Ligand Displacement Reactions of *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ (M = Mo, Cr, and W)

By

Griseida Galloza-Rivera

A thesis submitted in partial fulfillment of the requirements for the degree of

Master in Science in Chemistry

University of Puerto Rico Mayagüez Campus 2009

Approved by:

José E. Cortés-Figueroa, PhD President, Graduate Committee

Nairmen Mina, PhD Member, Graduate Committee

Jorge Ríos-Steiner, PhD Member, Graduate Committee

Jaime E. Ramirez-Vick Graduate Studies Representative

Francis Patrón, PhD Director, Chemistry Department Date

Date

Date

Date

Date

Abstract

A mechanistic description of the ligand exchange reactions of fac-(2 -C₆₀)(2 -phen)M(CO)₃ (M = Cr, W and Mo); phen = 1,10-phenanthroline) will be presented in this work.

The Lewis bases (L) piperidine (pip), triphenyl phosphine (PPh₃) and tricyclohexyl phosphine (P(Cy)₃) displace [60]fullerene (C₆₀) from *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ to produce *fac*-(2 -phen)(1 -L)M(CO)₃ and *fac*-(1 -L)₃M(CO)₃, depending on M. The progress of the reactions were followed by observing the change of absorbance values at various wavelengths, depending on M and entering ligand (L). The reactions were also monitored by observing the stretching carbonyl region from 1700 to 2100cm⁻¹ to establish the nature of non-steady-state intermediate species and products.

The reactions of *fac*-(2 -phen)(2 -C₆₀)W(CO)₃ produced *fac*-(2 -phen)(1 -L)W(CO)₃ as the only product. For M = Mo, the formation of *fac*-(2 -phen)(1 -L)Mo(CO)₃ was followed by thermal decomposition. For, M = Cr, the formation of *fac*-(2 -phen)(1 -L)Cr(CO)₃ was followed displacement of phen producing *fac*-(1 -L)₃Cr(CO)₃.

The reactions of *fac*-(²-phen)(²-C₆₀)Cr(CO)₃ were biphasic depending on L. For example, plots of absorbance vs. time were biexponential for reactions under conditions where [L] >> [*fac*-(²-C₆₀)(²-phen)Cr(CO)₃]. The plots of absorbance vs. time consisted of two consecutive segments. The first segment (increasing) of the plot was assigned to step-wise additions of piperidine to uncoordinated C₆₀. The second segment (decreasing) was ascribed to solvent-assisted displacement of C₆₀ from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃. The observation of an experimentally-accessible isokinetic temperature suggests that the seemingly different mechanistic path for the systems investigated is actually limiting cases of the general mechanism that will be presented.

Resumen

En este trabajo se presentará una descripción mecanística de las reacciones de intercambio de ligando en *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ (M = Cr, W and Mo); phen = 1,10-fenantrolina). Las bases de Lewis (L) piperidina (pip), trifenil fosfina (PPh₃) y Triciclohexil fosfina (P(Cy)₃) desplazan a [60] fullereno (C₆₀) de *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ produciendo: *fac*-(2 -phen)(1 -L)M(CO)₃ and *fac*-(1 -L)₃M(CO)₃, dependiendo del metal.

Los progresos de reacción fueron monitoreado observando el cambio en los valores de absorbancia en varios longitudes de onda, dependiendo del metal y del ligando (L) entrante. Para establecer la naturaleza del estado no estacionario de la especie intermediaria y de los productos, las reacciones fueron monitoreadas observando la región carbonílica desde 1700 a 2100cm⁻¹. Las reacciones de fac-(²-phen)(²-C₆₀)W(CO)₃ producen fac-(²-phen)(¹-L)W(CO)₃ como único producto. Para M = Mo, la formación de $fac-(^{2}-phen)(^{1}-L)Mo(CO)_{3}$ fue seguida por descomposición térmica. Para, M = Cr, la formación de fac-(²-phen)(¹-L)Cr(CO)₃ fue seguido por el desplazamiento de fenantrolina, siendo el producto de reacción fac-(¹-L)₃Cr(CO)₃. Por ejemplo, las graficas de absorbancia vs tiempo fueron biexponencial bajo condiciones en donde $[pip] >> [fac-(^{2}-C_{60})(^{2}-Phen)Cr(CO)_{3}]$. Las graficas de absorbancia vs tiempo consisten de dos segmentos consecutivos. El primer segmento (aumento) de la grafica se asignó a la reacción de piperidina con el fullereno (C_{60}) que se encuentra sin coordinar. El segundo segmento (la disminución) se atribuye al desplazamiento asistido por el disolvente de C_{60} de *fac*-(²- C_{60})(²phen)Cr(CO)₃. La observación de una temperatura isocinética, experimentalmente accesible, sugiere que el mecanismo de reacción para los sistemas investigados son en realidad casos limites del mecanismo general que se presentará.

