
PARALLELIZATION OF HYPERSPECTRAL IMAGING

CLASSIFICATION AND DIMENSIONALITY REDUCTION

ALGORITHMS

By

Wilfredo E. Lugo-Beauchamp

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

University of Puerto Rico

Mayagüez Campus

December 2004

Approved by:

Shawn Hunt, Ph.D. Date

Member, Graduate Committee

Jaime Seguel, Ph.D. Date

Member, Graduate Committee

Wilson Rivera, Ph.D. Date

President, Graduate Committee

Pedro Vásquez, Ph.D. Date

Representative of Graduate Studies

Isidoro Couvertier, Ph.D. Date

Chairperson of the Department

ABSTRACT

PARALLELIZATION OF HYPERSPECTRAL IMAGING

CLASSIFICATION AND DIMENSIONALITY

REDUCTION ALGORITHMS

By

Wilfredo E. Lugo-Beauchamp

Hyperspectral imaging provides the capability to identify and classify materials

remotely. The applications of such technology is applied everywhere from medical devices

and military targets to environmental sciences. With the ongoing advances in spectrometers

(spatial resolution and bits per pixel density) the data gathered is constantly increasing.

Some hyperspectral imaging algorithms could easily take days or weeks in analyzing a full

single hyperspectral data set. In this thesis we performed a porting and parallelization of

four hyperspectral algorithms representative of the type of analysis done in a typical data

set. Two of the algorithms are in the area of data classification, one in the area of feature

reduction and the other one is a combination of both areas. The parallelized algorithms

were benchmarked on the Intel 32 bits Pentium M architecture and the new Intel 64 bits

Itanium 2 architecture. For three of the four algorithms we demonstrated that the use of

parallel approaches in combination with computational clusters speedup significantly the

executions times and provide great scalability. On the other algorithm, based on linear

algebra manipulations using distributed objects, we obtained execution times that took

longer than the sequential implementation. A systematic performance analysis is carried

out to explain the performance behavior of the algorithms.

ii

RESUMEN

PARALELIZACION DE ALGORITMOS DE

CLASIFICACION Y DE REDUCCION DE

DIMENSIONALIDAD DE IMAGENES

HIPER-ESPECTRALES

Por

Wilfredo E. Lugo-Beauchamp

La capacidad de analizar imágenes hiper-espectrales provee la habilidad de inden-

tificar y clasificar materiales remotamente. Las aplicaciones de este tipo de tecnoloǵıa tiene

aplicaciones en un gran sinúmero de áreas que van desde aparatos médicos y objectivos

militares a ciencias ambientales. Debido a los continuos avances en los sensores espectrales

(resolución espacial y en la cantidad de bits en un pixel) la cantidad de data recojida está

aumentando constantemente. Algoritmos hiper-espectrales pueden tomar d́ıas e incluso se-

manas en analizar todas las bandas de una muestra. Como parte de esta tesis portamos y

paralelizamos 4 algoritmos hiper-espectrales representativos del tipo de anaĺısis efectuado

en una imagen hiper-espectral comunmente. Dos de los algoritmos son basados en classifi-

cadores, uno en el area de redución de bandas y el restante es una combinación de ambas

areas. Los algoritmos paralelizados fueron probados en las arquitecturas de Intel Pentium

M (32 bits) e Intel Itanium 2 (64 bits). En tres de los cuatro algoritmos quedó demostrado

que la paralelización de los algoritmos proveen tiempos de ejecución mucho mas rápidos y

con una gran escalabilidad. En el algoritmo restante, basado en manipulaciones de algebra

lineal y objectos distribúıdos, los tiempos de ejecución resultaron ser mayores que los de

la implementación secuencial. Un análisis sistemático de eficiencia es llevado a cabo para

explicar el comportamiento de crecimiento computacional de los algoritmos.

iii

Copyright c© by

Wilfredo E. Lugo-Beauchamp

December 2004

iv

To Lisie.....

I stole so much time from you to finish this, thus it is more yours than mine.

TE AMO!

v

ACKNOWLEDGMENTS

There have been a lot of people that have helped me in so many ways throughout

all my life. It will be almost impossible to acknowledge everybody, but I would feel bad if

I don’t mention these special people. First of all and most important, I want to thank my

mother Nidia; I don’t know how you did it, but you did it. Being a single mom is not easy

today and sure it was not easy at the time we were growing up. You raised three children

alone and under difficult economic conditions; thanks for everything and I am still learning

from you. To my Dad, Enrique, I barely remember you living in the same house with Mom,

but I can’t think of any moment in my life that you were not there for me, thanks. Lisie,

my love, thanks for everything and for your support. I know I am not an easy person to

deal with but with you I feel complete. Isaac and Kiara, my little prince and princess, I

love you with all my heart, thanks for changing my life. Dr. Gerson Beauchamp, thanks for

triggering my college interests in the engineering area. The pre-engineering camp changed

my life. Dr. José Luis Cruz, thanks for convincing me to pursue graduate studies, there are

very few persons I could consider role models, you are one of them. There are also two very

special friends that helped me a lot during this journey, they were always there for me with

their friendship and help, Michelle and Gunther, I owe you two a lot. I also want to thanks

my co-worker Carlos J. Félix, thanks for all the moments of unconditional debugging help

and great ideas. You are one of the brightest persons I have met. It has been a pleasure

working with you these past years. I also want to thanks Hewlett Packard Puerto Rico

management. Once I came with the idea to join efforts between my graduate work and hp

interests they did not hesitate to agree. Manuel Martinez and Luis López: without your

support this task would have been almost impossible to achieve. Last but not least, Dr.

Wilson Rivera, when I was trying to get enrolled back to finish my graduate studies, I wrote

to more than 10 professors and you were the only one who answered. I only hope I have

not disappointed you, I will always be in debt with you.

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

1 Introduction 1

1.1 Overview . 1

1.2 Problem Statement . 4

1.3 Solution Approach . 4

1.4 Objectives of this Thesis . 4

1.5 Contributions . 5

1.6 Thesis Structure . 6

2 Related Work 7

2.1 Hyperspectral Feature Reduction Algorithms 7

2.1.1 Principal Component Analysis . 8

2.1.2 Independent Component Analysis 9

2.1.3 Projection Pursuit . 9

2.1.4 Genetic Algorithms . 10

2.1.5 Feedback Classification Algorithm 10

2.2 Hyperspectral Classifiers . 11

2.2.1 Euclidean Distance . 11

2.2.2 Fisher’s Linear Discriminant . 12

2.2.3 Mahalanobis Distance Classifier . 13

2.2.4 Maximum Likelihood . 13

2.3 Parallel Feature Reduction Algorithms . 14

2.4 Parallel Classifiers . 15

2.5 Computational Clusters . 16

2.6 Assessment . 18

3 Parallel Hyperspectral Imaging 19

3.1 Development Environment . 19

vii

3.2 Hardware . 20

3.3 Parallelization Analysis . 20

3.3.1 Feedback Classification Algorithm 21

3.3.2 Principal Component Analysis . 22

3.3.3 Classifiers . 22

3.4 Image Information . 23

3.4.1 Aviris Pine Site . 24

3.4.2 UPRM Test Image . 25

4 The Developed Application 26

4.1 Sequential Approach . 26

4.1.1 Feedback Classification Algorithm 26

4.1.1.1 Image Load . 26

4.1.1.2 Combinations Generation 27

4.1.1.3 Covariance Matrix Generation 28

4.1.1.4 Calculate eigenvalues and eigenvectors 30

4.1.1.5 Initial Means generation . 31

4.1.1.6 Classifier . 31

4.1.1.7 Discrimination by largest mean average distance 33

4.1.2 Principal Component . 33

4.1.2.1 Covariance Calculation . 33

4.1.2.2 Eigen Values and Vectors Calculation 34

4.1.2.3 Matrix Multiplication . 34

4.1.3 Classifiers . 34

4.1.3.1 Get Initial Means . 36

4.1.3.2 Discriminant Classifier . 36

4.2 Parallel Approaches . 36

4.2.1 Feedback Classification Algorithm 36

4.2.2 Principal Component . 39

4.2.3 Classifiers . 40

4.3 Directory Structure . 40

5 Experimental Results 43

5.1 Methodology . 43

5.2 Validating Algorithms Accuracy . 44

5.2.1 Euclidean Accuracy . 44

5.2.2 Maximum Likelihood Accuracy . 45

5.2.3 Feedback Classification Algorithm Accuracy 45

viii

5.2.4 Principal Component Accuracy . 47

5.3 Feedback Classification Algorithm . 47

5.4 Principal Component Analysis . 50

5.5 Classifiers . 50

5.5.1 Euclidean Distance Results . 50

5.5.2 Maximum Likelihood Results . 52

6 Conclusion and Future Work 55

6.1 Research Conclusion . 55

6.2 Future Work . 56

BIBLIOGRAPHY 57

APPENDICES 61

A IA32 Setup Environment 62

A.1 Installing Intel MKL Library . 62

A.2 Installing LAM . 63

A.3 Installing PLAPACK . 63

A.4 Updating Library Path . 64

B IA64 Setup Environment 65

B.1 Installing HP-MLIB Library . 65

B.2 Installing Intel Fortran Compiler . 66

B.3 Installing LAM . 66

B.4 Installing PLAPACK . 66

B.5 Updating Library Path . 67

ix

LIST OF TABLES

1.1 Data bandwidth for a selection of sensor arrays. 1

3.1 Software Development Environment for both architectures. 20

3.2 Hardware Development Environment for both architectures. 20

3.3 Possible distribution scenarios for the classifiers. 23

4.1 Image Load module API. 27

4.2 Combinations computational requirements. 28

4.3 Combinations module API. 29

4.4 Covariance module API. 29

4.5 Eigen Vectors and Values module API. 30

4.6 Means module API. 32

4.7 Euclidean and Maximum Likelihood modules API. 37

5.1 FCA Algorithms results for both images. 45

x

LIST OF FIGURES

1.1 Hyperspectral Imaging Overview. 2

3.1 Pseudocode for the FIM parallel implementation 21

3.2 Pseudocode for the classifiers parallel implementation 23

3.3 Indian Pine Site Image, 220 bands 145x145 24

3.4 University of Puerto Rico at Mayagüez Image, 33 bands 480x640 25

4.1 Feedback Classification block diagram for the sequential implementation. . 27

4.2 Principal Component block diagram. 34

4.3 Classifier block diagram for the sequential implementation. 35

5.1 Euclidean Indiana image result. 44

5.2 Euclidean UPRM image result. 45

5.3 Maximum Likelihood Indiana image result. 46

5.4 Maximum Likelihood UPRM image result. 46

5.5 Maximum Likelihood Indiana image result. 47

5.6 Maximum Likelihood UPRM image result. 48

5.7 FCA execution times for Indiana Image. 49

5.8 FCA execution times for the UPRM image. 49

5.9 PCA execution times for the Indiana image. 51

5.10 Euclidean Classifier execution times for the Indiana image. 52

5.11 Euclidean Classifier execution times for the UPRM image. 53

5.12 ML Classifier execution times for the Indiana image. 53

5.13 ML Classifier execution times for the UPRM image. 54

xi

CHAPTER 1

Introduction

1.1 Overview

Hyperspectral imaging allows a spatial scene to be decomposed into multiple two-

dimensional images obtained at different spectral bands (Figure 1.1). These images can

then be analyzed to discriminate among different features within the scene.

