
Modeling and Simulation of Energy Grids
Under Transactive Energy Markets

By
Dan Alberto Rosa de Jesús

A thesis submitted in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE
in

COMPUTER ENGINEERING
UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS
2018

Approved by:

Wilson Rivera Gallego, Ph.D. Date
President, Graduate Committee

Manuel Rodŕıguez Mart́ınez, Ph.D. Date
Member, Graduate Committee

Emmanuel Arzuaga, Ph.D. Date
Member, Graduate Committee

Hilton Alers Valent́ın Date
Graduate School Representative

José Colom Ustariz, Ph.D. Date
Department Chairperson

Abstract of Thesis Presented to the Graduate School

of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science in Computer Engineering

Modeling and Simulation of Energy Grids Under Transactive

Energy Markets

Electric grids are an important aspect of the civil infrastructure of our society. Tra-

ditional energy grids are being modernized with the introduction of smart grids and

transactive energy concepts. In a smart grid sensors, computers and communication

networks are integrated into the power generation, transmission, distribution, and load

elements. Transactive energy is a novel conceptual model in which distributed generators

are coordinated through software, creating a type of ”software-defined” electric grid and

featuring a market-based mechanism to establish prices.

The main research question in this work is which methodologies and tools allow the

modeling and simulation of electric grids including both physical components and energy

consumption and market elements. This work then focuses on developing an optimization

and simulation framework to facilitate the analysis of energy grids.

The contributions of this thesis are fourfold. First, a framework to evaluate the

performance of evolutionary algorithms in the context of solving smart grid related

problems. It includes a set of procedures that carry out multi-objective optimization

through evolutionary algorithms and a set of metrics to measure their performance. Second,

demonstrate how multiple evolutionary algorithms can be applied to a demand response

case study for day-ahead load forecasting. Third, a framework to evaluate how smart grid

entities behave when market prices are established under transactive energy strategies.

Finally, a demonstration of how multiple multi-agent systems can be applied to simulate

these strategies under high-demand smart grid scenarios.

ii

Resumen de tesis presentada a la Escuela Graduada

de la Universidad de Puerto Rico como requisito parcial de los

requerimientos para el grado de Maestŕıa en Ciencias de Ingenieŕıa de Computadora

Modelamiento y Simulación de Redes de Enerǵıa Bajo

Mercados de Transacción

Las redes eléctricas son un aspecto importante de la infraestructura civil de nuestra

sociedad. Con el paso del tiempo, las mismas han sido modernizadas con la introducción

de redes inteligentes y enerǵıa transactiva. En una red inteligente sensores, computadoras y

redes de comunicación se integran en los elementos de generación, transmisión, distribución

y carga de enerǵıa. La enerǵıa transactiva es un modelo conceptual novedoso en el que los

generadores distribuidos se coordinan mediante software, creando un tipo de red eléctrica

”definida por software” y presentando un mecanismo basado en el mercado para establecer

precios.

La pregunta de investigación principal en este trabajo es cuáles metodoloǵıas y her-

ramientas permiten modelar y simular redes de enerǵıa que incluyan tanto componentes

f́ısicos como elementos de consumo y mercado. Este trabajo se centra en el desarrollo de

un marco de optimización y simulación para facilitar el análisis de las redes de enerǵıa.

Esta tesis provee cuatro contribuciones. Primero, un marco para evaluar el rendimiento

de algoritmos evolutivos en el contexto de problemas relacionados a redes inteligentes. El

mismo incluye un conjunto de algoritmos evolutivos y métricas para medir su rendimiento.

En segundo lugar, demostrar cómo se pueden aplicar múltiples algoritmos evolutivos a un

estudio de caso de respuesta a la demanda para predecir cargas. En tercer lugar, un marco

para evaluar el comportamiento de entidades conectadas a redes inteligentes cuando los

precios del mercado se establecen bajo estrategias de enerǵıa transactiva. Finalmente, una

demostración de cómo se pueden aplicar múltiples agentes para simular estas estrategias

bajo escenarios de alta demanda.

iii

Copyright © 2018

by

Dan Alberto Rosa de Jesús

iv

To my son, Sebastián M. Rosa Rivera and my father, Luis A. Rosa Rı́os.

v

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor, professor Wilson

Rivera, for the continuous support of my Master of Science studies and related research

and for his patience, motivation, and immense knowledge. His guidance helped me in

all the aspects of this long way researching and writing of this thesis. I could not have

imagined having a better advisor and mentor.

I would also like to thank the OASIS project team for making this research possible

and for assisting me in the completion of my degree and research. Last but not least, I

would like to thank my family and friends for always believing in me.

This project is funded in part by the National Science Foundation (NFS), under grant

#ACI-1541106. Any opinions, findings, conclusions, or recommendations expressed in this

material are those mine and do not necessarily reflect the views of NFS. I also would like

to acknowledge the Chameleon Cloud team for making available such a good environment

for running computing experiments on the cloud.

vi

Contents

Abstract ii

Abstract (Spanish Version) iii

Acknowledgment vi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Outline . 4

2 The Optimization Framework 5

2.1 Multi-Objective Optimization . 6

2.2 Smart Grid Policies . 6

2.3 Evolutionary Algorithms . 7

2.3.1 Multi-Objective Evolutionary Algorithm Based on Decomposition . 8

2.3.2 Indicator-Based Evolutionary Algorithm 9

vii

CONTENTS CONTENTS

2.3.3 Epsilon Domination Based Multi-Objective Evolutionary Algorithm 9

2.3.4 Covariance Matrix Adaptation Evolution Strategy 10

2.3.5 Third Evolution Step of Generalized Differential Evolution 10

2.3.6 Speed-constrained Multi-Objective Particle Swarm Optimization . . 11

2.3.7 Non-dominated Sorting Genetic Algorithm II 12

2.3.8 Strength Pareto Evolutionary Algorithm 2 12

2.4 Evolutionary Algorithm Performance Metrics 13

2.4.1 Hypervolume Indicator . 14

2.4.2 Generational Distance . 15

2.4.3 Epsilon Indicator . 16

2.4.4 Inverted Generational Distance . 17

2.4.5 Spacing . 18

2.4.6 Running Time . 19

2.5 Conclusion . 19

3 Energy Demand Side Optimization 20

3.1 Model . 20

3.1.1 Problem Formulation . 21

3.2 Platypus Evolutionary Computing Framework 22

3.3 Scenario Implementation . 24

3.4 Experimental Results . 25

3.5 Conclusion . 28

4 Transactive Energy Optimization 29

4.1 Transactive Energy Multi-Agent Systems 29

4.2 The Distribution-Communication Grid Models 31

4.2.1 Distributed Generation and One-way Communication 31

4.2.2 Centralized Generation and One-way Communication 32

viii

CONTENTS CONTENTS

4.2.3 Distributed Generation and Two-way Communication 34

4.2.4 Centralized Generation and Two-way Communication 35

4.3 Problem Formulations . 35

4.3.1 Distributed Generation and One-way Communication 35

4.3.2 Centralized Generation and One-way Communication 36

4.3.3 Distributed Generation and Two-way Communication 37

4.3.4 Centralized Generation and Two-way Communication 37

4.4 Scenario Implementation . 37

4.4.1 Mosaik Simulators and Control Mechanisms 38

4.5 Experimental Results . 41

4.6 Conclusion . 43

5 Conclusion and Future Work 44

References 46

Appendices 49

A Optimization Platform Documentation 50

A.1 Installing Platypus . 50

A.1.1 Miniconda . 50

A.1.2 Virtual Environment . 50

A.1.3 Platypus . 51

A.2 Getting the Optimization Platform . 52

A.3 Using the Optimization Platform . 52

A.3.1 Adding Optimization Problems . 53

A.3.2 Adding Evolutionary Algorithms 54

A.3.3 Adding Performance Metrics . 54

A.3.4 Entity Data . 54

ix

CONTENTS CONTENTS

A.3.5 Definitions . 55

A.3.6 Logs . 55

A.3.7 Putting Everything Together . 55

B GitHub Repositories 56

B.1 Optimization Platform . 56

B.2 Transactive Energy Multi-Agent System Simulations 56

C Virtual Machine Disk Images 57

x

CONTENTS CONTENTS

List of Abbreviations

CA Cost-Availability

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CSV Comma Separated Values

CU Cost-Utility

DCG Distribution-Communication Grid

DER Distributed Energy Resource

DR Demand Response

DTLZ2 Deb Thiele Laumanns and Zitzler 2

EA Evolutionary Algorithm

ε-indicator Epsilon Indicator

ε-MOEA Epsilon Domination Based Multi-Objective Evolutionary Algorithm

GD Generational Distance

GDE3 Third Evolution Step of Generalized Differential Evolution

IaaS Infrastructure as a Service

IBEA Indicator-Based Evolutionary Algorithm

IGD Inverted Generational Distance

JSON JavaScript Object Notation

MAS Multi-Agent System

xi

CONTENTS CONTENTS

MOEA Multi-Objective Evolutionary Algorithm

MOEA/D Multi-Objective Evolutionary Algorithm Based on Decomposition

MOO Multi-Objective Optimization

NSGA-II Non-dominated Sorting Genetic Algorithm II

OASIS Open Access Smart Grids Services

O&M Operation & Maintenance

PAES Pareto Archived Evolution Strategy Algorithm

PF Pareto Frontier

PV Photovoltaic

QoS Quality of Service

RES Renewable Energy Source

SG Smart Grid

SLA Service Level Agreement

SMPSO Speed-constrained Multi-objective Particle Swarm Optimization

SPEA2 Strength Pareto Evolutionary Algorithm 2

TE Transactive Energy

xii

List of Figures

2.1 Optimization framework for SGs. 5

2.2 SG policies and the SLA framework. 7

2.3 ε-MOEA procedure. 10

2.4 NSGA-II top level flowchart. 12

2.5 Graphic representation of the Hypervolume for two objective functions. . . 15

2.6 Graphic representation of the GD for two objective functions. 16

2.7 Graphic representation of the ε-indicator for two objective functions. . . . 17

2.8 Graphic representation of the IGD for two objective functions. 17

2.9 Graphic representation of the spacing for two objective functions. 18

3.1 Example of a consumer load in 24 time intervals of 1 hour obtained from

the dSpace. 21

3.2 Decision space of the non-convex optimization problem example. 22

3.3 Median values for the performance metrics obtained in the experiments. . . 26

3.4 IBEA and NSGA-II solution sets obtained in their first run. 27

3.5 Consumer load obtained from the dSpace and the corresponding load

obtained running NSGA-II on the CU problem. 27

4.1 Representation of the proposed TE approach. 30

4.2 The Distribution-Communication Grid. 31

xiii

LIST OF FIGURES LIST OF FIGURES

4.3 An example of a distributed SG topology. 32

4.4 Example of a PV energy generation profile. 33

4.5 An example of a centralized SG topology. 34

4.6 Comparison between a house load profile and its associated PV energy

generation profile in the distributed one-way scenario. 41

4.7 Comparison between the total house load profile and total PV energy

generation profile in the centralized one-way scenario. 42

4.8 Comparison between the total house load profile and total PV energy

generation profile in the centralized two-way scenario. 42

4.9 Comparison between the renewable and non-renewable load profiles in the

distributed two-way scenario for House 11. 43

4.10 Comparison of the cost per kilo-watt of house 11 as if it consumed the

energy without incentives (left) and with incentives (right). 43

A.1 Optimization framework directory tree. 53

xiv

List of Tables

2.1 The performance metrics by number of citations and classification. 14

3.1 Values of the relevant variables in the CU problem. 24

3.2 Best mean values for each performance metric by EA. 26

4.1 Values of the relevant variables in the CU problem. 36

4.2 Values of the relevant variables in the CA problem. 36

4.3 Values of the constraints in the CA problem. 36

xv

Listings

3.1 Simple example source code. 23

4.1 Partial example of a dictionary with information of a house entity. 38

4.2 A partial example of a JSON file to specify entity connections for PYPOWER. 39

A.1 Downloading and installing Miniconda latest version. 50

A.2 Creating and activating a Python 3.4.5 virtual environment. 51

A.3 Installing git. 51

A.4 Downloading and installing Platypus in the virtual environment. 51

A.5 Platypus post installation example. 51

A.6 Downloading the optimization platform and installing its dependencies. . . 52

