 69 1.002E+10

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ----------+---------+---------+------

0.25 10 35361.3 90.5 *

0.50 10 17710.3 49.2 *

1.00 10 8878.4 41.6 *

3.00 10 2982.8 19.0 *

6.00 10 1508.0 14.6 (*

12.00 10 771.5 7.8 *

24.00 10 390.4 5.3 *

----------+---------+---------+------

Pooled StDev = 43.1 10000 20000 30000

Figure D.3. One-way ANOVA: Ants versus Round Frecuency.

Analysis of Variance for Nodes with Queue

Source DF SS MS F P

Frecuenc 6 13865.57 2310.93 8225.34 0.000

Error 63 17.70 0.28

Total 69 13883.27

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev -+---------+---------+---------+-----

0.25 10 34.000 0.000 *

0.50 10 32.800 0.422 (*

1.00 10 31.000 0.000 *

3.00 10 19.200 1.135 *)

6.00 10 7.300 0.483 *)

12.00 10 0.600 0.516 (*

24.00 10 -0.000 0.000 *

-+---------+---------+---------+-----

Pooled StDev = 0.530 0 10 20 30

Figure D.4. One-way ANOVA: Nodes with Queue versus Round Frecuency.
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Analysis of Variance for Pheromon

Source DF SS MS F P

Frecuenc 6 0.000960 0.000160 1.25 0.291

Error 63 0.008035 0.000128

Total 69 0.008996

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ---------+---------+---------+-------

0.25 10 0.98936 0.00709 (--------*--------)

0.50 10 0.98511 0.01028 (--------*--------)

1.00 10 0.98404 0.00561 (--------*--------)

3.00 10 0.98723 0.00839 (--------*--------)

6.00 10 0.98404 0.01149 (--------*--------)

12.00 10 0.98298 0.01436 (--------*--------)

24.00 10 0.97660 0.01723 (--------*--------)

---------+---------+---------+-------

Pooled StDev = 0.01129 0.9760 0.9840 0.9920

Figure E.1. One-way ANOVA: Pheromone Consistency versus Round Frequency.

Analysis of Variance for Similar

Source DF SS MS F P

Frecuenc 6 0.0006790 0.0001132 3.04 0.011

Error 63 0.0023427 0.0000372

Total 69 0.0030217

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ---+---------+---------+---------+---

0.25 10 1.00000 0.00000 (-------*-------)

0.50 10 1.00000 0.00000 (-------*-------)

1.00 10 0.99894 0.00336 (-------*-------)

3.00 10 0.99362 0.00744 (------*-------)

6.00 10 0.99894 0.00336 (-------*-------)

12.00 10 0.99362 0.00897 (------*-------)

24.00 10 0.99255 0.01009 (-------*-------)

---+---------+---------+---------+---

Pooled StDev = 0.00610 0.9900 0.9950 1.0000 1.0050

Figure E.2. One-way ANOVA: Similar Cost versus Round Frecuency.
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Analysis of Variance for Ants

Source DF SS MS F P

Frecuenc 6 1.937E+10 3.229E+09 1.9E+06 0.000

Error 63 104362 1657

Total 69 1.937E+10

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev ----------+---------+---------+------

0.25 10 49163.2 71.8 *

0.50 10 24599.1 64.3 *

1.00 10 12304.8 33.2 *

3.00 10 4122.7 19.3 *

6.00 10 2090.1 23.4 *

12.00 10 1062.7 13.2 *

24.00 10 538.8 10.7 *

----------+---------+---------+------

Pooled StDev = 40.7 15000 30000 45000

Figure E.3. One-way ANOVA: Ants versus Round Frecuency.