Processing techniques generally identify the presence of materials through mea-

surement of spectral absorption features. Today’s image processing systems incorporate a

frame buffer that captures an image in memory. Then a commercial DSP microprocessor

processes the image sequentially.

AVIRIS [JPL] TRWIS [TRW] HYDICE [Hughes] Future sensor array
(typical sample) (typical sample)

Image resolution
(pixels) 614 x 512 512 x 512 320 x 240 1000 x 1000

*Dynamic range
(bits/pixel) 12 12 12 12

Spectral Bands 224 384 210 200

Image Size
(MB) 105 150.9 24.1 300

Table 1.1: Data bandwidth for a selection of sensor arrays[30]. *Before atmospheric correc-
tion

1

2

Figure 1.1: Multiple images in different spectral bands form an image cube for the same
spatial image. Spatial and spectral analysis are performed on the image cube to obtain
chromatic, textural, and regional information.

With the rapid advances in the resolution, frame rate, and dynamic range of spec-

trometers, the required bandwidth has exceed throughput limits inherent in store and

process systems. Table 1.1 points out existing and future hyperspectral sensor arrays.

Hyperspectral algorithms require more operations per pixel, and thus, higher processing

throughput is necessary.

The main issues on hyperspectral imaging are concentrated on band selection or di-

mensionality reduction and classification. Classification of a hyperspectral image sequences

sometimes identifies which pixels contain various spectrally distinct materials. On the other

hand, band selection algorithms reduce the data volume (dimensionality), without loss of

critical information, so that it can be processed efficiently. Most applications of hyper-

spectral imagery require processing techniques that achieve one fundamental goal: Detect

and classify the constituent materials for each pixel in the scene. Different classification

techniques have been proposed ranging from minimum distance (Euclidean, Fisher Linear

Discriminant, Mahalanobis, etc.) and maximum likelihood [1] to correlation matched filter-

based approaches such as spectral signature matching [2]. Once all pixels are classified into

3

one of several classes or themes, the data may be used to produce thematic maps. Depend-

ing on the nature of the application, the thematic maps may be used to produce summary

statistics regarding the objects in a scene or for object or target recognition purposes.

There are two major techniques to image classification: Supervised and unsuper-

vised. In supervised classification techniques, an analyst develops quantitative descriptions

of the spectral characteristics of the various classes of interest for a particular scene. These

descriptions are then used as reference spectral signatures against which every pixel in an

image is compared. The pixels are classified according to the spectral signature they most

closely resemble. In unsupervised classification, the algorithms do not use training data

as the basis for classification. Instead, the algorithms used examine the unknown pixels in

the image and aggregate them into various classes according to the clusters found in the

spectral space that contains the image.

With the advances in spectrometers we could differentiate theoretically among any

materials. However, the analysis of these data requires a lot of computation, complexity

and significant problems to the end user [3]. Also, on supervised classification the number

of independent training samples should be greater than the number of bands in order that

the class matrices may be inverted [4]. These problems are resolved by the removal of

redundant information and trying to keep only the information relevant to the application.

These could be done by taking advantage of the high correlation between the spectral

bands. Different approaches are available, among which the most popular is the principal

component. The principal component reorganizes the data in a way that the principal

axis is one, and the data has the maximum variance. The problem with the principal

component approach is that there is no physical relation between the original spectral

bands and the transformation produced by the algorithm. Other methodologies could obtain

similar results as the principal component but preserve the physical spectral bands. Among

these techniques are the Single Value Decomposition (SVD) [5], Residual in Percent Error

[6], Canonical Analysis [7], Projection Pursuit [8], Orthogonal Subspace Projection [9] and

4

Branch and Bounds [10].

1.2 Problem Statement

Hyperspectral algorithms require very high levels of computational throughput.

These types of algorithms running on common workstations or on multiprocessors server

environments could take days to finish. State of the art research is focused on finding

better results by combining different algorithms and approaches but the complexity and

computational workloads are increasing.

1.3 Solution Approach

A sequential optimization, parallelization and distribution of one dimensionality

reduction algorithm, two unsupervised classification and one feedback classifier algorithm

is performed. The development is done using the C programming language and Message

Passing Interface (MPI) technology on the parallel programs. The work is developed on a

HP IA64 computational cluster with 16 nodes running Linux operating system and a HP

IA32 computational cluster with 16 nodes running also Linux. For the sequential code,

optimizations libraries are used which contains advanced linear algebra functions as BLAS

and LAPACK. Also the Parallelized Linear Algebra PACKage (PLAPACK) [11] based on

MPI is used to leverage complex matrix manipulations operations in a parallel fashion.

All algorithms are first developed in a sequential model on a single processor machine to

test them and to gather benchmark data. Afterward the parallelization benchmarks are

compared to the sequential results to provide check for improvements, benefits or penalties.

1.4 Objectives of this Thesis

The main objectives of this thesis are the following:

• Port and optimized two hyperspectral imaging unsupervised classifiers for IA32 and

Itanium 2 architecture (maximum likelihood and euclidean distance)

5

• Port and optimized one dimensionality reduction algorithm for IA32 and Itanium two

architecture (principal component)

• Port and optimized the feedback classification algorithm, which is a combination of a

dimensionality reduction and a classifier in the same algorithm.

• Parallelize the unsupervised classifiers optimizations

• Parallelize the feature reduction optimization

• Parallelize the Feedback Classification Algorithm

• Gather all benchmarks and provide a performance analysis

1.5 Contributions

Most hyperspectral imaging classifiers exhibit the characteristic that each pixel

classification is independent of each other. This is a characteristic that can be exploited

for parallelization. But what happens when we need to calculate means and covariances

for each class that are dependent of all pixels members of the class? These pixels could be

anywhere on the distributed image or at least should be replicated on all nodes. How the

communication of these large data sets impacts the explicit parallelization of the classifica-

tion?

Our main contribution could be summarized as follows:

• Demonstrate that exhaustive search across subsets of features combinations is possible

with reasonable execution times.

• Completed an analysis of image classification on a parallel environment and provide

suggestions that should be taking into account depending on the image spatial and

spectral resolution and the number of classes.

• Demonstrated how hyperspectral imaging algorithm characteristics can be exploited

to develop new parallel approaches.

6

• Derived from all our literature review is the first time that classification and dimen-

sionality reduction algorithms based on hyperspectral imaging have been implemented

in a parallel environment. Also is the first time that implementation issues are docu-

mented and analyzed.

1.6 Thesis Structure

The rest of this thesis is organized as follows: In chapter 2 related work previously

done in the area is discussed. Chapter 3 describes in detail the algorithms and its basic

implementation issues. In chapter 4, a detailed discussion of the implementation of the

applications for each algorithm is presented. It covers the sequential phase and the parallel

phase on both architectures IA32 and IA64. Chapter 5 presents the performance evaluation

of the sequential and parallel algorithms. Finally we conclude with a summary of results

and future work in chapter 6.

CHAPTER 2

Related Work

We present here relevant work upon which this thesis is based. The areas of rele-

vance are : a) Hyperspectral Feature Reduction Algorithms, b) Hyperspectral Classifiers c)

Parallel Feature Reduction algorithms d) Parallel Classifiers and e) Computational Clusters

2.1 Hyperspectral Feature Reduction Algorithms

Hyperspectral images provides abundant information about the target area. With

digital images in many contiguous and very narrow (about 0.010µm wide) spectral bands

the computational burden increases with the dimensionality. Since the adjacent spectral

slices are very high correlated in most cases we can reduce the dimensionality with minimum

impact in the data representation. Feature reduction algorithms try to reduce the amount

of the dimensions of each data set. Basically two approaches are used, band selection and

feature extraction. On the band selection approach the ”best” bands are selected based on

different criteria. On the feature extraction mathematical and statistical models are applied

to the data to obtain the best representation of the original data without the correlation

between bands and thus reducing the dimensionality. On the later approach the concept on

bands is lost and the data representation can not be correlated back to the spectral bands.

The following algorithms are representative of the feature reduction approaches commonly

used in the remote sensing community. A lot of other methods have been published with

very efficient results but these are the most populars [12-13].

7

8

2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a common technique for multivariate data.

PCA is a procedure for transforming a set of correlated variables into a new set of uncor-

related variables. This transformation is a rotation of the original axes to new orientations

that are orthogonal to each other and therefore there is no correlation between variables.

In this new rotation, the first variable or axis contains the maximum amount of variation,

or accounts for the maximum amount of variation. The second axis contains the maximum

amount of variation orthogonal to the first. The third axis contains the maximum amount

of variation orthogonal to the first and second axis and so on until one has the last new

axis that is the last amount of variation left. To calculate this rotation we need to obtain

the covariance matrix for the data. The data or hyperspectral image is represented as a

matrix where each row represents a pixel or observation and each column represents a wave-

length or spectral band. If we have an nxn image with N bands the data matrix has n2

rows and N columns. Using this data matrix we could calculate the covariance matrix for

the whole data. The resulting matrix is of dimensions of NxN and provides the relation

between each spectral band. From a symmetric matrix such as the covariance matrix the

orthogonal basis can be obtained by finding its eigenvalues and eigenvectors. A total of N

eigenvalues (λ1, λ2, λ3, . . . , λn−1, λn) is obtained from the covariance matrix. Each of these

eigenvalues has a correspondent eigenvector that is orthogonal between the other vectors.

If the eigenvalues are ordered from maximum to minimum the vector related to the biggest

value contains the direction of the largest variance of the data. Since the first K direction

vectors represents a significant amount of variance of the whole set, we can reduce the di-

mensionality of the original observations or pixels by projecting each one of them to the

first K orthogonal vectors. This reduces the dimensionality from N to K and in turn the

complexity and computational workload is reduced considerably [14].

9

2.1.2 Independent Component Analysis

The Independent Component Analysis (ICA) instead of transforming the original

hyperspectral image like the PCA, tries to determine which bands are the best suitable for

classification. It basically extracts independent source signals by searching for a linear or

nonlinear transformation which minimizes the statistical dependence between components.

The main work of the ICA is to determine a weight matrix W . Assuming we have an

observed signal X which contains the spectral profile of all pixels in the image, then the

source signal S resides in a lower dimension space corresponding to the present materials in

the hyperspectral image, and each dependent component si is different for each material.

Since the number of materials contained on the image is unknown the number of materials

m is assumed randomly and the weight matrix W is observed and the contribution of each

original band to the ICA transformation is logged. At the end it can be estimated the

importance of each spectral band for all materials [15].

2.1.3 Projection Pursuit

On supervised classification environments the number of training samples should

be adequately large so the estimation of statistics at full dimensionality could be accurate

enough. However, on most cases there are not enough training samples available to handle

all the spectral bands and the estimated features may not be as effective as they could be.

