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Abstract

Microcontroller Design and Concepts
By

Victor L. Vargas Garcia

A method for microcontroller design was developed. A basic data path
configuration capable of processing the microcontroller basic instruction set was
developed first. Based on this configuration, a four-bit microcontroller was developed
from its most basic instruction set to the most complex one.

Through the design process, the microcontroller hardware evolves into a complex
one as more instructions are added to the basic instruction set. More hardware is added in
parallel to the basic data path configuration to make the execution of more complex
instructions possible.

As a result it is expected that readers become familiar with the fundamental
microcontroller concepts and operations. Design steps, implementation and testing of all
the microcontroller development circuits are shown graphically and explained in detail.
Finally designers will have a basic guide to develop their own microcontroller using this

work procedure.
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COMPENDIO

Microcontroller Design and Concepts
By

Victor L. Vargas Garcia

Un método para el disefio de microcontroladores fue desarrollado partiendo de
una configuracion basica para el camino de datos que permite la ejecucion del grupo mas

sencillo de instrucciones para un microcontrolador. Usando ésta configuracion basica, un
microcontrolador de 4 bits fue desarrollado desde sus instrucciones mds basicas hasta las
mas complejas.

A medida que el proceso de desarrollo y evolucion del microcontrolador se lleva a
cabo, instrucciones mas complejas se van sumando al conjunto de instrucciones basicas
del microcontrolador, afiadiendo circuitos en paralelo al circuito basico que forma el
camino de datos que permiten que éstas nuevas instrucciones se puedan ejecutar.

Como resultado el lector tendra una guia y una idea mas clara sobre los
fundamentos basicos de los microcontroladores, su funcionamiento y su arquitectura. Se
mostraran de una manera grafica y explicada en detalle, los pasos de disefio,
implementacion y prueba de los circuitos usados en el desarrollo de microcontroladores.
Finalmente los disefiadores tendran una guia basica para desarrollar su propio

microncontrolador usando el procedimiento descrito en este trabajo.
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Chapter 1

Introduction

Microcontrollers and microprocessors are the most used devices in electronic
equipment. Modern technology demands from any engineer, a basic microcontroller or
microprocessor knowledge. The basic difference between them is that microprocessors
can be configured for the amount of memory and the input / output system used. The
microcontroller has all the computing system (I/O system and memory) built in it.
Designer’s judgment determines which one should be used.

The emphasis of this work will be in the CPU; other important microcontroller
parts such as the memory, the I/O system, microcontroller and microprocessor layout,
fabrication process and technology are beyond the scope of this work. Design
performance parameters like speed, power dissipation, wiring, packing, and transistor
sizing are also beyond the scope of this work [8]. Microprocessor Assembly

programming is not covered either.

1.1 Justification

The motivation for this work comes after the author took the Computer
Architecture undergraduate course. The author realizes that microcontroller design could
be an opportunity to summarize and apply most of the electronic engineering basic and
advanced courses. Basic circuit analysis, basic electronic course, digital logic circuits and

advanced digital design are some of the electrical engineering courses used in this work.



Another motivation for this work lies in the author’s desire to present the student
the microcontroller concepts, design and operation, as quick and clear as possible. For
many years literature has been published regarding microcontroller and digital design.
Techniques, methods, and procedures have been published, but most of them are usually
explained using a symbolic or algorithmic approach. Some examples of this kind of
approach can be found on “The Intel Microprocessors 808X,Pentium and Pentium
Pro”[22] , “Computer Organization and Design The Hardware / Software Interface[21],
Embedded Systems and Computer Architecture”[19],Computer Organization and
Architecture Principles of Structure and Function [20].

Although this work can serve as a quick reference for people with some
microcontroller basic knowledge, it was developed specially for people that have not
been exposed to microcontrollers or are exploring the field for the first time. After
students understand the basic microcontroller concepts, they can go by their own in the
field exploring other design concepts and alternatives.

To grasp the basic concepts at the starting stage, students feel more comfortable
when they see the theoretical materialization, simulation and execution of hardware
circuits, instead of large equations, diagrams, algorithms and symbols that most of the
microcontroller information sources offer. The hardware implementation of every
concept is what makes this work useful for beginners to learn and understand
microcontroller concepts.

One of the main features of this work lies in the fact that it follows a series of
steps and makes emphasis on the most important points in each and everyone of those
steps. Beginners just have to follow those steps in order to design and simulate their own
microcontroller. This work illustrates the design, simulation, testing, and implementation
of all microcontroller circuits in each step. Through the whole process the student will
appreciate the complete microcontroller evolution and transformation from zero to a

functional unit.



Practice is the key for success in any career. This method provides mechanisms to
change some of the microcontroller parts without affecting others. It makes emphasis on
modularization. Through the whole process, modules of each part are designed and can
be changed individually without affecting the entire system. This allows experimentation
and circuit changes to examine what happens.

One possible application of this work is that students can transform the
microcontroller schematic into HDL code and download it to an FPGA for prototype
simulation. This way, the students increase their understanding of microcontroller
concepts and operation, with hands-on experience; they can examine how the instruction
execution is and how the microcontroller circuits work in every instruction. Also multiple
versions of one microcontroller can be developed with slight changes, allowing students
to observe the effect of those changes in each design and simulate each prototype on
FPGA. This work provides a mechanism for students to train easier, faster and get more
practice in microcontroller design.

A weak point of this method is that it does not achieve an efficient
implementation. Performance is not the main point of this work; just delivering to the
student the most important microcontroller concepts. In chapter two we find information
regarding to microcontroller performance. The focus of this work is in the methodology,
not in the computational capabilities and features of the microcontroller.

Besides its educational approach, another important point is that this method
provides a mechanism to design a microcontroller that can be simulated, as said before,
on FPGA, but also can be used on real applications. In other words, users making slight
changes can produce a different microcontroller for new applications as needed. Users do
not have to buy a new microcontroller but try a different one using this method. Of
course this is convenient for experimentation or academic purposes only, not for

applications where performance is the critical point.



Modern microcontroller costs are relatively low, and are very useful for many
applications but sometimes there are situations that are better handled with specially
designed microcontrollers for specific applications. For example, a designer may want to
build and control his/her own personal robot, with a specific instruction set. Designers
can find in the market some inexpensive microcontrollers that suit design requirements.
But those popular microcontrollers perhaps are for general use, but probably lacking
features that designers would be looking for.

It is important to remember that those popular microcontrollers in the market
today are not designed for specific needs; some are for general purpose and others are for
specific applications. Then, sometimes designers invest huge amounts of time and effort
designing and programming assembly routine codes in order to achieve the required
microcontroller performance, as to take full control of their robot. Designing a
microcontroller for specific needs allows designers to minimize the programming
complexity and enhance designers system’s performance.

Designers also should keep in mind that microcontroller programming is as
important as the microcontroller hardware design. Although it is not the intention of this
work to discuss the microcontroller programming, this work illustrates the instruction
execution of the microcontroller. This helps a lot when we are trying to understand the
basic concepts of assembly programming like the addressing modes, clock cycles, and
operands.

The quality of the microprogramming is what makes it possible to transform the
complex circuits of the microcontroller into something useful. One of the main
motivations for this work will be that inexperienced designers will not only gain an
insight of microcontroller design and operation, but also, designers will get a better

understanding of the microcontroller assembly programming.



1.2 Research Objective

The main idea of this work is to develop a systematic and straightforward
procedure that allows students to understand microcontrollers design and operation.
Inexperienced designers should be able to design their own microcontrollers from scratch
using this procedure. This work assumes that the student has a basic knowledge of circuit

analysis and digital logic circuits.

1.3 Simulations

There are many simulation tools that can be used for microcontroller design.
Hardware Description Language (HDL) programming and graphic simulators are the
main development tools used in the microcontroller design market. The computer tool
used in this work is the graphical simulator Logic Works. Logic Works was chosen
because the focus of this work is for beginners in the microcontroller field. Logic Works
brings to the student an easy and complete visualization of the circuits and their
operation. One of the main features of this work consists in its illustrative techniques and
Logic Works results useful for these purposes.

HDL is convenient for large size circuits and then its code can be downloaded
into an FPGA for device prototype testing. But its programming nature does not result
useful for people trying for the first time to grasp the microcontroller concepts. Users
face a double challenge because they are trying to understand the basic principles of the
microcontroller operation and at the same time they are trying to learn the programming
rules and techniques of HDL code in order to execute the circuit simulation. Logic Works
allows users to graphically understand what happens inside the microcontroller during its
execution and then, schematics can be transformed into an HDL code and downloaded

into an FPGA for further prototype simulation.



1.4 Work Organization

Basic theory about microprocessors, its basic concepts and applications,
performance factors and a comparison between microcontrollers and microprocessors are
discussed in Chapter 2. The third chapter discusses the digital circuits available for the
microcontroller HDL code prototype, the microcontroller implementation alternatives
and programming. The fourth chapter describes in detail each of the microcontroller
design steps used in this work and the most important points to keep in mind. Chapter 5
has an example of the microcontroller design process described in chapter four. In this
chapter the microcontroller instruction set, architecture, basic circuits and the evolution
of the data path as new instructions are developed are described in detail. Chapter 6
presents the control unit design. A detailed description of each instruction is given in

chapter 7. Chapter 8 presents the conclusions of this work.



Chapter 2. Theory and Applications

2.1 Microcontroller Applications

The microcontroller is one of the most important electronic devices on which modern
technology is based on. Microcontroller uses are endless; from toys to microwaves,
ovens, TV sets, computers, printers, cars and so on.

Digital circuits become larger and larger as more functions need to be executed. In
modern digital world, most individual digital circuit components are sold in a single chip.
Those individual chips need power and space to operate. When the circuit becomes huge,
the traditional logic design approach is not the best option and microcontrollers become
convenient. Microcontrollers are basically sequential machines because their operation
depends on their current status and its inputs. Their power lies in the fact that the
hardwire configuration allows its operation to be changed depending on programming. It

is not required to use additional logic circuits if the operation is changed.

2.2 The Processor and the Microntroller Concepts

Data are words, numbers and graphics that describe people, events, things and
ideas. It becomes information when used as the basis for initiating some actions or to take
decisions. Data is represented by binary expressions when used in the digital world.

A binary number system is a numeric system that has only two different digits: 1
and 0 (binary); and any of these is called a bit. Data are represented by finite permutation
of bits. These combinations are called words. A collection of hardware devices that
manipulate binary expressions to process information is called a processor [1].

The processor manipulates binary numbers following an algorithm, which
determines the way in which the instructions are processed by the hardware inside the
processor, how data begins to be processed and where it is finished. An instruction code
in the instruction format indicates to the system which algorithm to perform. This specific
algorithm represents the specific instruction to be executed. The following are the

principal processor components [1].



1) Arithmetic Logic Unit (ALU): is a combinational logic network that performs
the mathematical and logical operations of the processor.

2) Registers: hold the data operated on, between clock cycles for processing.

3) Control Unit: a synchronous sequential logic network that controls all the
hardware in the digital system. This unit decodes the instruction,generates the
proper sequence of control signals, and activate and deactivates the
corresponding hardware units in the system to achieve the right processing
according to the instruction.

4) The clock: a periodic pulse waveform that synchronizes all the elements in
the system. Every clock cycle represents a state of the system. This means that
in every clock cycle the system will have specific hardware control lines that
are going to be on or off. The system clock speed depends on the response

speed of the circuit elements when data passes through them.

Although these components are the most important ones, they are not alone. A big
difference exists between identifying all those main elements and putting them together
to work. Digital Logic, gates, multiplexers and other important circuits are necessary for
processing support or to solve implementation problems, avoid signal conflicts and so on.
Memory (circuit where data and instructions are stored) and input / output circuit
interface (computer system used to pass data to and from the central processing unit) are
necessary circuits for the microprocessor implementation.

Any hardware involved in data transfer into or out of the processor is considered
separate from the processor. Processor only refers to the hardware that manipulates data.
When a processor is capable of performing arithmetic operations, logical operations, load
and store operations, branching operation and input-output operations, it is called a
“general purpose processor”. When it is integrated in a single IC it is called a

MiCroprocessor.



A personal computer is usually a connection of components that contain many
microprocessors. The motherboard contains the main microcoprocessor, but other
microcoprocessors or microcontrollers are also involved. The keyboard, the disk drive
interface, the display monitor interface, and the printer are some of the components that
may contain their own microcontrollers. Therefore, a personal computer system is a

collection of many microcontrollers controlled by a main microprocessor.

2.3 Microcontroller Performance Factors

Microcontroller performance can be defined in terms of speed, size, power, cost,
design time and manufacture cost. Each depends on concepts beyond the scope of this
work. The main factor determines the microcontroller performance [9] are its
architecture, design features and manufacture process. Thus the microcontroller
performance depends on designers’ judgment at the design stage.

The architecture features determine the remaining microcontroller characteristics.
The architecture depends on the microcontroller application. Different applications differ
in features and data processing requirements. The Von Neumann architecture and the
Harvard architecture [3] are the two main architectures used in microcontroller design.
The Harvard architecture is the most popular nowadays. Von Neumann architecture main
characteristic is that it uses one main memory where data and instructions are stored.
Only one system bus is used for control, data transfer, processing and addressing.
Harvard architecture consists of two different and independent memories in which one
contains instructions and the other one contains data. Both have their own data bus
systems for control, data transfer, processing and addressing. Both memories can be

accessed simultaneously.
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After the architecture has been defined the design process will be ruled by it. The
hardware implementation will process the data by the architecture definition. Every part
of the microcontroller hardware has many variables that can be configured to set its
operation. Examples of these variables are the chip area and the distance between its
components, the chip power dissipation, wiring effects, chip speed, manufacture
materials, and packing. Each and every one of those variables is a field of study by itself,
but they are beyond the scope of this work [8].

The Architecture and the hardware implementation features transform an idea into
a circuit with specific characteristics. Computer simulation allows designers to verify that
circuits work as required. When specification constrains and performance requirements
are met, it is time for testing and manufacture. Design aspects defined by the architecture
determines which manufacture process will be used. Manufacture processes have

advantages and disadvantages and they can differ in equipment cost and technology.

2.4 The General Purpose Microcontroller

Microcontrollers execute different kind of instructions. The instructions for a
general-purpose microcontroller can be:
1) Arithmetic Instructions.
2) Logic Instructions.
3) Data transfer Instructions.
4) Jump Instructions.

5) Miscellaneous Instructions.

Some microcontrollers are designed to specialize their execution in one or more of
those classifications. Those are special purpose microcontrollers. Those basic instructions
are combined to perform more complex instructions and the power and speed of
execution of the microcontroller allows those instructions to execute complex tasks.
Instructions are executed in such a way that an operation is achieved and different

operations are used for different applications.



