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ABSTRACT 

 

In this research two methodologies for data collection using a multivariate data analysis 

technique are proposed. The Continuous Methodology and Combination Methodology 

for data collection are used and evaluated in two distinct processes, injection molding and 

welding by radio frequency. These processes, which are of a multivariate nature, contain 

variables that have an effect on the quality of a product. The Continuous Modeling 

Methodology proposed the use of process data at three levels to create sub-matrices, 

which provided the most information of all the available batch characteristics. The 

Combination Methodology utilized gradual changes to critical variables of the process or 

product defect. A signal monitoring system is utilized for the validation of the 

methodologies proposed for each process. For the evaluation of the methods proposed, 

type I and type II errors are used along with process scrap rates. It has been shown that 

with the continuous and combination methodology, the type I error or the scrap rate are 

decreased. The variables that are significant for the identification of product defect have 

been identified. 
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RESUMEN 

En esta investigación, dos metodologías son propuestas para la adquisición de data que es 

usada con una técnica de análisis de múltiples variables. La metodología Continua y la 

Combinada, usadas para la adquisición de data, son evaluadas en dos procesos diferentes, 

moldeo por inyección y soldadura usando radio frecuencia. Estos procesos son de por 

naturaleza constituidos por múltiples variables que pueden tener un efecto en la calidad 

de un producto. La metodología Continua propone usar data del proceso en tres niveles 

de operación para la creación de matrices que proveen la mayor cantidad de información 

de la característica de los lotes.  La metodología Combinada utiliza cambios graduales a 

variables críticos para el defecto del proceso o el producto. Un sistema de monitoreo de 

señales es utilizado para la validación de las metodologías propuestas para cada proceso. 

Para la evaluación de cada metodología propuesta, el error tipo I, tipo II y la razón de 

desperdicios son calculado. Se ha demostrado que usando la metodología continua y 

combinada se disminuye el error tipo I o la razón de desperdicios. Las variables que son 

significantes para la detección de defectos son identificados en ambos procesos.        
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Chapter 1 Introduction 

 

1.1 Background 

The detection and identification of part defects and its causes in medical devices 

is an important task for the personnel involved in the manufacturing process. Defects in 

medical devices can affect the different phases of product life. A defect in a medical 

device used for fluid transport may obstruct the flow of fluid through the device, create 

loose particles within the fluid and may prevent the proper assembly to other devices. 

Defects can also be responsible for the wear and possible breakage of the various 

mechanical components in an assembly machine; therefore, increasing the manufacturing 

costs due to an increase of scrap, labor time and machine downtime. If a defective 

medical device is used it may provoke possible complications in the patient’s treatment, 

recovery and even worse, death. These can open an array of legal dilemmas that may 

affect the credibility of the medical device manufacturer and may lead to the possible loss 

of quality certifications, which allow the manufacturer to continue the production of its 

devices.    

Currently, there are various methods of identifying defective parts. Vision 

systems can be used to detect part defects, such as a short or flash or missing 

components, which in high-speed machine output may range from 500 to 900 parts per 

hour. Manual inspection of parts is also used for low output processes such as in the 

production of bags for intravenous fluids. In special cases where a vision system and 

manual inspection is not feasible other methods have to be implemented to detect and 

segregate the good and bad parts. Some production machines have programmed features, 
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which allow the process specialist to identify the ranges of operation for each parameter 

of interest, for example pressure or temperature. If the parameter goes above or below the 

set range a digital output can be sent to a conveyor or any part segregation equipment, 

which can mechanically accept and discard parts. Although these features are helpful 

they do not contribute to the understanding of the process. The process specialist cannot 

see if there are any relationships between the parameters being monitored and the defects 

that are produced by these parameters going out of the established range. 

1.2 Research Objectives 

In many cases of study, a problem is encountered which may be due to variables 

that may or may not contribute to the occurrence and magnitude of the problem. We are 

faced with the dilemma of having a process with multiple variables that need to be 

monitored at all times. The variables may have an effect on the quality of the product. 

The amount of data is also so abundant that manual calculations or analysis of the data 

would be time consuming and render little or no improvements in the long term. 

The principal objectives of this research are: 

a. Provide an effective methodology to monitor a process in real time. 

b. Establish a means of determining which variables are to be monitored. 

c. Validate the methodology proposed by implementing in a process and 

obtaining measurable results. 
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Chapter 2 Overview of Multivariate Techniques 

 
2.1 Multivariate Data Analysis 

Multivariate data analysis (MVDA) is simply defined as any statistical technique 

used to analyze data that arises from more than one variable. MVDA can be used in any 

field of study were large amounts of data are collected and analyzed.  It has been used in 

the areas of biology, medicine, engineering, business and psychology to name a few.      

Chapter 2 sections 2.2 will provide an overview of the classification of multivariate 

techniques and the steps followed to select the proper technique for the analysis of 

problems. 

2.2 Multivariate Techniques 

Multivariate techniques can be classified into two types, (Table 2.1) dependence 

techniques and interdependence techniques [1].  

 

Table 2.1 Multivariate Techniques 

Dependence Interdependence 
Structural Equation Modeling Factor Analysis 
Canonical Correlation Analysis Confirmatory Factor Analysis 
Multivariate Analysis of Variance Cluster Analysis 
Multiple Regression Multidimensional Scaling  
Conjoint Analysis Correspondence Analysis  
Multiple Discriminant/Logistic   
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2.2.1 Dependence Techniques 

 The dependence technique is classified as such because it has a variable or set of 

variables, as the dependent variable(s) and the remaining variables as independent. The 

classification of dependence is further divided depending on the number of variables and 

the type of measurement scale, metric or non-metric, used by the variable.  

2.2.1.1 Structural Equation Modeling 

 Structural Equation Modeling (SEM) is a technique that tries to explain the 

relationship among multiple variables. SEM has two basic components: the measurement 

model, which uses several variables or indicators for a single independent or dependent 

variable; the structural model, which relates the independent variables to the dependent 

[2,3].  Figures 2.1 a and b show a simple representation of a measurement and structural 

model. In the measurement model, the arrow between the exogenous and the endogenous 

means there is a dependence relationship between both constructs. Each construct has 

four indicators or variables assigned, for this specific example. The curved arrow in the 

structural model represents a co relational relationship or the strength of the association 

between variables.  

 (a) Measurement Model 

 

 

 

 

 

 

Exogenous 
Construct 

Endogenous 
Construct 

1X 2X 3X 4X 1Y 2Y 3Y 4Y
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(b) Structural Model 

 

 

 

 

 

Figure 2.1 Visual Representation of a Measurement and Structural Model in SEM 

 

2.2.1.2 Canonical Correlation 

The objective of Canonical Correlation analysis is to correlate simultaneously 

several metric dependent variables and independent variables. Equation 2.1 represents the 

relationship between the dependent (metric or non-metric) and the independent (metric or 

non-metric) variables. It is important to notice that each equation differs depending on the 

type of variable being used as the dependent or independent. 

)...(... 321321 nn XXXXFYYYY ++++=++++                      (2.1) 

2.2.1.3 Multivariate Analysis of Variance 

Multivariate Analysis of Variance or MANOVA can be used to find the 

relationship between several categorical independent variables or treatments and two or 

more metric independent variables [4]. 

Multivariate Analysis of Variance (MANOVA) 

)...(... 321321 nn XXXXFYYYY ++++=++++                      (2.2) 

Exogenous 
Construct 

1X 2X 3X 4X

Exogenous 
Construct 

5X 6X 7X 8X
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Where Y variables are metric and X variables are non-metric. Comparing equation 2.2 to 

equation 2.1, it is clear that the independent variables in a Canonical Correlation can be 

either metric or non-metric.  

2.2.1.3 Multiple Regression 

Multiple Regression is a statistical technique used to analyze the relationship 

between a single Y dependent metric variable and several X independent metric variables 

[5,6]. 

)...( 3211 nXXXXFY ++++=                        (2.3) 

2.2.1.5 Conjoint Analysis 

Conjoint Analysis is a family of techniques and methods developed to understand 

individual preferences that share a theoretical foundation based on the models of 

information integration and functional measurement [7]. It analyzes the factors that are 

controlled (independent variables) which are qualitatively specified [8]. 

)...( 3211 nXXXXFY ++++=                      (2.4) 

Where 1Y can be non-metric or metric and the X are non-metric 

2.2.1.6 Multiple Discriminant Analysis and Logistic Regression 

The purpose of Multiple Discriminant Analysis and Logistic Regression is to 

identify the group to which an object belongs. Basically it estimates the relationship 

between a single non-metric dependent variable and a set of metric independent 

variables. Logistic Regression is limited to a two group dependent measure [9,10]. 

