
MICROCONTROLLER DESIGN AND CONCEPTS

By
Victor L. Vargas Garcia

A Project Report submitted in partial fulfillment of the requirements for the
degree of

MASTER OF SCIENCE in ELECTRIC ENGINEERING

UNIVERSITY OF PUERTO RICO

MAYAGUEZ CAMPUS
2004

Approved by:

_____________________________ ___________
Fernando Vega, Ph.D. Date
Graduate Committee Member

_____________________________ ___________
Jaime Arbona, Ph.D. Date
Graduate Committee Member

_____________________________ ___________
Rogelio Palomera, Ph.D. Date
Graduate Committee Advisor

_____________________________ ___________
Marco A. Arocha Ordoñez, Ph.D. Date
Representative of Graduate Studies

_____________________________ ___________
J. Ortiz Alvarez, Ph.D. Date
Chairperson of the Department

_____________________________ ___________
José A. Mari Mutt, Ph.D. Date
Chairperson of Graduate Studies

ii

Abstract

Microcontroller Design and Concepts

By

Victor L. Vargas Garcia

A method for microcontroller design was developed. A basic data path

configuration capable of processing the microcontroller basic instruction set was

developed first. Based on this configuration, a four-bit microcontroller was developed

from its most basic instruction set to the most complex one.

Through the design process, the microcontroller hardware evolves into a complex

one as more instructions are added to the basic instruction set. More hardware is added in

parallel to the basic data path configuration to make the execution of more complex

instructions possible.

As a result it is expected that readers become familiar with the fundamental

microcontroller concepts and operations. Design steps, implementation and testing of all

the microcontroller development circuits are shown graphically and explained in detail.

Finally designers will have a basic guide to develop their own microcontroller using this

work procedure.

iii

COMPENDIO

Microcontroller Design and Concepts

By

Victor L. Vargas García

Un método para el diseño de microcontroladores fue desarrollado partiendo de

una configuración básica para el camino de datos que permite la ejecuciόn del grupo más

sencillo de instrucciones para un microcontrolador. Usando ésta configuración básica, un

microcontrolador de 4 bits fue desarrollado desde sus instrucciones más básicas hasta las

más complejas.

A medida que el proceso de desarrollo y evolución del microcontrolador se lleva a

cabo, instrucciones más complejas se van sumando al conjunto de instrucciones básicas

del microcontrolador, añadiendo circuitos en paralelo al circuito básico que forma el

camino de datos que permiten que éstas nuevas instrucciones se puedan ejecutar.

 Como resultado el lector tendrá una guia y una idea más clara sobre los

fundamentos básicos de los microcontroladores, su funcionamiento y su arquitectura. Se

mostrarán de una manera grafica y explicada en detalle, los pasos de diseño,

implementación y prueba de los circuitos usados en el desarrollo de microcontroladores.

Finalmente los diseñadores tendrán una guia básica para desarrollar su propio

microncontrolador usando el procedimiento descrito en este trabajo.

iv

To my Lord, my family and all my friends, for all the love and support. Without

any of you this work would not have been possible.

To Dr. Rogelio Palomera, who has been not only an excellent professor, but more

important, he has been a good friend.

v

Acknowledgements

Special thanks to Dr. Rogelio Palomera García for being my advisor, for his

helpful comments, guidance and suggestions and above all, for being patient and good

friend. To my parents Hector Vargas and Zenaida García for their unconditional support

and help. To Mirelly Castro for being an excellent friend and for her support in difficult

times.

Thanks to Dr. Jaime Arbona for his advice and valuable knowledge in electrical

engineering. Thanks to Jorge Justiniano Magraner and Hector Santos for their patience,

time and for being great persons and good friends.

vi

Table of Contents

List of Tables..………………………………………………………… ix
List of Figures.….……………………………………………………… xi

1 Introduction. …………………………………………………………… 1

1.1 Justification……………………………………………………………… 1

1.2 Research Objectives …………………………………………………… 5

1.3 Simulations. …………………………………………………………….. 5

1.4 Work Organization ……………………………………………………… 6

2 Theory and Applications. ……………………………………………… 7

2.1 Microcontroller Aplications ……………………………………………… 7

2.2 The Processor and the Microntroller Concepts. ……………………… 7

2.3 Microcontroller Performance Factors………………………………….. 9

2.4 The General Purpose Microcontroller. ………………………………… 10

2.5 Comparing Microcontrollers and Microprocessors …………………… 11

3 The Microcontroller Implementation and Operation ……………... 13

3.1 Logic Circuit Implementation Alternatives……………………………… 13

3.2 Hardware Description Languages (HDLs)……………….……………. 17

3.3 Trade offs in Microcontroller Design. ………………………………… 18

3.4 The Microcontroller Programming………………………………………. 19

3.5 The Microcontroller Operation…... …………………………………….. 20

3.5.1 The Program Counter..…………………………………………………… 21

3.6 Flags. ……………………………………………………………………… 21

vii

4 The Microcontroller Design Steps ………………………………… 22

4.1 Methodology Steps……………………………………………………… 22

4.2 Steps Description.. …………………………………………………….. 23

5 The Microcontroller Design Example. ……………………………… 32

5.1 STEP I and II The Microcontroller Justification and operations……… 32

5.2 STEP III The instruction Set …………………………………………… 32

5.3 STEP IV The Microcontroller Architecture Definition .……………… 34

5.4 STEP V The Arithmetic Logic Unit……………………………………… 37

5.4.1 The Adder and the Subtractor…………………………………………… 38

5.4.2 Logical Bit Wise Operations……………………………………………... 40

5.4.3 Shift Right………………………………………………………………….. 42

5.4.4 Arithmetic Shift……………………………………………………………. 45

5.4.5 Circular Shift………………………………………………………………. 46

5.4.6 Shift Left…………………………………………………………………… 48

5.4.7 Arithmetic Logic Unit Final Implementation……………………………. 49

5.5 STEP VI The Register File..…………………………………………….. 54

5.5.1 The Register File Selection Stage……………………………………… 54

5.5.2 The Register File Input Stage…………………………………………… 56

5.5.3 The Register File Output Stage…………………………………………. 57

5.5.4 The Register File Implementation………………………………………. 58

viii

5.6 STEP VII The Instruction Register. ……………………………………. 59

5.7 STEP VIII The Data Path. ………………………………………………. 60

5.7.1 The Basic Data Path……………………………………………………… 60

5.7.2 Data Path With Immediate Operations………………………………… 62

5.7.3 Shift Operations…………………………………………………………… 65

5.8 STEP IX The PC, jump and Data Transfer Instructions …………….. 70

5.8.1 The Branch Instruction…………………………………………………… 70

5.8.2 The Program Counter……………………………………………………. 72

5.8.3 Load and Store operations………………………………………………. 76

5.8.4 Miscellaneous Operations……………………………………………….. 81

6 STEP X The Control Unit. ……………………………………………… 156

6.1 The Fetch Process……………………………………………………….. 84

6.2 The Control Unit Encoder………………………………………………... 88

6.3 The Control Unit Operational Code Decoder………………………….. 142

6.4 The Control Unit Timer…………………………………………………… 146

6.5 Implementation Problems. ……………………………………………… 148

7 Detailed Description of the Instruction Set…………………………. 150

8 Conclusions. ……………………………………………………………… 185

 References. ……………………………………………………………….. 187

ix

List of Tables
4.1 Methodology Steps………………………………………………………... 22
5.1 The Microcontroller Instruction Set……………………………………… 32
5.2 The Conditional Logic Cases……………………………………………… 72
6.1 Add instruction signal activation by clock cycle…………………………. 89
6.2 Sub instruction signal activation by clock cycle………………………….. 89
6.3 AND instruction signal activation by clock cycle………………………… 90
6.4 Or instruction signal activation by clock cycle…………………………… 90
6.5 ADDi instruction signal activation by clock cycle……………………….. 91
6.6 Subi instruction signal activation by clock cycle………………………… 91
6.7 ANDi instruction signal activation by clock cycle……………………….. 92
6.8 Ori instruction signal activation by clock cycle………………………….. 92
6.9 Not instruction signal activation by clock cycle………………………….. 93

6.10 SHR instruction signal activation by clock cycle………………………… 93
6.11 SHRA instruction signal activation by clock cycle………………………. 94
6.12 SHC instruction signal activation by clock cycle………………………… 94
6.13 SHL instruction signal activation by clock cycle…………………………. 95
6.14 BRANCH instruction signal activation by clock cycle…………………… 95
6.15 LOAD instruction signal activation by clock cycle………………………. 96
6.16 STORE instruction signal activation by clock cycle……………………… 96
6.17 IN instruction signal activation by clock cycle…………………………… 97
6.18 OUT instruction signal activation by clock cycle………………………… 97
6.19 READ PSW instruction signal activation by clock cycle………………… 98
6.20 Ra signal activation in terms of instructions and cycles…………………. 99
6.21 Regmemout signal activation in terms of instructions and cycles……….. 100
6.22 Reg Alu out signal activation in terms of instructions and cycles……….. 102
6.23 Try state buffer 0 signal activation in terms of instructions and cycles….. 103
6.24 Try state buffer 1-signal activation in terms of instructions and cycles….. 105
6.25 Try state buffer 2-signal activation in terms of instructions and cycles…. 106
6.26 Data out signal activation in terms of instructions and cycles…………… 108
6.27 Reg Alu in signal activation in terms of instructions and cycles…………. 110
6.28 Rb signal activation in terms of instructions and cycles………………….. 112
6.29 Rc signal activation in terms of instructions and cycles…………………. 114
6.30 Read register signal activation in terms of instructions and cycles………. 115

x

6.31 PC signal activation in terms of instructions and cycles…………………. 117
6.32 END signal activation in terms of instructions and cycles………………. 119
6.33 Regaluin signal activation in terms of instructions and cycles…………… 130
6.34 The Opcode Decoder truth table………………………………………….. 147
7.1 Add instruction signal activation verbal descriptions. …………………… 151
7.2 AND instruction signal activation verbal descriptions…………………… 153
7.3 Arithmetic Shift Right instruction signal activation verbal descriptions…. 155
7.4 Branch (conditional) signal activation verbal descriptions……………… 156
7.5 Branch (unconditional) signal activation verbal descriptions…………… 157
7.6 Circular Shift instruction signal activation verbal descriptions. ………… 159
7.7 IN instruction signal activation verbal descriptions ……………………… 160
7.8 Immediate Addition instruction signal activation verbal descriptions…… 162
7.9 Immediate AND instruction signal activation verbal descriptions………. 164

7.10 Immediate OR instruction signal activation verbal descriptions………… 166
7.11 Immediate Subtraction instruction signal activation verbal descriptions… 168
7.12 Load instruction signal activation verbal descriptions …………………… 170
7.13 NOT instruction signal activation verbal descriptions…………………… 172
7.14 Immediate OR instruction signal activation verbal descriptions………… 174
7.15 Out instruction signal activation verbal descriptions. …………………… 175
7.16 READ PSW instruction signal activation by clock cycle………………… 176
7.17 Shift Left instruction signal activation verbal descriptions………………. 178
7.18 Shift Right instruction signal activation verbal descriptions. …………… 180
7.19 Store instruction signal activation verbal descriptions …………………... 182
7.20 Subtraction instruction signal activation verbal descriptions…………….. 184

xi

List of Figures

2.1 The Microprocessor Configuration……………………...………………….. 11
2.2 The Microcontroller Configuration……………………...………………….. 12
3.1 Microcontroller Implementation Alternatives……..……………………….. 14
5.1 The Instruction Format…..……………….………………………………… 35
5.2 The Arithmetic Logic Unit Structure…..…………………………………… 37
5.3 The Tristate Buffer Implementation Circuit..………………………………. 38
5.4 The Adder Example………………………………………………………… 39
5.5 Example of Adder Circuit Testing…..…..………………………………….. 39
5.6 The Subtractor Circuit Implementation..…………………………………… 40
5.7 AND Circuit Implementation………………………………………………. 41
5.8 The Shift Right Implementation Circuit…………………………………… 42
5.9 The Shift Right Instruction Mechanism…………………………………… 43

5.10 The Shift Right Circuit Testing: Shifting 1100 once……………………….. 44
5.11 The Arithmetic Shift Implementation Circuit……..……………………….. 45
5.12 The Arithmetic Shift Circuit Testing……..………………………………… 46
5.13 Circular Shift Circuit Implementation…………………………………….. 47
5.14 Shift Left Implementation Circuit…………………………………………. 48
5.15 The ALU Implementation (top view)……………………………………… 50
5.16 The ALU Implementation (bottom view)…………………………………. 51
5.17 The ALU Flags Hardware ….……………………………………………… 51
5.18 Flags Used for Overflow…………………………………………………… 52
5.19 The ALU Testing (top view)………………………………………………. 53
5.20 The Register File Selection Stage………………..…………………………. 55
5.21 Module Rj of the Register File: Input Stage………………………………... 56
5.22 Module Rj of the Register File: Output Stage……………………………... 57
5.23 The Register File Input Stage………………………………………………. 57
5.24 The Register File Testing…………………………………………………... 58
5.25 The Instruction Register Implementation………………………………….. 59
5.26 The Resulting Microcontroller Data Path…………………………………. 61
5.27 The Basic Microcontroller Data Path……………………………………… 62
5.28 Added Elements for Immediate Instructions Execution…………………… 64
5.29 The Immediate Instructions Circuit Implementation……………………… 65
5.30 The Count Decoder………………………………………………………… 66
5.31 Modified Data Path for Shift Instructions…………………………………. 67
5.32 The Count Decoder Data Path Implementation…………………………… 68
5.33 The Auxiliary Circuit ……………………………………………………… 70

xii

5.34 The Conditional Jump Decoder……….……………………………………. 71
5.35 The Program Counter Implementation…………………………………….. 73
5.36 Memory Rom implementation for Program Storage………………………. 74
5.37 Modified Data Path for Branch instructions………………………………. 75
5.38 The Conditional Logic Implementation…………………………………… 76
5.39 The Load Decoder Circuit………………………………………………… 77
5.40 The Load Decoder Implementation……………………………………….. 78
5.41 Memory implementation for Load and Store……………………………… 78
5.42 Added Elements for Load, Store, Read PSW and Fetch………………….. 79
5.43 Modified Data Path for Load and Store operations……………………….. 80
5.44 In Instruction Hardware Implementation…………………………………. 81
5.45 Circuit implementation for Out instruction……………………………….. 82
5.46 Read PSW Instruction Hardware………………………………………….. 83
6.1 The Control Unit Implementation…………………………………………. 84
6.2 Fetch Process First Cycle…………………………………………………. 86
6.3 Fetch Process Second Cycle………………………………………………. 87
6.4 PC Incrementer Circuit……………………………………………………. 87
6.5 PC Incrementer Implementation…………………………………………… 88
6.6 Ra signal circuit implementation………………………………………….. 100
6.7 Regmemout signal circuit implementation………………………………… 101
6.8 Reg Alu out signal circuit implementation………………………………… 102
6.9 Trybuff 0 signal circuit implementation…………………………………… 104

6.10 Trybuff 1 out signal circuit implementation………………………………. 106
6.11 Trybuf f2 signal circuit implementation…………………………………… 107
6.12 Data out signal circuit implementation……………………………………. 109
6.13 ALU clock signal circuit implementation…………………………………. 111
6.14 Rb signal circuit implementation………………………………………….. 113
6.15 Rc signal circuit implementation………………………………………….. 114
6.16 Read Register signal circuit implementation……………………………… 116
6.17 PC signal circuit implementation………………………………………….. 118
6.18 END signal circuit implementation……………………………………….. 120
6.19 SUM signal circuit implementation……………………………………….. 121
6.20 Sub signal circuit implementation…………………………………………. 121
6.21 And signal circuit implementation………………………………………… 122
6.22 Or signal circuit implementation……………..…………………………… 122
6.23 Not signal circuit implementation…………………………………………. 123
6.24 Shr signal circuit implementation…………………………………………. 123
6.25 Shl signal circuit implementation…………………………………………. 124

xiii

6.26 Shra signal circuit implementation………………………………………… 124
6.27 Count Decoder signal circuit implementation…………………………….. 125
6.28 Conditional Logic signal circuit implementation………………………….. 125
6.29 Condlogaux signal circuit implementation………………………………… 126
6.30 Load Decoder signal circuit implementation……………………………… 126
6.31 MDen signal circuit implementation………………………………………. 127
6.32 MAen signal circuit implementation………………………………………. 127
6.33 Read signal circuit implementation………………………………………… 128
6.34 Main memory store signal circuit implementation………………………… 128
6.35 PC add signal circuit implementation……………………………………… 129
6.36 Try state buffer 4-signal circuit implementation…………………………… 131
6.37 Try state buffer 9-signal circuit implementation…………………………… 132
6.38 Regout signal circuit implementation……………………………………… 132
6.39 Try state buffer 5 signal circuit implementation…………………………… 133
6.40 Try state buffer 6-signal circuit implementation…………………………… 133
6.41 PSW register signal circuit implementation……………………………….. 134
6.42 Try state buffer 8-signal circuit implementation…………………………… 134
6.43 Regmemout signal circuit implementation………………………………… 135
6.44 Control Unit Encoder (a)…………………………………………………… 136
6.45 Control Unit Encoder (b)…………………………………………………... 136
6.46 Control Unit Encoder (c)…………………………………………………… 137
6.47 Control Unit Encoder (d)…………………………………………………… 138
6.48 Control Unit Encoder (e)…………………………………………………… 138
6.49 Control Unit Encoder (f)…………………………………………………… 139
6.50 Control Unit Encoder (g)…………………………………………………… 139
6.51 Control Unit Encoder (h)…………………………………………………… 140
6.52 Control Unit Encoder (i)…………………………………………………… 140
6.53 Control Unit Encoder (j)…………………………………………………… 141
6.54 Control Unit Encoder implementation……………………………………… 142
6.55 Operational Code Decoder circuit…………………………………………. 144
6.56 Operational Code Decoder Implementation………………………………… 145
6.57 The Control Unit Timer……………………………………………………. 146
6.58 Control Unit Circuit………………………………………………………… 147
6.59 Control Unit Implementation………………………………………………. 147
6.60 Delay for signals……………………………………………………………. 149

1

Chapter 1

Introduction

 Microcontrollers and microprocessors are the most used devices in electronic

equipment. Modern technology demands from any engineer, a basic microcontroller or

microprocessor knowledge. The basic difference between them is that microprocessors

can be configured for the amount of memory and the input / output system used. The

microcontroller has all the computing system (I/O system and memory) built in it.