This suggests the need for dimensionality reduction via a processing mechanism that takes

into account high-dimensional feature space properties [8]. Projection Pursuit (PP) is able

to bypass many of the problems of the limitation of small number of training samples by

making the computations in a lower dimensional space, and optimizing a function called the

projection index, in which the Bhattacharyya distance (Equation 4.5) is commonly used.

The PP approach is basically a linear low-dimensional projection of a high dimensional data

set [14].

10

2.1.4 Genetic Algorithms

The basic idea of genetic algorithms (GA) can be described as follows: A pop-

ulation is created with a group of individuals created randomly. The individuals in the

population are then evaluated. The evaluation function is provided by the programmer and

gives the individuals a score based on how well they perform at the given task. Two individ-

uals are then selected based on their fitness. The higher the fitness, the higher the chance

of being selected. These individuals then ”reproduce” to create one or more offspring, after

which the offspring are mutated randomly. This process continues until a suitable solution

has been found or a certain number of generations have passed, depending on the needs of

the programmer [16-17]. .

When we use GA on hyperspectral imaging the spectral data is referred as pop-

ulation and each band is an individual. Thus the individuals ”reproduce” itself and could

create different mutations. Basically each band is represented in an encoded binary vector

(also known as chromosome) where the combinations of different bands are represented.

This chromosome is then evaluated via fitness criteria that could be a class discriminant

distance. Different probabilities are assigned for reproduction, crossover and mutation de-

pending on the algorithm. Finally the resultant chromosome which contains the best fitness

is selected. The chromosome vector is then decoded back to the proper bands. Genetic Al-

gorithms provides a fast and reliable way to get the best features of a data set without the

need to compare overall search methods [18-19].

2.1.5 Feedback Classification Algorithm

The search for optimal bands by analyzing all possible combinations is be very

computing exhaustive. The number of combinations of bands increases exponentially as the

dimensionality increases and, as a result, an exhaustive search quickly becomes impractical

or impossible, at least on sequential approaches. The goal of the feedback classification

algorithm (FCA) is to select the subset of bands that best separates the centroids of a

11

given number of classes. This is done by creating the whole possible combinations of m

bands from the total of N , where m is the desire final number of bands and N is the total

number of bands. The number of possible combinations is given by 2.1. Each combination

is referred to as a set. The covariance matrix and the mean for each class are calculated for

each set. These values can be obtained by using the pixel class membership of a previous

classification. This classification can be an initial one when the algorithm is starting or a

classifier output on a previous iteration.







N

m






=

N !

(N − m)!m!
(2.1)

Among all the sets the one with the largest average distance between its class centroids

is selected. The set selected is then the input to the classifier and when it finishes the

computation the classified pixels is used again to select another possible sets. The algorithms

stop when the same set is continuously selected or the algorithm reaches its maximum

iteration number [20].

2.2 Hyperspectral Classifiers

2.2.1 Euclidean Distance

In the classification area we want to obtain a thematic map that classifies each

pixel into one of C classes. The variable C is a parameter that establishes beforehand the

number of classes in which each vector pixel could be classified. How this parameter is

obtained depends totally on the region of interest and on the prior knowledge of the area.

On most classification algorithms each pixel on the final thematic map should be classified

as a member of one of the C classes.

The Euclidean Distance classifier takes C initial points in the image. In this case

points are the signatures of the materials we want to detect. The distance between each

vector pixel on the image and the C vectors is calculated. The Euclidean equation is used

12

to calculate this distance (2.2). Where X is the vector pixel, Mi is the mean vector for the

class i and N is the number of bands.

gi(x) = (X − Mi)
T (X − Mi) (2.2)

Each vector pixel is then assigned as a member of the closest C point. Once all

the pixels in the image are assigned as members of one of the C points, each C group

calculates its own new point or centroid. With these new points or means we repeat the

process an each vector pixel is classified again as member of one of the C groups. The

whole process continues until none of the pixels change from one group or class to another

or it could be based on iterations. On most analysis good results are obtained using five or

more iterations. Another approach is using the sum of square distances (SSD) to monitor

the decreasing distances between the class centroids and its members, since SSD is a non

increasing sequence and has been demonstrated that it converges.

Euclidean distance is widely used in the community but it has one setback. It

assumes that all points are at the same distance from its mean, so the area of classification

will always be circular. It basically assumes the covariance of the data as an identity matrix.

If the data distribution on each class is not based on equidistant points, the classification

may fail [14].

2.2.2 Fisher’s Linear Discriminant

To avoid the Euclidean problem of equal distances between all points of a class

and its mean, Fisher’s Linear Discriminant (FLD) incorporates the data covariance into the

equation. The data covariance provides the equation with a relationship between spectral

bands. With this extra data in the equation, better results are obtained compared to the

Euclidean distance. However a problem remains when the class covariances start changing

and the the data covariance is not representative anymore for each class [14].

13

gi(x) = −(X − Mi)
T Σ̂−1

c (X − Mi) (2.3)

2.2.3 Mahalanobis Distance Classifier

Mahalanobis distance (Equation 2.4) is used in analyzing cases in discriminant

analysis. For instance, one might wish to analyze a new, unknown set of cases (pixels) in

comparison to an existing set of known cases. Mahalanobis distance is the distance between

a case and the centroid for each group (of the dependent) in attribute space (n-dimensional

space defined by n variables). A case (pixel) has one Mahalanobis distance for each group

(class), and it is classified as belonging to the group for which its Mahalanobis distance is

smallest. Thus, the smaller the Mahalanobis distance, the closer the case is to the group

centroid and the more likely it is to be classed as belonging to that group. The main

difference between Mahalanobis distance and Fisher’s Linear discriminant is that in the

Mahalanobis each group of class has its own covariance. In FLD the same data covariance

is used for all classes. Thus, Mahalanobis provides in the covariance of each class a method

to classify groups with different distributions in its data, and thus better accuracy [14].

gi(x) = −(X − Mi)
T Σ̂−1

i (X − Mi) (2.4)

2.2.4 Maximum Likelihood

This classifier is based on statistical information. Assuming that the vector pixel

X is normally distributed with mean M and variance Σ̂ where both M and Σ̂ are unknown,

the likelihood function becomes:

gi(x) = −1

2
ln Σ̂i −

1

2
(X − Mi)

T Σ̂−1
i (X − Mi) (2.5)

14

The vector pixel X belongs to the class that has the functions with the largest gi(x). When

the above equation is maximized and solved we have:

Mi =
1

ni

ni
∑

k=1

Xk (2.6)

Σ̂i =
1

ni − 1

ni
∑

k=1

(Xk − Mi)(Xk − Mi)
T (2.7)

The mean (2.6) and covariance (2.7) have to be recomputed for every class. The algorithm

stops when there is not a significantly change between the Mi and Σ̂i previously calculated.

Also as in the Euclidean classifier the algorithm can be stopped based on iterations or by

using SSD.

As we notice from equations 2.5 and 2.4, the main difference between Mahalanobis

distance and maximum likelihood is the function threshold. The threshold on the maximum

likelihood equation is in charge to move classifier boundary by taking into account the data

covariance. Thus on must cases maximum likelihood exhibits more accurate results [14].

2.3 Parallel Feature Reduction Algorithms

Some implementations used Principal Components in a parallel way, but they

simply used the components as inputs of artificial neural networks. Then different processors

could process its own principal component concurrently. But the PCA calculation is done

sequentially [21].

A parallel version of the Projection Pursuit for high dimensional feature reduction

was presented on [22]. On this approach each group of adjacent bands is linearly projected

to obtain one feature. The projections in every group are independent of each other. The

advantage of this approach is that it is fast because every group of adjacent bands is

projected in parallel and independently of one another.

In summary, on all of our literature review we found limited references regarding

dimensionality reduction algorithms on a parallel environment. Since most of feature ex-

15

traction algorithms relies on mathematical transformation and thus heavy linear algebra

operations, the difficulty to develop them in a parallel approach is amazing. On most at-

tempts the parallel implementation have not better execution times than sequential versions.

However on the subset selection algorithms where the each band is preserved is an area that

could be exploited since on most cases a criteria is applied to all bands or combinations or

bands independently.

2.4 Parallel Classifiers

Some work has been done on parallelization of classifiers on the deta mining area.

The most used classifiers are the ones based on decision tree based classification. In this

type of parallel classifiers the nodes of the decision based tree are dispersed into processors

and each processor performs all the node computation. They provide load balancing and

data distribution mechanisms and are very scalable [23-25].

A parallel Euclidean distance approximation had been developed for basic image

analysis operations such as Distance Transformation (EDT). In this method the spatial

image is divided into as many sub regions as processors available. These sub regions are then

processed in a parallel fashion with some processors communication for global calculations

[28].

On the computer vision area, parallel classifiers are used to classify images regions

into objects models from a database which is commonly known as knowledge-based. In

this approach a master or host processor interprets and analyze an image or frame into

symbolic regions representations like lines, color, texture, size, shape, orientation, length,

etc. Then this host processor distribute the regions between slaves processors and each

processor classify its own regions. After all regions have been classified as described above,

a global consistency check is then performed. If there are no conflicts the classification

obtained holds [26].

Text classification is another are where parallelization of classifiers have been im-

16

plemented. The main problem is the amount of unclassified documents into predefined

categories. For text classification a document is parsed an a collection of unique words is

obtained. Each document then creates an histogram of words frequency and then converts

it to a matrix of frequencies for all documents. The classification is the performed by using

a priori training documents already classified. In the parallel approach a master processor

builds global parameters based on the a priori labeled documents and broadcast them to

all processors. Each processor then estimates a class of each of its documents by using the

global parameters and estimates a new local parameters given the estimated class. These

local parameters are then sum up to obtain new global parameters. The iterations continues

until convergence [27].

From all the models of parallel classifiers studied the text classifiers have one of

the characteristics of the hyperspectral classifiers, since local nodes needs global parameters

and global parameters depends on local nodes results. It is based also on iterations and fits

perfectly on hyperspectral parallel image processing.

2.5 Computational Clusters

Because of the relevance of computational clusters to this thesis, a brief description

regarding high performance cluster systems is provided.

High Performance clusters started back in 1994 when Donald Becker and Thomas

Sterling built a cluster for NASA. This cluster was made up of 16 DX4 processors connected

by 10 Mbit Ethernet, and they named it Beowulf. Since then, the Beowulf Project has been

joined by other software projects trying to provide useful solutions to turning Commercial

Off the Shelf (COTS) hardware into clusters capable of supercomputer speed. These clusters

have been used for everything from simple data mining, file serving, database serving, or

web serving, to flight simulation, computer graphics rendering, weather modeling, or ripping

CDs at truly outstanding speeds [29].

A Computational cluster is a multi computer architecture which can be used for

17

parallel computations. Clusters are built upon commodity hardware components, e.g. any

PC capable of running Linux, standard Ethernet adapters, and switches. It does not contain

any custom hardware components and is trivially reproducible. In addition, a cluster also

uses commodity software like the Linux operating system, Parallel Virtual Machine (PVM)

and Message Passing Interface (MPI). The server node controls the whole cluster and serves

files to the client nodes. It is also the cluster’s console and gateway to the outside world.