)...( 3211 nXXXXFY ++++=                        (2.5) 
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Where 1Y is non-metric and the X are metric. This is the difference between equation 2.4 

and 2.5.  

 

2.2.2 Interdependence Techniques 

In the interdependence technique, variables are analyzed as a single set. Variables 

are neither classified as dependent or interdependent. The interdependence group is also 

divided further depending if the relationship is between variables, cases/respondents or 

objects.   

2.2.2.1 Factor Analysis 

Factor analysis is a statistical technique that can be used to analyze the 

interrelationships among large numbers of variables in terms of their common factors. 

Factor analysis is divided into Common Factor and Principal Components Analysis. 

Common Factor Analysis is used to describe the covariance among variables in terms of 

a few underlying factors. In Principal Component Analysis, the data is reduced into 

smaller number of components, which explain the maximum amount of variance [11,12].  

As part of obtaining an interpretable factor solution it may be useful to implement 

a factor rotation method, which may simplify the factor matrix structure (simplification 

of rows and columns). The values of the rows and columns are made as close to zero as 

possible. In factor rotation the reference axes of the factors are turned about the origin 

until some other position has been reached. In Orthogonal Factor Rotation the axes are 

rotated, but are maintained at 90 degrees (Figure 2.2). The 1X and 2X variables 

represent the first factor and second factor, respectively, extracted from the factor 

analysis and represent the most significant factors. The 1Y and 2Y  are the rotated factors 
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1X and 2X , where the θ  represent the angle of the rotated factors with respect to the 

original axis. The main purpose of this is to help visualize which variables are highly 

correlated with each factor. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Orthogonal Factor Rotation 

There exists three Orthogonal Rotation Methods: Quartimax, Variamax and Equimax. 

Two of the most used are Quartimax and Varimax. In the Quartimax rotation, 

simplification is based on the rotation of the initial factor such that a variable loads high 

(highly correlated with) on one factor and as low as possible on another factor. In the 

Variamax Criterion, loadings should be close to 1 (+1 or –1) or 0. Equimax is a 

combination of Quartimax and Variamax [13]. The purpose of this is to eliminate having 

the same variable repeat itself as a significant variable for each factor. 

2.2.2.2 Confirmatory Factor Analysis   

 Confirmatory factor Analysis is used to test how well measured variables 

represent a smaller number of constructs. It may be used with structural equation 

modeling. The difference with this technique compared to other multivariate techniques 

is that with confirmatory factor analysis one must specify the number of factors that exist 
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within a set of variables and state, which factors will load highly on before the 

computation of the results [14]. 

2.2.2.3 Cluster Analysis  

 Cluster analysis can be considered as an exploratory technique, which groups 

individuals or objects into clusters so that objects in the same cluster have similar 

characteristics than objects in other clusters, see figure 2.3 [15].  

 

 

  

 

 

 

 

Figure 2.3 Observations based on Two Clustering Variables (X & Y) 

 

2.2.2.4 Multidimensional Scaling and Correspondence Analysis 

Multidimensional scaling or perceptual mapping is a technique that determines 

the perceived relative image of a set of objects. It uses a single measure of similarity 

across the entire set of objects. Figure 2.4 shows an example of the perception of 5 candy 

manufacturers. Manufacturers A and B have been judged to be the most similar if 

comparing to other possible pairs such as A and C or B and D. The purpose of 

multidimensional scaling is to transform judgments into distances in a multidimensional 

space [16]. In correspondence analysis, perceptual maps are created with the variables 

Variable X 

Variable Y 

Cluster 1 

Cluster 2 
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and observations plotted simultaneously [17]. Figure 2.5 shows a hypothetical example of 

a product based on the region where it is used.     

   

 

 

 

 

 

 

 

 

Figure 2.4 Multidimensional Map of Perceptions of 5 Candy Manufacturers 

 

 

 

 

 

 

 

 

 

Figure 2.5 Perceptual Map From Correspondence Analysis of Product Type and 

Region 

Dimension I 

Dimension II 

D
A

B 

E 

C

Dimension II 

      Sweater 

 

Coat 

T- Shirts 

Dimension I 

Warm Region 

Cold Region 

Dry Region 
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2.2.3 Guide for the Selection of A Multivariate Technique 

Hair et al [1] provides a decision diagram (Figure 2.6 thru 2.8) for the selection of 

a multivariate technique depending on the variables that are going to be analyzed.  These 

diagrams are useful because they serve as a guideline for the selection of the multivariate 

technique most appropriate for any case study under evaluation. For example, if there 

were a case study, which consists of variables that will be used to predict another variable 

or set of variables, then a dependence technique (Figure 2.6 and 2.7) would be selected. 

The specific technique used will depend if there is only one dependent variable to be 

predicted or various dependent variables. This is further divided on the classification of 

the variable as being metric or non-metric. Metric variables are defined as those 

variables, which are quantitative and Non-metric variables are qualitative. Examples of 

metric variables could be age, weight, temperature, pressure and height. Non-metric 

variables could be sex (female or male) and occupations (doctors or engineers). If the 

relationship among the variables is unknown and a structure is to be found between these 

variables then an interdependence technique is used (Figure 2.8). These are also broken 

down depending if the variables are metric or non-metric. Examples of these have been 

presented in section 2.2.2.3 Cluster Analysis and 2.2.2.4 Multidimensional Scaling and 

Correspondence Analysis, where formations or patterns among variables are analyzed or 

relationships are established between variables such as in Factor Analysis. The technique 

selected for this research will be explained in chapter 5. 
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Figure 2.6 Decision Diagram 1 (from Hair et al “Multivariate data Analysis”, page 14-15) 

What type of 
relationship is 
being examined? 

How many 
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being predicted? 
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relationships 
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Dependence Interdependence 

See diagram 2 See diagram 3 
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Figure 2.7 Decision Diagram 2 (from Hair et al “Multivariate data Analysis”, page 14-15) 

           Dependence 
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                                                                                  Interdependence  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Decision Diagram 3 (from Hair et al “Multivariate data Analysis”, page 14-15) 

Factor 
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Analysis 

Cluster 
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Metric Non-Metric 
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Chapter 3 Literature Review 

 

It has been the goal of many researchers and industries to provide methods of maintaining 

control of processes. These processes may include chemical processing, molding, and 

extrusion, mixing of resins among others. Maintaining control of the operation of a 

process translates into savings, since an efficient use of resources and equipment reduces 

wastes in material and time. Any deviation from the established operating ranges during 

the processing or production of a product may lead to the introduction of erroneous 

quantities of solutions, improper mixing or defective molded products that may cause 

problems to the end user or the process itself.  

 

Comparing the actual results to the predicted results when a mechanistic model, such as a 

linear regression model is used can monitor a process performance. Statistical process 

control charts such as the Shewart [18], Cumulative Sum (CUSUM) [19], or 

Exponentially Weighted Moving Average (EWMA) [20] can be used to compare the 

actual state of the process of interest to the normal operating conditions. The setback to 

these control charts is that they were developed for the monitoring of uni-variate 

processes [21]. 

 

Multivariate statistical analysis, such as Principal Component Analysis and Partial Least 

Squares have been used in many areas such as the pulp and paper, chemical processing, 

socio-economic and psychology [22,23]. Yacoub and MacGregor used Principal 

Component Analysis (PCA) and Partial Least Squares (PLS) to understand the spatial 
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variation in the manufacture of polyurethane foam insulation panels by reaction injection 

molding process, to correct the causes of variation and optimize the quality variables by 

using response surface modeling [24].    

 

Kresta et al proposed multivariate statistical process control procedures for a fluidized 

bed reactor and an extractive distillation column. Using PCA and PLS methods they were 

able to recognize that the product space should be restricted to variables of interest in the 

monitoring procedure, scaling should be performed in such a way that the variances 

reflect their relative importance and loading vectors help identify possible causes to 

product abnormalities [25]. Only simulations were used for this analysis. 

 

Nomikos, MacGregor and Kourti emphasized on historical data modeling to monitor the 

progress of styrene-butadiene batch reactor process based on multi-way principal 

component analysis. The future behavior of the process was monitored by comparing it 

against that observed in the past when the process was in a state of statistical control 

[26,27]. They were able to detect simulated faults in the process. 

 

Multivariate statistical methods have been used to analyze data from an industrial batch 

drying process. PLS methods were able to isolate the group of variables in the chemistry, 

in the timing of the various stages of the batch and in the shape of the time-varying 

trajectories of the process variables and how they were related to a poor quality product 

[28].  
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Multivariate methods have also been able to provide a more efficient and reliable 

optimization procedure for the derivation of mass spectrometric analysis of a semi-

synthetic amino-glycoside anti-biotic used in food-animal production by incorporating 

designed experiments in each of which the values for several parameters are changed at 

the same time [29].  