Designer’s judgment determines which one should be used.

The emphasis of this work will be in the CPU; other important microcontroller

parts such as the memory, the I/O system, microcontroller and microprocessor layout,

fabrication process and technology are beyond the scope of this work. Design

performance parameters like speed, power dissipation, wiring, packing, and transistor

sizing are also beyond the scope of this work [8]. Microprocessor Assembly

programming is not covered either.

1.1 Justification

 The motivation for this work comes after the author took the Computer

Architecture undergraduate course. The author realizes that microcontroller design could

be an opportunity to summarize and apply most of the electronic engineering basic and

advanced courses. Basic circuit analysis, basic electronic course, digital logic circuits and

advanced digital design are some of the electrical engineering courses used in this work.

2

Another motivation for this work lies in the author’s desire to present the student

the microcontroller concepts, design and operation, as quick and clear as possible. For

many years literature has been published regarding microcontroller and digital design.

Techniques, methods, and procedures have been published, but most of them are usually

explained using a symbolic or algorithmic approach. Some examples of this kind of

approach can be found on “The Intel Microprocessors 808X,Pentium and Pentium

Pro”[22] , “Computer Organization and Design The Hardware / Software Interface”[21],

Embedded Systems and Computer Architecture”[19],Computer Organization and

Architecture Principles of Structure and Function [20].

Although this work can serve as a quick reference for people with some

microcontroller basic knowledge, it was developed specially for people that have not

been exposed to microcontrollers or are exploring the field for the first time. After

students understand the basic microcontroller concepts, they can go by their own in the

field exploring other design concepts and alternatives.

To grasp the basic concepts at the starting stage, students feel more comfortable

when they see the theoretical materialization, simulation and execution of hardware

circuits, instead of large equations, diagrams, algorithms and symbols that most of the

microcontroller information sources offer. The hardware implementation of every

concept is what makes this work useful for beginners to learn and understand

microcontroller concepts.

One of the main features of this work lies in the fact that it follows a series of

steps and makes emphasis on the most important points in each and everyone of those

steps. Beginners just have to follow those steps in order to design and simulate their own

microcontroller. This work illustrates the design, simulation, testing, and implementation

of all microcontroller circuits in each step. Through the whole process the student will

appreciate the complete microcontroller evolution and transformation from zero to a

functional unit.

3

Practice is the key for success in any career. This method provides mechanisms to

change some of the microcontroller parts without affecting others. It makes emphasis on

modularization. Through the whole process, modules of each part are designed and can

be changed individually without affecting the entire system. This allows experimentation

and circuit changes to examine what happens.

One possible application of this work is that students can transform the

microcontroller schematic into HDL code and download it to an FPGA for prototype

simulation. This way, the students increase their understanding of microcontroller

concepts and operation, with hands-on experience; they can examine how the instruction

execution is and how the microcontroller circuits work in every instruction. Also multiple

versions of one microcontroller can be developed with slight changes, allowing students

to observe the effect of those changes in each design and simulate each prototype on

FPGA. This work provides a mechanism for students to train easier, faster and get more

practice in microcontroller design.

A weak point of this method is that it does not achieve an efficient

implementation. Performance is not the main point of this work; just delivering to the

student the most important microcontroller concepts. In chapter two we find information

regarding to microcontroller performance. The focus of this work is in the methodology,

not in the computational capabilities and features of the microcontroller.

Besides its educational approach, another important point is that this method

provides a mechanism to design a microcontroller that can be simulated, as said before,

on FPGA, but also can be used on real applications. In other words, users making slight

changes can produce a different microcontroller for new applications as needed. Users do

not have to buy a new microcontroller but try a different one using this method. Of

course this is convenient for experimentation or academic purposes only, not for

applications where performance is the critical point.

4

Modern microcontroller costs are relatively low, and are very useful for many

applications but sometimes there are situations that are better handled with specially

designed microcontrollers for specific applications. For example, a designer may want to

build and control his/her own personal robot, with a specific instruction set. Designers

can find in the market some inexpensive microcontrollers that suit design requirements.

But those popular microcontrollers perhaps are for general use, but probably lacking

features that designers would be looking for.

It is important to remember that those popular microcontrollers in the market

today are not designed for specific needs; some are for general purpose and others are for

specific applications. Then, sometimes designers invest huge amounts of time and effort

designing and programming assembly routine codes in order to achieve the required

microcontroller performance, as to take full control of their robot. Designing a

microcontroller for specific needs allows designers to minimize the programming

complexity and enhance designers system’s performance.

Designers also should keep in mind that microcontroller programming is as

important as the microcontroller hardware design. Although it is not the intention of this

work to discuss the microcontroller programming, this work illustrates the instruction

execution of the microcontroller. This helps a lot when we are trying to understand the

basic concepts of assembly programming like the addressing modes, clock cycles, and

operands.

The quality of the microprogramming is what makes it possible to transform the

complex circuits of the microcontroller into something useful. One of the main

motivations for this work will be that inexperienced designers will not only gain an

insight of microcontroller design and operation, but also, designers will get a better

understanding of the microcontroller assembly programming.

5

1.2 Research Objective

The main idea of this work is to develop a systematic and straightforward

procedure that allows students to understand microcontrollers design and operation.

Inexperienced designers should be able to design their own microcontrollers from scratch

using this procedure. This work assumes that the student has a basic knowledge of circuit

analysis and digital logic circuits.

1.3 Simulations

There are many simulation tools that can be used for microcontroller design.

Hardware Description Language (HDL) programming and graphic simulators are the

main development tools used in the microcontroller design market. The computer tool

used in this work is the graphical simulator Logic Works. Logic Works was chosen

because the focus of this work is for beginners in the microcontroller field. Logic Works

brings to the student an easy and complete visualization of the circuits and their

operation. One of the main features of this work consists in its illustrative techniques and

Logic Works results useful for these purposes.

HDL is convenient for large size circuits and then its code can be downloaded

into an FPGA for device prototype testing. But its programming nature does not result

useful for people trying for the first time to grasp the microcontroller concepts. Users

face a double challenge because they are trying to understand the basic principles of the

microcontroller operation and at the same time they are trying to learn the programming

rules and techniques of HDL code in order to execute the circuit simulation. Logic Works

allows users to graphically understand what happens inside the microcontroller during its

execution and then, schematics can be transformed into an HDL code and downloaded

into an FPGA for further prototype simulation.

6

1.4 Work Organization
Basic theory about microprocessors, its basic concepts and applications,

performance factors and a comparison between microcontrollers and microprocessors are

discussed in Chapter 2. The third chapter discusses the digital circuits available for the

microcontroller HDL code prototype, the microcontroller implementation alternatives

and programming. The fourth chapter describes in detail each of the microcontroller

design steps used in this work and the most important points to keep in mind. Chapter 5

has an example of the microcontroller design process described in chapter four. In this

chapter the microcontroller instruction set, architecture, basic circuits and the evolution

of the data path as new instructions are developed are described in detail. Chapter 6

presents the control unit design. A detailed description of each instruction is given in

chapter 7. Chapter 8 presents the conclusions of this work.

7

Chapter 2. Theory and Applications

2.1 Microcontroller Applications

The microcontroller is one of the most important electronic devices on which modern

technology is based on. Microcontroller uses are endless; from toys to microwaves,

ovens, TV sets, computers, printers, cars and so on.

Digital circuits become larger and larger as more functions need to be executed. In

modern digital world, most individual digital circuit components are sold in a single chip.

Those individual chips need power and space to operate. When the circuit becomes huge,

the traditional logic design approach is not the best option and microcontrollers become

convenient. Microcontrollers are basically sequential machines because their operation

depends on their current status and its inputs. Their power lies in the fact that the

hardwire configuration allows its operation to be changed depending on programming. It

is not required to use additional logic circuits if the operation is changed.

2.2 The Processor and the Microntroller Concepts

 Data are words, numbers and graphics that describe people, events, things and

ideas. It becomes information when used as the basis for initiating some actions or to take

decisions. Data is represented by binary expressions when used in the digital world.

A binary number system is a numeric system that has only two different digits: 1

and 0 (binary); and any of these is called a bit. Data are represented by finite permutation

of bits. These combinations are called words. A collection of hardware devices that

manipulate binary expressions to process information is called a processor [1].

 The processor manipulates binary numbers following an algorithm, which

determines the way in which the instructions are processed by the hardware inside the

processor, how data begins to be processed and where it is finished. An instruction code

in the instruction format indicates to the system which algorithm to perform. This specific

algorithm represents the specific instruction to be executed. The following are the

principal processor components [1].

8

1) Arithmetic Logic Unit (ALU): is a combinational logic network that performs

the mathematical and logical operations of the processor.

2) Registers: hold the data operated on, between clock cycles for processing.

3) Control Unit: a synchronous sequential logic network that controls all the

hardware in the digital system. This unit decodes the instruction,generates the

proper sequence of control signals, and activate and deactivates the

corresponding hardware units in the system to achieve the right processing

according to the instruction.

4) The clock: a periodic pulse waveform that synchronizes all the elements in

the system. Every clock cycle represents a state of the system. This means that

in every clock cycle the system will have specific hardware control lines that

are going to be on or off. The system clock speed depends on the response

speed of the circuit elements when data passes through them.

Although these components are the most important ones, they are not alone. A big

difference exists between identifying all those main elements and putting them together

to work. Digital Logic, gates, multiplexers and other important circuits are necessary for

processing support or to solve implementation problems, avoid signal conflicts and so on.

Memory (circuit where data and instructions are stored) and input / output circuit

interface (computer system used to pass data to and from the central processing unit) are

necessary circuits for the microprocessor implementation.

Any hardware involved in data transfer into or out of the processor is considered

separate from the processor. Processor only refers to the hardware that manipulates data.

When a processor is capable of performing arithmetic operations, logical operations, load

and store operations, branching operation and input-output operations, it is called a

“general purpose processor”. When it is integrated in a single IC it is called a

microprocessor.

9

A personal computer is usually a connection of components that contain many

microprocessors. The motherboard contains the main microcoprocessor, but other

microcoprocessors or microcontrollers are also involved. The keyboard, the disk drive

interface, the display monitor interface, and the printer are some of the components that

may contain their own microcontrollers. Therefore, a personal computer system is a

collection of many microcontrollers controlled by a main microprocessor.

2.3 Microcontroller Performance Factors

Microcontroller performance can be defined in terms of speed, size, power, cost,

design time and manufacture cost. Each depends on concepts beyond the scope of this

work. The main factor determines the microcontroller performance [9] are its

architecture, design features and manufacture process. Thus the microcontroller

performance depends on designers’ judgment at the design stage.

The architecture features determine the remaining microcontroller characteristics.

The architecture depends on the microcontroller application. Different applications differ

in features and data processing requirements. The Von Neumann architecture and the

Harvard architecture [3] are the two main architectures used in microcontroller design.

The Harvard architecture is the most popular nowadays. Von Neumann architecture main

characteristic is that it uses one main memory where data and instructions are stored.

Only one system bus is used for control, data transfer, processing and addressing.

Harvard architecture consists of two different and independent memories in which one

contains instructions and the other one contains data. Both have their own data bus

systems for control, data transfer, processing and addressing. Both memories can be

accessed simultaneously.

10

After the architecture has been defined the design process will be ruled by it. The

hardware implementation will process the data by the architecture definition. Every part

of the microcontroller hardware has many variables that can be configured to set its

operation. Examples of these variables are the chip area and the distance between its

components, the chip power dissipation, wiring effects, chip speed, manufacture

materials, and packing. Each and every one of those variables is a field of study by itself,

but they are beyond the scope of this work [8].

The Architecture and the hardware implementation features transform an idea into

a circuit with specific characteristics. Computer simulation allows designers to verify that

circuits work as required. When specification constrains and performance requirements

are met, it is time for testing and manufacture. Design aspects defined by the architecture

determines which manufacture process will be used. Manufacture processes have

advantages and disadvantages and they can differ in equipment cost and technology.

2.4 The General Purpose Microcontroller

 Microcontrollers execute different kind of instructions. The instructions for a

general-purpose microcontroller can be:

1) Arithmetic Instructions.

2) Logic Instructions.

3) Data transfer Instructions.

4) Jump Instructions.

5) Miscellaneous Instructions.

Some microcontrollers are designed to specialize their execution in one or more of

those classifications. Those are special purpose microcontrollers. Those basic instructions

are combined to perform more complex instructions and the power and speed of

execution of the microcontroller allows those instructions to execute complex tasks.

Instructions are executed in such a way that an operation is achieved and different

operations are used for different applications.

11

Special purpose microcontrollers are designed for an application where using a

general-purpose microcontroller is not the best option. Usually those applications require

repetitive execution of one or more instructions, which can be implemented in software

or hardware. Hardware instruction implementation allows faster execution and reduces

program size. Examples of special microcontrollers can be found on camcorders, digital

cameras, automobiles and so on.

2.5 Comparing Microcontrollers and Microprocessors
The microprocessor is an integrated circuit composed by the Control Unit,

Arithmetic Logic Unit, Registers and Digital circuit support. The microprocessor uses its

data bus pins, address bus pins, and control lines pins to allow connection to other

circuits to configure the entire system. The main characteristic of the microprocessor is

that it is an open system, which means that its configuration is variable, and can be

adapted to many different applications. A block diagram of a microprocessor is shown in

figure 2.1.

Figure 2.1 The Microprocessor Configuration

ALU

Control
Unit

Registers

Digital
Circuits

Memory

Input / Output
System

CPU

12

The microcontroller is a closed system. In the microcontroller all parts that can be

configured in the microprocessor are fixed in the same chip. A block diagram of a

microcontroller is shown in figure 2.2. Just the lines that control the peripherals are the

ones that go outside the chip. This characteristic makes microcontrollers suitable for

specific applications or for general use.

The microcontroller applications range is narrower than the microprocessor’s

range. The reason is that microcontrollers have all their computing system integrated on

the same chip. This reduces the available space inside the microcontroller to include

components that the microprocessor have externally like memory and I/O system.

This means that a microprocessor can be used for microcontroller applications but

microcontrollers cannot always be used for most microprocessor applications.

Microcontrollers are preferred when the application is defined and specific. In those

situations where important system modifications are needed or applications are not

specialized a microprocessor is more convenient.

Figure 4.4

Figure 2.2 The Microcontroller Configuration

MICROCONTROLLER

Peripherals Peripherals
CPU MEMORY

I/O SYSTEM

13

Chapter 3 Microcontroller Implementation and Operation

3.1 Implementation Alternatives

Traditionally, digital design was a manual process of designing and capturing

circuits using schematic entry tools [2]. The increase in size and complexity of

hardware has forced designers to discus new methods and tools for digital design.

Hardware description languages (HDL) and synthesis, have substituted the more

traditional schematic process of simulation. This is because HDL allows simulating

circuits with hundreds of elements in a relative short period of time. Some of the new

tools for HDL simulation are electronic equipment containing Application-Specific

Integrated Circuits (ASICs), or Field-Programmable Gate-Arrays (FPGAs).

The introduction of industry standards for hardware description languages and

commercially available synthesis tools has helped establish this revolutionary design

methodology. Some advantages are:

• Increased productivity yields shorter development cycles with more product

features and reduced time to market,

• Reduced Non-Recurring Engineering (NRE) costs,

• Design reuse is enabled,

• Increased flexibility to design changes,

• Faster exploration of alternative architectures

• Faster exploration of alternative technology libraries,

• Enables use of synthesis to rapidly sweep the design space of area and timing,

and to automatically generate testable circuits,

• Better and easier design auditing and verification.

14

Figure 3.1 Microcontroller Implementation Alternatives

 Figure 3.1 illustrates the alternatives of hardware implementation available.

Modern designs are characterized by their increase in size and complexity, circuit

simulation is one of the most important steps in circuit design. Circuit simulation and

hardware prototype implementation saves time and money because they allow designers

to verify that the implemented digital design works as required.

Implementation
Alternatives

Virtual simulation
(Software simulation

Schematic
Simulation

Hardware Description
Language (HDL)

Hardware

Logic
Gates

PLD /
PLA

FPGA ASIC

15

 Software simulation previews the circuit behavior. It serves as a mechanism to

verify accurately the principal circuit characteristics and to ensure its design requirements.