Analysis of Variance for Nodes with Queue

Source DF SS MS F P

Frecuenc 6 12196.37 2032.73 6922.26 0.000

Error 63 18.50 0.29

Total 69 12214.87

Individual 95% CIs For Mean

Based on Pooled StDev

Level N Mean StDev -+---------+---------+---------+-----

0.25 10 34.000 0.000 *

0.50 10 32.700 0.483 (*

1.00 10 31.100 0.316 *

3.00 10 25.500 0.850 (*

6.00 10 12.100 0.738 *

12.00 10 4.300 0.675 *)

24.00 10 0.000 0.000 *

-+---------+---------+---------+-----

Pooled StDev = 0.542 0 10 20 30

Figure E.4. One-way ANOVA: Nodes with Queue versus Round Frecuency.
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Analysis of Variance for Pheromon

Source DF SS MS F P

Algorith 1 0.000137 0.000137 0.34 0.563

Frecuenc 6 0.140173 0.023362 57.48 0.000

Interaction 6 0.001374 0.000229 0.56 0.759

Error 126 0.051211 0.000406

Total 139 0.192895

Individual 95% CI

Algorith Mean ----+---------+---------+---------+-------

0 0.9538 (---------------*---------------)

1 0.9518 (---------------*---------------)

----+---------+---------+---------+-------

0.9480 0.9510 0.9540 0.9570

Individual 95% CI

Frecuenc Mean ---+---------+---------+---------+--------

0.25 0.9872 (--*--)

0.50 0.9803 (--*--)

1.00 0.9787 (--*--)

3.00 0.9654 (--*--)

6.00 0.9415 (--*--)

12.00 0.9165 (-*--)

24.00 0.9000 (--*--)

---+---------+---------+---------+--------

0.9000 0.9300 0.9600 0.9900

Figure F.1. One-way ANOVA: Pheromone Consistency versus Round Frequency.
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Analysis of Variance for Similar

Source DF SS MS F P

Algorith 1 0.003208 0.003208 10.41 0.002

Frecuenc 6 0.181462 0.030244 98.14 0.000

Interaction 6 0.001743 0.000290 0.94 0.467

Error 126 0.038830 0.000308

Total 139 0.225243

Individual 95% CI

Algorith Mean --------+---------+---------+---------+---

0 0.9702 (-------*--------)

1 0.9606 (-------*--------)

--------+---------+---------+---------+---

0.9600 0.9650 0.9700 0.9750

Individual 95% CI

Frecuenc Mean -------+---------+---------+---------+----

0.25 0.9947 (--*-)

0.50 0.9910 (-*--)

1.00 0.9926 (--*-)

3.00 0.9819 (-*--)

6.00 0.9686 (--*-)

12.00 0.9410 (--*-)

24.00 0.8883 (-*--)

-------+---------+---------+---------+----

0.9000 0.9300 0.9600 0.9900

Figure F.2. Two-way ANOVA: Similar Cost versus Algorithm, Round Frecuency.
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Analysis of Variance for Ants

Source DF SS MS F P

Algorith 1 28853801 28853801 1.2E+05 0.000

Frecuenc 6 742368587 123728098 5.0E+05 0.000

Interaction 6 43014311 7169052 2.9E+04 0.000

Error 126 31207 248

Total 139 814267907

Individual 95% CI

Algorith Mean ----+---------+---------+---------+-------

0 2315.8 (*

1 1407.9 *

----+---------+---------+---------+-------

1500.0 1750.0 2000.0 2250.0

Individual 95% CI

Frecuenc Mean ----------+---------+---------+---------+-

0.25 6802.8 *

0.50 3422.5 *

1.00 1716.8 *

3.00 576.1 *

6.00 290.6 *

12.00 148.1 *

24.00 75.9 *

----------+---------+---------+---------+-

2000.0 4000.0 6000.0 8000.0

Figure F.3. Two-way ANOVA: Ants versus Algorithm, Round Frecuency.
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Analysis of Variance for Nodes wi

Source DF SS MS F P

Algorith 1 126.35 126.35 740.47 0.000

Frecuenc 6 21517.67 3586.28 2.1E+04 0.000

Interaction 6 316.90 52.82 309.53 0.000

Error 126 21.50 0.17

Total 139 21982.42

Individual 95% CI

Algorith Mean ---------+---------+---------+---------+--

0 10.086 (-*-)

1 8.186 (-*-)

---------+---------+---------+---------+--

8.500 9.000 9.500 10.000

Individual 95% CI

Frecuenc Mean -+---------+---------+---------+---------+

0.25 34.000 *

0.50 20.650 (*

1.00 8.800 *

3.00 0.500 *)

6.00 -0.000 *

12.00 -0.000 *

24.00 -0.000 *

-+---------+---------+---------+---------+

0.000 10.000 20.000 30.000 40.000

Figure F.4. Two-way ANOVA: Nodes with Queue versus Algorithm, Round Fre-
cuency
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Analysis of Variance for Pheromon