11

Special purpose microcontrollers are designed for an application where using a
general-purpose microcontroller is not the best option. Usually those applications require
repetitive execution of one or more instructions, which can be implemented in software
or hardware. Hardware instruction implementation allows faster execution and reduces
program size. Examples of special microcontrollers can be found on camcorders, digital

cameras, automobiles and so on.

2.5 Comparing Microcontrollers and Microprocessors

The microprocessor is an integrated circuit composed by the Control Unit,
Arithmetic Logic Unit, Registers and Digital circuit support. The microprocessor uses its
data bus pins, address bus pins, and control lines pins to allow connection to other
circuits to configure the entire system. The main characteristic of the microprocessor is
that it is an open system, which means that its configuration is variable, and can be

adapted to many different applications. A block diagram of a microprocessor is shown in

figure 2.1.
CPU
47
ALU Registers
Memory
—>
Control Digital
Unit Circuits
Input / Output
System

Figure 2.1 The Microprocessor Configuration
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The microcontroller is a closed system. In the microcontroller all parts that can be
configured in the microprocessor are fixed in the same chip. A block diagram of a
microcontroller is shown in figure 2.2. Just the lines that control the peripherals are the
ones that go outside the chip. This characteristic makes microcontrollers suitable for
specific applications or for general use.

The microcontroller applications range is narrower than the microprocessor’s
range. The reason is that microcontrollers have all their computing system integrated on
the same chip. This reduces the available space inside the microcontroller to include
components that the microprocessor have externally like memory and I/O system.

This means that a microprocessor can be used for microcontroller applications but
microcontrollers cannot always be used for most microprocessor applications.
Microcontrollers are preferred when the application is defined and specific. In those
situations where important system modifications are needed or applications are not

specialized a microprocessor is more convenient.

MICROCONTROLLER
<+—> <+“—>
CPU MEMORY
Peripherals Peripherals
<+—> <+—>
I/O SYSTEM

Figure 2.2 The Microcontroller Configuration
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Chapter 3 Microcontroller Implementation and Operation

3.1 Implementation Alternatives

Traditionally, digital design was a manual process of designing and capturing
circuits using schematic entry tools [2]. The increase in size and complexity of

hardware has forced designers to discus new methods and tools for digital design.

Hardware description languages (HDL) and synthesis, have substituted the more
traditional schematic process of simulation. This is because HDL allows simulating
circuits with hundreds of elements in a relative short period of time. Some of the new
tools for HDL simulation are electronic equipment containing Application-Specific

Integrated Circuits (ASICs), or Field-Programmable Gate-Arrays (FPGAs).

The introduction of industry standards for hardware description languages and
commercially available synthesis tools has helped establish this revolutionary design

methodology. Some advantages are:

* Increased productivity yields shorter development cycles with more product
features and reduced time to market,

* Reduced Non-Recurring Engineering (NRE) costs,

* Design reuse is enabled,

* Increased flexibility to design changes,

* Faster exploration of alternative architectures

» Faster exploration of alternative technology libraries,

» Enables use of synthesis to rapidly sweep the design space of area and timing,
and to automatically generate testable circuits,

* Better and easier design auditing and verification.
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Figure 3.1 Microcontroller Implementation Alternatives

ASIC

Figure 3.1 illustrates the alternatives of hardware implementation available.

Modern designs are characterized by their increase in size and complexity, circuit

simulation is one of the most important steps in circuit design. Circuit simulation and

hardware prototype implementation saves time and money because they allow designers

to verify that the implemented digital design works as required.
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Software simulation previews the circuit behavior. It serves as a mechanism to
verify accurately the principal circuit characteristics and to ensure its design requirements.
Hardware implementation, in contrast with software simulation, is a physical prototype
configuration that serves to physically simulate the circuit behavior. Note that hardware
implementation requires software simulation through HDL. Its advantage lies in the fact
that circuits can be tested interacting with other real physical circuits before they are

fabricated.

Standard "off-the-shelf" integrated circuits have a fixed functional operation
defined by the chip manufacturer. Contrary to this, both ASIC and FPGAs are types of
integrated circuit whose function is not fixed by the manufacturer. The designer for a
particular application defines the function. An ASIC requires a final manufacturing

process to customize its operation while an FPGA does not.

ASICs

An Application-Specific Integrated Circuit is a device that is partially
manufactured by an ASIC vendor in generic form. This initial manufacturing process is
the most complex, time consuming, and expensive stage of the total manufacturing
process. The result is silicon chips with an array of unconnected transistors. The final
manufacturing process of connecting the transistors together is then completed when a
chip designer has a specific design to implement using ASIC. An ASIC vendor can
usually do this in a couple of weeks and is known as the turn around time. One problem
is that it is a physical realization, which means that if there are mistakes during the
HDL simulation and are not corrected, its physical implementation will have the errors
also and there are no mechanism to correct it once it is fabricated. There are two

categories of ASIC devices: Gate Arrays and Standard Cells.
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Gate Arrays

There are two types of gate array; a channeled gate array and a channel-less
gate array. A channeled gate array is manufactured with single or double rows of basic
cells across the silicon. A basic cell consists of a number of transistors. The channels
between the rows of cells are used for interconnecting the basic cells during the final
customization process. A channel-less gate array is manufactured with a "sea" of
basic cells across the silicon and there are no dedicated channels for
interconnections. Gate arrays contain from a few thousand equivalent gates to
hundreds of thousands of equivalent gates. Due to the limited routing space on
channeled gate arrays, typically only 70% to 90% of the total number of available

gates can be used.

The library of cells provided by a gate array vendor will contain: primitive logic
gates, registers, hard-macros and soft-macros. Hard-macros and soft-macros are
usually of MSI and LSI complexity, such as multiplexers, comparators and counters.
The manufacturer in terms of cell primitives defines hard macros. By comparison,
the designer, for example, characterizes soft-macros by specifying the width of a

particular counter.
Standard Cell

Standard cell devices do not have the concept of a basic cell and no components
are prefabricated on the silicon chip. The manufacturer creates custom masks for every
stage of the device's process and silicon is utilized much more efficiently than for gate

arrays.
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FPGAs

The Field-Programmable Gate Array is a completely manufactured device, but
remains design independent. Each FPGA vendor manufactures devices to a proprietary
architecture. However, the architecture will include a number of programmable logic
blocks that are connected to programmable switching matrices. To configure a device
for a particular functional operation these switching matrices are programmed to route

signals between the individual logic blocks.

PLD and PLA

The Programmable Logic Device (PLD) is essentially a grid of programmable
conductors that form rows and columns with fusible link at each cross point. PLD are
classified according to their architecture, which is basically the functional arrangement of
internal elements that give a device its unique characteristic. The Programmable Logic

Array (PLA) is a device with programmable AND and OR arrays.

3.2 Hardware Description Languages (HDLs)

A Hardware Description Language (HDL) is a software programming language
used to model the intended operation of a piece of hardware. There are two aspects of
hardware description that HDL facilitates: true Abstract Behavior Modeling and Hardware
Structure Modeling.

The Abstract Behavior Modeling is a declarative hardware description language
in order to facilitate the abstract description of hardware behavior for specification
purposes. The Hardware Structure Modeling is a hardware structure that can be
modeled in a hardware description language irrespective of the design behavior. The
hardware behavior may be modeled and represented at various levels of abstraction
during the design process. Higher-level models describe the operation of hardware
abstractly, while lower level models include more detail, such as inferred hardware

structure [23].



18

3.3 Tradeoffs in Microcontroller Design

Is it necessary to use a special purpose microcontroller or a general purpose one
can be used? That is an important question that must be answered before attempting to
implement a microcontroller. In addition to having the basic instruction set, special
purpose microcontrollers usually have instructions specialized to perform specific tasks.
Those microcontrollers include in their design, special hardware that is used for
execution and calculation support to execute instructions in their specific applications.

The application determines the microcontroller operation, and the operation is
executed with specific instructions. Then, the real deal in the design process consists in
making tradeoffs between designing more powerful and complex instructions that reduce
the programming code, or as another alternative, the operation can be implemented in
hardware to save the time-consuming programming of certain tasks and achieve faster
execution.

Should an operation be implemented in hardware or software? Is it worth? The
answers to those questions depend on many factors like design requirements, available
budget, technology used and so on. Hardware instructions implementation result in faster
executions but increase design cost. Software implemented operations save hardware and
costs but increase the instruction execution time and the programming complexity. There
are not defined rules. Designers have to make their choices based on design constrains

and available resources to produce the best system performance at the lower cost.
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3.4 The Microcontroller Programming

Commonly, every processor is designed with one purpose and has its own
instruction set. The microcontroller architecture determine how powerful the instruction
set is and how many clock cycles it takes to execute its instructions. As the instructions
are more powerful, the microcontroller programming usually becomes more complex but
shorter and more tasks are done per clock cycle.

Microcontroller programming is usually done in assembly language. This is
because this is a low level programming language. Instruction in this low level
programming language are directly related to the machine code, the ones and zeroes or
high and low voltage combinations necessary to control all the hardware inside the
microcontroller to process data. One advantage of assembly language is that allows the
programmer to control some internal process like selecting specific registers that
normally cannot be done using a high level programming language.

Each microcontroller has its own assembly language code, so the assembler is
specific to the microcontroller. High level programming languages, on the contrary,are
independent of the processor. The compiler and other tools are transparent to the
programmer, do the translation to the respective processor used by the computing system.

Commercial microcontrollers are very often sold embedded in the so-called
evaluation cards. These system boards contain additional hardware and connectors to
facilitate applications and programming. The programmer can design the assembly

program and download it to the microcontroller easily.
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3.5 The Microcontroller Operation

Summarizing, the microcontroller operation consists in three steps:

e Fetch process; the fetch process consists in retrieving one instruction from
memory and load it in the Instruction Register.

e Decoding; once the instruction is in the Instruction Register, the control
unit receives the operational code from it. The control unit decodes the
operational code to identify the instruction to be executed.

e Executing; after the control unit identify the instruction, it start a series of
microcontroller hardware signal activations. To carryout the execution
process some of the circuit elements must be on and off in each clock
cycle. The control unit ensures that the necessary elements are on and off

in each clock cycle to accomplish the instruction execution.

Basically the CPU addresses a memory location, obtains (fetches) a program
instruction that is stored there, and carries out (executes) the instruction. After completing
one instruction, the CPU moves on to the next one. This fetch and execute process is
repeated until all of the instructions in a specific program are done. The fetch process
clock cycle depend on the Instruction Register size (and i.e. the instruction word) and the
number of bits of the data bus. For example if the IR size is eighteen bits and the data
path is four bits, then five clock cycles will be needed for the fetch process. The memory
size will determine how many instructions can be stored in it and indeed the program size

that can be stored.
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3.5.1 The Program Counter

To indicate the memory address to retrieve the instruction a special register is
used. This register is the Program Counter. The PC holds the address of the memory
location where the next instruction is located. The PC input ports are connected to the
data bus; in this way the ALU connected also to the data bus increment the PC to the next
memory location. The PC output port is connected to the memory address port to identify

the required memory location where the instruction is.

3.6 FLAGS

Flags are also called conditional codes. Condition codes are bits set by the CPU
hardware as the result of operations. Usually condition codes are collected into one or
more registers called flag register. Flags are very useful because they can be used as
parameters to make decisions. For example, a microcontroller application can check the
flag register to see if the result of one subtraction operation is zero, then, using this

information the microcontroller can take decisions to execute other instructions.
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Chapter 4 The Microcontroller Design Steps

This chapter describes the steps used in the microcontroller design example of this
work. Each step has important points that designers should keep in mind in them. Those

points guide the user through the whole design process.

4.1 Methodology Steps

The steps are enumerated in table 4.1

STEP DESCRIPTION

STEP I Justification

STEP 11 Operations Definition

STEP III Instruction Set Definition

STEP IV Architecture Definition

STEP V Arithmetic Logic Unit (design and implementation)
STEP VI The Register File

STEP VII | The Instruction Register

STEP VIII | Data Path for data processing and Control Signal Table
STEP IX The PC, Jump and data transfer instructions

STEP X The Control Unit

Table 4.1 Methodology Steps

The description of each one is given next.
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4.2 Steps Description

STEP I: Justification

Designers should first analyze the situation and decide if a microcontroller is needed

for the application. The following are some questions that could guide designers at the

implementation decision stage.

What is the application? Application is a computer program or set of programs
designed for a particular type of real world job.

Can the application be implemented with logic circuits? The answer to this
question is obviously yes. But, what will be the resulting circuit size? Is it
affordable?

What could be the microcontroller implementation advantage? The importance of
microcontroller lies on the fact that it has hardwired circuits that change their
operation using programming. Designers should analyze if the amount of different
applications justify the use of a microcontroller or if the use of individual
operational circuits is more convenient.

What are the advantages or disadvantages of using a microcontroller in terms of
efficiency, time, design complexity and cost? Analyses of tradeoffs are necessary
to answer those questions. Budget and design requirements analyses are necessary
to decide if a microcontroller use is convenient or not. Sometimes the use of a
microcontroller results in a waste of hardware resources. In other situations the
microcontroller use results in the less expensive option. There are situations in
which programming is avoided using logic circuit, but this choice could result in
larger, expensive and more complex circuits.

Is a microcontroller result in the best option? How many different operations will
be used? How many times one operation is executed? Is it better to use individual
circuits for every operation or using a microcontroller is more efficient? Do
Individual circuits have faster response than the microcontroller? Is this
difference in time response needed for the application? Is the microcontroller
programming complexity worth instead of using individual circuits? What tasks

are done routinely?
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STEP II: The Operation Definition

After a careful study of the application, the next step consists in defining the

amount of different operations required for the application.

One computer operation is defined as the calculation executed by a single machine code

instruction [8]. It is also the mathematical or logical way of producing a result from one

or more operands.

What are the application operation requirements? Are those operations complex
or simple? How many different operations does the application have? Do
designers need a new microcontroller to execute one operation or can they use an
existing one? If they use an existing one, does it execute the instruction as
required in terms of clock cycle, power and speed?

Is it more convenient to divide those operations in more simple tasks or not?
Depending on the application and design requirements this could or could not be
possible. Can the microcontroller with its instruction set, execute those individual
and simple tasks, or a new one is needed?