Hardware implementation, in contrast with software simulation, is a physical prototype

configuration that serves to physically simulate the circuit behavior. Note that hardware

implementation requires software simulation through HDL. Its advantage lies in the fact

that circuits can be tested interacting with other real physical circuits before they are

fabricated.

 Standard "off-the-shelf" integrated circuits have a fixed functional operation

defined by the chip manufacturer. Contrary to this, both ASIC and FPGAs are types of

integrated circuit whose function is not fixed by the manufacturer. The designer for a

particular application defines the function. An ASIC requires a final manufacturing

process to customize its operation while an FPGA does not.

ASICs
An Application-Specific Integrated Circuit is a device that is partially

manufactured by an ASIC vendor in generic form. This initial manufacturing process is

the most complex, time consuming, and expensive stage of the total manufacturing

process. The result is silicon chips with an array of unconnected transistors. The final

manufacturing process of connecting the transistors together is then completed when a

chip designer has a specific design to implement using ASIC. An ASIC vendor can

usually do this in a couple of weeks and is known as the turn around time. One problem

is that it is a physical realization, which means that if there are mistakes during the

HDL simulation and are not corrected, its physical implementation will have the errors

also and there are no mechanism to correct it once it is fabricated. There are two

categories of ASIC devices: Gate Arrays and Standard Cells.

16

Gate Arrays

There are two types of gate array; a channeled gate array and a channel-less

gate array. A channeled gate array is manufactured with single or double rows of basic

cells across the silicon. A basic cell consists of a number of transistors. The channels

between the rows of cells are used for interconnecting the basic cells during the final

customization process. A channel-less gate array is manufactured with a "sea" of

basic cells across the silicon and there are no dedicated channels for

interconnections. Gate arrays contain from a few thousand equivalent gates to

hundreds of thousands of equivalent gates. Due to the limited routing space on

channeled gate arrays, typically only 70% to 90% of the total number of available

gates can be used.

The library of cells provided by a gate array vendor will contain: primitive logic

gates, registers, hard-macros and soft-macros. Hard-macros and soft-macros are

usually of MSI and LSI complexity, such as multiplexers, comparators and counters.

The manufacturer in terms of cell primitives defines hard macros. By comparison,

the designer, for example, characterizes soft-macros by specifying the width of a

particular counter.

Standard Cell

Standard cell devices do not have the concept of a basic cell and no components

are prefabricated on the silicon chip. The manufacturer creates custom masks for every

stage of the device's process and silicon is utilized much more efficiently than for gate

arrays.

17

FPGAs

The Field-Programmable Gate Array is a completely manufactured device, but

remains design independent. Each FPGA vendor manufactures devices to a proprietary

architecture. However, the architecture will include a number of programmable logic

blocks that are connected to programmable switching matrices. To configure a device

for a particular functional operation these switching matrices are programmed to route

signals between the individual logic blocks.

PLD and PLA
The Programmable Logic Device (PLD) is essentially a grid of programmable

conductors that form rows and columns with fusible link at each cross point. PLD are

classified according to their architecture, which is basically the functional arrangement of

internal elements that give a device its unique characteristic. The Programmable Logic

Array (PLA) is a device with programmable AND and OR arrays.

3.2 Hardware Description Languages (HDLs)

A Hardware Description Language (HDL) is a software programming language

used to model the intended operation of a piece of hardware. There are two aspects of

hardware description that HDL facilitates: true Abstract Behavior Modeling and Hardware

Structure Modeling.

The Abstract Behavior Modeling is a declarative hardware description language

in order to facilitate the abstract description of hardware behavior for specification

purposes. The Hardware Structure Modeling is a hardware structure that can be

modeled in a hardware description language irrespective of the design behavior. The

hardware behavior may be modeled and represented at various levels of abstraction

during the design process. Higher-level models describe the operation of hardware

abstractly, while lower level models include more detail, such as inferred hardware

structure [23].

18

3.3 Tradeoffs in Microcontroller Design
 Is it necessary to use a special purpose microcontroller or a general purpose one

can be used? That is an important question that must be answered before attempting to

implement a microcontroller. In addition to having the basic instruction set, special

purpose microcontrollers usually have instructions specialized to perform specific tasks.

Those microcontrollers include in their design, special hardware that is used for

execution and calculation support to execute instructions in their specific applications.

The application determines the microcontroller operation, and the operation is

executed with specific instructions. Then, the real deal in the design process consists in

making tradeoffs between designing more powerful and complex instructions that reduce

the programming code, or as another alternative, the operation can be implemented in

hardware to save the time-consuming programming of certain tasks and achieve faster

execution.

Should an operation be implemented in hardware or software? Is it worth? The

answers to those questions depend on many factors like design requirements, available

budget, technology used and so on. Hardware instructions implementation result in faster

executions but increase design cost. Software implemented operations save hardware and

costs but increase the instruction execution time and the programming complexity. There

are not defined rules. Designers have to make their choices based on design constrains

and available resources to produce the best system performance at the lower cost.

19

3.4 The Microcontroller Programming

Commonly, every processor is designed with one purpose and has its own

instruction set. The microcontroller architecture determine how powerful the instruction

set is and how many clock cycles it takes to execute its instructions. As the instructions

are more powerful, the microcontroller programming usually becomes more complex but

shorter and more tasks are done per clock cycle.

Microcontroller programming is usually done in assembly language. This is

because this is a low level programming language. Instruction in this low level

programming language are directly related to the machine code, the ones and zeroes or

high and low voltage combinations necessary to control all the hardware inside the

microcontroller to process data. One advantage of assembly language is that allows the

programmer to control some internal process like selecting specific registers that

normally cannot be done using a high level programming language.

Each microcontroller has its own assembly language code, so the assembler is

specific to the microcontroller. High level programming languages, on the contrary,are

independent of the processor. The compiler and other tools are transparent to the

programmer, do the translation to the respective processor used by the computing system.

Commercial microcontrollers are very often sold embedded in the so-called

evaluation cards. These system boards contain additional hardware and connectors to

facilitate applications and programming. The programmer can design the assembly

program and download it to the microcontroller easily.

20

3.5 The Microcontroller Operation

Summarizing, the microcontroller operation consists in three steps:

• Fetch process; the fetch process consists in retrieving one instruction from

memory and load it in the Instruction Register.

• Decoding; once the instruction is in the Instruction Register, the control

unit receives the operational code from it. The control unit decodes the

operational code to identify the instruction to be executed.

• Executing; after the control unit identify the instruction, it start a series of

microcontroller hardware signal activations. To carryout the execution

process some of the circuit elements must be on and off in each clock

cycle. The control unit ensures that the necessary elements are on and off

in each clock cycle to accomplish the instruction execution.

Basically the CPU addresses a memory location, obtains (fetches) a program

instruction that is stored there, and carries out (executes) the instruction. After completing

one instruction, the CPU moves on to the next one. This fetch and execute process is

repeated until all of the instructions in a specific program are done. The fetch process

clock cycle depend on the Instruction Register size (and i.e. the instruction word) and the

number of bits of the data bus. For example if the IR size is eighteen bits and the data

path is four bits, then five clock cycles will be needed for the fetch process. The memory

size will determine how many instructions can be stored in it and indeed the program size

that can be stored.

21

3.5.1 The Program Counter

To indicate the memory address to retrieve the instruction a special register is

used. This register is the Program Counter. The PC holds the address of the memory

location where the next instruction is located. The PC input ports are connected to the

data bus; in this way the ALU connected also to the data bus increment the PC to the next

memory location. The PC output port is connected to the memory address port to identify

the required memory location where the instruction is.

3.6 FLAGS
Flags are also called conditional codes. Condition codes are bits set by the CPU

hardware as the result of operations. Usually condition codes are collected into one or

more registers called flag register. Flags are very useful because they can be used as

parameters to make decisions. For example, a microcontroller application can check the

flag register to see if the result of one subtraction operation is zero, then, using this

information the microcontroller can take decisions to execute other instructions.

22

Chapter 4 The Microcontroller Design Steps

This chapter describes the steps used in the microcontroller design example of this

work. Each step has important points that designers should keep in mind in them. Those

points guide the user through the whole design process.

4.1 Methodology Steps
The steps are enumerated in table 4.1

STEP DESCRIPTION

STEP I Justification

STEP II Operations Definition

STEP III Instruction Set Definition

STEP IV Architecture Definition

STEP V Arithmetic Logic Unit (design and implementation)

STEP VI The Register File

STEP VII The Instruction Register

STEP VIII Data Path for data processing and Control Signal Table

STEP IX The PC, Jump and data transfer instructions

STEP X The Control Unit

Table 4.1 Methodology Steps

The description of each one is given next.

23

4.2 Steps Description
STEP I: Justification

Designers should first analyze the situation and decide if a microcontroller is needed

for the application. The following are some questions that could guide designers at the

implementation decision stage.

• What is the application? Application is a computer program or set of programs

designed for a particular type of real world job.

• Can the application be implemented with logic circuits? The answer to this

question is obviously yes. But, what will be the resulting circuit size? Is it

affordable?

• What could be the microcontroller implementation advantage? The importance of

microcontroller lies on the fact that it has hardwired circuits that change their

operation using programming. Designers should analyze if the amount of different

applications justify the use of a microcontroller or if the use of individual

operational circuits is more convenient.

• What are the advantages or disadvantages of using a microcontroller in terms of

efficiency, time, design complexity and cost? Analyses of tradeoffs are necessary

to answer those questions. Budget and design requirements analyses are necessary

to decide if a microcontroller use is convenient or not. Sometimes the use of a

microcontroller results in a waste of hardware resources. In other situations the

microcontroller use results in the less expensive option. There are situations in

which programming is avoided using logic circuit, but this choice could result in

larger, expensive and more complex circuits.

• Is a microcontroller result in the best option? How many different operations will

be used? How many times one operation is executed? Is it better to use individual

circuits for every operation or using a microcontroller is more efficient? Do

Individual circuits have faster response than the microcontroller? Is this

difference in time response needed for the application? Is the microcontroller

programming complexity worth instead of using individual circuits? What tasks

are done routinely?

24

STEP II: The Operation Definition

 After a careful study of the application, the next step consists in defining the

amount of different operations required for the application.

One computer operation is defined as the calculation executed by a single machine code

instruction [8]. It is also the mathematical or logical way of producing a result from one

or more operands.

• What are the application operation requirements? Are those operations complex

or simple? How many different operations does the application have? Do

designers need a new microcontroller to execute one operation or can they use an

existing one? If they use an existing one, does it execute the instruction as

required in terms of clock cycle, power and speed?

• Is it more convenient to divide those operations in more simple tasks or not?

Depending on the application and design requirements this could or could not be

possible. Can the microcontroller with its instruction set, execute those individual

and simple tasks, or a new one is needed?

• Can those tasks be executed using more than one instruction, or is one instruction

enough? The answer to this question lies on the characteristics of every

microcontroller instruction and depends on the amount of tasks covered by the

instruction.

25

STEP III: The Instruction Set Definition

 The instruction set should contain those instructions that the application requires.

Tasks executed, amount of hardware used and clock cycles are very important parameters

of an instruction. One instruction is defined as a program statement that has been changed

into machine code. The CPU can understand the statement and execute it [8].

• How powerful is the instruction? The term powerful means that many tasks can

be executed. This however may result in more hardware or more clock cycles per

instruction.

• How many instructions are required to perform the operation? This will be

determined by the power of the instruction set. The more powerful the instruction

set is, fewer instructions are needed per operation.

• What kind of instructions does every microcontroller must have? Every

microcontroller must have at least; logic, arithmetic, branch and data transfer

instructions.

• How many complex tasks can be executed using the simplest instruction set? The

basic instruction set can be combined to execute complex tasks. For example, a

multiplication operation can be executed with successive execution of the addition

instruction.

• What instructions should be implemented in hardware and which ones in software

and why? Instructions frequently executed must be implemented in hardware.

This saves programming time and size, allowing faster instruction execution.

Software instructions are used depending on the application.

26

STEP IV: The Architecture Definition

The Computer architecture refers to the basic ideas and principles in which a computer

system is based on [8].

• The instruction operation.

The first task must always be to specify each instruction operation. After

designers identify the instruction set, they must document: the instruction’s name, as well

as operands and execution in symbols for each one.

• The microcontroller bit number.

The microcontroller bit number refers to the size of the group of bits

processed during instruction execution. Sometimes choosing the number of bits is

as simple as analyzing the required bits for the application. In other cases there

are applications in which more than certain amount of bits results unnecessary.

Using more than the necessary bits may result in excessive hardware use and an

increase in the circuit size, cost and power consumption.

• The instruction format.

The instruction format specifies the order of the instruction parameters in

the instruction word. Those parameters include the operational code, registers

used, and additional necessary data for the instruction execution.

• The instruction format organization

The instruction word parameters can be organized as designers want. In

this work the operational code will be at the left most side, next are the registers

used during the operation and finally the additional data used for the instruction

execution.

27

• The Operational Code (Opcode).

The number of instructions decides the necessary bits for the operational

code. The operational code identifies each instruction with a unique code for its

execution.

• Addressing modes

The addressing modes decide the amount of registers used for data

processing. The addressing modes used during the instruction execution decides if

more bits have to be used to address the data or not and this affects the size of the

instruction word.

• Bits used for the Register File.

The number of registers used in the Register File determines how many

address bits in the instruction word are required to address one specific location in

it.

• Number of data buses.

The number of data buses in use determines the amount of data processed

per clock cycle. Using more than one data bus can save clock cycles per

instructions, but increases the data path and control unit circuit complexity.

• Control Line Bus: In this work the control lines will be connected to the control

unit.

• Address Bus: Depending on design requirements the address bus is not necessary

if the address bits can be transferred using the data bus. A dual role requires

additional hardware.

• I/O Handling: Will the I/O ports be memory mapped or handled separately.

Memory mapped ports do not require special I/O instructions.

28

STEP V: The Arithmetic Logic Unit

In step V, the goal is to design the Arithmetic Logic Unit circuit. The ALU is the

CPU component where mathematical and logical operations are executed.

• ALU components

The individual circuits that execute all the arithmetic and logical operations are

joined together as one unit to compose the Arithmetic Logic Unit.

• Testing

Testing is a very important task in this step. Designers must ensure that every

individual circuit in the ALU correctly does every calculation.

STEP VI: The Register File
A register is a small high-speed memory circuit that holds binary data [8]. In This

step, the Register File is developed. The Register File is a group of registers used to store

data during the instruction execution. It is an important element because data needs to be

stored between clock cycles for further processing.

• Implementation alternatives

The number of data buses in the microcontroller determines the Register

File design. Sometimes more than one data bus is used to accept and release data

simultaneously in one clock cycle. Designers must decide how many data buses

will be used in the microcontroller because the Register File will use the same

number.

29

• The number of registers for the application

This is an important design parameter because it affects not only The

Register File size but also the Instruction Register size because the IR has bits

dedicated for the Register File address. Designers must select the number of

necessary registers to hold data in each instruction clock cycle.

STEP VII: The Instruction Register (IR)
 The Instruction Register holds the instruction word that will be executed. It is

designed at this stage because the numbers of instructions, registers used and the

architecture have been defined. The IR is connected to the control unit, the Register File

and the data path.

• Implementation alternative: The IR implementation consists of a register or a

group of registers that holds the instruction word.

• Size: It will be easier if the size is equal to the word size because then, the

instruction word holds all the required information for the instruction execution.

The memory output is connected to the IR to load every single program

instruction line. The IR does not have to be the same size of the data bus because

it just transfers data and does not contain any other information about the

instruction.

30

STEP VIII: Data Path

The microcontroller data path is the configuration of all the circuits used for data

processing. Some key points are very important in this step. It is implemented at this

stage because all the necessary circuits have been designed.

• Layout

Designers must be creative and use strategic thinking to make the best circuit

arrangement in order to achieve the instruction execution using the minimum

amount of hardware and clock cycles.

• Clock cycles

The Register File plays an important role in the number of clock cycles per

instruction. More data can be processed at the same time depending on the

amount of the Register File input and output ports. Also, another important

element is the number of additional registers in the data path used to hold data

between clock cycles. This can make a difference in the number of clock cycles

per instruction if designers know how to use them.

STEP IX: The PC, Jump and data transfer instructions
The instructions developed at this stage use the existing data path hardware and

additional necessary circuits added in it for instruction execution.

• Those instructions need additional circuit support because some of them make

decisions between clock cycles. Those circuits are used only when their

instructions are executed. It is very important to test those circuits before using

them for support. Another reason for using additional hardware is that more than

one task per clock cycle is executed in those instructions.

• Block diagram to show the added elements. It is convenient to show the added

elements to the data path to see its transformation into a more complex one.

• The Program counter. The program counter was introduced in section 5.3.1 and is

developed at this step. This step presents the PC implementation and

interconnection in the microcontroller circuit.

31

STEP X: The Control Unit

The control unit is the CPU section that decodes program instructions and controls

their execution. It takes control of every circuit signal in the microcontroller, activating or

deactivating those signals in each clock cycle. The signal activation and deactivation per

clock cycle make possible the flow of data through all data path circuits. The circuit

arrangement determines the amount of processed data in each clock cycle. Then, as more

data is processed per clock cycle fewer of them are needed. The developing method used

in this work requires that designers “run” by hand every single instruction and take notes

of which circuit signals are activated and deactivated per clock cycle.