xvi

Chapter 1

Introduction

1.1 Motivation

Electric grids constitute the cornerstone of the civil infrastructure of our society, essentially

to carry out daily operations in education, health care, commerce, entertainment, defense,

and government. Traditional energy grids are being modernized with the proliferation

of Renewable Energy Sources (RESs) and Distributed Energy Resources (DERs), and

particularly with the introduction of two new technologies: Smart Grids (SGs) and

Transactive Energy (TE).

In a SG sensors, computers and communication networks are integrated into the power

generation, transmission, distribution, and load elements. This enables a mechanism to

gather information to control generation and demand and make decisions on the electric

grid operation. A SG enables bidirectional flows of energy and control capabilities, which

is a departure from traditional power grids which exhibits only one-way communication

and limited control.

TE is a novel conceptual model in which distributed generators are coordinated through

software, creating a type of ”software-defined” electric grid and featuring a market-based

mechanism to establish prices. The energy producers are independent agents, and connect

to the grid to sell their electric services. For example, independent generators might be

1

2

common citizens with renewable energy systems. Using a common software platform to

control the operation of the system, the independent generators are carefully coordinated

to inject energy into the system without causing operational disruptions.

The convergence of the trends in energy grids described above generates new challenges

in terms of modeling and simulation of energy grid infrastructures. This work focuses on

developing an optimization and simulation framework to facilitate the analysis of energy

grids.

1.2 Objectives

• To investigate optimization techniques suitable for SG modeling: The

proposed approach includes a set of procedures that carry out Multi-Objective

Optimizations (MOOs) through Evolutionary Algorithms (EAs) on SG models. It

also includes a set of metrics that measure their performance in terms of their

accuracy, diversity, and cardinality. An optimization framework is proposed where

SG custom optimization problems, EAs, and performance metrics can be created

and instantiated. It also allows the specification of custom constraints, data, and

other parameters important to the optimization problems.

• To implement and research TE simulation scenarios: Several energy grid

scenarios are modeled through a co-simulation framework, based on the Distribution-

Communication Grid (DCG), that integrates various models at different SG ar-

chitecture levels. Intelligence is added to some of the entities that are present in

SGs through EAs. In this way, Multi-Agent System (MAS) or controllers can be

developed to exchange data between the entities for intelligent decision-making on

the parameters specified by the SG producers and consumers under high-demand

scenarios.

3

1.3 Contributions

• A framework to evaluate the performance of EAs in the context of solving

SG related problems: Besides containing the procedures for MOO problems in

SGs, this framework also includes the implementation of performance metrics to

validate the results of the optimization presented here. Although there are other

researches that present the implementation of individual EAs and/or performance

metrics to solve SG related problems. This is the first time that a framework with

many EAs and performance metrics is developed and implemented to compare their

performance for such application.

• A demonstration of how multiple EAs can be applied to a Demand Re-

sponse (DR) case study for day-ahead load forecasting: The scenario pre-

sented here serves as a demonstration of how the optimization framework can be

implemented as an optimization platform. Consumers connected to a SG have their

policies taken into account and a DR strategy through the EAs is executed to curtail

their loads while considering the maximum capacity of the utility. This can be used

for day-ahead load forecasting of consumers.

• A framework to evaluate how SG entities behave under different TE

distribution and communication strategies: The framework is based on the

DCG that includes centralized and distributed generation of energy and one-way

and two-way communication of information between consumers and producers.

Four scenarios derive from it including the distributed generation and one-way

communication; centralized generation and one-way communication; distributed

generation and two-way communication; and centralized generation and one-way

communication to evaluate the scenarios in terms of the consumer and producer

energy profiles.

4

• A demonstration of how multiple MASs can be applied to simulate TE

strategies under high-demand SG scenarios: The scenarios that derive from

the DCG are implemented in Mosaik, a co-simulator framework for SGs, to demon-

strate how DR strategies can be done on SG entities with MASs powered by EAs.

This is the first time SG entities are provided with EA MAS intelligence for DR

strategies that improves the cost, utility, and availability of SG entities.

1.4 Outline

The outline of this thesis is as follows. Chapter 2 includes a brief description of the

optimization framework including the optimization problem formulation, definition of SG

policies, optimization methods, and performance metrics. A DR case study is presented

in Chapter 3. This Chapter also elaborates on the technical aspects of the SG model,

problem formulation, implementation, and results. In Chapter 4, the TE optimization

approach and its implementation is described. It also elaborates on the implementation of

MASs for SG simulations and the results obtained. Finally, the conclusions and future

work is presented in Chapter 5.

Chapter 2

The Optimization Framework

The definition and implementation of SG models in terms of MOO problems is currently

carried out in ways that makes it hard to make changes to them to derive new ones, since

the MOO problems vary from model to model and the implementation of EAs is difficult

[1, 2, 3] due to the great amount of tacit knowledge related to their implementation and

deployment in large-scale systems. The optimization framework presented here serves as

an abstraction that allows the definition of SG models in the context of solving SG related

problems without reinventing the wheel. As illustrated in Figure 2.1, this framework is

composed of EAs and performance metrics that can be integrated with custom optimization

problems and smart grid policies to define new SG model scenarios. The next sections in

this chapter describe the framework components.

Fig 2.1: Optimization framework for SGs.

5

6

2.1 Multi-Objective Optimization

A MOO problem is an optimization problem that has two or more objectives. It can be

defined as:

min F (~x) = {f1(~x), ..., fn(~x)}

s.t. G(~x) ≤ 0, H(~x) = 0, ~x ∈ Ω,
(2.1)

where ~x = (x1, ..., xd) are the decision variables, Ω is the decision space, Rn is the objective

space, , and G(~x) and H(~x) are constraints [4]. Other definitions are:

• Pareto Set: the solutions in the decision space that non-dominate each other

defined as PS = {~x ∈ Ω|@~y ∈ Ω : F (~y) � F (~x)}

• Pareto Frontier (PF): it is in the objective space defined as PF = {F (~x)|~x ∈ PS}

• Reference Set: contains predefined non-dominated solutions and it is defined as

RPF.

Within the scope of this research, MOO problems include objectives related to the

Quality of Service (QoS) provided to customers or energy resources of producers connected

to SGs. The constraints include policies like the willingness of load curtailment of consumers

and the maximum generation capacity of producers. These policies are described in detail

in the next section.

2.2 Smart Grid Policies

The SG policies represent the interests of the stakeholders, customers and providers,

that participate in the transactions specified by a certain Service Level Agreement (SLA)

framework. See Figure 2.2. These policies include, but are not limited to, the maximum or

minimum energy demand and offer, percentages of load willing to curtail, etc. In [5] a SLA

framework is proposed that specifies the SLA management in Open Access Smart Grids

Services (OASIS) in relation to the stakeholder roles, responsibilities, and limitations. The

life cycle of this SLA framework spans several phases:

• Generation Module: Stakeholders are authenticated and authorized to publish,

modify, retrieve, or suppress service offers.

7

• Negotiation Module: Stakeholders evaluate the services available establishing,

for example, the price and energy type they provide or consume.

• Deployment Module: The energy services are deployed considering the policies

specified by the stakeholders in during negotiation.

• Monitoring Module: The services are checked for SLA violations and the

infrastructure is improved by optimizing its services considering the level of service

and policies of the stakeholders. It is here where EAs become relevant.

Fig 2.2: SG policies and the SLA framework.

It is important to mention that ”exact” optimization methods such as linear and integer

programming are not appropriate to solve current SG optimization problems, since most

of them have multiple conflicting objectives, the dimension of the decision space is high,

and the set of solutions within the decision space is not necessarily convex.

2.3 Evolutionary Algorithms

During the last two decades, new EAs have been developed and others have been modified

for improvements. EAs are generic population-based metaheuristic optimization algorithms

based on biological phenomenon such as mutation and selection. Although EAs do not

8

guarantee exact solutions, they are useful when approximating the true PF of MOO

problems. For instance, in [1] the energy flow of a system is optimized implementing a

combination of load forecasting genetic algorithm and Adaptive Neuro-Fuzzy Inference

Systems to satisfy the energy demand. The results show benefits in terms of energy

consumption, operation cost, and generated CO2 emissions. In [2], a differential EA is

applied on a mixed-integer optimization problem for optimal energy generation while

applying DR through energy demand curtailment. In other work [3], an EA is developed

to solve a MOO problem for load scheduling while minimizing cost and maximizing utility.

Although these studies aim at problems with two or more conflicting objectives, they do

not provide day-ahead load forecasting and fall short to evaluate the implemented EAs in

terms of performance metrics like the hypervolume indicator.

2.3.1 Multi-Objective Evolutionary Algorithm Based on Decom-

position

The Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D) [6]

decomposes MOO problems into subproblems and optimizes them concurrently. The

decomposition can be done using the weighted sum approach where a convex combination

of the objectives in an optimization problem are considered. Let (λ1, ..., λm)T be a weight

vector where λi ≥ 0 ∀ i ∈ [1,m] and
∑m

i=1 λi = 1. Thus, the solution of the optimization

problem:

max

{
g(x|λ) =

m∑
i=1

λifi(x)

}
s.t. x ∈ Ω,

(2.2)

is Pareto optimal to the MOO problem:

max
{
F (x) = (f1(x), ..., fm(x))T

}
s.t. x ∈ Ω,

(2.3)

where fi is the i-th objective of the MOO problem, and Ω is the decision space. In this

case, as MOEA/D solves N scalar problems at the same time. However, not all the Pareto

optimal solutions can be obtained by this approach in cases where the PF is not concave.

A specific implementation of MOEA/D in [7] obtains comparable results to Non-dominated

Sorting Genetic Algorithm II (NSGA-II) when optimizing cost and utility for optimal

9

energy consumption.