 

Bashir, Khokhar and Schonfeld presented a modeling scheme for object motion trajectory 

based analysis and recognition, where Principal Component Analysis was used to reduce 

the dimensionality of the feature space denoted as CDF-Centroid Distance Function. 

Object motion trajectories were segmented and PCA coefficients were used for trajectory 

classification and activity recognition [30].     

 

Principal Component Analysis and Partial Least Squares have also been used in the 

classification of olive oils by cultivars and geographical region by using Nuclear 

Magentic Resonance enhanced signals of  C13  spectra [31] and in the analysis of metal 

concentrations in coastal sediments by tracing anthropogenic pollutant sources and for 

characterizing various processes related to pollution [32].  

 

Cho and Kim [33] proposed a method for predicting future observations in the 

monitoring of a batch process by using an extensive batch historical library and multi-

way Principal Component Analysis. The current batch was compared to the historical 

library and the most similar trajectory was used for the prediction of future observations. 
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This research will propose the use of a multivariate method and data collection 

methodology, which will enable the monitoring of a process with high number of 

variables. The main goal is to be able to determine, which methodology provides the best 

results for the detection of process deviation or product defect. Table 3.1 outlines the 

various methodologies that have been used along with the multivariate method.  

 

Table 3.1  Multivariate Technique and Methodology Utilized in Various Research 

Areas 

  Methodology 

Contributors 
Designed 

Experiment 

Batch 
Historical 

Data PCA PLS 
Yacoub/MacGregor [24] X X X X 
Kresta [25]   X X X 
Nomikos [26]   X X   
Garcia/Kourti/MacGregor [28]   X X X 
Cho/Kim [33]   X X   

 

 
The multivariate technique selected and methodology proposed for this research will be 

explained in chapters 5 and 6. 
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Chapter 4 Research Problem and Methodology 

 

4.1 Research Problem Description 

Most processes are of multivariate nature. Monitoring the process becomes an 

arduous task when various factors contribute to the variation of the process. These factors 

may include untrained personnel, changes in raw material properties, equipment or 

tooling malfunction. Researchers have used various multivariate techniques and data 

collection methods that have provided positive results. Material resources, machine 

availability and implementation time are factors that also have to be considered when 

proposing a statistical technique and data collection methodology, which has to be 

implemented real time, since these factors translate into savings or losses to any given 

industry.    

4.2 Methodology 

The following items a-g will provide a description of the steps that will be 

followed during this research:  

a. Definition of the process. 

b. Selection of the multivariate technique following guideline of Figure 2.6-

2.8 

c. Definition of the modeling methodology being proposed as part of the 

research contributions. 

d. Establishment of the modeling evaluation criteria. 

e. Case study selection. 

f. Implementation of methodology. 
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g. Evaluation of model performance. 
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Chapter 5 Multivariate Process Description and Technique Selection 

 

5.1 Multivariate Process Description:  

The Figure 5.1 illustrates the type of process variables that are present in the 

multivariate process. The non-measurable variables are described as those variables such 

as thickness or humidity, which could be measured if there was a sensor or measuring 

device available, but are not being monitored. The measurable variables are those 

described as having the means of being measured every machine cycle, for example 

pressure, velocity, temperature or voltage. A cycle is defined as a time period in which a 

product is created. The metric output variables are those that can be measured from the 

final product, but are not measured such that one can associate a specific product with a 

specific cycle. In other words if there existed a link between the process signals and the 

resulting product attributes, such as dimension taken by a vision system, then one can 

associate the process conditions with the final product. Non-metric variables are those 

that describe the appearance of the product such as burned, incomplete part or part with 

excessive material or missing components. 

 

 

 

 

 

 

Figure 5.1 Process Flow Chart 

Process 

Input:  
Non-Measurable 
Variables 
Metric  
 

Human Factor 

Measurable Variables: 
Metric 

Output:  
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Metric 
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The human factor is another critical variable, which at times cannot be completely 

controlled. This variable will not be measured as part of the process variables, which 

have an effect during the product creation. 

5.2 Variable Selection and Classification 

 The variables of interest are those that can be measured for every cycle of the 

process. These would be metric variables describing parameters such as pressure and 

temperature, which can be compared at any moment in the process. The metric variables 

and non-metric variables at the end of the process (output) will not be utilized for the 

mathematical analysis, but will be used for the data collection and modeling methodology 

evaluation.  

5.3 Selection of Multivariate Technique 

Using the multivariate technique selection diagram presented in figures 2.6-2.8 a 

technique will be selected. First the type of relationship must be determined. The 

relationship between the variables in the process is unknown and these variables will not 

be used to predict other variables in the process. So to begin, the structure of the 

relationship between the variables is of interest. The techniques that can be used for this 

type of situation fall under the Interdependence section in the tree diagram. There are 

three branches that may be chosen: variables, cases/respondents or objects.  The ultimate 

goal of process control is to be able to maintain the process as stable as possible while 

achieving a quality product. Variations in process parameters are to be controlled or at 

least minimized. Also the variables are quantitative. That means they will have a way of 

measuring them. So variables have two options for analysis: Factor Analysis and 

Confirmatory Factor Analysis  
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The Factor Analysis was selected as the multivariate technique most appropriate for the 

process since variables will be analyzed. There are still two approaches, Common Factor 

Analysis and Principal Component Analysis, within Factor Analysis, which have to be 

considered. To determine which type of analysis is appropriate it is important to 

understand what is being measured. There exist three types of variances: common 

variance, unique variance, and error variance. Common variance is defined as variance 

shared with other variables in the factor analysis. Unique variance is variance of each 

variable unique to that variable and not explained or associated with other variables and 

error variance is variance of a variable due to errors in data collection or measurement. 

Common Factor Analysis focuses on the common variance and is not interested in the 

structure of the variables. Principal Component Analysis focuses on the combination of 

all the three types of variances and the goal is to reduce the variables of interest. Looking 

at it from this point of view Principal Component Analysis would be the approach, which 

would help identify those parameters or variables that have the most variation in the 

process.   Table 5.1 shows the path towards the selection of the multivariate technique by 

utilizing the steps presented above. 

 

Table 5.1 Selection of Multivariate Technique 

Interdependence       

Factor Analysis Ratio Scales Variables 
Confirmatory Factor Analysis Use of summated scales 

Metric Cases/Respondents Cluster Analysis 
  

Metric Multidimensional Scaling 

Structure 

Objects 
Nonmetric Corresponence Analysis 
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5.4 Principal Component Analysis 

Principal Components are the linear combinations of the original variables 

calculated with the maximum variance criterion and are characteristic vectors of the 

covariance matrix Σ. The purpose of Principal Component Analysis is to reduce the 

number of variables to be considered for further study by discarding the linear 

combinations, which have small variances. 

Assumptions 

1. All variables used in the multivariate technique must have some degree of 

measurement error (noise). 

2. An underlying structure exists 

3. The factor analysis should be of independent or dependent, but not both. This 

means that all the variables are either all independent X or all dependent Y, but 

not X and Y together. 

4. The sample is homogeneous. 

5. Normality is desirable, but not necessary since normality for each individual 

variable does not guarantee multivariate normality.  

6. Multi-collinearity-the extent to which a variable can be explained by the other 

variables in the analysis.    

The following derivation has been presented by T.W. Anderson in his book “An 

Introduction to Multivariate Statistical Analysis” 3rd edition pages 459-464 [34]. 

Let β be a p-component column vector such that 1' =ββ where 'β  is the transpose of β . 

X is a random vector of p components 

Σ is the covariance matrix, singular, positive semi-definite with multiple roots 

ε  is the variance 
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The variance of X'β is 

βββεββε Σ== '''2)'( XXX             (5.1) 

 

Determine the normalized linear combination X'β  with maximum variance by finding a 

vector β, which satisfies 1' =ββ  and maximizes equation 5.1. 

 

Let  

)1()1(- 2

,

'' −−=−Σ= ∑∑
i

iij
ji

i βλσβββλββφ           (5.2) 

 

where λ  is the Lagrange Multiplier.  

The partial derivative of equation 5.2 

 is: 

λββ
β
φ

22 −Σ=
∂
∂

               (5.3) 

 

ββ Σ'  and ββ '
 have derivatives everywhere in a region containing 1' =ββ . 

 

A vector β maximizing ββ Σ'  must satisfy equation 5.3 where the equation is simplified  

 

to 0)( =−Σ βλI . 