Can those tasks be executed using more than one instruction, or is one instruction
enough? The answer to this question lies on the characteristics of every
microcontroller instruction and depends on the amount of tasks covered by the

instruction.
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STEP I11: The Instruction Set Definition

The instruction set should contain those instructions that the application requires.
Tasks executed, amount of hardware used and clock cycles are very important parameters
of an instruction. One instruction is defined as a program statement that has been changed

into machine code. The CPU can understand the statement and execute it [8].

e How powerful is the instruction? The term powerful means that many tasks can
be executed. This however may result in more hardware or more clock cycles per
instruction.

e How many instructions are required to perform the operation? This will be
determined by the power of the instruction set. The more powerful the instruction
set is, fewer instructions are needed per operation.

e What kind of instructions does every microcontroller must have? Every
microcontroller must have at least; logic, arithmetic, branch and data transfer
instructions.

e How many complex tasks can be executed using the simplest instruction set? The
basic instruction set can be combined to execute complex tasks. For example, a
multiplication operation can be executed with successive execution of the addition

instruction.

e What instructions should be implemented in hardware and which ones in software
and why? Instructions frequently executed must be implemented in hardware.
This saves programming time and size, allowing faster instruction execution.

Software instructions are used depending on the application.
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STEP IV: The Architecture Definition

The Computer architecture refers to the basic ideas and principles in which a computer

system is based on [8].

The instruction operation.

The first task must always be to specify each instruction operation. After
designers identify the instruction set, they must document: the instruction’s name, as well

as operands and execution in symbols for each one.

The microcontroller bit number.

The microcontroller bit number refers to the size of the group of bits
processed during instruction execution. Sometimes choosing the number of bits is
as simple as analyzing the required bits for the application. In other cases there
are applications in which more than certain amount of bits results unnecessary.
Using more than the necessary bits may result in excessive hardware use and an

increase in the circuit size, cost and power consumption.

The instruction format.

The instruction format specifies the order of the instruction parameters in
the instruction word. Those parameters include the operational code, registers

used, and additional necessary data for the instruction execution.

The instruction format organization

The instruction word parameters can be organized as designers want. In
this work the operational code will be at the left most side, next are the registers
used during the operation and finally the additional data used for the instruction

execution.
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The Operational Code (Opcode).

The number of instructions decides the necessary bits for the operational
code. The operational code identifies each instruction with a unique code for its

execution.

Addressing modes

The addressing modes decide the amount of registers used for data
processing. The addressing modes used during the instruction execution decides if
more bits have to be used to address the data or not and this affects the size of the

instruction word.

Bits used for the Register File.

The number of registers used in the Register File determines how many
address bits in the instruction word are required to address one specific location in
it.

Number of data buses.

The number of data buses in use determines the amount of data processed
per clock cycle. Using more than one data bus can save clock cycles per
instructions, but increases the data path and control unit circuit complexity.

Control Line Bus: In this work the control lines will be connected to the control
unit.

Address Bus: Depending on design requirements the address bus is not necessary
if the address bits can be transferred using the data bus. A dual role requires
additional hardware.

I/0 Handling: Will the I/O ports be memory mapped or handled separately.

Memory mapped ports do not require special I/O instructions.
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STEP V: The Arithmetic Logic Unit

In step V, the goal is to design the Arithmetic Logic Unit circuit. The ALU is the

CPU component where mathematical and logical operations are executed.

e ALU components
The individual circuits that execute all the arithmetic and logical operations are

joined together as one unit to compose the Arithmetic Logic Unit.

e Testing
Testing is a very important task in this step. Designers must ensure that every

individual circuit in the ALU correctly does every calculation.

STEP VI: The Register File

A register is a small high-speed memory circuit that holds binary data [8]. In This
step, the Register File is developed. The Register File is a group of registers used to store
data during the instruction execution. It is an important element because data needs to be

stored between clock cycles for further processing.

e Implementation alternatives

The number of data buses in the microcontroller determines the Register
File design. Sometimes more than one data bus is used to accept and release data
simultaneously in one clock cycle. Designers must decide how many data buses
will be used in the microcontroller because the Register File will use the same

number.
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e The number of registers for the application

This is an important design parameter because it affects not only The
Register File size but also the Instruction Register size because the IR has bits
dedicated for the Register File address. Designers must select the number of

necessary registers to hold data in each instruction clock cycle.

STEP VII: The Instruction Register (IR)

The Instruction Register holds the instruction word that will be executed. It is
designed at this stage because the numbers of instructions, registers used and the
architecture have been defined. The IR is connected to the control unit, the Register File

and the data path.

e Implementation alternative: The IR implementation consists of a register or a

group of registers that holds the instruction word.

e Size: It will be easier if the size is equal to the word size because then, the
instruction word holds all the required information for the instruction execution.
The memory output is connected to the IR to load every single program
instruction line. The IR does not have to be the same size of the data bus because
it just transfers data and does not contain any other information about the

instruction.
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STEP VIII: Data Path

The microcontroller data path is the configuration of all the circuits used for data

processing. Some key points are very important in this step. It is implemented at this

stage because all the necessary circuits have been designed.

Layout

Designers must be creative and use strategic thinking to make the best circuit
arrangement in order to achieve the instruction execution using the minimum
amount of hardware and clock cycles.

Clock cycles

The Register File plays an important role in the number of clock cycles per
instruction. More data can be processed at the same time depending on the
amount of the Register File input and output ports. Also, another important
element is the number of additional registers in the data path used to hold data
between clock cycles. This can make a difference in the number of clock cycles

per instruction if designers know how to use them.

STEP IX: The PC, Jump and data transfer instructions

The instructions developed at this stage use the existing data path hardware and

additional necessary circuits added in it for instruction execution.

Those instructions need additional circuit support because some of them make
decisions between clock cycles. Those circuits are used only when their
instructions are executed. It is very important to test those circuits before using
them for support. Another reason for using additional hardware is that more than
one task per clock cycle is executed in those instructions.

Block diagram to show the added elements. It is convenient to show the added
elements to the data path to see its transformation into a more complex one.

The Program counter. The program counter was introduced in section 5.3.1 and is
developed at this step. This step presents the PC implementation and

interconnection in the microcontroller circuit.
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STEP X: The Control Unit

The control unit is the CPU section that decodes program instructions and controls
their execution. It takes control of every circuit signal in the microcontroller, activating or
deactivating those signals in each clock cycle. The signal activation and deactivation per
clock cycle make possible the flow of data through all data path circuits. The circuit
arrangement determines the amount of processed data in each clock cycle. Then, as more
data is processed per clock cycle fewer of them are needed. The developing method used
in this work requires that designers “run” by hand every single instruction and take notes

of which circuit signals are activated and deactivated per clock cycle.

e Timer
The timer is a counter that goes from zero to seven and is used to specify each
instruction clock cycle.

e Operational Code Decoder
This element receives one specific instruction code and release one signal that
indicates the microcontroller to execute it.

e Control Unit Encoder
The Control Unit Encoder receives input signals from the opcode decoder and
from the timer. The Control Unit Encoder activates the corresponding circuit
signals that have to be active in the specified instruction in every clock cycle.

¢ Implementation Alternatives
The preceding explanation of the control unit operation is implemented using
logic circuits for the control unit encoder and the opcode decoder. There is
another way of implementation that consists in the use of one ROM that has all
the signal activation and deactivation per clock cycle. The control unit
implementing this approach uses the opcode to identify the instruction location in
ROM. Each line code in ROM represents each instruction clock cycle and the
code in every line just controls (activates or deactivates) all the data path circuit

signals.



Chapter 5 The Microcontroller Design Example

5.1 STEP I and II The Microcontroller Justification and Operations

The purpose of this chapter is to provide the reader an example of the methodology

described in chapter 4. Step I, and II will not be developed in this example because our

intention is to show the design and implementation of one general-purpose

microcontroller.

5.2 STEP III: The Instruction Set

32

The choice of microcontrollers instruction set is not standardized due to designers

and customers preferences. The microcontroller instructions are classified according to

their operation. Table 5.1 presents the basic instruction set for the microcontroller of this

work. In this table the transfer notation is used to show the instruction results. Here A «—

B + C for example means that the contents of A is substituted by the result of B + C.

Those instructions were selected to show the reader an example of the most common

instructions used in microcontrollers.

NAME MNEMONIC ADDRESSING OPERAN TRANSFER
MODES DS NOTATION
ARITHMETIC INSTRUCTION SET

ADDITION ADD Register B,C A «—(B+0)
SUBSTRACT SUB Register B,C A «<B-0)
INMEDIATE ADDI Immediate B,DATA | A «<(B+DATA)
ADDITION
INMEDIATE SUBI Immediate B,DATA | A «<(B-DATA)

SUBSTRACTION
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LOGIC INSTRUCTION SET
AND AND Register B,C A «(Be()
OR OR Register B,C A <«<BHO
INMEDIATE ANDI Immediate B,DATA | A <—(B eDATA)
AND
INMEDIATE OR | ORI Immediate B,DATA | A «(B(+) DATA)
SHIFT RIGHT SHR Register n (1n) Bi+n B j+n B k+n
<« BiBjBkBI
ARITHMETIC SHRA Register n (nBi) Bi+n B j+n B k+n
SHIFT RIGHT <« BiBjBkBI
CIRCULAR SHC Register n (nBl) Bi+n B j+n B k+n
SHIFT <« BiBjBkBI
SHIFT LEFT SHL Register n Bj-n Bk-n B1-n (1n) «
BiBjBkBI
NOT NOT Register B -B)«B
DATA TRANSFER
LOAD LDA M Register AM A—M
STORE STR M, A Register AM M« A
BRANCH
UNCONDITION | UNCIMP Immediate Last4 bits | PC « (LAST 4 BITS)
AL JUMP
JUMP IF BRNCH Register Address IF CONDITION IS
CONDITION TRUE: PC «
(ADDRESS)

MISCELLANOUS
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DATA IN Register ADDRESS | ADDRESS «- DATA
TRANSFER (IN)

DATA OouT Register ADDRESS | PORT « ADDRESS
TRANSFER

(OUT)

READ PSW RDPSW Register ADDRESS | ADDRESS « PSW

Table 5.1 The Microcontroller Instruction Set

5.3 STEP IV: The Microcontroller Architecture Definition

The Architectural design steps include:

A) The Instruction Set.

B) The number of used bits to represent data (4, 8, 16,32 or 64 bits).

C) Instruction Format and addressing modes.

D) Number of data buses.

E) The instruction execution algorithm (the best arrangement of the hardware to

process the software).
F) Clock cycles per instruction.

G) Input / Output mechanisms.

The computer organization must be specially designed to implement a particular

architectural specification. The microcontroller task is to execute each and every

instruction it receives. This means that each instruction reflects the architecture in use by

the microcontroller. After the selection of the desired instructions for the

microcontroller, the next step consists in specifying the rest of the architecture.




35

a) The Instruction Set

Step II defines the instruction set for the microcontroller.

b) Number of microcontroller bits

Because this work is focused on beginners, the number of bits used for this
microcontroller will be four. Four-bit microcontrollers are simpler for design and
implement. The same techniques used here for this four- bit microcontroller can be used

for eight-bit or sixteen-bit microcontrollers.

¢) The Instruction Format

After the basic architectural aspects have been defined, the instruction word can be
defined. Each instruction word has a group of bits that identifies its specific code. The
group of bits used for this code is called the instruction operational code or opcode. This
work uses 20 instructions, so, the minimum number of bits for the opcode decoder is 5,

because 24 = 16, while 2”5 = 32, enough to assign each instruction a specific code.

The Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

Opcode Ra Rb Re Different uses

Figure 5.1 The Instruction Format
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There are no standard rules for the order and meaning of the different groups of bits
that compose the instruction word. That depends on designers’ judgment and system
architecture. The standard for this microcontroller will be the following; accordance to

figure 5.1.

1) Bits 17-13 stand for the opcode. Those bits specify the instruction that will be
executed.

2) Bits 12 to 10 labeled as Ra, specify the register file address location to store the
processed data or the one that has been transferred from memory.

3) Bits 9 to 7 labeled as Rb, represent the register file address location of one
instruction operand.

4) Bits 6 to 4 labeled as Rc, represent the register file address location of one
instruction operand.

5) Bits 0 to 3 are used depending on the operation. For example, all the instructions
that use the immediate addressing mode need a value directly from the instruction

word. The value in those instructions is stored in those last 4 bits.

d) The number of data buses

The number of data buses in the system will be just one. Although one
microcontroller with more than one data bus could be more efficient, the number of
signal activations will be higher per clock cycle. This will result in a more complex
control unit and for simplicity purposes the microcontroller of this work have just one

data bus.

Architecture design steps; E) Data Path arrangement, F) Clock cycles per
instruction, and G) Input / Output mechanisms will be specified at the same instruction

design moment.
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5.4 STEP V: The Arithmetic Logic Unit

The Arithmetic Logic Unit is one of the most fundamental CPU components. The
techniques used in this work for the ALU design consist first in designing all its
individual circuits and connecting them in parallel, as illustrated in figure 5.2. In this
figure, each block “operation I stands for an operation associated to an instruction and
executed by the ALU. The block has its output connected to a tristate buffer (See figure
5.3) [3]. The signals controlling the tristate buffer operation come from the IR depending

on the opcode. We illustrate now the operation blocks.

Control logic

activated by
PORT A PORT B the control unit
OPERATION 1
TRISTATE 1
OPERATION 2
[
TRISTATE 2
OPERATION 3
[
TRISTATE 3
OPERATION N
TRISTATE 3
Flags due to L » FLAGS
computations results

Figure 5.2 The ALU Structure
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SCSTRBUFOUTT3
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TRBUFIN3 X> ﬁ

—
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Figure 5.3 Tristate Buffer Implementation Circuit

5.4.1 The Adder and Subtractor

SCO>TRBUFOUT T4
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The adder can be designed for example using the carry ripple connection as illustrated by

figure 5.4 [3]. After selecting the adder we have to do some testing as illustrated in figure

5.5. We proceed similarly with the subtractor tested as illustrated in figure 5.6.



39

BITA3 BITBS BITA2 BITB2 BITA1 , lB'TB1 BiTA0 . BITBO

CARRY CARRY

adl

:7 Sj
SuUmM3 SumM2 SuUM1

CARRY CARRY CARRY CARRY

umo

Figure 5.4 Adder Example

0
co
01 2 1R B3
4 5 6 7 B2 0
8 9 A B B 1
C DE F BO S3 +—
S2 1
01 2R A3 S1
4 5 6 7 A2 S0 +—
8 9 A B A1 1
C DE F AO
\ Cl
0

Figure 5.5 Example of Adder Circuit Testing
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co o
0O 2 3 B3
4 5 6 7 B2
8 9 A B B 1
C D E F BO S 3 | :
\ sz—~—|
0O N2 3 A3 S1 7
4 5 6 7 A2 S0 1 |—
8 9 A B A1 T E
C DE F AO
| X o

Figure 5.6 The Subtractor Circuit Implementation

5.4.2 Logical Bit wise operations: AND, OR, NOT.

The Bit wise logic functions takes words and bit by bit perform the corresponding
function. These blocks can be done with parallel connections of gates as shown in figure

5.7 for the AND block. The OR and NOT operation blocks are equally designed.
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o

Figure 5.7 AND Circuit Implementation
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5.4.3 Shift Right

¢ 4 Rits that will he chifted
Shift input port \
v o e b 3

bitpotoutd

@
g
A b=
g

pzﬂ
ipu3
=
putd

bitdeshiitd SBIX> ¢ ! & 57 A
u T
- % R B
Bits that b’r’ -Y_ — —Y_ I
indicate the
amount of
shifts
[ S— r;‘ WVL‘ &/ 5/
AT N
o T T
T
E
e B—— Y 5 r7 Y
A
L ok
" (o 1
C
4 Output

bits

bi tpo tout2
bitpo to ut3
bi tpo toutd

Figure 5.8 The Shift Right Implementation Circuit
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In figure 5.8 shows the circuit used to execute the Shift Right instruction. This
operation takes one string of binary bits and makes the specified shift places to the right,
replacing the vacant places with zeroes. For example, atwo place shift to the string 1111
results in 0011. The circuit is composed by the processing hardware for the binary
number that will get the shift places.