2.3.2 Indicator-Based Evolutionary Algorithm

The Indicator-Based Evolutionary Algorithm (IBEA) [8] adapts the fitness of its population

according to indicators like the hypervolume. One way of doing this is summing up the

indicator values of the population members while giving more importance to the dominating

population members over the dominated ones:

F (p1) =
∑

p2∈P{p1}

−e−IH(p1,p2)/κ, (2.4)

where p1 and p2 are decision vectors of the population P , IH is the hypervolume indicator

which is to be maximized, F (p1) is a measure for the loss in quality if p1 is removed from

the population, and κ is a scaling factor that depends on IH and the optimization problem.

Since the hypervolume is a Pareto dominance preserving algorithm (IH(p1, p2) < IH(p2, p1)

if p1 � p2), the importance of small values of IH contribute much more to the overall fitness

than the large ones. In other words, population members with low values of F (p1) are

ranked higher than the ones with high values of F (p1). This makes the IBEA a flexible EA

as any Pareto dominance compliant indicator can be implemented for its fitness assignment

scheme. However, it can be computationally complex depending on the indicator.

2.3.3 Epsilon Domination Based Multi-Objective Evolutionary

Algorithm

The Epsilon Domination Based Multi-Objective Evolutionary Algorithm (ε-MOEA) [9]

uses two separate co-evolving populations, an EA population and an archive population.

See Figure 2.3. Two solutions, one from each populations, are selected and from them an

offspring is created. The offspring is added to the EA and archive populations using a

tournament procedure and an archive acceptance procedure, respectively. This is repeated

until a maximum number of iterations is reached. The tournament procedure consists

of several tournaments among some of the solutions in EA that are chosen at randomly

from its population. The winner of each tournament is selected and put back into the

population. The archive acceptance procedure consists of not allowing two solutions with

a difference of less than ε in the archive. In this way, good diversity is maintained in EA

and convergence is achieved in an efficient manner.

10

Fig 2.3: ε-MOEA procedure.

2.3.4 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10] implements an

evolution strategy to sample solutions according to a normal distribution in Rn. A

recombination technique is executed on the population members of the current iteration to

obtain an new mean for the next iteration. The variables of the optimization problem are

stored in a covariance matrix that is updated according to a covariance matrix adaptation

method that guides the step at which the algorithm converges to the optimum. This

method follows the maximum-likelihood principle in which the mean of the distribution is

updated so that the likelihood of the selected solutions for the next iteration is maximized.

This is done repeatedly until a maximum number of iterations is reached. Although this

EA is good for ill-conditioned MOO problems, it presents issues handling MOO problems

with a larger number of decision variables.

2.3.5 Third Evolution Step of Generalized Differential Evolu-

tion

The Third Evolution Step of Generalized Differential Evolution (GDE3) [11] is an extension

of DE that improves its predecessors, the GDE and GDE2. Similar to the NSGA-II, in

GDE3, solutions are sorted based on non-dominance and crowdedness while considering

the constraints of the optimization problem and the selection based on crowding distance.

11

Although this provides GDE3 with a measure of the density of solutions in a PF, the

sorting scheme presents issues when solutions share the same fitness.

2.3.6 Speed-constrained Multi-Objective Particle Swarm Opti-

mization

New approaches extend the PSO to handle MOOPs but they make the particles, go off their

lower and upper bounds when their velocity becomes too high [12]. Speed-constrained Multi-

objective Particle Swarm Optimization (SMPSO) implements a constriction coefficient to

prevent this from happening:

χ =
2

2− ϕ−
√
ϕ2 − 4ϕ

, (2.5)

where

ϕ =

{
C1 + C2 if C1 + C2 > 4

1 if C1 + C2 ≤ 4
, (2.6)

being C1 and C2, the values that control the effect of the i-th best particle and the global

best particle over the i-th velocity. In addition, the accumulated velocity is bounded by a

delta that is calculated considering the velocity.

12

2.3.7 Non-dominated Sorting Genetic Algorithm II

Fig 2.4: NSGA-II top level flowchart.

The NSGA-II [13] is based on the non-dominated sorting approach. It improves its

predecessor, the NSGA, with elitism storing all the non-dominated solutions of the i-th

iteration in an archive for later selection in the subsequent iterations. The algorithm

first create a child population from an initial randomly generated population through

selection, crossover, and mutation methods. See Figure 2.4. Then, the objectives of the

optimization problem are evaluated using the children population. The parent population

is combined with the child population and the resulting population is ranked. Finally, The

non-dominated solutions go to the archive and N of them are selected. If the maximum

number of iterations has been reached, the last N individuals are the solutions of the

optimization problem.

2.3.8 Strength Pareto Evolutionary Algorithm 2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) [14] improves its previous version,

the SPEA, with an improved fitness assignment scheme. This scheme avoids the situation

where solutions dominated by the same archive members have similar fitness values by

13

assigning a strength value to each member in the archive:

R(i) =
∑

j∈Pt
⋃
P̄t,i�j

S(j), (2.7)

where

S(i) = |{j|j ∈ Pt
⋃

P̄t ∧ i � j}|, (2.8)

being R(i), the raw fitness of the i-th solution in j ∈ Pt
⋃
P̄t, i � j; S(i), the strength

of the i-th solution; Pt, the population of solutions of the current iteration; and P̄t, the

archive population. Then, the raw fitness is added to the density D(i) which is calculated

through the k-th nearest neighbor method:

F (i) = R(i) +D(i), (2.9)

where

D(i) =
1

σki + 2
, (2.10)

being F (i), the fitness; D(i), the density; and σki , the distance of the i-th solution.

2.4 Evolutionary Algorithm Performance Metrics

As EAs prove useful for many applications in science and engineering, establishing a set of

comparison methods is necessary. These methods are called performance metrics and they

measure three main characteristics of the solution sets obtained by EAs:

• Accuracy: proximity to the true PF,

• Diversity: distribution and dispersion, and

• Cardinality: number of solutions.

In [15] various performance metrics are compared in terms of their number of citations.

The selection of performance metrics for this research is based on this and their classification.

Table 2.1 shows the performance implemented in this research along with their number of

citations and classification. They are described in detail in Sections 2.4.1 to 2.4.6.

14

Table 2.1: The performance metrics by number of citations and classification.

Number of Citations Performance Metric Classification

91 Hypervolume Indicator
Accuracy

Diversity

26 Generational Distance Accuracy

23 Epsilon Indicator

Accuracy

Diversity

Cardinality

17 Inverted Generational Distance
Accuracy

Diversity

6 Spacing Diversity

2.4.1 Hypervolume Indicator

The hypervolume indicator IH(P) [16] is defined as the Lebesgue measure λ(S) of a set

S whose elements consist of all the solutions weakly dominated by a solution p but not

weakly dominated by a reference point r = (r1, . . . , ri) ∈ Rn. More precisely,

IH(P) = λ

(⋃
p∈P

[f1(p), r1]× · · · × [fk(p), ri]

)
, (2.11)

where P ⊆ Ω, being Ω, the decision space and [f1(p), r1]×· · ·× [fk(p), ri], an i-dimensional

hypercuboid. The hypervolume indicator is Pareto-dominance compliant. For example,

when a PF P a ⊆ Ω is strictly better than another PF P b ⊆ Ω, the hypervolume of P a is

also strictly better than the one of P b (IH(P a) > IH(P b)). Figure 2.5 shows the graphic

representation of this metric for two objectives. This can be interpreted as the area

obtained by merging the areas of the rectangles containing the solutions and the reference

point. For more than two objectives, IH value represents the volume enclosed within the

resulted attained surfaces.

15

Fig 2.5: Graphic representation of the Hypervolume for two objective functions.

Although great effort have been put in decreasing the time complexity of the Hyper-

volume, its calculation is still done in exponential time [17]. Thus, EAs like the IBEA are

affected negatively as they take more time than other EAs, based on other schemes, to

converge.

2.4.2 Generational Distance

The Generational Distance (GD) IGD(RPF, P) [16] is defined as the average distance

between a reference PF RPF ⊆ Ω and a PF P ⊆ Ω. Specifically,

IGD(RPF, P) =

√
|P |∑
i=1

d2
i

|P |
, (2.12)

where d2
i is the Euclidean distance between each solution in P and the nearest solution

in RPF . In other words, for each solution in the PF obtained by an EA, the distance of

the closest solution in the reference PF is calculated. See Figure 2.6. This metric is not

Pareto-dominance compliant (IGD(P a) < IGD(P b)).

16

Fig 2.6: Graphic representation of the GD for two objective functions.

In terms of time complexity, the calculation of the GD can be done in linear time [17].

This makes the GD one of the fastest metrics to calculate while giving initial insights

about the solutions set obtained by EAs.

2.4.3 Epsilon Indicator

The Epsilon Indicator (ε-indicator) Iε(P,RPF) [18] is defined as the minimum factor ε

such that for any solution in RPF there is at least one solution in P that is not worse by

a factor of ε in all the objectives. Similarly,

Iε(P,RPF) = max
rpf∈RPF

min
p∈P

min
1≤i≤n

pi
rpfi

, (2.13)

where pi ∈ P , rpfi ∈ RPF ⊆ Ω, and n is the number of objectives. The ε-indicator

is not Pareto-dominance compliant (Iε(P
a) < Iε(P

b)) as shown in Figure 2.7 where the

ε-indicator gives the factor by which an EA PF is worse than another in terms of the

objectives. The time complexity of this metric is linear [17].

17

Fig 2.7: Graphic representation of the ε-indicator for two objective functions.

2.4.4 Inverted Generational Distance

The Inverted Generational Distance (IGD) IIGD(RPF, P) [4] is defined as the average

distance between each reference solution rpfi ∈ RPF ⊆ Ω to its nearest solution pj ∈
P ⊆ Ω.

Fig 2.8: Graphic representation of the IGD for two objective functions.

18

Similarly,

IIGD(RPF, P) =

√
|RPF |∑
i=1

d2
i

|RPF |
, (2.14)

where di is the smallest Euclidean distance between each solution in RPF and the

nearest solution in P . See Figure 2.8. This metric is not Pareto-dominance compliant

(IIGD(P a) < IIGD(P b)). The time complexity of this metric is linear [17].

2.4.5 Spacing

Fig 2.9: Graphic representation of the spacing for two objective functions.

The spacing (IS) [16] is defined as the distance variance of neighboring solutions in P ⊆ Ω.

More precisely,

IS(P) =

√√√√ 1

|P | − 1

|P |∑
i=1

(di − d̄)2, (2.15)

where di = minpi 6=pj ||F (pi) − F (pj)||, pi, pj ∈ P ⊆ Ω, and d̄ is the mean of all di. This

metric is not Pareto-dominance compliant (IS(P a) > IS(P b)) and its time complexity is

quadratic [17].

19

2.4.6 Running Time

Additionally to the EA metrics described above, the running time IRT is implemented

to measure the performance of EAs in terms of how long it take them to optimize MOO

problems:

IRT = tf − ti, (2.16)

where ti is the initial time and tf is the final time, both in seconds. This metric is not

Pareto-dominance compliant (IRT (EAa) < IRT (EAb)) and its calculation is constant.