 

To obtain a solution to equation 5.3 with 1' =ββ , λ  must satisfy 0=−Σ Iλ  must be 

singular. 

 

Iλ−Σ  is a polynomial in λ  of degree p, where p has roots pλλλ ≥≥≥ ...21 . 

 

By multiplying 0)( =−Σ βλI  on the left by 'β  the following is obtained: 



 26

λβλβββ ==Σ ''
              (5.4) 

 

The variance of X'β  is λ . The maximum variance in 0)( =−Σ βλI  corresponds to the 

largest λ . Let )1(β  be a normalized solution of 0)( =−Σ βλI , then XU ')1(
1 β=  is a 

normalized linear combination with maximum variance. Let the p-component random 

vector X have 0=Xε  and Σ='XXε . Then there exists an orthogonal linear 

transformation U=β’X, where U is defined as the vector of principal components of X, 

such that the covariance matrix of U is λε ='UU  and 
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where pλλλ ≥≥≥ ...21  are the roots of 0=−Σ Iλ . These roots are also called the 

Eigen-values and are used to determine the maximum amount of components to be 

extracted. Principal Components with Eigen-values equal to or greater than 1, also known 

as the Kaiser Method, are maintained in the models. Figure 5.2 shows an example of 

observations in three dimensions and the corresponding principal components. The first 

principal component corresponds to the direction of most variance in the data. Each 

following principal component is perpendicular to the last component derived and 

corresponds to the next direction of most variance in the data.  
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Figure 5.2 Observations in 3-dimensional Space and Principal Components 

 

The basic Principal Component model or variate has the form: 

nn xwxwxwPC +++= ...2211             (5.5) 

where nw  is the weight determined by the multivariate technique and nx  is the observed 

variable. The purpose of the variate is to separate the variables contribution to the overall 

variate effect, nw  also know as the loading.  
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Chapter 6 Modeling Methodology 

 

6.1 Introduction 

One of the main purposes of this research is to propose and validate a data 

collection methodology to be used with the multivariate technique. The data collection 

methodology is essential for the creation of the data matrix β used for the derivation of 

the principal components in the factor analysis. The data collection requires an 

understanding of the process under investigation, although most analyses start out as an 

exploratory test.  

In the literature (Table 6.1), the data collection methodologies found were historical batch 

data and designed experiments using the Principal Component Analysis or Projected 

Latent Structures (PLS). Projected latent Structure or Partial Least Squares is a regression 

technique, which is used with Principal Component Analysis. Partial Least Squares 

analysis is beyond the scope of this research since dependent variables will not be 

measured for every set of observations. The multivariate techniques provide the form of 

the mathematical models to be used and these models require a data collection 

methodology. The methodologies presented in the literature have not shown to be able to 

accommodate themselves to the changing conditions of the process. Two modeling 

methodologies will be proposed which can help solve this problem. The Continuous 

Modeling Methodology utilizes process data at three levels (low parameter setting, 

medium parameter setting and high parameter setting) to create sub-matrices and the 

Combination Methodology, which utilizes gradual changes to critical variables to the 

process or product defect. This is the primary contribution to this research. 
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Table 6.1 Data Collection Methodologies and Factor Analysis Proposed 

  Methodology 

Contributors 

3-Level Batch 
Analysis/Critical 
Factors 

Designed 
Experiment 

Batch Historical 
Data PCA PLS 

Yacoub/MacGregor [24]  X X X X 
Kresta [25]     X X X 
Nomikos [26]     X X   
Garcia/Kourti/MacGregor 
[27,28]     X X X 
Cho/Kim [33]     X X   
V.Diaz X X X X   
 

6.2 Continuous Modeling 

The process shown in Figure 6.1 can be considered as a three-dimensional 

problem in which there are variables (parameters) that have a measurable value 

(observations) and are changing with respect to time. In the literature Wold et al and 

Nomikos [26] used multi-way principal component analysis to examine batches 

throughout time. Batches are basically defined as a group of objects with a common 

origin. These objects can be raw materials or products manufactured in a certain period of 

time under the same conditions. The methodology proposed in this thesis as the 

continuous methodology uses the concept of taking these batches with respect to time and 

adding three levels of operation to each batch. The levels are the low, medium and high 

settings for the parameters (variables) that are being monitored in the process. These 

define the operational ranges in which good product is manufactured.    
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Figure 6.1 Process Flowchart 

The Continuous Methodology constitutes of first obtaining the limits for each variable 

being monitored. The process is set to the low parameter settings. The process starts and 

observations at this low level setting are obtained. This is repeated for the medium and 

high parameter settings. 

 

Let  

obl , = Low limit parameter setting  

rbm , = Medium limit parameter setting 

ubh , = High limit parameter setting 

 

where,  

b=1…n is batch number  

o=1…g is the observation for low parameter 

r=1…h is the observation for the medium parameter setting 

u=1…q is the observation for the high parameter setting 
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obl , , rbm ,  and ubh , are column vectors having all the observations for each variable aV , 

where a=1…c is the amount of variables being monitored, at a particular setting at a time 

t (Figure 6.2 (a) and (b) for obl , ). For the example Batch number 1 in Figure 6.2 a each 

box represents an observation at the low level setting. Each column vector contains the 

value of each variable for that specific observation at time t. After these observations are 

obtained they are used to create a matrix, which represents all these observations at the 

low level (Figure 6.2 b). Time t goes from the time process starts (s) and the time the 

process ends (e) in Figure 6.2 a and b.  
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Figure 6.2 Column Vectors and Matrix for low parameter settings 
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Let cxobL , , cxrbM ,  and cxubH , , respectively be c x o, c x r and c x u matrices containing all 

of the observations from a specific batch in a specified time for that setting (Figure 6.2 b 

for batch 1 low setting). Where b is the batch number, c is the total amount of variables 

being monitored and o, r and u are the amount of observations obtained to create each 

matrix cxobL , , cxrbM ,  and cxubH , . For example, if a matrix is being created for the first 

batch with the low setting, where there are 15 parameters (variables) being monitored for 

a time period providing 150 observations then the matrix would be 15015,1 xL . 

 

Let cxzbS , be the data sub-matrix, which contains cxobL , , cxrbM ,  and cxsbH ,  such that 

∑∑∑
=

=

=

=

=

=
++= et

st

et

st

et

st
uroz  (Figure 6.3). For example, if each matrix cxobL , , cxrbM ,  and 

cxsbH ,  for the first batch contained the same 15 parameters and 150 observations each, 

cxzbS ,  would be 45015,1 xS . Figure 6.3 shows all the observations from each level used to 

create cxzbS , . 
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Figure 6.3  Sub-Matrix Creation for Low, Medium and High Parameters 
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are within limits and the controllable factors are acceptable then the Continuous 

Methodology proposes to proceed with the creation of a new data matrix, which includes 

the previous sub-matrix and the sub-matrix under the current state conditions. Figure 6.4 

demonstrates the concept of the Continuous Methodology. If these conditions are not met 

than the process must be evaluated to determine the cause for this out of control state, 

either it being material related, machine related or any other factor that affects the process 

and may not be monitored. Figure 6.4 shows the observations for each level setting at the 

left. All the observations for each level are combined to create cxobL , , cxrbM ,  and cxubH , , 

respectively. cxobL , , cxrbM ,  and cxubH ,  are used to create cxzbS ,  for each batch. All sub-

matrices representing the process at the different batch conditions are used to create the 

data matrix or the continuous model. This data matrix is used for the Principal 

Component Analysis and has all the observations in column format for each variable 

being monitored. X1 represents the first variable and Xc represents the last variable or 

total amount of parameters c.  
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Figure 6.4 Continuous Modeling Methodology 
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6.3 Combination Methodology 

  The Combination Methodology which is the second methodology being 

proposed as part of this research is an extension to the Continuous Methodology in which 

variables critical to the process or the product are selected and gradually changed until 

the desired state of process is no longer found. In other words, changes in the variables 

are made until a defect is found in the product being created. These observations, while 

still in the acceptable range, are included into the continuous model. These changes may 

be a one factor at a time change or various factors depending on the adjustments required 

based on process limitations such as machine speeds or pressure as an example.   

 

6.4 Evaluation Criteria  

The following criteria will be used to evaluate the performance of the Continuous 

and Combination data collection methodology being proposed. 

