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Abstract 

 
Microcontroller Design and Concepts 

 
By 

 
Victor L. Vargas Garcia 

 

 

A method for microcontroller design was developed. A basic data path 

configuration capable of processing the microcontroller basic instruction set was 

developed first. Based on this configuration, a four-bit microcontroller was developed 

from its most basic instruction set to the most complex one.  

Through the design process, the microcontroller hardware evolves into a complex 

one as more instructions are added to the basic instruction set. More hardware is added in 

parallel to the basic data path configuration to make the execution of more complex 

instructions possible.  

As a result it is expected that readers become familiar with the fundamental 

microcontroller concepts and operations. Design steps, implementation and testing of all 

the microcontroller development circuits are shown graphically and explained in detail. 

Finally designers will have a basic guide to develop their own microcontroller using this 

work procedure.  
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COMPENDIO 

 
Microcontroller Design and Concepts 

 
By 

 
Victor L. Vargas García 

 

Un método para el diseño de microcontroladores fue desarrollado partiendo de 

una configuración  básica para el camino de datos que permite la ejecuciόn del grupo más 

sencillo de instrucciones para un microcontrolador. Usando ésta configuración básica, un  

microcontrolador de 4 bits fue desarrollado desde sus instrucciones más básicas hasta las 

más complejas.  

A medida que el proceso de desarrollo y evolución del microcontrolador se lleva a 

cabo, instrucciones más complejas se van sumando al conjunto de instrucciones básicas 

del microcontrolador, añadiendo circuitos en paralelo al circuito básico que forma el 

camino de datos  que permiten que éstas nuevas instrucciones se puedan ejecutar. 

 Como resultado el lector tendrá una guia y una idea más clara sobre los 

fundamentos básicos de los microcontroladores, su funcionamiento y su arquitectura. Se 

mostrarán de una manera grafica y explicada en detalle, los pasos de diseño, 

implementación y prueba de los circuitos usados en el desarrollo de microcontroladores. 

Finalmente los diseñadores  tendrán una guia básica para desarrollar su propio 

microncontrolador usando el procedimiento descrito en este trabajo. 
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Chapter 1

 
 
 
Introduction 

 

  Microcontrollers and microprocessors are the most used devices in electronic 

equipment. Modern technology demands from any engineer, a basic microcontroller or 

microprocessor knowledge. The basic difference between them is that microprocessors 

can be configured for the amount of memory and the input / output system used. The 

microcontroller has all the computing system (I/O system and memory) built in it.  

Designer’s judgment determines which one should be used. 

The emphasis of this work will be in the CPU; other important microcontroller 

parts such as the memory, the I/O system, microcontroller and microprocessor layout, 

fabrication process and technology are beyond the scope of this work. Design 

performance parameters like speed, power dissipation, wiring, packing, and transistor 

sizing are also beyond the scope of this work [8]. Microprocessor Assembly 

programming is not covered either.  

 

1.1 Justification 
 

 The motivation for this work comes after the author took the Computer 

Architecture undergraduate course. The author realizes that microcontroller design could 

be an opportunity to summarize and apply most of the electronic engineering basic and 

advanced courses. Basic circuit analysis, basic electronic course, digital logic circuits and 

advanced digital design are some of the electrical engineering courses used in this work. 
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Another motivation for this work lies in the author’s desire to present the student 

the microcontroller concepts, design and operation, as quick and clear as possible. For 

many years literature has been published regarding microcontroller and digital design. 

Techniques, methods, and procedures have been published, but most of them are usually 

explained using a symbolic or algorithmic approach. Some examples of this kind of 

approach can be found on “The Intel Microprocessors 808X,Pentium and Pentium 

Pro”[22] , “Computer Organization and Design The Hardware / Software Interface”[21], 

Embedded Systems and Computer Architecture”[19],Computer Organization and 

Architecture Principles of Structure and Function [20]. 

Although this work can serve as a quick reference for people with some 

microcontroller basic knowledge, it was developed specially for people that have not 

been exposed to microcontrollers or are exploring the field for the first time. After 

students understand the basic microcontroller concepts, they can go by their own in the 

field exploring other design concepts and alternatives. 

To grasp the basic concepts at the starting stage, students feel more comfortable 

when they see the theoretical materialization, simulation and execution of hardware 

circuits, instead of large equations, diagrams, algorithms and symbols that most of the 

microcontroller information sources offer. The hardware implementation of every 

concept is what makes this work useful for beginners to learn and understand 

microcontroller concepts. 

One of the main features of this work lies in the fact that it follows a series of 

steps and makes emphasis on the most important points in each and everyone of those 

steps. Beginners just have to follow those steps in order to design and simulate their own 

microcontroller. This work illustrates the design, simulation, testing, and implementation 

of all microcontroller circuits in each step. Through the whole process the student will 

appreciate the complete microcontroller evolution and transformation from zero to a 

functional unit. 
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Practice is the key for success in any career. This method provides mechanisms to 

change some of the microcontroller parts without affecting others. It makes emphasis on 

modularization. Through the whole process, modules of each part are designed and can 

be changed individually without affecting the entire system. This allows experimentation 

and circuit changes to examine what happens.  

One possible application of this work is that students can transform the 

microcontroller schematic into HDL code and download it to an FPGA for prototype 

simulation. This way, the students increase their understanding of microcontroller 

concepts and operation, with hands-on experience; they can examine how the instruction 

execution is and how the microcontroller circuits work in every instruction. Also multiple 

versions of one microcontroller can be developed with slight changes, allowing students 

to observe the effect of those changes in each design and simulate each prototype on 

FPGA. This work provides a mechanism for students to train easier, faster and get more 

practice in microcontroller design.  

A weak point of this method is that it does not achieve an efficient 

implementation. Performance is not the main point of this work; just delivering to the 

student the most important microcontroller concepts. In chapter two we find information 

regarding to microcontroller performance. The focus of this work is in the methodology, 

not in the computational capabilities and features of the microcontroller. 

Besides its educational approach, another important point is that this method 

provides a mechanism to design a microcontroller that can be simulated, as said before, 

on FPGA, but also can be used on real applications. In other words, users making slight 

changes can produce a different microcontroller for new applications as needed. Users do 

not have to buy a new microcontroller but try a different one using this method. Of 

course this is convenient for experimentation or academic purposes only, not for 

applications where performance is the critical point. 
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Modern microcontroller costs are relatively low, and are very useful for many 

applications but sometimes there are situations that are better handled with specially 

designed microcontrollers for specific applications. For example, a designer may want to 

build and control his/her own personal robot, with a specific instruction set. Designers 

can find in the market some inexpensive microcontrollers that suit design requirements. 

But those popular microcontrollers perhaps are for general use, but probably lacking 

features that designers would be looking for.  

It is important to remember that those popular microcontrollers in the market 

today are not designed for specific needs; some are for general purpose and others are for 

specific applications. Then, sometimes designers invest huge amounts of time and effort 

designing and programming assembly routine codes in order to achieve the required 

microcontroller performance, as to take full control of their robot. Designing a 

microcontroller for specific needs allows designers to minimize the programming 

complexity and enhance designers system’s performance. 

Designers also should keep in mind that microcontroller programming is as 

important as the microcontroller hardware design. Although it is not the intention of this 

work to discuss the microcontroller programming, this work illustrates the instruction 

execution of the microcontroller. This helps a lot when we are trying to understand the 

basic concepts of assembly programming like the addressing modes, clock cycles, and 

operands. 

The quality of the microprogramming is what makes it possible to transform the 

complex circuits of the microcontroller into something useful. One of the main 

motivations for this work will be that inexperienced designers will not only gain an 

insight of microcontroller design and operation, but also, designers will get a better 

understanding of the microcontroller assembly programming.  
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1.2 Research Objective 

 
The main idea of this work is to develop a systematic and straightforward 

procedure that allows students to understand microcontrollers design and operation. 

Inexperienced designers should be able to design their own microcontrollers from scratch 

using this procedure. This work assumes that the student has a basic knowledge of circuit 

analysis and digital logic circuits.  

 

1.3 Simulations 
 

There are many simulation tools that can be used for microcontroller design. 

Hardware Description Language (HDL) programming and graphic simulators are the 

main development tools used in the microcontroller design market. The computer tool 

used in this work is the graphical simulator Logic Works. Logic Works was chosen 

because the focus of this work is for beginners in the microcontroller field. Logic Works 

brings to the student an easy and complete visualization of the circuits and their 

operation. One of the main features of this work consists in its illustrative techniques and 

Logic Works results useful for these purposes. 

HDL is convenient for large size circuits and then its code can be downloaded 

into an FPGA for device prototype testing. But its programming nature does not result 

useful for people trying for the first time to grasp the microcontroller concepts. Users 

face a double challenge because they are trying to understand the basic principles of the 

microcontroller operation and at the same time they are trying to learn the programming 

rules and techniques of HDL code in order to execute the circuit simulation. Logic Works 

allows users to graphically understand what happens inside the microcontroller during its 

execution and then, schematics can be transformed into an HDL code and downloaded 

into an FPGA for further prototype simulation. 
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1.4 Work Organization 
Basic theory about microprocessors, its basic concepts and applications, 

performance factors and a comparison between microcontrollers and microprocessors are 

discussed in Chapter 2. The third chapter discusses the digital circuits available for the 

microcontroller HDL code prototype, the microcontroller implementation alternatives 

and programming. The fourth chapter describes in detail each of the microcontroller 

design steps used in this work and the most important points to keep in mind. Chapter 5 

has an example of the microcontroller design process described in chapter four. In this 

chapter the microcontroller instruction set, architecture, basic circuits and the evolution 

of the data path as new instructions are developed are described in detail. Chapter 6 

presents the control unit design. A detailed description of each instruction is given in 

chapter 7. Chapter 8 presents the conclusions of this work. 
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Chapter 2. Theory and Applications 
 
2.1   Microcontroller Applications  

 

The microcontroller is one of the most important electronic devices on which modern 

technology is based on. Microcontroller uses are endless; from toys to microwaves, 

ovens, TV sets, computers, printers, cars and so on.  

Digital circuits become larger and larger as more functions need to be executed. In 

modern digital world, most individual digital circuit components are sold in a single chip. 

Those individual chips need power and space to operate. When the circuit becomes huge, 

the traditional logic design approach is not the best option and microcontrollers become 

convenient. Microcontrollers are basically sequential machines because their operation 

depends on their current status and its inputs. Their power lies in the fact that the 

hardwire configuration allows its operation to be changed depending on programming.  It 

is not required to use additional logic circuits if the operation is changed. 

 
2.2 The Processor and the Microntroller Concepts 
 

 Data are words, numbers and graphics that describe people, events, things and 

ideas. It becomes information when used as the basis for initiating some actions or to take 

decisions. Data is represented by binary expressions when used in the digital world. 

A binary number system is a numeric system that has only two different digits: 1 

and 0 (binary); and any of these is called a bit. Data are represented by finite permutation 

of bits. These combinations are called words. A collection of hardware devices that 

manipulate binary expressions to process information is called a processor [1]. 

 The processor manipulates binary numbers following an algorithm, which 

determines the way in which the instructions are processed by the hardware inside the 

processor, how data begins to be processed and where it is finished. An instruction code 

in the instruction format indicates to the system which algorithm to perform. This specific 

algorithm represents the specific instruction to be executed. The following are the 

principal processor components  [1].  
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1) Arithmetic Logic Unit (ALU): is a combinational logic network that performs 

the mathematical and logical operations of the processor. 

2) Registers: hold the data operated on, between clock cycles for processing. 

3) Control Unit: a synchronous sequential logic network that controls all the 

hardware in the digital system. This unit decodes the instruction,generates the 

proper sequence of control signals, and activate and deactivates the 

corresponding hardware units in the system to achieve the right processing 

according to the instruction.  

4) The clock:  a periodic pulse waveform that synchronizes all the elements in 

the system. Every clock cycle represents a state of the system. This means that 

in every clock cycle the system will have specific hardware control lines that 

are going to be on or off. The system clock speed depends on the response 

speed of  the circuit elements when data passes through them. 

 

Although these components are the most important ones, they are not alone. A big 

difference exists between identifying all those main elements and putting them together 

to work.  Digital Logic, gates, multiplexers and other important circuits are necessary for 

processing support or to solve implementation problems, avoid signal conflicts and so on. 

Memory (circuit where data and instructions are stored) and input / output circuit 

interface  (computer system used to pass data to and from the central processing unit) are 

necessary circuits for the microprocessor implementation. 

Any hardware involved in data transfer into or out of the processor is considered 

separate from the processor. Processor only refers to the hardware that manipulates data. 

When a processor is capable of performing arithmetic operations, logical operations, load 

and store operations, branching operation and input-output operations, it is called a 

“general purpose processor”. When it is integrated in a single IC it is called a 

microprocessor. 
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A personal computer is usually a connection of components that contain many 

microprocessors. The motherboard contains the main microcoprocessor, but other 

microcoprocessors or microcontrollers are also involved. The keyboard, the disk drive 

interface, the display monitor interface, and the printer are some of the components that 

may contain their own microcontrollers. Therefore, a personal computer system is a 

collection of many microcontrollers controlled by a main microprocessor.  

 

2.3 Microcontroller Performance Factors 

 
Microcontroller performance can be defined in terms of speed, size, power, cost, 

design time and manufacture cost. Each depends on concepts beyond the scope of this 

work. The main factor determines the microcontroller performance [9] are its 

architecture, design features and manufacture process. Thus the microcontroller 

performance depends on designers’ judgment at the design stage.  

The architecture features determine the remaining microcontroller characteristics. 

The architecture depends on the microcontroller application. Different applications differ 

in features and data processing requirements. The Von Neumann architecture and the 

Harvard architecture [3] are the two main architectures used in microcontroller design. 

The Harvard architecture is the most popular nowadays. Von Neumann architecture main 

characteristic is that it uses one main memory where data and instructions are stored. 

Only one system bus is used for control, data transfer, processing and addressing. 

Harvard architecture consists of two different and independent memories in which one 

contains instructions and the other one contains data. Both have their own data bus 

systems for control, data transfer, processing and addressing. Both memories can be 

accessed simultaneously. 
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After the architecture has been defined the design process will be ruled by it. The 

hardware implementation will process the data by the architecture definition. Every part 

of the microcontroller hardware has many variables that can be configured to set its 

operation. Examples of these variables are the chip area and the distance between its 

components, the chip power dissipation, wiring effects, chip speed, manufacture 

materials, and packing. Each and every one of those variables is a field of study by itself, 

but they are beyond the scope of this work [8].  

The Architecture and the hardware implementation features transform an idea into 

a circuit with specific characteristics. Computer simulation allows designers to verify that 

circuits work as required. When specification constrains and performance requirements 

are met, it is time for testing and manufacture. Design aspects defined by the architecture 

determines which manufacture process will be used. Manufacture processes have 

advantages and disadvantages and they can differ in equipment cost and technology.  

 

2.4 The General Purpose Microcontroller 

 
 Microcontrollers execute different kind of instructions. The instructions for a 

general-purpose microcontroller can be: 

1) Arithmetic Instructions. 

