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ABSTRACT

In this research two methodologies for data cdlbectising a multivariate data analysis
technique are proposed. The Continuous Methododogy Combination Methodology
for data collection are used and evaluated in tisbratt processes, injection molding and
welding by radio frequency. These processes, waiehof a multivariate nature, contain
variables that have an effect on the quality ofradpct. The Continuous Modeling
Methodology proposed the use of process data attlavels to create sub-matrices,
which provided the most information of all the dsble batch characteristics. The
Combination Methodology utilized gradual changesribical variables of the process or
product defect. A signal monitoring system is métl for the validation of the
methodologies proposed for each process. For thkiaion of the methods proposed,
type | and type Il errors are used along with psscecrap rates. It has been shown that
with the continuous and combination methodologg, type | error or the scrap rate are
decreased. The variables that are significantHeridentification of product defect have

been identified.



RESUMEN

En esta investigacion, dos metodologias son prégsieara la adquisicion de data que es
usada con una técnica de analisis de multiplesias. La metodologia Continua y la
Combinada, usadas para la adquisicién de datewnadas en dos procesos diferentes,
moldeo por inyeccion y soldadura usando radio #acia. Estos procesos son de por
naturaleza constituidos por multiples variables gueden tener un efecto en la calidad
de un producto. La metodologia Continua propone data del proceso en tres niveles
de operacién para la creacién de matrices que prolemayor cantidad de informacién
de la caracteristica de los lotes. La metodol@gimbinada utiliza cambios graduales a
variables criticos para el defecto del proceso pr@dlucto. Un sistema de monitoreo de
sefales es utilizado para la validaciéon de las dodbdgias propuestas para cada proceso.
Para la evaluacién de cada metodologia propudstarce tipo |, tipo Il y la razén de
desperdicios son calculado. Se ha demostrado caredoda metodologia continua y
combinada se disminuye el error tipo | o la razérddsperdicios. Las variables que son

significantes para la deteccién de defectos samifttados en ambos procesos.
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Chapter 1 Introduction

1.1 Background

The detection and identification of part defectd &s causes in medical devices
is an important task for the personnel involvedhe manufacturing process. Defects in
medical devices can affect the different phasegrotiuct life. A defect in a medical
device used for fluid transport may obstruct tleflof fluid through the device, create
loose particles within the fluid and may preverg @roper assembly to other devices.
Defects can also be responsible for the wear arskilple breakage of the various
mechanical components in an assembly machine;fthnerencreasing the manufacturing
costs due to an increase of scrap, labor time aadhime downtime. If a defective
medical device is used it may provoke possible dmafons in the patient’s treatment,
recovery and even worse, death. These can opemrayn @t legal dilemmas that may
affect the credibility of the medical device maraitaer and may lead to the possible loss
of quality certifications, which allow the manufadr to continue the production of its
devices.

Currently, there are various methods of identifyidgfective parts. Vision
systems can be used to detect part defects, such slsort or flash or missing
components, which in high-speed machine output raage from 500 to 900 parts per
hour. Manual inspection of parts is also used & butput processes such as in the
production of bags for intravenous fluids. In spédases where a vision system and
manual inspection is not feasible other methods havbe implemented to detect and

segregate the good and bad parts. Some productichines have programmed features,



which allow the process specialist to identify taages of operation for each parameter
of interest, for example pressure or temperatfitbel parameter goes above or below the
set range a digital output can be sent to a conveyany part segregation equipment,
which can mechanically accept and discard partthotigh these features are helpful
they do not contribute to the understanding ofgglaress. The process specialist cannot
see if there are any relationships between thenpateas being monitored and the defects
that are produced by these parameters going doedastablished range.
1.2 Research Objectives

In many cases of study, a problem is encounteradrwhay be due to variables
that may or may not contribute to the occurrena® raagnitude of the problem. We are
faced with the dilemma of having a process with tipld variables that need to be
monitored at all times. The variables may have féeceon the quality of the product.
The amount of data is also so abundant that maralallations or analysis of the data
would be time consuming and render little or noriowements in the long term.
The principal objectives of this research are:

a. Provide an effective methodology to monitor @acpss in real time.

b. Establish a means of determining which variablesto be monitored.

c. Validate the methodology proposed by implementin a process and

obtaining measurable results.



Chapter 2 Overview of Multivariate Techniques

2.1 Multivariate Data Analysis

Multivariate data analysis (MVDA) is simply defined any statistical technique
used to analyze data that arises from more tharvariable. MVDA can be used in any
field of study were large amounts of data are ctd#ié and analyzed. It has been used in
the areas of biology, medicine, engineering, bissinend psychology to name a few.
Chapter 2 sections 2.2 will provide an overviewtlo¢ classification of multivariate
techniques and the steps followed to select th@esréechnique for the analysis of
problems.
2.2 Multivariate Techniques

Multivariate techniques can be classified into types, (Table 2.1) dependence

techniques and interdependence technifflies

Table 2.1 Multivariate Techniques

Dependence Interdependence
Structural Equation Modeling  Factor Analysis
Canonical Correlation Analysis Confirmatory Factor Analysis
Multivariate Analysis of VarianceCluster Analysis
Multiple Regression Multidimensional Scaling
Conjoint Analysis Correspondence Analysis
Multiple Discriminant/Logistic




2.2.1 Dependence Techniques

The dependence technique is classified as sucdubedt has a variable or set of
variables, as the dependent variable(s) and thainemg variables as independent. The
classification of dependence is further dividedatepbng on the number of variables and
the type of measurement scale, metric or non-metsied by the variable.
2.2.1.1 Structural Equation Modeling

Structural Equation Modeling (SEM) is a technigimat tries to explain the
relationship among multiple variables. SEM has basic components: the measurement
model, which uses several variables or indicatorsafsingle independent or dependent
variable; the structural model, which relates theéependent variables to the dependent
[2,3]. Figures 2.1 a and b show a simple represent of a measurement and structural
model. In the measurement model, the arrow betweeexogenous and the endogenous
means there is a dependence relationship betwetncbastructs. Each construct has
four indicators or variables assigned, for thiscdpeexample. The curved arrow in the
structural model represents a co relational ratatig or the strength of the association
between variables.

(a) Measurement Model

Exogenous Endogenous
Construct Construct




(b) Structural Model

Exogenous Exogenous
Construct Construct

Figure 2.1 Visual Representation of a Measurementna Structural Model in SEM

2.2.1.2 Canonical Correlation

The objective of Canonical Correlation analysistascorrelate simultaneously
several metric dependent variables and independeiatbles. Equation 2.1 represents the
relationship between the dependent (metric or netria) and the independent (metric or
non-metric) variables. It is important to noticattieach equation differs depending on the
type of variable being used as the dependent eperdent.
Y, +Y, +Y, +..+Y, = F(X, + X, + X; +...+ X)) (2.1)
2.2.1.3 Multivariate Analysis of Variance

Multivariate Analysis of Variance or MANOVA can based to find the
relationship between several categorical independgrables or treatments and two or
more metric independent variables [4].
Multivariate Analysis of Variance (MANOVA)

Y, +Y, +Y, 4+ Y, S F(X X, X, X)) (2.2)



Where Y variables are metric and X variables ame-metric. Comparing equation 2.2 to
equation 2.1, it is clear that the independentaldeis in a Canonical Correlation can be
either metric or non-metric.
2.2.1.3 Multiple Regression

Multiple Regression is a statistical technique usedanalyze the relationship
between a single Y dependent metric variable amdraeX independent metric variables
[5,6].

Y, =F(X;+ X, +X;+...+ X)) (2.3)

2.2.1.5 Conjoint Analysis

Conjoint Analysis is a family of techniques and hwets developed to understand
individual preferences that share a theoreticalndation based on the models of
information integration and functional measurem@it It analyzes the factors that are
controlled (independent variables) which are gatliely specified [8].

Y, =F(X,+ X, + X, +..+X,) (2.4)
WhereY, can be non-metric or metric and the X are non-metri

2.2.1.6 Multiple Discriminant Analysis and LogisticRegression

The purpose of Multiple Discriminant Analysis anddistic Regression is to
identify the group to which an object belongs. Baby it estimates the relationship
between a single non-metric dependent variable andet of metric independent
variables. Logistic Regression is limited to a tgvoup dependent measure [9,10].

Y, =F(X,+ X, + X, +..+ X,) (2.5)



WhereY; is non-metric and the X are metric. This is théedlé#nce between equation 2.4

and 2.5.