1. Principal Components extracted: there exist three methods of determining 

how many principal components to extract.  

a. The Kaiser Method retains those components with Eigen-values 

greater than 1.  

b. The Scree test is a graphical form of determining the amounts of 

components to maintain by selecting the point before the curve begins 

the line trend (Figure 6.5). For example, in Figure 6.5 the line seems to 

straighten out as it reaches the sixth component, which is close to 

having an eigen-value close to 1. 
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Figure 6.5 The Scree Test for Principal Component Selection 

 

c. The Percent Variation Explained can also be used. In the percent 

variation method, the components that cumulatively (the variation 

calculated is summed up for each component) explain a certain percent 

of the variation, 2R >.5 goodness of fit, are retained. 

2. Hotelling’s 2T : is the multivariate analog to the uni-variate statistic 2t .  

)()'(
_

1
_

2 µµ −−= − xSxNT             (6.1) 

delineates a confidence region for the mean vector, µ , in the shape of an ellipsoid 

(Figure 6-6). Values within and on the ellipsoid are considered to be within the 

confidence interval:  
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Figure 6.6 Confidence Ellipse P-dimensional space of m 

 

3. 2Q -Goodness of Prediction: evaluates the predictive ability of the model with 

increasing number of components. 

4. 2R - 2Q ≤ .3 

5. Sample Size Guide for Multivariate Analysis found in the literature and reference 

books: 

 Guide 1: 

      N ADEQUACY     
  50 VERY POOR     
  100 POOR     
  200 FAIR      
  300 GOOD     
  500 VERY GOOD     
  1000 EXCELLENT     

 

 Guide 2: Using best model fit 2R  

  

m1 

m2 

 ),(
_

2

_

1 xx
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6. Hypothesis Testing Type I and Type II error:  

a. α Type I error: when the null hypothesis (Ho) is rejected when in fact it is true 

and should not be rejected. Calculates the amount of good parts rejected as 

bad when is actually good. 

b. β Type II error: when the null hypothesis (Ho) is not rejected when in fact it is 

false and should be rejected. Calculates the amount of bad parts accepted as 

good when is actually bad. 

 

These criteria are used after the modeling is implemented and product is 

inspected. Each product, which represents an observation, is evaluated and 

classified as being a good or bad part according to the part specifications. This is 

used to evaluate if the model implemented will create excessive scrap or allow 

bad product out to the customers. 
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Chapter 7 Experiment Process Description 

 
7.1 Introduction   

To validate the continuous and combination methodologies proposed, two distinct 

manufacturing processes will be used as case studies. This chapter will cover the 

following topics: 

a. Description of the manufacturing process of each case study. 

b. List of variables under consideration in each case study. 

The injection molding process of a polycarbonate medical part and welding of 

PVC film by means of radio frequency will be used as case studies to test the data 

collection methodologies proposed. A signal monitoring system is used for the variables 

under study and the multivariate data analysis software, SIMCA-P+ 12 from the 

UMETRICS Company is used for the analysis of the data matrices. Variables used for the 

analysis in the injection molding process and the RF processes are common variables for 

each process.   Table 7.1 provides a brief description of the differences between each 

process. 

Table 7.1 Differences between Injection Molding and RF Welding Affecting 

Modeling Strategy 

  Injection Molding RF Welding 
Variables 22 36 
Production 175 cycles/hr 562.5 cycles/hr 

Process 
Single batch raw material 
during trials 

Multiple batches-raw material 

  
Humidity or pellet size 
Difference 

Difference between sheeting 
in same batch 

 
 
  

If faulty equipment is found 
it is usually replaced 
immediately 

Life of specific equipment 
decreases with time; adjusted 
gradually to make up for 
losses until replaced.  
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7.2 Injection Molding Process 

Injection molding technology is a method of processing used for thermoplastic 

polymers. It consists of heating thermoplastic material until it melts, then forcing this 

melted plastic into a steel mold, where it cools and solidifies [35]. A thermoplastic 

material is that which requires heat to make it formable and after cooling, retains the 

shape it was formed into. Frequently used thermoplastics are ABS, Polycarbonate, 

Polyvinylchloride, Polyethylene and Polyester.  

In the injection molding cycle, resin pellets are placed within a hopper, (Figure 

7.1), which is placed on top of the molding machine barrel. The pellets then enter the 

barrel through the feed throat and are pushed forward by a rotating screw. The rotation of 

the screw forces the pellets against the walls of the barrel causing them to melt due to the 

heat of compression and friction and the barrel walls own heat [36]. The melted material 

is pushed into the mold and held at a pre-defined pressure for a period of time until the 

material solidifies and cools.  

 

 

 

 

 

 

 

 

 

Figure 7.1 Injection Molding Machine Components [37] 
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A 110 ton electric injection molding machine (Figure 7.2) is used to mold a 

Polycarbonate plastic part in an eight cavity semi-hot runner mold.  

 

                                              

 

 

 

 

 

Figure 7.2 Injection Molding Machine [38] 

 

The part is created using Polycarbonate resin material which is melted to a temperature of 

580 F and injected into the mold at a speed of approximately 4.50 in/s. The part is a basic 

component of an assembly that is used to control the flow of fluid through an intravenous 

set. The medical part can present various defects depending on the conditions that are 

created in the injection molding process. The most common types of defects (see figure 

7.3 a and b) that affect the part are Sinks and Short Shots. A sink mark can be considered 

as a depression caused in thick regions of a plastic component due to slow cooling. A 

short shot is basically missing material, so the part is incomplete when ejected from the 

mold. The short shots are usually detected by visual inspection so as the sink mark, but in 

a process that produces nearly 32,000 parts per day visual inspection becomes arduous 

and costly. Apart from this aspect the customer satisfaction is affected severely since they 

will be receiving a defective product that will affect the production schedules, assembly 

machines and functionality of the product, if for example the sink mark is present. 
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(a) Sample Part with short shot 

 

 

 

 

 

 

 

 

 

(b) Part with sink mark 

 

 

 

 

 

 

 

 

 

Figure 7.3 Sinks and Short shots [39] 
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The following list (Table 7.2), gives a description of each variable used for the 

analysis of the injection molding process.   

 

Table 7.2 Injection Molding Process Variables 

Variable Name Description 
X1 FILL TIME 
X2 PACK TIME 
X3 COOLING TIME 
X4 CYCLE TIME 
X5 SCREW DISPLACEMENT  
X6 SCREW VELOCITY  
X7 INJECTION PRESSURE  
X8 NOZZLE TEMPERATURE 
X9 BARRELTEMPERATURE ZONE 1 
X10 BARREL TEMPERATURE ZONE 2 
X11 BARREL TEMPERATURE ZONE 3 
X12 CUSHION 
X13 SHOT SIZE 

 

Some of these parameters are established through a methodology called Scientific 

Molding or Decoupled Molding. Scientific molding or decoupled molding was developed 

by RJG, Inc as a methodology to achieve process repeatability and minimize shot to shot 

variation. Previously, molded parts were created by injecting the molten material into the 

mold as fast as possible, holding the material within the mold and then releasing the part 

from the mold after it was solidified. The methodology proposed by RJG separated or 

decoupled (partially decoupled, fully decoupled, totally decoupled) the process into fill, 

pack and hold.  
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In partially decoupled process, fill and pack is partially separated and pack is 

mainly controlled by kinetic energy. Fully decoupled separates fill and pack completely. 

The pressure is controlled by first controlling it by means of a velocity to a constant value 

of pressure applied by the screw when a pre-defined position is reached known as the 

velocity to pressure transfer position. In totally decoupled, fill, pack and hold are 

completely separated and packing is controlled by means of a pressure sensor placed 

within a cavity.  

The purpose of the Scientific Molding method is to obtain three main parameters: 

Pack Pressure, Mold Temperature and Cooling Time. The pack pressure is the pressure 

exerted by the screw on the melt, which helps maintain the plastic already within the 

mold inside, prohibiting the back flow of material. This pressure is maintained for a 

specific amount of time required for the sealing of the gate and the solidification of the 

part within the mold. The mold also has to be maintained at a certain temperature to 

facilitate the flow of the melt into the mold. 

In the stage of filling, the optimum fill time and shot size is determined by 

creating a machine rheologic curve. The machine rheologic curve is used to determine 

when the changes in the viscosity of the melt are minimal. The graph of the relative 

viscosity of the melt versus the shear rate (Figure 7.4) is created by setting the injection-

molding machine to various injection velocities. The fill time and hydraulic pressure 

(hydraulic machines) is obtained from the molding machine. The plastic pressure, an 

approximate shear rate and relative viscosity are calculated. The following figure is data 

collected for a Co-Polyester injection molded part produced in a 32-cavity mold.  
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Figure 7.4: Rheologic Curve Relative Viscosity vs. Shear rate 

 

During the packing stage, the hold time and hold pressure is determined. A gate 

seal test is used to obtain the optimum hold time or minimum time after the injection to 

seal the gate of the part. Parts are produced where the sum of the cooling time and hold 

time is maintained constant are carried out. The cooling time and hold time are changed 

simultaneously and shots are produced and weighed. This procedure is stopped when the 

shot weight is constant (Figure 7.5). 
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Figure 7.5 Shot size vs. Holding time 

 

Using the fill time, shot size and hold time; various trials at different pack 

pressures are made. Plastic parts produced are examined for visual defects and 

dimensional discrepancies. A range for pack pressure is selected. Using this range and the 

previously determined parameters the mold temperature range is proposed and selected. 