2) Logic Instructions. 

3) Data transfer Instructions. 

4) Jump Instructions. 

5) Miscellaneous Instructions. 

 

Some microcontrollers are designed to specialize their execution in one or more of 

those classifications. Those are special purpose microcontrollers. Those basic instructions 

are combined to perform more complex instructions and the power and speed of 

execution of the microcontroller allows those instructions to execute complex tasks. 

Instructions are executed in such a way that an operation is achieved and different 

operations are used for different applications. 
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Special purpose microcontrollers are designed for an application where using a 

general-purpose microcontroller is not the best option. Usually those applications require 

repetitive execution of one or more instructions, which can be implemented in software 

or hardware. Hardware instruction implementation allows faster execution and reduces 

program size. Examples of special microcontrollers can be found on camcorders, digital 

cameras, automobiles and so on.  

  

2.5 Comparing Microcontrollers and Microprocessors 
The microprocessor is an integrated circuit composed by the Control Unit, 

Arithmetic Logic Unit, Registers and Digital circuit support. The microprocessor uses its 

data bus pins, address bus pins, and control lines pins to allow connection to other 

circuits to configure the entire system. The main characteristic of the microprocessor is 

that it is an open system, which means that its configuration is variable, and can be 

adapted to many different applications. A block diagram of a microprocessor is shown in 

figure 2.1. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The Microprocessor Configuration 
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The microcontroller is a closed system. In the microcontroller all parts that can be 

configured in the microprocessor are fixed in the same chip. A block diagram of a 

microcontroller is shown in figure 2.2. Just the lines that control the peripherals are the 

ones that go outside the chip. This characteristic makes microcontrollers suitable for 

specific applications or for general use.  

The microcontroller applications range is narrower than the microprocessor’s 

range. The reason is that microcontrollers have all their computing system integrated on 

the same chip. This reduces the available space inside the microcontroller to include 

components that the microprocessor have externally like memory and I/O system.  

This means that a microprocessor can be used for microcontroller applications but 

microcontrollers cannot always be used for most microprocessor applications. 

Microcontrollers are preferred when the application is defined and specific. In those 

situations where important system modifications are needed or applications are not 

specialized a microprocessor is more convenient. 

 

 

 

Figure 4.4 

 

 

 

 

 

 

 

 

Figure 2.2 The Microcontroller Configuration 
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Chapter 3 Microcontroller Implementation and Operation 
 

3.1 Implementation Alternatives 

Traditionally, digital design was a manual process of designing and capturing 

circuits using schematic entry tools [2]. The increase in size and complexity of 

hardware has forced designers to discus new methods and tools for digital design. 

Hardware description languages (HDL) and synthesis, have substituted the more 

traditional schematic process of simulation. This is because HDL allows simulating 

circuits with hundreds of elements in a relative short period of time. Some of the new 

tools for HDL simulation are electronic equipment containing Application-Specific 

Integrated Circuits (ASICs), or Field-Programmable Gate-Arrays (FPGAs). 

The introduction of industry standards for hardware description languages and 

commercially available synthesis tools has helped establish this revolutionary design 

methodology. Some advantages are: 

• Increased productivity yields shorter development cycles with more product 

features and reduced time to market, 

• Reduced Non-Recurring Engineering (NRE) costs, 

• Design reuse is enabled, 

• Increased flexibility to design changes, 

• Faster exploration of alternative architectures 

• Faster exploration of alternative technology libraries, 

• Enables use of synthesis to rapidly sweep the design space of area and timing, 

and to automatically generate testable circuits, 

• Better and easier design auditing and verification. 
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Figure 3.1 Microcontroller Implementation Alternatives 

 

            Figure 3.1 illustrates the alternatives of hardware implementation available. 

Modern designs are characterized by their increase in size and complexity, circuit 

simulation is one of the most important steps in circuit design. Circuit simulation and 

hardware prototype implementation saves time and money because they allow designers 

to verify that the implemented digital design works as required. 
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 Software simulation previews the circuit behavior. It serves as a mechanism to 

verify accurately the principal circuit characteristics and to ensure its design requirements. 

Hardware implementation, in contrast with software simulation, is a physical prototype 

configuration that serves to physically simulate the circuit behavior. Note that hardware 

implementation requires software simulation through HDL. Its advantage lies in the fact 

that circuits can be tested interacting with other real physical circuits before they are 

fabricated.  

           Standard "off-the-shelf" integrated circuits have a fixed functional operation 

defined by the chip manufacturer. Contrary to this, both ASIC and FPGAs are types of 

integrated circuit whose function is not fixed by the manufacturer. The designer for a 

particular application defines the function. An ASIC requires a final manufacturing 

process to customize its operation while an FPGA does not. 

ASICs 
An Application-Specific Integrated Circuit is a device that is partially 

manufactured by an ASIC vendor in generic form. This initial manufacturing process is 

the most complex, time consuming, and expensive stage of the total manufacturing 

process. The result is silicon chips with an array of unconnected transistors. The final 

manufacturing process of connecting the transistors together is then completed when a 

chip designer has a specific design to implement using ASIC. An ASIC vendor can 

usually do this in a couple of weeks and is known as the turn around time. One problem 

is that it is a physical realization, which means that if there are mistakes during the 

HDL simulation and are not corrected, its physical implementation will have the errors 

also and there are no mechanism to correct it once it is fabricated. There are two 

categories of ASIC devices: Gate Arrays and Standard Cells. 
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Gate Arrays 

There are two types of gate array; a channeled gate array and a channel-less 

gate array. A channeled gate array is manufactured with single or double rows of basic 

cells across the silicon. A basic cell consists of a number of transistors. The channels 

between the rows of cells are used for interconnecting the basic cells during the final 

customization process. A channel-less gate array is manufactured with a "sea" of 

basic cells across the silicon and there are no dedicated channels for 

interconnections. Gate arrays contain from a few thousand equivalent gates to 

hundreds of thousands of equivalent gates. Due to the limited routing space on 

channeled gate arrays, typically only 70% to 90% of the total number of available 

gates can be used. 

The library of cells provided by a gate array vendor will contain: primitive logic 

gates, registers, hard-macros and soft-macros. Hard-macros and soft-macros are 

usually of MSI and LSI complexity, such as multiplexers, comparators and counters. 

The manufacturer in terms of cell primitives defines hard macros. By comparison, 

the designer, for example, characterizes soft-macros by specifying the width of a 

particular counter. 

Standard Cell 

Standard cell devices do not have the concept of a basic cell and no components 

are prefabricated on the silicon chip. The manufacturer creates custom masks for every 

stage of the device's process and silicon is utilized much more efficiently than for gate 

arrays. 
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FPGAs 

The Field-Programmable Gate Array is a completely manufactured device, but 

remains design independent. Each FPGA vendor manufactures devices to a proprietary 

architecture. However, the architecture will include a number of programmable logic 

blocks that are connected to programmable switching matrices. To configure a device 

for a particular functional operation these switching matrices are programmed to route 

signals between the individual logic blocks. 

 

PLD and PLA 
The Programmable Logic Device (PLD) is essentially a grid of programmable 

conductors that form rows and columns with fusible link at each cross point. PLD are 

classified according to their architecture, which is basically the functional arrangement of 

internal elements that give a device its unique characteristic. The Programmable Logic 

Array (PLA) is a device with programmable AND and OR arrays. 

3.2 Hardware Description Languages (HDLs) 

A Hardware Description Language (HDL) is a software programming language 

used to model the intended operation of a piece of hardware. There are two aspects of 

hardware description that HDL facilitates: true Abstract Behavior Modeling and Hardware 

Structure Modeling. 

The Abstract Behavior Modeling is a declarative hardware description language 

in order to facilitate the abstract description of hardware behavior for specification 

purposes. The Hardware Structure Modeling is a hardware structure that can be 

modeled in a hardware description language irrespective of the design behavior. The 

hardware behavior may be modeled and represented at various levels of abstraction 

during the design process. Higher-level models describe the operation of hardware 

abstractly, while lower level models include more detail, such as inferred hardware 

structure [23].  
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3.3 Tradeoffs in Microcontroller Design 
 Is it necessary to use a special purpose microcontroller or a general purpose one 

can be used?  That is an important question that must be answered before attempting to 

implement a microcontroller. In addition to having the basic instruction set, special 

purpose microcontrollers usually have instructions specialized to perform specific tasks. 

Those microcontrollers include in their design, special hardware that is used for 

execution and calculation support to execute instructions in their specific applications. 

The application determines the microcontroller operation, and the operation is 

executed with specific instructions. Then, the real deal in the design process consists in 

making tradeoffs between designing more powerful and complex instructions that reduce 

the programming code, or as another alternative, the operation can be implemented in 

hardware to save the time-consuming programming of certain tasks and achieve faster 

execution. 

Should an operation be implemented in hardware or software? Is it worth? The 

answers to those questions depend on many factors like design requirements, available 

budget, technology used and so on. Hardware instructions implementation result in faster 

executions but increase design cost. Software implemented operations save hardware and 

costs but increase the instruction execution time and the programming complexity. There 

are not defined rules. Designers have to make their choices based on design constrains 

and available resources to produce the best system performance at the lower cost. 
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3.4 The Microcontroller Programming 
 

Commonly, every processor is designed with one purpose and has its own 

instruction set. The microcontroller architecture determine how powerful the instruction 

set is and how many clock cycles it takes to execute its instructions. As the instructions 

are more powerful, the microcontroller programming usually becomes more complex but 

shorter and more tasks are done per clock cycle.  

Microcontroller programming is usually done in assembly language. This is 

because this is a low level programming language. Instruction in this low level 

programming language are directly related to the machine code, the ones and zeroes or 

high and low voltage combinations necessary to control all the hardware inside the 

microcontroller to process data. One advantage of assembly language is that allows the 

programmer to control some internal process like selecting specific registers that 

normally cannot be done using a high level programming language.  

Each microcontroller has its own assembly language code, so the assembler is 

specific to the microcontroller. High level programming languages, on the contrary,are 

independent of the processor. The compiler and other tools are transparent to the 

programmer, do the translation to the respective processor used by the computing system. 

Commercial microcontrollers are very often sold embedded in the so-called 

evaluation cards. These system boards contain additional hardware and connectors to 

facilitate applications and programming. The programmer can design the assembly 

program and download it to the microcontroller easily. 
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3.5 The Microcontroller Operation 
 

Summarizing, the microcontroller operation consists in three steps: 

• Fetch process; the fetch process consists in retrieving one instruction from 

memory and load it in the Instruction Register.  

• Decoding; once the instruction is in the Instruction Register, the control 

unit receives the operational code from it. The control unit decodes the 

operational code to identify the instruction to be executed. 

• Executing; after the control unit identify the instruction, it start a series of 

microcontroller hardware signal activations. To carryout the execution 

process some of the circuit elements must be on and off in each clock 

cycle. The control unit ensures that the necessary elements are on and off 

in each clock cycle to accomplish the instruction execution. 

 

Basically the CPU addresses a memory location, obtains (fetches) a program 

instruction that is stored there, and carries out (executes) the instruction. After completing 

one instruction, the CPU moves on to the next one. This fetch and execute process is 

repeated until all of the instructions in a specific program are done. The fetch process 

clock cycle depend on the Instruction Register size (and i.e. the instruction word) and the 

number of bits of the data bus. For example if the IR size is eighteen bits and the data 

path is four bits, then five clock cycles will be needed for the fetch process. The memory 

size will determine how many instructions can be stored in it and indeed the program size 

that can be stored.  
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3.5.1 The Program Counter 
 

To indicate the memory address to retrieve the instruction a special register is 

used. This register is the Program Counter. The PC holds the address of the memory 

location where the next instruction is located. The PC input ports are connected to the 

data bus; in this way the ALU connected also to the data bus increment the PC to the next 

memory location. The PC output port is connected to the memory address port to identify 

the required memory location where the instruction is. 

 

3.6 FLAGS 
Flags are also called conditional codes. Condition codes are bits set by the CPU 

hardware as the result of operations.  Usually condition codes are collected into one or 

more registers called flag register. Flags are very useful because they can be used as 

parameters to make decisions. For example, a microcontroller application can check the 

flag register to see if the result of one subtraction operation is zero, then, using this 

information the microcontroller can take decisions to execute other instructions. 
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Chapter 4 The Microcontroller Design Steps 
 
  

 

This chapter describes the steps used in the microcontroller design example of this 

work. Each step has important points that designers should keep in mind in them. Those 

points guide the user through the whole design process.  

 

4.1 Methodology Steps 
The steps are enumerated in table 4.1 

 

STEP DESCRIPTION 

 

STEP I Justification 

STEP II Operations Definition 

STEP III Instruction Set Definition 

STEP IV Architecture Definition 

STEP V Arithmetic Logic Unit  (design and implementation) 

STEP VI The Register File 

STEP VII The Instruction Register 

STEP VIII Data Path for data processing and Control Signal Table 

STEP IX The PC, Jump and data transfer instructions 

STEP X The Control Unit 

 

Table 4.1 Methodology Steps 

 
The description of each one is given next. 
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4.2 Steps Description  
STEP I:  Justification 

Designers should first analyze the situation and decide if a microcontroller is needed 

for the application. The following are some questions that could guide designers at the 

implementation decision stage. 

• What is the application? Application is a computer program or set of programs 

designed for a particular type of real world job. 

• Can the application be implemented with logic circuits? The answer to this 

question is obviously yes. But, what will be the resulting circuit size? Is it 

affordable? 

• What could be the microcontroller implementation advantage? The importance of 

microcontroller lies on the fact that it has hardwired circuits that change their 

operation using programming. Designers should analyze if the amount of different 

applications justify the use of a microcontroller or if the use of individual 

operational circuits is more convenient. 

• What are the advantages or disadvantages of using a microcontroller in terms of 

efficiency, time, design complexity and cost? Analyses of tradeoffs are necessary 

to answer those questions. Budget and design requirements analyses are necessary 

to decide if a microcontroller use is convenient or not. Sometimes the use of a 

microcontroller results in a waste of hardware resources. In other situations the 

microcontroller use results in the less expensive option. There are situations in 

which programming is avoided using logic circuit, but this choice could result in 

larger, expensive and more complex circuits.  

• Is a microcontroller result in the best option? How many different operations will 

be used? How many times one operation is executed? Is it better to use individual 

circuits for every operation or using a microcontroller is more efficient?  Do 

Individual circuits have faster response than the microcontroller?  Is this 

difference in time response needed for the application?  Is the microcontroller 

programming complexity worth instead of using individual circuits? What tasks 

are done routinely? 
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STEP II: The Operation Definition 

 
 After a careful study of the application, the next step consists in defining the 

amount of different operations required for the application. 

One computer operation is defined as the calculation executed by a single machine code 

instruction [8]. It is also the mathematical or logical way of producing a result from one 

or more operands. 