2.2.2 Interdependence Techniques

In the interdependence technique, variables argzathas a single set. Variables
are neither classified as dependent or interdepegndee interdependence group is also
divided further depending if the relationship igviaeen variables, cases/respondents or
objects.
2.2.2.1 Factor Analysis

Factor analysis is a statistical technique that t&nused to analyze the
interrelationships among large numbers of variableterms of their common factors.
Factor analysis is divided into Common Factor amohdipal Components Analysis.
Common Factor Analysis is used to describe thertvee among variables in terms of
a few underlying factors. In Principal Componentalysis, the data is reduced into
smaller number of components, which explain theimar amount of variance [11,12].

As part of obtaining an interpretable factor santit may be useful to implement
a factor rotation method, which may simplify thetta matrix structure (simplification
of rows and columns). The values of the rows arldnens are made as close to zero as
possible. In factor rotation the reference axesheffactors are turned about the origin
until some other position has been reached. Indgahal Factor Rotation the axes are

rotated, but are maintained at 90 degrees (Figug. Zhe X, and X, variables

represent the first factor and second factor, respdy, extracted from the factor

analysis and represent the most significant factine Y, and Y, are the rotated factors



X, and X, , where the@ represent the angle of the rotated factors wiipeet to the

original axis. The main purpose of this is to helpualize which variables are highly

correlated with each factor.

Figure 2.2 Orthogonal Factor Rotation

There exists three Orthogonal Rotation Methods: riuax, Variamax and Equimax.
Two of the most used are Quartimax and Varimax.the Quartimax rotation,
simplification is based on the rotation of theiadifactor such that a variable loads high
(highly correlated with) on one factor and as losvpmssible on another factor. In the
Variamax Criterion, loadings should be close to+l (or —1) or 0. Equimax is a
combination of Quartimax and Variamax [13]. Thepgmse of this is to eliminate having
the same variable repeat itself as a significanatsée for each factor.
2.2.2.2 Confirmatory Factor Analysis

Confirmatory factor Analysis is used to test hovellwmeasured variables
represent a smaller number of constructs. It mayubed with structural equation
modeling. The difference with this technique coneglato other multivariate techniques

is that with confirmatory factor analysis one msisécify the number of factors that exist



within a set of variables and state, which factend load highly on before the
computation of the results [14].
2.2.2.3 Cluster Analysis

Cluster analysis can be considered as an explgragmhnique, which groups
individuals or objects into clusters so that olgett the same cluster have similar

characteristics than objects in other clustersfigeee 2.3 [15].

Cluster 1

Variable Y

Cluster 2

Variable X
Figure 2.3 Observations based on Two Clustering Vables (X & Y)

2.2.2.4 Multidimensional Scaling and Correspondencanalysis

Multidimensional scaling or perceptual mapping iseehnique that determines
the perceived relative image of a set of objedtsises a single measure of similarity
across the entire set of objects. Figure 2.4 steowsxample of the perception of 5 candy
manufacturers. Manufacturers A and B have beenedidgp be the most similar if
comparing to other possible pairs such as A andr@ aand D. The purpose of
multidimensional scaling is to transform judgmemnt® distances in a multidimensional

space [16]. In correspondence analysis, percephapls are created with the variables



and observations plotted simultaneously [17]. Feg2ub shows a hypothetical example of

a product based on the region where it is used.
Dimension Il

Dimension |

®

Figure 2.4 Multidimensional Map of Perceptions of 8Candy Manufacturers

Dimension Il

T- Shirts
Sweater P

Y .
Warm Region Dry Reglczn

Coat
o

Cold Region
)

Dimension |

Figure 2.5 Perceptual Map From Correspondence Anabis of Product Type and

Region
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2.2.3 Guide for the Selection of A Multivariate Tebnique

Hair et al [1] provides a decision diagram (Fig@ré thru 2.8) for the selection of
a multivariate technique depending on the variatilas are going to be analyzed. These
diagrams are useful because they serve as a guadeli the selection of the multivariate
techniqgue most appropriate for any case study uadaluation. For example, if there
were a case study, which consists of variableswiibbe used to predict another variable
or set of variables, then a dependence technigger@2.6 and 2.7) would be selected.
The specific technique used will depend if thereméy one dependent variable to be
predicted or various dependent variables. Thisiighér divided on the classification of
the variable as being metric or non-metric. Metviariables are defined as those
variables, which are quantitative and Non-metridaldes are qualitative. Examples of
metric variables could be age, weight, temperatpressure and height. Non-metric
variables could be sex (female or male) and ocoumpat(doctors or engineers). If the
relationship among the variables is unknown antgluetsire is to be found between these
variables then an interdependence technique is (i3gdre 2.8). These are also broken
down depending if the variables are metric or natritc. Examples of these have been
presented in section 2.2.2.3 Cluster Analysis a@2d?2 Multidimensional Scaling and
Correspondence Analysis, where formations or patamong variables are analyzed or
relationships are established between variablds asign Factor Analysis. The technique

selected for this research will be explained inptba5.

11



What type of
relationship is
being examined?

Dependence Interdependence

Is the structure of
relationships
among:

How many
variables are
being predicted?,

See diagram 2 See diagram 3

Figure 2.6 Decision Diagram 1 (from Hair et al “Mutivariate data Analysis”, page 14-15)
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Figure 2.7 Decision Diagram 2 (from Hair et al “Mulivariate data Analysis”, page 14-15)

Dependend[e
Multiple
relationships of Several depende One dependent
dependent and variables in sing| variable in a
independent Relationship single relationship
variables

What is the
measurement
scale of the
dependent
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Structural
Equation
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scale of the
dependent
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Modeling

Metric Non-Metric Metric Non-Metric
| | | |
What is the - Multiple /Multiple )
Canonical ) I
measurement - Regression discriminant
le of th correlation Analvsis
scale orihe analysis with y

predictor

Conjoint Analysi
variable?

dummy variable Linear prdability

\Models j

Metric | | Non-Metric
Canonical Multivariate
Correlation analysis of
Analysis variance
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Interdependence

Variables

Cases/respondents Objects

How are
attributes
measured?

Factor Confirmatory Cluster
Analysis factor Analysis
Analysis

Metric Non-Metric

Multidimen Correspondence
sional Analysis

scaling

Figure 2.8 Decision Diagram 3 (from Hair et al “Multivariate data Analysis”, page 14-15)
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Chapter 3 Literature Review

It has been the goal of many researchers and imesisd provide methods of maintaining
control of processes. These processes may inclodmical processing, molding, and
extrusion, mixing of resins among others. Maintagnicontrol of the operation of a
process translates into savings, since an efficisatof resources and equipment reduces
wastes in material and time. Any deviation from és¢ablished operating ranges during
the processing or production of a product may leadhe introduction of erroneous
guantities of solutions, improper mixing or defeetimolded products that may cause

problems to the end user or the process itself.

Comparing the actual results to the predicted tesuhen a mechanistic model, such as a
linear regression model is used can monitor a gOEErformance. Statistical process
control charts such as the Shewart [18], Cumulattssem (CUSUM) [19], or
Exponentially Weighted Moving Average (EWMA) [20hr be used to compare the
actual state of the process of interest to the aboperating conditions. The setback to
these control charts is that they were developedtlie monitoring of uni-variate

processes [21].

Multivariate statistical analysis, such as Printipamponent Analysis and Partial Least
Squares have been used in many areas such aslphanpupaper, chemical processing,
socio-economic and psychology [22,23]. Yacoub andcGregor used Principal

Component Analysis (PCA) and Partial Least SquépsS) to understand the spatial

15



variation in the manufacture of polyurethane foasulation panels by reaction injection
molding process, to correct the causes of variaimh optimize the quality variables by

using response surface modeling [24].

Kresta et al proposed multivariate statistical pssccontrol procedures for a fluidized
bed reactor and an extractive distillation colutdsing PCA and PLS methods they were
able to recognize that the product space shoulgdtected to variables of interest in the
monitoring procedure, scaling should be performeduch a way that the variances
reflect their relative importance and loading vestbelp identify possible causes to

product abnormalities [25]. Only simulations wesed for this analysis.

Nomikos, MacGregor and Kourti emphasized on histbrdata modeling to monitor the
progress of styrene-butadiene batch reactor probesed on multi-way principal

component analysis. The future behavior of the ggsavas monitored by comparing it
against that observed in the past when the prosassin a state of statistical control

[26,27]. They were able to detect simulated faumlthe process.

Multivariate statistical methods have been usednalyze data from an industrial batch
drying process. PLS methods were able to isolaatbup of variables in the chemistry,
in the timing of the various stages of the batcd anthe shape of the time-varying
trajectories of the process variables and how thense related to a poor quality product

[28].