In figure 5.8, the string CBA specifies the times that shifting takes place. Thus,
001 will cause one shift to the right (1 x 20 = 1). Two places to the right (1 x 2 "1 =2)
and so on. Notice that the maximum number of shifts is 4, since the data has 4 bits, so C

=1 yields a string of 0’s. Figure 5.9 illustrates the mechanism used for the shifting

decision.

E2 | ogicWarks 4 - [C:\in use\simulaciomalulshift rightishift rigth2.cct] [MEET
£ File Edit Wiew Schematic Simulation ‘Window Help -8 x
D||d|@| &[o[mel ol \al+|+]| &[o(=(=] &/ =2
C t It‘ Irtl g AL JAC 0

ircuit input ports ~ i

> ALLLBRARIES
bitportour] bitportouts bitportou
T

putinsE

o
W Preview

M X o
o | N

A L 8

AN
j P EN R - il
L -
|

B
74_00
7402
r 7403
E 74704
i o
: et nputs 74100
\ F ’_ 741
bitdeshift H75\27 r;, —{7 ;j_:ll g%
74_103.a
74_103b

74104

X o

o | ST L oy T |
— ~a $ R i

747107k
‘ Rl P TN v

Ready

|24 jexplicacion de los cire... BB LagicWorks 4 - [CHin ... &)= 00 T B suzem

Figure 5.9 The Shift Right Instruction Mechanism
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Shift Right function mechanism

Once the binary number that will be shifted is in the circuit input port, bits that
specify the amount of shift has to be present also in the circuit shift input ports.
Depending on the number used to indicate the amount of shifts, the first stage with the
letter A (see figure 5.9) will be a zero or one. If it is zero, that zero will activate the
tristate buffer with the letter A, and it will allow the data in the input port to pass to the
next stage directly to the tristate buffer with the letter E.

The inverter with the letter M will receive a 0 that will change to 1, causing that
the tristate buffers with letters N and P be deactivated and do not allow the flow of data
through them. If the bit at stage A is 1, the tristate buffer with the letter J will be
deactivated and will stop the flow of data through it. The inverter with the letter M will
receive a 1 that will turn into a 0, this 0 will activate the tristate buffers N and P. The
tristate buffer N will be responsible for the shifting process. This tristate buffer N is
connected to the most significant bit and when activated, it allow the MSB to pass to the
node labeled F as the second bit. The tristate buffer P will ensure that the vacant place is
filled with a 0. Then the second bit of shift in the second stage labeled as B, will use the
same mechanism to make further movements to the right of the new string of bits
processed in the first stage.

The process can be similarly followed. Figure 5.10 shows a testing for the shift
right operation. Recall that shifting to the right can be interpreted as dividing an unsigned
number by 2.

C=0 B=0 A=1 0
L]
1
SHIFT RIGTH
1 1 1 1 1
L]
0

Figure 5.10 The Shift Right Circuit Testing: shifting 1100 once
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5.4.4 Arithmetic Shift

The Arithmetic Shift instruction works basically in the same way as the shift
right, but with a slight change. This change consists in that now, the grounds that fill the
resulting vacancies are changed by a direct connection with the first bit of the number
that will be shifted. This is said to be an arithmetic shift because the vacancy will be
filled with the most significant bit of the number that will be shifted, thereby maintaining
the sign bit. Figure 5.11 shows the circuit and figure 5.12 a testing for string 1100.

R
Ny 7}

2 0 &
Wi@ T T

~

Figure 5.11 The Arithmetic Shift Implementation Circuit
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L]
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1
0 L S hift Aritmetico3
1 — . .
bitdeshift2
0 L— | bitdeshift3
1 — bitdeshift4dLSB
0 — inputtMSB
1 input2
0 — input3
input4
1 -~
0 —
l —
0 —
1 —

— o]

Figure 5.12 Arithmetic Shift Circuit Testing: shifting 1100 once

5.4.5 Circular Shift

The circular shift operation consists in circular permutations. The basic skeleton for the

circuit is similar to that of the shift right, as illustrated in figure 5.13. The main difference

is that the tristates originally connected to ground are now connected to one of the input

bits. In figure 5.13 the boxed labels stand for the same input bit connections. The circuit

was tested as always.



Figure 5.13 Circular Shift Circuit Implementation
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5.4.6 Shift Left

The shift left circuit works in exactly the same way as the shift right, but the

circuit configuration now makes the movement to the left. Figure 5.14 shows the circuit

implementation.

First
bit of
shift
LSB.

1T
T,
S PO

i
]
&

ok

Q‘H

Figure 5.14 Shift Left Implementation Circuit
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5.4.7 Final Arithmetic Logic Unit implementation

Once all the basic instructions circuits are designed and implemented
individually, the ALU can be implemented adding flags. The data bus that feed the
individual circuits is the same data bus that the microcontroller uses to transfer data
between its components. All mathematical and logical calculations are executed at the
same time, but only the desired calculation will be the one released to the ALU output
port by means of the tristate buffer activated.

Figure 5.15 to 5.18 illustrate how the ALU circuits are connected. Caution should
be taken with the significance of the input and output bits of every circuit. Mistakes can

lead to miscalculations and continue through the rest of the instruction execution.
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Figure 5.15 The Arithmetic Logic Unit Implementation (top view)
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Figure 5.17 The ALU Flags Hardware
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Figure 5.18 Flags Used for Overflow

Figure 5.19 illustrates the final implementation of the ALU. As a test, the ALU
receives 1111 in data port A and 1111 in data port B; the subtraction operation is
executed leading as a result 0000 in the output data port and the corresponding flag is

activated.
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Figure 5.19 The Arithmetic Logic Unit Testing (top view)
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5.5 STEP VI The Register File

The Register File stores data retrieved from memory input port resulting from
operations. All temporary data used by the microcontroller to perform its operations is
also stored in the register file. The Register File structure design consists of three stages:

The register selection stage, the input stage and the output stage.

5.5.1 The Register File Selection Stage

This stage is shown in figure 5.20. The instruction word identifies three
parameters: Ra, Rb and Rc. Each of these parameters, when referring to registers, are
actually addresses that identify a register from the register file. Since Ra, Rb and Rc as
shown in figure 5.1 have three bits, the register file has 8 registers.

One register is selected by means of a decoder 3x 8 (device I in figure 5.20). QO
activates register 0, Q1 activates register 1 and so on. The selection of S2 S1 and SO
given by the equation Sj = Raj (ACTRADBI) + Rb (ACTRADBI1) + Rc (ACTRADBI),
where Raj is bit j of Ra, and ACTRADBI is a signal from the control unit to use Ra. Ata
certain moment, the control unit will activate one and only one of ACTRADBI signals to

indicate which register is assigned to Ra, Rb or Rc of the instruction word.
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Figure 5.20 The Register File Selection Stage
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5.5.2 The register file input stage
Figure 5.21 illustrates the input stage for register j (j = 0,1,2...7) of the register file.
e The register inputs are connected to the data bus.
e Each register clock is activated with the following equation CK = (READ)(Qj),

where Qj comes from decoder selection.

READ from

Qj from decoder control unit

CLR register
signal from system
Data bus
Clear DO D1 D2 D3 CK
Register j
Q0 Ql Q2 Q3

Figure 5.21 Module Rj of the register file: Input Stage

Read is a pulse generated by the control unit. All eight registers are connected
similarly. Only the connection to the decoder changes for each case. Since the register
will store the data only after a “CLK pulse”, and CLK = Qj(from decoder). Read pulse,

only one register will store the data.
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5.5.3 The Register file output stage

Qj from
decoder Register j
— Tristate
DATAOUT from
. Nata Rus
control unit

Figure 5.22 Module Rj of the register file; output stage

The register’s outputs are connected to the data bus via tristate buffers. For register Rj,
the tristate is activated by Qj from the decoder at the selection stage and a signal from the

control unit requiring the data out. The basic module is shown in figure 5.22.
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Figure 5.23 The Register File input Stage
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5.5.4 Register File Implementation

A partial view of Logic Works schematic for the register file is shown in figure
5.23.Figure 5.24 illustrates the Register File testing. Register File input ports QA, QB,
QC and QD will be connected to the Arithmetic Logic Unit output port to store the
processed result from ALU. This figure presents an example of the Register File function
mechanism. The address of Ra is 0000. In order to use the address of Ra, the Register
File signal for Ra must be activated; this is the label B. In order to store data from the
data bus; the READ REGISTER signal must be activated. To release the data specified
by the address of Ra to the output port, the DATA OUT signal must be activated. The
CLRL signal labeled with the letter E is used to erase any data in any register.

éF _1
1- ﬁo
. . L
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Input port ¥ PR .
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1 = . TJ Qc 555 QBoutt |——
T << QCout1
éE : 88?'— . QDout1
1 READREGISTER Reg File1 —L
1

Register File /
Output port

READ

Figure 5.24 The Register File Testing
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5.6 STEP VII: The Instruction Register

The Instruction Register is the register that holds the instruction word for
execution. The IR is connected to the Register File and the Control Unit (discussed later).
Note that from the instruction format (Figure 5.1) this register has to be 18 bits long und
thus uses 18 flip-flops. It has two control lines, one to read the data and the other one to

clear the register.
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Figure 5.25 The Instruction Register Implementation
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5.7 STEP VIII: The Data Path

5.7.1 Basic Data Path

In order to make useful all the elements already discussed it is necessary to
provide a path for communication between them to transfer data from one to another.
Figure 5.26 illustrates the interconnection of the elements already discussed; they form
the simplest microcontroller data path for this work. In this figure the control signals
from the control unit are not shown. This data path can perform the basic microcontroller
instructions and will be used as the basis to develop more complex instructions. As more
complex instructions are added, this data path undergoes an evolution into a more
complex one, adding more hardware in parallel to this configuration.

To test the feasibility of basic instructions this data path can process data provided
by switches as shown in figure 5.27. Switches can be used to store values in the Register
File. The address lines of Ra, Rb and Rc are connected from the IR to the Register File to
access the data. The Register File output port is connected to the Arithmetic Logic Unit
input ports to perform the logic and mathematical operations. The ALU output port is
connected to the Register File input port to store results.

In figure 5.26 one register is added to the ALU port A. This is because this is a
one data bus microcontroller and one value must be stored in that register in order to use
the next clock cycle to put the second operand in the ALU port B and then execute the
instruction with both operands. Another register is used at the ALU output port to hold
results between clock cycles. Finally the ALU output port is connected to the Register

File to store results.
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Figure 5.26 The Resulting Microcontroller Data Path
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Figure 5.27 The Basic Microcontroller Data Path

5.7.2 Data Path with Immediate Operations

At this point, when adding new hardware to implement new new instructions,
there are some details that should be taken care of, in particular:

1) For the new hardware:

e Control signals
e Instruction Register related logic
e Connection to buses and other blocks

2) Overall issues such

e Signal conflict
e Delays
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The data path is next modified to include other arithmetic and logic operations using the
ALU namely, the immediate addressing mode operands.

The immediate values are put in bits 0 — 3 of the instruction register.The data path
modification consists in making a connection between those immediate values in the
Instruction Register and the ALU port B. But the connection cannot be done directly
because the values in the Register File can cause conflict with those in the data path. To
solve this problem a tristate buffer is used to isolate the data in the Register File from
those in the data bus as shown in figure 5.28. New parts added in the data path are
identified with lines. The Logic Works Schematic is shown in figure 5.29.
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Figure 5.28 Added Elements for Immediate Instructions Execution
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Figure 5.29 The Immediate Instructions Circuit Implementation

5.7.3 Shift Operation

The next implemented instruction is the Shift instruction. All Shifts instructions
use in their instruction format a group of bits called count. Those bits determine if the
shift will be executed with the count bits or with data in the Register File. This suggests
that a combinational circuit needs to be added to the data path to perform this logic
decision. This circuit is known as “Count Decoder”. It has to be connected to the count
bits in the IR because it will use those bits to take its decision and is discussed later. The

circuit is shown in figure 5.30.
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Figure 5.30 The Count Decoder

Now we explain how the decoder function. The count bits are the least significant
bits of the instruction word in the shift instruction. When the count signal is activated, the
Count Decoder circuit verifies the count bits condition and makes its logical decision.
The tristates labeled A and C receive a low from the inverter and are automatically
activated. If all the count bits are zero (000), the inverter labeled B will receive a low
voltage that turns into a high signal to the Rout port. The count decoder will
automatically send a signal to the data out signal port of the Register File to release the
data specified by Rc. The tristate buffer in the Count Decoder receives a high signal due
to its inverter, but is not activated. If all count bits are not zero the inverter B will receive
a high signal that turns into a low signal and the Register file data out signal is not
activated. The tritstate buffer holding the count bits inside the count decoder receives a

low signal due to its inverter, and releases them to the ALU port B.