With the optimization framework components defined, the optimization platform can be

developed and energy demand side optimizations can be carried out on SG models.

2.5 Conclusion

In this Chapter the components of a Multi Objective Optimization framework for Smart

Grids modeling and simulation have been discussed. Several Evolutionary Algorithms and

performance evaluation metrics have been presented. The application of the proposed

framework on energy demand side optimization is demonstrated in the next chapter.

Chapter 3

Energy Demand Side Optimization

Leveraging on the knowledge acquired in the OASIS project with regards to DR strategies,

a scenario of generation and consume of energy is modeled and simulated using the

optimization platform presented in Chapter 2. The performance of these EAs is evaluated

using the metrics described in that chapter too. To my knowledge this is the first time

that a comprehensive evaluation of the performance of these algorithms in the context of

DR is presented.

3.1 Model

Using the values associated with the policies that include the maximum generation capacity

of the producer and the loads of the consumers, the cost can be minimized and utility can

be maximized with the goal of performing day-ahead load forecasting. The cost is the

amount of money paid per unit of energy consumed. It can be defined with the following

function [3]:

Cost = acE
2
t + bcEt + cc,

Et =
C∑
c=1

dvtc,
(3.1)

where ac, bc, and cc are constant coefficients, Et is the total energy used by the consumers

up to a time interval t ∈ [1, T], and dvtc ∈ DV . DV is a C × T matrix where C is the

number of consumers and T is the number of time intervals. Each row represents the loads

of the consumers from 1 to T while each column represents the loads of all the consumers

in a time interval t. The values in DV that yield to non-dominated solutions are used

to obtain the next day loads for the consumers assuming a steady energy generation and

20

21

that the consumption profiles of the consumers do not change drastically within two days.

The utility is the comfort associated with the consumption of energy. It can be defined

with the following concave increasing function [3]:

Utility = log10(Et), (3.2)

The values of ac, bc, cc, C, and T are defined in Section 3.3.

3.1.1 Problem Formulation

With the objective functions of cost and utility defined, the MOOP is as follows:

min

{
T∑
t=1

(
Cost (Et)

)
,−

T∑
t=1

(
Utility (Et)

)}
s.t. dstc − τl ≤ dvtc ≤ dstc + τu∀c ∈ [1, C] ∧ ∀t ∈ [1, T],

0 ≤ Et ≤ Emax∀t ∈ [1, T],

(3.3)

where dstc ∈ DS, and Emax is the total energy generation capacity of the producer. DS is

a matrix with equal dimensions to DV . Its values are obtained from a hardware device,

called the dSpace, that models the energy use of consumers connected to a SG powered by

photovoltaic cells (see Figure 3.1).

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0.2

0.4

0.6

0.8

1

Time Interval (h)

L
oa

d
(k

W
)

Fig 3.1: Example of a consumer load in 24 time intervals of 1 hour obtained from the
dSpace.

The constants τl and τu set the bounds for the energy that consumers are willing to

curtail and the amount of energy that they may use when exceeding their policy values.

This provides flexibility when the total generation capacity of the producer is reached or

22

when individual consumer loads are greater than expected. The first constraint sets lower

and upper bounds of the decision space. The second guarantees the security of the energy

generation systems of the producer by not allowing the total energy consumed, up to a

time interval t, to exceed the total energy generation capacity of the producer. The values

of τl and τu are defined in Section 3.3.

3.2 Platypus Evolutionary Computing Framework

Before discussing the implementation of the DR case study, let me introduce Platypus.

It is an open source framework for evolutionary computing ported to Python from the

Multi-Objective Evolutionary Algorithm (MOEA) Framework in Java [19]. It provides the

tools necessary to design, develop, execute, and test EAs like the NSGA-II and Pareto

Archived Evolution Strategy Algorithm (PAES). It also supports the execution of EAs

and performance metrics in parallel. Platypus works well on Python versions 2.7 and 3.4,

and in both Windows 10 and Linux 16.04 LTS. The following is a MOO problem example

and what Platypus can do with it.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

x

y

Fig 3.2: Decision space of the non-convex optimization problem example.

This a non-convex problem that is defined with one decision variable, two objective

functions, and four constraints:

min {y = 10sin(120πx), y = x}

s.t. 0 ≤ x ≤ 1.5, 0 ≤ y ≤ 2,

x ≤ y, y ≤ 10sin(120πx)

(3.4)

23

Figure 3.2 shows the graphic representation of this optimization problem. The shaded

area in blue is the decision space. Having a look at this optimization problem, it is easy

to verify that the optimum is at x = 0, y = 0. The Python program that defines this

problem and solves it is shown in Listing 3.1. In the first two lines, the necessary modules

classes and variables are imported. In line 4, the example class is defined as a subclass of

Platypus’ Problem class. When instantiating the example class, the super() method must

be called. This is done in line 6 by passing the example class and the number of decision

variables, objectives, and constraints as arguments to super(). The rest of the constraints

are defined in line 7. There, the variable types are also set as continuous. Then, the

constraint operators are defined in line 8.

In line 10, the evaluate function is overwritten. The objectives and constraints are

evaluated according to the position of the population members in the decision space as the

EA progresses in its iterations. In line 16, the problem is instantiated and passed to the

algorithm that will optimize it as an argument. In this case, the NSGA-II is implemented.

The EA solves the problem with a total number of 10000 iterations in line 7. Finally, the

x and y values of each solution is printed to the terminal. All the solutions yielded x =

3.40× 10−17, y = 1.28× 10−13, which is close to the exact optimum.

1 from platypus import NSGAII , Problem , Real

2 from math import s in , p i

3

4 c l a s s example (Problem) :

5 de f i n i t (s e l f) :

6 super (example , s e l f) . i n i t (2 , 2 , 2)

7 s e l f . types [:] = [Real (0 , 1 . 5) , Real (0 , 2)]

8 s e l f . c o n s t r a i n t s [:] = ”<=0”

9

10 de f eva luate (s e l f , s o l u t i o n) :

11 x = so l u t i o n . v a r i a b l e s [0]

12 y = so l u t i o n . v a r i a b l e s [1]

13 s o l u t i o n . o b j e c t i v e s [:] = [10 ∗ s i n (120 ∗ pi ∗ x) , x]

14 s o l u t i o n . c on s t r a i n t s [:] = [x − y , y − 10 ∗ s i n (120 ∗ pi ∗ x)]

15

16 a lgor i thm = NSGAII(example ())

17 a lgor i thm . run (10000)

18

19 pr in t ([(r e s u l t . v a r i a b l e s [0] , r e s u l t . o b j e c t i v e s [0]) f o r r e s u l t in a lgor i thm .

r e s u l t])

Listing 3.1: Simple example source code.

24

Platypus also provides the experimenter module for testing multiple EAs on multiple

MOO problems with different parameters and comparing performance metrics. Besides

the Problem class, it also provides a set of abstract data types for implementing custom

EAs and performance metrics. Finally, parallelization is supported through Platypus’

ProcessPoolEvaluator class. This is very convenient as this research benefits from running

the experiments concurrently on large-scale systems.

3.3 Scenario Implementation

The Cost-Utility (CU) problem is defined as a class that inherits from the Problem class.

Any instance of the CU class can be instantiated with the parameters listed in Table 3.1.

The values of ac, bc, cc, and Emax are based on [3], while the values of τl and τu are based

on the standard deviation of the values in DS.

Table 3.1: Values of the relevant variables in the CU problem.

ac bc cc C T Emax τl, τu

0.2 0.3 0.05 200 24 hrs 3200 kW 0.08 kW

The performance metrics are calculated using a reference set of non-dominated solutions

generated with Platypus, since the true solution set of the CU problem is unknown. This

set is created using an epsilon archive, similar to the one used in the ε-MOEA. In order

to use this archive for measuring the performance of different EAs, the archive object is

serialized as a stream and stored in a file within the source code of the project. When

needed, the content of the file is deserialized back to an epsilon archive object and passed

as an argument to the performance metric objects to calculate their values.

The algorithm for day-ahead load forecasting optimizing the formulated problem is

shown in Algorithm 1. In line 1 the algorithm that will be tasked with the optimization,

the sets of metrics to measure its performance, the optimization problem, and the number

of rounds are set. A counter for the current round is set in line 2. In line 3, a loop iterates

over each round. In lines 4 and 6, the initial and final times are recorder for calculating

the running time of the EA optimizing the CU problem. Lines 5 and 7 are executed

concurrently through the ProcessPoolEvaluator and the results are saved accordingly. In

lines 8 and 9, the running time is calculated and added to the result of the other metrics

respectively. The algorithm and metric results are added to a log variable in line 10 and

the values stored there are saved to a file in line 12. Finally, the counter is incremented by

25

one in line 12. In case the maximum number of rounds is not reached, the instructions

from line 4 to 12 are repeated.

Algorithm 1 Load forecasting optimizing the CU problem.

1: procedure LFCU(algorithm, metrics, CU, rounds)

2: round← 1

3: while round ≤ rounds do

4: ti← start time

5: algo res← run algorithm on CU

6: tf← end time

7: met res← calculate metrics using algo res

8: running time← tf - ti

9: met res← met res ∪ {running time}
10: log← algo res and met res

11: save log to a file

12: round← round + 1

The EAs were put to optimize the CU problem a total of 30 rounds for obtaining

statistical information about their performance with a total of 1000 function evaluations

and a population size of 100. The experiments were done on a Linux 14.04 LTS compute

node running on Chameleon Cloud [20], a configurable experimental Infrastructure as a

Service (IaaS) environment for large-scale cloud research powered by OpenStack. In this

case, the node included 48 cores Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30 GHz and 128

GB of RAM. An image of this node is available at Chameleon Cloud with the environment

requirements installed for future research in this area (See Appendix C).

3.4 Experimental Results

Table 3.2 shows that the EAs achieved the best mean values for the performance metrics.

Although MOEA/D presents the best hypervolume, it has the lowest spacing among the

EAs (see Figure 3.3). This suggests that its non-dominated solutions are too close to each

other in comparison to other EAs with higher spacing. Solution sets with low spacing

include solutions that are too similar to each other. This could be a disadvantage as

solution sets like this one would present decision-makers with few options for SG SLA

deployment.

26

Table 3.2: Best mean values for each performance metric by EA.

Performance Metric Best EA Mean Value
Hypervolume MOEA/D 18.886138

GD ε-MOEA 1.233662
ε-indicator SMPSO 7.849621

IGD IBEA 18.670577
Spacing IBEA 2.650885

Running Time GDE3 325.628541 s

ε-MOEA achieved the best GD and the other EAs performed similarly among themselves.

This means that the solutions sets obtained by this EA are closer, in average, to the

reference solution set than the solution sets obtained by the other EAs. However, the

solutions sets obtained by ε-MOEA are not as spread as the ones obtained by IBEA and

NSGA-II, the EAs with the best spacing.