16



Multivariate methods have also been able to prowadenore efficient and reliable
optimization procedure for the derivation of magecrometric analysis of a semi-
synthetic amino-glycoside anti-biotic used in famamal production by incorporating
designed experiments in each of which the valuesdweral parameters are changed at

the same time [29].

Bashir, Khokhar and Schonfeld presented a modslthgme for object motion trajectory
based analysis and recognition, where Principal iZorant Analysis was used to reduce
the dimensionality of the feature space denotgd@s-Centroid Distance Function.

Object motion trajectories were segmented and Pd&fficients were used for trajectory

classification and activity recognition [30].

Principal Component Analysis and Partial Least &gidave also been used in the

classification of olive oils by cultivars and geapghical region by using Nuclear

Magentic Resonance enhanced signals'i spectra [31] and in the analysis of metal
concentrations in coastal sediments by tracingraptigenic pollutant sources and for

characterizing various processes related to pohy2].

Cho and Kim [33] proposed a method for predictingufe observations in the
monitoring of a batch process by using an extenbateh historical library and multi-
way Principal Component Analysis. The current bat@s compared to the historical

library and the most similar trajectory was usedtiie@ prediction of future observations.
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This research will propose the use of a multivarimnethod and data collection
methodology, which will enable the monitoring of pgocess with high number of
variables. The main goal is to be able to determatiech methodology provides the best
results for the detection of process deviation mdpct defect. Table 3.1 outlines the

various methodologies that have been used alorgthat multivariate method.

Table 3.1 Multivariate Technique and Methodology Uilized in Various Research

Areas
Methodology
Batch
Designed Historical
Contributors Experiment Data PCA |PLS
Yacoub/MacGregor [24] X X X X
Kresta [25] X X X
Nomikos [26] X X
Garcia/Kourti/MacGregor [28] X X X
Cho/Kim [33] X X

The multivariate technique selected and methodofmgposed for this research will be

explained in chapters 5 and 6.
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Chapter 4 Research Problem and Methodology

4.1 Research Problem Description

Most processes are of multivariate nature. Momtprihe process becomes an
arduous task when various factors contribute tovelr&tion of the process. These factors
may include untrained personnel, changes in rawemahtproperties, equipment or
tooling malfunction. Researchers have used varioudtivariate techniques and data
collection methods that have provided positive ltesuMaterial resources, machine
availability and implementation time are factorsittlalso have to be considered when
proposing a statistical technique and data codlectnethodology, which has to be
implemented real time, since these factors tramstgb savings or losses to any given
industry.
4.2 Methodology

The following items a-g will provide a descriptimf the steps that will be

followed during this research:

a. Definition of the process.

b. Selection of the multivariate technique follogiguideline of Figure 2.6-
2.8

C. Definition of the modeling methodology being jposed as part of the

research contributions.

d. Establishment of the modeling evaluation crateri
e. Case study selection.
f. Implementation of methodology.
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g. Evaluation of model performance.
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Chapter 5 Multivariate Process Description and Techique Selection

5.1 Multivariate Process Description:

The Figure 5.1 illustrates the type of processaldeis that are present in the
multivariate process. The non-measurable variadreslescribed as those variables such
as thickness or humidity, which could be measufatiare was a sensor or measuring
device available, but are not being monitored. Theasurable variables are those
described as having the means of being measuray evachine cycle, for example
pressure, velocity, temperature or voltage. A cygldefined as a time period in which a
product is created. The metric output variablestlose that can be measured from the
final product, but are not measured such that @ameassociate a specific product with a
specific cycle. In other words if there existedrk Ibetween the process signals and the
resulting product attributes, such as dimensiorriaty a vision system, then one can
associate the process conditions with the finatlpcd Non-metric variables are those
that describe the appearance of the product sutliragd, incomplete part or part with

excessive material or missing components.

Process
Input: M : Output:
easurable Variables
Non-Measurabl Metric ) Measurable Variables
Variables Metric
Metric Non-metric

Human Factor

Figure 5.1 Process Flow Chart

21



The human factor is another critical variable, ahigt times cannot be completely
controlled. This variable will not be measured ast @f the process variables, which
have an effect during the product creation.
5.2  Variable Selection and Classification

The variables of interest are those that can besuned for every cycle of the
process. These would be metric variables descripargmeters such as pressure and
temperature, which can be compared at any mometheiprocess. The metric variables
and non-metric variables at the end of the pro¢estput) will not be utilized for the
mathematical analysis, but will be used for theadatection and modeling methodology
evaluation.
5.3 Selection of Multivariate Technique

Using the multivariate technique selection diagfaesented in figures 2.6-2.8 a
technique will be selected. First the type of ielahip must be determined. The
relationship between the variables in the processmknown and these variables will not
be used to predict other variables in the proc&ss.to begin, the structure of the
relationship between the variables is of interéke techniques that can be used for this
type of situation fall under the Interdependencetise in the tree diagram. There are
three branches that may be chosen: variables,/ces@sndents or objects. The ultimate
goal of process control is to be able to maintae process as stable as possible while
achieving a quality product. Variations in procgssameters are to be controlled or at
least minimized. Also the variables are quanti@tiVhat means they will have a way of
measuring them. So variables have two options famalysis: Factor Analysis and

Confirmatory Factor Analysis
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The Factor Analysis was selected as the multivati@athnique most appropriate for the
process since variables will be analyzed. Therestlidwo approaches, Common Factor
Analysis and Principal Component Analysis, withiactor Analysis, which have to be
considered. To determine which type of analysisappropriate it is important to

understand what is being measured. There exise ttypes of variances: common
variance, unique variance, and error variance. Comwariance is defined as variance
shared with other variables in the factor analysisique variance is variance of each
variable unique to that variable and not explaioe@ssociated with other variables and
error variance is variance of a variable due torerin data collection or measurement.
Common Factor Analysis focuses on the common vesiaand is not interested in the
structure of the variables. Principal Component Ipsia focuses on the combination of
all the three types of variances and the goal redoice the variables of interest. Looking
at it from this point of view Principal Componenbhdlysis would be the approach, which
would help identify those parameters or variablest thave the most variation in the
process. Table 5.1 shows the path towards tleetgmh of the multivariate technique by

utilizing the steps presented above.

Table 5.1 Selection of Multivariate Technique

Interdependence
Variables Factor Analysis Ratio Scales
Confirmatory Factor Analysis Use of summated scales
Structure Cases/Respondents|Cluster Analysis Metric
Objects Metric Multidimensional Scaling
Nonmetric Corresponence Analysis
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54 Principal Component Analysis
Principal Components are the linear combinationsthe original variables
calculated with the maximum variance criterion areé characteristic vectors of the
covariance matriXxx. The purpose of Principal Component Analysis isrdduce the
number of variables to be considered for furtherdgt by discarding the linear
combinations, which have small variances.
Assumptions
1. All variables used in the multivariate technigmast have some degree of
measurement error (noise).
2. An underlying structure exists
3. The factor analysis should be of independentiegrendent, but not both. This
means that all the variables are either all inddpeh X or all dependent Y, but
not X and Y together.
4. The sample is homogeneous.
5. Normality is desirable, but not necessary sinoemality for each individual
variable does not guarantee multivariate normality.
6. Multi-collinearity-the extent to which a varigbcan be explained by the other
variables in the analysis.
The following derivation has been presented by TAWderson in his book “An

Introduction to Multivariate Statistical Analysi8™ edition pages 459-464 [34].

Let B be a p-component column vector such tia = whére S is the transpose g8 .

X is a random vector of p components
¥ is the covariance matrix, singular, positive selafinite with multiple roots

£ is the variance
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The variance of8 'Xis

£(BX)% =B XX' B= B3 (5.1)

Determine the normalized linear combinatihX with maximum variance by finding a

vectorf, which satisfiesﬂ',[i’ =1 and maximizes equation 5.1.

Let
0=BIB-ABL-Y=3 Boy-A B -] (5.2)

where A is the Lagrange Multiplier.

The partial derivative of equation 5.2

is:

o¢

—=253-2A 5.3
ap =P8 (5.3
BS and B B have derivatives everywhere in a region containfhg =1.

A vectorp maximizing 8% must satisfy equation 5.3 where the equatiomipbiied

to (Z-AB=0.

To obtain a solution to equation 5.3 wifAiZ =1, 1 must satisfiE - 41| =0 must be

singular.