• Timer

The timer is a counter that goes from zero to seven and is used to specify each

instruction clock cycle.

• Operational Code Decoder

This element receives one specific instruction code and release one signal that

indicates the microcontroller to execute it.

• Control Unit Encoder

The Control Unit Encoder receives input signals from the opcode decoder and

from the timer. The Control Unit Encoder activates the corresponding circuit

signals that have to be active in the specified instruction in every clock cycle.

• Implementation Alternatives

The preceding explanation of the control unit operation is implemented using

logic circuits for the control unit encoder and the opcode decoder. There is

another way of implementation that consists in the use of one ROM that has all

the signal activation and deactivation per clock cycle. The control unit

implementing this approach uses the opcode to identify the instruction location in

ROM. Each line code in ROM represents each instruction clock cycle and the

code in every line just controls (activates or deactivates) all the data path circuit

signals.

32

Chapter 5 The Microcontroller Design Example

5.1 STEP I and II The Microcontroller Justification and Operations

The purpose of this chapter is to provide the reader an example of the methodology

described in chapter 4. Step I, and II will not be developed in this example because our

intention is to show the design and implementation of one general-purpose

microcontroller.

5.2 STEP III: The Instruction Set

The choice of microcontrollers instruction set is not standardized due to designers

and customers preferences. The microcontroller instructions are classified according to

their operation. Table 5.1 presents the basic instruction set for the microcontroller of this

work. In this table the transfer notation is used to show the instruction results. Here A ←

B + C for example means that the contents of A is substituted by the result of B + C.

Those instructions were selected to show the reader an example of the most common

instructions used in microcontrollers.

NAME MNEMONIC ADDRESSING

MODES

OPERAN
DS

TRANSFER

NOTATION

ARITHMETIC INSTRUCTION SET

 ADDITION ADD Register B, C A ←(B +C)

 SUBSTRACT SUB Register B, C A ←(B - C)

INMEDIATE

ADDITION

ADDI Immediate B, DATA A ←(B +DATA)

INMEDIATE

SUBSTRACTION

SUBI Immediate B, DATA A ←(B -DATA)

33

LOGIC INSTRUCTION SET

AND AND Register B, C A ←(B • C)

OR OR Register B, C A ←(B (+) C)

INMEDIATE

AND

ANDI Immediate B, DATA A ←(B •DATA)

INMEDIATE OR ORI Immediate B, DATA A ←(B (+) DATA)

SHIFT RIGHT SHR Register n (1n) Bi+n B j+n B k+n

← BiBjBkBl

ARITHMETIC

SHIFT RIGHT

SHRA Register n (nBi) Bi+n B j+n B k+n

← BiBjBkBl

CIRCULAR

SHIFT

SHC Register n (nBl) Bi+n B j+n B k+n

← BiBjBkBl

SHIFT LEFT SHL Register n Bj-n Bk-n B1-n (1n) ←

BiBjBkBl

NOT NOT Register B -(B) ← B

DATA TRANSFER

LOAD LD A, M Register A, M A ← M

STORE STR M, A Register A, M M ← A

BRANCH

UNCONDITION

AL JUMP

UNCJMP Immediate Last 4 bits PC ← (LAST 4 BITS)

JUMP IF

CONDITION

BRNCH Register Address IF CONDITION IS

TRUE: PC ←

(ADDRESS)

MISCELLANOUS

34

DATA

TRANSFER (IN)

IN Register ADDRESS ADDRESS ← DATA

DATA

TRANSFER

(OUT)

OUT Register ADDRESS PORT ← ADDRESS

READ PSW RDPSW Register ADDRESS ADDRESS ← PSW

Table 5.1 The Microcontroller Instruction Set

5.3 STEP IV: The Microcontroller Architecture Definition

The Architectural design steps include:

A) The Instruction Set.

B) The number of used bits to represent data (4, 8, 16,32 or 64 bits).

C) Instruction Format and addressing modes.

D) Number of data buses.

E) The instruction execution algorithm (the best arrangement of the hardware to

process the software).

F) Clock cycles per instruction.

G) Input / Output mechanisms.

The computer organization must be specially designed to implement a particular

architectural specification. The microcontroller task is to execute each and every

instruction it receives. This means that each instruction reflects the architecture in use by

the microcontroller. After the selection of the desired instructions for the

microcontroller, the next step consists in specifying the rest of the architecture.

35

a) The Instruction Set

 Step II defines the instruction set for the microcontroller.

b) Number of microcontroller bits

Because this work is focused on beginners, the number of bits used for this

microcontroller will be four. Four-bit microcontrollers are simpler for design and

implement. The same techniques used here for this four- bit microcontroller can be used

for eight-bit or sixteen-bit microcontrollers.

c) The Instruction Format

After the basic architectural aspects have been defined, the instruction word can be

defined. Each instruction word has a group of bits that identifies its specific code. The

group of bits used for this code is called the instruction operational code or opcode. This

work uses 20 instructions, so, the minimum number of bits for the opcode decoder is 5,

because 2^4 = 16, while 2^5 = 32, enough to assign each instruction a specific code.

The Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Ra Rb Rc Different uses

Figure 5.1 The Instruction Format

36

There are no standard rules for the order and meaning of the different groups of bits

that compose the instruction word. That depends on designers’ judgment and system

architecture. The standard for this microcontroller will be the following; accordance to

figure 5.1.

1) Bits 17-13 stand for the opcode. Those bits specify the instruction that will be

executed.

2) Bits 12 to 10 labeled as Ra, specify the register file address location to store the

processed data or the one that has been transferred from memory.

3) Bits 9 to 7 labeled as Rb, represent the register file address location of one

instruction operand.

4) Bits 6 to 4 labeled as Rc, represent the register file address location of one

instruction operand.

5) Bits 0 to 3 are used depending on the operation. For example, all the instructions

that use the immediate addressing mode need a value directly from the instruction

word. The value in those instructions is stored in those last 4 bits.

 d) The number of data buses

The number of data buses in the system will be just one. Although one

microcontroller with more than one data bus could be more efficient, the number of

signal activations will be higher per clock cycle. This will result in a more complex

control unit and for simplicity purposes the microcontroller of this work have just one

data bus.

Architecture design steps; E) Data Path arrangement, F) Clock cycles per

instruction, and G) Input / Output mechanisms will be specified at the same instruction

design moment.

37

5.4 STEP V: The Arithmetic Logic Unit

The Arithmetic Logic Unit is one of the most fundamental CPU components. The

techniques used in this work for the ALU design consist first in designing all its

individual circuits and connecting them in parallel, as illustrated in figure 5.2. In this

figure, each block “operation I” stands for an operation associated to an instruction and

executed by the ALU. The block has its output connected to a tristate buffer (See figure

5.3) [3]. The signals controlling the tristate buffer operation come from the IR depending

on the opcode. We illustrate now the operation blocks.

Figure 5.2 The ALU Structure

OPERATION 1

OPERATION 2

OPERATION 3

OPERATION N

TRISTATE 1

TRISTATE 2

TRISTATE 3

PORT A PORT B

FLAGS

Control logic
activated by
the control unit

Flags due to
computations results

TRISTATE 3

38

TR BU FO UT T1

TR BU FO UT T2

TR BU FO UT T3

TR BU FO UT T4

TR BU FIN1

TR BU FIN2

TR BU FIN3

TR BU FIN4

TR YB U FE N

Figure 5.3 Tristate Buffer Implementation Circuit

5.4.1 The Adder and Subtractor

The adder can be designed for example using the carry ripple connection as illustrated by

figure 5.4 [3]. After selecting the adder we have to do some testing as illustrated in figure

5.5. We proceed similarly with the subtractor tested as illustrated in figure 5.6.

39

C A RRY

C A R RY

CA RRY

C A RRY CA RRY

C A R RY

CA R RY

CA R RY

S UM 0S UM 3 S UM 2 S UM 1

B ITA 0B ITA 3 B ITA 2 B ITA 1 B ITB 0B ITB 3 B ITB 2 B ITB 1

Figure 5.4 Adder Example

A 0
A 1
A 2
A 3

B 0
B 1
B 2
B 3

S 0
S 1
S 2
S 3

C O

C I

0 1 2 3
4 5 6 7
8 9 A B
C D E F

0 1 2 3
4 5 6 7
8 9 A B
C D E F

0

1

1

0

0

Figure 5.5 Example of Adder Circuit Testing

40

A 0
A 1
A 2
A 3

B 0
B 1
B 2
B 3

S 0
S 1
S 2
S 3

C O

C I

0 1 2 3
4 5 6 7
8 9 A B
C D E F

0 1 2 3
4 5 6 7
8 9 A B
C D E F

0

0

0

0

0

Figure 5.6 The Subtractor Circuit Implementation

5.4.2 Logical Bit wise operations: AND, OR, NOT.

The Bit wise logic functions takes words and bit by bit perform the corresponding

function. These blocks can be done with parallel connections of gates as shown in figure

5.7 for the AND block. The OR and NOT operation blocks are equally designed.

41

1

1

0

0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

Figure 5.7 AND Circuit Implementation

42

5.4.3 Shift Right

ZZZ Z

CC C C

C

C
C

C

in
p

ut
1M

S
B

in
pu

t2

in
p

ut
3

in
p

ut
4

bitdeshift4LSB

bitdeshift3

bitdeshift2

bi
tp

o
rto

ut
1

bi
tp

o
rto

ut
2

bi
tp

o
rto

ut
3

bi
tp

o
rto

ut
4

inputg

inputdinputcinputbinputa

bitportout3bitportout2bitportout1 bitportout4

Figure 5.8 The Shift Right Implementation Circuit

4 Bits that will be shifted

Bits that
indicate the
amount of
shifts

MSB

4 Output
bits

A

B

C

Shift input port

43

In figure 5.8 shows the circuit used to execute the Shift Right instruction. This

operation takes one string of binary bits and makes the specified shift places to the right,

replacing the vacant places with zeroes. For example, atwo place shift to the string 1111

results in 0011. The circuit is composed by the processing hardware for the binary

number that will get the shift places.

In figure 5.8, the string CBA specifies the times that shifting takes place. Thus,

001 will cause one shift to the right (1 x 2^0 = 1). Two places to the right (1 x 2 ^1 = 2)

and so on. Notice that the maximum number of shifts is 4, since the data has 4 bits, so C

= 1 yields a string of 0’s. Figure 5.9 illustrates the mechanism used for the shifting

decision.

Figure 5.9 The Shift Right Instruction Mechanism

J

N
M

P

F

A

B

E

Q K

Circuit input ports

44

Shift Right function mechanism

Once the binary number that will be shifted is in the circuit input port, bits that

specify the amount of shift has to be present also in the circuit shift input ports.

Depending on the number used to indicate the amount of shifts, the first stage with the

letter A (see figure 5.9) will be a zero or one. If it is zero, that zero will activate the

tristate buffer with the letter A, and it will allow the data in the input port to pass to the

next stage directly to the tristate buffer with the letter E.

 The inverter with the letter M will receive a 0 that will change to 1, causing that

the tristate buffers with letters N and P be deactivated and do not allow the flow of data

through them. If the bit at stage A is 1, the tristate buffer with the letter J will be

deactivated and will stop the flow of data through it. The inverter with the letter M will

receive a 1 that will turn into a 0, this 0 will activate the tristate buffers N and P. The

tristate buffer N will be responsible for the shifting process. This tristate buffer N is

connected to the most significant bit and when activated, it allow the MSB to pass to the

node labeled F as the second bit. The tristate buffer P will ensure that the vacant place is

filled with a 0. Then the second bit of shift in the second stage labeled as B, will use the

same mechanism to make further movements to the right of the new string of bits

processed in the first stage.

The process can be similarly followed. Figure 5.10 shows a testing for the shift

right operation. Recall that shifting to the right can be interpreted as dividing an unsigned

number by 2.

Figure 5.10 The Shift Right Circuit Testing: shifting 1100 once

SHIFT RIGTH

C = 0 A = 1 B = 0

1 1 1 1

0

1

1

0

45

 5.4.4 Arithmetic Shift

The Arithmetic Shift instruction works basically in the same way as the shift

right, but with a slight change. This change consists in that now, the grounds that fill the

resulting vacancies are changed by a direct connection with the first bit of the number

that will be shifted. This is said to be an arithmetic shift because the vacancy will be

filled with the most significant bit of the number that will be shifted, thereby maintaining

the sign bit. Figure 5.11 shows the circuit and figure 5.12 a testing for string 1100.

C

Z Z

CC
C

C

C

C
C

C

bi
tp

or
to

ut
3

bi
tp

or
to

ut
2

bi
tp

or
to

ut
1

bi
tp

or
to

ut
4

in
pu

t1
M

S
B

in
pu

t2

in
pu

t3

in
pu

t4

bitdeshift4LSB

bitdeshift3

bitdeshift2

ZZ

Z

C
CC

C
C

C

C

inputh

inputg
inputfinpute

inputdinputcinputb

bitportout3bitportout2bitportout1
bitportout4

Figure 5.11 The Arithmetic Shift Implementation Circuit

A

B

C

46

1

1

1

0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

i n p u t4
i n p u t3
i n p u t2
i n p u t1 M S B
b i td e s h i f t 4 L S B
b i td e s h i f t 3
b i td e s h i f t 2

b i tp o r t o u t 4
b i tp o r t o u t 3
b i tp o r t o u t 2
b i tp o r t o u t 1

S h if t A r i t m e t ic o 3

M S B

Figure 5.12 Arithmetic Shift Circuit Testing: shifting 1100 once

5.4.5 Circular Shift

The circular shift operation consists in circular permutations. The basic skeleton for the

circuit is similar to that of the shift right, as illustrated in figure 5.13. The main difference

is that the tristates originally connected to ground are now connected to one of the input

bits. In figure 5.13 the boxed labels stand for the same input bit connections. The circuit

was tested as always.

47

ZZZ
Z

CC
C

C

C

C
C

C

in
pu

t1
M

S
B

in
pu

t2

in
pu

t3

in
pu

t4

bitdeshift4LSB

bitdeshift3

bitdeshift2

bi
tp

or
to

ut
1

bi
tp

or
to

ut
2

bi
tp

or
to

u
t3

bi
tp

or
to

ut
4

Z

C

C

inputb

inputb

inputc

inputc

inputc
inputa

inputa

inputd

inputd

inputd

inputh

inputg
inputfinpute

bitportout3bitportout2bitportout1
bitportout4

Figure 5.13 Circular Shift Circuit Implementation

G

H G

GH
IJ

I J

H
G

A

B

C

48

5.4.6 Shift Left

The shift left circuit works in exactly the same way as the shift right, but the

circuit configuration now makes the movement to the left. Figure 5.14 shows the circuit

implementation.

Z
Z Z

Z

C
C

C

C

in
p

u
t1

M
S

B

in
p

ut
2

in
p

u
t3

in
p

ut
4

bi tdeshift 4LSB

bitdeshift3

bitdeshift 2

b
itp

o
rt

o
u

t4

b
itp

o
rt

o
u

t3

b
itp

o
rt

ou
t2

b
itp

o
rt

o
u

t1

bit de shift 2

bi t de shif t 2

bit de shift 2

bit de shift 1

bi t de shif t 1

bit de shift 1

Name=input h

Name=input g
Name= input fName=input e

Name=input dName=input c

Name=input b

Name=input a

bitpor tout 1
bitportout2

bitportout4

bitportout3

Figure 5.14 Shift Left Implementation Circuit

First
bit of
shift
LSB.

49

5.4.7 Final Arithmetic Logic Unit implementation

Once all the basic instructions circuits are designed and implemented

individually, the ALU can be implemented adding flags. The data bus that feed the

individual circuits is the same data bus that the microcontroller uses to transfer data

between its components. All mathematical and logical calculations are executed at the

same time, but only the desired calculation will be the one released to the ALU output

port by means of the tristate buffer activated.

Figure 5.15 to 5.18 illustrate how the ALU circuits are connected. Caution should

be taken with the significance of the input and output bits of every circuit. Mistakes can

lead to miscalculations and continue through the rest of the instruction execution.

50

Figure 5.15 The Arithmetic Logic Unit Implementation (top view)

.

ALU input
port B

ALU input
port A

Circuit for
calculation

ALU
Output
port

Signal that
activates the
tristate buffer to
select the
calculation

51

Figure 5.16 The Arithmetic Logic Unit Implementation (bottom view)

Figure 5.17 The ALU Flags Hardware

Flag used to determine
if the computational
result is zero

Flag used to
determine the
result’s sign. Just
with the sign of the
MSB.

52

Figure 5.18 Flags Used for Overflow

Figure 5.19 illustrates the final implementation of the ALU. As a test, the ALU

receives 1111 in data port A and 1111 in data port B; the subtraction operation is

executed leading as a result 0000 in the output data port and the corresponding flag is

activated.

Flags used to
detect overflow in
addition and
subtraction.

53

Figure 5.19 The Arithmetic Logic Unit Testing (top view)

Ports used
for flags

ALU port
A

ALU port
B

54

5.5 STEP VI The Register File

The Register File stores data retrieved from memory input port resulting from

operations. All temporary data used by the microcontroller to perform its operations is

also stored in the register file. The Register File structure design consists of three stages:

The register selection stage, the input stage and the output stage.