Source DF SS MS F P

Algorith 1 0.008576 0.008576 41.50 0.000

Frecuenc 6 0.008957 0.001493 7.22 0.000

Interaction 6 0.000676 0.000113 0.54 0.773

Error 126 0.026041 0.000207

Total 139 0.044250

Individual 95% CI

Algorith Mean -------+---------+---------+---------+----

0 0.9812 (----*-----)

1 0.9655 (----*-----)

-------+---------+---------+---------+----

0.9660 0.9720 0.9780 0.9840

Individual 95% CI

Frecuenc Mean ----------+---------+---------+---------+-

0.25 0.9809 (------*-----)

0.50 0.9793 (-----*------)

1.00 0.9798 (------*-----)

3.00 0.9723 (-----*------)

6.00 0.9766 (------*-----)

12.00 0.9676 (------*-----)

24.00 0.9569 (-----*-----)

----------+---------+---------+---------+-

0.9600 0.9700 0.9800 0.9900

Figure G.1. One-way ANOVA: Pheromone Consistency versus Round Frequency.
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Analysis of Variance for Similar

Source DF SS MS F P

Algorith 1 0.0003565 0.0003565 7.50 0.007

Frecuenc 6 0.0020307 0.0003384 7.12 0.000

Interaction 6 0.0002037 0.0000340 0.71 0.639

Error 126 0.0059869 0.0000475

Total 139 0.0085777

Individual 95% CI

Algorith Mean -+---------+---------+---------+---------+

0 0.99514 (----------*---------)

1 0.99833 (----------*---------)

-+---------+---------+---------+---------+

0.99360 0.99520 0.99680 0.99840 1.00000

Individual 95% CI

Frecuenc Mean ----------+---------+---------+---------+-

0.25 0.9995 (-----*-----)

0.50 1.0000 (-----*-----)

1.00 0.9989 (-----*-----)

3.00 0.9989 (-----*-----)

6.00 0.9963 (------*-----)

12.00 0.9952 (-----*------)

24.00 0.9883 (------*-----)

----------+---------+---------+---------+-

0.9900 0.9950 1.0000 1.0050

Figure G.2. Two-way ANOVA: Similar Cost versus Algorithm, Round Frecuency.
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Analysis of Variance for Ants

Source DF SS MS F P

Algorith 1 1.395E+09 1.395E+09 2.9E+05 0.000

Frecuenc 6 9.085E+09 1.514E+09 3.2E+05 0.000

Interaction 6 2.138E+09 356378093 7.4E+04 0.000

Error 126 603538 4790

Total 139 1.262E+10

Individual 95% CI

Algorith Mean ----------+---------+---------+---------+-

0 9657.5 *

1 3344.3 *

----------+---------+---------+---------+-

4800.0 6400.0 8000.0 9600.0

Individual 95% CI

Frecuenc Mean ----------+---------+---------+---------+-

0.25 23806 *

0.50 11914 *

1.00 6007 *

3.00 2001 *

6.00 1008 *

12.00 512 *

24.00 258 *

----------+---------+---------+---------+-

6000 12000 18000 24000

Figure G.3. Two-way ANOVA: Ants versus Algorithm, Round Frecuency.
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Analysis of Variance for Nodes wi

Source DF SS MS F P

Algorith 1 1058.75 1058.75 2127.63 0.000

Frecuenc 6 26884.54 4480.76 9004.39 0.000

Interaction 6 1313.80 218.97 440.03 0.000

Error 126 62.70 0.50

Total 139 29319.79

Individual 95% CI

Algorith Mean ---------+---------+---------+---------+--

0 17.843 (*)

1 12.343 (*)

---------+---------+---------+---------+--

13.500 15.000 16.500 18.000

Individual 95% CI

Frecuenc Mean -+---------+---------+---------+---------+

0.25 34.00 *

0.50 31.05 *

1.00 26.50 *)

3.00 10.15 *

6.00 3.65 (*

12.00 0.30 *)

24.00 -0.00 *

-+---------+---------+---------+---------+

0.00 10.00 20.00 30.00 40.00

Figure G.4. Two-way ANOVA: Nodes with Queue versus Algorithm, Round Fre-
cuency
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Analysis of Variance for Pheromon