=~ 1] is a polynomial i1 of degree p, where p has roots= 4, =...2 A, .
By multiplying (£ —-A1)4 = 0 on the left byﬂ the following is obtained:
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BIB=2BB=A (5.4)

The variance of3'X is A. The maximum variance i(f2 - Al)S = ©€orresponds to the

largest A. Let B® be a normalized solution q&-Al)8= ,GhenU,=8Y"X is a
normalized linear combination with maximum variantet the p-component random

vector X have eX=0 and &XX'=2. Then there exists an orthogonal linear

transformation Uf’'X, where U is defined as the vector of principahtponents of X,

such that the covariance matrix of Ud6§/U'= A and

A 0 0

0 A, 0
A= '

0 0 A,

where A, 24, 2..2 A, are the roots of=-Al|=0. These roots are also called the

Eigen-values and are used to determine the maxirmomaunt of components to be
extracted. Principal Components with Eigen-valupsaéto or greater than 1, also known
as the Kaiser Method, are maintained in the modétpure 5.2 shows an example of
observations in three dimensions and the correspgrutincipal components. The first
principal component corresponds to the directionmafst variance in the data. Each
following principal component is perpendicular tbetlast component derived and

corresponds to the next direction of most variandee data.
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Direction of Principa
Component 1

X3 X3 /

X1 X2

X2

Direction of Principa
Component 2 X3 Direction of Principa

Component 1

X1

Figure 5.2 Observations in 3-dimensional Space arferincipal Components

The basic Principal Component model or variatethagorm:
PC =w, X, + W, X, +...+ W X, (5.5)
where w, is the weight determined by the multivariate tegha andx, is the observed

variable. The purpose of the variate is to sepdheterariables contribution to the overall

variate effect,w, also know as the loading.
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Chapter 6 Modeling Methodology

6.1 Introduction

One of the main purposes of this research is tpge® and validate a data
collection methodology to be used with the multite technique. The data collection
methodology is essential for the creation of theadaatrixp used for the derivation of
the principal components in the factor analysis.e Tdhata collection requires an
understanding of the process under investigatibthpagh most analyses start out as an
exploratory test.
In the literature (Table 6.1), the data collectinaethodologies found were historical batch
data and designed experiments using the Principahg©nent Analysis or Projected
Latent Structures (PLS). Projected latent Structur@artial Least Squares is a regression
technique, which is used with Principal Componemalkksis. Partial Least Squares
analysis is beyond the scope of this research dilegeendent variables will not be
measured for every set of observations. The muisitatechniques provide the form of
the mathematical models to be used and these modglsire a data collection
methodology. The methodologies presented in teealitire have not shown to be able to
accommodate themselves to the changing conditidnghe process. Two modeling
methodologies will be proposed which can help sdhie problem. The Continuous
Modeling Methodology utilizes process data at thleeels (low parameter setting,
medium parameter setting and high parameter sgttmgreate sub-matrices and the
Combination Methodology, which utilizes gradual mhes to critical variables to the

process or product defect. This is the primary icouation to this research.
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Table 6.1 Data Collection Methodologies and Factoknalysis Proposed

Methodology

3-Level Batch

Analysis/Critical Designed Batch Historical
Contributors Factors Experiment Data PCA | PLS
Yacoub/MacGregor [24] X X X X
Kresta [25] X X X
Nomikos [26] X X
Garcia/Kourti/MacGregor
[27,28] X X X
Cho/Kim [33] X X
V.Diaz X X X X

6.2  Continuous Modeling

The process shown in Figure 6.1 can be considese@ shree-dimensional
problem in which there are variables (parametehgt thave a measurable value
(observations) and are changing with respect t@.tim the literature Wold et al and
Nomikos [26] used multi-way principal component lgges to examine batches
throughout time. Batches are basically defined agaap of objects with a common
origin. These objects can be raw materials or prtsdmanufactured in a certain period of
time under the same conditions. The methodologypgsed in this thesis as the
continuous methodology uses the concept of takiegd batches with respect to time and
adding three levels of operation to each batch. [Etels are the low, medium and high
settings for the parameters (variables) that aiagbmonitored in the process. These

define the operational ranges in which good pro@sustanufactured.
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Process

Input: Measurable Variables Output: .
Nor]-MeasurabI Metric Measurable Variables
Variables Metric

Metric Non-metric

Human Factor

Figure 6.1 Process Flowchart
The Continuous Methodology constitutes of firstambing the limits for each variable
being monitored. The process is set to the lowrpatar settings. The process starts and

observations at this low level setting are obtaingds is repeated for the medium and

high parameter settings.

Let
l,,= Low limit parameter setting
m, . = Medium limit parameter setting

h, .= High limit parameter setting

where,

b=1...n is batch number

0=1...g is the observation for low parameter

r=1...his the observation for the medium paramestng

u=1...q is the observation for the high parametdimrggt
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l,,,» m,, and h, are column vectors having all the observationsefach variablev,,

where a=1...c is the amount of variables being mositpat a particular setting at a time

t (Figure 6.2 (a) and (b) fd ). For the example Batch number 1 in Figure 6.2ehe

box represents an observation at the low leveingetEach column vector contains the
value of each variable for that specific observat time t. After these observations are
obtained they are used to create a matrix, whipheents all these observations at the
low level (Figure 6.2 b). Time t goes from the tipcess starts (s) and the time the

process ends (e) in Figure 6.2 a and b.
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Batch Number 1
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Vl,t =e
V2,t =e
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Figure 6.2 Column Vectors and Matrix for low parameéer settings
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Let L M andH respectively be ¢ x 0, ¢ X r and ¢ x u matrioastaining all

b,cxo ? b,cxr b,cxu ?

of the observations from a specific batch in a gjgectime for that setting (Figure 6.2 b
for batch 1 low setting). Where b is the batch namb is the total amount of variables
being monitored and o, r and u are the amount séfations obtained to create each

matrix L M and H For example, if a matrix is being created for finst

b,cxo ! b,cxr b,cxu *

batch with the low setting, where there are 15 patars (variables) being monitored for

a time period providing 150 observations then tlaérixwould bel ;g ;.

Let S .. be the data sub-matrix, which contaihg_,, M and H such that

b,cxr b,cxs

z=zzo+ZI:zr +Z:u (Figure 6.3). For example, if each matiliy,,, M, and

b,cxr
H,.s for the first batch contained the same 15 parameted 150 observations each,

S, Would be S, ,5,. Figure 6.3 shows all the observations from eastellused to

createS, .
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l, = g = m, = e My = h, = by, =

_Vc,t i _Vc,t =e | _Vc,t i _Vc,t:e i _Vc,t i _Vc,t:e i

SD,CXZ

Figure 6.3 Sub-Matrix Creation for Low, Medium and High Parameters

Using sub-matris, ,, (B) for the analysis, the eigen-valuksor roots are calculated to

determine the maximum amount of components to ba@ed. The model created using
S, Must be evaluated before continuing with the mathagy being proposed. This is

to have a baseline from which to evaluate the ndtlogy as it is being developed. The
evaluation criteria are explained in section 6.3haf chapter. The idea of developing the
Continuous Methodology came from the fact thateheill always be changes in batch

behavior either due to controllable or uncontrdéafactors. If the uncontrollable factors
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are within limits and the controllable factors ameceptable then the Continuous
Methodology proposes to proceed with the creatfom mew data matrix, which includes
the previous sub-matrix and the sub-matrix underdirrent state conditions. Figure 6.4
demonstrates the concept of the Continuous Metloggolf these conditions are not met
than the process must be evaluated to determineathse for this out of control state,
either it being material related, machine relatedny other factor that affects the process
and may not be monitored. Figure 6.4 shows therghsens for each level setting at the

left. All the observations for each level are condnl to creatd. M and H

b,cxo b,cxr b,cxu !

respectively.L, M and H are used to creat§, ., for each batch. All sub-

b,cxo ! b,cxr b,cxu
matrices representing the process at the diffdsattth conditions are used to create the
data matrix or the continuous model. This data mais used for the Principal
Component Analysis and has all the observationsoiomn format for each variable
being monitored. X1 represents the first variabid Xc represents the last variable or

total amount of parameters c.
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Figure 6.4 Continuous Modeling Methodology
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6.3 Combination Methodology
The Combination Methodology which is the seconethmdology being

proposed as part of this research is an extensidmetContinuous Methodology in which
variables critical to the process or the produet sglected and gradually changed until
the desired state of process is no longer founather words, changes in the variables
are made until a defect is found in the produch@pareated. These observations, while
still in the acceptable range, are included in® ¢bntinuous model. These changes may
be a one factor at a time change or various fadepending on the adjustments required

based on process limitations such as machine spegulessure as an example.