 

• What are the application operation requirements? Are those operations complex 

or simple? How many different operations does the application have? Do 

designers need a new microcontroller to execute one operation or can they use an 

existing one? If they use an existing one, does it execute the instruction as 

required in terms of clock cycle, power and speed? 

• Is it more convenient to divide those operations in more simple tasks or not? 

Depending on the application and design requirements this could or could not be 

possible. Can the microcontroller with its instruction set, execute those individual 

and simple tasks, or a new one is needed? 

• Can those tasks be executed using more than one instruction, or is one instruction 

enough? The answer to this question lies on the characteristics of every 

microcontroller instruction and depends on the amount of tasks covered by the 

instruction. 
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STEP III: The Instruction Set Definition 
 
 The instruction set should contain those instructions that the application requires. 

Tasks executed, amount of hardware used and clock cycles are very important parameters 

of an instruction. One instruction is defined as a program statement that has been changed 

into machine code. The CPU can understand the statement and execute it [8]. 

 

• How powerful is the instruction? The term powerful means that many tasks can 

be executed. This however may result in more hardware or more clock cycles per 

instruction.  

• How many instructions are required to perform the operation? This will be 

determined by the power of the instruction set. The more powerful the instruction 

set is, fewer instructions are needed per operation. 

• What kind of instructions does every microcontroller must have? Every 

microcontroller must have at least; logic, arithmetic, branch and data transfer 

instructions.  

• How many complex tasks can be executed using the simplest instruction set? The 

basic instruction set can be combined to execute complex tasks. For example, a 

multiplication operation can be executed with successive execution of the addition 

instruction.  

• What instructions should be implemented in hardware and which ones in software 

and why? Instructions frequently executed must be implemented in hardware. 

This saves programming time and size, allowing faster instruction execution. 

Software instructions are used depending on the application.  
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STEP IV:  The Architecture Definition 
 
The Computer architecture refers to the basic ideas and principles in which a computer 

system is based on [8]. 

 

• The instruction operation.  

 

The first task must always be to specify each instruction operation. After 

designers identify the instruction set, they must document: the instruction’s name, as well 

as operands and execution in symbols for each one. 

 

• The microcontroller bit number.  

 

The microcontroller bit number refers to the size of the group of bits 

processed during instruction execution. Sometimes choosing the number of bits is 

as simple as analyzing the required bits for the application. In other cases there 

are applications in which more than certain amount of bits results unnecessary. 

Using more than the necessary bits may result in excessive hardware use and an 

increase in the circuit size, cost and power consumption. 

 

• The instruction format. 

 

The instruction format specifies the order of the instruction parameters in 

the instruction word. Those parameters include the operational code, registers 

used, and additional necessary data for the instruction execution. 

 

• The instruction format organization 

The instruction word parameters can be organized as designers want. In 

this work the operational code will be at the left most side, next are the registers 

used during the operation and finally the additional data used for the instruction 

execution.  
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• The Operational Code (Opcode).  

 

The number of instructions decides the necessary bits for the operational 

code. The operational code identifies each instruction with a unique code for its 

execution. 

 

• Addressing modes  

  

The addressing modes decide the amount of registers used for data 

processing. The addressing modes used during the instruction execution decides if 

more bits have to be used to address the data or not and this affects the size of the 

instruction word. 

 

• Bits used for the Register File.  

 

The number of registers used in the Register File determines how many 

address bits in the instruction word are required to address one specific location in 

it. 

• Number of data buses. 

 

The number of data buses in use determines the amount of data processed 

per clock cycle. Using more than one data bus can save clock cycles per 

instructions, but increases the data path and control unit circuit complexity.  

•  Control Line Bus: In this work the control lines will be connected to the control 

unit.  

• Address Bus: Depending on design requirements the address bus is not necessary 

if the address bits can be transferred using the data bus. A dual role requires 

additional hardware. 

• I/O Handling: Will the I/O ports be memory mapped or handled separately. 

Memory mapped ports do not require special I/O instructions. 



 

 

28

 

STEP V:  The Arithmetic Logic Unit 
 

In step V, the goal is to design the Arithmetic Logic Unit circuit. The ALU is the 

CPU component where mathematical and logical operations are executed. 

 

• ALU components  

The individual circuits that execute all the arithmetic and logical operations are 

joined together as one unit to compose the Arithmetic Logic Unit. 

 

• Testing  

Testing is a very important task in this step. Designers must ensure that every 

individual circuit in the ALU correctly does every calculation. 

 

 

STEP VI: The Register File 
A register is a small high-speed memory circuit that holds binary data [8].  In This 

step, the Register File is developed. The Register File is a group of registers used to store 

data during the instruction execution. It is an important element because data needs to be 

stored between clock cycles for further processing.  

 

• Implementation alternatives   

 

The number of data buses in the microcontroller determines the Register 

File design. Sometimes more than one data bus is used to accept and release data 

simultaneously in one clock cycle. Designers must decide how many data buses 

will be used in the microcontroller because the Register File will use the same 

number.  
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• The number of registers for the application  

 

This is an important design parameter because it affects not only The 

Register File size but also the Instruction Register size because the IR has bits 

dedicated for the Register File address. Designers must select the number of 

necessary registers to hold data in each instruction clock cycle.  

 

STEP VII: The Instruction Register (IR) 
 The Instruction Register holds the instruction word that will be executed. It is 

designed at this stage because the numbers of instructions, registers used and the 

architecture have been defined. The IR is connected to the control unit, the Register File 

and the data path. 

 

• Implementation alternative: The IR implementation consists of a register or a 

group of registers that holds the instruction word. 

 

• Size: It will be easier if the size is equal to the word size because then, the 

instruction word holds all the required information for the instruction execution. 

The memory output is connected to the IR to load every single program 

instruction line. The IR does not have to be the same size of the data bus because 

it just transfers data and does not contain any other information about the 

instruction.  
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STEP VIII:  Data Path 
 

The microcontroller data path is the configuration of all the circuits used for data 

processing. Some key points are very important in this step. It is implemented at this 

stage because all the necessary circuits have been designed. 

 

• Layout  

Designers must be creative and use strategic thinking to make the best circuit 

arrangement in order to achieve the instruction execution using the minimum 

amount of hardware and clock cycles. 

• Clock cycles  

The Register File plays an important role in the number of clock cycles per 

instruction. More data can be processed at the same time depending on the 

amount of the Register File input and output ports. Also, another important 

element is the number of additional registers in the data path used to hold data 

between clock cycles. This can make a difference in the number of clock cycles 

per instruction if designers know how to use them. 

 

STEP IX:  The PC, Jump and data transfer instructions 
The instructions developed at this stage use the existing data path hardware and 

additional necessary circuits added in it for instruction execution. 

• Those instructions need additional circuit support because some of them make 

decisions between clock cycles. Those circuits are used only when their 

instructions are executed. It is very important to test those circuits before using 

them for support. Another reason for using additional hardware is that more than 

one task per clock cycle is executed in those instructions. 

• Block diagram to show the added elements. It is convenient to show the added 

elements to the data path to see its transformation into a more complex one. 

• The Program counter. The program counter was introduced in section 5.3.1 and is 

developed at this step. This step presents the PC implementation and 

interconnection in the microcontroller circuit. 
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STEP X:  The Control Unit 
 

The control unit is the CPU section that decodes program instructions and controls 

their execution. It takes control of every circuit signal in the microcontroller, activating or 

deactivating those signals in each clock cycle. The signal activation and deactivation per 

clock cycle make possible the flow of data through all data path circuits. The circuit 

arrangement determines the amount of processed data in each clock cycle. Then, as more 

data is processed per clock cycle fewer of them are needed. The developing method used 

in this work requires that designers “run” by hand every single instruction and take notes 

of which circuit signals are activated and deactivated per clock cycle. 

 

• Timer 

The timer is a counter that goes from zero to seven and is used to specify each 

instruction clock cycle. 

• Operational Code Decoder  

This element receives one specific instruction code and release one signal that 

indicates the microcontroller to execute it. 

• Control Unit Encoder  

The Control Unit Encoder receives input signals from the opcode decoder and 

from the timer. The Control Unit Encoder activates the corresponding circuit 

signals that have to be active in the specified instruction in every clock cycle. 

• Implementation Alternatives  

The preceding explanation of the control unit operation is implemented using 

logic circuits for the control unit encoder and the opcode decoder. There is 

another way of implementation that consists in the use of one ROM that has all 

the signal activation and deactivation per clock cycle. The control unit 

implementing this approach uses the opcode to identify the instruction location in 

ROM. Each line code in ROM represents each instruction clock cycle and the 

code in every line just controls (activates or deactivates) all the data path circuit 

signals.    
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Chapter 5 The Microcontroller Design Example 
 

5.1 STEP I and II The Microcontroller Justification and Operations 
  
The purpose of this chapter is to provide the reader an example of the methodology 

described in chapter 4. Step I, and II will not be developed in this example because our 

intention is to show the design and implementation of one general-purpose 

microcontroller. 

 

5.2 STEP III:  The Instruction Set 
 

The choice of microcontrollers instruction set is not standardized due to designers 

and customers preferences. The microcontroller instructions are classified according to 

their operation. Table 5.1 presents the basic instruction set for the microcontroller of this 

work. In this table the transfer notation is used to show the instruction results. Here A ← 

B + C for example means that the contents of A is substituted by the result of B + C. 

Those instructions were selected to show the reader an example of the most common 

instructions used in microcontrollers.  

 

 

 

NAME MNEMONIC ADDRESSING 

MODES 

OPERAN
DS 

TRANSFER 

NOTATION 

 
ARITHMETIC INSTRUCTION SET 

 
 ADDITION ADD Register B, C A  ←(B +C) 

 SUBSTRACT SUB Register B, C A  ←(B - C) 

INMEDIATE 

ADDITION 

ADDI Immediate B, DATA A  ←(B +DATA) 

INMEDIATE 

SUBSTRACTION 

SUBI Immediate B, DATA A  ←(B -DATA) 
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LOGIC INSTRUCTION SET 
 

AND AND Register B, C A  ←(B • C) 

OR OR Register B, C A  ←(B (+) C) 

INMEDIATE 

AND 

ANDI Immediate B, DATA A  ←(B •DATA) 

INMEDIATE OR ORI Immediate B, DATA A  ←(B (+) DATA) 

SHIFT RIGHT SHR Register  n (1n) Bi+n B j+n B k+n  

← BiBjBkBl 

ARITHMETIC 

SHIFT RIGHT  

SHRA Register n (nBi) Bi+n B j+n B k+n  

← BiBjBkBl 

CIRCULAR 

SHIFT 

SHC Register n (nBl) Bi+n B j+n B k+n  

← BiBjBkBl 

SHIFT LEFT SHL Register n Bj-n Bk-n B1-n (1n) ← 

BiBjBkBl 

NOT NOT Register B  -(B) ← B 

 

DATA TRANSFER 
 

LOAD LD A, M Register A, M    A ← M 

STORE STR M, A Register A, M    M ← A 

 

BRANCH 
 

UNCONDITION

AL JUMP 

UNCJMP Immediate Last 4 bits  PC  ← (LAST 4 BITS) 

JUMP IF 

CONDITION 

BRNCH Register Address IF CONDITION IS 

TRUE:  PC  ← 

(ADDRESS) 

 

 

 

    

 

MISCELLANOUS 
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DATA 

TRANSFER (IN) 

IN Register ADDRESS ADDRESS ← DATA 

DATA 

TRANSFER 

(OUT) 

OUT Register ADDRESS PORT ← ADDRESS 

READ PSW RDPSW Register ADDRESS ADDRESS ← PSW 

 

Table 5.1 The Microcontroller Instruction Set 

 

 

5.3 STEP IV: The Microcontroller Architecture Definition 
 

The Architectural design steps include: 

 

A) The Instruction Set. 

B) The number of used bits to represent data (4, 8, 16,32 or 64 bits). 

C) Instruction Format and addressing modes. 

D) Number of data buses. 

E) The instruction execution algorithm (the best arrangement of the hardware to 

process the software). 

F) Clock cycles per instruction. 

G) Input / Output mechanisms. 

 

The computer organization must be specially designed to implement a particular 

architectural specification. The microcontroller task is to execute each and every 

instruction it receives. This means that each instruction reflects the architecture in use by 

the microcontroller.  After the selection of the desired instructions for the 

microcontroller, the next step consists in specifying the rest of the architecture.  
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a) The Instruction Set 

 
      Step II defines the instruction set for the microcontroller.  

 

 

b) Number of microcontroller bits 

 

Because this work is focused on beginners, the number of bits used for this 

microcontroller will be four. Four-bit microcontrollers are simpler for design and 

implement. The same techniques used here for this four- bit microcontroller can be used 

for eight-bit or sixteen-bit microcontrollers. 

 

 
 
c) The Instruction Format 

 

After the basic architectural aspects have been defined, the instruction word can be 

defined. Each instruction word has a group of bits that identifies its specific code. The 

group of bits used for this code is called the instruction operational code or opcode. This 

work uses 20 instructions, so, the minimum number of bits for the opcode decoder is 5, 

because 2^4 = 16, while 2^5 = 32, enough to assign each instruction a specific code. 

 

The Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Opcode Ra Rb Rc Different uses 

 

Figure 5.1 The Instruction Format 

 

 

 

 



 

 

36

 

There are no standard rules for the order and meaning of the different groups of bits 

that compose the instruction word. That depends on designers’ judgment and system 

architecture. The standard for this microcontroller will be the following; accordance to 

figure 5.1. 

 

1) Bits 17-13 stand for the opcode. Those bits specify the instruction that will be 

executed. 

2) Bits 12 to 10 labeled as Ra, specify the register file address location to store the 

processed data or the one that has been transferred from memory. 

3) Bits 9 to 7 labeled as Rb, represent the register file address location of one 

instruction operand. 

4) Bits 6 to 4 labeled as Rc, represent the register file address location of one 

instruction operand. 

5) Bits 0 to 3 are used depending on the operation. For example, all the instructions 

that use the immediate addressing mode need a value directly from the instruction 

word. The value in those instructions is stored in those last 4 bits.  

 

 d) The number of data buses 

 

The number of data buses in the system will be just one. Although one 

microcontroller with more than one data bus could be more efficient, the number of 

signal activations will be higher per clock cycle. This will result in a more complex 

control unit and for simplicity purposes the microcontroller of this work have just one 

data bus. 