M
OEA

/D
IB

EA

ε-M
OEA

GDE3

SM
PS

O

NSG
A-II

SP
EA

2

0

5

10

15

20

Hypervolume

M
OEA

/D
IB

EA

ε-M
OEA

GDE3

SM
PS

O

NSG
A-II

SP
EA

2

0

1

2

GD

M
OEA

/D
IB

EA

ε-M
OEA

GDE3

SM
PS

O

NSG
A-II

SP
EA

2

0

2

4

6

8

ε-indicator

M
OEA

/D
IB

EA

ε-M
OEA

GDE3

SM
PS

O

NSG
A-II

SP
EA

2

0

10

20

IGD

M
OEA

/D
IB

EA

ε-M
OEA

GDE3

SM
PS

O

NSG
A-II

SP
EA

2

0

1

2

Spacing

M
OEA

/D
IB

EA

ε-M
OEA

GDE3

SM
PS

O

NSG
A-II

SP
EA

2

0

200

400

Running Time (s)

Fig 3.3: Median values for the performance metrics obtained in the experiments.

The SMPSO obtained the best value for the ε-indicator but the median values in

Figure 3.3 show that the other EAs obtained similar values. This suggests that, even

when the EAs obtained solution sets on top or under the reference solution set, they were

similarly close to it. This is supported by the hypervolume values obtained by all the EAs

between 15 and 20. The lowest running time was achieved by GDE3 with 3.26× 102s. The

other EAs achieved acceptable running times between 464 s and 544 s due to the use of

multiple processors simultaneously for the experiments in addition to the good hardware

specifications of the compute node. The rest of the median values for each performance

27

metric and EA are shown in Figure 3.3.

3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

·104

−200

−190

Cost ($)

U
ti

li
ty

IBEA NSGA-II

Fig 3.4: IBEA and NSGA-II solution sets obtained in their first run.

Figure 3.4 shows two of the most diverse solution sets obtained in the second run for

IBEA and NSGA-II. One of the disadvantages of solution sets like these is that decision

makers could get overwhelmed by the amount of different solutions that they present. By

inspection, from Figure 3.4, the cost is between $3.41× 104 and $4.22× 104. Solving the

cost function for Et yields 412.17 kW and 458.60 kW, respectively. These values are less

than Emax.

2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

Time Interval (h)

L
oa

d
(k

W
)

dSpace NSGA-II

Fig 3.5: Consumer load obtained from the dSpace and the corresponding load obtained
running NSGA-II on the CU problem.

Figure 3.5 shows a comparison between the loads obtained from the dSpace and the

loads forecasted using NSGA-II. This is due to the constraint where τl and τu are present.

Since the cost is minimized in the CU problem, the forecasted loads are less than the ones

obtained from the dSpace in most of the time intervals. Similar results were obtained

28

by the other EAs. No results were obtained for CMA-ES as it did not converge to any

solutions after running for 3.46× 105 s. This was a consequence of the processing and

management of large co-variance matrices associated with the total number of variables

(200× 24 = 4800).

3.5 Conclusion

To summarize, this chapter presents a set of performance metrics to evaluate a set of EAs

that optimized a MOO problem on a SG scenario of 200 houses and 24 time intervals of

one hour including objectives for cost and utility in addition to constraints related to the

maximum generation capacity of the producer and the loads of consumers. Day ahead load

forecasting was achieved using these policies. Mean performance metric values obtained in

the experiments give insight about the solution sets of the EAs. In most cases, the loads

forecasted by the EAs are less or equal the ones obtained for the dSpace. Still, they were

within dstc− τl and dstc + τu, which enforce the DR component of the CU problem through

load curtailment.

The EAs also obtained values for Et within 0 and Emax which ensure the stability of

the energy generation systems of the producer while supplying the necessary amount of

energy to the consumers. Although, the values of Et by the EAs are way smaller than

Emax, the loads of consumers could be used to project the necessary power needed at

certain time during a SG deployment so that the wastage of energy is minimized. This can

be achieved by establishing a communication line between the consumers and the producer.

In that case the consumers would communicate how much energy they would consume at

certain times and the producer would supply the demand without over-generating energy.

Thus, the deployment of the energy services in SGs could be done with no violations.

Schemes involving this strategy are described the next chapter.

Chapter 4

Transactive Energy Optimization

In the previous chapter, a model considering the cost and utility of consumers was optimized

for day-ahead load forecasting. Although the benefits of the optimization platform are

evident, the results also show that the supply is way over the demand. In this chapter,

a TE control mechanism through MASs is proposed to solve this. The theoretical and

technical aspects of this solution are described next.

4.1 Transactive Energy Multi-Agent Systems

The implementation of SG technologies has led to significant improvements in efficiency

related to the generation, distribution, and consumption of energy [21]. Furthermore,

requirements related to the scalability of energy services that comply with producer and

consumer policies, have increased the focus from the economic aspects of the SG to the

control applications that guarantee its reliability. This is called TE.

In TE approaches, economic and control techniques are combined to improve the SG

reliability and efficiency [21] by coordinating the deployment and monitoring of distributed

energy service resources. For example, smart meters monitoring the consumption of

energy in a house could send this information to its local renewable energy resource or

the producers. At the energy production side, optimizations could be done to supply the

demand with a minimum amount of energy without compromising the energy systems.

This requires a mechanism to, not only establish communication between the energy

consumption and production sides, but also to enforce DR strategies between them (See

Figure 4.1).

The proposed TE approach leverages functionalities from the optimization platform

presented in Chapter 3 to perform optimizations at different SG infrastructure levels to

29

30

control the behavior of its entities. The entities can be Photovoltaics (PVs) or houses.

Agents could be implemented to do this allowing energy producers and consumers to set the

policies they want the optimization algorithms to consider while exchanging information

with other entities. The information can flow between entities of the same side or between

entities of different sides to choose the appropriate energy service deployment. In this

work, this is investigated.

Fig 4.1: Representation of the proposed TE approach.

The DCG is proposed as the framework, to investigate the behavior of entities con-

nected to the SG under different TE distribution and communication strategies. From it

four combinations of distribution and communication scenarios derived. They include the

distributed generation and one-way communication; centralized generation and one-way

communication; distributed generation and two-way communication; and centralized gener-

ation and one-way communication (See Figure 4.2). In terms of distribution, the producer

entities can be dispersed or centralized in the SG topology while the communication can

be one-way or two way. One-way means the communication of information among the

entities of the same side and two-way refers to communication of information between

entities of different sides although they may still communicate with entities of their side.

The models for the scenarios are described in the next sections.

31

Fig 4.2: The Distribution-Communication Grid.

4.2 The Distribution-Communication Grid Models

Each scenario implements a model or combination of models that enforce DR on some or

all the entities present in a SG.

4.2.1 Distributed Generation and One-way Communication

The model of this scenario is similar to the one presented in Section 3.1, but the value of

Emax is set to the number of consumers multiplied by 47.43 kW, the average house energy

consumed per day obtained from the data sets used for the experiments of these scenarios.

In this model the controllers reside at the consumers side and exchange information within

themselves. The producer entities are dispersed along the topology of the scenario based

on this model, one per house (See Figure 4.3).

32

Fig 4.3: An example of a distributed SG topology.

In this model the number of consumption profiles grows as the simulation time increases.

This means that the optimization in the scenario based on this model is dynamic because

the matrix increases in size by one column when the time interval increases by one unit,

in contrast to the optimization performed in Chapter 3 where all the values in the matrix

were determined from the beginning.

4.2.2 Centralized Generation and One-way Communication

In [22], a model describes the cost of generating energy with renewable energy resources

including PVs and batteries while considering their availability. The cost of generating or

supplying energy with PVs or batteries, respectively, can be formulated as:

CPV Batt =
(IPV +OMPV) + (IBatt +OMBatt)

N
, (4.1)

where

IPV = λPVAPV ,

OMPV = OMPVAPV

N∑
i=1

(
1 + ν

1 + γ

)i
,

IBatt = λBattPCapBatt,

OMBatt = OMBattPCapBatt

N∑
i=1

(
1 + ν

1 + β

)i
,

(4.2)

being IPV , OMPV , IBatt and OMBatt, the initial and Operation & Maintenance (O&M)

cost of the PVs and the batteries, respectively; N, the number of time intervals; λPV and

33

λBatt, the PV panels and batteries cost, APV and PCapBatt the PV surface area and battery

capacity; OMPV and OMBatt, the PVs and batteries O&M cost; ν, the escalation rate

(changes in the cost of generating or supplying energy with the PVs or batteries); γ, the

interest rate of generating energy with the PVs; and β, the inflation rate (an increase

in the cost of supplying energy with the batteries). The values of these parameters are

described in Section 4.3.

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400
0

2

4

6

Time Interval (min)

L
oa

d
(k

W
)

Fig 4.4: Example of a PV energy generation profile.

An example of the energy generation profile of a PV present in scenario based on this

model is shown in Figure 4.4. In the producers side there is a battery bank that functions

as a backup in case the PVs cannot supply the demand. The total number of batteries

is equal to the total number of PVs with a capacity of 15 kWh each. In all the models

where the batteries are present, they begin fully charged. In time intervals where the PVs

cannot supply the demand, the energy to supply it is taken from the batteries. Even after

this is done, if the supply is not met, curtailment is done on the demand. When the PV

energy generation exceeds the demand in a specific time interval, the excess is stored in

the batteries that are not fully charged in an evenly way.

The availability can be defined as:

A =
APV
APVmax

, (4.3)

where APVmax is the maximum surface area of the PVs. The constraints are:

APVmin ≤ APV ≤ APVmax ,

PCapBattmin ≤ PCapBatt ≤ PCapBattmax ,
(4.4)

and enclose the PV panel area and the maximum capacity of the batteries between a

minimum and a maximum value. In the model of this scenario, the controllers are at the

34

producers side and exchange information within themselves. The producer entities are

clustered at a side of the topology of the SG, equal to the number of houses (See Figure

4.5).

Fig 4.5: An example of a centralized SG topology.

4.2.3 Distributed Generation and Two-way Communication

In this scenario the controllers reside at both the producers and consumers sides. The

model of the consumers side is similar to the one presented in Section 4.2.1, but a fourth

term is added to the cost function to incentive consumers that prefer parts of their demand

to come from renewable energy resources.

Cren = drenRt,

Rt =
C∑
c=1

rtc,

CostRen = acNR
2
t + bcNRt + cc − Cren,

NRt =
C∑
c=1

nrtc,

(4.5)

where dren is the renewable energy cost per energy consumed, Rt and NRt are the total

renewable and non-renewable energy consumed, respectively, up to a time interval t ∈ [1, T]

for rtc ∈ R and nrtc ∈ NR. R and NR are matrices of dimensions (C×T). The constraints

are:

(rtc + nrtc)− τl ≤ dvtc ≤ (rtc + nrtc) + τu,

0 ≤ (Rt +NRt) ≤ Emax,

NRt ≤ NRmax,

(4.6)

35

These constraints are similar to the ones presented in Section 3.1.1. But, they consider

the renewable and non-renewable parts of the demand. The last constraint ensures the

stability of the non-renewable energy resources. The model of the producers side is similar

to the one presented in 4.2.2. Since there is communication between the consumers and

producers sides and this time there is a part of the total energy consumed that comes

from non-renewable resources, an additional constraint is defined for this model:

PPVt + PBattt ≤ PDt , (4.7)

where PPVt , PBattt , and PDt are the energy generated or supplied by the PVs or the batteries,

the total demand communicated from the consumers to the producers, respectively. This

constraint prevents the system from oversizing, thus adding cost to the deployment of the

SG.