6.4 Evaluation Criteria
The following criteria will be used to evaluate fherformance of the Continuous
and Combination data collection methodology beirappsed.
1. Principal Components extracted there exist three methods of determining
how many principal components to extract.

a. The Kaiser Method retains those components \Hifpen-values
greater than 1.

b. The Scree test is a graphical form of deternginine amounts of
components to maintain by selecting the point leetbe curve begins
the line trend (Figure 6.5). For example, in Figare the line seems to
straighten out as it reaches the sixth componehi¢ctwis close to

having an eigen-value close to 1.
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Scree Plot of VID_1, ..., VID_38

Eigenvalue

T T T T T
2 4 6 8 10 12 14 16 18 20 22 24
Component Number

Figure 6.5 The Scree Test for Principal Componente&ection

c. The Percent Variation Explained can also be .usedhe percent
variation method, the components that cumulativghe variation
calculated is summed up for each component) explartain percent
of the variation,R?>.5 goodness of fit, are retained.

2. Hotelling’s T?: is the multivariate analog to the uni-variateista t*.

T2 = N(x- )’ S™(x= 1) (6.1)
delineates a confidence region for the mean vegtoiin the shape of an ellipsoid

(Figure 6-6). Values within and on the ellipsoi@ aonsidered to be within the

confidence interval:

Confidence 1&, N(x-m)'S™(x-m) < TZ ,(a)

Where N=samplex=mean, S=covariance matrix.
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Figure 6.6 Confidence Ellipse P-dimensional spacé m

3. Q?-Goodness of Prediction: evaluates the predictbityof the model with

increasing number of components.

4. R*-Q°<.3
5. Sample Size Guide for Multivariate Analysis fdun the literature and reference
books:
Guide 1:
N ADEQUACY
50 VERY POOR
100 POOR
200 FAIR
300 GOOD
500 VERY GOOD
1000 EXCELLENT

Guide 2: Using best model fR?
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6. Hypothesis Testing Type | and Type Il error:

a. a Type | error: when the null hypothesis (Ho) iseaed when in fact it is true
and should not be rejected. Calculates the amaougbad parts rejected as
bad when is actually good.

b. B Type Il error: when the null hypothesis (Ho) ig ngjected when in fact it is
false and should be rejected. Calculates the amafubad parts accepted as

good when is actually bad.

These criteria are used after the modeling is implged and product is
inspected. Each product, which represents an obseny is evaluated and
classified as being a good or bad part accordirtheart specifications. This is
used to evaluate if the model implemented will t¥e@xcessive scrap or allow

bad product out to the customers.
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Chapter 7 Experiment Process Description

7.1  Introduction
To validate the continuous and combination methagieks proposed, two distinct
manufacturing processes will be used as case studieis chapter will cover the
following topics:
a. Description of the manufacturing process of ezde study.
b. List of variables under consideration in eackecstudy.
The injection molding process of a polycarbonatalice part and welding of
PVC film by means of radio frequency will be usesl Gase studies to test the data
collection methodologies proposed. A signal momigisystem is used for the variables
under study and the multivariate data analysiswso#, SIMCA-P+ 12 from the
UMETRICS Company is used for the analysis of tha daatrices. Variables used for the
analysis in the injection molding process and tlirepRocesses are common variables for
each process. Table 7.1 provides a brief desmnigif the differences between each
process.
Table 7.1 Differences between Injection Molding andRF Welding Affecting

Modeling Strategy

Injection Molding RF Welding
Variables 22 36
Production 175 cycles/hr 562.5 cycles/hr
Single batch raw material  |Multiple batches-raw material
Process during trials
Humidity or pellet size Difference between sheeting
Difference in same batch
If faulty equipment is found |Life of specific equipment
it is usually replaced decreases with time; adjusted
immediately gradually to make up for
losses until replaced.
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7.2  Injection Molding Process

Injection molding technology is a method of protegsused for thermoplastic
polymers. It consists of heating thermoplastic makeuntil it melts, then forcing this
melted plastic into a steel mold, where it coolsl aolidifies [35]. A thermoplastic
material is that which requires heat to make itfable and after cooling, retains the
shape it was formed into. Frequently used thernstigla are ABS, Polycarbonate,
Polyvinylchloride, Polyethylene and Polyester.

In the injection molding cycle, resin pellets alaged within a hopper, (Figure
7.1), which is placed on top of the molding machiozerel. The pellets then enter the
barrel through the feed throat and are pushed fahvg a rotating screw. The rotation of
the screw forces the pellets against the walltefdarrel causing them to melt due to the
heat of compression and friction and the barrelsn@alvn heat [36]. The melted material
is pushed into the mold and held at a pre-definedgure for a period of time until the

material solidifies and cools.

Stationary  Movahble
Flaten Platen

Nogzle LF‘T&E{ISSL

Heate\ I"f\..

—
Fotating and Barrel

Reciprocatin Injection
i Spcrew 4 Chamber L_|5RMUe

Hopper

Figure 7.1 Injection Molding Machine Components [3Y
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A 110 ton electric injection molding machine (Figur.2) is used to mold a

Polycarbonate plastic part in an eight cavity shotirunner mold.

Figure 7.2 Injection Molding Machine [38]

The part is created using Polycarbonate resin mahtehich is melted to a temperature of
580 F and injected into the mold at a speed of@pprately 4.50 in/s. The part is a basic
component of an assembly that is used to conteoflthw of fluid through an intravenous
set. The medical part can present various defezmperdling on the conditions that are
created in the injection molding process. The noosbtmon types of defects (see figure
7.3 a and b) that affect the part are Sinks andtStwts. A sink mark can be considered
as a depression caused in thick regions of a plastnponent due to slow cooling. A
short shot is basically missing material, so the gaincomplete when ejected from the
mold. The short shots are usually detected by Visgpection so as the sink mark, but in
a process that produces nearly 32,000 parts pewidagl inspection becomes arduous
and costly. Apart from this aspect the customeasfeation is affected severely since they
will be receiving a defective product that will @ft the production schedules, assembly

machines and functionality of the product, if faaeple the sink mark is present.
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(a) Sample Part with short shot

(b) Part with sink mark

Figure 7.3 Sinks and Short shots [39]

44



The following list (Table 7.2), gives a descriptioh each variable used for the

analysis of the injection molding process.

Table 7.2 Injection Molding Process Variables

Variable NameDescription
X1 FILL TIME
X2 PACK TIME
X3 COOLING TIME
X4 CYCLE TIME
X5 SCREW DISPLACEMENT
X6 SCREW VELOCITY
X7 INJECTION PRESSURE
X8 NOZZLE TEMPERATURE
X9 BARRELTEMPERATURE ZONE 1
X10 BARREL TEMPERATURE ZONE 2
X11 BARREL TEMPERATURE ZONE 3
X12 CUSHION
X13 SHOT SIZE

Some of these parameters are established throogthedology called Scientific
Molding or Decoupled Molding. Scientific molding decoupled molding was developed
by RJG, Inc as a methodology to achieve processatapility and minimize shot to shot
variation. Previously, molded parts were createdhigcting the molten material into the
mold as fast as possible, holding the material iwithe mold and then releasing the part
from the mold after it was solidified. The methoalyy proposed by RJG separated or
decoupled (partially decoupled, fully decoupledally decoupled) the process into fill,

pack and hold.
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In partially decoupled process, fill and pack igtiadly separated and pack is
mainly controlled by kinetic energy. Fully decoupleeparates fill and pack completely.
The pressure is controlled by first controllindpyt means of a velocity to a constant value
of pressure applied by the screw when a pre-defpusition is reached known as the
velocity to pressure transfer position. In totathgcoupled, fill, pack and hold are
completely separated and packing is controlled l®ams of a pressure sensor placed
within a cavity.

The purpose of the Scientific Molding method iotiain three main parameters:
Pack Pressure, Mold Temperature and Cooling Tinhe. Jack pressure is the pressure
exerted by the screw on the melt, which helps manthe plastic already within the
mold inside, prohibiting the back flow of materidlhis pressure is maintained for a
specific amount of time required for the sealingle gate and the solidification of the
part within the mold. The mold also has to be namgd at a certain temperature to
facilitate the flow of the melt into the mold.