 

Architecture design steps; E) Data Path arrangement, F) Clock cycles per 

instruction, and G) Input / Output mechanisms will be specified at the same instruction 

design moment.  
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5.4 STEP V: The Arithmetic Logic Unit 
 

The Arithmetic Logic Unit is one of the most fundamental CPU components. The 

techniques used in this work for the ALU design consist first in designing all its 

individual circuits and connecting them in parallel, as illustrated in figure 5.2. In this 

figure, each block “operation I” stands for an operation associated to an instruction and 

executed by the ALU. The block has its output connected to a tristate buffer (See figure 

5.3) [3]. The signals controlling the tristate buffer operation come from the IR depending 

on the opcode. We illustrate now the operation blocks. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.2 The ALU Structure 
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TR BU FO UT T1

TR BU FO UT T2

TR BU FO UT T3

TR BU FO UT T4

TR BU FIN1

TR BU FIN2

TR BU FIN3

TR BU FIN4

TR YB U FE N

 
 

Figure 5.3 Tristate Buffer Implementation Circuit 
 

 
 
 
 
5.4.1 The Adder and Subtractor 
 

The adder can be designed for example using the carry ripple connection as illustrated by 

figure 5.4 [3]. After selecting the adder we have to do some testing as illustrated in figure 

5.5. We proceed similarly with the subtractor tested as illustrated in figure 5.6. 
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C A RRY

C A R RY  

CA RRY  

C A RRY  CA RRY  

C A R RY  

CA R RY  

CA R RY  

S UM 0S UM 3 S UM 2 S UM 1

B ITA 0B ITA 3 B ITA 2 B ITA 1 B ITB 0B ITB 3 B ITB 2 B ITB 1

 
Figure 5.4  Adder Example 
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A 2
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0 1 2 3
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C D E F

0 1 2 3
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Figure 5.5 Example of Adder Circuit Testing 

 

 



 

 

40

 

 

 

A 0
A 1
A 2
A 3

B 0
B 1
B 2
B 3

S 0
S 1
S 2
S 3

C O

C I

0 1 2 3
4 5 6 7
8 9 A B
C D E F

0 1 2 3
4 5 6 7
8 9 A B
C D E F

0

0

0

0

0

 
Figure 5.6 The Subtractor Circuit Implementation 

 

 

 

5.4.2 Logical Bit wise operations: AND, OR, NOT. 
 

The Bit wise logic functions takes words and bit by bit perform the corresponding 

function. These blocks can be done with parallel connections of gates as shown in figure 

5.7 for the AND block. The OR and NOT operation blocks are equally designed. 
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Figure 5.7 AND Circuit Implementation 
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5.4.3 Shift Right 
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Figure 5.8 The Shift Right Implementation Circuit 
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In figure 5.8 shows the circuit used to execute the Shift Right instruction. This 

operation takes one string of binary bits and makes the specified shift places to the right, 

replacing the vacant places with zeroes. For example, atwo place shift to the string 1111 

results in 0011. The circuit is composed by the processing hardware for the binary 

number that will get the shift places.  

In figure 5.8, the string CBA specifies the times that shifting takes place. Thus, 

001 will cause one shift to the right (1 x 2^0 = 1). Two places to the right (1 x 2 ^1 = 2) 

and so on. Notice that the maximum number of shifts is 4, since the data has 4 bits, so C 

= 1 yields a string of 0’s. Figure 5.9 illustrates the mechanism used for the shifting 

decision. 

 

 
 

Figure 5.9 The Shift Right Instruction Mechanism 
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Shift Right function mechanism 
 

Once the binary number that will be shifted is in the circuit input port, bits that 

specify the amount of shift has to be present also in the circuit shift input ports. 

Depending on the number used to indicate the amount of shifts, the first stage with the 

letter A (see figure 5.9) will be a zero or one. If it is zero, that zero will activate the 

tristate buffer with the letter A, and it will allow the data in the input port to pass to the 

next stage directly to the tristate buffer with the letter E. 

 The inverter with the letter M will receive a 0 that will change to 1, causing that 

the tristate buffers with letters N and P be deactivated and do not allow the flow of data 

through them. If the bit at stage A is 1, the tristate buffer with the letter J will be 

deactivated and will stop the flow of data through it. The inverter with the letter M will 

receive a 1 that will turn into a 0, this 0 will activate the tristate buffers N and P. The 

tristate buffer N will be responsible for the shifting process. This tristate buffer N is 

connected to the most significant bit and when activated, it allow the MSB to pass to the 

node labeled F as the second bit. The tristate buffer P will ensure that the vacant place is 

filled with a 0. Then the second bit of shift in the second stage labeled as B, will use the 

same mechanism to make further movements to the right of the new string of bits 

processed in the first stage. 

The process can be similarly followed. Figure 5.10 shows a testing for the shift 

right operation. Recall that shifting to the right can be interpreted as dividing an unsigned 

number by 2. 

 

 

 

 

 

 

 

 

Figure 5.10 The Shift Right Circuit Testing: shifting 1100 once 
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 5.4.4 Arithmetic Shift 
 

The Arithmetic Shift instruction works basically in the same way as the shift 

right, but with a slight change. This change consists in that now, the grounds that fill the 

resulting vacancies are changed by a direct connection with the first bit of the number 

that will be shifted. This is said to be an arithmetic shift because the vacancy will be 

filled with the most significant bit of the number that will be shifted, thereby maintaining 

the sign bit. Figure 5.11 shows the circuit and figure 5.12 a testing for string 1100. 
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Figure 5.11 The Arithmetic Shift Implementation Circuit 
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Figure 5.12 Arithmetic Shift Circuit Testing: shifting 1100 once 

 

 

5.4.5 Circular Shift 

 
The circular shift operation consists in circular permutations. The basic skeleton for the 

circuit is similar to that of the shift right, as illustrated in figure 5.13. The main difference 

is that the tristates originally connected to ground are now connected to one of the input 

bits. In figure 5.13 the boxed labels stand for the same input bit connections. The circuit 

was tested as always. 
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Figure 5.13 Circular Shift Circuit Implementation 
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5.4.6 Shift Left 

 

The shift left circuit works in exactly the same way as the shift right, but the 

circuit configuration now makes the movement to the left. Figure 5.14 shows the circuit 

implementation. 
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Figure 5.14 Shift Left Implementation Circuit 
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5.4.7 Final Arithmetic Logic Unit implementation 
 

Once all the basic instructions circuits are designed and implemented 

individually, the ALU can be implemented adding flags. The data bus that feed the 

individual circuits is the same data bus that the microcontroller uses to transfer data 

between its components. All mathematical and logical calculations are executed at the 

same time, but only the desired calculation will be the one released to the ALU output 

port by means of the tristate buffer activated. 

Figure 5.15 to 5.18 illustrate how the ALU circuits are connected. Caution should 

be taken with the significance of the input and output bits of every circuit. Mistakes can 

lead to miscalculations and continue through the rest of the instruction execution.  
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Figure 5.15 The Arithmetic Logic Unit Implementation (top view) 
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Figure 5.16 The Arithmetic Logic Unit Implementation (bottom view) 

 
Figure 5.17 The ALU Flags Hardware  
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Figure 5.18 Flags Used for Overflow 

 

Figure 5.19 illustrates the final implementation of the ALU. As a test, the ALU 

receives 1111 in data port A and 1111 in data port B; the subtraction operation is 

executed leading as a result 0000 in the output data port and the corresponding flag is 

activated. 
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Figure 5.19 The Arithmetic Logic Unit Testing (top view) 
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5.5 STEP VI The Register File 
 

The Register File stores data retrieved from memory input port resulting from 

operations. All temporary data used by the microcontroller to perform its operations is 

also stored in the register file. The Register File structure design consists of three stages: 

The register selection stage, the input stage and the output stage. 

 

5.5.1 The Register File Selection Stage 

 

 This stage is shown in figure 5.20. The instruction word identifies three 

parameters: Ra, Rb and Rc. Each of these parameters, when referring to registers, are 

actually addresses that identify a register from the register file. Since Ra, Rb and Rc as 

shown in figure 5.1 have three bits, the register file has 8 registers. 

 One register is selected by means of a decoder 3x 8 (device I in figure 5.20). Q0 

activates register 0, Q1 activates register 1 and so on. The selection of S2 S1 and S0  

given by the equation Sj = Raj (ACTRADB1) + Rb (ACTRADB1)  + Rc (ACTRADB1), 

where Raj is bit j of Ra, and ACTRADB1 is a signal from the control unit to use Ra. At a 

certain moment, the control unit will activate one and only one of ACTRADB1 signals to 

indicate which register is assigned to Ra, Rb or Rc of the instruction word. 
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Figure 5.20 The Register File Selection Stage 
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5.5.2 The register file input stage 

Figure 5.21 illustrates the input stage for register j (j = 0,1,2…7) of the register file. 

• The register inputs are connected to the data bus. 

• Each register clock is activated with the following equation CK = (READ)(Qj), 

where Qj comes from decoder selection. 

 

                                                                                          

 

                                                                                           
 

 

 

 

 

 

 

 

 

 

Figure 5.21 Module Rj of the register file: Input Stage 

 

 

Read is a pulse generated by the control unit. All eight registers are connected 

similarly. Only the connection to the decoder changes for each case. Since the register 

will store the data only after a “CLK pulse”, and CLK = Qj(from decoder). Read pulse, 

only  one register will store the data. 
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5.5.3 The Register file output stage 

 

 
 
 
 
 
 

                
 
 
 
 

Figure 5.22 Module Rj of the register file; output stage 
 
The register’s outputs are connected to the data bus via tristate buffers. For register Rj, 

the tristate is activated by Qj from the decoder at the selection stage and a signal from the 

control unit requiring the data out. The basic module is shown in figure 5.22. 

 

 
 

Figure 5.23 The Register File input Stage 
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5.5.4 Register File Implementation 

 
A partial view of Logic Works schematic for the register file is shown in figure 

5.23.Figure 5.24 illustrates the Register File testing. Register File input ports QA, QB, 

QC and QD will be connected to the Arithmetic Logic Unit output port to store the 

processed result from ALU. This figure presents an example of the Register File function 

mechanism. The address of Ra is 0000. In order to use the address of Ra, the Register 

File signal for Ra must be activated; this is the label B. In order to store data from the 

data bus; the READ REGISTER signal must be activated. To release the data specified 

by the address of Ra to the output port, the DATA OUT signal must be activated. The 

CLRL signal labeled with the letter E is used to erase any data in any register. 
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 Figure 5.24 The Register File Testing 
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5.6 STEP VII: The Instruction Register 
 

The Instruction Register is the register that holds the instruction word for 

execution. The IR is connected to the Register File and the Control Unit (discussed later). 

Note that from the instruction format (Figure 5.1) this register has to be 18 bits long und 

thus uses 18 flip-flops. It has two control lines, one to read the data and the other one to 

clear the register.  

 

 
 

Figure 5.25 The Instruction Register Implementation 
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5.7 STEP VIII: The Data Path 

 

5.7.1 Basic Data Path 
In order to make useful all the elements already discussed it is necessary to 

provide a path for communication between them to transfer data from one to another. 

Figure 5.26 illustrates the interconnection of the elements already discussed; they form 

the simplest microcontroller data path for this work. In this figure the control signals 

from the control unit are not shown. This data path can perform the basic microcontroller 

instructions and will be used as the basis to develop more complex instructions. As more 

complex instructions are added, this data path undergoes an evolution into a more 

complex one, adding more hardware in parallel to this configuration. 

To test the feasibility of basic instructions this data path can process data provided 

by switches as shown in figure 5.27. Switches can be used to store values in the Register 

File. The address lines of Ra, Rb and Rc are connected from the IR to the Register File to 

access the data. The Register File output port is connected to the Arithmetic Logic Unit 

input ports to perform the logic and mathematical operations. The ALU output port is 

connected to the Register File input port to store results.  

In figure 5.26 one register is added to the ALU port A. This is because this is a 

one data bus microcontroller and one value must be stored in that register in order to use 

the next clock cycle to put the second operand in the ALU port B and then execute the 

instruction with both operands.  Another register is used at the ALU output port to hold 

results between clock cycles. Finally the ALU output port is connected to the Register 

File to store results. 
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Figure 5.26 The Resulting Microcontroller Data Path 
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Figure 5.27 The Basic Microcontroller Data Path  

 
5.7.2 Data Path with Immediate Operations 

 

At this point, when adding new hardware to implement new new instructions, 
there are some details that should be taken care of, in particular: 
 

1) For the new hardware: 
 

• Control signals 
• Instruction Register related logic 
• Connection to buses and other blocks 
 

2) Overall issues such 
 

• Signal conflict 
• Delays 

This register needs 
one tristate buffer (we 
call it tristate buffer 1) 
to connect it to that 
node. 
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The data path is next modified to include other arithmetic and logic operations using the 
ALU namely, the immediate addressing mode operands. 
 
 

The immediate values are put in bits 0 – 3 of the instruction register.The data path 

modification consists in making a connection between those immediate values in the 

Instruction Register and the ALU port B. But the connection cannot be done directly 

because the values in the Register File can cause conflict with those in the data path. To 

solve this problem a tristate buffer is used to isolate the data in the Register File from 

those in the data bus as shown in figure 5.28. New parts added in the data path are 

identified with lines. The Logic Works Schematic is shown in figure 5.29. 

 

  



 

 

64

 

 
 

 

Figure 5.28 Added Elements for Immediate Instructions Execution 
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Figure 5.29 The Immediate Instructions Circuit Implementation  
 
 
5.7.3 Shift Operation 
 

The next implemented instruction is the Shift instruction. All Shifts instructions 

use in their instruction format a group of bits called count. Those bits determine if the 

shift will be executed with the count bits or with data in the Register File. This suggests 

that a combinational circuit needs to be added to the data path to perform this logic 

decision. This circuit is known as “Count Decoder”. It has to be connected to the count 

bits in the IR because it will use those bits to take its decision and is discussed later. The 

circuit is shown in figure 5.30. 
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Figure 5.30 The Count Decoder 

 

Now we explain how the decoder function. The count bits are the least significant 

bits of the instruction word in the shift instruction. When the count signal is activated, the 

Count Decoder circuit verifies the count bits condition and makes its logical decision. 

The tristates labeled A and C receive a low from the inverter and are automatically 

activated. If all the count bits are zero (000), the inverter labeled B will receive a low 

voltage that turns into a high signal to the Rout port. The count decoder will 

automatically send a signal to the data out signal port of the Register File to release the 

data specified by Rc. The tristate buffer in the Count Decoder receives a high signal due 

to its inverter, but is not activated. If all count bits are not zero the inverter B will receive 

a high signal that turns into a low signal and the Register file data out signal is not 

activated. The tritstate buffer holding the count bits inside the count decoder receives a 

low signal due to its inverter, and releases them to the ALU port B. 

A

Count signal 
activated by the 
control unit 

B

C
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The count decoder is connected to the ALU port B via a tristate and the register file 

through a multiplexer 2 x 1 as illustrated in the modified data path of figure 5.31. 

 

 
Figure 5.31 Modified Data Path for Shift Instructions 
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Figure 5.32 Count Decoder Data Path Implementation  

 

The Logic Works schematic is shown in figure 5.32 as stated. The circuit A, is the 

auxiliary circuit, is really a two to one multiplexer, and it solves some problems at the 

implementation stage. Note in figure 5.32 that this implementation requires the auxiliary 

circuit, one tristate buffer labeled C and an additional logic labeled B. The tristate buffer 

is used to isolate the data from the count decoder to the data bus when not in use.  
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D

Count Decoder 

The Instruction 
Register 
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The logic labeled B is used to ensure that the tristate buffer C is activated only if 

the count decoder signal is activated and the Rout signal of the count decoder is low. 