Source DF SS MS F P

Algorith 1 0.004427 0.004427 35.30 0.000

Frecuenc 6 0.001830 0.000305 2.43 0.029

Interaction 6 0.000123 0.000020 0.16 0.986

Error 126 0.015799 0.000125

Total 139 0.022179

Individual 95% CI

Algorith Mean -----+---------+---------+---------+------

0 0.9842 (-----*------)

1 0.9729 (-----*------)

-----+---------+---------+---------+------

0.9720 0.9760 0.9800 0.9840

Individual 95% CI

Frecuenc Mean --------+---------+---------+---------+---

0.25 0.9840 (-------*-------)

0.50 0.9803 (-------*-------)

1.00 0.9782 (-------*--------)

3.00 0.9819 (--------*-------)

6.00 0.9771 (--------*-------)

12.00 0.9761 (-------*-------)

24.00 0.9723 (--------*-------)

--------+---------+---------+---------+---

0.9720 0.9780 0.9840 0.9900

Figure H.1. One-way ANOVA: Pheromone Consistency versus Round Frequency.
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Analysis of Variance for Similar

Source DF SS MS F P

Algorith 1 0.0001366 0.0001366 5.30 0.023

Frecuenc 6 0.0008537 0.0001423 5.52 0.000

Interaction 6 0.0001746 0.0000291 1.13 0.349

Error 126 0.0032481 0.0000258

Total 139 0.0044130

Individual 95% CI

Algorith Mean ----+---------+---------+---------+-------

0 0.99681 (---------*---------)

1 0.99878 (---------*---------)

----+---------+---------+---------+-------

0.99600 0.99720 0.99840 0.99960

Individual 95% CI

Frecuenc Mean --------+---------+---------+---------+---

0.25 1.0000 (------*-------)

0.50 1.0000 (------*-------)

1.00 0.9995 (-------*------)

3.00 0.9968 (-------*------)

6.00 0.9995 (-------*------)

12.00 0.9957 (------*-------)

24.00 0.9931 (------*-------)

--------+---------+---------+---------+---

0.9930 0.9960 0.9990 1.0020

Figure H.2. Two-way ANOVA: Similar Cost versus Algorithm, Round Frecuency.
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Analysis of Variance for Ants

Source DF SS MS F P

Algorith 1 2.843E+09 2.843E+09 2.6E+06 0.000

Frecuenc 6 1.711E+10 2.851E+09 2.6E+06 0.000

Interaction 6 4.361E+09 726836376 6.6E+05 0.000

Error 126 137885 1094

Total 139 2.431E+10

Individual 95% CI

Algorith Mean ---+---------+---------+---------+--------

0 13411.6 *

1 4399.0 *

---+---------+---------+---------+--------

5000.0 7500.0 10000.0 12500.0

Individual 95% CI

Frecuenc Mean ----------+---------+---------+---------+-

0.25 32664.0 *

0.50 16335.1 *

1.00 8171.5 *

3.00 2733.6 *

6.00 1381.3 *

12.00 698.6 *

24.00 353.0 *

----------+---------+---------+---------+-

8000.0 16000.0 24000.0 32000.0

Figure H.3. Two-way ANOVA: Ants versus Algorithm, Round Frecuency.
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Analysis of Variance for Nodes wi

Source DF SS MS F P

Algorith 1 1465.78 1465.78 6176.86 0.000

Frecuenc 6 24542.69 4090.45 1.7E+04 0.000

Interaction 6 1377.77 229.63 967.67 0.000

Error 126 29.90 0.24

Total 139 27416.14

Individual 95% CI

Algorith Mean -------+---------+---------+---------+----

0 19.957 (*

1 13.486 *)

-------+---------+---------+---------+----

14.400 16.000 17.600 19.200

Individual 95% CI

Frecuenc Mean -+---------+---------+---------+---------+

0.25 34.00 *

0.50 31.20 *

1.00 27.35 *)

3.00 16.30 *)

6.00 6.05 *

12.00 2.15 *

24.00 0.00 *

-+---------+---------+---------+---------+

0.00 10.00 20.00 30.00 40.00

Figure H.4. Two-way ANOVA: Nodes with Queue versus Algorithm, Round Fre-
cuency