Large Beowulf machines might have more than one server node, and possibly other nodes

dedicated to particular tasks, for example consoles or monitoring stations. In most cases

client nodes in a system are dumb, the dumber the better. Nodes are configured and

controlled by the server node, and do only what they are told to do. In a disk-less client

configuration, client nodes don’t even know their IP address or name until the server tells

them what it is. One of the main differences between computational cluster and a Cluster

of Workstations (COW) is the fact that Beowulf behaves more like a single machine rather

than many workstations. In most cases client nodes do not have keyboards or monitors,

and are accessed only via remote login or possibly serial terminal. Computational nodes

can be thought of as a CPU + memory package which can be plugged in to the cluster, just

like a CPU or memory module can be plugged into a motherboard.

A computational cluster or Beowulf is not a special software package, new network

topology or the latest kernel hack. Beowulf is a technology of clustering Linux computers

to form a parallel, virtual supercomputer. Although there are many software packages such

as kernel modifications, PVM and MPI libraries, and configuration tools which make the

Beowulf architecture faster, easier to configure, and much more usable, one can build a

Beowulf class machine using standard Linux distribution without any additional software.

If you have two networked Linux computers which share at least the home file system via

NFS, and trust each other to execute remote shells (rsh or ssh), then it could be argued

that you have a simple, two node Beowulf machine.

18

2.6 Assessment

As demonstrated in above related topics there are a lot of different methods for

performing hyperspectral imaging classification and dimensionality reduction. Since the

main objective of this thesis is to explore the possibility to apply parallel computation to

some representative algorithms, we decided to choose two classifiers, one dimensionality re-

duction algorithm, and one hybrid algorithm which included both. The classifiers selected

are Maximum Likelihood and Euclidean distance. While the feature reduction algorithm

is Principal Component and the hybrid algorithm is Feedback Classification (FCA). FCA

is a combination of a band selection algorithm using previous classifier information. Most

of feature reductions algorithms are designed to avoid the overall search of combinations.

Since the Feedback Classification Algorithm do just that we will be attacking the worst

case scenario. On our research we found some attempts previously to use parallelized com-

putation on hyperspectral imaging, but they where based on special purpose architectures

specifically design for image processing [30-31] Up today, we have not found a previous

attempt to parallelize these algorithms from a hyperspectral imaging perspective and using

common computational clusters.

CHAPTER 3

Parallel Hyperspectral Imaging

In this chapter we discuss in detail the development environment, the hardware

used to perform the testing as well as the different parallelization approaches followed in

the implementation of the parallel algorithms.

3.1 Development Environment

The development environment is summarized on Table 3.1. All the algorithms

were developed on the Linux environment. On the Itanium side RedHat Advanced Server

version 2.1 and the Intel C compiler version 8.1 were used. On IA32 all the development was

carried out using RedHat 7.3 and the gcc [42] compiler version 2.96-20000731. Optimization

libraries where used on both architectures. The Hewlett Packard Mathematical Library (HP

MLIB) [32] version 1.21 was used on the Itanium architecture and the Intel Math Kernel

Library (MKL) [33] was used on IA32, respectively. All algorithms were developed from

scratch by the author by leveraging from Matlab [34] programs and built-in modules.

On the parallel implementation LAM/MPI [35-36] version 6.5.4-1 was used on

IA64, while the version 6.5.6-4 was used on IA32. On the Principal Component Algorithm

the Parallel Linear Algebra Package (PLAPACK) [11] was used on both architectures. Since

PLAPACK requires a BLAS [37-39] base, on IA32 we used the MKL libraries and the MLIB

libraries on IA64. All parallel programs were run on a 16 node cluster using a 1 Gigabit

network connectivity. There was shared storage among all the nodes on the cluster and the

19

20

programs were compiled using shared libraries. The libraries were distributed on all the

nodes in the cluster.

On both environments we used gdb [43] for algorithms debugging, gprof [44] for

profiling and the Memcheck Deluxe [45] tool for memory usage.

IA32 Architecture Itanium Architecture

OS Linux RH 7.3 Linux RHAS 2.1

Compiler gcc 2.96-20000731 Intel C 8.1

BLAS Library Intel MKL HP MLIB

MPI LAM 6.5.6-4 LAM 6.5.4-1

Table 3.1: Software Development Environment for both architectures.

3.2 Hardware

The specifications of the hardware used to test our implementations is as follows :

16 HP rx4640 machines with one Itanium 2 CPU at 1.5GHz and with 6MB of cache. On

the IA32 side 16 HP BL10e G2 systems each with a Pentium M processor running at 1GHz

and 512MB of cache. The network interconnection is done at 1Gbit on both clusters.

IA32 Architecture Itanium Architecture

Model HP BL10e G2 HP rx4640

CPU Pentium M 1GHz Itanium 2 1.5GHz

Cache 1MB L-2 6MB L-3

RAM 512MB 2GB

Nodes 16 16

Interconnection HP 5308 1Gbit switch HP 5308 1Gbit switch

Table 3.2: Hardware Development Environment for both architectures.

3.3 Parallelization Analysis

The following section describes a parallelization design analysis for the four algo-

rithms. The design analysis serves as a guide on the development phase of the research.

21

The designs were based on a multi node cluster using Message Passing Interface (MPI) as

the nodes interface.

3.3.1 Feedback Classification Algorithm

In this algorithm the first classification is carried out only by the master node.

Since this classification will be calculated using few bands, a single node can handle the

task. After some efforts we were able to parallelize the combination generation among nodes.

Each node receives a combination start and a combination end, with this range the node

could start evaluating its own combinations totally independent of the other nodes. Once

the node finishes its local calculations, it sends the local selected combination to the master

node and receives another combination range to start again the process. If the remaining

combinations are attended by other nodes then the node finishes its processing.

Figure 3.1: Pseudocode for the FIM parallel implementation

The master node gets all the local combinations selected by local nodes and the

discrimination criteria. With this criteria the master can select the final combination.

Figure 3.1 summarizes the pseudocode for the FIM parallel implementation.

22

3.3.2 Principal Component Analysis

For this algorithm there is very little opportunity to be parallelized. Since it is

based on the covariance matrix of the image data all data elements should be on a same

node. After this matrix is obtained its eigenvalues and eigenvectors also should be computed

locally on a singular node. Since PCA calculation involves a lot of linear algebra calls and

there is not obvious parallelization for the algorithm, we will be using PLAPACK to handle

all linear algebra calls, and data distribution.

3.3.3 Classifiers

The Euclidean distance and the maximum likelihood classifiers are good algorithms

where parallelism can be exploited, since each pixel independently calculates its membership

to a class. The problem arrives at calculating the new means and the covariance for each

class using the pixel membership. Since a class will have member pixels distributed across

nodes there should be a way means and covariances could be calculated in an efficient

parallel way. A master delegates nodes approach was developed. Since at some point in

the iteration we need to gather and distribute data, we try to transfer the smallest amount

of data possible. We decided to transfer the local classification vector to the master node

at each iteration and then propagates the final vector back to the nodes. In this way the

transfer is for an integer vector of the size of the pixels resolution. Once each node has its

own copy of the global vector covariances and means are calculated locally. No additional

transfers are done until the next iteration. With this approach each node has all the data

necessary to calculate pixel memberships without the need to transfer huge amount of data

for each node (Means an Covariance). However this approach could be problematic in some

images. If we look at Table 3.3 we can observe that for the first image is best to use

our approach of broadcasting the classification vector since is very low spatial resolution

image (145x145) and high spectral resolutions. But for the second image it is not the case

since it has high spatial resolution but low spectral resolution, in that case it is better to

23

Scenario Indian Pine Image UPRM Image

Means and Means = 8,800 bytes Means = 1,584 bytes
Covariances Cov = 1,936,000 bytes Cov = 52,272 bytes
distributed

Classification 84,100 1,228,800
vector distributed

Table 3.3: Possible distribution scenarios for the classifiers. For the first image it makes
sense to only distribute the classification vector, but for UPRM image it would make sense
to distribute the means and covariance

broadcast the covariance and mean than the classification vector. Figure 3.2 summarizes

the pseudocode for Euclidean distance and maximum likelihood parallel implementations.

Figure 3.2: Pseudocode for the classifiers parallel implementation

3.4 Image Information

The algorithms developed use two images for testing them. In this section an

overview of these two images is presented.

24

3.4.1 Aviris Pine Site

The first test data image is an AVIRIS image provided by Laboratory of Applied

Remote Sensing (LARS) at Purdue University. The image size is 145 by 145 pixels with

220 bands and 12 bits of pixel information on the sensor. After atmospheric correction the

pixels are stored as 16-bit words. The storage size is about 9.3 MB. Figure 3.3 shows a

perspective picture of the image (band 30). The image was taken in 1992, covering the NW

Indiana’s Indian Pine Site 3, an agriculture area. The ground truth is also available for

image classification evaluation. There are 16 land cover classes, in which some classes may

be grouped into single landuse types. For example, corn, corn-min, and corn-notill belong to

the corn landuse type, but due to the differences of crop canopies they are categorized into

three different land-cover classes. Classes of a same group tend to possess similar spectral

properties, so that it is usually difficult to differentiate them in a multispectral image. Our

analysis always assume 5 classes on this image.

Figure 3.3: Indian Pine Site Image, 220 bands 145x145

25

Figure 3.4: University of Puerto Rico at Mayagüez Image, 33 bands 480x640

3.4.2 UPRM Test Image

The second image is a laboratory image provided by the Laboratory for Applied

Remote Sensing and Image Processing (LARSIP) University of Puerto Rico at Mayagüez

Campus (UPRM). The image size is 480x640 and each pixel has a resolution of 8 bit on the

sensor and since it was obtained using a spectral camera no atmospheric correction bits are

added. Figure 3.4 shows the image visible spectrum of the image. By visual analysis we

could see at least 6 different classes. Thus, all the analysis is done using 6 classes.

CHAPTER 4

The Developed Application

In this chapter we present detailed description of the developed application. and

the implementation of each of the algorithms based on both, the sequential and the parallel

approaches.

4.1 Sequential Approach

In this section we describe the sequential approach implementation for all the

algorithms. These algorithms were developed first than the parallel versions. The main

modules are discussed for each of them. Some modules such as image load, covariance,

means calculation, are used on all the algorithms. Thus if an algorithm block have been

already discussed in a previous section, then a link to that section will be provided.

4.1.1 Feedback Classification Algorithm

Figure 4.1 presents the main program blocks of the implementation. We describe

each of these blocks and its proper implementation in the application as follows.

4.1.1.1 Image Load

A module was developed to load hyperspectral data into a type double matrix.

Each row of the matrix represents an observation or pixel of the image. Each column

represents a dimension or a spectral band. Thus, if we have an image with 200 bands and

256 by 256 resolution, we will generate a matrix of 65536 rows and 200 columns.

26

27

Figure 4.1: Feedback Classification block diagram for the sequential implementation.