Remember that the Rout signal activates the Register File output port and if this logic is 

not used, there is a risk to release the data of the count decoder at the same time with the 

register File to the data bus and result in signal conflict. This logic guarantees that if the 

count bits are zero just the data in the Register File will be released and that if they are 

not zero; the count decoder will send them to the data bus, but only one set of data at a 

time.  

The OR labeled D in figure 5.32 is necessary because the control unit like the 

Count Decoder will need to release data to execute other instructions. Later shall be 

illustrated that the load instruction requires data to be released and that is why the data 

out port of the Register File has a three input OR logic gate.  

The two to one multiplexer, is shown in figure 5.33. This circuit is activated 

simultaneously with the count decoder. Its signal port is connected with the activation 

port of the count decoder. If the count decoder signal is not activated, is 0 , then 

DESOUT = 0, otherwise it is the ROUT signal from the count decoder. Without this 

circuit, the Rout signal received by the Register File output port would be a high 

impedance signal when the count decoder signal is not activated causing some conflicts.  
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Count Dec Rout (from count decoder)

DESOUTCount Decoder Signal

 
Figure 5.33 Auxiliary Circuit  

 

5.8 STEP IX Jump, Data Transfer Instructions, and the PC 
 

5.8.1 The Branch Instruction 
 

Depending on certain conditions, the execution of a non-continuous program code 

could be necessary.  In programming, this is called a jump. The term “jump” here means 

that the program counter (register that holds the address of the next instruction) gets an 

address value that is not consecutive on. To analyze the necessary conditions for one 

jump a combinational circuit is needed.  This circuit is known as the Conditional Jump 

Decoder (CJD) and will be added to the existing data path for the Branch instructions 

execution.  
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Figure 5.34 The Conditional Jump Decoder 

 

 

The Conditional Jump Decoder activates or not the Program Counter based on the 

count bits and the contents of Rc. The count bits will select the decoder’s output and 

depending of which output is selected; additional logic is used to make decisions. The 

following table 5.2 indicates the Conditional Logic execution accordingly with count and 

Rc. This instruction was designed to cover the most needed cases. Other way of 

implementation could be designing each case separately and leave to the designers the 

decision to choose among all available options. Using this format the programmer just 

need to specify the parameters of the required jump. 

 

 

4 bits of Rc, 
connected from data 
path. 

Last three bits of the 
Instruction Word 
forms the count code 

Signal to store the 
decision of the circuit in 
the flip-flop 

Don’t jump 

Jump 
anyway

Unused 
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Count code Description Task 

000  = 0 Don’t jump 

001  = 1 Jump anyway 

010  = 2 Verify the bit address of Rc, if they are not 

equal to 0  → 

011 = 3 Verify the bit address of Rc, if they are 

equal to 0  → 

100 = 4 Verify the bit address of Rc, if they are 

zero or grater than 0 → 

101 = 5 Verify the bit address of Rc, if they are 

less than 0  → 

In the first six cases the 

operation will be the same. 

PC stores what is stored in 

the register specified by Rb 

from the data path. 

 

110  Unused 

111  Unused 

 

Table 5.2 Conditional Logic Cases 

 

5.8.2 The Program Counter 
The program counter is the register that stores the next instruction memory 

address location. Its inputs are connected to the data bus to receive the next address value 

from it and its outputs are connected to the memory device where the program is stored. 

The connections are shown in figure 5.35 and 5.36. The memory device where the 

microcontroller’s program is stored, has address bits that indicate the desired specific 

program code location. After memory receives the address by the PC, the fetch process 

begins. It  consists in addressing the instruction specified in memory by the PC and 

loading it to the IR. 
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The fetch process is discussed at the Control Unit design stage. After the fetch 

process is complete, the instruction execution begins. The Branch instruction allows the 

programmer to specify a memory location where instructions are located and execute 

them and then continue executing the program. In this instruction the register Rb will 

store the four bits memory address to execute the jump. Figure 5.37 shows the data path 

with the new boxes included. The implementation is shown in figure 5.38 

 

  
Figure 5.35 The Program Counter implementation 

 

The Program Counter 
inputs are connected to 
the data bus and its 
outputs are connected to 
the memory location 
where the program is.

The PC receives signal 
activation from the 
Conditional Logic and 
the Control Unit. 
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Figure 5.36 Memory ROM implementation for program storage 

Memory system 
where the 
microcontroller 
program is 
stored. 

PC 
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Figure 5.37 Modified Data Path for the Branch Instruction  
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Figure 5.38 The Conditional Logic Implementation 

The Conditional Jump Decoder implementation needs also the auxiliary circuit 

described before for the same Count Decoder reasons.  

 

5.8.3 Load and Store 
Load and Store, work basically in the same way, the obvious difference is that one 

write to memory and the other read from memory. In those instructions mathematical 

manipulations are done to calculate the data memory address location. Those instructions 

works with Rb address bits. Based on the values of Rb the address bits 0000 will be 

loaded to the data bus or the data at Rb will be released to the data bus and in either case 

added to Mc. Mc are the last four bits of the instruction word and represent the desired 

memory address location. Mc set the initial memory address location and Rb locates one 

specific position from Mc. A combinational logic circuit to decide if it loads Rb or 0000 

is needed and it is called The Load decoder, see figure 5.39. 
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Logic 
implementation 

Count bits 
connected from IR 

Rc bits 
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conditional 
Logic that 
activates PC Tristate 
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port B 
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Figure 5.39 The Load Decoder Circuit 

 

Before the Load Decoder activation, the Register File must activate the address 

bits Rb. The Load decoder verifies all the bits of Rb. If all are zero, when the flip flop 

inside the Load Decoder gets the OR decision, the Load Decoder Rout signal will be low 

(this signal releases the data of the Register File) and the tristate buffer will be activated 

charging 0000 to the data bus. If all the Rb bits are not zero the Rout signal will be high 

and release the data specified by Rb in the Register File to the data bus. 

The load Decoder implementation in figure 5.40 requires a connection with the 

Rb bits in the Instruction Register. A tristate buffer is connected to the Load Decoder 

output. Its control logic ensures that no conflict occurs when data is released to the data 

bus. The auxiliary circuit ensures that the Register File output port receives a zero when 

the Load Decoder is not activated. The AND gate that controls the tristate buffer sends a 

high signal only when the load decoder signal is activated and the Load Decoder decision 

is zero. In this way the system ensures that no conflict between data occurs in the data 

path at any moment. 
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Figure 5.40 The Load Decoder Implementation  

 
Figure 5.41 Memory Implementation for Load and Store 
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chip 

ALU 
output 
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Figure 5.42 Added elements for Load, Store, Read PSW and Fetch 
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from the Register 
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instructions. 
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Figure 5.43 Modified Data Path to include Load and Store operations 
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5.8.4 Miscellaneous Operations 
 

 

 

The next figure illustrates the implementation of the IN function. The purpose is 

to obtain information from outside. That is the reason for using one tristate buffer (tristate 

buffer 8) connected to the Register File input port.  

 

 
 

Figure 5.44 (In) Instruction Hardware Implementation 
 
 
 
 
 
 
 
 
 

Tristate buffer 8 
used to get data 
from the outside. 

Register File 
input port 
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Figure 5.45 Circuit Implementation for Out Instruction 
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The instruction implementation consists first in collecting all flags in one register 

called the Processor Status Word or PSW (see the register labeled A), then connecting it 

to the Register File input port (label C), and using one tristate buffer (called tristate buffer 

6).  

 

 
 

Figure 5.46 Read PSW Instruction Hardware 
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Cap 6 
 
THE CONTROL UNIT 
 
 

The step X is described in a separate chapter because this unit is essentially a 

sequential circuit. The control unit is the final stage for the microcontroller development 

in this work. The control unit takes control of signal activation of microcontroller circuits 

in each clock cycle. The next figure illustrates the control unit configuration. 

 

 

OPCODE 

 

 

 

 

CLOCK 

 

 

Figure 6.1 The Control Unit Implementation 

 

 

6.1 The Fetch Process 
 

        Before starting the Control Unit discussion, something must be said about the fetch 

process. The fetch process consists in loading one memory address value in the PC, and 

delivering it to the memory device address port to obtain a specific microcontroller 

programming code. All the preceding instruction discussion left two clock cycles for the 

fetch execution. The author knew from the beginning how many clock cycles were 

needed for the fetch process, making an educated guess of the following: 
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a) The data bus size. 

b) The amount of memory used to store the program. 

c) Program Counter size. - The PC does not have to be the same size of the 

data bus; but the address bus. This means that you must use more than one 

clock cycle just only to fill the PC with the new address value. 

d) The Existing data path circuitry. - It must provide the necessary circuits to 

ensure that the PC is incremented in every instruction execution, and that 

no signal conflict occurs. 

e) The fetch process. - Designers must ensure that PC is incremented in each 

instruction, but they must decide how the data travels between the 

microcontroller circuits. One alternative to execute the fetch process and 

increment the PC could be better than other. There are many possibilities 

to execute the fetch process and this work provides one possible 

alternative of it. The reader must use its creative and critical thinking to 

make the judgment and decide how the fetch process will be carried out. 

 

         Designers have to make a trade off between those alternatives and decide the 

number of the fetch process clock cycles and their data processing route in the data path 

circuits.  

The fetch process used in this work uses just two clock cycles (see figures 6.2 and 6.3): 

 

1) In the first clock cycle the Control Unit activates the Instruction Register read 

signal to load from memory the instruction word to be executed. Also, the tristate 

buffer 4 is activated to release the current PC value to the data path. Finally, in the 

same clock cycle, the register at port A of the ALU is activated to store the 

current PC value as shown in figure 6.2. 

2) In the second clock cycle, the Control Unit activates the add PC signal as shown 

in figure 6.3 from the Arithmetic Logic Unit to increase the current PC value by 

one. The tristate buffer 0 at the ALU output port is activated to deliver the 
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incremented PC value to the data path. Finally in that same clock cycle, the 

Program counter clock is activated to load the incremented value to the PC. 

 

 At the fetch process designing stage, a new function is needed in the ALU. 

The fetch process needs one circuit that increment the PC by one. We just add one 

adder to the ALU circuit that takes the ALU port A data and add one to it. The 

figures 6.4 and 6.5 illustrate this implementation in the ALU. Observe that it is 

just one adder and is connected in the same way as the other elements. One of the 

advantages of the technique used in this work is that it allows users to add circuit 

elements without making significant design changes to the entire system. 

 

 
Figure 6.2 Fetch Process First Cycle 
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Figure 6.3 Fetch Process Second Cycle 
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Figure 6.4 PC Incrementer Circuit  
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Figure 6.5 PC Incrementer Implementation 

 

 

 

 

6.2 THE CONTROL UNIT ENCODER 

 

          The Control Unit Encoder is the hardest stage in the Control Unit design process 

that is why it is explained first. The Control Unit encoder takes information from the 

timer and the opcode decoder to activate specific signals in each clock cycle. Then, the 

first step is to analyze the signal activation per instruction. The following tables show this 

process. 
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ADD 

Cycle IR PC END Ra Rb Rc Read

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

add PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf

1 

Try 

Buf

4 

1 X        X      X 

2  X         X  X   

3     X   X X       

4      X  X  X  X    

5    X   X       X  

6   X             

 

 

Table 6.1 Add instruction signal activation by clock cycle 

 

SUB 

Cycle IR PC END Ra Rb Rc Read

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

Sub PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf

1 

Try 

Buf

4 

1 X        X      X 

2  X         X  X   

3     X   X X       

4      X  X  X  X    

5    X   X       X  

6   X             

 

Table 6.2 Sub instruction signal activation by clock cycle 
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AND 

Cycle IR PC END Ra Rb Rc Read

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

And PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf

0 

Try 

Buf

1 

Try 

Buf

4 

1 X        X      X 

2  X         X  X   

3     X   X X       

4      X  X  X  X    

5    X   X       X  

6   X             

 

Table 6.3 AND instruction signal activation by clock cycle 

 

Or 

Cycle IR PC END Ra Rb Rc Read

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

Or PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf

1 

Try 

Buf

4 

1 X        X      X 

2  X         X  X   

3     X   X X       

4      X  X  X  X    

5    X   X       X  

6   X             

 

Table 6.4 Or instruction signal activation by clock cycle 
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ADDi 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

add PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

Try 

Buf 

2 

1 X        X      X  

2  X         X  X    

3     X   X X        

4          X  X    X 

5    X   X       X   

6   X              

 

Table 6.5 ADDi instruction signal activation by clock cycle 

 

 

 

Subi 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

sub PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

Try 

Buf 

2 

1 X        X      X  

2  X         X  X    

3     X   X X        

4          X  X    X 

5    X   X       X   

6   X              

 

Table 6.6 Subi instruction signal activation by clock cycle 
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ANDi 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

add PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

Try 

Buf 

2 

1 X        X      X  

2  X         X  X    

3     X   X X        

4          X  X    X 

5    X   X       X   

6   X              

 

Table 6.7 ANDi instruction signal activation by clock cycle 

 

Ori 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

or PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

Try 

Buf 

2 

1 X        X      X  

2  X         X  X    

3     X   X X        

4          X  X    X 

5    X   X       X   

6   X              

 

Table 6.8 Ori instruction signal activation by clock cycle 
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NOT 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

not PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

 

1 X        X      X  

2  X         X  X    

3      X  X  X  X     

4    X   X       X   

5   X              

 

Table 6.9 Not instruction signal activation by clock cycle 

 

 

SHR 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

shr PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

Count 

Dec 

1 X        X      X  

2  X         X  X    

3     X   X X        

4      X    X  X    X 

5    X   X       X   

6   X              

 

Table 6.10 SHR instruction signal activation by clock cycle 
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SHRA 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

shra PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

Count 

Dec 

1 X        X      X  

2  X         X  X    

3     X   X X        

4      X    X  X    X 

5    X   X       X   

6   X              

 

Table 6.11 SHRA instruction signal activation by clock cycle 

 

SHC 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

shc PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

Count 

Dec 

1 X        X      X  

2  X         X  X    

3     X   X X        

4      X    X  X    X 

5    X   X       X   

6   X              

 

Table 6.12 SHC instruction signal activation by clock cycle 
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SHL 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

shl PC 

add 

Reg 

ALU 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

Count 

Dec 

1 X        X      X  

2  X         X  X    

3     X   X X        

4      X    X  X    X 

5    X   X       X   

6   X              

 

Table 6.13 SHL instruction signal activation by clock cycle 

 

BRANCH 

Cyc IR PC END Ra Rb Rc Read 

Reg 

Data 

Out 

Reg 

Alu 

IN 

clk 

Cond  

Log 

Aux 

PC 

add 

Reg 

Alu 

Out 

clk 

Try 

Buf 

0 

Try 

Buf 

1 

Try 

Buf 

4 

Cond 

Log 

1 X        X      X  

2  X         X  X    

3      X  X        X 

4     X   X  X       

5   X              

 

Table 6.14 BRANCH instruction signal activation by clock cycle 
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LOAD 