5.5.1 The Register File Selection Stage

 This stage is shown in figure 5.20. The instruction word identifies three

parameters: Ra, Rb and Rc. Each of these parameters, when referring to registers, are

actually addresses that identify a register from the register file. Since Ra, Rb and Rc as

shown in figure 5.1 have three bits, the register file has 8 registers.

 One register is selected by means of a decoder 3x 8 (device I in figure 5.20). Q0

activates register 0, Q1 activates register 1 and so on. The selection of S2 S1 and S0

given by the equation Sj = Raj (ACTRADB1) + Rb (ACTRADB1) + Rc (ACTRADB1),

where Raj is bit j of Ra, and ACTRADB1 is a signal from the control unit to use Ra. At a

certain moment, the control unit will activate one and only one of ACTRADB1 signals to

indicate which register is assigned to Ra, Rb or Rc of the instruction word.

55

01 01 01 01 01 01 01 01

0
1

0
1

0
1

Q
7

Q
6

Q
5

Q
4

Q
3

Q
2

Q
1

Q
0

S0S
1

S2EN

DE
V

1
0
1

RA

RB

RC

RA0 RA1 RA2
RB0 RB1 RB2

RC0 RC1 RC2

Figure 5.20 The Register File Selection Stage

RC0, RC1 and
RC2 specify one
address location
inside the Register
File,like Ra and
Rb.

Select between
RA, RB and
RC

56

5.5.2 The register file input stage

Figure 5.21 illustrates the input stage for register j (j = 0,1,2…7) of the register file.

• The register inputs are connected to the data bus.

• Each register clock is activated with the following equation CK = (READ)(Qj),

where Qj comes from decoder selection.

Figure 5.21 Module Rj of the register file: Input Stage

Read is a pulse generated by the control unit. All eight registers are connected

similarly. Only the connection to the decoder changes for each case. Since the register

will store the data only after a “CLK pulse”, and CLK = Qj(from decoder). Read pulse,

only one register will store the data.

Register j

Clear D0 D1 D2 CK

Qj from decoder
READ from
control unit

Data bus

D3

Q0 Q1 Q2 Q3

CLR register
signal from system

57

5.5.3 The Register file output stage

Figure 5.22 Module Rj of the register file; output stage

The register’s outputs are connected to the data bus via tristate buffers. For register Rj,

the tristate is activated by Qj from the decoder at the selection stage and a signal from the

control unit requiring the data out. The basic module is shown in figure 5.22.

Figure 5.23 The Register File input Stage

Tristate

Register j
Qj from
decoder

DATAOUT from
control unit Data Bus

Clear register
signal.

Data
Bus

58

5.5.4 Register File Implementation

A partial view of Logic Works schematic for the register file is shown in figure

5.23.Figure 5.24 illustrates the Register File testing. Register File input ports QA, QB,

QC and QD will be connected to the Arithmetic Logic Unit output port to store the

processed result from ALU. This figure presents an example of the Register File function

mechanism. The address of Ra is 0000. In order to use the address of Ra, the Register

File signal for Ra must be activated; this is the label B. In order to store data from the

data bus; the READ REGISTER signal must be activated. To release the data specified

by the address of Ra to the output port, the DATA OUT signal must be activated. The

CLRL signal labeled with the letter E is used to erase any data in any register.

0
1

0
1

0
1

0
1

0
1

0 1
01

0
1
0
1 0

1
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1

READREGISTER
CLRL
QD
QC
QB
QA
DATAOUT1

QDout1
QCout1
QBout1
QAout1

AC
TR

AD
B

1
A

CT
RB

D
B1

AC
TR

C
DB

1
R

A0
R

A1
R

A2
R

B0
R

B1
R

B2
R

C0
R

C1
R

C2

Reg File1

0
1

1

1

1

1

 Figure 5.24 The Register File Testing

Ra

B

READ

DATAOUT

E

Register File
Input port

Register File
Output port

59

5.6 STEP VII: The Instruction Register

The Instruction Register is the register that holds the instruction word for

execution. The IR is connected to the Register File and the Control Unit (discussed later).

Note that from the instruction format (Figure 5.1) this register has to be 18 bits long und

thus uses 18 flip-flops. It has two control lines, one to read the data and the other one to

clear the register.

Figure 5.25 The Instruction Register Implementation

Connected to
memory

Connected to
the Register
File and
Control Unit

Indicates to read
from memory or
clear

60

5.7 STEP VIII: The Data Path

5.7.1 Basic Data Path
In order to make useful all the elements already discussed it is necessary to

provide a path for communication between them to transfer data from one to another.

Figure 5.26 illustrates the interconnection of the elements already discussed; they form

the simplest microcontroller data path for this work. In this figure the control signals

from the control unit are not shown. This data path can perform the basic microcontroller

instructions and will be used as the basis to develop more complex instructions. As more

complex instructions are added, this data path undergoes an evolution into a more

complex one, adding more hardware in parallel to this configuration.

To test the feasibility of basic instructions this data path can process data provided

by switches as shown in figure 5.27. Switches can be used to store values in the Register

File. The address lines of Ra, Rb and Rc are connected from the IR to the Register File to

access the data. The Register File output port is connected to the Arithmetic Logic Unit

input ports to perform the logic and mathematical operations. The ALU output port is

connected to the Register File input port to store results.

In figure 5.26 one register is added to the ALU port A. This is because this is a

one data bus microcontroller and one value must be stored in that register in order to use

the next clock cycle to put the second operand in the ALU port B and then execute the

instruction with both operands. Another register is used at the ALU output port to hold

results between clock cycles. Finally the ALU output port is connected to the Register

File to store results.

61

Figure 5.26 The Resulting Microcontroller Data Path

62

Figure 5.27 The Basic Microcontroller Data Path

5.7.2 Data Path with Immediate Operations

At this point, when adding new hardware to implement new new instructions,
there are some details that should be taken care of, in particular:

1) For the new hardware:

• Control signals
• Instruction Register related logic
• Connection to buses and other blocks

2) Overall issues such

• Signal conflict
• Delays

This register needs
one tristate buffer (we
call it tristate buffer 1)
to connect it to that
node.

63

The data path is next modified to include other arithmetic and logic operations using the
ALU namely, the immediate addressing mode operands.

The immediate values are put in bits 0 – 3 of the instruction register.The data path

modification consists in making a connection between those immediate values in the

Instruction Register and the ALU port B. But the connection cannot be done directly

because the values in the Register File can cause conflict with those in the data path. To

solve this problem a tristate buffer is used to isolate the data in the Register File from

those in the data bus as shown in figure 5.28. New parts added in the data path are

identified with lines. The Logic Works Schematic is shown in figure 5.29.

64

Figure 5.28 Added Elements for Immediate Instructions Execution

65

Figure 5.29 The Immediate Instructions Circuit Implementation

5.7.3 Shift Operation

The next implemented instruction is the Shift instruction. All Shifts instructions

use in their instruction format a group of bits called count. Those bits determine if the

shift will be executed with the count bits or with data in the Register File. This suggests

that a combinational circuit needs to be added to the data path to perform this logic

decision. This circuit is known as “Count Decoder”. It has to be connected to the count

bits in the IR because it will use those bits to take its decision and is discussed later. The

circuit is shown in figure 5.30.

Added
elements

66

TRBUFIN4
TRBUFIN3
TRBUFIN2
TRBUFIN1

TRBUFOUTT4
TRBUFOUTT3
TRBUFOUTT2
TRBUFOUTT1

TR
YB

U
FE

N

TRYSTATE BUFFER CountDecout3

CountDecout4

CountDecRout

CountDecout2

count

co
un

t2 co
un

t3 co
un

t4

Rout

Figure 5.30 The Count Decoder

Now we explain how the decoder function. The count bits are the least significant

bits of the instruction word in the shift instruction. When the count signal is activated, the

Count Decoder circuit verifies the count bits condition and makes its logical decision.

The tristates labeled A and C receive a low from the inverter and are automatically

activated. If all the count bits are zero (000), the inverter labeled B will receive a low

voltage that turns into a high signal to the Rout port. The count decoder will

automatically send a signal to the data out signal port of the Register File to release the

data specified by Rc. The tristate buffer in the Count Decoder receives a high signal due

to its inverter, but is not activated. If all count bits are not zero the inverter B will receive

a high signal that turns into a low signal and the Register file data out signal is not

activated. The tritstate buffer holding the count bits inside the count decoder receives a

low signal due to its inverter, and releases them to the ALU port B.

A

Count signal
activated by the
control unit

B

C

67

The count decoder is connected to the ALU port B via a tristate and the register file

through a multiplexer 2 x 1 as illustrated in the modified data path of figure 5.31.

Figure 5.31 Modified Data Path for Shift Instructions

68

Figure 5.32 Count Decoder Data Path Implementation

The Logic Works schematic is shown in figure 5.32 as stated. The circuit A, is the

auxiliary circuit, is really a two to one multiplexer, and it solves some problems at the

implementation stage. Note in figure 5.32 that this implementation requires the auxiliary

circuit, one tristate buffer labeled C and an additional logic labeled B. The tristate buffer

is used to isolate the data from the count decoder to the data bus when not in use.

A

B

C

D

Count Decoder

The Instruction
Register

69

The logic labeled B is used to ensure that the tristate buffer C is activated only if

the count decoder signal is activated and the Rout signal of the count decoder is low.

Remember that the Rout signal activates the Register File output port and if this logic is

not used, there is a risk to release the data of the count decoder at the same time with the

register File to the data bus and result in signal conflict. This logic guarantees that if the

count bits are zero just the data in the Register File will be released and that if they are

not zero; the count decoder will send them to the data bus, but only one set of data at a

time.

The OR labeled D in figure 5.32 is necessary because the control unit like the

Count Decoder will need to release data to execute other instructions. Later shall be

illustrated that the load instruction requires data to be released and that is why the data

out port of the Register File has a three input OR logic gate.

The two to one multiplexer, is shown in figure 5.33. This circuit is activated

simultaneously with the count decoder. Its signal port is connected with the activation

port of the count decoder. If the count decoder signal is not activated, is 0 , then

DESOUT = 0, otherwise it is the ROUT signal from the count decoder. Without this

circuit, the Rout signal received by the Register File output port would be a high

impedance signal when the count decoder signal is not activated causing some conflicts.

70

Count Dec Rout (from count decoder)

DESOUTCount Decoder Signal

Figure 5.33 Auxiliary Circuit

5.8 STEP IX Jump, Data Transfer Instructions, and the PC

5.8.1 The Branch Instruction

Depending on certain conditions, the execution of a non-continuous program code

could be necessary. In programming, this is called a jump. The term “jump” here means

that the program counter (register that holds the address of the next instruction) gets an

address value that is not consecutive on. To analyze the necessary conditions for one

jump a combinational circuit is needed. This circuit is known as the Conditional Jump

Decoder (CJD) and will be added to the existing data path for the Branch instructions

execution.

71

NOT INA

NOT INA

X
X

Condition

X

0 1
Q

7
Q

6
Q

5
Q

4
Q

3
Q

2
Q

1
Q

0
S

0
S

1
S

2

E
N

D
E

V1

C
O

U
N

T2

C
O

U
N

T3

C
O

U
N

T4

R
C

0M
S

B

R
C

1
R

C
2

TA
K

E
D

E
SI

C
IO

N

D

C
EN

R

Q

DEV1

0 1
C

O
N

D
LO

G
C

LR

R
C

3

Figure 5.34 The Conditional Jump Decoder

The Conditional Jump Decoder activates or not the Program Counter based on the

count bits and the contents of Rc. The count bits will select the decoder’s output and

depending of which output is selected; additional logic is used to make decisions. The

following table 5.2 indicates the Conditional Logic execution accordingly with count and

Rc. This instruction was designed to cover the most needed cases. Other way of

implementation could be designing each case separately and leave to the designers the

decision to choose among all available options. Using this format the programmer just

need to specify the parameters of the required jump.

4 bits of Rc,
connected from data
path.

Last three bits of the
Instruction Word
forms the count code

Signal to store the
decision of the circuit in
the flip-flop

Don’t jump

Jump
anyway

Unused

72

Count code Description Task

000 = 0 Don’t jump

001 = 1 Jump anyway

010 = 2 Verify the bit address of Rc, if they are not

equal to 0 →

011 = 3 Verify the bit address of Rc, if they are

equal to 0 →

100 = 4 Verify the bit address of Rc, if they are

zero or grater than 0 →

101 = 5 Verify the bit address of Rc, if they are

less than 0 →

In the first six cases the

operation will be the same.

PC stores what is stored in

the register specified by Rb

from the data path.

110 Unused

111 Unused

Table 5.2 Conditional Logic Cases

5.8.2 The Program Counter
The program counter is the register that stores the next instruction memory

address location. Its inputs are connected to the data bus to receive the next address value

from it and its outputs are connected to the memory device where the program is stored.

The connections are shown in figure 5.35 and 5.36. The memory device where the

microcontroller’s program is stored, has address bits that indicate the desired specific

program code location. After memory receives the address by the PC, the fetch process

begins. It consists in addressing the instruction specified in memory by the PC and

loading it to the IR.

73

The fetch process is discussed at the Control Unit design stage. After the fetch

process is complete, the instruction execution begins. The Branch instruction allows the

programmer to specify a memory location where instructions are located and execute

them and then continue executing the program. In this instruction the register Rb will

store the four bits memory address to execute the jump. Figure 5.37 shows the data path

with the new boxes included. The implementation is shown in figure 5.38

Figure 5.35 The Program Counter implementation

The Program Counter
inputs are connected to
the data bus and its
outputs are connected to
the memory location
where the program is.

The PC receives signal
activation from the
Conditional Logic and
the Control Unit.

74

Figure 5.36 Memory ROM implementation for program storage

Memory system
where the
microcontroller
program is
stored.

PC

75

Figure 5.37 Modified Data Path for the Branch Instruction

76

Figure 5.38 The Conditional Logic Implementation

The Conditional Jump Decoder implementation needs also the auxiliary circuit

described before for the same Count Decoder reasons.

5.8.3 Load and Store
Load and Store, work basically in the same way, the obvious difference is that one

write to memory and the other read from memory. In those instructions mathematical

manipulations are done to calculate the data memory address location. Those instructions

works with Rb address bits. Based on the values of Rb the address bits 0000 will be

loaded to the data bus or the data at Rb will be released to the data bus and in either case

added to Mc. Mc are the last four bits of the instruction word and represent the desired

memory address location. Mc set the initial memory address location and Rb locates one

specific position from Mc. A combinational logic circuit to decide if it loads Rb or 0000

is needed and it is called The Load decoder, see figure 5.39.

Conditional
Logic
implementation

Count bits
connected from IR

Rc bits
from the
data path

Signal from the
conditional
Logic that
activates PC Tristate

buffer 2

ALU
port B

77

TR
B

U
FI

N
4

TR
B

U
FI

N
3

TR
B

U
FI

N
2

TR
B

U
FI

N
1

TR
B

U
FO

U
TT

4
TR

B
U

FO
U

TT
3

TR
B

U
FO

U
TT

2
TR

B
U

FO
U

TT
1

TRYBUFEN

TR
YS

TA
TE

 B
U

FF
ER

Lo
ad

d
ec

ou
t1

Lo
ad

d
ec

ou
t2

Lo
ad

d
ec

ou
t3

Lo
ad

d
ec

ou
t4

LoaddecRout

X

X X X X

X
RB2

RB1
RB0

D

C
EN

R

Q

DEV1

0
1

Lo
ad

D
ec

C
LK

Lo
ad

D
ec

R
es

et

Rout

Figure 5.39 The Load Decoder Circuit

Before the Load Decoder activation, the Register File must activate the address

bits Rb. The Load decoder verifies all the bits of Rb. If all are zero, when the flip flop

inside the Load Decoder gets the OR decision, the Load Decoder Rout signal will be low

(this signal releases the data of the Register File) and the tristate buffer will be activated

charging 0000 to the data bus. If all the Rb bits are not zero the Rout signal will be high

and release the data specified by Rb in the Register File to the data bus.

The load Decoder implementation in figure 5.40 requires a connection with the

Rb bits in the Instruction Register. A tristate buffer is connected to the Load Decoder

output. Its control logic ensures that no conflict occurs when data is released to the data

bus. The auxiliary circuit ensures that the Register File output port receives a zero when

the Load Decoder is not activated. The AND gate that controls the tristate buffer sends a

high signal only when the load decoder signal is activated and the Load Decoder decision

is zero. In this way the system ensures that no conflict between data occurs in the data

path at any moment.

78

Figure 5.40 The Load Decoder Implementation

Figure 5.41 Memory Implementation for Load and Store

Tristate at
the Load
Decoder
output

Load decoder
connection
with Rb

MA (Memory
address register)

MD (Memory
data register)

Tristate buffer3

Register at the
memory chip
output port

Memory
chip

ALU
output
port

MA and MD
input node

79

Figure 5.42 Added elements for Load, Store, Read PSW and Fetch

Tristate buffer 9
used to transfer data
from the Register
File to MA and MD
in Load and Store
instructions.