The functions in Table 4.1 are in charge of loading the hyperspectral data from

the binary image file and store it on a double address memory pointer passed as input to

the function. The data is read only one time and all the subsequent modules use the same

pointer. Since each hyperspectral image has its own sets of attributes it was decided that

each spectral image would have its own loading function. In this way we avoid the devel-

opment of a very complex loading function that would have to auto sense image attributes

and specific characteristics like spectral bands, resolution, pixel depth, etc.

Module API : int load imagename image(double **ObservationMatrix);

Parameters : double **ObservationMatrix
//Double pointer were the image would be loaded as a 2D matrix.

File Location : ImageName/imageload.c

Table 4.1: Image Load module API.

4.1.1.2 Combinations Generation

For the combinations generation we use an algorithm developed by Donald Knuth

and coded by Glenn C. Rhoads at the Rutgers State University of New Jersey. This algo-

rithm basically prints the combination sets generated but do not store them. This was a

major challenge since the sets obtained are very memory intensive. The first approach for

the implementation was to store the combinations obtained on an integer two-dimensional

array where each row represents a combination generated. However, the amount of memory

needed was impractical. Table 4.2 presents the calculations made of the required memory

28

depending on the set size or final bands m. Since the memory needed could be in the order

of 1027 storing the combinations on local disks was also out of the question.

m ∗Number of Combinations ?Amount of memory needed
(# of desire bands) (bytes)

3 1.75 × 106 21 × 106

5 4.10 × 109 82.05 × 109

7 4.49 × 1012 125.83 × 1012

∗Combinations are calculating using Indiana Spectral Image and equation 2.1
?Each integer use 4 bytes

Table 4.2: Combinations computational requirements assuming the Indian Pine Site pine
test site image. As could be seen storing these combinations will be impractical.

The final approach was to generate combinations as needed. The code implemen-

tation was modified so each time the function is called it returns the next combination. In

this way the combinations are not stored and the memory resources are better used. Since

each combination will be sent as indexes of the spectral image to be analyzed, it is expected

that the algorithm execution times would be immerse on larger execution times and thus

there is no bottleneck. However, if we assume that the results will be received immedi-

ately from the nodes t ≈ 0 then the whole method could not be executed in less than the

combination generation execution times. The problem is not the combination generation

algorithm performance. Indeed the problem is that the quantity of combinations generated

tends toward ∞. when m increases. This behavior continues until m is greater than N
2
. At

this point the combinations decrease again. The module API as shown in Table 4.3 consists

of two functions: First set combinations() sets the module with the proper parameters.

Then new combination() is in charge of get the new combination and stored in the memory

address set previously. When there are no more combinations this function returns -1.

4.1.1.3 Covariance Matrix Generation

The covariance matrix is a symmetric matrix, which represents the correlation

between a single spectral band and all the others bands. For example, element (m, n)

29

Module API : int set combination(int N, int r, int *comb);

Parameters : int N
//Integer which represent the spectral channels.

int r
//Integer which represent the set size for each combination.

int *comb
//Integer pointer where each combination will be stored.

Module API : int get combination();

Parameters : NONE

File Location : Combinations/combination.c

Table 4.3: Combinations module API.

of the covariance matrix represents the correlation between spectral band m, and spectral

band n. By definition a correlation between A and B is the same as the correlation between

B and A, which is why the covariance matrix is a symmetric matrix. The symmetric matrix

for a set of observations is calculated using equations 2.6 and 2.7. Xk is the kth observation

obtained from the spectral image.

The module API, as shown in Table 4.4, consists of the covariance() function. This

function basically calculates the covariance matrix from the spectral image and stored it on

a memory address.

Module API : void covariance(double **Data, int m, int n, double **Cov);

Parameters : double **Data
//Double pointer were the spectral image resides.

int m
//Integer Number of rows or pixels on the image.

int n
//Integer number of the image spectral channels.

double ** Cov
//Double pointer where the Covariance Data will be stored.

File Location : Covariance/covariance.c

Table 4.4: Covariance module API.

30

4.1.1.4 Calculate eigenvalues and eigenvectors

By calculating the eigenvalues (λi) and eigenvectors (Vi) (Equation 4.1) of the

covariance matrix Σ̂i we could obtain the direction of the variances in the spectral data

(Equation 4.1). Moreover if we order the eigenvectors in the order of the descending eigen-

values (largest first), we can create and ordered orthogonal basis with the first eigenvector

having the direction of largest variance. In this way, we can find directions in which the

data set has most significant amounts of energy. Instead of developin our own Eigen vector

calculation functions we used the Basic Linear Algebra Subprogram (BLAS) Level 3 func-

tion dgeev(). The dgeev() computes for an N ∗ N real non symmetric matrix A, the

eigenvalues and, optionally, the left and/or right eigenvectors. This function is contained

on the HP MLIB and Intel MKL optimizations libraries. More info could be obtained at

[32-33][37-39].

[Σi − λiI] ∗ Vi = 0 (4.1)

Because of the dgeev() needs some extra parameters that are not important to

the rest of the program, this function was wrapped under the eigen() function. Table 4.5

shows and explains the parameters for this function.

Module API : int eigen(double **Data, int m, int n, double *Eval, double **EVec);

Parameters : double **Data
//Double pointer were the spectral image resides.

int m
//Integer Number of rows or pixels on the image.

int n
//Integer number of the image spectral channels.

double *Eval
Double pointer array where Eigen Values will be stored

double **Evec
//Double pointer where the Eigen Vector matrix will be stored.

File Location : NLIB/eigen.c

Table 4.5: Eigen Vectors and Values module API.

31

4.1.1.5 Initial Means generation

As explained in the previous section, using the eigenvalues and eigenvectors we have

the directions of variance of the data. For unsupervised classifiers is a common procedure

to calculate the initial means by using the largest EigenVector (VMax). First we need to

calculate the spectral data mean M , and then using equations 4.2 and 4.3 the initial means

are calculated. The β value on equation 4.4 used for this implementation is 1.5.

M1 = M − i ∗ k ∗
√

λMax ∗ VMax (4.2)

M2 = M + i ∗ k ∗
√

λMax ∗ VMax (4.3)

k =











2β
N−1

N is odd

2β
N

N is even
(4.4)

The means module API, as shown in table 4.6, consists of a two functions that re-

turns the initial means for the spectral image data. On the Classifier step the classification is

not necessarily done using all spectral bands on the image. We could use a selected number

of bands to perform the classification. Due this requirement two functions to get the initial

means are needed. The first one getmeans from all data() is used when calculating the ini-

tial means from the whole spectral image. On the other hand getmeans from subset data()

is used when only a subset of spectral image available is used. The means on a subset data

are calculated using only the spectral bands that where selected. This module internally

calls other modules API as covariance() and eigen().

4.1.1.6 Classifier

Since the classifiers used for the FIM algorithm are the same used on the classifier,

they will be discussed in detailed in section 4.1.3.2.

32

Module API : void getmeans from all data(double **Data, int obs,
int channels, int no classes,

double **means);

Parameters : double **Data
//Double pointer were the spectral image resides.

int obs
//Integer Number of rows or pixels on the image.

int channels
//Integer number of the image spectral channels.

int no classes
//Integer Number of classes for the classes.

double ** Means
//Double pointer were the Means will be stored.

Module API : void getmeans from subset data(double **Data, int obs,
int channels, int no classes,

int no subset bands, int *bands,
double **means);

Parameters : double **Data
//Double pointer were the spectral image resides.

int obs
//Integer Number of rows or pixels on the image.

int channels
//Integer number of the image spectral channels.

int no classes
//Integer Number of classes for the classes.

int no subset bands
//Integer number of single bands to be used

int *bands
//Integer array of size no subset of bands that contains the bands

double ** Means
//Double pointer were the Means will be stored.

File Location : Means/means.c

Table 4.6: Means module API.

33

4.1.1.7 Discrimination by largest mean average distance

Once we have the classification vector we could start the discrimination between

combinations. Each spectral combination is obtained and with the classification vector we

could calculate the means (Mi) and covariances (Σ̂i) for each class. These parameters will

be different between spectral combinations since each combination will represent a different

set of spectral bands. With the means and covariances we then calculate the distances

between classes. Using equation 2.1 we could obtain the classes combinations of distances

for each spectral combination. For example, if the number of classes is 5 and the distances

needs to be calculated in pairs (2) we have 10 possible means combinations. All these

distances are calculated and then an average is obtained. This average will be the average

for the spectral set. The spectral set with the largest average will be selected. The distance

between classes is then calculated using the Battacharyya equation 4.5. For simplicity

purposes our current implementation uses Euclidean distance.

B =
1

8
[M1 − M2]

T

(

Σ̂1+Σ̂2

2

)−1

[M1 − M2] +
1

2
ln

(

|Σ̂1+Σ̂1
2√

|Σ̂1||Σ̂2|

)

(4.5)

4.1.2 Principal Component

Figure 4.2 shows the block diagram for the sequential principal component analysis

(PCA). In these block diagrams all major PCA modules are presented. As could be seen

some modules are the same ones used on the FIM algorithm. In our implementation we

try to reuse code as much as possible, so the same modules are used. Here are a brief

description of the PCA modules.

4.1.2.1 Covariance Calculation

The image data covariance calculations is on of the few modules common between

the four algorithms. It was explained in detailed in section 4.1.1.3.

34

Covariance

Calculation

Get

Eigen Vectors

& Values

Matrix

Multiplication

Components

Selection

Figure 4.2: Principal Component block diagram.

4.1.2.2 Eigen Values and Vectors Calculation

In these steps we get the orthogonal vectors matrix. The matrix size will be of size

N ∗ N where N is the number of spectral bands. This module was explained on section

4.1.1.4

4.1.2.3 Matrix Multiplication

The matrix multiplication on the PCA algorithms accounts for more than 80% of

its execution if we used a common O(n3) matrix multiplication implementation. Thus we

decided to use the optimizations libraries. The level 3 of the Basic Linear Algebra Sub-

programs (BLAS) provides an optimized function for matrix multiplication. The function

dgemm() contains on HP MLIB and Intel MKL libraries provide an efficient method for

matrix multiplication. When we replace our original method with this procedure the matrix

multiplication accounts for only 10% of the algorithm execution. More information of this

and other BLAS functions could be obtained at [32-33][37-39]. [37]

4.1.3 Classifiers

The Figure 4.3 presents the block diagram for the Classifiers. Each of block of the

classifier is defined as a module on the implementation. Some modules are the same for the

above sections so the a link will be provided in such cases to the corresponding sections.

The modules described on this section are valid for both classifiers, Maximum Likelihood

and Euclidean Distance.

35

Figure 4.3: Classifier block diagram for the sequential implementation.

36

4.1.3.1 Get Initial Means

The first step on the classification algorithms is to get the initial means from the

whole data. Since we are working with unsupervised parametric classifiers, the initial means

are obtained from the covariance matrix. In a supervised classifier the initial means were

obtaining by processing the training samples and generating a covariance with such samples.

The initial means for unsupervised classifier is the same described in sections 4.1.1.3, 4.1.1.4

and 4.1.1.5.