Cycle IR PC Rb Reg 

Alu 

IN 

clk 

pcadd Load 

Decoder

Reg 

alu 

out 

Try 

buff 0 

Try 

buff 4 

1 X   X     X 

2  X   X   X  

3   X X  X    

 

Table 6.15 LOAD instruction signal activation by clock cycle 

 

Cycle End sum Reg 

alu 

out 

Try 

buff 

2 

Try 

buff 

1 

MAen Mem 

read 

Reg 

Mem 

Out 

Ra Read 

Reg 

Try 

Buff 

5 

4  X X X        

5     X X      

6       X X    

7         X X X 

8 X           

 

Table 6.15 LOAD instruction signal activation by clock cycle (cont) 

 

STORE 

Cycle IR PC Rb Reg Alu IN 

clk 
pcadd Load 

Decoder

Reg 

alu 

out 

Try 

buff 0 

Try 

buff 4 

1 X   X     X 

2  X   X   X  

3   X X  X    

 

Table 6.16 STORE instruction signal activation by clock cycle 
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STORE 

Cyc sum Reg 

alu 

out 

Try 

buff 

2 

Try 

buff 

1 

MAen Mden Mem 

read 

Reg 

Mem 

Out 

Ra Read 

Reg 

Data 

Out 

Try 

Buff 

5 

End Mem 

store 

Try 

buff 

9 
4 X X X             

5    X X           

6      X   X  X    X 

7              X  

8             X   

 

Table 6.16 STORE instruction signal activation by clock cycle (cont) 

IN 

Cycle IR PC END Ra Read 

Reg 

Reg Alu 

IN clk 
pcadd Try 

buff 0 

Try 

buff 4 

Try 

buff 8 

1 X     X   X  

2  X     X X   

3    X X     X 

4   X        

 

Table 6.17 IN instruction signal activation by clock cycle  

 

OUT 

Cycle IR PC END RB Data 

Out 

Reg Alu 

IN clk 
pcadd Try 

buff 0 

Try 

buff 4 

Reg 

Out 

1 X     X   X  

2  X     X X   

3    X X     X 

4   X        

 

Table 6.18 OUT instruction signal activation by clock cycle 
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READ PSW 

Cycle IR PC END Ra Read 

Reg 

Reg Alu 

IN clk 
pcadd Try 

buff 0

Try 

buff 4 

Try 

buff 

6 

PSW 

1 X     X   X   

2  X     X X    

3    X X     X X 

4   X         

 

Table 6.19 READ PSW instruction signal activation by clock cycle 

 

      

 At this stage we have seen the instruction activation per cycle. The next step consists in 

transforming each signal (each column of those tables) in one specific digital circuit, 

analyzing per instruction cycle the activated signals. The next step consists in designing 

digital logic circuits that become asserted when those conditions occur. Note that each 

row of signal activation is a function of the instruction executed and its cycles. 
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Ra 

INSTRUCTION CYCLE 

1) ADD 5 

2) SUB 5 

3) AND 5 

4) OR 5 

5) SUBi 5 

6) ADDi 5 

7) ANDi 5 

8) Ori 5 

9) SHR 5 

10) SHL 5 

11) SHRA 5 

12) SHC 5 

13) LOAD 7 

14) STORE 6 

15) IN 3 

16) READ PSW 3 

17) NOT 4 

 

Table 6.20 Ra signal activation in terms of instructions and cycles  
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Figure 6.6 Ra signal circuit implementation 

 

Regmemout signal activation 

 

Regmemout 

INSTRUCTION CYCLE 

LOAD 6 

 

Table 6.21 Regmemout signal activation in terms of instructions and cycles  
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Figure 6.7 Regmemout signal circuit implementation 

 

 

Reg Alu out 

INSTRUCTION CYCLE 

1) ADD 4 

2) SUB 4 

3) AND 4 

4) OR 4 

5) SUBi 4 

6) ADDi 4 

7) ANDi 4 

8) Ori 4 
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9) SHR 4 

10) SHL 4 

11) SHRA 4 

12) SHC 4 

13) LOAD 4 

14) STORE 4 

15) NOT 3 

 

Table 6.22 Reg Alu out signal activation in terms of instructions and cycles 
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Figure 6.8 Reg Alu out signal circuit implementation 
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TRISTATE BUFER 0 

INSTRUCTION CYCLE 

1) ADD 2 

2) SUB 2 

3) AND 2 

4) OR 2 

5) SUBi 2 

6) ADDi 2 

7) ANDi 2 

8) Ori 2 

9) SHR 2 

10) SHL 2 

11) SHRA 2 

12) SHC 2 

13) LOAD 2 

14) STORE 2 

15) IN 2 

16) OUT 2 

17) READ PSW 2 

18) UNC JUMP 2 

19) NOT 2 

20) BRANCH 2 

  

 

Table 6.23 Tristate buffer 0 signal activation in terms of instructions and cycles 
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Figure 6.9 Trybuff 0 signal circuit implementation 
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TRYBUF1 

INSTRUCTION CYCLE 

1) ADD 5 

2) SUB 5 

3) AND 5 

4) OR 5 

5) SUBi 5 

6) ADDi 5 

7) ANDi 5 

8) Ori 5 

9) SHR 5 

10) SHL 5 

11 ) SHRA 5 

12) SHC 5 

13) LOAD 5 

14) STORE 5 

15) NOT 4 

 

Table 6.24 Tristate buffer 1-signal activation in terms of instructions and cycles 
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Figure 6.10 Trybuf 1 signal circuit implementation 

 

 TRISTATE BUFFER 2 

INSTRUCTION CYCLE 

1) SUBi 4 

2) ADDi 4 

3) ANDi 4 

4) ORi 4 

5) LOAD 4 

6) STORE 4 

7) UNCJUMP 3 

 

Table 6.25 Tristate buffer 2-signal activation in terms of instructions and cycles 
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Trybuff2

T3
Uncjump
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Addi
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Ori

Load
Store

T4

 
Figure 6.11 Trybuff2 signal circuit implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

108

 

DATA OUT 

INSTRUCTION CYCLE 

1) ADD 3,4 

2) SUB 3,4 

3) AND 3,4 

4) OR 3,4 

5) SUBi 3 

6) ADDi 3 

7) ANDi 3 

8) Ori 3 

9) SHR 3 

10) SHL 3 

11) SHRA 3 

12) SHC 3 

13) BRANCH 3,4 

14) STORE 6 

15) OUT 3 

16) NOT 3 

 

Table 6.26 Data out signal activation in terms of instructions and cycles 
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Figure 6.12 Data out signal circuit implementation 
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REG ALU IN 

INSTRUCTION CYCLE 

1) ADD 1,3 

2) SUB 1,3 

3) AND 1,3 

4) OR 1,3 

5) SUBi 1,3 

6) ADDi 1,3 

7) ANDi 1,3 

8) Ori 1,3 

9) SHR 1,3 

10) SHL 1,3 

11) SHRA 1,3 

12) SHC 1,3 

13) LOAD 1,3 

14) STORE 1,3 

15) IN 1 

16) OUT 1 

17) READ PSW 1 

18) UNC JUMP 1 

19) NOT 1 

20) BRANCH 1 

  

 

Table 6.27 Reg Alu in signal activation in terms of instructions and cycles 
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Figure 6.13 ALU clock signal circuit implementation 
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Rb 

INSTRUCTION CYCLE 

1) ADD 3 

2) SUB 3 

3) AND 3 

4) OR 3 

5) SUBi 3 

6) ADDi 3 

7) ANDi 3 

8) Ori 3 

9) SHR 3 

10) SHL 3 

11) SHRA 3 

12) SHC 3 

13) LOAD 3 

14) STORE 3 

15) OUT 3 

16) BRANCH 4 

  

 

Table 6.28 Rb signal activation in terms of instructions and cycles 
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Figure 6.14 Rb clock signal circuit implementation 
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Rc 

INSTRUCTION CYCLE 

1) ADD 4 

2) SUB 4 

3) AND 4 

4) OR 4 

5) NOT 3 

6) SHR 4 

7) SHL 4 

8) SHRA 4 

9) SHC 4 

10) BRANCH 3 

 

Table 6.29 Rc signal activation in terms of instructions and cycles 

T4

T3

ADD
SUB
AND

OR
SHR
SHL

SHRA
SHC

NOT
BRANCH

Rc

 
Figure 6.15 Rc signal circuit implementation 
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READ REGISTER 

INSTRUCTION CYCLE 

1) ADD 5 

2) SUB 5 

3) AND 5 

4) OR 5 

5) SUBi 5 

6) ADDi 5 

7) ANDi 5 

8) Ori 5 

9) SHR 5 

10) SHL 5 

11) SHRA 5 

12) SHC 5 

13) LOAD 7 

14) IN 3 

15) READ PSW 3 

16) NOT 4 

  

 

Table 6.30 Read register signal activation in terms of instructions and cycles 
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Figure 6.16 Read Register signal circuit implementation 
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PC SIGNAL ACTIVATION 

INSTRUCTION CYCLE 

1) ADD 2 

2) SUB 2 

3) AND 2 

4) OR 2 

5) SUBi 2 

6) ADDi 2 

7) ANDi 2 

8) Ori 2 

9) SHR 2 

10) SHL 2 

11) SHRA 2 

12) SHC 2 

13) LOAD 2 

14) STORE 2 

15) IN 2 

16) OUT 2 

17) READ PSW 2 

18) UNC JUMP 2,3 

19) NOT 2 

20) BRANCH 2 

  

 

Table 6.31 PC signal activation in terms of instructions and cycles 
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Figure 6.17 PC signal circuit implementation 
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END SIGNAL ACTIVATION 

INSTRUCTION CYCLE 

1) ADD 6 

2) SUB 6 

3) AND 6 

4) OR 6 

5) SUBi 6 

6) ADDi 6 

7) ANDi 6 

8) Ori 6 

9) SHR 6 

10) SHL 6 

11) SHRA 6 

12) SHC 6 

13) LOAD 8 

14) STORE 8 

15) IN 4 

16) OUT 4 

17) READ PSW 4 

18) UNC JUMP 4 

19) NOT 5 

20) BRANCH 5 

  

 

Table 6.32 END signal activation in terms of instructions and cycles 
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Figure 6.18 END signal circuit implementation 

 

 

 Those circuits already illustrated shall guide the reader to do the same with the 

rest of the signals. For illustrative purposes, just the remaining implementation circuit 

signals will be shown, but all of them where obtained using its corresponding signal 

activation table. 
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Figure 6.19 SUM signal circuit implementation 

 

S U B
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Figure 6.20 Sub signal circuit implementation 
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A N D
A N D i

T4 A nd

 
Figure 6.21 And signal circuit implementation 

O R
O R i

T 4 O r

 
Figure 6.22 Or signal circuit implementation 
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T 3 N o tN O T

  
Figure 6.23 Not signal circuit implementation 

  

T 4 S h rS H R

 
Figure 6.24 Shr signal circuit implementation 
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T 4 S h lS H L

 
Figure 6.25 Shl signal circuit implementation 

 

T 4 S h r aS H R A

 
Figure 6.26 Shra signal circuit implementation 
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S h r
S h l

S h ra
S h c

T 4 C o un td ec od e r

 
Figure 6.27 Count Decoder signal circuit implementation 

 

T 3
B r a n c h C o n d l o g t a k e d e s

 
Figure 6.28 Conditional Logic signal circuit implementation 
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T 4
B r a n c h C o n d lo g a u x

 
Figure 6.29 Condlogaux signal circuit implementation 
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Figure 6.30 Load Decoder signal circuit implementation 
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T 6
S to r e M D e n

 
Figure 6.31 MDen signal circuit implementation 
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Figure 6.32 MAen signal circuit implementation 
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T 6 R ea dL O A D

 
Figure 6.33 Read signal circuit implementation 

 

 

T 7
S to r e M a in m e m s t o r e

 
Figure 6.34 Main memory store signal circuit implementation 
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T 2 P C A d d

 
Figure 6.35 PC add signal circuit implementation 
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REGALUIN 

INSTRUCTION CYCLE 

1) ADD 1 

2) SUB 1 

3) AND 1 

4) OR 1 

5) SUBi 1 

6) ADDi 1 

7) ANDi 1 

8) Ori 1 

9) SHR 1 

10) SHL 1 

11) SHRA 1 

12) SHC 1 

13) LOAD 1 

14) STORE 1 

15) IN 1 

16) OUT 1 

17) READ PSW 1 

18) UNC JUMP 1 

19) NOT 1 

20) BRANCH 1 

  

 

Table 6.33 Regaluin signal activation in terms of instructions and cycles 
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Figure 6.36 Tristate buffer 4-signal circuit implementation 
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T 6
S to re T ry b u f f9

 
Figure 6.37 Tristate buffer 9-signal circuit implementation 

 

T3
Ou t R ego ut

 
Figure 6.38 Regout signal circuit implementation 
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T 7
L o a d T r y b u f f5

 
Figure 6.39 Tristate buffer 5-signal circuit implementation 
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R ea d P S W T ry b uf f6

 
Figure 6.40 Tristate buffer 6-signal circuit implementation 
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T 3
R e a d P S W P S W

 
Figure 6.41 PSW register signal circuit implementation 
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Figure 6.42 Tristate buffer 8-signal circuit implementation 
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Figure 6.43 Regmemout signal circuit implementation 

 

 

 

The Control Unit Encoder Implementation 

 

        After the 38 control signal logic circuits have been defined, the next step consists in 

connect all of them in just one unit called the control unit encoder. The logic circuits of 

this unit will receive input signals from the timer and the operational code (opcode) 

decoder and will activate the corresponding signals for the instruction execution. Figures 

6.44 to 6.53 illustrate the circuit interconnection that forms the control unit encoder. 
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Figure 6.44 Control Unit Encoder (a) 

 
 

Figure 6.45 Control Unit Encoder (b) 



 

 

137

 

 

 
 

Figure 6.46 Control Unit Encoder (c) 
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Figure 6.47 Control Unit Encoder (d) 

 
Figure 6.48 Control Unit Encoder (e) 
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Figure 6.49 Control Unit Encoder (f) 

 
Figure 6.50 Control Unit Encoder (g) 
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Figure 6.51 Control Unit Encoder (h) 

 

 
 

Figure 6.52 Control Unit Encoder (i) 
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Figure 6.53 Control Unit Encoder (j) 
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Figure 6.54 Control Unit Encoder implementation 

 

 

6.3 The control unit operational code decoder 
 

        The operational code decoder receives the first five bits of the Instruction Register. 