The count decoder is connected to the ALU port B via a tristate and the register file

through a multiplexer 2 x 1 as illustrated in the modified data path of figure 5.31.

d
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)
l R |

.»
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Figure 5.31 Modified Data Path for Shift Instructions
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The Logic Works schematic is shown in figure 5.32 as stated. The circuit A, is the
auxiliary circuit, is really a two to one multiplexer, and it solves some problems at the
implementation stage. Note in figure 5.32 that this implementation requires the auxiliary
circuit, one tristate buffer labeled C and an additional logic labeled B. The tristate buffer

1s used to isolate the data from the count decoder to the data bus when not in use.
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The logic labeled B is used to ensure that the tristate buffer C is activated only if
the count decoder signal is activated and the Rout signal of the count decoder is low.
Remember that the Rout signal activates the Register File output port and if this logic is
not used, there is a risk to release the data of the count decoder at the same time with the
register File to the data bus and result in signal conflict. This logic guarantees that if the
count bits are zero just the data in the Register File will be released and that if they are
not zero; the count decoder will send them to the data bus, but only one set of data at a
time.

The OR labeled D in figure 5.32 is necessary because the control unit like the
Count Decoder will need to release data to execute other instructions. Later shall be
illustrated that the load instruction requires data to be released and that is why the data
out port of the Register File has a three input OR logic gate.

The two to one multiplexer, is shown in figure 5.33. This circuit is activated
simultaneously with the count decoder. Its signal port is connected with the activation
port of the count decoder. If the count decoder signal is not activated, is 0 , then
DESOUT = 0, otherwise it is the ROUT signal from the count decoder. Without this
circuit, the Rout signal received by the Register File output port would be a high

impedance signal when the count decoder signal is not activated causing some conflicts.
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Figure 5.33 Auxiliary Circuit

5.8 STEP IX Jump, Data Transfer Instructions, and the PC

5.8.1 The Branch Instruction

Depending on certain conditions, the execution of a non-continuous program code
could be necessary. In programming, this is called a jump. The term “jump” here means
that the program counter (register that holds the address of the next instruction) gets an
address value that is not consecutive on. To analyze the necessary conditions for one
jump a combinational circuit is needed. This circuit is known as the Conditional Jump
Decoder (CJD) and will be added to the existing data path for the Branch instructions

execution.
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Figure 5.34 The Conditional Jump Decoder

The Conditional Jump Decoder activates or not the Program Counter based on the
count bits and the contents of Rc. The count bits will select the decoder’s output and
depending of which output is selected; additional logic is used to make decisions. The
following table 5.2 indicates the Conditional Logic execution accordingly with count and
Rc. This instruction was designed to cover the most needed cases. Other way of
implementation could be designing each case separately and leave to the designers the
decision to choose among all available options. Using this format the programmer just

need to specify the parameters of the required jump.
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Count code | Description Task
000 =0 Don’t jump In the first six cases the
001 =1 Jump anyway operation will be the same.
010 =2 Verify the bit address of Rc, if they are not | PC stores what is stored in
equal to 0 — the register specified by Rb
011=3 Verify the bit address of R, if they are from the data path.
equalto 0 —
100=4 Verify the bit address of Rc, if they are
zero or grater than 0 —
101=5 Verify the bit address of Rc, if they are
less than 0 —
110 Unused
111 Unused

Table 5.2 Conditional Logic Cases

5.8.2 The Program Counter

The program counter is the register that stores the next instruction memory

address location. Its inputs are connected to the data bus to receive the next address value

from it and its outputs are connected to the memory device where the program is stored.

The connections are shown in figure 5.35 and 5.36. The memory device where the

microcontroller’s program is stored, has address bits that indicate the desired specific

program code location. After memory receives the address by the PC, the fetch process

begins. It consists in addressing the instruction specified in memory by the PC and

loading it to the IR.
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The fetch process is discussed at the Control Unit design stage. After the fetch
process is complete, the instruction execution begins. The Branch instruction allows the
programmer to specify a memory location where instructions are located and execute
them and then continue executing the program. In this instruction the register Rb will
store the four bits memory address to execute the jump. Figure 5.37 shows the data path

with the new boxes included. The implementation is shown in figure 5.38
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Figure 5.38 The Conditional Logic Implementation
The Conditional Jump Decoder implementation needs also the auxiliary circuit

described before for the same Count Decoder reasons.

5.8.3 Load and Store

Load and Store, work basically in the same way, the obvious difference is that one
write to memory and the other read from memory. In those instructions mathematical
manipulations are done to calculate the data memory address location. Those instructions
works with Rb address bits. Based on the values of Rb the address bits 0000 will be
loaded to the data bus or the data at Rb will be released to the data bus and in either case
added to Mc. Mc are the last four bits of the instruction word and represent the desired
memory address location. Mc set the initial memory address location and Rb locates one
specific position from Mc. A combinational logic circuit to decide if it loads Rb or 0000

is needed and it is called The Load decoder, see figure 5.39.



77

Rout

T@LoaddecRom
[x]

=]

RB2D<>
rer X @—J\ T~
RBO

0 -

Omo

Q
N
é i I
9]
5
2 2222 —
@ — TR TR -
[a] [} 2222
I FEEE:
9 x EEEE
(5
[14
3 w
© ™
S ™
=)
o
TRYBUFEN Wl
'_
<
'_
[
>
14
'_
~ N
EEEE
2222
0000
Wb
52555
mooom
prex
[=R=gs
I [
[x] ]

<X
X

Loaddecout1
Loaddecout2
Loaddecout3
Loaddecout4

Figure 5.39 The Load Decoder Circuit

Before the Load Decoder activation, the Register File must activate the address
bits Rb. The Load decoder verifies all the bits of Rb. If all are zero, when the flip flop
inside the Load Decoder gets the OR decision, the Load Decoder Rout signal will be low
(this signal releases the data of the Register File) and the tristate buffer will be activated
charging 0000 to the data bus. If all the Rb bits are not zero the Rout signal will be high
and release the data specified by Rb in the Register File to the data bus.

The load Decoder implementation in figure 5.40 requires a connection with the
Rb bits in the Instruction Register. A tristate buffer is connected to the Load Decoder
output. Its control logic ensures that no conflict occurs when data is released to the data
bus. The auxiliary circuit ensures that the Register File output port receives a zero when
the Load Decoder is not activated. The AND gate that controls the tristate buffer sends a
high signal only when the load decoder signal is activated and the Load Decoder decision
is zero. In this way the system ensures that no conflict between data occurs in the data

path at any moment.
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Figure 5.43 Modified Data Path to include Load and Store operations
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5.8.4 Miscellaneous Operations

The next figure illustrates the implementation of the IN function. The purpose is
to obtain information from outside. That is the reason for using one tristate buffer (tristate

buffer 8) connected to the Register File input port.
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The instruction implementation consists first in collecting all flags in one register
called the Processor Status Word or PSW (see the register labeled A), then connecting it

to the Register File input port (label C), and using one tristate buffer (called tristate buffer
6).
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Cap 6

THE CONTROL UNIT

The step X is described in a separate chapter because this unit is essentially a
sequential circuit. The control unit is the final stage for the microcontroller development
in this work. The control unit takes control of signal activation of microcontroller circuits

in each clock cycle. The next figure illustrates the control unit configuration.

CLOCK >

OPCODE y
—> OPCODE CONTROL
3% | | DECODER > SIGNALS
— — | CONTROL >
UNIT L » | —p
TIMER , | ENCODER e
>
>
>

Figure 6.1 The Control Unit Implementation

6.1 The Fetch Process

Before starting the Control Unit discussion, something must be said about the fetch
process. The fetch process consists in loading one memory address value in the PC, and
delivering it to the memory device address port to obtain a specific microcontroller
programming code. All the preceding instruction discussion left two clock cycles for the
fetch execution. The author knew from the beginning how many clock cycles were

needed for the fetch process, making an educated guess of the following:
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a) The data bus size.

b) The amount of memory used to store the program.

c) Program Counter size. - The PC does not have to be the same size of the
data bus; but the address bus. This means that you must use more than one
clock cycle just only to fill the PC with the new address value.

d) The Existing data path circuitry. - It must provide the necessary circuits to
ensure that the PC is incremented in every instruction execution, and that
no signal conflict occurs.

e) The fetch process. - Designers must ensure that PC is incremented in each
instruction, but they must decide how the data travels between the
microcontroller circuits. One alternative to execute the fetch process and
increment the PC could be better than other. There are many possibilities
to execute the fetch process and this work provides one possible
alternative of it. The reader must use its creative and critical thinking to

make the judgment and decide how the fetch process will be carried out.

Designers have to make a trade off between those alternatives and decide the

number of the fetch process clock cycles and their data processing route in the data path

circuits.

The fetch process used in this work uses just two clock cycles (see figures 6.2 and 6.3):

1)

2)

In the first clock cycle the Control Unit activates the Instruction Register read
signal to load from memory the instruction word to be executed. Also, the tristate
buffer 4 is activated to release the current PC value to the data path. Finally, in the
same clock cycle, the register at port A of the ALU is activated to store the
current PC value as shown in figure 6.2.

In the second clock cycle, the Control Unit activates the add PC signal as shown
in figure 6.3 from the Arithmetic Logic Unit to increase the current PC value by

one. The tristate buffer 0 at the ALU output port is activated to deliver the
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incremented PC value to the data path. Finally in that same clock cycle, the

Program counter clock is activated to load the incremented value to the PC.

At the fetch process designing stage, a new function is needed in the ALU.
The fetch process needs one circuit that increment the PC by one. We just add one
adder to the ALU circuit that takes the ALU port A data and add one to it. The
figures 6.4 and 6.5 illustrate this implementation in the ALU. Observe that it is
just one adder and is connected in the same way as the other elements. One of the
advantages of the technique used in this work is that it allows users to add circuit

elements without making significant design changes to the entire system.
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6.2 THE CONTROL UNIT ENCODER

The Control Unit Encoder is the hardest stage in the Control Unit design process
that is why it is explained first. The Control Unit encoder takes information from the
timer and the opcode decoder to activate specific signals in each clock cycle. Then, the
first step is to analyze the signal activation per instruction. The following tables show this

process.
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ADD
Cycle | IR | PC | END | Ra | Rb | Rc | Read | Data | Reg | add | PC | Reg | Try | Try | Try
Reg | Out | Alu add | ALU | Buf | Buf | Buf

IN Out |0 1 4
clk clk

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.1 Add instruction signal activation by clock cycle
SUB
Cycle | IR | PC | END | Ra | Rb | Rc | Read | Data | Reg | Sub | PC | Reg | Try | Try | Try
Reg | Out | Alu add | ALU | Buf | Buf | Buf

IN Out |0 1 4
clk clk

1 X X X

2 X X X

3 X X X

4 X X X X

5 X X X

6 X

Table 6.2 Sub instruction signal activation by clock cycle
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AND
Cycle | IR | PC | END | Ra | Rb | Rc | Read | Data | Reg | And | PC | Reg | Try | Try | Try
Reg | Out | Alu add | ALU | Buf | Buf | Buf
IN Out |0 1 4
clk clk
1 X X X
2 X X X
3 X X X
4 X X X X
5 X X X
6 X
Table 6.3 AND instruction signal activation by clock cycle
Or
Cycle | IR | PC | END | Ra | Rb | Rc | Read | Data | Reg | Or | PC | Reg | Try | Try | Try
Reg | Out | Alu add | ALU | Buf | Buf | Buf
IN Out |0 1 4
clk clk
1 X X X
2 X X X
3 X X X
4 X X X X
5 X X X
6 X

Table 6.4 Or instruction signal activation by clock cycle
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ADDi
Cyc|IR |PC |END |Ra |Rb |Rc | Read | Data | Reg | add | PC | Reg Try | Try | Try | Try
Reg Out Alu add | ALU | Buf | Buf | Buf | Buf
IN Out 0 1 4 2
clk clk
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X
Table 6.5 ADDi instruction signal activation by clock cycle
Subi
Cyc|IR |PC |END |Ra |Rb |Rc | Read | Data | Reg | sub | PC | Reg Try | Try | Try | Try
Reg Out Alu add | ALU | Buf | Buf | Buf | Buf
IN Out 0 1 4 2
clk clk
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X

Table 6.6 Subi instruction signal activation by clock cycle
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ANDi
Cyc|IR |PC |END |Ra |Rb |Rc | Read | Data | Reg | add | PC | Reg Try | Try | Try | Try
Reg Out Alu add | ALU | Buf | Buf | Buf | Buf
IN Out 0 1 4 2
clk clk
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X
Table 6.7 ANDi instruction signal activation by clock cycle
Ori
Cyc|IR | PC |END |[Ra |Rb |Rc | Read | Data | Reg | or PC | Reg Try | Try | Try | Try
Reg Out Alu add | ALU | Buf | Buf | Buf | Buf
IN Out 0 1 4 2
clk clk
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X

Table 6.8 Ori instruction signal activation by clock cycle
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NOT
Cyc |IR |PC |END |Ra |Rb |Rc | Read | Data | Reg | not | PC | Reg Try | Try | Try
Reg Out Alu add | ALU | Buf | Buf | Buf
IN Out 0 1 4
clk clk
1 X X X
2 X X X
3 X X X X
4 X X X
5 X
Table 6.9 Not instruction signal activation by clock cycle
SHR
Cyc|IR [PC |END [Ra |[Rb |Rc |Read | Data |Reg|shr [ PC |Reg | Try | Try | Try | Count
Reg Out Alu add | ALU | Buf | Buf | Buf Dec
IN Out 0 1 4
clk clk
1 X X X
2 X X X
3 X X X
4 X X X X
5 X X X
6 X

Table 6.10 SHR instruction signal activation by clock cycle




94

SHRA
Cyc|IR |PC |END |Ra |Rb |Rc | Read | Data | Reg |shra | PC | Reg Try | Try | Try | Count
Reg Out Alu add | ALU | Buf | Buf | Buf Dec
IN Out 0 1 4
clk clk
1 X X X
2 X X X
3 X X X
4 X X X X
5 X X X
6 X
Table 6.11 SHRA instruction signal activation by clock cycle
SHC
Cyc|IR [PC [END [Ra |Rb |[Rc | Read | Data | Reg|shc [PC |Reg | Try | Try | Try | Count
Reg |Out | Alu add | ALU | Buf | Buf | Buf |
IN Out 0 1 4
clk clk
1 X X X
2 X X X
3 X X X
4 X X X X
5 X X X
6 X

Table 6.12 SHC instruction signal activation by clock cycle
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SHL
Cyc |IR |PC |END |Ra |Rb |Rc | Read | Data | Reg | shl | PC | Reg Try | Try | Try | Count
Reg Out Alu add | ALU | Buf | Buf | Buf Dec
IN Out 0 1 4
clk clk
1 X X X
2 X X X
3 X X X
4 X X X X
5 X X X
6 X
Table 6.13 SHL instruction signal activation by clock cycle
BRANCH
Cyc|IR [PC [END [Ra |Rb |[Rc |Read | Data | Reg| Cond | PC |Reg | Try | Try | Try | Cond
Reg | Out | Alu|Log |add | Alu | Buf | Buf | Buf | [ o,
IN | Aux Out | 0 1 4
clk clk
1 X X X
2 X X X
3 X X X
4 X X X
5 X