In the stage of filling, the optimum fill time anshot size is determined by
creating a machine rheologic curve. The machineldggc curve is used to determine
when the changes in the viscosity of the melt aneimal. The graph of the relative
viscosity of the melt versus the shear rate (Figu4e¢ is created by setting the injection-
molding machine to various injection velocities.eThll time and hydraulic pressure
(hydraulic machines) is obtained from the moldingciine. The plastic pressure, an
approximate shear rate and relative viscosity aleutated. The following figure is data

collected for a Co-Polyester injection molded paaduced in a 32-cavity mold.
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Relative Viscosity vs. Shear Rate
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Figure 7.4: Rheologic Curve Relative Viscosity v$Shear rate

During the packing stage, the hold time and hoksgure is determined. A gate
seal test is used to obtain the optimum hold timenmimum time after the injection to
seal the gate of the part. Parts are produced whersum of the cooling time and hold
time is maintained constant are carried out. Thaileg time and hold time are changed
simultaneously and shots are produced and weigftad.procedure is stopped when the

shot weight is constant (Figure 7.5).
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Weight (g) vs Hold Time (s)
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Figure 7.5 Shot size vs. Holding time

Using the fill time, shot size and hold time; varisotrials at different pack
pressures are made. Plastic parts produced areireedcnfor visual defects and
dimensional discrepancies. A range for pack pressuselected. Using this range and the
previously determined parameters the mold temperatange is proposed and selected.
Again visual and dimensional inspections are mé&dw®lly, the cooling time, time after
fill to finish the cooling of the part until it rehes the desired dimensions is also selected.

This procedure is the one normally carried outmyithe validation of a mold and
has been previously established. What is usefuh films procedure is that it provides a
basis from where to start when creating the ConmimnaVviodel that will be created for

this process. The creation of the Combination Medilbe covered in Chapter 8.
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7.3  Welding by Radio Frequency Process

Radio frequency welding, also known as dielectrihigh frequency welding, is
the process of fusing materials together by applyadio frequency energy to the area to
be joined. The area to be welded is placed withenelectromagnetic alternating field
(Figure 7.6), which changes its polarity from pesitto negative and vice versa at a set
frequency.

An electromagnetic alternating field can be foumdween two capacitor plates.
The molecular movement of materials with a polatanalar structure can be influenced.
If a material with a polar molecular structure, ks PVC (Figure 7.7), Polyurethane
and PETG, is placed in an electromagnetic altergafield whose polarity changes
rapidly, its molecules try to adapt themselves adiog to the constantly changing field.
The thermoplastic can be brought to its meltinggerature. If this takes place under a
certain joining pressure the molecules mix with anether. Once the dielectric energy is
switched off and the joining pressure maintainegl rimterials returns to its solid state.
This produces high strengths, which often comeectoghe inherent strength of the weld
material. Since only partial areas have to be ppwben welding films, the material only
heats up in those areas where the electrodes pliedpn Figure 7.8 a welding tool/die
is shown. This tool fuses the material in the andeere both sides of the tool make
contact. The hole present in the tool provides acepfor the seal around cylindrical

tubing.
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Seal made in
area of contact

Figure 7.8 Tool for port seal

A dielectric system (Figure 7.9) has a high frequyegenerator, which produces
electromagnetic energy; a low pass filter, insthbetween the generator and the welding
press allowing the basic, approved industrial fesgny of 27.12 MHz to pass. The
building out section is a variable capacitor, whiaglows the re-adjustment of the
frequency in the press to accommodate for variaising tasks, tooling sizes and
different material thicknesses. The welding presk tis to fuse the materials together to

create a homogeneous bond [40].

Figure 7.9 RF Welding System [41]
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In this experiment a double press welding by rdddquency machine is used to
create patterns of 10 fluid bags per cycle indéhe Tirst press creates the port seal and
the second press creates the main seal (Figur@. .80 product consists of two films
made of PVC, which are fused together by radio Ueegy. The bag contains two
cylindrical tubing which are fused inside and te fiim and are formed by the port tool
in press 1. Then the machine indexes or movesaméxt station where the main seal
weld is formed by the main seal tool. The defeltd have been encountered during the

manufacture of the bags are leaks and missingdubin

Main Seal

Port Seal

Figure 7.10 Solution bag with welded areas
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The following list (Table 7.3), gives a descriptioh each variable commonly

used for the welding process.

Table 7.3 Welding by Radio Frequency Process Varidbs

Variable Name |Description
X1 PORT CYCLE TIME
X2 PORT SEAL TIME
X3 FLAT SEAL TIME
X4 PRE-SEAL TIME PORT
X5 COOL TIME PORT
X6 ANODE PORT
X7 ANODE FLAT
X8 SOLL PORT
X9 SOLL FLAT
X10 POSITION PORT
X11 POSITION FLAT
X12 HF PORT
X13 FLAT
X14 GRID CURRENT PORT
X15 GRID CURRENT FLAT
X16 PRESSURE PORT
X17 PRESSURE FLAT
X18 DIE COOLANT
X19 MAIN CYCLE TIME
X20 MAIN SEAL TIME
X21 PRE-SEAL TIME MAIN
X22 COOL TIME MAIN
X23 ANODE MAIN
X24 SOLL MAIN
X25 POSITION MAIN
X26 HF MAIN
X27 GRID CURRENT MAIN
X28 PRESSURE MAIN
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The values for each one of these parameters aexllemn a one factor at a time
change and are carried out in a validation protdoolthe following parameters: RF
Power Port, RF Power Flat, Welding Pressure Flat|dWig Pressure Port, Tempering
Temperature Port/Flat, Seal Time Port, Seal Timed, Hfemperature Main Top Plate,
Temperature Main Bottom Plate, Welding PressurenlVRF Power Main and Seal Time
Main. The parameters used for the Combination Madelthe RF Power, Seal times and
Welding pressure, which have been identified asderitical to the process, since any

changes in these may cause leaks.
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Chapter 8 Continuous and Combination Methodology Ininjection

Molding Process

8.1 Introduction

In this section the following will be covered:

1. Creation and evaluation of the preliminary sultim S, , (B) .

2. Creation and evaluation of the continuous model.

3. Creation and evaluation of the combination model

4. Determination of: Eigen-values, principal comgots extractedR?, Q?,

T2, Type | and Il error for each model created.

8.2  Analysis and Results for the Continuous Modelo Methodology

The sub-matrix3, ., , for batch number 1 is created by obtaining dathe low,

medium and high parameters for this batch. Tweniy-variables are being monitored
for this process, therefore c=21. The total amafnbbservations for batch 1, which
contains the low, medium and high parameter rung=456 (sample size). The sub-

matrix model isS,,, 5. The multivariate data analysis software SIMCA{B-tsed to
analyze the data matri$,,, .., and obtain the data found in table 8.1. The remuents

that must be satisfied are: eigen-valuesl, R*>.5, R*-Q?< .3. The table presents the

minimum value of the eigen-value for the amount poincipal components being
extracted. In this evaluation, the Kaiser criterafnaccepting eigen-values greater than

one for the selection of principal components ikzed.
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Table 8.1 Multivariate Data Analysis of Sub-matrix S, ,,,,5s Using SIMCA-P+12 for

Injection Molding Process

Sub-matrix Model S,,y,,s56
Minimum Eigenvalues 5.62 [4.180|2.140|1.790| 1.280 | 1.040 1 0.95
Principal Components 1 2 3 4 5 6 7 8
R2 0.268 | 0.467 | 0.569 | 0.654 | 0.715 | 0.765 | 0.812 | 0.858
Q2 0.116|0.308 | 0.3690.392 | 0.426 | 0.368 | 0.305 | 0.236
R2-Q2 0.1520.159 | 0.200 | 0.262 | 0.289 | 0.397 | 0.507 | 0.622
T2 3.870|6.057 | 7.925]9.651 | 11.293 | 12.881 | 14.431 | 15.952

The following results were obtained when implemdritethe monitoring system. Parts
that were created and accepted or rejected wetaeated for defects such as short shots,
sink marks, burns and flash according to the gaetiéication and acceptance guidelines.
This model provided a high rate of false rejectsAlpha=1) and no false accepfs |

Beta=0). It was considered at this time that thelehacreated using sub-matri, ,, s,

required some improvement since the false rejeet® Wwigh, equivalent to 9% of what

was produced (Table 8.2).

Table 8.2 Performance Criteria for S, ,,, 56

Performance Criteria

Machine Cycles 924
Machine Cycles Rejected 85
Total Parts Produced 7392
Parts Accepted 6712
Parts Rejected 680
Scrap % 9%
Alpha 1
Beta 0

A second sub-matrix mode§,,,,.,,,, Was created to include observations from another

batch. Table 8.3 shows the results of the anafgsithis new matrix.
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Table 8.3 Multivariate Data Analysis of Sub-matrix S, ,,,,,, Using SIMCA-P+12 for

Injection Molding Process

Sub-matrix Model S,,,16
Minimum Eigenvalues 7.06 |4.070|2.790|2.250| 1.380 | 1.020 | 0.734
Principal Components 1 2 3 4 5 6 7
R2 0.336|0.530|0.662 | 0.770| 0.835 | 0.884 | 0.919
Q2 0.2630.392|0.435|0.566 | 0.583 | 0.665 | 0.668
R2-Q2 0.073]0.138|0.227 | 0.204 | 0.252 | 0.219 | 0.251
T2 3.85216.010| 7.856 | 9.548 | 11.153 | 12.699 | 14.201

The model created with sub-matr&,,,,.,,, was implemented in the monitoring system

and was found to achieve a decrease in the scam@asavell as the probability of making

a Type | error¢ ) by decreasing from 1 to .59 (Table 8.4).