This unit decodes those five bits and generates one signal that corresponds to the 

instruction that will be executed. This signal goes to the Control Unit Encoder and 

together with the timer decide which signals will be activated. Table 6.34 shows the 

Opcode Decoder truth table. Figure 6.55 shows the Opcode Decoder implementation. 
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Control 
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OPCODE DECODER 

 CODE  

POSITION A B C D E NAME 

0 0 0 0 0 0 Ori 

1 0 0 0 0 1 ANDi 

2 0 0 0 1 0 ADDi 

3 0 0 0 1 1 STORE 

4 0 0 1 0 0 SUBi 

5 0 0 1 0 1 BRANCH 

6 0 0 1 1 0 SHC 

7 0 0 1 1 1 SHRA 

8 0 1 0 0 0 Or 

9 0 1 0 0 1 AND 

10 0 1 0 1 0 SUB 

11 0 1 0 1 1 ADD 

12 0 1 1 0 0 LOAD 

13 0 1 1 0 1 IN 

14 0 1 1 1 0 READ PSW 

15 0 1 1 1 1 NOT 

16 1 0 0 0 0 OUT 

17 1 0 0 0 1 UNCJUMP 

18 1 0 0 1 0 LOAD PSW 

19 1 0 0 1 1 SHR 

20 1 0 1 0 0 SHL 

21 1 0 1 0 1 UNUSED 

22 1 0 1 1 0 UNUSED 

23 1 0 1 1 1 UNUSED 

24 1 1 0 0 0 UNUSED 

25 1 1 0 0 1 UNUSED 

26 1 1 0 1 0 UNUSED 
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27 1 1 0 1 1 UNUSED 

28 1 1 1 0 0 UNUSED 

29 1 1 1 0 1 UNUSED 

30 1 1 1 1 0 UNUSED 

31 1 1 1 1 1 UNUSED 

 

Table 6.34 The Opcode Decoder truth table 

 

 

 

 
 

Figure 6.55 Operational Code Decoder circuit 
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Figure 6.56 Operational Code Decoder Implementation 
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6.4 THE CONTROL UNIT TIMER 

 
     The Control Unit timer is really one zero to seven counter. It was selected to seven 

because the largest number of clock cycles in the instruction set is 8. The timer specifies 

each instruction clock cycle. It works with the opcode decoder and sends its signal to the 

Control Unit Encoder as shown in figure 5.114. 

 

 
 

Figure 6.57 The Control Unit Timer 

             

         The enable and Load ports will not be used in this work. Reset makes the timer to 

start over again and count from zero. The clock will be used, as the main clock, and it 

will control the movement from one microcontroller state to the other. Count bits 0,1 and 

2 are the bits that specify where the timer starts its count. 

Timer inputs to 
the Control 
Unit Encoder Opcode 

decoder 
signals to the 
Contro Unit 
Encoder 

Not used 



 

 

147

 

 
Figure 6.58 Control Unit Circuit 

 
Figure 6.59 Control Unit Implementation 
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Control Unit 
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Control Unit 
Encoder 
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6.5 Implementation Problems 

 
          Once the Control Unit is finished and ready for implementation, designers should 

realize that during its implementation some problems arise. The following is a small list 

of problems and important points to keep in mind at the Control Unit implementation 

stage. 

1) Due to the many existing control lines, designers must ensure that every signal 

that goes from the control unit is properly connected to its corresponding circuit. 

In this report, Logic Works offers one feature that allows connections just giving 

the signal source and its destination the same name. If designers use this feature, 

they must ensure that both signal ends have exactly the same name. If not the 

software does not recognize the signal and the hardware will not work properly, 

as a consequence, circuits that depend on the circuit data and an entire operation 

can be affected. 

2) Care should be taken at the interconnection stage because involuntary 

disconnections may happen. 

3) More than one signal is activated per clock cycle, this means that some circuits 

have to wait for data because probably it is not ready for processing at the circuit 

signal activation moment. To solve this problem, once the control unit is 

connected to all circuits, designers have to run manually with the control unit 

clock, each and every one of the microcontroller instructions to see per clock its 

performance. 

4) Once a time delay problem has found (you will know that this problem happen 

because in its respective instruction clock cycle, when you run it manually, there 

is not data in some circuits that is supposed to be. This means that a time delay 

must be added to the circuit element that does not receive the data. Figure 6.60 

illustrates two inverters with added time delay (in nanoseconds) necessary at the 

ALU port A and out put ports to function properly. 

 



 

 

149

 

 
 

Figure 6.60 Delay for signals 
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Chapter 7.  Detailed Description of the Instruction Set 

 
Next is a detailed description of each instruction that can be executed with the 

microcontroller simplest data path. Details like the instruction format; clock cycle 

number and task by clock cycle are discussed. The fetch process is discussed later at the 

Control Unit design stage, now it is just only explained as part of the instruction 

execution process. 

 

7.1 ADDITION 
 

Importance and justification 

 

All microcontrollers and microprocessors must be able to perform mathematical 

computations in order to execute its own instructions and be useful. The operation of 

addition is one of the most important and basic mathematical computations.  

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

01011 Ra Rb Rc XXXX 

 

Operation: A ←(B +C) 

 

Flags Affected: PSW[4] 
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ADDITION 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File signal activates the address bits of Rb to 

locate the register specified by Rb. Also the Register File data 

out signal is activated to release the data specified by Rb. The 

ALU port A register read signal is activated to store this data.  

4 3 The Register File signal Rc is activated to locate the register 

specified by Rc. Also the Register File data out signal is 

activated to release the data specified by Rc to the ALU port B. 

The ALU addition signal is activated to perform the operation. 

The read signal of the ALU output port register is activated 

to store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus.  The Register File signal for Ra is 

activated to locate its specified register. The Register File read 

signal is activated to store the processed result in the data bus. 

 

Table 7.1 Add instruction signal activation verbal descriptions by cycle 
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7.2 BIT WISE AND  

 

Importance and Justification 
 

Compares two 4 bits numbers (first bit of first number with first bit of second 

number and so on) and send a high signal when a compared pare of bits have both bits in 

high (1), and send a low (0) when at least one or both compared bits are low. Performs a 

useful logic task to compare two binary numbers and to take decisions. 

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

01001 Ra Rb Rc XXXX 

 
 
Operation: A ←(B • C) 
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AND 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File signal that activates the address bits Rb is 

activated to locate the register specified by Rb. Also the Register 

File data out signal is activated to release the data specified by 

Rb. The read signal of the register at the ALU port A is 

activated to store this data.  

4 3 The Register File signal that activates the bits Rc is activated to 

locate the register specified by Rc. Also the Register File data 

out signal is activated to release the data specified by Rc to the 

ALU port B. The ALU AND signal is activated to perform the 

operation. The read signal of the ALU output port register is 

activated to store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release the processed result to the data bus.  The Register File 

signal for Ra is activated to locate its specified register. The 

Register File read signal is activated to read the processed 

result in the data bus and store it in the specified register. 

 

Table 7.2 AND instruction signal activation verbal description 

 

The fetch activation signals are not shown because those signals will be defined at the 

Control Unit stage. 
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7.3 ARITHMETIC SHIFT RIGTH 
 

Importance and justification 

 

Sometimes programmers must accomplish certain tasks and manipulate data in 

certain ways to accomplish specific tasks. Arithmetic Shift Right instruction is very 

useful because it allows the programmer to take one binary number and shift its leftmost 

bit one or several places to the right. The vacant places are filled with bits equal to the 

binary number leftmost bit. It can be used and combined with other instructions to make 

the microcontroller programming easier.  

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00111 Ra Rb Rc              count 

 

Operation: (Bi)(Bi+n)(B j+n)(B k+n)  ← BiBjBkBl  

 

Where n is the number of shift places and i, j ,k ,and l are the respective bits position 1 , 

2, 3 and 4. 
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Table 7.3 Arithmetic Shift Right instruction signal activation verbal descriptions 

 

 

 

 

 

 

THE ARITHMETIC SHIFT RIGHT 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File address bits Rb are activated to locate the 

register specified by Rb. Also the Register File data out signal 

is activated to release the data in the address location specified 

by Rb. The read signal of the register at the ALU port A is 

activated to store this data.   

4 3 The Register File address bits Rc are activated to locate the 

register specified by Rc and the Count Decoder signal is 

activated. The count decoder makes its logical decision and the 

ALU Arithmetic Shift Right signal is activated to perform the 

operation. The read signal of the register at the ALU output 

port is activated to store the result.  

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus. The Register File address bits 

Ra are activated to locate the register specified by Ra. The 

Register File read signal is activated to read the processed 

result in its input port and store it in the specified register. 
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7.4 BRANCH – JUMP IF CONDITION 
Instruction Format 

 
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00101 Ra (unused) Rb Rc condition 

 

Operation: IF CONDITION IS TRUE:  PC ← (ADDRESS) 

 

BRANCH 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   Register File Rc bits are activated to locate the register 

specified by them. Also the Register File data out signal is 

activated to release the data specified by Rc to the data bus. 

The take decision signal of the conditional logic is activated 

to take the logic decision to jump or not.  

4 3 The Register File bits of Rb are activated to locate the register 

specified by them. Also the Register File data out signal is 

activated to release the data specified by Rb to the data bus. 

The signal port of AUX circuit is activated to release its 

logic decision to the PC. 

5 4 The next fetch process begins. 

 
Table 7.4 Branch signal activation verbal descriptions 
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7.5 BRANCH – UNCONDITIONAL JUMP 
 

UNCONDITIONAL JUMP 

In this set it is included one additional kind of jump, the unconditional jump. 

 

Importance and justification 

Unconditional jump allows programmers to execute non-continuous programming 

code in memory. The main difference between branch and the unconditional jump is that 

the latter does not have to be tested or has to take any decision, just jump to other 

memory location and execute its code. 

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

10001 Ra (unused) Rb (unused) Rc (unused) Immediate value 

 

Operation: PC ← (LAST 4 BITS) 

 

Signal activation table for the instruction by cycle 

 

UNCONDITIONAL JUMP 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The instruction second task consists on activating the tristate 

buffer 2 and the PC clock to load it with the new value for 

jump. 

 

 

Table 7.5 Unconditional Jump signal activation verbal descriptions 
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7.6 CIRCULAR SHIFT 
 

Importance and justification 

 

Sometimes programmers must accomplish certain tasks and manipulate data in 

certain ways to accomplish specific tasks. Circular Shift instruction is very useful 

because it allows the programmer to take one binary number and shift its leftmost bit one 

or several places to the right. The vacant places are filled with bits equal to the rightmost 

bit of the binary number. It can be used and combined with other instructions to make the 

microcontroller programming easier.  

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00110 Ra Rb Rc              count 

 

Operation: (Bl)(Bi+n)(B j+n)(B k+n)  ← BiBjBkBl 

 

Where n is the number of shift places and i, j ,k ,and l are the respective bits position 1 , 

2, 3 and 4. 
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Table 7.6 Circular Shift instruction signal activation verbal descriptions 
 

 

 

 

 

 

 THE CIRCULAR SHIFT  

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File address bits Rb are activated to locate the 

register specified by Rb. Also the data out signal of the Register 

File is activated to release the data in the address location 

specified by Rb. The read signal of the register at the ALU 

port A is activated to store this data.   

4 3 The Register File address bits Rc are activated to locate the 

register specified by Rc and The Count Decoder signal is 

activated. The count decoder makes its logical decision and the 

ALU Circular Shift signal is activated to perform the 

operation. The read signal of the register at the ALU output 

port is activated to store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus. The Register File address bits 

Ra are activated to locate the register specified by Ra. The 

reading signal of the Register File is activated to read the 

processed result in its input port and store it in the specified 

register. 
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7.7 IN 
 

Importance and justification 

 

This instruction is used to obtain data from the outside. The data arrives into the 

microcontroller data path and is stored in a Register File location. 

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

01101 Ra Rb (unused) Rc (unused) XXXX 

 

Operation: ADDRESS ← DATA 

Where address means one Register File location 

 

Signal activation table for the instruction by cycle 

IN 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The second instruction task consists on activating the tristate 

buffer 8 (see figure 5.55) and the Register File Ra and read 

signals. 

 

 

Table 7.7 IN instruction signal activation verbal descriptions 
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7.8 IMMEDIATE ADDITION 
 
Importance and justification 
 

All microcontrollers and microprocessors must be able to perform mathematical 

computations. The operation of addition is one of the most important and basic 

mathematical computations .The immediate addition allows the programmer to specify in 

the instruction the second value that will be processed.  

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00010 Ra Rb Rc (unused) Immediate 

operand 

 

 

Operation: A ←(B + last 4 bits) 

 

Flags Affected: PSW [4] 
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IMMEDIATE ADDITION 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File address bits Rb are activated to locate the 

register specified by Rb. Also the Register File data out signal 

is activated to release the data specified by Rb to the data bus. 

The read signal of the register at the ALU port A is activated 

to store this data.  

4 3 The tristate buffer 2 holding the last four bits of the IR is 

activated to allow those bits to pass to the data bus. The ALU 

addition signal is activated to perform the operation. The read 

signal of the register at the ALU output port is activated to 

store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus.  The Register File Ra bits are 

activated to locate the register specified by Ra. The read signal 

of the Register File is activated to read the processed result in 

the data bus and store it in the specified register. 

 

Table 7.8 Immediate Addition instruction signal activation verbal descriptions 
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7.9 IMMEDIATE AND 
 
Importance and justification 

 
Compares two 4 bits numbers (first bit of first number with first bit of second 

number and so on) and send a high signal when a compared pare of bits have both bits in 

high (1), and send a low (0) when at least one or both compared bits are low. The 

immediate and operation allows the programmer to specify in the instruction the second 

value that will be processed.  

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00001 Ra Rb Rc (unused) Immediate 

operand 

 

Operation: A ←(B • last 4 bits) 
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INMEDIATE AND 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File address bits Rb are activated to locate the 

register specified by Rb. Also the Register File data out signal 

is activated to release the data specified by Rb to the data bus. 

The read signal of the register at the ALU port A is activated 

to store this data.  

4 3 The tristate buffer 2 holding the last four bits of the IR is 

activated to allow those bits to pass to the data bus. The ALU 

AND signal is activated to perform the operation. The read 

signal of the register at the ALU output port is activated to 

store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus.  The Register File Ra bits are 

activated to locate the register specified by Ra. The read signal 

of the Register File is activated to read the processed result in 

the data bus and store it in the specified register. 

 

Table 7.9 Immediate AND instruction signal activation verbal descriptions 
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7.10 IMMEDIATE OR 
 
Importance and justification 

 

Compares two 4 bits numbers (first bit of first number with first bit of second 

number and so on) and send a high signal when a compared pare of bits have at least one 

high (1) bit is present, and send a low when both compared bits are low (0). 

The immediate OR operation allows the programmer to specify in the instruction the 

second value that will be processed. 

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00000 Ra Rb Rc (unused) Immediate 

operand 

 

 

Operation:  A ←(B (+) with last 4 bits) 
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INMEDIATE OR 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File address bits Rb are activated to locate the 

register specified by Rb. Also the Register File data out signal 

is activated to release the data specified by Rb to the data bus. 

The read signal of the register at the ALU port A is activated 

to store this data.  

4 3 The tristate buffer 2 holding the last four bits of the IR is 

activated to allow those bits to pass to the data bus. The ALU 

OR signal is activated to perform the operation. The read signal 

of the register at the ALU output port is activated to store the 

result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus.  The Register File Ra bits are 

activated to locate the register specified by Ra. The read signal 

of the Register File is activated to read the processed result in 

the data bus and store it in the specified register. 