4.2.4 Centralized Generation and Two-way Communication

In the model of this this scenario the controllers reside at both the producers and consumers

sides. The controller of the consumers side is the same as the one presented in Section

4.2.1. The controller of the producers side is the same as the one presented in Section

4.2.2, but with the constraint in Equation 4.7.

4.3 Problem Formulations

With the producers and consumers models defined for each scenario, the corresponding

MOO problems can be formulated as follows.

4.3.1 Distributed Generation and One-way Communication

As explained in Section 4.2.1, the model of this scenario is the same as in Section 3.1, since

the optimization is only performed on the consumers side. Because the experiments are

done with 500 houses, Emax is set to 15780 kW. The values of the other relevant variables

36

are listed in Table 4.1.

min

{
T∑
t=1

(
Cost (Et)

)
,−

T∑
t=1

(
Utility (Et)

)}
s.t. dstc − τl ≤ dvtc ≤ dstc + τu∀c ∈ [1, C] ∧ ∀t ∈ [1, T],

0 ≤ Et ≤ Emax∀t ∈ [1, T],

(4.8)

Table 4.1: Values of the relevant variables in the CU problem.

ac bc cc C T Emax τl, τu

0.2 0.3 0.05 500 1-1400 mins 15780 kW 0.08 kW

4.3.2 Centralized Generation and One-way Communication

The optimization is done on the producers side cost of producing or supplying energy with

the PVs or the batteries, respectively. The objectives are minimized and maximized in

terms of APV and PCapBatt:

min {CPV Batt,−A}

s.t. APVmin ≤ APV ≤ APVmax ,

PCapBattmin ≤ PCapBatt ≤ PCapBattmax ,

(4.9)

The values of the relevant variables and constraints for this problem are listed in Tables

4.2 and 4.3. These values are derived, in part, from [22].

Table 4.2: Values of the relevant variables in the CA problem.

N λPV OMPV λBatt OMBatt ν γ β

1-1400 mins $450/m2 $7.6× 10−5 $100/kWh $1.9× 10−5 1.9× 10−5 1.1× 10−8 7.6× 10−9

Table 4.3: Values of the constraints in the CA problem.

APVmin
APVmax PCapBattmin

PCapBattmax

0 m2 619.4 m2 0 kWh 15 kWh

37

4.3.3 Distributed Generation and Two-way Communication

The optimization is performed the producers and consumers sides. In the consumers side

the optimization problem is defined as:

min

{
T∑
t=1

(
CostRen (NRt, Rt)

)
,−

T∑
t=1

(
Utility (NRt +Rt)

)}
s.t. (rtc + nrtc)− τl ≤ dvtc ≤ (rtc + nrtc) + τu ∧ ∀t ∈ [1, T],

0 ≤ (Rt +NRt) ≤ Emax∀t ∈ [1, T],

NRt ≤ NRmax,

(4.10)

The values of the relevant variables and constraints are listed in Table 4.1. At the producers

side the optimization problem is the same as the one in Equation 4.9 plus the other two

constraints in Section 4.2.3:

min {−CPV Batt,−A}

s.t. APVmin ≤ APV ≤ APVmax ,

PCapBattmin ≤ PCapBatt ≤ PCapBattmax ,

PPVt + PBattt ≤ PDt ,

(4.11)

The values of the relevant variables and constraints are listed in Tables 4.2 and 4.3. The

maximum amount of non-renewable energy that can be consumed is set to 3 kW.

4.3.4 Centralized Generation and Two-way Communication

The optimization at the consumers side is the same as the one described in Section 4.3.1

and the optimization at the producers side is the same as the one described in the previous

section.

4.4 Scenario Implementation

The scenarios are simulated through a co-simulation framework. It allows the modeling of

entities at their system level by integrating them through operational coupling methods [23]

that enable them to exchange data while running on multiple domains with different time

steps [24]. Consequently, the assessment of large-scale systems, such as SGs, is possible

before they are deployed. Some of the current co-simulation frameworks for this purpose

38

include the Transactive Energy Simulation Platform (TESP) of the Pacific Northwest

National Laboratory (PNNL) and Mosaik.

4.4.1 Mosaik Simulators and Control Mechanisms

Mosaik is a SG co-simulation framework that allows developers to create, modify, reuse,

and combine new and existing simulators to create large-scale SG scenarios [25]. This can

be achieved through the Simulator class. Classes that inherit from this class must imple-

ment the create, step, and get data methods. In the create method the entities of a specific

simulator are created with their unique identifiers and type. These identifiers differentiate

the entities when, for example, communicating their information to other entities. In gen-

eral, its format is {sim-model-name}-{sim-model-number}.{model-type} {model-number}.
For example, a house could have a unique identifier as HouseholdSim-0.House 4. Once the

entities are created, the step method can be called to carry out their behavior.

The step method performs a simulation step based on some input data for a time

interval. This input data can be information posted by other entities during running time.

For example, the information of all the houses in a simulator can be loaded in memory

from a Comma Separated Values (CSV) file, at a specific time, allowing for operations to

be done on it. Then, this information is stored in a data structure that is later read in the

get data method and posted to other entities. The step method returns the time at which

the data is to be posted. It is important to remark that the time step of the simulators do

not have to be the same, as Mosaik handles this by setting the global time step to the

time step of the most frequent simulator. For instance, if time step of a simulator is t and

that for another is t+ n, the second would see the information posted by the first n times.

In the get data method the data of a simulator is posted to other simulators. The data

prepared in the step method is put in another data structure that contains the source

entity unique identifier and the information it wants to post. The information must contain

the attribute name and its associated value. For example, a house can add information to

the data structure as a dictionary:

1 {
2 ’ HouseholdSim−0.House4 ’ : {
3 ’ P out ’ : 134 .23

4 }
5 }

Listing 4.1: Partial example of a dictionary with information of a house entity.

39

Any information posted by a specific entity can only be read by the entities connected

to it. Connections can be defined in a JavaScript Object Notation (JSON) file (See Listing

4.2) for PYPOWER and at running time implementing the connect, connect one to many,

and connect randomly methods. The JSON file contains nodes, transformers, and branches

with their respective relevant values. The branches are pairs of nodes or nodes with

transformers, in this case. The connection methods are called on a world object that

represents the scope of a simulation. The connect method connects two entities through

their specified attributes. For example, a house can be connected to a node through their

respective P out and P attributes. From the node’s point of view, the power flows out

while from the house, it flows in. The other two methods can be used to connect an

entity to a set of entities (connect one to many) or a set of entities to a second set of

entities (connect randomly). Other options can be passed as arguments to these methods

to define the distribution of the connections (evenly or not). Mosaik handles the exchange

of information between entities through plain network sockets and/or JSON encoded

messages.

1 {
2 ”base mva ” : 10 ,

3 ”bus ” : [

4 [” t r p r i ” , ”REF” , 2 0 . 0] ,

5 . . .

6] ,

7 ” t r a f o ” : [

8 [” t rans fo rmer ” , ” t r p r i ” , ” t r s e c ” , 0 . 25 , 4 . 2 , 0 .00275 , 6 . 9 , 3 6 0 . 8]

9] ,

10 ”branch ” : [

11 [” branch 1 ” , ” t r s e c ” , ”node a1 ” , 0 . 100 , 0 .2542 , 0 .080425 , 0 . 0 ,

2 4 0 . 0] ,

12 . . .

13]

14 }

Listing 4.2: A partial example of a JSON file to specify entity connections for PYPOWER.

For simplicity, the scenarios are implemented using three simulators including the

Household, PVCSV, and PYPOWER. The first two are implementations based on Mosaik’s

CSV simulator that allows simulator instances to load data from files. The file that holds

the PV energy generation profiles contains two columns corresponding to the time-stamp

in one minute time step and the energy generated in watts. The other file that holds the

energy consumption profiles of the houses contains a list with the unique identifiers of

40

the nodes and a column correspond to the time-stamp in 15 minutes time step as well

as additional columns corresponding to each house energy demand. The PYPOWER

simulator allows the definition of energy entities including nodes, branches, transformers,

and a reference bus with their relevant values including the impedance, active and reactive

power, voltage angle, etc. They are set to Mosaik’s defaults. Other simulators including

WebVis and HDF5 are used to visualize the topology of the simulations at running time

through a web application hosted at http://localhost:8000 and to save the Household and

PVCSV simulators time series data in a hierarchical data format file for later analysis,

respectively.

The topology for the distributed and centralized scenarios has five branches with one

transformer and 100 houses each.

Algorithm 2 General algorithm of the step method.

1: procedure StepSAMController(time, inputs)

2: sim current data← readRowCSV(time)

3: all profile data ∪ sim current data

4: variables← get problem variables()

5: variables ∪ all profile data

6: opt problem← CUorCAProblem(variables)

7: algorithm← NSGA-II(opt problem)

8: results← run algorithm

9: result← minimum cost(results)

10: optimized loads← get variables(result)

11: get data structure ∪ optimized loads

The MASs for controlling the behavior of the Household and PVCSV simulators

are implemented in their respective step methods. In general, these methods follow the

procedure in Algorithm 2. In line 2, the row of a CSV file corresponding to the current

time step is loaded. Then, the data of that row is added to a matrix that contains all the

data up to the time step for all the entities of a specific simulator. In lines 4 to 5, the

variables for the optimization problem are set and the matrix is added to it. The MOO

problem, either the CU or Cost-Availability (CA), is instantiated with the variables in

line 6. After this, the NSGA-II is initialized is with the problem. This EA is used for

these simulations over the others, because it achieved diverse solutions in the previous

experiments and better running times than IBEA. The optimization problem is solved and

the solution with the minimum cost is set to result in lines 8 and 9, respectively. Finally,

41

the variables representing the generated or consumed energy are assigned to the data

structure for the get data method.

As the experiments for the DR case study, the experiments for the TE scenarios were

carried out on a Linux 14.04 LTS compute node running on Chameleon Cloud. An image

of this node is also available (See Appendix C).

4.5 Experimental Results

Figure 4.6 shows the energy demand and supply for a house and its associated PV,

respectively, obtained for the distributed generation one-way communication scenario.

Given that the optimization is carried out only on the consumers side and no information

is ever exchanged between the producers and the consumers, the PV is unable to supply

the demand between time intervals 0 to 40 and 64 to 96. From time intervals 41 to 63, the

supply exceeds the demand between a minimum of 0.009 kW and a maximum of 3.74 kW.