4.1.3.2 Discriminant Classifier

The idea when we start developing this hyperspectral imaging suite was to begin

with a few classifiers and then expand it to more. So the classifiers API are the same for

both discriminants. Basically the functions have the same input parameters and are totally

independent from each other. Also they provide the same output, an integer array of size

n ∗ m, where n is the number of rows (observations) in the image and m is the number of

columns (bands). Each ith element of the array is the classification result for the ith pixel

on the image. Table 4.7 presents the euclidean and maximum likelihood modules API.

4.2 Parallel Approaches

In this section we describe the parallel implementation for the algorithms. Most of

the parallel work was based on the sequential algorithms. With small modifications to the

sequential implementations and exploiting the algorithm’s parallel characteristics we were

able to implement parallel versions of them.

4.2.1 Feedback Classification Algorithm

The parallelization of the Feedback Classification Algorithm was basically the same

as proposed on Figure 3.1. We spent a lot of time trying to parallelized the combinations

generation. Using the sequential code explained on section 4.1.1.2 we were able to send

each node a combination range. At the first of the algorithm after the FIM classification, a

37

Module API : void euclidean(double **Data, in no bands, int no obs,
int *bands, int no subset bands, double **Means

int no classes, int *class vector, int iter);

Module API : void ml(double **Data, in no bands, int no obs,
int *bands, int no subset bands, double **Means

int no classes, int *class vector, int iter);

Parameters : double **Data
//Double pointer were the spectral image resides.

int no bands
//Integer Number of cols or bands on the image.

int no obs
//Integer Number of rows or pixels on the image.

int *bands
//Integer Array which contains the single bands (optional).

int no subset bands
//Integer Number of single bands to be used (optional).

double **Means
//Double pointer were the initial class means resides.

int no classes
//Integer Number containing the number of classes

int *class vector
//Integer Array where the classification results will be stored

int iter
//Integer Number of the number of iterations for the classifier

File Location : Classifier/euclidean.c

File Location : Classifier/ml.c

Table 4.7: Euclidean and Maximum Likelihood modules API.

38

master node calculates sends m to each node until all nodes are working in a combination

range. Each node then starts calculating the average distance for its range of combinations.

After a node finishes, it send the selected combination with the average distance to the

master node. The master node then receives the data and evaluate it from a previous

largest average obtained from a previous node. If the new average is greater then the

combination is selected as the new largest average and all subsequent nodes results are

going to be evaluated based on the new average distance. If the distance is lower than

the previously obtained, then the combination is ignored. Once a node finishes it will wait

until the master node send a work flag or a finish flag. If a node receives a work flag a

new combination range is provided and the node will start again the evaluations. After all

nodes have received a finish flag the algorithms stop and the master nodes has the largest

average distance and its respective combination.

Originally we divided the number of spectral bands between the number of nodes

in the cluster and assigned this range of combinations to the node. This was an error

since the calculation of the combinations from 110 to 100 is exponentially more computing

intensive than the calculation from 10-0. The result was that the first nodes finished very

rapidly while the latest nodes will remain working for hours. We then start testing the

algorithm to provide a way where all the nodes could remain busy most of the time. We

get to the conclusion that the shortest the range the better. In this way nodes may finish

its calculations very rapidly and then get another results. The only limitation was that

the range can not be lower than the number of expected bands m because anything lower

than that will result in a program error. The problem is that we wanted to calculated the

best three bands but the node is evaluating the best two for a range. After all the work we

concluded that the combination range it will be always set to the same value as the desire

subset images, m.

39

4.2.2 Principal Component

The main problem with the principal component as established in section 4.1.2 is

that the algorithm does not provide and explicit parallel behavior. Since all of the algorithm

modules are basically linear algebra manipulation we decided to use current Parallel Linear

Algebra libraries. Among the evaluated ones were PBLAS, PSBLAS[40], PLAPACK[11]

and ScaLAPACK[41]. We decided to used PLAPACK since it provides the simplify library

implementation. Basically it provides matrix distribution across the cluster mesh and most

of the BLAS functions are ported to PLAPACK. It is an upper layer framework that uses

optimized BLAS libraries and MPI to archive the results. To be able to distribute an object

it has to be defined as a specific type (PLA Object). For this object to work it needs a

distribution template. A Template is basically a way to attach a PLA Object to specific

nodes on the mesh. Each object may have different templates and each template requires

a nb length. The nb basically contains the number of elements each node on the mesh will

contain. If a 2x2 mesh is created (4 nodes) and we have a distributed matrix of size 10x10

we could select a nb of 5 and each node on the mesh contains a subregion of the matrix.

If we choose a nb of 10 or greater, only the first node will contain the distributed matrix.

Calculating the optimum nb is a very difficult task and its depend of the distributed matrix

size, the size of the mesh and the number of nodes in the cluster.

After having the distributed matrix with the image we can them simply start calling

PLAPACK built-in functions to perform the PCA algorithm. We created a new PLAPACK

Covariance function that basically compute the covariance for a distributed matrix. The

function PLA Spectral decomp() is used to obtain the Eigen vectors and values (that are

also distributed across the mesh). Then the PLA Gemm() was used to perform the matrix

multiplication.

40

4.2.3 Classifiers

The Maximum Likelihood and Euclidean Distance parallelization are very similar.

The approach is to exploit the independent pixel classification characteristics. Basically on

both algorithms the image is divided into subregions and each subregion is computed in a

parallel fashion between the nodes. The number of subregions is dependent on the size of the

cluster. Since pixel classification are independent on each other the membership calculation

can be done in a totally parallel way. The problem is that when going to another iteration

the means for each class are needed on both classifiers and the covariance is needed on

the maximum likelihood. To calculate the means and covariances we need to access all the

pixels members of each class. Since this information is needed to the next iteration, we have

two approaches. Either the means and covariances are calculated on a single node locally

and then distributed by broadcasting to all the participating nodes on the cluster or each

node can send to a master the subregion classified. With the subregion classification the

master node could recreate the whole image classification and send them back to the nodes.

As Table 3.3 establishes the optimum approach depends on the image spatial resolutions

and spectral resolution. Since each classification vector contains all pixels on the image

in the UPRM image, it will be better to propagate the Means and covariances than the

classification vector. However since the main hyperspectral problem is more the amount

of spectral bands than image resolution we decided to propagate the classification vector

instead of the means and covariances.

4.3 Directory Structure

The structure of the directory is described as follows:

SSI/

bin/ => Place where the binaries are created

Classifiers/

euclidean.c => Euclidean Distance Classifier

41

ml.c => Maximum Likelihood classifier

tools.c => Contains some important functions

used on the classifiers

CMeans/

main.c => Main function for the classifiers algorithm

Combinations

combinations.c => Combinations generation functions

Covariance/

covariance.c => Covariance function

FIM/

main.c => Main function for the FIM algorithm

Data/

IA32/ => Directory to store data for IA32

algorithms (debugging only)

IA64/ => Directory to store data for IA64

algorithms (debugging only)

include/

global.h => Contains classes structure and the includes for the

different optimizations libraries

Images/

Indiana => Indian Pine Site Image

Test.bip => UPRM Test image

IndianaImage/

imageload.c => Contains the code to load the Indian AVIRIS Image

Means/

means.c => Contains all the functions that are

used for means calculation

42

NLIB/

nlib.h => Contains all the linear algebra functions

PCA/

main.c => Main function for the PCA algorithm

TestImage/

imageload.c => Contains the code to load the UPRM testing image

Makefile.ia32 => IA32 Makefile

Makefile.ia64 => IA64 Makefile

CHAPTER 5

Experimental Results

In this chapter the results for parallelized versions of the hyperspectral imaging

algorithms are provided. First the methodology for gathering benchmarks and images is

described. Second the algorithms are validated and finally the results gathered for all the

algorithms are presented and discussed.

5.1 Methodology

All the algorithms were tested on the specific architectures. For the sequential

algorithms the clock() function was used. Clock calculates the best available approximation

of the cumulative amount of time used by your program since it started. To convert the

result into seconds, divide by the macro ‘CLOCKS PER SEC’. In this way the execution

times has a better accuracy since it is not dependent on the machine workload. Each of the

sequential algorithms was run once to obtain the execution time.

On the parallel algorithms the MPI function called MPI Wtime(). This is intended

to be a high-resolution, elapsed (or wall) clock. It returns the current time in seconds.

The time resolution is dependent of the MPI Wtick() function and is dependent on the

architecture. The problem with getting benchmarks using this function is that it does not

takes into account the machine load at the moment of the execution. To try to obtain more

accurate results each parallel algorithm was executed two times. If the results obtained

were similar then no more executions were done. If the results have discrepancies (more

43

44

than 5 seconds) a third run was performed and the execution time was the average between

the lowest two executions.

5.2 Validating Algorithms Accuracy

In this section we compare our application results with the Matlab results. In this

way we assure that the algorithms implemented are accurate.

5.2.1 Euclidean Accuracy

Figure 5.1 provides the thematic classification of the Indiana Pine site image. Every

single pixel on both implementations (Matlab and C) were classified equally. For this result

5 classes and 50 iterations were used. Also on Figure 5.2 we present the euclidean result of

our application for the UPRM test image. We also obtained a 0 pixel difference between

the Matlab implementation.

Figure 5.1: Euclidean Indiana image result. Pixels Discrepancies with Matlab: 0

45

Figure 5.2: Euclidean UPRM image result. Pixels Discrepancies with Matlab: 0

Indian Pine Site Image UPRM Image

FIM Selected Bands 28,29,42 19,18,17
(Matlab)

FIM Selected Bands 28,29,42 19,18,17
(Our Application)

Table 5.1: FCA Algorithms results for both images.

5.2.2 Maximum Likelihood Accuracy

Figures 5.3 and 5.4 shows the maximum likelihood classification result for both

images. There were no discrepancies between our application and the Matlab results.

5.2.3 Feedback Classification Algorithm Accuracy

Table 5.1 shows the bands selected on our application and on the Matlab code.

As it could be seen, both applications got the same results. The algorithm inputs was the

indian pine site image with all its bands (220) and the desire subset was 3. The classifier

used was euclidean distance. The same inputs were given to the UPRM image.

46

Figure 5.3: ML Indiana image result. Pixels Discrepancies with Matlab: 0

Figure 5.4: ML UPRM image result. Pixels Discrepancies with Matlab: 0

47

5.2.4 Principal Component Accuracy

Figures 5.5 and 5.6 shows the thematics image results using the first 10 principal

components obtained from our application. The classification was done using the Maxi-

mum Likelihood classifier. Pixel discrepancies between our final classification and Matlab

classification using Matlab’s generated Principal Components are minimal.

Figure 5.5: Maximum Likelihood Indiana image result using first 10 principal components.
Pixels Discrepancies with Matlab: 4

5.3 Feedback Classification Algorithm

Figures 5.7 and 5.8 shows the execution times for the feedback classification algo-

rithm on both images. Each figure also show the execution time of the sequential algorithm

on each architecture. On both images we can see that the parallel implementation is highly

scalable and that the parallel algorithm behaves as an ideal parallel program. However on

the UPRM test we could see a U shape on the graph. This happens because the UPRM

image has 33 spectral bands and the number of subset bands is 3. So when we start dis-

48

Figure 5.6: Maximum Likelihood UPRM image result using first 10 principal components.
Pixels Discrepancies with Matlab: 8

tributing the combinations range, after node 11 there is no more combinations available.