Table 6.14 BRANCH instruction signal activation by clock cycle
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LOAD
Cycle |IR PC Rb Reg pcadd | Load Reg Try Try
Alu Decoder |alu | buff0 | buff4
fl\l]( out
1 X X X
2 X X X
3 X X X
Table 6.15 LOAD instruction signal activation by clock cycle
Cycle | End | sum |Reg |Try |Try |MAen | Mem |Reg |Ra |Read | Try
alu | buff | buff read | Mem Reg | Buff
out |2 1 Out 5
4 X X X
5 X X
6 X X
7 X X X
8 X
Table 6.15 LOAD instruction signal activation by clock cycle (cont)
STORE
Cycle | IR PC Rb | Reg AluIN | pcadd | Load Reg Try Try
clk Decoder |alu | buff0 | buff4
out
1 X X X
2 X X X
3 X | X X

Table 6.16 STORE instruction signal activation by clock cycle
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STORE

Cyc | sum [ Reg [ Try | Try [ MAen | Mden [ Mem | Reg [ Ra | Read [ Data [ Try | End [ Mem [ Try

alu | buff | buff read | Mem Reg | Out | Buff store | buff

out |2 1 Out 5 9
4 X X X
5 X X
6 X X X X
7 X
8 X

Table 6.16 STORE instruction signal activation by clock cycle (cont)
IN
Cycle |IR |PC |END |Ra |Read |RegAlu |pcadd | Try Try Try
Reg | Ncelk buff0 |buff4 |buff8
1 X X X
2 X X X
3 X X X
4 X
Table 6.17 IN instruction signal activation by clock cycle
ouT
Cycle |IR |PC |END |RB | Data |RegAlu |pcadd | Try Try Reg
Out | INelk buff0 | buff4 | Out

1 X X X
2 X X X
3 X X X
4 X

Table 6.18 OUT instruction signal activation by clock cycle
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READ PSW
Cycle | IR |PC | END | Ra | Read |RegAlu | pcadd | Try Try Try | PSW
Reg | Nelk buff 0 | buff4 | buff
6
1 X X X
2 X X X
3 X X X X
4 X

Table 6.19 READ PSW instruction signal activation by clock cycle

At this stage we have seen the instruction activation per cycle. The next step consists in

transforming each signal (each column of those tables) in one specific digital circuit,

analyzing per instruction cycle the activated signals. The next step consists in designing

digital logic circuits that become asserted when those conditions occur. Note that each

row of signal activation is a function of the instruction executed and its cycles.
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Ra

INSTRUCTION

CYCLE

1) ADD

2) SUB

3) AND

4) OR

5) SUBI

6) ADDi

7) ANDi

8) Ori

9) SHR

10) SHL

11) SHRA

12) SHC

13) LOAD

14) STORE

15) IN

16) READ PSW

17) NOT

B W W N Q| | | | ] | W W] W | WD W

Table 6.20 Ra signal activation in terms of instructions and cycles
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Add
Sub
And

Or

Subi L
Addi )
Andi
Ori
Shr|
Shl
Shra
Shc
oL ——
T7 \
Load / ) Ra
TS
Store
T3DO— >

i —
LoadPSW

T4 K
Not

Figure 6.6 Ra signal circuit implementation

T

Regmemout signal activation

Regmemout
INSTRUCTION CYCLE
LOAD 6

Table 6.21 Regmemout signal activation in terms of instructions and cycles
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Figure 6.7 Regmemout signal circuit implementation

Reg Alu out

INSTRUCTION CYCLE

1) ADD

2) SUB

3) AND

4) OR

5) SUBI

6) ADDi

7) ANDi

RN S N N N O

8) Ori
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9) SHR

10) SHL

11) SHRA

12) SHC

13) LOAD

14) STORE

W b AR R B

15) NOT

Table 6.22 Reg Alu out signal activation in terms of instructions and cycles

Add
Sub
And
B e S—
Subi

Addi
Andi

Orri
D) D1 )—
Shi
Shra T4
Shc
Load % D—@Regaluout
Store
e
Not

Figure 6.8 Reg Alu out signal circuit implementation
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TRISTATE BUFER 0

INSTRUCTION

CYCLE

1) ADD

2)SUB

3) AND

4)OR

5) SUBI

6) ADDi

7) ANDi

8) Ori

9) SHR

10) SHL

11) SHRA

12) SHC

13) LOAD

14) STORE

15) IN

16) OUT

17) READ PSW

18) UNC JUMP

19) NOT

20) BRANCH

N N DN DN N DN DN DN DN N DN DN DN D DN DN D DN N b

Table 6.23 Tristate buffer 0 signal activation in terms of instructions and cycles




Add
Sub
And
Or
Subi

Not
Addi
Andi

Ori

Shr

Shl
Shra
Shc

Branch
Load
Store

Stop

In

Out
ReadPSW
Uncjump

104

L
? > DID—@Trybuffo

Figure 6.9 Trybuff 0 signal circuit implementation
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TRYBUF1

INSTRUCTION

CYCLE

1) ADD

2) SUB

3) AND

4) OR

5) SUBI

6) ADDi

7) ANDi

8) Ori

9) SHR

10) SHL

11) SHRA

12) SHC

13) LOAD

14) STORE

15) NOT

Bl | WD | | WD D | D] WD D | | WD

Table 6.24 Tristate buffer 1-signal activation in terms of instructions and cycles
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Sub
And B!
Or

Subi

Addi d

Andi
Ori

NTO41 %}

106

:D—X>Trybuff1

Shr
Shl
Shra
She

Load e
Store

Figure 6.10 Trybuf 1 signal circuit implementation

TRISTATE BUFFER 2

INSTRUCTION

CYCLE

1) SUBi

2) ADDi

3) ANDi

4) ORi

5) LOAD

6) STORE

7) UNCJUMP

O R N N I I

Table 6.25 Tristate buffer 2-signal activation in terms of instructions and cycles
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Andi

Ori
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107

T3 é >>:
Uncjump
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D—K}TrybuffZ

U%

0 >

Figure 6.11 Trybuff2 signal circuit implementation
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DATA OUT
INSTRUCTION CYCLE
1) ADD 3.4
2) SUB 3.4
3) AND 3.4
4) OR 3.4
5) SUBi 3
6) ADDi 3
7) ANDi 3
8) Ori 3
9) SHR 3
10) SHL 3
11) SHRA 3
12) SHC 3
13) BRANCH 3,4
14) STORE 6
15) OUT 3
16) NOT 3

Table 6.26 Data out signal activation in terms of instructions and cycles
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T6 YN
STORE J
Talo>—

3> J‘
ADD
SUB
AND
OR S
SUB -
ADDi

ANDi
ORi

SHR
SHL

SHRA
SHC

BRANCH ————

NOT

Figure 6.12 Data out signal circuit implementation
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REG ALU IN
INSTRUCTION CYCLE

1) ADD 13

2) SUB 1,3

3) AND 1,3

4)OR 13

5) SUBI 1,3

6) ADDi 1,3

7) ANDi 13

8) Ori 1,3

9) SHR 1,3

10) SHL 13

11) SHRA 1,3

12) SHC 1,3

13) LOAD 13

14) STORE 1,3
15) IN 1
16) OUT 1
17) READ PSW 1
18) UNC JUMP 1
19) NOT 1
20) BRANCH 1

Table 6.27 Reg Alu in signal activation in terms of instructions and cycles
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T

ADD
SuB
AND

OR ]
SUBI )
NOT
ADDI
ANDI
OR
SHR
SHL
SHRA
SHC
BRANCH
LOAD
STORE

-

L - MALU-CLK

=

\H—

T3 @77>

Figure 6.13 ALU clock signal circuit implementation
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Rb

INSTRUCTION

CYCLE

1) ADD

2)SUB

3) AND

4)OR

5) SUBI

6) ADDi

7) ANDi

8) Ori

9) SHR

10) SHL

11) SHRA

12) SHC

13) LOAD

14) STORE

15) OUT

16) BRANCH

Bl W W W W] W] W W W W W] W W Wl Wl Ww

Table 6.28 Rb signal activation in terms of instructions and cycles




ADD
SuUB
AND
OR
SUBi
ADDi
ORi
ANDi

T4 >
BRACH %
T3XO>—— >

SHR
SHL
SHRA D
SHC
LOAD

STORE
ouT

Figure 6.14 Rb clock signal circuit implementation
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Re

INSTRUCTION CYCLE

1) ADD 4

2) SUB

3) AND

4) OR

5) NOT

6) SHR

7) SHL

8) SHRA

9) SHC

S e N e N S G S S 2 R SN A SN I SN

10) BRANCH

Table 6.29 Rc signal activation in terms of instructions and cycles

T4 iv

ADD
SUB
AND

OR

SHR | <
SHL :}::::>%EK>RC
SHRA

SHC

T3 L
NOTE%; >
BRANCH

Figure 6.15 Rc signal circuit implementation
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READ REGISTER

INSTRUCTION

CYCLE

1) ADD

2)SUB

3) AND

4)OR

5) SUBI

6) ADDi

7) ANDi

8) Ori

9) SHR

10) SHL

11) SHRA

12) SHC

13) LOAD

14) IN

15) READ PSW

16) NOT

Al W W Q] | | | | | WD | | | D] W

Table 6.30 Read register signal activation in terms of instructions and cycles




T3>
o] >
i)
o)
>X>

T5

SHC
SHR
SHL
SHRA

ADD
SUB
AND
OR
SUBI
ADDi
ANDi

1

=

ORi

ReadRegister

Figure 6.16 Read Register signal circuit implementation
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PC SIGNAL ACTIVATION

INSTRUCTION CYCLE

1) ADD

2)SUB

3) AND

4)OR

5) SUBI

6) ADDi

7) ANDi

8) Ori

9) SHR

10) SHL

11) SHRA

12) SHC

13) LOAD

14) STORE

15) IN

16) OUT

N DN DN N N DN DN DN DN DN DN DN N D DN N b

17) READ PSW

18) UNC JUMP

vl\.)
(08

[\

19) NOT

[\

20) BRANCH

Table 6.31 PC signal activation in terms of instructions and cycles




Add
Addi
Sub
Subi ) >

And

Andi

Or
Ori

Not
SHR
SHL

SHRA
SHC

T2[0—
Branch |

Load

118

Store IN
ouT
READPSW

UNCJUMP

+

=T e

T3[X>

s

Figure 6.17 PC signal circuit implementation
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END SIGNAL ACTIVATION

INSTRUCTION

CYCLE

1) ADD

2) SUB

3) AND

4)OR

5) SUBI

6) ADDi

7) ANDi

8) Ori

9) SHR

10) SHL

11) SHRA

12) SHC

13) LOAD

14) STORE

15) IN

16) OUT

17) READ PSW

18) UNC JUMP

19) NOT

20) BRANCH

Wl Ol B~ B BB O X N O N N O O O O O O] & &

Table 6.32 END signal activation in terms of instructions and cycles
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T4X>

IN

ouT
READPSW
UNCJUMP

T6X>

U

ADD

SUB —

AND - End
OR

pe
SHL

Agg.' SHRA
: SHC

5D
NOT
BRANCH

T8X)>

LOAD@:
STORE

Figure 6.18 END signal circuit implementation

SR

Those circuits already illustrated shall guide the reader to do the same with the
rest of the signals. For illustrative purposes, just the remaining implementation circuit
signals will be shown, but all of them where obtained using its corresponding signal

activation table.



T4 <

ADD

ADDi
LOAD

STORE

121

>—®Sum

Figure 6.19 SUM signal circuit implementation

T — e

) Osw

Figure 6.20 Sub signal circuit implementation
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s R
MO To—

Figure 6.21 And signal circuit implementation

T4 < - ——<>0r
OORRi@_

Figure 6.22 Or signal circuit implementation
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T3
NOTESS N ot

Figure 6.23 Not signal circuit implementation

T4
g — Shr

Figure 6.24 Shr signal circuit implementation
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T4
g — Shi

Figure 6.25 Shl signal circuit implementation

T4
SHRA? \  <>Shra

Figure 6.26 Shra signal circuit implementation



Shr
Shl
Shra
Shec
T3
Branch

a—
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T4X —>—®Countdecoder

Figure 6.27 Count Decoder signal circuit implementation

J—@Condlogtakedes

Figure 6.28 Conditional Logic signal circuit implementation
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T4 :
Branch —>—X>Condlogaux

Figure 6.29 Condlogaux signal circuit implementation

T3 < %Loaddec
Load %
Store

Figure 6.30 Load Decoder signal circuit implementation
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T6
Store X:ﬂMDen

Load
Store

Figure 6.31 MDen signal circuit implementation

T5 D<>—

) o

i—@hﬂ aen

Figure 6.32 MAen signal circuit implementation



T6
LOAD

T7
Store
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N R ca d

Figure 6.33 Read signal circuit implementation

S

J—@Mainmemstore

Figure 6.34 Main memory store signal circuit implementation



129

T2 @—DOMPCAdd

Figure 6.35 PC add signal circuit implementation
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REGALUIN

INSTRUCTION

CYCLE

1) ADD

2) SUB

3) AND

4)OR

5) SUBI

6) ADDi

7) ANDi

8) Ori

9) SHR

10) SHL

11) SHRA

12) SHC

13) LOAD

14) STORE

15) IN

16) OUT

17) READ PSW

18) UNC JUMP

19) NOT

20) BRANCH

Table 6.33 Regaluin signal activation in terms of instructions and cycles
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Not
Addi
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Ori

Shr

Shi
Shra
Shc

Branch
Load
Store
Stop

In

Out
ReadPSW
Uncjump
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1
D :D Ij—@Trybufm

Figure 6.36 Tristate buffer 4-signal circuit implementation



132

T6
Store ?J—@Trybufm

Figure 6.37 Tristate buffer 9-signal circuit implementation

OTu3t >Regout

Figure 6.38 Regout signal circuit implementation



T7
Load

133

—>—X>T ryb uffs

Figure 6.39 Tristate buffer 5-signal circuit implementation

T3
ReadPSW

e

0T

Figure 6.40 Tristate buffer 6-signal circuit implementation



ReadPSW

T3
In

T3¥

134

_}@Psw

Figure 6.41 PSW register signal circuit implementation

e

>Trybuff8

Figure 6.42 Tristate buffer 8-signal circuit implementation
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T6 [ —