Acknowledgements

There are several people that love, help, and support me. These people were the source of my inspiration throughout my life, but more importantly during the past years when I was acquiring my master's degree. First of all, my family: my father: Héctor E. Galloza; my mother: Rosa N. Rivera; my sisters: Suhein D. Galloza-Rivera, Briseida Galloza-Rivera and my brother: Héctor E. Galloza-Rivera.

I would like to express my gratitude toward my laboratory partners and friends who were there whenever I needed. Specials thanks to: Yahaira López, Marissa Morales and Cynthia Capella, for the great time we spent together and also to Carlos A. Rivera-Rivera for all the support and quality time he gave me during all these years.

Acknowledgement is made to Dr. José E. Cortés-Figueroa, the experimental assistance of Elvin Igartúa-Nieves are acknowledged and last but not least thank you to the member of my committee: Dr. Nairmen Mina and Dr. Jorge Ríos-Steiner for their collaboration.

© 2009 Griseida Galloza-Rivera

to my Family

Table of Contents

Contents	Page
Abstract	ii
Resumen	iii
Acknowledgements	vi
Table list	ix
Figure List	х
Chapter 1: Introduction	1
1.1- Objectives	3
Chapter II: Previous Work	4
Chapter III: Displacement of C_{60} from <i>fac</i> -(² - C_{60})(² -phen)Cr(CO) ₃	7
3.1: Materials and Methodology	7
3.1.1- General	7
3.1.2- Preparation of the starting material (2 -phen)Cr(CO) ₄	8
3.1.3- Preparation of <i>fac</i> -(2 -C ₆₀)(2 -phen)Cr(CO) ₃	11
3.1.4- Preparation of the product (1 -pip) ₃ Cr(CO) ₃ using (2 -phen)Cr(CO) ₄	14
3.1.5- Preparation of the product $(^{1}-pip)_{3}Cr(CO)_{3}$ using $fac-(^{2}-C_{60})(^{2}-phen)Cr(CO)_{3}$	16
3.2: Kinetic Studies of <i>fac</i> -(2 -pip)(2 -phen)Cr(CO) ₃	17
3.2.1- Kinetic of <i>fac</i> -(2 -C ₆₀)(2 -phen)Cr(CO) ₃ with Piperidine in chlorobenzene	17
3.2.2- Kinetic of <i>fac</i> -(2 -C ₆₀)(2 -phen)Cr(CO) ₃ with triphenylphosphine in chlorobenzene	17
3.2.3- Kinetic of <i>fac</i> -(2 -C ₆₀)(2 -phen)Cr(CO) ₃ with tricyclehexylphosphine in toluene	17
3.2.4- Kinetic of <i>fac</i> -(2 -C ₆₀)(2 -phen)Cr(CO) ₃ with triphenylphosphine in benzene	17

3.3: Data Analysis	18
3.3.1- Kinetic data for the displacement of C_{60} from <i>fac</i> -(² -C ₆₀)(² -phen)Cr(CO) ₃ by PPh ₃	18
3.3.2- Kinetic data for the displacement of C_{60} from <i>fac</i> -(² -C ₆₀)(² -phen)Cr(CO) ₃ by piperidine	19
3.3.3- Eyring Plots	20
3.4: Results	21
3.4.1- Displacement of C_{60} from <i>fac</i> -(² - C_{60})(² -phen)Cr(CO) ₃ by piperidine	21
3.4.2- Displacements of C_{60} from <i>fac</i> -(² - C_{60})(² -phen)Cr(CO) ₃ by PPh ₃ and P(Cy) ₃	26
3.5: Discussion	33
Chapter IV: Ligand displacement reactions of <i>fac</i> -(2 -C ₆₀)(2 -phen)M(CO) ₃ (M = W, Mo and Cr)	37
4.1 - Materials and Methodology	37
4.1.1- General	37
4.1.2- Preparation of <i>fac</i> -(2 -C ₆₀)(2 -phen)Mo(CO) ₃	41
4.1.3- Preparation of <i>fac</i> -(2 -C ₆₀)(2 -phen)W(CO) ₃	42
4.2- Data Analysis	43
4.3- Results	45
4.4- Discussion	48
Chapter V: Conclusion and future works	51
5.1- Conclusion	51
5.2- Future works	53
Reference	54
Appendix	57