Thus, at that point new processors are added and they don’t have any tasks to perform,

but they contribute on the communications penalty. We came with Equation 5.1 which

calculates the number of processors (P) needed by an image to achieve only one pass of

combinations distributions. N is the number of the image’s spectral bands, and m is the

number of subsets bands. It could be argued that when the amount of this processors are

present it could represent the lowest execution time. However, when we add new processors

new factors should be taken into account such as communication latency, memory, cache,

etc. More nodes and images are needed in order to best characterize this behavior and

suggest a general model.

P = ceil(N/m) (5.1)

49

Figure 5.7: Feedback Classification Algorithm execution results for the Indiana image

Figure 5.8: Feedback Classification Algorithm execution results for the UPRM test image

50

5.4 Principal Component Analysis

Principal Component parallelization provides the worst results of all the algo-

rithms. The PLAPACK implementation results in very large execution times. The main

problem we found with PLAPACK library is that there is no way to load a matrix globally.

The only method the framework provide is one axpy local to global, where a single node

loads the 21025x220 matrix and then distribute it across nodes. This approach could work

with small matrices but with the amount of data we are dealing is very time consuming

and prohibitive. The same problem appears when we want to move a distributed matrix

to a single node. To attack these issues we developed some methods to loads the image in

a more efficient way. Basically all the nodes with a corresponding subregion of the matrix

could load it in parallel. This approach speed up the process but is totally dependent on the

image loaded, so a new methods has to be developed whenever a spectral image is added to

the toolkit. Another method developed by the author unloads a global distributed matrix

in a parallel way. Basically each node which has subregions of the matrix dumps its content

to a file. Since each node knows its part of the image, the filename contains the part of

the image. Then with common unix scripting, the image is gathered from all files. All the

optimizations tried by the author were not sufficient, from Figure 5.9 we could observe that

the parallel execution times are way over the sequential implementation.

5.5 Classifiers

5.5.1 Euclidean Distance Results

Execution results for the euclidean distance classifier provided in Figure 5.10 are

very promising. On both architectures we see a highly scalable curve. Based on these,

suggest that the algorithm could be used with images with more spectral bands and higher

resolutions. Here we found another interesting behavior. On IA32 the parallel execution

times are better than the sequential approach. This could be an expected result, however

51

Figure 5.9: Principal Component execution results for the Indiana image.

what it is a surprise is that the sequential execution times on IA64 are so lower compared

to IA32 that the parallel approach on IA32 does not compare to IA64. So for this image, it

could be faster to run the algorithm sequentially on IA64 than the parallelized version on

IA32.

On the UPRM test image IA64 sequential implementation has better execution

times than the IA32 parallel version. Here we found that the IA32 parallel approach is

not so great as the indian pine site image. This is due the image resolution of the UPRM

test image is so big that the amount of data transfered is tremendous. As explained with

Table 3.3 for this image it should be better to distribute the means than the classification

vector. Equations 5.2 and 5.3 provides a guide to know when it will be better to broadcast

the classification vector or the means. These equations calculates the size in bytes for the

classification vector and for the means, if the classification vector is greater than the means,

then the means should be broadcast, otherwise the vector. C is the number of classes and

N is the number of the image spectral bands.

ClassV ec = Height ∗ Width ∗ sizeof(int) (5.2)

52

Figure 5.10: Euclidean Classifier execution times for the Indiana image.

Means = C ∗ N ∗ sizeof(double) (5.3)

5.5.2 Maximum Likelihood Results

Results on the Maximum Likelihood are very similar to those of the Euclidean

distance classifier. On Figure 5.12 we see huge execution time benefits on IA32, but at the

same time the IA32 parallel version which seems highly scalable are in the same range than

the IA64 sequential approach.

As explained on the euclidean distance above, in Figure 5.13 the parallel imple-

mentation is not as good as in the indian pine site image. This is due the high spatial

resolution of the UPRM image make it much worse the communication process when cal-

culating means and covariances. Here, equation 5.3 has to be modify to add the covariance

size. Equation 5.4 provides the new criteria in order to know when it will be better to

broadcast the classification vector or the covariances and means. Equation 5.2 is still valid

for the Maximum Likelihood classifier. As in the Euclidean distance C is the number of

classes and N is the number of the image spectral bands.

53

Figure 5.11: Euclidean Classifier execution times for the UPRM image.

Figure 5.12: ML Classifier execution times for the Indiana image.

54

Means = N 2 ∗ C ∗ sizeof(double) + C ∗ N ∗ sizeof(double) (5.4)

Figure 5.13: ML Classifier execution times for the UPRM image.

CHAPTER 6

Conclusion and Future Work

In this thesis we presented the parallelization of four hyperspectral imaging algo-

rithms which are representative of the algorithms used by the remote sensing community.

According to previous research on the topic, this is the first attempt to parallelized such al-

gorithms by using a computational clusters. We also presented the parallelized algorithms

behavior on two different computer architectures. Each algorithm was optimized for its

specific architecture by using optimization libraries to perform the linear algebra tasks.

The Euclidean distance classifier, maximum likelihood and Feedback Classification

Algorithm method were parallelized by changing the sequential algorithm behavior and ex-

ploiting its parallelism. The Principal Component Algorithm was parallelized using parallel

linear algebra packages since the whole algorithm is based on mathematical transformations

and there is no explicit parallelism on the operations.

6.1 Research Conclusion

1. It has been demonstrate that exhaustive search across subsets of features com-

binations is possible with reasonable execution times.

2. We have demonstrated that definitely hyperspectral imaging algorithms can

benefits from the advantages of high performance computational clusters.

3. Parallel computation can provides the capacity to handle today and future

hyperspectral imaging algorithms. Moreover three of four algorithms were scalable enough

55

56

to handle bigger spectral images in the same computational time.

4. Parallel Linear Algebra Packages such as PLAPACK, provides tremendous

abstraction from the parallelization layer. However these packages lacks the optimization

necessarily to attend current and future hyperspectral needs.

6.2 Future Work

As demonstrated some algorithms sequential implementations on Itanium 2 pro-

vides better performance than the parallel ones. It will be very interesting if we could use

this sequential algorithms to perform the same computation on different data. The results

should be fast enough but the results are very promising. Imaging that we could integrate

the sequential algorithms on a cluster scheduler environment like PBS. In this approach

we could classify different images using the same classifier at the same time. But most

interesting is the capability to classify different bands using different classifiers and then

perform some kind of data fusion to get the final results. All classifiers will work on different

bands and the result will be obtained as fast as a common classification. This approach will

provide an excellent environment to investigate ensembles of classifiers.

On the Principal Component Algorithm we want to port it to ScalaPack. Scalapack

is highly optimized library available for IA32 and IA64 and maybe we think it will provided

better results than PLAPACK.

BIBLIOGRAPHY

[1] P. Swain and S. Davis Remote Sensing: The Quantitative Approach. McGraw-Hill,

1993.

[2] A. S. Mazer, M. Martin, M. Lee, and J.E. Solomon Image processing software for

imaging spectrometry data analysis. Remote Sensing of the Environment, Vol 24, No. 1,

pp. 201-210, 1988.

[3] G. M. Petrie and P. G. Heasler Optimal Selection Strategies for Hyperspectral Data Sets.

International Geoscience and Remote Sensing Symposium, 1998.

[4] T. A. Warner and M. C. Shank. Spatial Autocorrelation Analysis of Hyperspectral Im-

agery for Feature Reduction. Remote Sensing of the Environment, Vol. 60, No. 1, pp.

58-70, 1998.

[5] M. Vélez-Reyes, L. O. Jiménez, F. Pagán, and G. Fernández. Subset Selection for the

Analysis of Hyperspectral Data. International Symposium on Spectral Sensing Research,

1998.

[6] J. C. Price. An Approach for Analysis of Reflectance Spectra. Remote Sensing of the

Environment, Vol. 64, No. 1, pp. 316-330, 1998.

[7] T. Tu, C. Chen, J. Wu, and C. Chang. A fast two-stage Classification Method for High-

Dimensional Remote Sensing Data. IEEE Transactions on Geoscience and Remote

Sensing Vol 36, No. 1, pp. 182-191, 1998.

[8] L. O. Jiménez and D. .A Landgrebe. Hyperspectral Data Analysis and Supervised Feau-

ture Reduction Via Projection Pursuit. IEEE Transactions on Geoscience and Remote

Sensing Vol 37, No. 6, pp. 2653-2667, 1999.

[9] J. C. Harsanyi and C. Chang. Hyperspectral Image Classification and Dimensional-

ity Reduction: An Orthogonal Subspace Projection Approach. IEEE Transactions on

Geoscience and Remote Sensing, Vol 32, No. 4, pp. 779-785, 1994.

[10] A. de Bruin, G.A.P. Kinderwater, and H.W.J.M. Tirienekens Towards an Abstract

Parallel Branch and Bound Machine. Report EUR-CS-95-05, Erasmus University, De-

partment of Computer Science, The Netherlands 1995.

57

58

[11] G. Baker, J. Gunnels, G. Morrow, B. Riviere, and R. van de Geijn PLAPACK : High

Performance Through High-Level Abstracton Proceedings of International Conference

on Parallel Processing pp. 414-422, 1998

[12] A. Ifarraguerri and M. W. Praire Visual Method for Spectral Band Selection IEEE

TRansactions on Geoscience and Remote Sensing, Vol 1, No. 2, pp. 101-106, 2004

[13] N. H. Younan, R. L. King, and H. H. Bennett Hyperspectral Data Analysis Using

Wavelet-Based Classifiers IEEE Proceedings of Geoscience and Remote Sensing Sym-

posium Vol. 1, pp. 390-392, 2000

[14] L. O. J́ımenez INEL 6007 : Sensores Remotos UPRM INEL 6007 Course notes,

LARSIP 2000

[15] H. Du, H. Qi, X. Wang, R. Ramanath, and W. E. Snyder Band Selection Using

Independent Component Analysis for Hyperspectral Image Procesing Proceedings of the

32nd Applied Imagery Pattern Recognition Workshop, pp. 93, October 2003

[16] M. Skinner Genetics Algorithm Overview http://geneticalgorithms.ai-

depot.com/Tutorial/Overview.html

[17] M. Alfonseca Genetic Algorithms Proceedings of the international conference on APL

pp. 1-6, 1991

[18] J. Ma, X. Zheng, Q. Tong, and L. Zheng An application of genetical algorithms on band

selection for hyperspectral image classification Procedings of the Second International

Conference on Machine Learning and Cybernetics pp 2810-2813, November 2003

[19] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K. Jain Di-

mensionality Reduction Using Genetic Algorithms IEEE Transactions on Evolutionary

Computation Vol. 4, pp. 164-171, 2000

[20] S. Hunt and D. Rivera Pattern Recognition in Hyperspectral Imagery using Feedback

Proceedings of the SPIE’s 9th international Symposium on Remote Sensing pp. 359-366,

2002

[21] J. R. Sveinsson, J. A. Benediktsson and S. B. Stefansson Classification of Event-Related

Potential Waveforms with Parallel Principal Component Neural Networks IEEE 17th

Annual Conference of Engineering in Medicine and Biology Society Vol. 1, pp. 799-800

1995

[22] L. O. J́ımenez and D. A. Landgrebe Projection Pursuit for High Dimensional Feature

Reduction: Parallel and Sequential Approaches International Geoscience and Remote

Sensing Symposium pp. 148-150, 1995.