Regmemout

Load D<X>——

Figure 6.43 Regmemout signal circuit implementation

The Control Unit Encoder Implementation

After the 38 control signal logic circuits have been defined, the next step consists in
connect all of them in just one unit called the control unit encoder. The logic circuits of
this unit will receive input signals from the timer and the operational code (opcode)
decoder and will activate the corresponding signals for the instruction execution. Figures

6.44 to 6.53 illustrate the circuit interconnection that forms the control unit encoder.
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Figure 6.54 Control Unit Encoder implementation

6.3 The control unit operational code decoder

The operational code decoder receives the first five bits of the Instruction Register.
This unit decodes those five bits and generates one signal that corresponds to the
instruction that will be executed. This signal goes to the Control Unit Encoder and
together with the timer decide which signals will be activated. Table 6.34 shows the
Opcode Decoder truth table. Figure 6.55 shows the Opcode Decoder implementation.
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OPCODE DECODER
CODE

POSITION | A B |C D NAME
1 0 0 |0 0 ANDi
2 0 0 0 1 ADDi
3 0 0 |0 1 STORE
4 0 0 1 0 SUBi
5 0 0 1 0 BRANCH
6 0 0 1 1 SHC
7 0 0 1 1 SHRA
9 0 1 0 0 AND
10 0 1 0 1 SUB
11 0 1 0 1 ADD
12 0 1 1 0 LOAD
13 0 1 1 0 IN
14 0 1 1 1 READ PSW
15 0 1 1 1 NOT
17 1 0 0 0 UNCJUMP
18 1 0 0 1 LOAD PSW
19 1 0 0 1 SHR
20 1 0 1 0 SHL
21 1 0 1 0 UNUSED
22 1 0 1 1 UNUSED
23 1 0 1 1 UNUSED
25 1 1 0 0 UNUSED
26 1 1 0 1 UNUSED
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27

UNUSED

28

UNUSED

29

1 UNUSED

30

UNUSED

31

UNUSED

Table 6.34 The Opcode Decoder truth table
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6.4 THE CONTROL UNIT TIMER

The Control Unit timer is really one zero to seven counter. It was selected to seven
because the largest number of clock cycles in the instruction set is 8. The timer specifies

each instruction clock cycle. It works with the opcode decoder and sends its signal to the

Control Unit Encoder as shown in figure 5.114.
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Figure 6.57 The Control Unit Timer

The enable and Load ports will not be used in this work. Reset makes the timer to
start over again and count from zero. The clock will be used, as the main clock, and it
will control the movement from one microcontroller state to the other. Count bits 0,1 and

2 are the bits that specify where the timer starts its count.
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6.5 Implementation Problems

Once the Control Unit is finished and ready for implementation, designers should

realize that during its implementation some problems arise. The following is a small list

of problems and important points to keep in mind at the Control Unit implementation

stage.

1)

2)

3)

4)

Due to the many existing control lines, designers must ensure that every signal
that goes from the control unit is properly connected to its corresponding circuit.
In this report, Logic Works offers one feature that allows connections just giving
the signal source and its destination the same name. If designers use this feature,
they must ensure that both signal ends have exactly the same name. If not the
software does not recognize the signal and the hardware will not work properly,
as a consequence, circuits that depend on the circuit data and an entire operation
can be affected.

Care should be taken at the interconnection stage because involuntary
disconnections may happen.

More than one signal is activated per clock cycle, this means that some circuits
have to wait for data because probably it is not ready for processing at the circuit
signal activation moment. To solve this problem, once the control unit is
connected to all circuits, designers have to run manually with the control unit
clock, each and every one of the microcontroller instructions to see per clock its
performance.

Once a time delay problem has found (you will know that this problem happen
because in its respective instruction clock cycle, when you run it manually, there
is not data in some circuits that is supposed to be. This means that a time delay
must be added to the circuit element that does not receive the data. Figure 6.60
illustrates two inverters with added time delay (in nanoseconds) necessary at the

ALU port A and out put ports to function properly.
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Chapter 7. Detailed Description of the Instruction Set

Next is a detailed description of each instruction that can be executed with the
microcontroller simplest data path. Details like the instruction format; clock cycle
number and task by clock cycle are discussed. The fetch process is discussed later at the
Control Unit design stage, now it is just only explained as part of the instruction

execution process.

7.1 ADDITION

Importance and justification
All microcontrollers and microprocessors must be able to perform mathematical
computations in order to execute its own instructions and be useful. The operation of

addition is one of the most important and basic mathematical computations.

Instruction Format

1716 (15|14 |13 |12 (11 |10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

01011 Ra Rb Rc XXXX

Operation: A «<—(B +C)

Flags Affected: PSW[4]
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ADDITION

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File signal activates the address bits of Rb to
locate the register specified by Rb. Also the Register File data
out signal is activated to release the data specified by Rb. The
ALU port A register read signal is activated to store this data.

4 3 The Register File signal Re is activated to locate the register
specified by Rc. Also the Register File data out signal is
activated to release the data specified by Rc to the ALU port B.
The ALU addition signal is activated to perform the operation.
The read signal of the ALU output port register is activated
to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to
release its data to the data bus. The Register File signal for Ra is
activated to locate its specified register. The Register File read
signal is activated to store the processed result in the data bus.

Table 7.1 Add instruction signal activation verbal descriptions by cycle
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7.2 BIT WISE AND

Importance and Justification

Compares two 4 bits numbers (first bit of first number with first bit of second
number and so on) and send a high signal when a compared pare of bits have both bits in
high (1), and send a low (0) when at least one or both compared bits are low. Performs a

useful logic task to compare two binary numbers and to take decisions.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

01001 Ra Rb Rc XXXX

Operation: A «<—(B e C)
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AND

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File signal that activates the address bits Rb is
activated to locate the register specified by Rb. Also the Register
File data out signal is activated to release the data specified by
Rb. The read signal of the register at the ALU port A is
activated to store this data.

4 3 The Register File signal that activates the bits Rc is activated to
locate the register specified by Rc. Also the Register File data
out signal is activated to release the data specified by Rc to the
ALU port B. The ALU AND signal is activated to perform the
operation. The read signal of the ALU output port register is
activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release the processed result to the data bus. The Register File
signal for Ra is activated to locate its specified register. The
Register File read signal is activated to read the processed

result in the data bus and store it in the specified register.

Table 7.2 AND instruction signal activation verbal description

The fetch activation signals are not shown because those signals will be defined at the

Control Unit stage.
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7.3 ARITHMETIC SHIFT RIGTH

Importance and justification

Sometimes programmers must accomplish certain tasks and manipulate data in
certain ways to accomplish specific tasks. Arithmetic Shift Right instruction is very
useful because it allows the programmer to take one binary number and shift its leftmost
bit one or several places to the right. The vacant places are filled with bits equal to the
binary number leftmost bit. It can be used and combined with other instructions to make

the microcontroller programming easier.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

00111 Ra Rb Rc count

Operation: (Bi)(Bi+n)(B j+n)(B k+n) <« BiBjBkBI

Where n is the number of shift places and 1, j ,k ,and I are the respective bits position 1 ,

2,3 and 4.
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THE ARITHMETIC SHIFT RIGHT

Cycle Task

SIGNAL ACTIVATION

1

Fetch

2

Fetch

3

2

The Register File address bits Rb are activated to locate the
register specified by Rb. Also the Register File data out signal
is activated to release the data in the address location specified
by Rb. The read signal of the register at the ALU port A is

activated to store this data.

The Register File address bits Re are activated to locate the
register specified by Rc and the Count Decoder signal is
activated. The count decoder makes its logical decision and the
ALU Arithmetic Shift Right signal is activated to perform the
operation. The read signal of the register at the ALU output

port is activated to store the result.

The tristate buffer 1 at the ALU output port is activated to
release its data to the data bus. The Register File address bits
Ra are activated to locate the register specified by Ra. The
Register File read signal is activated to read the processed

result in its input port and store it in the specified register.

Table 7.3 Arithmetic Shift Right instruction signal activation verbal descriptions
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7.4 BRANCH — JUMP IF CONDITION

Instruction Format

1716 (15|14 |13 |12 (11 |10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

00101 Ra (unused) Rb Rc condition

Operation: [F CONDITION IS TRUE: PC «- (ADDRESS)

BRANCH

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 Register File Re bits are activated to locate the register
specified by them. Also the Register File data out signal is
activated to release the data specified by Rc to the data bus.
The take decision signal of the conditional logic is activated
to take the logic decision to jump or not.

4 3 The Register File bits of Rb are activated to locate the register
specified by them. Also the Register File data out signal is
activated to release the data specified by Rb to the data bus.
The signal port of AUX circuit is activated to release its
logic decision to the PC.

5 4 The next fetch process begins.

Table 7.4 Branch signal activation verbal descriptions




157

7.5 BRANCH — UNCONDITIONAL JUMP

UNCONDITIONAL JUMP

In this set it is included one additional kind of jump, the unconditional jump.

Importance and justification

Unconditional jump allows programmers to execute non-continuous programming
code in memory. The main difference between branch and the unconditional jump is that
the latter does not have to be tested or has to take any decision, just jump to other

memory location and execute its code.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

10001 Ra (unused) | Rb (unused) | Rc (unused) | Immediate value

Operation: PC «<— (LAST 4 BITS)

Signal activation table for the instruction by cycle

UNCONDITIONAL JUMP

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The instruction second task consists on activating the tristate

buffer 2 and the PC clock to load it with the new value for

jump.

Table 7.5 Unconditional Jump signal activation verbal descriptions




158

7.6 CIRCULAR SHIFT

Importance and justification

Sometimes programmers must accomplish certain tasks and manipulate data in
certain ways to accomplish specific tasks. Circular Shift instruction is very useful
because it allows the programmer to take one binary number and shift its leftmost bit one
or several places to the right. The vacant places are filled with bits equal to the rightmost
bit of the binary number. It can be used and combined with other instructions to make the

microcontroller programming easier.

Instruction Format

1716 (15|14 |13 |12 (11 |10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

00110 Ra Rb Rc count

Operation: (BI)(Bi+n)(B j+n)(B k+n) <« BiBjBkBI

Where n is the number of shift places and 1, j ,k ,and I are the respective bits position 1 ,

2,3 and 4.
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THE CIRCULAR SHIFT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the data out signal of the Register
File is activated to release the data in the address location
specified by Rb. The read signal of the register at the ALU

port A is activated to store this data.

The Register File address bits Re are activated to locate the
register specified by Rc and The Count Decoder signal is
activated. The count decoder makes its logical decision and the
ALU Circular Shift signal is activated to perform the
operation. The read signal of the register at the ALU output

port is activated to store the result.

The tristate buffer 1 at the ALU output port is activated to
release its data to the data bus. The Register File address bits
Ra are activated to locate the register specified by Ra. The
reading signal of the Register File is activated to read the
processed result in its input port and store it in the specified

register.

Table 7.6 Circular Shift instruction signal activation verbal descriptions
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7.7 IN

Importance and justification

This instruction is used to obtain data from the outside. The data arrives into the

microcontroller data path and is stored in a Register File location.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

01101 Ra Rb (unused) | Rc (unused) XXXX

Operation: ADDRESS «<— DATA

Where address means one Register File location

Signal activation table for the instruction by cycle

IN

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The second instruction task consists on activating the tristate

buffer 8 (see figure 5.55) and the Register File Ra and read

signals.

Table 7.7 IN instruction signal activation verbal descriptions
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7.8 IMMEDIATE ADDITION

Importance and justification

All microcontrollers and microprocessors must be able to perform mathematical
computations. The operation of addition is one of the most important and basic
mathematical computations .The immediate addition allows the programmer to specify in

the instruction the second value that will be processed.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

00010 Ra Rb Rc (unused) | Immediate

operand

Operation: A <—(B + last 4 bits)

Flags Affected: PSW [4]




162

IMMEDIATE ADDITION

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the Register File data out signal
is activated to release the data specified by Rb to the data bus.
The read signal of the register at the ALU port A is activated

to store this data.

The tristate buffer 2 holding the last four bits of the IR is
activated to allow those bits to pass to the data bus. The ALU
addition signal is activated to perform the operation. The read
signal of the register at the ALU output port is activated to

store the result.

The tristate buffer 1 at the ALU output port is activated to
release its data to the data bus. The Register File Ra bits are
activated to locate the register specified by Ra. The read signal
of the Register File is activated to read the processed result in

the data bus and store it in the specified register.

Table 7.8 Immediate Addition instruction signal activation verbal descriptions
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7.9 IMMEDIATE AND

Importance and justification

Compares two 4 bits numbers (first bit of first number with first bit of second
number and so on) and send a high signal when a compared pare of bits have both bits in
high (1), and send a low (0) when at least one or both compared bits are low. The
immediate and operation allows the programmer to specify in the instruction the second

value that will be processed.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

00001 Ra Rb Rc (unused) | Immediate

operand

Operation: A <—(B e last 4 bits)
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INMEDIATE AND

Cycle

Task

SIGNAL ACTIVATION

1

Fetch

2

Fetch

3

2

The Register File address bits Rb are activated to locate the
register specified by Rb. Also the Register File data out signal
is activated to release the data specified by Rb to the data bus.
The read signal of the register at the ALU port A is activated

to store this data.

The tristate buffer 2 holding the last four bits of the IR is
activated to allow those bits to pass to the data bus. The ALU
AND signal is activated to perform the operation. The read
signal of the register at the ALU output port is activated to

store the result.

The tristate buffer 1 at the ALU output port is activated to
release its data to the data bus. The Register File Ra bits are
activated to locate the register specified by Ra. The read signal
of the Register File is activated to read the processed result in

the data bus and store it in the specified register.

Table 7.9 Immediate AND instruction signal activation verbal descriptions
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7.10 IMMEDIATE OR

Importance and justification

Compares two 4 bits numbers (first bit of first number with first bit of second
number and so on) and send a high signal when a compared pare of bits have at least one
high (1) bit is present, and send a low when both compared bits are low (0).

The immediate OR operation allows the programmer to specify in the instruction the

second value that will be processed.

Instruction Format

1716 (15|14 |13 |12 (11 |10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

00000 Ra Rb Rc (unused) | Immediate

operand

Operation: A <«—(B (+) with last 4 bits)
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INMEDIATE OR

Cycle

Task

SIGNAL ACTIVATION

1

Fetch

2

Fetch

3

2

The Register File address bits Rb are activated to locate the
register specified by Rb. Also the Register File data out signal
is activated to release the data specified by Rb to the data bus.
The read signal of the register at the ALU port A is activated

to store this data.