Again visual and dimensional inspections are made. Finally, the cooling time, time after 

fill to finish the cooling of the part until it reaches the desired dimensions is also selected. 

This procedure is the one normally carried out during the validation of a mold and 

has been previously established. What is useful from this procedure is that it provides a 

basis from where to start when creating the Combination Model that will be created for 

this process. The creation of the Combination Model will be covered in Chapter 8. 
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7.3 Welding by Radio Frequency Process  

Radio frequency welding, also known as dielectric or high frequency welding, is 

the process of fusing materials together by applying radio frequency energy to the area to 

be joined.  The area to be welded is placed within the electromagnetic alternating field 

(Figure 7.6), which changes its polarity from positive to negative and vice versa at a set 

frequency.  

An electromagnetic alternating field can be found between two capacitor plates. 

The molecular movement of materials with a polar molecular structure can be influenced.  

If a material with a polar molecular structure, such as PVC (Figure 7.7), Polyurethane 

and PETG, is placed in an electromagnetic alternating field whose polarity changes 

rapidly, its molecules try to adapt themselves according to the constantly changing field. 

The thermoplastic can be brought to its melting temperature. If this takes place under a 

certain joining pressure the molecules mix with one another. Once the dielectric energy is 

switched off and the joining pressure maintained the materials returns to its solid state. 

This produces high strengths, which often come close to the inherent strength of the weld 

material. Since only partial areas have to be joined when welding films, the material only 

heats up in those areas where the electrodes are applied. In Figure 7.8 a welding tool/die 

is shown. This tool fuses the material in the area where both sides of the tool make 

contact. The hole present in the tool provides a space for the seal around cylindrical 

tubing. 
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Figure 7.6 Electromagnetic alternating field 

 

 

 

 

 

Figure 7.7 PVC Structural Bonding 
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Figure 7.8 Tool for port seal 

 

A dielectric system (Figure 7.9) has a high frequency generator, which produces 

electromagnetic energy; a low pass filter, installed between the generator and the welding 

press allowing the basic, approved industrial frequency of 27.12 MHz to pass. The 

building out section is a variable capacitor, which allows the re-adjustment of the 

frequency in the press to accommodate for various joining tasks, tooling sizes and 

different material thicknesses. The welding press task is to fuse the materials together to 

create a homogeneous bond [40]. 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 RF Welding System [41] 
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In this experiment a double press welding by radio frequency machine is used to 

create patterns of 10 fluid bags per cycle index. The first press creates the port seal and 

the second press creates the main seal (Figure 7.10). The product consists of two films 

made of PVC, which are fused together by radio frequency. The bag contains two 

cylindrical tubing which are fused inside and to the film and are formed by the port tool 

in press 1. Then the machine indexes or moves to the next station where the main seal 

weld is formed by the main seal tool. The defects that have been encountered during the 

manufacture of the bags are leaks and missing tubing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10  Solution bag with welded areas 
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The following list (Table 7.3), gives a description of each variable commonly 

used for the welding process.   

 

Table 7.3 Welding by Radio Frequency Process Variables 

Variable Name Description 
X1 PORT CYCLE TIME 
X2 PORT SEAL TIME 
X3 FLAT SEAL TIME 
X4 PRE-SEAL TIME PORT 
X5 COOL TIME PORT 
X6 ANODE PORT 
X7 ANODE FLAT 
X8 SOLL PORT 
X9 SOLL FLAT 
X10 POSITION PORT 
X11 POSITION FLAT 
X12 HF PORT 
X13 FLAT 
X14 GRID CURRENT PORT 
X15 GRID CURRENT FLAT 
X16 PRESSURE PORT 
X17 PRESSURE FLAT 
X18 DIE COOLANT 
X19 MAIN CYCLE TIME 
X20 MAIN SEAL TIME 
X21 PRE-SEAL TIME MAIN 
X22 COOL TIME MAIN 
X23 ANODE MAIN 
X24 SOLL MAIN 
X25 POSITION MAIN 
X26 HF MAIN 
X27 GRID CURRENT MAIN 
X28 PRESSURE MAIN 
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 The values for each one of these parameters are based on a one factor at a time 

change and are carried out in a validation protocol for the following parameters: RF 

Power Port, RF Power Flat, Welding Pressure Flat, Welding Pressure Port, Tempering 

Temperature Port/Flat, Seal Time Port, Seal Time Flat, Temperature Main Top Plate, 

Temperature Main Bottom Plate, Welding Pressure Main, RF Power Main and Seal Time 

Main. The parameters used for the Combination Model are the RF Power, Seal times and 

Welding pressure, which have been identified as being critical to the process, since any 

changes in these may cause leaks.  
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Chapter 8 Continuous and Combination Methodology In Injection 

Molding Process 

8.1 Introduction 

In this section the following will be covered: 

1. Creation and evaluation of the preliminary sub-matrix cxzS ,1  (β) . 

2. Creation and evaluation of the continuous model. 

3. Creation and evaluation of the combination model. 

4. Determination of: Eigen-values, principal components extracted, 2R , 2Q , 

2T , Type I and II error for each model created. 

 

8.2 Analysis and Results for the Continuous Modeling Methodology 

The sub-matrix, cxzS ,1 , for batch number 1 is created by obtaining data at the low, 

medium and high parameters for this batch. Twenty-one variables are being monitored 

for this process, therefore c=21. The total amount of observations for batch 1, which 

contains the low, medium and high parameter runs, is z=456 (sample size). The sub-

matrix model is 45621,1 xS .  The multivariate data analysis software SIMCA-P+ is used to 

analyze the data matrix 45621,1 xS  and obtain the data found in table 8.1. The requirements 

that must be satisfied are: eigen-values λ >1, 2R >.5, 2R - 2Q ≤ .3. The table presents the 

minimum value of the eigen-value for the amount of principal components being 

extracted. In this evaluation, the Kaiser criterion of accepting eigen-values greater than 

one for the selection of principal components is utilized.  
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Table 8.1 Multivariate Data Analysis of Sub-matrix 45621,1 xS  Using SIMCA-P+12 for 

Injection Molding Process 

Sub-matrix Model 45621,1 xS  

Minimum Eigenvalues 5.62 4.180 2.140 1.790 1.280 1.040 1 0.95 
Principal Components 1 2 3 4 5 6 7 8 
R2 0.268 0.467 0.569 0.654 0.715 0.765 0.812 0.858 
Q2 0.116 0.308 0.369 0.392 0.426 0.368 0.305 0.236 
R2-Q2 0.152 0.159 0.200 0.262 0.289 0.397 0.507 0.622 
T2 3.870 6.057 7.925 9.651 11.293 12.881 14.431 15.952 
 

The following results were obtained when implemented in the monitoring system. Parts 

that were created and accepted or rejected were evaluated for defects such as short shots, 

sink marks, burns and flash according to the part specification and acceptance guidelines. 

This model provided a high rate of false rejects (α -Alpha=1) and no false accepts (β -

Beta=0). It was considered at this time that the model created using sub-matrix 45621,1 xS  

required some improvement since the false rejects were high, equivalent to 9% of what 

was produced (Table 8.2). 

 

Table 8.2  Performance Criteria for 45621,1 xS  

Performance Criteria 
Machine Cycles 924 

Machine Cycles Rejected 85 
Total Parts Produced 7392 
Parts Accepted 6712 
Parts Rejected 680 
Scrap % 9% 
Alpha  1 
Beta  0 
 

A second sub-matrix model, 121621,2 xS , was created to include observations from another 

batch.  Table 8.3 shows the results of the analysis for this new matrix. 
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Table 8.3 Multivariate Data Analysis of Sub-matrix 121621,2 xS  Using SIMCA-P+12 for 

Injection Molding Process 

Sub-matrix Model 121621,2 xS  

Minimum Eigenvalues 7.06 4.070 2.790 2.250 1.380 1.020 0.734 
Principal Components 1 2 3 4 5 6 7 
R2 0.336 0.530 0.662 0.770 0.835 0.884 0.919 
Q2 0.263 0.392 0.435 0.566 0.583 0.665 0.668 
R2-Q2 0.073 0.138 0.227 0.204 0.252 0.219 0.251 
T2 3.852 6.010 7.856 9.548 11.153 12.699 14.201 
 

The model created with sub-matrix 121621,2 xS  was implemented in the monitoring system 

and was found to achieve a decrease in the scrap rate as well as the probability of making 

a Type I error (α ) by decreasing from 1 to .59 (Table 8.4). 