Table 8.4 Performance Criteria for S,,,,,,.¢

Performance Criteria

Machine Cycles 64,890
Machine Cycles Rejected 659
Total Parts Produced 519,120
Parts Accepted 513,848
Parts Rejected 5,272
Scrap % 1%
Alpha .59
Beta 0
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8.3  Analysis and Results for the Combination Modetig Methodology

To use the combination methodology in injection dimg a one factor at a time

change is used for those parameters that are @vadiés critical to the defects, such as

short shot and sink marks. In this section the nm&chheologic curve (Table 8.5) and

the gate seal test are used to establish the lohttee injection speed and the pack time.

The following procedure was conducted:

1. Using the gate seal test the minimum hold tisnebtained. The maximum time

can be anything above the minimum, but this witkeéase the cycle time.

2. The minimum and maximum injection speed is oi#difrom the machine

rheologic curve.

Table 8.5 Values used for the creation of the Rheagic Curve

Injection Velocity Fill Time Hydraulic Pressure

(in/s)

Trial
1 5.50
2 5.00
3 4.75
4 450
5 4.00
6 3.25
7 2.75
8 2.50
9 2.00
10 1.50
11 1.25
12 1.00
13 0.75
14 0.50
15 0.25

(s)

0.60
0.65
0.68
0.72
0.80
1.03
1.21
1.35
1.65
2.19
2.62
3.27
4.34
6.51
13.26

(psi)

22170
21046
20350
19655
18209
17615
16681
16205
15248
13987
13458
12922
12488
13244
16883

For example, if the injection speed selected dutiteydecoupled molding phase is 1.25

(Table 8.5) then the minimum injection speed usetl®0 and the maximum is 1.50. It is

convenient to use the same tools that are usedgldeécoupled molding for the selection
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of the minimum and maximum values since this infation is always provided when the
decoupled methodology is used. This would standartiie procedure for all other molds
being evaluated. Ten trial runs were carried outgua one factor at a time change. Ten
trial runs were required because there were 5 pateamwith low and high setting to be
determined. These trials are included in the madsted using continuous modeling to
form the combination model. The position of theescfor shot size was increased until a
permissible amount of flash was found and decreasgd a short shot was achieved.
The temperatures of the barrel were kept within ufe@eturers recommended range and
depending on the material and mold can vary betv2€:B0 degrees above and below
the nominal temperature used during the initialdalon. The trials for the temperatures
were changed for all zones at the same time. Meder rpm was increased and
decreased taking into consideration the residanwedf the material in the barrel and the
machine capacity. Table 8.6 provides a list offadl parameters that were changed for the

creation of the new model using the combinationho@blogy.

Table 8.6 Parameters used for the Creation of The @nbination Model

PARAMETERS

PACK TIME

INJECTION VELOCITY

SHOT SIZE

RPM

NOZZLE TEMP

ZONE 1 TEMP

ZONE 2 TEMP

ZONE 3 TEMP
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The combination matrix consists of 1246 observatiomhich include those from the
continuous model. Table 8.7 presents the resultheimultivariate analysis and Table
8.8 presents the results of the effectiveness einbdel implemented. The scrap rate is
reduced to less than 1% and the type | error has becreased to .027. This means that

there were more defective parts correctly rejected.

Table 8.7 Multivariate Data Analysis of Combination Matrix Using SIMCA-P+12

for Injection Molding Process

Combination Model
Minimum Eigenvalues 6.33 | 478 | 3.37 | 222 | 1.98 1.14 | 0.651
Principal Components 1 2 3 4 5 6 7
R2 0.2880.505|0.658 | 0.759 | 0.849 | 0.901 | 0.93
Q2 0.2170.402| 0.48 | 0.46 | 0.585 | 0.574 | 0.642
R2-Q2 0.071]0.103/0.1780.299| 0.264 | 0.327 | 0.288
T2 3.85216.015|7.855|9.547 | 11.151 | 12.696 | 14.198

Table 8.8 Performance Criteria For the CombinationModel for Injection Molding

Performance Criteria

Machine Cycles 67,569
Machine Cycles Rejected 597
Total Parts Produced 540,552
Parts Accepted 535,776
Parts Rejected 4,776
Scrap % 0.88%
Alpha .027
Beta 0

The Continuous and Combination Methodology implet@érin the injection molding
case study provided excellent results as was setre ireduction of type | error from 1 to

.27 and a reduction of the scrap rate from 9% &06.8
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Chapter 9 Continuous and Combination Methodology InWelding by

RF Process

9.1 Introduction
In this section the following will be covered:
1. Creation and evaluation of the continuous mdoel the main seal and
port/flat seal.

2. Creation and evaluation of the combination maddelthe main seal and

port/flat seal.

3. Determination of: Eigen-values, principal comeois extractedR?, Q*, T2,
Type | and Il error for each methodology.

9.2  Analysis and Results for the Continuous Modelip Methodology

One of the differences between the injection mgdinocess and the welding by
Radio Frequency is that in the injection moldinggass parts are made in the mold in
one step, while in the RF process the welding iseda two different steps, first the port
and flat seal is made and then the main seal. Tdreteone continuous model has to be
created for each type of seal. The solution bagduated at the end of the process are
destructively tested and checked for leaks bynfjlleach solution bag with pressurized
air to separate the films. These solution bagspéeed in an oven and heated to 118
degrees Fahrenheit for a period of 15 minutes.nfieds each solution bag is submersed
into a water bath and is visually inspected fok$eal his procedure has been previously

established in the product specifications for tesbf the solution bags.
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The model created using th, ., ,es; and S, ;060 SUD-Matrix is implemented in the

monitoring system that is available for the expemtin the machine, which produces
the solution bags. Tables 9.1, 9.2, 9.3 and 9.demtethe multivariate analysis results for
the variables for press 1 and press 2. Due toduititme and resources for the experiment

the data collected for both batches were teste@rusib-matrixS, ., s, for press 1 and

S,14x2640 fOr Press 2.

Table 9.1 Multivariate Data Analysis of Sub-matrix S, ,,,,, Using SIMCA-P+12 for

RF Welding Press 1

Sub-matrix Model S, ,5,44
Minimum Eigenvalues 154 | 351|143 | 1.17 | 0.853
Principal Components 1 2 3 4 5
R2 0.615(0.755/0.812| 0.859 | 0.893
Q2 0.598(0.721|0.693 | 0.663 | 0.629
R2-Q2 0.017[0.034|0.119| 0.196 | 0.264
T2 3.924(6.205|8.176| 10.023 | 11.806

Table 9.2 Multivariate Data Analysis of Sub-matrix S, ,,,s; USing SIMCA-P+12

for RF Welding Press 1

Sub-matrix Model S, g, 653
Minimum Eigenvalues 6.88 | 5.18 | 1.17 | 1.07 1 0.794
Principal Components 1 2 3 4 5 6
R2 0.362[0.635|0.696 | 0.753 | 0.805 | 0.847
Q2 0.311]0.578|0.553|0.508 | 0.488 | 0.451
R2-Q2 0.051[0.057|0.143|0.245| 0.317 | 0.396
T2 3.8466.003|7.834/9.515|11.108 | 12.641
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Table 9.3 Multivariate Data Analysis of Sub-matrix S ,, ;s Using SIMCA-P+12 for
RF Welding Press 2

Sub-matrix Model S, 55
Minimum Eigenvalues 10.1 | 1.4 [0.994
Principal Components 1 2 3
R2 0.723]0.823|0.894
Q2 0.698]0.743|0.717
R2-Q2 0.025| 0.08 |0.177
T2 3.94 | 6.22 |8.201

Table 9.4 Multivariate Data Analysis of Sub-matrix S,, ..o Using SIMCA-P+12 for
RF Welding Press 2

Sub-matrix Model S,,,, 5649
Minimum Eigenvalues 341 | 24 | 1.15 1 0.971
Principal Components 1 2 3 4 5
R2 0.31 |0.528/0.633|0.724 | 0.812
Q2 0.1140.275|0.221|0.143| 0.057
R2-Q2 0.196 | 0.253|0.412|0.581 | 0.755
T2 3.845]6.001]7.832]9.514 | 11.107

The following results were obtained for press 1 angsing the continuous methodology:
A total of 744 units were produced, where 8 of ¢harits were accepted and 736 units
were rejected. Of the 736 units rejected, 12 uméee actually bad and 724 were actually
good. All the units accepted were actually goodotimer words with this model a type |

error of .98 and type Il of 0 is achieved withcaap rate of 98%.
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9.3  Analysis and Results for the Combination Methoology

The parameters used for the Combination ModeltlaeeRF Power, Seal times
and Welding pressure, which have been identifiedeasg critical to the process during
past process validations, since any changes i tmay cause leaks. Tables 9.5 and 9.6
provide the multivariate analysis for the data ma# used for this methodology. The

press 1 model had a total of 3133 observationgaess 2 had 3129 observations.