 

Table 7.10 Immediate OR instruction signal activation verbal descriptions 
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7.11 IMMEDIATE SUBTRACTION 
 
Importance and justification 
 

All microcontrollers and microprocessors must be able to perform mathematical 

computations. The operation of subtraction is one of the most important and basic 

mathematical computations .The immediate subtraction allows the programmer to specify 

in the instruction the second value that will be processed. The immediate availability of 

this value is one of the reasons to include it in the instruction set. 

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00100 Ra Rb Rc (unused) Immediate 

operand 

 

Operation: A ←(B - last 4 bits) 

 

Flags Affected: PSW [3] 
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INMEDIATE SUBTRACTION 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File address bits Rb are activated to locate the 

register specified by Rb. Also the Register File data out signal 

is activated to release the data specified by Rb to the data bus. 

The read signal of the register at the ALU port A is activated 

to store this data.  

4 3 The tristate buffer 2 holding the last four bits of the IR is 

activated to allow those bits to pass to the data bus. The ALU 

subtraction signal is activated to perform the operation. The 

read signal of the register at the ALU output port is activated 

to store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus.  The Register File Ra bits are 

activated to locate the register specified by Ra. The read signal 

of the Register File is activated to read the processed result in 

the data bus and store it in the specified register. 

 

Table 7.11 Immediate Subtraction instruction signal activation verbal descriptions 
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7.12 LOAD 
 

Importance and justification 

 

Sometimes the programmer needs to load values from memory and then transfer 

the information to the Register File to store them for further processing. Once the 

Register File has information in it, the programmer can perform operations with those 

values. The load instruction is essential because without it will be impossible to load data 

from memory to process it.  

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

01100 Ra Rb Rc Mc 

 

Operation:   A ← M 

 

Where M is data in memory and A represent a Register File location. 
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Signal activation table for the instruction by cycle 
 
LOAD 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   Register File bits of Rb are activated to locate the register 

specified by Rb. Also the Load Decoder data out signal is 

activated to release its decision. The read signal of the register 

at the ALU port A is activated to store the data. 

4 3 The tristate buffer 2 signal (holding the Mc four bits) is activated 

in order to allow those bits to pass to the data bus. The addition 

signal of ALU is activated to calculate the memory location. 

The read signal of the register at the ALU output port is 

activated to store the result. 

5 4 The data in the register at the ALU output port is stored in MA, 

activating the tristate buffer 1 signal and the Memory 

Address register read signal. 

 

 

6 

 

5 

 

The memory chip read signal is activated to read the address 

specified by MA. The read signal in the register at the 

memory chip output port is activated to store the data. 

7 6 The tristate buffer 3 signal is activated to release data from 

memory to the data bus. Bits of Ra in the Register File are 

activated to locate the register specified by Ra. The Register 

File read signal is activated to read and store the data from 

memory. 

 

Table 7.12 Load instruction signal activation verbal descriptions 
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7.13 NOT 
 
Importance and justification 

Sometimes the programmer needs to change the sign of the bits in use in order to 

make calculations or to perform operations to address some registers, etc. In those cases 

is very useful to have an instruction that makes that happen and that is the reason to 

include this operation in the instruction set. 

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

01111 Ra Rb Rc (unused) XXXX 

 

Operation: -(B) ← B  
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NOT 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 

 

2   

 

The Register File Bits of Rb are activated to locate the register 

specified by Rb. Also the data out signal of the Register File is 

activated to release the data specified by Rb.  

The not signal of ALU is activated to perform the operation. 

The read signal of the register at the ALU output port is 

activated to store the result. 

4 3 The tristate buffer 1 is activated to release its data to the data 

bus.  Register File Ra signal is activated to locate the register 

specified by Ra. The read signal of the Register File is 

activated to read the processed result in the data bus and store it 

in the specified register. 

 

 

Table 7.13 NOT instruction signal activation verbal description 
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7.14 OR 

Importance and justification 
 

Compares two 4 bits numbers (first bit of first number with first bit of second 

number and so on) and send a high signal when a compared pare of bits have at least one 

high (1) bit is present, and send a low (0) when both compared bits are low. Perform a 

useful logic task to compare two binary numberss and to take decisions. 

 

Instruction Format 

 
 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

01000 Ra Rb Rc XXXX 

 
 
Operation: A ←(B (+) C) 
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OR 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File signal that activates the address bits of Rb is 

activated to locate the register specified by Rb. Also the Register 

File data out signal is activated to release the data specified by 

Rb. The read signal of the register at the ALU port A is 

activated to store this data.  

4 3 The Register File signal that activates the bits of Rc is activated 

so that the Register File locates the register specified by Rc. 

Also the Register File data out signal is activated to release the 

data specified by Rc to the ALU port B. The ALU OR signal is 

activated to perform the operation. The read signal of the 

register at the ALU output port is activated to store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus.  The Register File signal for Ra is 

activated to locate the register specified by Ra. The Register 

File read signal is activated to read the processed result in the 

data bus and store it in the specified register. 

 

Table7.14 OR instruction signal activation verbal description 

 

The fetch activation signals are not shown because those signals will be defined at the 

Control Unit stage. 
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7.15 OUT 
 

Importance and justification 

 

This instruction is used to release data from the microcontroller to the outside 

world. The processed data could be used for device control or just to deliver information. 

 

Instruction Format 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

10000 Ra Rb (unused) Rc (unused) XXXX 

 

Operation: PORT ← ADDRESS  
 
Where Port is the register where the data from Register File will be transferred. Address 
is the Register File address location where the data is. 
 
Signal activation table for the instruction by cycle 
 

OUT 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The instruction second task consists on activating the 

Register File Rb and data out signals to release the data. 

(see figure 5.56) 

 

Table 7.15 Out instruction signal activation verbal descriptions 
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7.16 READ PSW 
 
Importance and justification 

 

The PSW is the register that holds the microcontroller flags. This instruction is 

used to read the PSW and obtain valuable information of computational flags. Inside, the 

ALU flags are activated if the computational result is zero, negative and overflow for add 

and subtract. Those flags are very important because programmers can take important 

decisions with them. 

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

01110 Ra Rb (unused) Rc (unused) XXXX 

 

Operation: ADDRESS ← PSW 

Where address is the Register File address location to store the PSW. 

 

Signal activation table for the instruction by cycle 

 

READ PSW 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The second instruction task consists on activating the PSW 

clock, the tristate buffer 6, the Register File Ra and read 

signals to store the PSW. See figure 5.57. 

 

 

Table 7.16 Read PSW signal activation verbal descriptions 
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7.17 SHIFT LEFT 
 
Importance and justification 

 
Sometimes programmers must accomplish certain tasks and manipulate data in 

certain ways to accomplish specific tasks. Shift Left instruction is very useful because it 

allows the programmer to take one binary number and shift its rightmost bit one or 

several places to the left. The vacant places to the right are filled with zeroes. It can be 

used and combined with other instructions to make the microcontroller programming 

easier.  

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

10100 Ra Rb Rc              count 

 

Operation: (Bj-n )(Bk-n) (B1-n) (0) ← BiBjBkBl 

 

Where n is the number of shift places and i, j ,k ,and l are the respective bits position 1 , 

2, 3 and 4. 
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Table 7.17 Shift Left instruction signal activation verbal descriptions 
 
 

 

 

 

 

 

 

THE SHIFT LEFT 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File address bits Rb are activated to locate the 

register specified by Rb. Also the Register File data out signal 

is activated to release the data in the address location specified 

by Rb. The read signal of the register at the ALU port A is 

activated to store this data.   

4 3 The Register File address bits Rc are activated to locate the 

register specified by Rc and The count decoder signal is 

activated. The count decoder makes its logical decision and the 

ALU Shift Left signal is activated to perform the operation. 

The read signal of the register at the ALU output port is 

activated to store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release the data to the data bus. The Register File address bits 

Ra are activated to locate the register specified by Ra. The 

reading signal of the Register File is activated to read the 

processed result in its input port and store it in the specified 

register. 
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Importance and justification 

 

Sometimes programmers must accomplish certain tasks and manipulate data in 

certain ways to accomplish specific tasks. Shift Right instruction is very useful because it 

allows the programmer to take one binary number and shift its leftmost bit one or several 

places to the right. The vacant places are filled with zeroes. It can be used and combined 

with other instructions to make the microcontroller programming easier.  

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

10011 Ra Rb Rc              count 

 

Operation: (0)(Bi+n)(B j+n)(B k+n)  ← BiBjBkBl 

 

Where n is the number of shift places and i, j ,k ,and l are the respective bits position 1 , 

2, 3 and 4. 
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Table 7.18 Shift Right instruction signal activation verbal descriptions 

 

 

 

 

 

 

SHIFT RIGHT 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File address bits Rb are activated to locate the 

register specified by Rb. Also the data out signal of the Register 

File is activated to release the data in the address location 

specified by Rb. The read signal of the register at the ALU 

port A is activated to store this data.   

4 3 The Register File address bits Rc are activated to locate the 

register specified by Rc and The Count Decoder signal is 

activated. The Count Decoder makes its logical decision and 

the ALU Shift Right signal is activated to perform the 

operation. The read signal of the register at the ALU output 

port is activated to store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus. The Register File address bits 

Ra are activated to locate the register specified by Ra. The 

Register File read signal is activated to read the processed 

result and store it in the specified register. 
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7.19 STORE 
Instruction Name 

 

STORE 

 

Importance and justification 

 

Sometimes the programmer needs to process data and store it in memory. The 

store instruction is essential because without it will be impossible to store data in memory 

after the data is processed.  

 

Instruction Format 

 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00011 Ra Rb Rc Mc 

 

Operation: M ← A 

 

Where M is data in memory and A represent a Register File location. 
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STORE 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File bits Rb are activated to locate the register 

specified by Rb. Also the Load Decoder data out signal is 

activated to release its decision and also is activated its tristate 

buffer that holds the 0000. The read signal of the register at 

the ALU port A is activated to hold 000 from the load decoder 

or the data of Rb.  

4 3 The signal of the tristate that holds the Mc four bits is activated 

in order to pass those bits to the data bus. The addition signal of 

ALU is activated to perform the operation. The read signal of 

the register at the ALU output port is activated to store the 

result. 

5 4 The tristate buffer 1 is activated to release the data in the ALU 

output port and is stored in the Memory Address register 

activating its read signal.  

 

6 

 

5 

The Register File bits Ra are activated to locate the register 

specified by Ra. The Register File data out signal is activated 

to release its data to the data bus. The register at the ALU port A 

is activated to store the value from the Register File. The tristate 

buffer 9 is activated to deliver the data from the Register File 

output port to MA. The MD read signal is activated to store the 

data specified by Ra. The memory chip read signal is 

activated to read the address specified by MA and store the data 

in MD. 

 

Table 7.19 Store instruction signal activation verbal descriptions 
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7.20 SUBTRACT 
 
Importance and justification 
 

 
All microcontrollers and microprocessors must be able to perform mathematical 

computations in order to execute its own instructions and be useful to the user. The 

operation of subtraction is one of the most important and basic mathematical 

computations.  

 

 

Instruction Format 

 
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

01010 Ra Rb Rc XXXX 

 
 
Operation: A ←(B - C) 
 
Flags Affected: PSW [3] 
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SUBTRACTION 

Cycle    Task SIGNAL ACTIVATION 

1 Fetch  

2 Fetch  

3 2   The Register File signal that activates the address bits of Rb is 

activated to locate the register specified by Rb. Also the Register 

File data out signal is activated to release the data specified by 

Rb. The read signal of the register at the ALU port A is 

activated to store this data.  

4 3 The Register File signal that activates the bits of Rc is activated 

to locate the register specified by Rc. Also the Register File data 

out signal is activated to release the data specified by Rc to the 

ALU port B. The ALU subtraction signal is activated to 

perform the operation. The read signal of the register at the 

ALU output port is activated to store the result. 

5 4 The tristate buffer 1 at the ALU output port is activated to 

release its data to the data bus.  The Register File signal that 

activates Ra is activated to locate its specified register. The 

Register File read signal is activated to read the processed 

result in the data bus and store it in the specified register. 

 

Table 7.20 Subtraction instruction signal activation verbal descriptions 

 

 

The fetch activation signals are not shown because those signals will be defined at the 
Control Unit stage. 
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Chapter 8.   Conclusions 
 

One of this project’s goals was to provide the reader the opportunity to see how all 

the basic circuit, digital logic, basic electronic and advanced digital design concepts are 

applied in order to produce one functional system: a microcontroller. 

This work also provides the student the opportunity to develop and practice some of 

the fundamental microcontroller design skills like planning, organization and testing the 

microcontroller hardware. The user is encouraged to use the techniques in chapter four 

and five to develop a microcontroller data path. Decisions like the number of data path 

circuit elements, their interconnection to save clock cycles and each element design are 

some of the skills worked in those chapters. 

This methodology will guide users’ actions and design tasks, to think about the 

available resources, reliability, time and design cost to achieve the final product. 

Considering that sometimes students become confused when trying to develop new skills 

and that the microcontroller world is not easy to understand at first, the design was done 

using Logic Works. Students will not face the situation of dealing with complex 

algorithms and symbols when they are introduced to microcontrollers. This work thus 

tried to be graphically understandable showing the design, implementation and testing of 

each microcontroller part and operation.  

This work also provides the reader a ten-step mechanism that will guide the 

microcontroller design. One of the most important characteristics of this method is that it 

is modular. All circuits design were done as independently as possible. The advantage is 

that new designs can be tested with small changes to the original one. For example the 

Arithmetic Logic Unit like other blocks was developed with parallel circuits. This allows 

users to “plug and play” their new circuits without making significant design changes. 

 

 

 

 

 

 



 

 

186

 

Also, modules can be designed and stored for fast implementation in future designs, 

and this can accelerate new designs or projects using the already existing circuits. The 

method developed in this work was used for a four-bit microcontroller, but it can be used 

for bigger ones. Although the circuit will be more complex, all design steps still apply 

together with all its recommendations. This work should be useful for beginners in the 

microcontroller design and operation field or as a microcontroller class complement or 

laboratory. 

 It is expected that with this approach students will feel more confident with different 

microcontroller designs. All simulations in this work were done with Logic Works 4.0. 

But the economy of this method is paid by designer’s ability to select the proper 

interconnection and hardware to execute the instructions in the fastest way using the 

minimum amount of clock cycles per instruction. Designers must ensure to orchestrate all 

microcontroller signals activation in such a way that no conflict between signal activation 

exist during each instruction execution clock cycle. 

the method developed in this work was used for a four-bit microcontroller, but it can 

be used for bigger ones. Although the circuit will be more complex, all design steps still 

apply together with all its recommendations. This work should be useful for beginners in 

the microcontroller design and operation field or as a microcontroller class complement 

or laboratory. 

A physical implementation of the microcontroller can be done using FPGAS’s. This 

requires a VHDL code, which can be partially generated by modern CAD software. This 

is left for future work. 
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