 

Table 8.4 Performance Criteria for 121621,2 xS  

Performance Criteria 

Machine Cycles 64,890 

Machine Cycles Rejected 659 
Total Parts Produced 519,120 
Parts Accepted 513,848 
Parts Rejected 5,272 
Scrap % 1% 
Alpha .59 
Beta 0 
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8.3 Analysis and Results for the Combination Modeling Methodology 

To use the combination methodology in injection molding a one factor at a time 

change is used for those parameters that are considered as critical to the defects, such as 

short shot and sink marks. In this section the machine rheologic curve  (Table 8.5) and 

the gate seal test are used to establish the limits of the injection speed and the pack time. 

The following procedure was conducted: 

1. Using the gate seal test the minimum hold time is obtained. The maximum time 

can be anything above the minimum, but this will increase the cycle time. 

2. The minimum and maximum injection speed is obtained from the machine 

rheologic curve.  

 

Table 8.5 Values used for the creation of the Rheologic Curve 

 

Trial 

Injection Velocity 
(in/s) 

Fill Time 
(s) 

Hydraulic Pressure 
(psi) 

1 5.50 0.60 22170 
2 5.00 0.65 21046 
3 4.75 0.68 20350 
4 4.50 0.72 19655 
5 4.00 0.80 18209 
6 3.25 1.03 17615 
7 2.75 1.21 16681 
8 2.50 1.35 16205 
9 2.00 1.65 15248 
10 1.50 2.19 13987 
11 1.25 2.62 13458 
12 1.00 3.27 12922 
13 0.75 4.34 12488 
14 0.50 6.51 13244 
15 0.25 13.26 16883 

 

For example, if the injection speed selected during the decoupled molding phase is 1.25 

(Table 8.5) then the minimum injection speed used is 1.00 and the maximum is 1.50. It is 

convenient to use the same tools that are used during decoupled molding for the selection 
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of the minimum and maximum values since this information is always provided when the 

decoupled methodology is used. This would standardize the procedure for all other molds 

being evaluated. Ten trial runs were carried out using a one factor at a time change. Ten 

trial runs were required because there were 5 parameters with low and high setting to be 

determined. These trials are included in the model created using continuous modeling to 

form the combination model. The position of the screw for shot size was increased until a 

permissible amount of flash was found and decreased until a short shot was achieved. 

The temperatures of the barrel were kept within manufacturers recommended range and 

depending on the material and mold can vary between 20-50 degrees above and below 

the nominal temperature used during the initial validation. The trials for the temperatures 

were changed for all zones at the same time.  The extruder rpm was increased and 

decreased taking into consideration the residence time of the material in the barrel and the 

machine capacity. Table 8.6 provides a list of all the parameters that were changed for the 

creation of the new model using the combination methodology.  

 

Table 8.6 Parameters used for the Creation of The Combination Model 

PARAMETERS 

PACK TIME 

INJECTION VELOCITY 

SHOT SIZE 

RPM 

NOZZLE TEMP 

ZONE 1 TEMP 

ZONE 2 TEMP 

ZONE 3 TEMP 
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The combination matrix consists of 1246 observations, which include those from the 

continuous model. Table 8.7 presents the results of the multivariate analysis and Table 

8.8 presents the results of the effectiveness of the model implemented. The scrap rate is 

reduced to less than 1% and the type I error has been decreased to .027. This means that 

there were more defective parts correctly rejected. 

 

Table 8.7 Multivariate Data Analysis of Combination Matrix Using SIMCA-P+12 

for Injection Molding Process 

Combination Model  
Minimum Eigenvalues 6.33 4.78 3.37 2.22 1.98 1.14 0.651 
Principal Components 1 2 3 4 5 6 7 
R2 0.288 0.505 0.658 0.759 0.849 0.901 0.93 
Q2 0.217 0.402 0.48 0.46 0.585 0.574 0.642 
R2-Q2 0.071 0.103 0.178 0.299 0.264 0.327 0.288 
T2 3.852 6.015 7.855 9.547 11.151 12.696 14.198 
 

Table 8.8 Performance Criteria For the Combination Model for Injection Molding 

Performance Criteria 

Machine Cycles 67,569 

Machine Cycles Rejected 597 
Total Parts Produced 540,552 
Parts Accepted 535,776 
Parts Rejected 4,776 
Scrap % 0.88% 
Alpha .027 
Beta 0 
 

The Continuous and Combination Methodology implemented in the injection molding 

case study provided excellent results as was seen in the reduction of type I error from 1 to 

.27 and a reduction of the scrap rate from 9% to .88%. 
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Chapter 9 Continuous and Combination Methodology In Welding by 

RF Process 

9.1 Introduction 

In this section the following will be covered: 

1. Creation and evaluation of the continuous model for the main seal and 

port/flat seal. 

2. Creation and evaluation of the combination model for the main seal and 

port/flat seal. 

3. Determination of: Eigen-values, principal components extracted, 2R , 2Q , 2T , 

Type I and II error for each methodology. 

9.2 Analysis and Results for the Continuous Modeling Methodology 

One of the differences between the injection molding process and the welding by 

Radio Frequency is that in the injection molding process parts are made in the mold in 

one step, while in the RF process the welding is done in two different steps, first the port 

and flat seal is made and then the main seal. Therefore, one continuous model has to be 

created for each type of seal. The solution bags evaluated at the end of the process are 

destructively tested and checked for leaks by filling each solution bag with pressurized 

air to separate the films. These solution bags are placed in an oven and heated to 118 

degrees Fahrenheit for a period of 15 minutes. Afterwards each solution bag is submersed 

into a water bath and is visually inspected for leaks. This procedure has been previously 

established in the product specifications for testing of the solution bags.     
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The model created using the 265325,2 xS  and 264914,2 xS  sub-matrix is implemented in the 

monitoring system that is available for the experiment in the machine, which produces 

the solution bags. Tables 9.1, 9.2, 9.3 and 9.4 present the multivariate analysis results for 

the variables for press 1 and press 2. Due to limited time and resources for the experiment 

the data collected for both batches were tested under sub-matrix 265325,2 xS  for press 1 and 

264914,2 xS  for press 2. 

 

Table 9.1 Multivariate Data Analysis of Sub-matrix 14425,1 xS  Using SIMCA-P+12 for 

RF Welding Press 1 

Sub-matrix Model 14425,1 xS  

Minimum Eigenvalues 15.4 3.51 1.43 1.17 0.853 
Principal Components 1 2 3 4 5 
R2 0.615 0.755 0.812 0.859 0.893 
Q2 0.598 0.721 0.693 0.663 0.629 
R2-Q2 0.017 0.034 0.119 0.196 0.264 
T2 3.924 6.205 8.176 10.023 11.806 
 

Table 9.2 Multivariate Data Analysis of Sub-matrix 265325,2 xS  Using SIMCA-P+12 

for RF Welding Press 1 

Sub-matrix Model 265325,2 xS  

Minimum Eigenvalues 6.88 5.18 1.17 1.07 1 0.794 
Principal Components 1 2 3 4 5 6 
R2 0.362 0.635 0.696 0.753 0.805 0.847 
Q2 0.311 0.578 0.553 0.508 0.488 0.451 
R2-Q2 0.051 0.057 0.143 0.245 0.317 0.396 
T2 3.846 6.003 7.834 9.515 11.108 12.641 
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Table 9.3 Multivariate Data Analysis of Sub-matrix 13514,1 xS  Using SIMCA-P+12 for 

RF Welding Press 2 
 

Sub-matrix Model 13514,1 xS  

Minimum Eigenvalues 10.1 1.4 0.994 
Principal Components 1 2 3 
R2 0.723 0.823 0.894 
Q2 0.698 0.743 0.717 
R2-Q2 0.025 0.08 0.177 
T2 3.94 6.22 8.201 
 
 
 
Table 9.4 Multivariate Data Analysis of Sub-matrix 264914,1 xS  Using SIMCA-P+12 for 

RF Welding Press 2 
 

Sub-matrix Model 264914,2 xS  

Minimum Eigenvalues 3.41 2.4 1.15 1 0.971 
Principal Components 1 2 3 4 5 
R2 0.31 0.528 0.633 0.724 0.812 
Q2 0.114 0.275 0.221 0.143 0.057 
R2-Q2 0.196 0.253 0.412 0.581 0.755 
T2 3.845 6.001 7.832 9.514 11.107 
 
 
The following results were obtained for press 1 and 2 using the continuous methodology: 

A total of 744 units were produced, where 8 of these units were accepted and 736 units 

were rejected. Of the 736 units rejected, 12 units were actually bad and 724 were actually 

good. All the units accepted were actually good. In other words with this model a type I 

error of  .98 and type II of 0 is achieved with a scrap rate of 98%. 
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9.3 Analysis and Results for the Combination Methodology 

 The parameters used for the Combination Model are the RF Power, Seal times 

and Welding pressure, which have been identified as being critical to the process during 

past process validations, since any changes in these may cause leaks. Tables 9.5 and 9.6 

provide the multivariate analysis for the data matrices used for this methodology. The 

press 1 model had a total of 3133 observations and press 2 had 3129 observations. 