Tristate buffer 6
used to load the
PSW to the Register
File

Tristate buffer 0
Used to transfer
the incremented
PC value from
ALU to PC

Tristate
buffer 2
used to
hold the
last 4 bits
of the
instruction
word

Tristate Buffer 1

80

Figure 5.43 Modified Data Path to include Load and Store operations

81

5.8.4 Miscellaneous Operations

The next figure illustrates the implementation of the IN function. The purpose is

to obtain information from outside. That is the reason for using one tristate buffer (tristate

buffer 8) connected to the Register File input port.

Figure 5.44 (In) Instruction Hardware Implementation

Tristate buffer 8
used to get data
from the outside.

Register File
input port

82

Figure 5.45 Circuit Implementation for Out Instruction

Register used
to deliver data
to the outside

Register File
output data bus

83

The instruction implementation consists first in collecting all flags in one register

called the Processor Status Word or PSW (see the register labeled A), then connecting it

to the Register File input port (label C), and using one tristate buffer (called tristate buffer

6).

Figure 5.46 Read PSW Instruction Hardware

A

B

C

Tristate
buffer 6

PSW

84

Cap 6

THE CONTROL UNIT

The step X is described in a separate chapter because this unit is essentially a

sequential circuit. The control unit is the final stage for the microcontroller development

in this work. The control unit takes control of signal activation of microcontroller circuits

in each clock cycle. The next figure illustrates the control unit configuration.

OPCODE

CLOCK

Figure 6.1 The Control Unit Implementation

6.1 The Fetch Process

 Before starting the Control Unit discussion, something must be said about the fetch

process. The fetch process consists in loading one memory address value in the PC, and

delivering it to the memory device address port to obtain a specific microcontroller

programming code. All the preceding instruction discussion left two clock cycles for the

fetch execution. The author knew from the beginning how many clock cycles were

needed for the fetch process, making an educated guess of the following:

OPCODE
DECODER

TIMER

CONTROL
UNIT
ENCODER

CONTROL
SIGNALS

85

a) The data bus size.

b) The amount of memory used to store the program.

c) Program Counter size. - The PC does not have to be the same size of the

data bus; but the address bus. This means that you must use more than one

clock cycle just only to fill the PC with the new address value.

d) The Existing data path circuitry. - It must provide the necessary circuits to

ensure that the PC is incremented in every instruction execution, and that

no signal conflict occurs.

e) The fetch process. - Designers must ensure that PC is incremented in each

instruction, but they must decide how the data travels between the

microcontroller circuits. One alternative to execute the fetch process and

increment the PC could be better than other. There are many possibilities

to execute the fetch process and this work provides one possible

alternative of it. The reader must use its creative and critical thinking to

make the judgment and decide how the fetch process will be carried out.

 Designers have to make a trade off between those alternatives and decide the

number of the fetch process clock cycles and their data processing route in the data path

circuits.

The fetch process used in this work uses just two clock cycles (see figures 6.2 and 6.3):

1) In the first clock cycle the Control Unit activates the Instruction Register read

signal to load from memory the instruction word to be executed. Also, the tristate

buffer 4 is activated to release the current PC value to the data path. Finally, in the

same clock cycle, the register at port A of the ALU is activated to store the

current PC value as shown in figure 6.2.

2) In the second clock cycle, the Control Unit activates the add PC signal as shown

in figure 6.3 from the Arithmetic Logic Unit to increase the current PC value by

one. The tristate buffer 0 at the ALU output port is activated to deliver the

86

incremented PC value to the data path. Finally in that same clock cycle, the

Program counter clock is activated to load the incremented value to the PC.

 At the fetch process designing stage, a new function is needed in the ALU.

The fetch process needs one circuit that increment the PC by one. We just add one

adder to the ALU circuit that takes the ALU port A data and add one to it. The

figures 6.4 and 6.5 illustrate this implementation in the ALU. Observe that it is

just one adder and is connected in the same way as the other elements. One of the

advantages of the technique used in this work is that it allows users to add circuit

elements without making significant design changes to the entire system.

Figure 6.2 Fetch Process First Cycle

Activated in
Clock cycle 1

Activated in
Clock cycle 1

Tristate buffer
4 activated in
Clock cycle 1

87

Figure 6.3 Fetch Process Second Cycle

A 0
A 1
A 2
A 3

B 0
B 1
B 2
B 3

S 0
S 1
S 2
S 3

C O

C I

1

+5
V

M s b
b 2

b 1
L s b

Lsb o u t
O u t1
O u t2
M s b ou t

Figure 6.4 PC Incrementer Circuit

Tristate buffer0
Activated in the
second cycle

Activated in
the second
cycle

Activated in
the second
cycle

88

Figure 6.5 PC Incrementer Implementation

6.2 THE CONTROL UNIT ENCODER

 The Control Unit Encoder is the hardest stage in the Control Unit design process

that is why it is explained first. The Control Unit encoder takes information from the

timer and the opcode decoder to activate specific signals in each clock cycle. Then, the

first step is to analyze the signal activation per instruction. The following tables show this

process.

89

ADD

Cycle IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

add PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.1 Add instruction signal activation by clock cycle

SUB

Cycle IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

Sub PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.2 Sub instruction signal activation by clock cycle

90

AND

Cycle IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

And PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.3 AND instruction signal activation by clock cycle

Or

Cycle IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

Or PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.4 Or instruction signal activation by clock cycle

91

ADDi

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

add PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

Try

Buf

2

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X

Table 6.5 ADDi instruction signal activation by clock cycle

Subi

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

sub PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

Try

Buf

2

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X

Table 6.6 Subi instruction signal activation by clock cycle

92

ANDi

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

add PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

Try

Buf

2

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X

Table 6.7 ANDi instruction signal activation by clock cycle

Ori

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

or PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

Try

Buf

2

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X

Table 6.8 Ori instruction signal activation by clock cycle

93

NOT

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

not PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

1 X X X

2 X X X

3 X X X X

4 X X X

5 X

Table 6.9 Not instruction signal activation by clock cycle

SHR

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

shr PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

Count

Dec

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.10 SHR instruction signal activation by clock cycle

94

SHRA

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

shra PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

Count

Dec

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.11 SHRA instruction signal activation by clock cycle

SHC

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

shc PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

Count

Dec

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.12 SHC instruction signal activation by clock cycle

95

SHL

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

shl PC

add

Reg

ALU

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

Count

Dec

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.13 SHL instruction signal activation by clock cycle

BRANCH

Cyc IR PC END Ra Rb Rc Read

Reg

Data

Out

Reg

Alu

IN

clk

Cond

Log

Aux

PC

add

Reg

Alu

Out

clk

Try

Buf

0

Try

Buf

1

Try

Buf

4

Cond

Log

1 X X X

2 X X X

3 X X X

4 X X X

5 X

Table 6.14 BRANCH instruction signal activation by clock cycle

96

LOAD

Cycle IR PC Rb Reg

Alu

IN

clk

pcadd Load

Decoder

Reg

alu

out

Try

buff 0

Try

buff 4

1 X X X

2 X X X

3 X X X

Table 6.15 LOAD instruction signal activation by clock cycle

Cycle End sum Reg

alu

out

Try

buff

2

Try

buff

1

MAen Mem

read

Reg

Mem

Out

Ra Read

Reg

Try

Buff

5

4 X X X

5 X X

6 X X

7 X X X

8 X

Table 6.15 LOAD instruction signal activation by clock cycle (cont)

STORE

Cycle IR PC Rb Reg Alu IN

clk
pcadd Load

Decoder

Reg

alu

out

Try

buff 0

Try

buff 4

1 X X X

2 X X X

3 X X X

Table 6.16 STORE instruction signal activation by clock cycle

97

STORE

Cyc sum Reg

alu

out

Try

buff

2

Try

buff

1

MAen Mden Mem

read

Reg

Mem

Out

Ra Read

Reg

Data

Out

Try

Buff

5

End Mem

store

Try

buff

9
4 X X X

5 X X

6 X X X X

7 X

8 X

Table 6.16 STORE instruction signal activation by clock cycle (cont)

IN

Cycle IR PC END Ra Read

Reg

Reg Alu

IN clk
pcadd Try

buff 0

Try

buff 4

Try

buff 8

1 X X X

2 X X X

3 X X X

4 X

Table 6.17 IN instruction signal activation by clock cycle

OUT

Cycle IR PC END RB Data

Out

Reg Alu

IN clk
pcadd Try

buff 0

Try

buff 4

Reg

Out

1 X X X

2 X X X

3 X X X

4 X

Table 6.18 OUT instruction signal activation by clock cycle

98

READ PSW

Cycle IR PC END Ra Read

Reg

Reg Alu

IN clk
pcadd Try

buff 0

Try

buff 4

Try

buff

6

PSW

1 X X X

2 X X X

3 X X X X

4 X

Table 6.19 READ PSW instruction signal activation by clock cycle

 At this stage we have seen the instruction activation per cycle. The next step consists in

transforming each signal (each column of those tables) in one specific digital circuit,

analyzing per instruction cycle the activated signals. The next step consists in designing

digital logic circuits that become asserted when those conditions occur. Note that each

row of signal activation is a function of the instruction executed and its cycles.

99

Ra

INSTRUCTION CYCLE

1) ADD 5

2) SUB 5

3) AND 5

4) OR 5

5) SUBi 5

6) ADDi 5

7) ANDi 5

8) Ori 5

9) SHR 5

10) SHL 5

11) SHRA 5

12) SHC 5

13) LOAD 7

14) STORE 6

15) IN 3

16) READ PSW 3

17) NOT 4

Table 6.20 Ra signal activation in terms of instructions and cycles

100

Add
Sub
And

Or
Subi
Addi
Andi

Ori
Shr
Shl

Shra
Shc

T5

T7
Load

T6
Store

T3

LoadPSW
In

Ra

T4
Not

Figure 6.6 Ra signal circuit implementation

Regmemout signal activation

Regmemout

INSTRUCTION CYCLE

LOAD 6

Table 6.21 Regmemout signal activation in terms of instructions and cycles

101

Figure 6.7 Regmemout signal circuit implementation

Reg Alu out

INSTRUCTION CYCLE

1) ADD 4

2) SUB 4

3) AND 4

4) OR 4

5) SUBi 4

6) ADDi 4

7) ANDi 4

8) Ori 4

102

9) SHR 4

10) SHL 4

11) SHRA 4

12) SHC 4

13) LOAD 4

14) STORE 4

15) NOT 3

Table 6.22 Reg Alu out signal activation in terms of instructions and cycles

Re g aluo ut

A d d
S ub
A nd

O r
S ub i
A d di
A nd i

O ri
S hr
S hl

S hra
S hc

L oad
St ore

T4

T3
No t

Figure 6.8 Reg Alu out signal circuit implementation

103

TRISTATE BUFER 0

INSTRUCTION CYCLE

1) ADD 2

2) SUB 2

3) AND 2

4) OR 2

5) SUBi 2

6) ADDi 2

7) ANDi 2

8) Ori 2

9) SHR 2

10) SHL 2

11) SHRA 2

12) SHC 2

13) LOAD 2

14) STORE 2

15) IN 2

16) OUT 2

17) READ PSW 2

18) UNC JUMP 2

19) NOT 2

20) BRANCH 2

Table 6.23 Tristate buffer 0 signal activation in terms of instructions and cycles

104

Add
Sub
And

Or
Subi

Not
Addi
Andi

Ori
Shr
Shl

Shra
Shc

Branch
Load
Store
Stop

In
Out

ReadPSW
Uncjump

T2

Trybuff0

Figure 6.9 Trybuff 0 signal circuit implementation

105

TRYBUF1

INSTRUCTION CYCLE

1) ADD 5

2) SUB 5

3) AND 5

4) OR 5

5) SUBi 5

6) ADDi 5

7) ANDi 5

8) Ori 5

9) SHR 5

10) SHL 5

11) SHRA 5

12) SHC 5

13) LOAD 5

14) STORE 5

15) NOT 4

Table 6.24 Tristate buffer 1-signal activation in terms of instructions and cycles

106

A d d
S ub
A nd

O r
S ub i
A d d i
A nd i

Or i

S hr
S hl

S hra
S hc

L o ad
S to re

T5

T 4
No t

Trybu ff 1

Figure 6.10 Trybuf 1 signal circuit implementation

 TRISTATE BUFFER 2

INSTRUCTION CYCLE

1) SUBi 4

2) ADDi 4

3) ANDi 4

4) ORi 4

5) LOAD 4

6) STORE 4

7) UNCJUMP 3

Table 6.25 Tristate buffer 2-signal activation in terms of instructions and cycles

107

Trybuff2

T3
Uncjump

Subi
Addi
Andi

Ori

Load
Store

T4

Figure 6.11 Trybuff2 signal circuit implementation

108

DATA OUT

INSTRUCTION CYCLE

1) ADD 3,4

2) SUB 3,4

3) AND 3,4

4) OR 3,4

5) SUBi 3

6) ADDi 3

7) ANDi 3

8) Ori 3

9) SHR 3

10) SHL 3

11) SHRA 3

12) SHC 3

13) BRANCH 3,4

14) STORE 6

15) OUT 3

16) NOT 3

Table 6.26 Data out signal activation in terms of instructions and cycles

109

ADD
SUB
AND
OR

SUBi
ADDi
ANDi
ORi

SHR
SHL

SHRA
SHC

BRANCH
OUT

T6
STORE

T4

T3

NOT

DataOut

Figure 6.12 Data out signal circuit implementation

110

REG ALU IN

INSTRUCTION CYCLE

1) ADD 1,3

2) SUB 1,3

3) AND 1,3

4) OR 1,3

5) SUBi 1,3

6) ADDi 1,3

7) ANDi 1,3

8) Ori 1,3

9) SHR 1,3

10) SHL 1,3

11) SHRA 1,3

12) SHC 1,3

13) LOAD 1,3

14) STORE 1,3

15) IN 1

16) OUT 1

17) READ PSW 1

18) UNC JUMP 1

19) NOT 1

20) BRANCH 1

Table 6.27 Reg Alu in signal activation in terms of instructions and cycles

111

T1

ADD
SUB

ANDi
ADDi
NOT
SUBi

OR

ORi
SHR
SHL

SHRA
SHC

BRANCH
LOAD

STORE

AND

IN
OUT

READPSW
UNCJUMP

T3

ALU-CLK

Figure 6.13 ALU clock signal circuit implementation

112

Rb

INSTRUCTION CYCLE

1) ADD 3

2) SUB 3

3) AND 3

4) OR 3

5) SUBi 3

6) ADDi 3

7) ANDi 3

8) Ori 3

9) SHR 3

10) SHL 3

11) SHRA 3

12) SHC 3

13) LOAD 3

14) STORE 3

15) OUT 3

16) BRANCH 4

Table 6.28 Rb signal activation in terms of instructions and cycles

113

T4
BRACH

T3

ADD
SUB
AND

OR
SUBi
ADDi

ORi
ANDi

SHR
SHL

SHRA
SHC

LOAD
STORE

OUT

Rb

Figure 6.14 Rb clock signal circuit implementation

114

Rc

INSTRUCTION CYCLE

1) ADD 4

2) SUB 4

3) AND 4

4) OR 4

5) NOT 3

6) SHR 4

7) SHL 4

8) SHRA 4

9) SHC 4

10) BRANCH 3

Table 6.29 Rc signal activation in terms of instructions and cycles

T4

T3

ADD
SUB
AND

OR
SHR
SHL

SHRA
SHC

NOT
BRANCH

Rc

Figure 6.15 Rc signal circuit implementation

115

READ REGISTER

INSTRUCTION CYCLE

1) ADD 5

2) SUB 5

3) AND 5

4) OR 5

5) SUBi 5

6) ADDi 5

7) ANDi 5

8) Ori 5

9) SHR 5

10) SHL 5

11) SHRA 5

12) SHC 5

13) LOAD 7

14) IN 3

15) READ PSW 3

16) NOT 4

Table 6.30 Read register signal activation in terms of instructions and cycles

116

READPSW
IN

T3

T4
NOT

T7
LOAD

ADD
SUB
AND
OR

SUBi
ADDi
ANDi

ORi

SHR
SHL

SHRA

SHC

T5

ReadRegister

Figure 6.16 Read Register signal circuit implementation

117

PC SIGNAL ACTIVATION

INSTRUCTION CYCLE

1) ADD 2

2) SUB 2

3) AND 2

4) OR 2

5) SUBi 2

6) ADDi 2

7) ANDi 2

8) Ori 2

9) SHR 2

10) SHL 2

11) SHRA 2

12) SHC 2

13) LOAD 2

14) STORE 2

15) IN 2

16) OUT 2

17) READ PSW 2

18) UNC JUMP 2,3

19) NOT 2

20) BRANCH 2

Table 6.31 PC signal activation in terms of instructions and cycles

118

Add
Addi
Sub
Subi
And
Andi

Or
Ori
Not

SHR
SHL

SHRA
SHC

Branch
Load
Store IN

OUT
READPSW

UNCJUMP

T2

T3

PC

Figure 6.17 PC signal circuit implementation

119

END SIGNAL ACTIVATION

INSTRUCTION CYCLE

1) ADD 6

2) SUB 6

3) AND 6

4) OR 6

5) SUBi 6

6) ADDi 6

7) ANDi 6

8) Ori 6

9) SHR 6

10) SHL 6

11) SHRA 6

12) SHC 6

13) LOAD 8

14) STORE 8

15) IN 4

16) OUT 4

17) READ PSW 4

18) UNC JUMP 4

19) NOT 5

20) BRANCH 5

Table 6.32 END signal activation in terms of instructions and cycles

120

End

T4
IN

OUT

UNCJUMP

ADD
SUB
AND

OR
SUBi
ADDi
ANDi
ORi

SHL
SHRA

SHC

SHR

T5

T8

STORE
LOAD

BRANCH
NOT

T6

READPSW

Figure 6.18 END signal circuit implementation

 Those circuits already illustrated shall guide the reader to do the same with the

rest of the signals. For illustrative purposes, just the remaining implementation circuit

signals will be shown, but all of them where obtained using its corresponding signal

activation table.