This period represents a total of 1.43 kWh of energy wasted.

0 10 20 30 40 50 60 70 80 90
0

2

4

Time Interval (#)

L
oa

d
(k

W
)

House 22 PV 22

Fig 4.6: Comparison between a house load profile and its associated PV energy generation
profile in the distributed one-way scenario.

The results for the centralized one-way scenario are shown in Figure 4.7. Similar to the

results obtained in the previous scenario, in this scenario the optimization is carried out

only on the producers side and no information is ever exchanged between the producers

and the consumers. The PVs are unable to supply the demand between time intervals 0

to 43, 60, 61, and 63 to 96. Between time intervals 44 to 59 and 62 the supply exceeds the

demand between a minimum of 92.44 kW and a maximum of 1623.31 kW. This period

represents a total of 765.79 kWh of energy wasted.

42

0 10 20 30 40 50 60 70 80 90
0

1,000

2,000

Time Interval (#)

L
oa

d
(k

W
)

Total Demand Total Supply

Fig 4.7: Comparison between the total house load profile and total PV energy generation
profile in the centralized one-way scenario.

In the centralized generation two-way communication scenario, the demand is supplied

in all the time intervals (See Figure 4.8). This is due to the communication of information

between the entities and to the batteries that respond to the demand in case the PVs

cannot supply it even after the optimization is done in the producers side. In this case the

wastage of energy is 29.32 kWh, being this less than the wasted energy in the previous

scenario.

0 10 20 30 40 50 60 70 80 90
0

200

400

Time Interval (#)

L
oa

d
(k

W
)

Total Demand Total Supply

Fig 4.8: Comparison between the total house load profile and total PV energy generation
profile in the centralized two-way scenario.

Figure 4.9 shows the renewable and non-renewable energy consumed by a house in the

distributed two-way scenario. Using the cost function of the DR scenario, the cost paid

by this house can be obtained. Figure 4.10 shows two series of the cost function as if the

energy consumed had no incentives (left) and the one obtained applying the incentives

(right). When applying the incentives, the cost is reduced. The decrease in cost can be

controlled modifying the cost function coefficients to obtain more realistic results. In terms

43

of supply-demand fitting, similar results were obtained for the individual loads as in the

previous scenario.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

Time Interval (#)

L
oa

d
(k

W
)

Not Incentived House 11 Incentived House 11

Fig 4.9: Comparison between the renewable and non-renewable load profiles in the
distributed two-way scenario for House 11.

0 10 20 30 40 50 60 70 80 90
0

1,000

2,000

Time Interval (#)

C
os

t
($

/W
)

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

Time Interval (#)

C
os

t
($

/W
)

Fig 4.10: Comparison of the cost per kilo-watt of house 11 as if it consumed the energy
without incentives (left) and with incentives (right).

4.6 Conclusion

In this chapter, several energy grid scenarios based on the DCG are modeled through a

co-simulation framework that integrates them at different SG architecture levels. The

models consider the cost and availability of producing energy and the cost and utility of

consuming it. Throughout the optimization of these objectives, intelligence (MAS) is added

to some of the entities in the scenarios to controlling their behavior. These mechanisms

also allow the exchange of data between the entities for improved decision-making on the

parameters specified by the SG producers and consumers.

The results show that energy services can be coordinated on the entities that exchange

information about their energy profiles to achieve efficient supply-demand fitting. Thus,

minimizing the amount of energy wasted and the costs associated with producing or

consuming it.

Chapter 5

Conclusion and Future Work

Recapitulating, traditional energy grids are being modernized with the introduction of

two new technologies: SGs and TE. The objectives of this work include the investigation

of optimization techniques suitable for SG modeling and the research of TE simulation

scenarios.

A framework for evaluating the performance of EAs in the context of solving SG related

problems is proposed where SG custom optimization problems, EAs, and performance

metrics can be created and instantiated. The CU and CA problems minimize the cost of

producing or consuming energy, maximize the utility of consuming energy, and maximize

the availability of energy resources such as PVs and batteries. The EAs investigated in

this work were selected due to their various schemes for searching for solutions in decision

spaces. A set of performance metrics were implemented to evaluate their performance in

terms of accuracy, cardinality, and diversity. Additionally, a DR case study is presented to

demonstrated that when considering the energy policies of consumers and producers in

MOO problems, day-ahead load forecasting is possible on SGs.

The DCG is proposed as a framework to evaluate how SG entities behave under different

TE distribution and communication strategies. Four scenarios derive from it including

centralized and distributed generation of energy and one-way and two-way communication

of information between consumers and producers. In each scenario, MASs function as

mechanisms to controlling the behavior of energy entities such as houses and PVs. The

scenarios were implemented through Mosaik, a co-simulator framework for SG modeling.

The results show that better supply-demand fitting can be obtained when energy entities

exchange information about their energy supply or demand profiles while optimizations

take part on their behavior. Thus, decreasing the cost of energy consumption.

Future work will be focused on extending the capabilities of the optimization framework

44

45

to support more EAs and performance metrics as well as MOO problems. Additional

TE scenarios are to be developed for new models that consider the energy or market

behavior of entities including producers and prosumers such as windmills and electric cars,

respectively. New MASs could be developed to control the communication of information

between entities considering schemes of frequency and priority. Furthermore, other green

energy strategies could be added to the models that follow specific patterns of energy

generation or consumption.

References

[1] Konstantinos Kampouropoulos et al. “Optimal control of energy hub systems by

use of SQP algorithm and energy prediction”. In: IECON Proceedings (Industrial

Electronics Conference) (2014), pp. 221–227.

[2] C. Fatih Kucuktezcan, V. M. Istemihan Genc, and Osman Kaan Erol. “An opti-

mization method for preventive control using differential evolution with consecutive

search space reduction”. In: 2016 IEEE PES Innovative Smart Grid Technologies

Conference Europe (ISGT-Europe) (2016), pp. 1–6.

[3] Ramesh Rajagopalan. “A multi-objective optimization approach for efficient energy

management in smart grids”. In: 2015 IEEE Green Energy and Systems Conference

(IGESC) (2015), pp. 7–10.

[4] Siwei Jiang et al. “Consistencies and contradictions of performance metrics in

multiobjective optimization”. In: IEEE Transactions on Cybernetics (2014). issn:

21682267. doi: 10.1109/TCYB.2014.2307319.

[5] Wilson Rivera and Manuel Rodriguez. “Towards Cloud Services in Smart Power

Grid”. In: 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia)

(2016), pp. 570–573.

[6] Q. Zhang and Hui Li. “MOEA/D: A Multiobjective Evolutionary Algorithm Based

on Decomposition”. In: IEEE Transactions on Evolutionary Computation 11.6 (2007),

pp. 712–731.

[7] Sergio Salinas, Ming Li, and Pan Li. “Multi-objective Optimal Energy Consumption

Scheduling In Smart Grids”. In: Tsg 4.1 (2013), pp. 341–348. doi: 10.1109/ICCAIRO.

2017.28.

[8] E. Zitzler and K. Simon. “Indicator-Based Selection in Multiobjective Search”. In:

8th International Conference on Parallel Problem Solving from Nature (PPSN VIII)

3242.i (2004), pp. 832–842.

46

https://doi.org/10.1109/TCYB.2014.2307319
https://doi.org/10.1109/ICCAIRO.2017.28
https://doi.org/10.1109/ICCAIRO.2017.28

47

[9] Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. “Evaluating the ε-

Domination Based Multi-Objective Evolutionary Algorithm for a Quick Compu-

tation of Pareto-Optimal Solutions”. In: Evolutionary Computation 13.4 (2005),

pp. 501–525.

[10] N. Hansen and A. Ostermeier. “Adapting arbitrary normal mutation distributions

in evolution strategies: the covariance matrix adaptation”. In: Proceedings of IEEE

International Conference on Evolutionary Computation. May 1996, pp. 312–317.

[11] S. Kukkonen and J. Lampinen. “GDE3: the third evolution step of generalized

differential evolution”. In: 2005 IEEE Congress on Evolutionary Computation 1

(2005), pp. 443–450.

[12] A. J. Nebro et al. “SMPSO: A new PSO-based metaheuristic for multi-objective

optimization”. In: 2009 IEEE Symposium on Computational Intelligence in Multi-

Criteria Decision-Making(MCDM). Mar. 2009, pp. 66–73.

[13] K Deb et al. “A Fast and Elitist Multiobjective Genetic Algorithm: NGSA-II”. In:

IEEE Transactions on Evolutionary Computing 6.2 (2002), pp. 182–197.

[14] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. “SPEA2: Improving the Strength

Pareto Evolutionary Algorithm”. In: Evolutionary Methods for Design Optimization

and Control with Applications to Industrial Problems (2001), pp. 95–100.

[15] Nery Riquelme, Christian Von Lucken, and Benjamin Baran. “Performance metrics

in multi-objective optimization”. In: ().

[16] G. G. Yen and Z. He. “Performance Metric Ensemble for Multiobjective Evolutionary

Algorithms”. In: IEEE Transactions on Evolutionary Computation 18.1 (Feb. 2014),

pp. 131–144.

[17] Fonseca C M Lopez-Ibanez M Paquete L Beume M. et al. “On the Complexity of

Computing the Hypervolme Indicator”. In: IEEE, Transactions on Evolutionary

Computation 15.5 (2009), pp. 1075–1082.

[18] E Zitzler et al. “Performance assesment of multiobjective optimizers: an analysis

and review”. In: Evolutionary Computation 7.2 (2003), pp. 117–132.

[19] David Hadka. “MOEA Framework User Guide: A free and open source Java frame-

work for multiobjective optimization”. In: (2014). url: http://www.moeaframework.

org/.

http://www.moeaframework.org/
http://www.moeaframework.org/

48

[20] J. Mambretti, J. Chen, and F. Yeh. “Next Generation Clouds, the Chameleon

Cloud Testbed, and Software Defined Networking (SDN)”. In: 2015 International

Conference on Cloud Computing Research and Innovation (ICCCRI). Oct. 2015,

pp. 73–79.

[21] GWAC. “GridWise Transactive Energy Framework Draft Version”. In: GridWise

Architecture Council on Transactive Energy 1 (2013), pp. 1–23. doi: PNNL-22946.

[22] Mohammad B Shadmand et al. “Multi-Objective Optimization and Design of

Photovoltaic-Wind Hybrid System for Community Smart DC Microgrid”. In: 5.5

(2014), pp. 1–9.

[23] Van Hoa Nguyen et al. “On Conceptual Structuration and Coupling Methods of Co-

Simulation Frameworks in Cyber-Physical Energy System Validation”. In: Energies

10.12 (1977). issn: 1996-1073.

[24] S. Sicklinger et al. “Interface Jacobian-based Co-Simulation”. In: International

Journal for Numerical Methods in Engineering 98.6 (), pp. 418–444.