 

Table 9.5 Multivariate Data Analysis of Combination Matrix Using SIMCA-P+12 

for RF Welding Press 1 

Combination Model 
Minimum Eigenvalues 8.94 2.81 1.14 1.05 0.902 
Principal Components 1 2 3 4 5 
R2 0.497 0.653 0.716 0.774 0.824 
Q2 0.472 0.573 0.542 0.498 0.447 
R2-Q2 0.025 0.08 0.174 0.276 0.377 
T2 3.846 6.001 7.831 9.512 11.103 
 

 
Table 9.6 Multivariate Data Analysis of Combination Matrix Using SIMCA-P+12 

for RF Welding Press 2 

Combination Model 
Minimum Eigenvalues 4.05 1.92 1.26 1.04 0.992 
Principal Components 1 2 3 4 5 
R2 0.368 0.542 0.657 0.752 0.842 
Q2 0.229 0.295 0.39 0.329 0.261 
R2-Q2 0.139 0.247 0.267 0.423 0.581 
T2 3.845 6 7.83 9.51 11.101 
 
The combination models implemented for press 1 and 2 provided the following results: 

A total of 2564 units were produced where 601 units were rejected. Out of the 601 units, 

11units were actually bad and 590 were actually good. 1963 units were accepted and out 
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of these 1945 were actually good and 18 were actually bad. This methodology provided 

for a type I error of  .98 and a type II error of .009, with a scrap rate of 23%. 

The Continuous and Combination Methodology implemented in the RF welding case 

study provided moderate results as the scrap was reduced from 98% to 23%, but the type 

II error went from 0 to .009 and type I stayed at .98.  
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Chapter 10 Findings, Conclusions and Recommendations 

10.1 Overview 

In this research two methodologies were proposed for the creation of the data 

matrices used in multivariate data analysis using principal components. The Continuous 

Modeling Methodology proposed the use of process data at three levels to create sub-

matrices and the Combination Methodology utilized gradual changes to critical variables 

to the process or product defect. Two processes were evaluated in this research to 

validate the methodologies proposed, the injection molding process and welding by radio 

frequency.  

10.2 Conclusions for the Injection Molding Experiment 

Table 10.1 summarizes the results obtained for the injection molding process 

using the two methodologies.  It was demonstrated that the addition of the sub-matrix, 

121621,2 xS , to the preliminary data matrix , 45621,1 xS , contributed to the improvement of type 

I error and the reduction of scrap. By including the critical factors to the models the 

combination model was created and proved to have a significant improvement by 

reducing the Type I error to .027. These results are valid for the time period of the six 

months in which the modeling was implemented.   

 

 

 

 

 

 



 67

Table 10.1 Comparison Between Continuous and Combination Methodologies 

Results for Injection Molding 

Comparison Between Continuous and Combination Modeling 
Criteria Preliminary Model Continuous Model Combination Model 
Sample Size 456 1216 1246 
Number of Components 3 4 5 
R2 0.569 0.77 0.849 
Q2 0.369 0.566 0.585 
R2-Q2 0.2 0.204 0.264 
Type I Error 1 0.59 0.027 
Type II Error 0 0 0 
Scrap Rate 9% 1% 0.88% 

 

The following observations are made based on situations that happened during the 

experiments. The Combination Methodology has been helpful with these observations 

since this methodology included the critical variables shot size, barrel and nozzle 

temperatures and injection speed, which have been related to various problems found in 

the process.  

  

1. Screw displacement and cushion are parameters that have been significant in the 

detection of problems with drooling (leak of resin during the injection). If there 

exists drooling there is an insufficient amount of material used to maintain 

pressure on the melt already injected in the mold. The screw displacement is 

affected because the screw moves forward more than the established amount. Sink 

marks and short shots were found in production rejected when these parameters 

changed. 
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2. Changes in barrel temperatures of more than 50 degrees have been associated 

with faulty thermocouples when comparing the values obtained by an external 

monitoring system and that of the injection-molding machine. 

 

3. Increasing moisture content in polyester resin was seen as a drop in injection 

pressure and can help in the detection of cracks in parts. This defect is critical 

since a micro crack can be present in the part and not detectable by visual 

inspection. Cracks can lead to leaks and failure of the device during use.   

 

10.3 Conclusions for the RF Welding Experiment 

Table 10.2 summarizes the results obtained for the welding by radio frequency 

process. Like in the injection molding experiment, a decrease in the scrap rate was seen 

when the combination methodology was implemented.  The type I error was maintained 

at .98. It is concluded that this may be due to the fact that not enough observations were 

obtained for the modeling, for this transition to be seen. A slight increase in the type II 

error indicated that faulty product was being accepted as good. This may be due to the 

data collected for the modeling. If borderline data is used as part of the sub-matrix or 

during the creation of the combination model, then the implemented model may accept 

product that could fail.    
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Table 10.2 Comparison Between Continuous and Combination Methodologies 

Results for RF Welding Process 

Comparison Between Continuous and Combination Modeling 
  Continuous Model Combination Model 
Criteria Press 1 Press 2 Press 1 Press 2 
Sample Size 2653 2649 3133 3129 
Number of Components 2 2 2 3 
R2 0.635 0.528 0.653 0.657 
Q2 0.578 0.275 0.573 0.39 
R2-Q2 0.057 0.253 0.08 0.267 
Type I Error 0.98 0.98 
Type II Error 0 0.009 
Scrap Rate 98% 23% 
 

The following observations were also made during the experiment for the RF welding 

process: 

1. If a tube was removed before the seal was made an arc was created. The pattern 

was rejected. The signal that was affected was the maximum position of the port 

press (Figure 10.1), and the maximum grid current (Figure 10.2). Both signals 

decreased to zero. 

 

 

 

 

 

 

 

Figure 10.1 Maximum Position of the Port with Respect to the Observations 
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Figure 10.2 Maximum Grid Current with Respect to the Observations 

2. If a tube was removed before the seal was made an arc was not created. The 

pattern was rejected. The signal affected was the pressure (Figure 10.3). 

 

 

 

 

 

 

 

 

Figure 10.3 Pressure with Respect to the Observations 

 

These findings are important because this indicates that a defect of missing tube can be 

detected. Usually this defect may escape the visual inspections and reach the customer if 

there is only one tube missing from twenty and there are about 5625 solution bags being 
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produced per hour. For this experiment it would be recommended to include more sub-

matrices into the models and an exhaustive evaluation of the signals, which may be on 

the borderline compared to the other observations. The difficulty in this process, which is 

not found in the injection molding as much, is the ability to trace a solution bag back to 

the variable observations if a system where the patterns are immediately identified and 

associated with a specific set of observations is not in place.  

 

This research proposed the Continuous and Combination Methodology where the goal 

was to provide a methodology, which could accommodate itself to the changing 

conditions of the process. Using the Continuous Methodology, in the injection molding 

case study, the goal of obtaining the most information from the process as changes arose 

was achieved with acceptable results. After using the Combination Methodology many 

problems that occurred, such as problems with faulty equipment or product defects could 

be detected. So an additional benefit was found that was not considered initially. In the 

RF Welding case study the results were not as marked as in the injection molding. Even 

though the scrap rate was decreased an increase in type II error was measured. This is not 

attributed to the methodology; instead it is the use of observations that were borderline 

and included in the data matrix used for the modeling. Identifying these borderline 

observations and removing them from the data matrix can correct this matter. Additional 

data could be added in the future to make the model more robust. A benefit of the 

Combination Modeling used in the RF Welding was the detection of missing tubing, 

which greatly benefits in the inspection of solution bags.  
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Future applications of these multivariate techniques and methodologies can be used in the 

detection of epileptic seizures, characterization of materials and failure detection through 

image analysis.   
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