[23] J. Shafer, R. Agrawal, and M. Mehta SPRINT : A Scalable Parallel Classifier for Data

Mining Proceedings of the 22nd Very Large Data Base Conference 1996

59

[24] M. V. Joshi, G. Karypis, and V. Kumar ScalParC : A New Scalable and Efficient

Parallel Classification Algorithm for Mining Large Datasets Proceedings of the First

Merged International Parallel Processing and Parallel and Distributed Symposium pp.

573-579, 1998

[25] L. Breiman, J.H. Friedman, R. A. Olshen, and C. J. Stone Classification and Regression

Trees Wasdworth, Belmont 1984

[26] D. I. Moldovan and C. I. Wu Parallel Processing of a Knowledge-Based Vision System

Proceedings of 1986 ACM Fall joint computer conference pp. 269-276, 1986

[27] C. Kruengkrai and C. Jaruskulchai A Parallel Learning Algorithm for Text Classifica-

tion Proceedings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining pp. 201-206, 2002

[28] H. Embrechts and D. Roose A Parallel Euclidean Distance Transformation Algorithm

Proceedings of the Fifth IEEE Symposium on Parallel and Distributed Processing pp.

216-222, 1993

[29] The Linux Cluster Information Center Computational Clusters http://lcic.org/

[30] S. M. Chai, A. Gentile, W. E. Lugo-Beauchamp, J. L. Cruz-Rivera, and D. S. Wills

Hyperspectral Image Processing Applications on the SIMD Pixel Processor for the Dig-

ital Battlefield Proceedings IEEE Workshop on Computer Vision Beyond the Visible

Spectrum : Methods and Applications pp. 130-138, 1999

[31] J. Wessels, M. Bucheit, and A. Expesset The Develoment of High Performance, High

Volume Distributed Hyperpectral Processor and Display System IEEE International Sym-

posium of Geoscience and Remote Sensing Vol 4, pp 2519-2521, 2002

[32] Hewlett Packard Company HP’s Mathematical Software Library (MLIB)

http://www.hp.com/go/mlib

[33] Intel Corporation Intel Math Kernel Library Reference Manual

ftp://download.intel.com/software/products/mkl/docs/mklman.pdf

[34] The MathWorks MATLAB and Simulink for Technical Computing

http://www.mathworks.com

[35] G. Burns, R. Daoud, and J. Vaigl LAM : An open cluster environment for MPI

Proceedings of Supercomputing Symposium pp. 379-386, 1994

[36] W. Groop and E. Lusk The MPI communication library : its design and a portable

implementation Proceedings of the Scalable and Parallel Libraries Conferences pp. 160-

165, 1993

60

[37] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh Basic Linear Algebra

Subprograms for FORTRAN Usage ACM Transactions on Mathematical Software Vol.

5, No. 3, pp. 308-323, 1979

[38] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson An extended set of FOR-

TRAN basic linear algebra subprograms ACM Transactions on Mathematical Software

Vol. 14, No. 1, pp. 1-17, 1988

[39] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff A set of level 3 basic linear

algebra subprograms ACM Transactions on Mathematical Software Vol. 16, No. 1, pp.

1-17, 1990

[40] S. Filippone and M. Colajanni PSBLAS: A Library for Parallel Linear Algebra Com-

putation on Sparse Matrices ACM Transactions on Mathematical Software Vol. 26, No.

4, pp. 527-550, 2000

[41] J. Choi, J. Demmel, I. Dhillon, J. J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley,

D. W. Walker, and R. C. Whaley. ScaLAPACK: A portable linar algebra library for dis-

tributed memory computers - design issues and performance Proceedings of the seconds

international workshop on Applied Parallel Computing pp. 95-106, 1995

[42] GCC: The GNU C Compiler GCC: The GNU C Compiler Home Page

http://www.gnu.org/software/gcc/

[43] GDB: The GNU Project Debugger GDB: The GNU Project Debugger Home Page

http://www.gnu.org/software/gdb/

[44] S. Graham, P. Kessler, and M. McKusick gprof: A call Graph Execution Profiler

Proceedings of the Symposium on Compiler Construction Vol. 17, No. 6, pp. 120-126,

1982

[45] The Memcheck Deluxe Memory Tracking Program The MemCheckDeluxe Home Page

http://prj.softpixel.com/mcd/

APPENDICES

61

APPENDIX A

IA32 Setup Environment

In this section we described in detailed how to setup the IA32 development envi-

ronment. Since optimizations libraries were used, the reader should handle the installation

of these libraries as documented below. If this procedure is follow the developer could

simply start building the application suite without any modification to the makefile.

First of all you noticed on section 4.3 that we have one makefile for each architec-

ture. Since we are using different optimizations libraries and different compilers for each

architecture, each makefile contain different linking libraries and compiler options. Once the

code is downloaded from the repository a symbolic link should be made to the proper Make-

file architecture (ln -s Makefile.arch Makefile). Below are the instructions for the library

installations.

A.1 Installing Intel MKL Library

The Intel Math Kernel Library is obtained from the Intel web site at

http://www.intel.com/software/products/mkl/. This library is not free and it needs a li-

cense before it could be installed. However Intel provides a non-commercial license for those

who qualify. In order to qualify for a non commercial license the following criteria should

be satisfy: I should be used for personal non-commercial purposes and there is no support

associated with the software.

Once the license is in place, the Math Kernel Library can be installed. Is very

62

63

important that the library is installed on all nodes in the computational cluster, so each

node should have a license. Another important step is to install the libraries on the default

directory (/opt/intel).

A.2 Installing LAM

In order to use the Message Passing Library (MPI) the LAM package should be

installed. On some systems the MPICH package is already installed, since there could be

problems by using both packages our recommendation is to uninstall mpich and install

LAM. I think the MPICH package could work, but I haven’t tested it. So to be sure I

recommend installing LAM.

A.3 Installing PLAPACK

The Parallel Linear Algebra PACKage (PLAPACK) could be obtained from

http://www.cs.utexas.edu/users/plapack/. The package should be decompressed on the

$HOME of the account that will be running the programs. Once the file is decompressed

and the $HOME/PLAPACKR30/ has been created we need to replace the Make.include

file. We need to copy the file Make.includes/Make.include.linux to Make.include on the

PLAPACKR30 directory. Once the file is in place we need to change the BLASLIB and

SEQ LAPACK variables to the following:

BLASLIB = /opt/intel/mkl70/lib/32/libmkl_p3.so\

/opt/intel/mkl70/lib/32/libguide.a

SEQ_LAPACK = /opt/intel/mkl70/lib/32/libmkl_lapack.a

After that the Make.include files points to the proper libraries we can then compile

the PLAPACK library by using the make command. Since the library will be located on

the users HOME directory and we are assuming a shared storage across the nodes, there is

no need to install the library on all the nodes.

64

A.4 Updating Library Path

In order the Math Kernel Libraries could be used at runtime, these libraries should

be added to the global library search path. This is done by adding the /opt/intel/mkl70/lib/32

path to the /etc/ld.so.conf file, then the ldconfig command. This has to to be performed

on all the nodes.

APPENDIX B

IA64 Setup Environment

In this section we described in detailed how to setup the IA64 development envi-

ronment. Since optimizations libraries were used, the reader should handle the installation

of these libraries as documented below. If this procedure is follow the developer could

simply start building the application suite without any modification to the makefile.

First of all you noticed on section 4.3 that we have one makefile for each architec-

ture. Since we are using different optimizations libraries and different compilers for each

architecture, each makefile contain different linking libraries and compiler options. Once the

code is downloaded from the repository a symbolic link should be made to the proper Make-

file architecture (ln -s Makefile.arch Makefile). Below are the instructions for the library

installations.

B.1 Installing HP-MLIB Library

The HP Mathematical Library is obtained from the HP web site at

http://www.hp.com/go/mlib/. The library could be installed without a license but there

is a performance penalty if it used without a license. All of the execution times presented

on this thesis were gathered using the non-license version of the libraries.

The HP MLIB compressed file contains different RPMS for the different libraries.

The only ones needed are the LAPACK and VECLIB ones. However it does not affect to

install them all.

65

66

B.2 Installing Intel Fortran Compiler

The HP MLIB were compiled using the Intel Fortran Compiler. Thus it needs

some of the compilers libraries in order to resolve all symbols.

The Intel Fortran Compiler is obtained from the Intel web site at

http://www.intel.com/software/products/compilers/flin/. This compiler is not free and it

needs a license before it could be installed. However Intel provides a non-commercial license

for those who qualify. In order to qualify for a non commercial license the following criteria

should be satisfy: I should be used for personal non-commercial purposes and there is no

support associated with the software.

Once the license is in place, the Fortran Compiler can be installed. Is very impor-

tant that the library is installed on all nodes in the computational cluster, so each node

should have a license. Another important step is to install the compiler on the default

directory (/opt/intel).

B.3 Installing LAM

In order to use the Message Passing Library (MPI) the LAM package should be

installed. On some systems the MPICH package is already installed, since there could be

problems by using both packages our recommendation is to uninstall mpich and install

LAM. I think the MPICH package could work, but I haven’t tested it. So to be sure I

recommend installing LAM.

B.4 Installing PLAPACK

The Parallel Linear Algebra PACKage (PLAPACK) could be obtained from

http://www.cs.utexas.edu/users/plapack/. The package should be decompressed on the

$HOME of the account that will be running the programs. Once the file is decompressed

and the $HOME/PLAPACKR30/ has been created we need to replace the Make.include

file. We need to copy the file Make.includes/Make.include.linux to Make.include on the

67

PLAPACKR30 directory. Once the file is in place we need to change the BLASLIB and

SEQ LAPACK variables to the following:

BLASLIB = /opt/mlib/lib/linux/libveclib.a

SEQ_LAPACK = /opt/mlib/lib/linux/liblapack.a

After that the Make.include files points to the proper libraries we can then compile

the PLAPACK library by using the make command. Since the library will be located on

the users HOME directory and we are assuming a shared storage across the nodes, there is

no need to install the library on all the nodes.

B.5 Updating Library Path

In order the Math Kernel Libraries could be used at runtime, these libraries

should be added to the global library search path. This is done by adding following paths:

/opt/intel/lib

/opt/mlib/lib/linux

/opt/intel/compiler70/ia64/lib

After the entries have been added the ldconfig command should be executed. This has

to to be performed on all the nodes.