121

S T O R E
L O A D
A D D i
A D D

T 4 S um

Figure 6.19 SUM signal circuit implementation

S U B
S U B i

T 4 S ub

Figure 6.20 Sub signal circuit implementation

122

A N D
A N D i

T4 A nd

Figure 6.21 And signal circuit implementation

O R
O R i

T 4 O r

Figure 6.22 Or signal circuit implementation

123

T 3 N o tN O T

Figure 6.23 Not signal circuit implementation

T 4 S h rS H R

Figure 6.24 Shr signal circuit implementation

124

T 4 S h lS H L

Figure 6.25 Shl signal circuit implementation

T 4 S h r aS H R A

Figure 6.26 Shra signal circuit implementation

125

S h r
S h l

S h ra
S h c

T 4 C o un td ec od e r

Figure 6.27 Count Decoder signal circuit implementation

T 3
B r a n c h C o n d l o g t a k e d e s

Figure 6.28 Conditional Logic signal circuit implementation

126

T 4
B r a n c h C o n d lo g a u x

Figure 6.29 Condlogaux signal circuit implementation

Load
S to re

T3 Loaddec

Figure 6.30 Load Decoder signal circuit implementation

127

T 6
S to r e M D e n

Figure 6.31 MDen signal circuit implementation

L o a d
S to r e

T 5 M a e n

Figure 6.32 MAen signal circuit implementation

128

T 6 R ea dL O A D

Figure 6.33 Read signal circuit implementation

T 7
S to r e M a in m e m s t o r e

Figure 6.34 Main memory store signal circuit implementation

129

T 2 P C A d d

Figure 6.35 PC add signal circuit implementation

130

REGALUIN

INSTRUCTION CYCLE

1) ADD 1

2) SUB 1

3) AND 1

4) OR 1

5) SUBi 1

6) ADDi 1

7) ANDi 1

8) Ori 1

9) SHR 1

10) SHL 1

11) SHRA 1

12) SHC 1

13) LOAD 1

14) STORE 1

15) IN 1

16) OUT 1

17) READ PSW 1

18) UNC JUMP 1

19) NOT 1

20) BRANCH 1

Table 6.33 Regaluin signal activation in terms of instructions and cycles

131

Add
Sub
And

Or
Subi

Not
Addi
Andi

Ori
Shr
Shl

Shra
Shc

Branch
Load
Store
Stop

In
Out

ReadPSW
Uncjump

T1

Trybuff4

Figure 6.36 Tristate buffer 4-signal circuit implementation

132

T 6
S to re T ry b u f f9

Figure 6.37 Tristate buffer 9-signal circuit implementation

T3
Ou t R ego ut

Figure 6.38 Regout signal circuit implementation

133

T 7
L o a d T r y b u f f5

Figure 6.39 Tristate buffer 5-signal circuit implementation

T 3
R ea d P S W T ry b uf f6

Figure 6.40 Tristate buffer 6-signal circuit implementation

134

T 3
R e a d P S W P S W

Figure 6.41 PSW register signal circuit implementation

T 3
In T ry b u f f8

Figure 6.42 Tristate buffer 8-signal circuit implementation

135

T6

L oa d

R eg m em o u t

Figure 6.43 Regmemout signal circuit implementation

The Control Unit Encoder Implementation

 After the 38 control signal logic circuits have been defined, the next step consists in

connect all of them in just one unit called the control unit encoder. The logic circuits of

this unit will receive input signals from the timer and the operational code (opcode)

decoder and will activate the corresponding signals for the instruction execution. Figures

6.44 to 6.53 illustrate the circuit interconnection that forms the control unit encoder.

136

Figure 6.44 Control Unit Encoder (a)

Figure 6.45 Control Unit Encoder (b)

137

Figure 6.46 Control Unit Encoder (c)

138

Figure 6.47 Control Unit Encoder (d)

Figure 6.48 Control Unit Encoder (e)

139

Figure 6.49 Control Unit Encoder (f)

Figure 6.50 Control Unit Encoder (g)

140

Figure 6.51 Control Unit Encoder (h)

Figure 6.52 Control Unit Encoder (i)

141

Figure 6.53 Control Unit Encoder (j)

142

Figure 6.54 Control Unit Encoder implementation

6.3 The control unit operational code decoder

 The operational code decoder receives the first five bits of the Instruction Register.

This unit decodes those five bits and generates one signal that corresponds to the

instruction that will be executed. This signal goes to the Control Unit Encoder and

together with the timer decide which signals will be activated. Table 6.34 shows the

Opcode Decoder truth table. Figure 6.55 shows the Opcode Decoder implementation.

Signals from
the Timer
(Discussed
later)

Signals
from the
opcode
decoder
(Discussed
later)

Control
signals to
all circuits

143

OPCODE DECODER

 CODE

POSITION A B C D E NAME

0 0 0 0 0 0 Ori

1 0 0 0 0 1 ANDi

2 0 0 0 1 0 ADDi

3 0 0 0 1 1 STORE

4 0 0 1 0 0 SUBi

5 0 0 1 0 1 BRANCH

6 0 0 1 1 0 SHC

7 0 0 1 1 1 SHRA

8 0 1 0 0 0 Or

9 0 1 0 0 1 AND

10 0 1 0 1 0 SUB

11 0 1 0 1 1 ADD

12 0 1 1 0 0 LOAD

13 0 1 1 0 1 IN

14 0 1 1 1 0 READ PSW

15 0 1 1 1 1 NOT

16 1 0 0 0 0 OUT

17 1 0 0 0 1 UNCJUMP

18 1 0 0 1 0 LOAD PSW

19 1 0 0 1 1 SHR

20 1 0 1 0 0 SHL

21 1 0 1 0 1 UNUSED

22 1 0 1 1 0 UNUSED

23 1 0 1 1 1 UNUSED

24 1 1 0 0 0 UNUSED

25 1 1 0 0 1 UNUSED

26 1 1 0 1 0 UNUSED

144

27 1 1 0 1 1 UNUSED

28 1 1 1 0 0 UNUSED

29 1 1 1 0 1 UNUSED

30 1 1 1 1 0 UNUSED

31 1 1 1 1 1 UNUSED

Table 6.34 The Opcode Decoder truth table

Figure 6.55 Operational Code Decoder circuit

145

Figure 6.56 Operational Code Decoder Implementation

The instruction opcode’s 5
bits from the IR

Signals that
goes to the
Control Unit
encoder

146

6.4 THE CONTROL UNIT TIMER

 The Control Unit timer is really one zero to seven counter. It was selected to seven

because the largest number of clock cycles in the instruction set is 8. The timer specifies

each instruction clock cycle. It works with the opcode decoder and sends its signal to the

Control Unit Encoder as shown in figure 5.114.

Figure 6.57 The Control Unit Timer

 The enable and Load ports will not be used in this work. Reset makes the timer to

start over again and count from zero. The clock will be used, as the main clock, and it

will control the movement from one microcontroller state to the other. Count bits 0,1 and

2 are the bits that specify where the timer starts its count.

Timer inputs to
the Control
Unit Encoder Opcode

decoder
signals to the
Contro Unit
Encoder

Not used

147

Figure 6.58 Control Unit Circuit

Figure 6.59 Control Unit Implementation

Control Unit
Timer

Control Unit
opcode decoder

Control Unit
Encoder

148

6.5 Implementation Problems

 Once the Control Unit is finished and ready for implementation, designers should

realize that during its implementation some problems arise. The following is a small list

of problems and important points to keep in mind at the Control Unit implementation

stage.

1) Due to the many existing control lines, designers must ensure that every signal

that goes from the control unit is properly connected to its corresponding circuit.

In this report, Logic Works offers one feature that allows connections just giving

the signal source and its destination the same name. If designers use this feature,

they must ensure that both signal ends have exactly the same name. If not the

software does not recognize the signal and the hardware will not work properly,

as a consequence, circuits that depend on the circuit data and an entire operation

can be affected.

2) Care should be taken at the interconnection stage because involuntary

disconnections may happen.

3) More than one signal is activated per clock cycle, this means that some circuits

have to wait for data because probably it is not ready for processing at the circuit

signal activation moment. To solve this problem, once the control unit is

connected to all circuits, designers have to run manually with the control unit

clock, each and every one of the microcontroller instructions to see per clock its

performance.

4) Once a time delay problem has found (you will know that this problem happen

because in its respective instruction clock cycle, when you run it manually, there

is not data in some circuits that is supposed to be. This means that a time delay

must be added to the circuit element that does not receive the data. Figure 6.60

illustrates two inverters with added time delay (in nanoseconds) necessary at the

ALU port A and out put ports to function properly.

149

Figure 6.60 Delay for signals

Two added inverters
with time delay (in
nanoseconds) At ALU
port A.

Time delay
for the
output port
register

150

Chapter 7. Detailed Description of the Instruction Set

Next is a detailed description of each instruction that can be executed with the

microcontroller simplest data path. Details like the instruction format; clock cycle

number and task by clock cycle are discussed. The fetch process is discussed later at the

Control Unit design stage, now it is just only explained as part of the instruction

execution process.

7.1 ADDITION

Importance and justification

All microcontrollers and microprocessors must be able to perform mathematical

computations in order to execute its own instructions and be useful. The operation of

addition is one of the most important and basic mathematical computations.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01011 Ra Rb Rc XXXX

Operation: A ←(B +C)

Flags Affected: PSW[4]

151

ADDITION

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File signal activates the address bits of Rb to

locate the register specified by Rb. Also the Register File data

out signal is activated to release the data specified by Rb. The

ALU port A register read signal is activated to store this data.

4 3 The Register File signal Rc is activated to locate the register

specified by Rc. Also the Register File data out signal is

activated to release the data specified by Rc to the ALU port B.

The ALU addition signal is activated to perform the operation.

The read signal of the ALU output port register is activated

to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File signal for Ra is

activated to locate its specified register. The Register File read

signal is activated to store the processed result in the data bus.

Table 7.1 Add instruction signal activation verbal descriptions by cycle

152

7.2 BIT WISE AND

Importance and Justification

Compares two 4 bits numbers (first bit of first number with first bit of second

number and so on) and send a high signal when a compared pare of bits have both bits in

high (1), and send a low (0) when at least one or both compared bits are low. Performs a

useful logic task to compare two binary numbers and to take decisions.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01001 Ra Rb Rc XXXX

Operation: A ←(B • C)

153

AND

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File signal that activates the address bits Rb is

activated to locate the register specified by Rb. Also the Register

File data out signal is activated to release the data specified by

Rb. The read signal of the register at the ALU port A is

activated to store this data.

4 3 The Register File signal that activates the bits Rc is activated to

locate the register specified by Rc. Also the Register File data

out signal is activated to release the data specified by Rc to the

ALU port B. The ALU AND signal is activated to perform the

operation. The read signal of the ALU output port register is

activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release the processed result to the data bus. The Register File

signal for Ra is activated to locate its specified register. The

Register File read signal is activated to read the processed

result in the data bus and store it in the specified register.

Table 7.2 AND instruction signal activation verbal description

The fetch activation signals are not shown because those signals will be defined at the

Control Unit stage.

154

7.3 ARITHMETIC SHIFT RIGTH

Importance and justification

Sometimes programmers must accomplish certain tasks and manipulate data in

certain ways to accomplish specific tasks. Arithmetic Shift Right instruction is very

useful because it allows the programmer to take one binary number and shift its leftmost

bit one or several places to the right. The vacant places are filled with bits equal to the

binary number leftmost bit. It can be used and combined with other instructions to make

the microcontroller programming easier.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00111 Ra Rb Rc count

Operation: (Bi)(Bi+n)(B j+n)(B k+n) ← BiBjBkBl

Where n is the number of shift places and i, j ,k ,and l are the respective bits position 1 ,

2, 3 and 4.

155

Table 7.3 Arithmetic Shift Right instruction signal activation verbal descriptions

THE ARITHMETIC SHIFT RIGHT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the Register File data out signal

is activated to release the data in the address location specified

by Rb. The read signal of the register at the ALU port A is

activated to store this data.

4 3 The Register File address bits Rc are activated to locate the

register specified by Rc and the Count Decoder signal is

activated. The count decoder makes its logical decision and the

ALU Arithmetic Shift Right signal is activated to perform the

operation. The read signal of the register at the ALU output

port is activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File address bits

Ra are activated to locate the register specified by Ra. The

Register File read signal is activated to read the processed

result in its input port and store it in the specified register.

156

7.4 BRANCH – JUMP IF CONDITION
Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00101 Ra (unused) Rb Rc condition

Operation: IF CONDITION IS TRUE: PC ← (ADDRESS)

BRANCH

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 Register File Rc bits are activated to locate the register

specified by them. Also the Register File data out signal is

activated to release the data specified by Rc to the data bus.

The take decision signal of the conditional logic is activated

to take the logic decision to jump or not.

4 3 The Register File bits of Rb are activated to locate the register

specified by them. Also the Register File data out signal is

activated to release the data specified by Rb to the data bus.

The signal port of AUX circuit is activated to release its

logic decision to the PC.

5 4 The next fetch process begins.

Table 7.4 Branch signal activation verbal descriptions

157

7.5 BRANCH – UNCONDITIONAL JUMP

UNCONDITIONAL JUMP

In this set it is included one additional kind of jump, the unconditional jump.

Importance and justification

Unconditional jump allows programmers to execute non-continuous programming

code in memory. The main difference between branch and the unconditional jump is that

the latter does not have to be tested or has to take any decision, just jump to other

memory location and execute its code.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10001 Ra (unused) Rb (unused) Rc (unused) Immediate value

Operation: PC ← (LAST 4 BITS)

Signal activation table for the instruction by cycle

UNCONDITIONAL JUMP

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The instruction second task consists on activating the tristate

buffer 2 and the PC clock to load it with the new value for

jump.

Table 7.5 Unconditional Jump signal activation verbal descriptions

158

7.6 CIRCULAR SHIFT

Importance and justification

Sometimes programmers must accomplish certain tasks and manipulate data in

certain ways to accomplish specific tasks. Circular Shift instruction is very useful

because it allows the programmer to take one binary number and shift its leftmost bit one

or several places to the right. The vacant places are filled with bits equal to the rightmost

bit of the binary number. It can be used and combined with other instructions to make the

microcontroller programming easier.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00110 Ra Rb Rc count

Operation: (Bl)(Bi+n)(B j+n)(B k+n) ← BiBjBkBl

Where n is the number of shift places and i, j ,k ,and l are the respective bits position 1 ,

2, 3 and 4.

159

Table 7.6 Circular Shift instruction signal activation verbal descriptions

 THE CIRCULAR SHIFT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the data out signal of the Register

File is activated to release the data in the address location

specified by Rb. The read signal of the register at the ALU

port A is activated to store this data.

4 3 The Register File address bits Rc are activated to locate the

register specified by Rc and The Count Decoder signal is

activated. The count decoder makes its logical decision and the

ALU Circular Shift signal is activated to perform the

operation. The read signal of the register at the ALU output

port is activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File address bits

Ra are activated to locate the register specified by Ra. The

reading signal of the Register File is activated to read the

processed result in its input port and store it in the specified

register.

160

7.7 IN

Importance and justification

This instruction is used to obtain data from the outside. The data arrives into the

microcontroller data path and is stored in a Register File location.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01101 Ra Rb (unused) Rc (unused) XXXX

Operation: ADDRESS ← DATA

Where address means one Register File location

Signal activation table for the instruction by cycle

IN

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The second instruction task consists on activating the tristate

buffer 8 (see figure 5.55) and the Register File Ra and read

signals.

Table 7.7 IN instruction signal activation verbal descriptions

161

7.8 IMMEDIATE ADDITION

Importance and justification

All microcontrollers and microprocessors must be able to perform mathematical

computations. The operation of addition is one of the most important and basic

mathematical computations .The immediate addition allows the programmer to specify in

the instruction the second value that will be processed.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00010 Ra Rb Rc (unused) Immediate

operand

Operation: A ←(B + last 4 bits)

Flags Affected: PSW [4]

162

IMMEDIATE ADDITION

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the Register File data out signal

is activated to release the data specified by Rb to the data bus.

The read signal of the register at the ALU port A is activated

to store this data.

4 3 The tristate buffer 2 holding the last four bits of the IR is

activated to allow those bits to pass to the data bus. The ALU

addition signal is activated to perform the operation. The read

signal of the register at the ALU output port is activated to

store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File Ra bits are

activated to locate the register specified by Ra. The read signal

of the Register File is activated to read the processed result in

the data bus and store it in the specified register.