[25] Steffen Schutte, Stefan Scherfke, and Michael Sonnenschein. “mosaik - Smart Grid

Simulation API”. In: Proceedings of SMARTGREENS 2012 - International Confer-

ence on Smart Grids and Green IT Systems 2 (2012), pp. 14–24.

https://doi.org/PNNL-22946

Appendices

49

Appendix A

Optimization Platform

Documentation

A.1 Installing Platypus

This section assumes that the user has root privileges on a Linux 14.04 LTS node.

A.1.1 Miniconda

The first step involves downloading Miniconda, an Anaconda package and environment

manager that allows developers to create environments with the desired Python version and

modules in a structured way. In the terminal, run the following commands to download

and install it. When done, the current terminal should be closed and a new one should be

open to be able to use the command conda.

1 $ cd /tmp/

2 $ wget https : // repo . continuum . i o /miniconda/Miniconda3−l a t e s t−Linux−x86 64 .

sh # Change to Linux−x86 . sh f o r 32 b i t s

3 $ chmod +x Miniconda3−l a t e s t−Linux−x86 64 . sh # or Miniconda3−l a t e s t−Linux−
x86 . sh

4 $. / Miniconda3−l a t e s t−Linux−x86 64 . sh # or Miniconda3−l a t e s t−Linux−x86 . sh

Listing A.1: Downloading and installing Miniconda latest version.

A.1.2 Virtual Environment

In this step, a Python virtual environment is created through Miniconda. A virtual

environment is a self-contained directory tree that contains a version of Python in addition

50

51

to other packages. This is done through Miniconda’s command setting the virtual

environment’s name and Python version to 3.4.5. To begin working on the virtual

environment, it must be activated. Run the following commands in the terminal to do

this:

1 $ conda c r ea t e −n opt imiza t i on python=3.4.5

2 $ source a c t i v a t e opt imiza t i on

3 (opt imiza t i on) $

Listing A.2: Creating and activating a Python 3.4.5 virtual environment.

A.1.3 Platypus

Git is an open source distributed version control application to manage git repositories.

Run the command git in the terminal. If git is not installed, run the following commands:

1 (opt imiza t i on) $ sudo apt−get update

2 (opt imiza t i on) $ sudo apt−get i n s t a l l g i t

Listing A.3: Installing git.

Once installed, use git to download Playtpus and install it using Python through the

following commands:

1 (opt imiza t i on) $ g i t c l one https : // github . com/Project−Platypus /Platypus .

g i t

2 (opt imiza t i on) $ cd Platypus

3 (opt imiza t i on) $ python setup . py develop

Listing A.4: Downloading and installing Platypus in the virtual environment.

Remember to activate the virtual environment (source activate optimization) before

running a program that uses the Platypus module.

Testing Platypus

To test that Platypus is installed correctly, save the following example to the node where

it was just installed and run it:

1 from platypus import NSGAII , DTLZ2

2

3 problem = DTLZ2()

4

5 a lgor i thm = NSGAII(problem)

6 a lgor i thm . run (10000)

52

7

8 f o r s o l u t i o n in a lgor i thm . r e s u l t :

9 pr in t (s o l u t i o n . o b j e c t i v e s)

Listing A.5: Platypus post installation example.

In this case a MOO benchmark, the Deb Thiele Laumanns and Zitzler 2 (DTLZ2),

is run using NSGA-II with 10000 function evaluations. At the end, the values of the

objectives obtained by each solution in the solution set are printed to the terminal.

A.2 Getting the Optimization Platform

To download the optimization platform and its dependencies, run the following commands:

1 (opt imiza t i on) $ cd /tmp/

2 (opt imiza t i on) $ g i t c l one https : // github . com/ ch i c od e l a r o s a /

SGOptimizationPlatform . g i t

3 (opt imiza t i on) $ cd SGOptimizationPlatform

4 (opt imiza t i on) $ pip i n s t a l l −r requ i rements . txt

Listing A.6: Downloading the optimization platform and installing its dependencies.

A.3 Using the Optimization Platform

The platform comes with all the required variables and files to run the CU problem. In

case, new optimization problems, variables, and files are needed they can be added to the

corresponding directories. The directory tree of the optimization platform is shown in

Figure A.1. The CustomProblems directory holds the MOO problems implemented with

Platypus’ Problem class. Any custom problem that wants to be red outside this directory

needs to be imported to the init file.

53

Fig A.1: Optimization framework directory tree.

A.3.1 Adding Optimization Problems

To add new optimization problems to the platform, the Platypus Problem class must be

used. Any class that inherits from the Problem class must define its own constructor and

evaluate method. In the constructor, the super() method must be called, this method

receives three arguments including the number of variables, objectives, and constraints of

the problem.

The variable types can be set as Real, Integer, Binary, Permutation, and Subset.

Custom types can also be created as needed. Depending on the optimization problem,

these types can be used. When defining types, the lower and upper bounds of each variable

must be set. The length of the types array must be equal to the number of variables.

The constraints are the operators for each constraint of the optimization problem. Valid

constraints include ”==”, ”<”, ”>”, ”<=”, ”>=”, and ”!=”. The length of the constraints

array must be equal to the number of constraints.

The directions tell Platypus how to optimize each objective. The Problem class provides

two instance fields in case an objective is to be maximized or minimized. These are callable

as Problem.MAXIMIZE or Problem.MINIMIZE, respectively. The length of the directions

array must be equal to the number of objectives.

54

A.3.2 Adding Evolutionary Algorithms

To add new EAs to the optimization platform, the Platypus Algorithm class must be used.

Any class that inherits from the Algorithm class must define its own constructor, step,

iterate, and run methods. In the constructor, the super() method must be called, this

method receives one argument, the problem.

In the step method the number of function evaluations is checked as the stop condition

for any EA optimizing the problem. Also, in this method, the iterate method is called if

the stop condition has not been reached. This method is the heart of any EA. There, the

algorithm evaluates the objectives, assigns the fitness of its population, defines or updates

its population archives, and performs selections, mutations and crossovers between the

current population and the offspring. In the run method some setup is done prior calling

the set method.

A.3.3 Adding Performance Metrics

To add new performance metrics to the optimization platform, the Platypus Indicator class

must be used. Classes that inherits from this class, must implements their own constructor

and calculate methods. The constructor may receive the parameters of the performance

metric and must call the super() method.

Depending on the type of performance metric, one or more solutions sets are passed as

arguments to the calculate method. This method returns the value or values associated

with the implementation of a specific metric.

A.3.4 Entity Data

The CU problem works with consumer consumption profiles. These profiles are kept in

CSV files. Before the optimization problem is optimized, the profiles are read from the

CSV file. The values are converted to a list of lists that is kept in memory while the

optimization takes place.

Other entity profiles such as information of PVs can be included in the optimization

platform by adding a directory and an init file in addition to a reader in case the information

kept in its CSV is stored in a way that does not correspond to profile, time interval. In this

way, when running custom optimization problems, the data can be loaded into memory

accordingly.

55

A.3.5 Definitions

The definitions directory holds files with variables needed by the objects that optimize a

problem. Definitions include values such as Emax and the cost function coefficients. Again,

the init file allows programs outside this directory to read these variables.

A.3.6 Logs

The logs directory holds the Logger class that contains methods for keeping information

about the progress of the optimizations. It also contains a method that saves that

information in text files. This is useful for carrying out statistical analyses on the results

obtained by the EAs. The init file allows programs outside this directory to read these

methods.

A.3.7 Putting Everything Together

In the Optimization file, all the information of profile files, variables, and objects are

imported. In line 118, the evaluator is defined for the experimenter. The number of

threads is passed as an argument to the ProcessPoolEvaluator method, using the cpu count

method, to tell Platypus how many of them it can use. The experiments are run on the

CU problem with different EAs while the performance metrics are calculated and all the

information in each round is logged and saved locally for later analysis. In the case another

problem is to be optimized, the problem variable must be set to the installation of the

specific custom problem.

Lines 84 through 100 are commented and includes creation of the reference solution

set of non-dominated solutions that is used by the performance metrics. At the end, a

pickle object is used to dump the reference solution set object to a file. Once the reference

solution set is saved in a file, lines 104 to 105 load the information stored in it and set it

to the reference set variable.

Appendix B

GitHub Repositories

The GitHub repositories of the optimization platform and the TE MAS simulations are

available upon request at dan.rosa@upr.edu. The following sections contain the links.

B.1 Optimization Platform

https://github.com/chicodelarosa/SGOptimizationPlatform

B.2 Transactive Energy Multi-Agent System Simula-

tions

https://github.com/chicodelarosa/TESAMSimulation

56

mailto:dan.rosa@upr.edu
https://github.com/chicodelarosa/SGOptimizationPlatform
https://github.com/chicodelarosa/TESAMSimulation

Appendix C

Virtual Machine Disk Images

The virtual machine disk images of the optimization platform and the TE Multi-Agent

System simulations are available upon request at dan.rosa@upr.edu. They are in qcow2

format.

57

mailto:dan.rosa@upr.edu

	Abstract
	Abstract (Spanish Version)
	Acknowledgment
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Outline

	The Optimization Framework
	Multi-Objective Optimization
	Smart Grid Policies
	Evolutionary Algorithms
	Multi-Objective Evolutionary Algorithm Based on Decomposition
	Indicator-Based Evolutionary Algorithm
	Epsilon Domination Based Multi-Objective Evolutionary Algorithm
	Covariance Matrix Adaptation Evolution Strategy
	Third Evolution Step of Generalized Differential Evolution
	Speed-constrained Multi-Objective Particle Swarm Optimization
	Non-dominated Sorting Genetic Algorithm II
	Strength Pareto Evolutionary Algorithm 2

	Evolutionary Algorithm Performance Metrics
	Hypervolume Indicator
	Generational Distance
	Epsilon Indicator
	Inverted Generational Distance
	Spacing
	Running Time

	Conclusion

	Energy Demand Side Optimization
	Model
	Problem Formulation

	Platypus Evolutionary Computing Framework
	Scenario Implementation
	Experimental Results
	Conclusion

	Transactive Energy Optimization
	Transactive Energy Multi-Agent Systems
	The Distribution-Communication Grid Models
	Distributed Generation and One-way Communication
	Centralized Generation and One-way Communication
	Distributed Generation and Two-way Communication
	Centralized Generation and Two-way Communication

	Problem Formulations
	Distributed Generation and One-way Communication
	Centralized Generation and One-way Communication
	Distributed Generation and Two-way Communication
	Centralized Generation and Two-way Communication

	Scenario Implementation
	Mosaik Simulators and Control Mechanisms

	Experimental Results
	Conclusion

	Conclusion and Future Work
	References
	Appendices
	Optimization Platform Documentation
	Installing Platypus
	Miniconda
	Virtual Environment
	Platypus

	Getting the Optimization Platform
	Using the Optimization Platform
	Adding Optimization Problems
	Adding Evolutionary Algorithms
	Adding Performance Metrics
	Entity Data
	Definitions
	Logs
	Putting Everything Together

	GitHub Repositories
	Optimization Platform
	Transactive Energy Multi-Agent System Simulations

	Virtual Machine Disk Images