Table 9.5 Multivariate Data Analysis of Combination Matrix Using SIMCA-P+12

for RF Welding Press 1

Combination Model
Minimum Eigenvalues 8.94 | 2.81 | 1.14 | 1.05 | 0.902
Principal Components 1 2 3 4 5
R2 0.497 | 0.653 |0.716 | 0.774 | 0.824
Q2 0.47210.573|0.542 | 0.498 | 0.447
R2-Q2 0.025| 0.08 [0.174|0.276 | 0.377
T2 3.846 |6.001 | 7.831/9.512]11.103

Table 9.6 Multivariate Data Analysis of Combination Matrix Using SIMCA-P+12

for RF Welding Press 2

Combination Model
Minimum Eigenvalues 405 | 1.92 | 1.26 | 1.04 | 0.992
Principal Components 1 2 3 4 5
R2 0.368 | 0.542 | 0.657 | 0.752 | 0.842
Q2 0.229]0.295| 0.39 |0.329| 0.261
R2-Q2 0.139]0.247 | 0.267 | 0.423 | 0.581
T2 3.845| 6 7.83 | 9.51 |11.101

The combination models implemented for press 12aprbvided the following results:
A total of 2564 units were produced where 601 wvitse rejected. Out of the 601 units,

11units were actually bad and 590 were actuallydg@863 units were accepted and out
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of these 1945 were actually good and 18 were dgthatl. This methodology provided
for a type | error of .98 and a type Il error @9, with a scrap rate of 23%.

The Continuous and Combination Methodology impleteénn the RF welding case
study provided moderate results as the scrap veasee from 98% to 23%, but the type

Il error went from O to .009 and type | stayedos. .
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Chapter 10 Findings, Conclusions and Recommendatisn

10.1 Overview

In this research two methodologies were proposedhe creation of the data
matrices used in multivariate data analysis usimgcpgal components. The Continuous
Modeling Methodology proposed the use of proceda dathree levels to create sub-
matrices and the Combination Methodology utilizeddyal changes to critical variables
to the process or product defect. Two processe® wealuated in this research to
validate the methodologies proposed, the injeatnmtding process and welding by radio
frequency.
10.2 Conclusions for the Injection Molding Experimat

Table 10.1 summarizes the results obtained forinfection molding process
using the two methodologies. It was demonstrabed the addition of the sub-matrix,
S, 1a0160 10 the preliminary data matrixS, ,,,,s¢, contributed to the improvement of type
| error and the reduction of scrap. By including ttritical factors to the models the
combination model was created and proved to haw&gaificant improvement by

reducing the Type | error to .027. These resulésvalid for the time period of the six

months in which the modeling was implemented.
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Table

10.1 Comparison Between Continuous and Combation Methodologies

Results for Injection Molding

Comparison Between Continuous and Combination Modeling
Criteria Preliminary Model | Continuous Model | Combination Model
Sample Size 456 1216 1246
Number of Components 3 4 5
R2 0.569 0.77 0.849
Q2 0.369 0.566 0.585
R2-Q2 0.2 0.204 0.264
Type | Error 1 0.59 0.027
Type Il Error 0 0 0
Scrap Rate 9% 1% 0.88%

The following observations are made based on situsitthat happened during the

experiments. The Combination Methodology has beapfll with these observations

since this methodology included the critical valégb shot size, barrel and nozzle

temperatures and injection speed, which have belated to various problems found in

the process.

1.

Screw displacement and cushion are parametarh#lve been significant in the
detection of problems with drooling (leak of resiaring the injection). If there
exists drooling there is an insufficient amount rofterial used to maintain
pressure on the melt already injected in the mdlie screw displacement is
affected because the screw moves forward moretheaestablished amount. Sink
marks and short shots were found in productionctege when these parameters

changed.
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2. Changes in barrel temperatures of more than égffegs have been associated
with faulty thermocouples when comparing the valobsined by an external

monitoring system and that of the injection-moldimgchine.

3. Increasing moisture content in polyester resas \8een as a drop in injection
pressure and can help in the detection of cracksants. This defect is critical
since a micro crack can be present in the part rastddetectable by visual

inspection. Cracks can lead to leaks and failurta@fdevice during use.

10.3 Conclusions for the RF Welding Experiment

Table 10.2 summarizes the results obtained fortekling by radio frequency
process. Like in the injection molding experimemtjecrease in the scrap rate was seen
when the combination methodology was implementéde type | error was maintained
at .98. It is concluded that this may be due toftlee that not enough observations were
obtained for the modeling, for this transition ® $een. A slight increase in the type Il
error indicated that faulty product was being ateeéms good. This may be due to the
data collected for the modeling. If borderline detaused as part of the sub-matrix or
during the creation of the combination model, thie® implemented model may accept

product that could fail.
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Table 10.2 Comparison Between Continuous and Combation Methodologies

Results for RF Welding Process

Comparison Between Continuous and Combination Modeling

Continuous Model Combination Model
Criteria Press 1 Press 2 Press 1 Press 2
Sample Size 2653 2649 3133 3129
Number of Components 2 2 2 3
R2 0.635 0.528 0.653 0.657
Q2 0.578 0.275 0.573 0.39
R2-Q2 0.057 0.253 0.08 0.267
Type | Error 0.98 0.98
Type Il Error 0 0.009
Scrap Rate 98% 23%

The following observations were also made during eélxperiment for the RF welding

process:

1. If a tube was removed before the seal was made@was created. The pattern
was rejected. The signal that was affected wasntve@mum position of the port
press (Figure 10.1), and the maximum grid curréngure 10.2). Both signals

decreased to zero.

o

iy

HartiD_12)

5.80

Hum
SIMCAF+ 11 - 318/2008 11:12:22 AM

Figure 10.1 Maximum Position of the Port with Respet to the Observations
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Figure 10.2 Maximum Grid Current with Respect to the Observations
2. If a tube was removed before the seal was madar@ was not created. The

pattern was rejected. The signal affected was tésspre (Figure 10.3).
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Figure 10.3 Pressure with Respect to the Observatis
These findings are important because this indictitasa defect of missing tube can be

detected. Usually this defect may escape the visggkctions and reach the customer if

there is only one tube missing from twenty anddltee about 5625 solution bags being
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produced per hour. For this experiment it wouldrdemmended to include more sub-
matrices into the models and an exhaustive evaluaif the signals, which may be on
the borderline compared to the other observatidhs.difficulty in this process, which is

not found in the injection molding as much, is #i®lity to trace a solution bag back to
the variable observations if a system where théeepet are immediately identified and

associated with a specific set of observation®tamplace.

This research proposed the Continuous and Combmaftiethodology where the goal
was to provide a methodology, which could accomnwdgself to the changing
conditions of the process. Using the Continuoushdéology, in the injection molding
case study, the goal of obtaining the most inforomatrom the process as changes arose
was achieved with acceptable results. After usivgg@ombination Methodology many
problems that occurred, such as problems with yaduipment or product defects could
be detected. So an additional benefit was fountwas not considered initially. In the
RF Welding case study the results were not as rdaakdn the injection molding. Even
though the scrap rate was decreased an incre@gaeitl error was measured. This is not
attributed to the methodology; instead it is the o observations that were borderline
and included in the data matrix used for the maodelildentifying these borderline
observations and removing them from the data matixcorrect this matter. Additional
data could be added in the future to make the maod®e robust. A benefit of the
Combination Modeling used in the RF Welding was detection of missing tubing,

which greatly benefits in the inspection of solatlmags.
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Future applications of these multivariate technggaed methodologies can be used in the
detection of epileptic seizures, characterizatibmaterials and failure detection through

image analysis.
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