Table 7.8 Immediate Addition instruction signal activation verbal descriptions

163

7.9 IMMEDIATE AND

Importance and justification

Compares two 4 bits numbers (first bit of first number with first bit of second

number and so on) and send a high signal when a compared pare of bits have both bits in

high (1), and send a low (0) when at least one or both compared bits are low. The

immediate and operation allows the programmer to specify in the instruction the second

value that will be processed.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00001 Ra Rb Rc (unused) Immediate

operand

Operation: A ←(B • last 4 bits)

164

INMEDIATE AND

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the Register File data out signal

is activated to release the data specified by Rb to the data bus.

The read signal of the register at the ALU port A is activated

to store this data.

4 3 The tristate buffer 2 holding the last four bits of the IR is

activated to allow those bits to pass to the data bus. The ALU

AND signal is activated to perform the operation. The read

signal of the register at the ALU output port is activated to

store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File Ra bits are

activated to locate the register specified by Ra. The read signal

of the Register File is activated to read the processed result in

the data bus and store it in the specified register.

Table 7.9 Immediate AND instruction signal activation verbal descriptions

165

7.10 IMMEDIATE OR

Importance and justification

Compares two 4 bits numbers (first bit of first number with first bit of second

number and so on) and send a high signal when a compared pare of bits have at least one

high (1) bit is present, and send a low when both compared bits are low (0).

The immediate OR operation allows the programmer to specify in the instruction the

second value that will be processed.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00000 Ra Rb Rc (unused) Immediate

operand

Operation: A ←(B (+) with last 4 bits)

166

INMEDIATE OR

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the Register File data out signal

is activated to release the data specified by Rb to the data bus.

The read signal of the register at the ALU port A is activated

to store this data.

4 3 The tristate buffer 2 holding the last four bits of the IR is

activated to allow those bits to pass to the data bus. The ALU

OR signal is activated to perform the operation. The read signal

of the register at the ALU output port is activated to store the

result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File Ra bits are

activated to locate the register specified by Ra. The read signal

of the Register File is activated to read the processed result in

the data bus and store it in the specified register.

Table 7.10 Immediate OR instruction signal activation verbal descriptions

167

7.11 IMMEDIATE SUBTRACTION

Importance and justification

All microcontrollers and microprocessors must be able to perform mathematical

computations. The operation of subtraction is one of the most important and basic

mathematical computations .The immediate subtraction allows the programmer to specify

in the instruction the second value that will be processed. The immediate availability of

this value is one of the reasons to include it in the instruction set.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00100 Ra Rb Rc (unused) Immediate

operand

Operation: A ←(B - last 4 bits)

Flags Affected: PSW [3]

168

INMEDIATE SUBTRACTION

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the Register File data out signal

is activated to release the data specified by Rb to the data bus.

The read signal of the register at the ALU port A is activated

to store this data.

4 3 The tristate buffer 2 holding the last four bits of the IR is

activated to allow those bits to pass to the data bus. The ALU

subtraction signal is activated to perform the operation. The

read signal of the register at the ALU output port is activated

to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File Ra bits are

activated to locate the register specified by Ra. The read signal

of the Register File is activated to read the processed result in

the data bus and store it in the specified register.

Table 7.11 Immediate Subtraction instruction signal activation verbal descriptions

169

7.12 LOAD

Importance and justification

Sometimes the programmer needs to load values from memory and then transfer

the information to the Register File to store them for further processing. Once the

Register File has information in it, the programmer can perform operations with those

values. The load instruction is essential because without it will be impossible to load data

from memory to process it.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01100 Ra Rb Rc Mc

Operation: A ← M

Where M is data in memory and A represent a Register File location.

170

Signal activation table for the instruction by cycle

LOAD

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 Register File bits of Rb are activated to locate the register

specified by Rb. Also the Load Decoder data out signal is

activated to release its decision. The read signal of the register

at the ALU port A is activated to store the data.

4 3 The tristate buffer 2 signal (holding the Mc four bits) is activated

in order to allow those bits to pass to the data bus. The addition

signal of ALU is activated to calculate the memory location.

The read signal of the register at the ALU output port is

activated to store the result.

5 4 The data in the register at the ALU output port is stored in MA,

activating the tristate buffer 1 signal and the Memory

Address register read signal.

6

5

The memory chip read signal is activated to read the address

specified by MA. The read signal in the register at the

memory chip output port is activated to store the data.

7 6 The tristate buffer 3 signal is activated to release data from

memory to the data bus. Bits of Ra in the Register File are

activated to locate the register specified by Ra. The Register

File read signal is activated to read and store the data from

memory.

Table 7.12 Load instruction signal activation verbal descriptions

171

7.13 NOT

Importance and justification

Sometimes the programmer needs to change the sign of the bits in use in order to

make calculations or to perform operations to address some registers, etc. In those cases

is very useful to have an instruction that makes that happen and that is the reason to

include this operation in the instruction set.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01111 Ra Rb Rc (unused) XXXX

Operation: -(B) ← B

172

NOT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3

2

The Register File Bits of Rb are activated to locate the register

specified by Rb. Also the data out signal of the Register File is

activated to release the data specified by Rb.

The not signal of ALU is activated to perform the operation.

The read signal of the register at the ALU output port is

activated to store the result.

4 3 The tristate buffer 1 is activated to release its data to the data

bus. Register File Ra signal is activated to locate the register

specified by Ra. The read signal of the Register File is

activated to read the processed result in the data bus and store it

in the specified register.

Table 7.13 NOT instruction signal activation verbal description

173

7.14 OR

Importance and justification

Compares two 4 bits numbers (first bit of first number with first bit of second

number and so on) and send a high signal when a compared pare of bits have at least one

high (1) bit is present, and send a low (0) when both compared bits are low. Perform a

useful logic task to compare two binary numberss and to take decisions.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01000 Ra Rb Rc XXXX

Operation: A ←(B (+) C)

174

OR

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File signal that activates the address bits of Rb is

activated to locate the register specified by Rb. Also the Register

File data out signal is activated to release the data specified by

Rb. The read signal of the register at the ALU port A is

activated to store this data.

4 3 The Register File signal that activates the bits of Rc is activated

so that the Register File locates the register specified by Rc.

Also the Register File data out signal is activated to release the

data specified by Rc to the ALU port B. The ALU OR signal is

activated to perform the operation. The read signal of the

register at the ALU output port is activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File signal for Ra is

activated to locate the register specified by Ra. The Register

File read signal is activated to read the processed result in the

data bus and store it in the specified register.

Table7.14 OR instruction signal activation verbal description

The fetch activation signals are not shown because those signals will be defined at the

Control Unit stage.

175

7.15 OUT

Importance and justification

This instruction is used to release data from the microcontroller to the outside

world. The processed data could be used for device control or just to deliver information.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10000 Ra Rb (unused) Rc (unused) XXXX

Operation: PORT ← ADDRESS

Where Port is the register where the data from Register File will be transferred. Address
is the Register File address location where the data is.

Signal activation table for the instruction by cycle

OUT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The instruction second task consists on activating the

Register File Rb and data out signals to release the data.

(see figure 5.56)

Table 7.15 Out instruction signal activation verbal descriptions

176

7.16 READ PSW

Importance and justification

The PSW is the register that holds the microcontroller flags. This instruction is

used to read the PSW and obtain valuable information of computational flags. Inside, the

ALU flags are activated if the computational result is zero, negative and overflow for add

and subtract. Those flags are very important because programmers can take important

decisions with them.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01110 Ra Rb (unused) Rc (unused) XXXX

Operation: ADDRESS ← PSW

Where address is the Register File address location to store the PSW.

Signal activation table for the instruction by cycle

READ PSW

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The second instruction task consists on activating the PSW

clock, the tristate buffer 6, the Register File Ra and read

signals to store the PSW. See figure 5.57.

Table 7.16 Read PSW signal activation verbal descriptions

177

7.17 SHIFT LEFT

Importance and justification

Sometimes programmers must accomplish certain tasks and manipulate data in

certain ways to accomplish specific tasks. Shift Left instruction is very useful because it

allows the programmer to take one binary number and shift its rightmost bit one or

several places to the left. The vacant places to the right are filled with zeroes. It can be

used and combined with other instructions to make the microcontroller programming

easier.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10100 Ra Rb Rc count

Operation: (Bj-n)(Bk-n) (B1-n) (0) ← BiBjBkBl

Where n is the number of shift places and i, j ,k ,and l are the respective bits position 1 ,

2, 3 and 4.

178

Table 7.17 Shift Left instruction signal activation verbal descriptions

THE SHIFT LEFT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the Register File data out signal

is activated to release the data in the address location specified

by Rb. The read signal of the register at the ALU port A is

activated to store this data.

4 3 The Register File address bits Rc are activated to locate the

register specified by Rc and The count decoder signal is

activated. The count decoder makes its logical decision and the

ALU Shift Left signal is activated to perform the operation.

The read signal of the register at the ALU output port is

activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release the data to the data bus. The Register File address bits

Ra are activated to locate the register specified by Ra. The

reading signal of the Register File is activated to read the

processed result in its input port and store it in the specified

register.

179

Importance and justification

Sometimes programmers must accomplish certain tasks and manipulate data in

certain ways to accomplish specific tasks. Shift Right instruction is very useful because it

allows the programmer to take one binary number and shift its leftmost bit one or several

places to the right. The vacant places are filled with zeroes. It can be used and combined

with other instructions to make the microcontroller programming easier.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10011 Ra Rb Rc count

Operation: (0)(Bi+n)(B j+n)(B k+n) ← BiBjBkBl

Where n is the number of shift places and i, j ,k ,and l are the respective bits position 1 ,

2, 3 and 4.

180

Table 7.18 Shift Right instruction signal activation verbal descriptions

SHIFT RIGHT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the data out signal of the Register

File is activated to release the data in the address location

specified by Rb. The read signal of the register at the ALU

port A is activated to store this data.

4 3 The Register File address bits Rc are activated to locate the

register specified by Rc and The Count Decoder signal is

activated. The Count Decoder makes its logical decision and

the ALU Shift Right signal is activated to perform the

operation. The read signal of the register at the ALU output

port is activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File address bits

Ra are activated to locate the register specified by Ra. The

Register File read signal is activated to read the processed

result and store it in the specified register.

181

7.19 STORE
Instruction Name

STORE

Importance and justification

Sometimes the programmer needs to process data and store it in memory. The

store instruction is essential because without it will be impossible to store data in memory

after the data is processed.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00011 Ra Rb Rc Mc

Operation: M ← A

Where M is data in memory and A represent a Register File location.

182

STORE

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File bits Rb are activated to locate the register

specified by Rb. Also the Load Decoder data out signal is

activated to release its decision and also is activated its tristate

buffer that holds the 0000. The read signal of the register at

the ALU port A is activated to hold 000 from the load decoder

or the data of Rb.

4 3 The signal of the tristate that holds the Mc four bits is activated

in order to pass those bits to the data bus. The addition signal of

ALU is activated to perform the operation. The read signal of

the register at the ALU output port is activated to store the

result.

5 4 The tristate buffer 1 is activated to release the data in the ALU

output port and is stored in the Memory Address register

activating its read signal.

6

5

The Register File bits Ra are activated to locate the register

specified by Ra. The Register File data out signal is activated

to release its data to the data bus. The register at the ALU port A

is activated to store the value from the Register File. The tristate

buffer 9 is activated to deliver the data from the Register File

output port to MA. The MD read signal is activated to store the

data specified by Ra. The memory chip read signal is

activated to read the address specified by MA and store the data

in MD.

Table 7.19 Store instruction signal activation verbal descriptions

183

7.20 SUBTRACT

Importance and justification

All microcontrollers and microprocessors must be able to perform mathematical

computations in order to execute its own instructions and be useful to the user. The

operation of subtraction is one of the most important and basic mathematical

computations.

Instruction Format

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01010 Ra Rb Rc XXXX

Operation: A ←(B - C)

Flags Affected: PSW [3]

184

SUBTRACTION

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File signal that activates the address bits of Rb is

activated to locate the register specified by Rb. Also the Register

File data out signal is activated to release the data specified by

Rb. The read signal of the register at the ALU port A is

activated to store this data.

4 3 The Register File signal that activates the bits of Rc is activated

to locate the register specified by Rc. Also the Register File data

out signal is activated to release the data specified by Rc to the

ALU port B. The ALU subtraction signal is activated to

perform the operation. The read signal of the register at the

ALU output port is activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File signal that

activates Ra is activated to locate its specified register. The

Register File read signal is activated to read the processed

result in the data bus and store it in the specified register.

Table 7.20 Subtraction instruction signal activation verbal descriptions

The fetch activation signals are not shown because those signals will be defined at the
Control Unit stage.

185

Chapter 8. Conclusions

One of this project’s goals was to provide the reader the opportunity to see how all

the basic circuit, digital logic, basic electronic and advanced digital design concepts are

applied in order to produce one functional system: a microcontroller.

This work also provides the student the opportunity to develop and practice some of

the fundamental microcontroller design skills like planning, organization and testing the

microcontroller hardware. The user is encouraged to use the techniques in chapter four

and five to develop a microcontroller data path. Decisions like the number of data path

circuit elements, their interconnection to save clock cycles and each element design are

some of the skills worked in those chapters.

This methodology will guide users’ actions and design tasks, to think about the

available resources, reliability, time and design cost to achieve the final product.

Considering that sometimes students become confused when trying to develop new skills

and that the microcontroller world is not easy to understand at first, the design was done

using Logic Works. Students will not face the situation of dealing with complex

algorithms and symbols when they are introduced to microcontrollers. This work thus

tried to be graphically understandable showing the design, implementation and testing of

each microcontroller part and operation.

This work also provides the reader a ten-step mechanism that will guide the

microcontroller design. One of the most important characteristics of this method is that it

is modular. All circuits design were done as independently as possible. The advantage is

that new designs can be tested with small changes to the original one. For example the

Arithmetic Logic Unit like other blocks was developed with parallel circuits. This allows

users to “plug and play” their new circuits without making significant design changes.

186

Also, modules can be designed and stored for fast implementation in future designs,

and this can accelerate new designs or projects using the already existing circuits. The

method developed in this work was used for a four-bit microcontroller, but it can be used

for bigger ones. Although the circuit will be more complex, all design steps still apply

together with all its recommendations. This work should be useful for beginners in the

microcontroller design and operation field or as a microcontroller class complement or

laboratory.

 It is expected that with this approach students will feel more confident with different

microcontroller designs. All simulations in this work were done with Logic Works 4.0.

But the economy of this method is paid by designer’s ability to select the proper

interconnection and hardware to execute the instructions in the fastest way using the

minimum amount of clock cycles per instruction. Designers must ensure to orchestrate all

microcontroller signals activation in such a way that no conflict between signal activation

exist during each instruction execution clock cycle.

the method developed in this work was used for a four-bit microcontroller, but it can

be used for bigger ones. Although the circuit will be more complex, all design steps still

apply together with all its recommendations. This work should be useful for beginners in

the microcontroller design and operation field or as a microcontroller class complement

or laboratory.

A physical implementation of the microcontroller can be done using FPGAS’s. This

requires a VHDL code, which can be partially generated by modern CAD software. This

is left for future work.

187

References

[1] Gene, H., 1999, Microcomputer Engineering, Prentice Hall, New Jersey, NJ.

 [2] Douglas, J., 1996,HDL Chip Design, Doone Publications, Madison, AL,USA, pp.3-4.

[3] Escuela Politéctinica Superior de Alcoy

 http://server-die.alc.upv.es/asignaturas/LSED/2002-03/micros/downloads/trabajo.pdf

[4] http://www.pbs.org/nerds/timeline

[5] http://www.fms.komkon.org/comp/misc/ancient.txt

[6] http://www.geocites.com/micros_van/cap54.html

[7] Payne, Sandra, Dictionary of Computing, Oxford University Press 1996.

[8] IBM RESEARCH

 http://www.research.ibm.com.

[9] INTEL

 http://www.intel.com.

[10] Fletcher, William, 1980, An Engineer Approach to digital Design, Prentice Hall.

[11] Floyd, Thomas, 1997, Digital Fundamentals 6th edition, Prentice Hall.

[12] Preparata Franco P., 1985, Introduction To Computer Engineering, Harper & Row,

Publisher Inc.

[13] Palmer, James,1993, Perlman David, Introduction To Digital Systems, Mc Graw

Hill.

[14] Wakerly John F, 2000, Digital Design Principles & Practices 3rd edition, Prentice

Hall.

[15] Tokheim Roger L.,1994, Digital Principles, 3rd edition, Mc Graw Hill.

188

[16] Bartee Thomas C., 1984, Fundamentos De Computadores digitales, Quinta edicion,

Mc Graw Hill.

[17] Carter Nicholas, 2002, Computer Architecture, Mc Graw Hill.

[18] Tokheim Roger L.,1991, Fundamentos De Los Microprocesadores, Mc Graw Hill.

[19] Wilson Graham, 2002, Embedded Systems & Computer Architecture, Newnes

Publishing Company.

[20] Stallings William, 1993, Computer Organization and Architecture, 3rd edition,

Macmillan Publishing Company.

[21] Patterson David A, Hennessy John, 1994, Computer Organization & Design,

Morgan Kaufmann Publishers, Inc.

[22] Brey Barry B., 1997, The Intel Microprocessors 808X,80286,80386,80486,Pentium

& Pentium Pro, Prentice Hall.

[23] VHDL Tutorial: Learn by Example

 http://www.cs.ucr.edu/content/esd/labs/tutorial/