The tristate buffer 2 holding the last four bits of the IR is
activated to allow those bits to pass to the data bus. The ALU
OR signal is activated to perform the operation. The read signal
of the register at the ALU output port is activated to store the

result.

The tristate buffer 1 at the ALU output port is activated to
release its data to the data bus. The Register File Ra bits are
activated to locate the register specified by Ra. The read signal
of the Register File is activated to read the processed result in

the data bus and store it in the specified register.

Table 7.10 Immediate OR instruction signal activation verbal descriptions
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7.11 IMMEDIATE SUBTRACTION

Importance and justification

All microcontrollers and microprocessors must be able to perform mathematical
computations. The operation of subtraction is one of the most important and basic
mathematical computations .The immediate subtraction allows the programmer to specify
in the instruction the second value that will be processed. The immediate availability of

this value is one of the reasons to include it in the instruction set.

Instruction Format

1716 (15|14 |13 |12 (11 |10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

00100 Ra Rb Rc (unused) | Immediate

operand

Operation: A <—(B - last 4 bits)

Flags Affected: PSW [3]
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INMEDIATE SUBTRACTION

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the

register specified by Rb. Also the Register File data out signal
is activated to release the data specified by Rb to the data bus.
The read signal of the register at the ALU port A is activated

to store this data.

The tristate buffer 2 holding the last four bits of the IR is
activated to allow those bits to pass to the data bus. The ALU
subtraction signal is activated to perform the operation. The
read signal of the register at the ALU output port is activated

to store the result.

The tristate buffer 1 at the ALU output port is activated to
release its data to the data bus. The Register File Ra bits are
activated to locate the register specified by Ra. The read signal
of the Register File is activated to read the processed result in

the data bus and store it in the specified register.

Table 7.11 Immediate Subtraction instruction signal activation verbal descriptions
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7.12 LOAD

Importance and justification

Sometimes the programmer needs to load values from memory and then transfer
the information to the Register File to store them for further processing. Once the
Register File has information in it, the programmer can perform operations with those
values. The load instruction is essential because without it will be impossible to load data

from memory to process it.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

01100 Ra Rb Rc Mc

Operation: A <« M

Where M is data in memory and A represent a Register File location.
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Signal activation table for the instruction by cycle

LOAD

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 Register File bits of Rb are activated to locate the register
specified by Rb. Also the Load Decoder data out signal is
activated to release its decision. The read signal of the register
at the ALU port A is activated to store the data.

4 3 The tristate buffer 2 signal (holding the Mc four bits) is activated
in order to allow those bits to pass to the data bus. The addition
signal of ALU is activated to calculate the memory location.
The read signal of the register at the ALU output port is
activated to store the result.

5 4 The data in the register at the ALU output port is stored in MA,
activating the tristate buffer 1 signal and the Memory
Address register read signal.

6 5 The memory chip read signal is activated to read the address
specified by MA. The read signal in the register at the
memory chip output port is activated to store the data.

7 6 The tristate buffer 3 signal is activated to release data from

memory to the data bus. Bits of Ra in the Register File are
activated to locate the register specified by Ra. The Register
File read signal is activated to read and store the data from

memory.

Table 7.12 Load instruction signal activation verbal descriptions
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7.13 NOT

Importance and justification

Sometimes the programmer needs to change the sign of the bits in use in order to
make calculations or to perform operations to address some registers, etc. In those cases
is very useful to have an instruction that makes that happen and that is the reason to

include this operation in the instruction set.

Instruction Format

17|16 (15|14 (13 |12 |11 |10 |9 |8 |7 |6 |5 (4 |3 |2 |1 |O

01111 Ra Rb Rc (unused) XXXX

Operation: -(B) < B
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NOT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File Bits of Rb are activated to locate the register
specified by Rb. Also the data out signal of the Register File is
activated to release the data specified by Rb.
The not signal of ALU is activated to perform the operation.
The read signal of the register at the ALU output port is
activated to store the result.

4 3 The tristate buffer 1 is activated to release its data to the data

bus. Register File Ra signal is activated to locate the register
specified by Ra. The read signal of the Register File is
activated to read the processed result in the data bus and store it

in the specified register.

Table 7.13 NOT instruction signal activation verbal description
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7.14 OR

Importance and justification

Compares two 4 bits numbers (first bit of first number with first bit of second
number and so on) and send a high signal when a compared pare of bits have at least one
high (1) bit is present, and send a low (0) when both compared bits are low. Perform a

useful logic task to compare two binary numberss and to take decisions.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

01000 Ra Rb Rc XXXX

Operation: A «<—(B (+) C)
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OR

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File signal that activates the address bits of Rb is
activated to locate the register specified by Rb. Also the Register
File data out signal is activated to release the data specified by
Rb. The read signal of the register at the ALU port A is
activated to store this data.

4 3 The Register File signal that activates the bits of Re is activated
so that the Register File locates the register specified by Rc.
Also the Register File data out signal is activated to release the
data specified by Rc to the ALU port B. The ALU OR signal is
activated to perform the operation. The read signal of the
register at the ALU output port is activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release its data to the data bus. The Register File signal for Ra is
activated to locate the register specified by Ra. The Register
File read signal is activated to read the processed result in the

data bus and store it in the specified register.

Table7.14 OR instruction signal activation verbal description

The fetch activation signals are not shown because those signals will be defined at the

Control Unit stage.
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7.150UT

Importance and justification

This instruction is used to release data from the microcontroller to the outside

world. The processed data could be used for device control or just to deliver information.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

10000 Ra Rb (unused) | Rc (unused) XXXX

Operation: PORT <~ ADDRESS

Where Port is the register where the data from Register File will be transferred. Address
is the Register File address location where the data is.

Signal activation table for the instruction by cycle

ouT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The instruction second task consists on activating the
Register File Rb and data out signals to release the data.
(see figure 5.56)

Table 7.15 Out instruction signal activation verbal descriptions
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7.16 READ PSW

Importance and justification

The PSW is the register that holds the microcontroller flags. This instruction is
used to read the PSW and obtain valuable information of computational flags. Inside, the
ALU flags are activated if the computational result is zero, negative and overflow for add
and subtract. Those flags are very important because programmers can take important

decisions with them.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

01110 Ra Rb (unused) | Rc (unused) XXXX

Operation: ADDRESS <« PSW
Where address is the Register File address location to store the PSW.

Signal activation table for the instruction by cycle

READ PSW

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The second instruction task consists on activating the PSW

clock, the tristate buffer 6, the Register File Ra and read
signals to store the PSW. See figure 5.57.

Table 7.16 Read PSW signal activation verbal descriptions
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Importance and justification

177

Sometimes programmers must accomplish certain tasks and manipulate data in

certain ways to accomplish specific tasks. Shift Left instruction is very useful because it

allows the programmer to take one binary number and shift its rightmost bit one or

several places to the left. The vacant places to the right are filled with zeroes. It can be

used and combined with other instructions to make the microcontroller programming

easier.

Instruction Format

17

16

15

14

13

12

11

10

10100

Ra

Rb

Rc

count

Operation: (Bj-n )(Bk-n) (B1-n) (0) < BiB;jBkBI

Where n is the number of shift places and 1, j ,k ,and I are the respective bits position 1 ,

2,3 and 4.
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THE SHIFT LEFT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the
register specified by Rb. Also the Register File data out signal
is activated to release the data in the address location specified
by Rb. The read signal of the register at the ALU port A is
activated to store this data.

4 3 The Register File address bits Re are activated to locate the
register specified by Rc and The count decoder signal is
activated. The count decoder makes its logical decision and the
ALU Shift Left signal is activated to perform the operation.
The read signal of the register at the ALU output port is
activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to

release the data to the data bus. The Register File address bits
Ra are activated to locate the register specified by Ra. The
reading signal of the Register File is activated to read the
processed result in its input port and store it in the specified

register.

Table 7.17 Shift Left instruction signal activation verbal descriptions
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Importance and justification

Sometimes programmers must accomplish certain tasks and manipulate data in
certain ways to accomplish specific tasks. Shift Right instruction is very useful because it
allows the programmer to take one binary number and shift its leftmost bit one or several
places to the right. The vacant places are filled with zeroes. It can be used and combined

with other instructions to make the microcontroller programming easier.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

10011 Ra Rb Rc count

Operation: (0)(Bi+n)(B j+n)(B k+n) <« BiBjBkBI

Where n is the number of shift places and 1, j ,k ,and I are the respective bits position 1 ,

2,3 and 4.
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SHIFT RIGHT

Cycle Task SIGNAL ACTIVATION

1 Fetch

2 Fetch

3 2 The Register File address bits Rb are activated to locate the
register specified by Rb. Also the data out signal of the Register
File is activated to release the data in the address location
specified by Rb. The read signal of the register at the ALU

port A is activated to store this data.

4 3 The Register File address bits Re are activated to locate the
register specified by Rc and The Count Decoder signal is
activated. The Count Decoder makes its logical decision and
the ALU Shift Right signal is activated to perform the
operation. The read signal of the register at the ALU output

port is activated to store the result.

5 4 The tristate buffer 1 at the ALU output port is activated to
release its data to the data bus. The Register File address bits
Ra are activated to locate the register specified by Ra. The
Register File read signal is activated to read the processed

result and store it in the specified register.

Table 7.18 Shift Right instruction signal activation verbal descriptions
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7.19 STORE

Instruction Name
STORE
Importance and justification
Sometimes the programmer needs to process data and store it in memory. The
store instruction is essential because without it will be impossible to store data in memory

after the data is processed.

Instruction Format

1716 (15|14 |13 |12 (11 (10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

00011 Ra Rb Re Mc

Operation: M < A

Where M is data in memory and A represent a Register File location.
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STORE

Cycle

Task

SIGNAL ACTIVATION

Fetch

Fetch

The Register File bits Rb are activated to locate the register
specified by Rb. Also the Load Decoder data out signal is
activated to release its decision and also is activated its tristate
buffer that holds the 0000. The read signal of the register at
the ALU port A is activated to hold 000 from the load decoder
or the data of Rb.

The signal of the tristate that holds the Mc four bits is activated
in order to pass those bits to the data bus. The addition signal of
ALU is activated to perform the operation. The read signal of
the register at the ALU output port is activated to store the

result.

The tristate buffer 1 is activated to release the data in the ALU
output port and is stored in the Memory Address register

activating its read signal.

The Register File bits Ra are activated to locate the register
specified by Ra. The Register File data out signal is activated
to release its data to the data bus. The register at the ALU port A
is activated to store the value from the Register File. The tristate
buffer 9 is activated to deliver the data from the Register File
output port to MA. The MD read signal is activated to store the
data specified by Ra. The memory chip read signal is
activated to read the address specified by MA and store the data
in MD.

Table 7.19 Store instruction signal activation verbal descriptions
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7.20 SUBTRACT

Importance and justification

All microcontrollers and microprocessors must be able to perform mathematical
computations in order to execute its own instructions and be useful to the user. The
operation of subtraction is one of the most important and basic mathematical

computations.

Instruction Format

1716 (15|14 |13 |12 (11 |10 |9 |8 |7 |6 |5 |4 |3 (2 |1 |O

01010 Ra Rb Rc XXXX

Operation: A «<—(B - C)

Flags Affected: PSW [3]
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SUBTRACTION

Cycle

Task

SIGNAL ACTIVATION

1

Fetch

2

Fetch

3

2

The Register File signal that activates the address bits of Rb is
activated to locate the register specified by Rb. Also the Register
File data out signal is activated to release the data specified by
Rb. The read signal of the register at the ALU port A is

activated to store this data.

The Register File signal that activates the bits of Re is activated
to locate the register specified by Rc. Also the Register File data
out signal is activated to release the data specified by Rc to the
ALU port B. The ALU subtraction signal is activated to
perform the operation. The read signal of the register at the

ALU output port is activated to store the result.

The tristate buffer 1 at the ALU output port is activated to
release its data to the data bus. The Register File signal that
activates Ra is activated to locate its specified register. The
Register File read signal is activated to read the processed

result in the data bus and store it in the specified register.

Table 7.20 Subtraction instruction signal activation verbal descriptions

The fetch activation signals are not shown because those signals will be defined at the

Control Unit stage.
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Chapter 8. Conclusions

One of this project’s goals was to provide the reader the opportunity to see how all
the basic circuit, digital logic, basic electronic and advanced digital design concepts are
applied in order to produce one functional system: a microcontroller.

This work also provides the student the opportunity to develop and practice some of
the fundamental microcontroller design skills like planning, organization and testing the
microcontroller hardware. The user is encouraged to use the techniques in chapter four
and five to develop a microcontroller data path. Decisions like the number of data path
circuit elements, their interconnection to save clock cycles and each element design are
some of the skills worked in those chapters.

This methodology will guide users’ actions and design tasks, to think about the
available resources, reliability, time and design cost to achieve the final product.
Considering that sometimes students become confused when trying to develop new skills
and that the microcontroller world is not easy to understand at first, the design was done
using Logic Works. Students will not face the situation of dealing with complex
algorithms and symbols when they are introduced to microcontrollers. This work thus
tried to be graphically understandable showing the design, implementation and testing of
each microcontroller part and operation.

This work also provides the reader a ten-step mechanism that will guide the
microcontroller design. One of the most important characteristics of this method is that it
is modular. All circuits design were done as independently as possible. The advantage is
that new designs can be tested with small changes to the original one. For example the
Arithmetic Logic Unit like other blocks was developed with parallel circuits. This allows

users to “plug and play” their new circuits without making significant design changes.
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Also, modules can be designed and stored for fast implementation in future designs,
and this can accelerate new designs or projects using the already existing circuits. The
method developed in this work was used for a four-bit microcontroller, but it can be used
for bigger ones. Although the circuit will be more complex, all design steps still apply
together with all its recommendations. This work should be useful for beginners in the
microcontroller design and operation field or as a microcontroller class complement or
laboratory.

It is expected that with this approach students will feel more confident with different
microcontroller designs. All simulations in this work were done with Logic Works 4.0.
But the economy of this method is paid by designer’s ability to select the proper
interconnection and hardware to execute the instructions in the fastest way using the
minimum amount of clock cycles per instruction. Designers must ensure to orchestrate all
microcontroller signals activation in such a way that no conflict between signal activation
exist during each instruction execution clock cycle.

the method developed in this work was used for a four-bit microcontroller, but it can
be used for bigger ones. Although the circuit will be more complex, all design steps still
apply together with all its recommendations. This work should be useful for beginners in
the microcontroller design and operation field or as a microcontroller class complement
or laboratory.

A physical implementation of the microcontroller can be done using FPGAS’s. This
requires a VHDL code, which can be partially generated by modern CAD software. This

1s left for future work.
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