Table List

Table	Page
3.1 Average rate constant values of k_{obsd1} and k_{obsd2} for C_{60} displacement from	23
<i>fac</i> -(2 -C ₆₀)(2 phen)Cr(CO) ₃ by Piperidine (pip) in chlorbenzene	
3.2 Activation parameter values for the dissociation of C_{60} from	25
<i>fac</i> -(2 -C ₆₀)(2 phen)Cr(CO) ₃ by Piperidine (pip) in chlorbenzene	
3.3 Average rate constant values of k_{obsd} for C_{60} displacement from	28
<i>fac</i> -(2 -C ₆₀)(2 phen)Cr(CO) ₃ by tri-phenylphosphine (PPh ₃) in chlorbenzene	
3.4 Rate constant values of k_{obsd} for the displacement of C_{60} from	29
<i>fac</i> -(2 -C ₆₀)(2 phen)Cr(CO) ₃ by triphenylphosphine and tricyclehexylphosphine in	
chlorobenzene at various [L] and $[C_{60}]/[L]$	
3.5 Activation Parameters for the dissociation of C_{60} from	32
<i>fac</i> -(2 -C ₆₀)(2 -phen)Cr(CO) ₃ by PPh ₃ in chlorobenzene, benzene and toluene.	
4.1 Half-wave potentials (E ¹ / ₂) of the <i>fac</i> -(2 -C ₆₀)M(CO) ₃ complexes (M = Cr, Mo, W)	47
and C_{60} in dichloromethane at room temperature*.	

Figure List

Figure	
2.1 Schematic representation for reactions of C_{60} with piperidine to produce tetra(pip)-fullerene epoxide.	4
2.2 Schematic representation for reactions of C_{60} from $Cr(CO)_5(C_{60})$ by piperidine.	5
2.3 Proposed mechanisms for C_{60} displacement from <i>fac</i> -(2 - C_{60})(2 -phen)W(CO) ₃ . Path A describes	6
a solvent-assisted displacement of C ₆₀ , whereas path B describes a dissociative displacement.	
I_A and I_B are steady-state intermediates. TS_1 and TS_2 are plausible transition states.	
3.1 Schematic Representation of the equipment used for the thermal preparation of (2 -phen)Cr(CO) ₄	9
3.2 Infrared Spectrum in the carboxylic region of $Cr(CO)_6$ in toluene	10
3.3 Infrared Spectrum in the carbonyl region of $(^{2}$ -phen $)Cr(CO)_{4}$ in toluene	10
3.4 Schematic Representation of the photochemical preparation of fac -(2 -C ₆₀)(2 -phen) ₃ Cr(CO) ₃	12
3.5 Infrared Spectrum in the Carbonyl region of fac -(² -C ₆₀)(² -phen)Cr(CO) ₃ in toluene	13
3.6 Infrared Spectrum in the Carbonyl region of the intermediate fac -(1 -pip)(2 -phen)Cr(CO) ₃ in toluene	14
3.7 Infrared Spectrum in the Carbonyl region of the product $(^{1}-pip)_{3}Cr(CO)_{3}$ in toluene	15
3.8 Infrared Spectrum in the Carbonyl region of the product $(^{1}-pip)_{3}Cr(CO)_{3}$ in toluene	16
3.9 Schematic representation of the displacement of C_{60} from <i>fac</i> -(² -C ₆₀)(² -phen)Cr(CO) ₃ by piperidine.	21
3.10 Plot of Absorbance (407 nm) vs. time (s) for C_{60} displacement from <i>fac</i> -(2 -C ₆₀)(2 -phen)Cr(CO) ₃	22
by piperidine in chlorobenzene to form $(^{1}-pip)_{3}Cr(CO)_{3}$ at 313.2 K under flooding conditions.	
3.11 Plot of k_{obsd2} versus [pip] for the reaction of <i>fac</i> -(2 -C ₆₀)(2 phen)Cr(CO) ₃ with piperidine	24
in chlorobenzene at 313.2 K	
3.12 Eyring plot of $\ln(k_{obsd}/T)$ vs. 1/T for C ₆₀ displacement from (2 -C ₆₀)(2 -phen)Cr(CO) ₃ by piperidine	24
in chlorobenzene.	
3.13 Plot of Absorbance (500 nm) vs. time (s) for C_{60} displacement from (2 - C_{60})(2 -phen)Cr(CO) ₃	27
by P(Cy) ₃ in chlorobenzene at 313.2K	
3.14 Plot of k_{obsd} versus Ratio of $[C_{60}]/[PPh3]$ (mol/L) for the reaction of <i>fac</i> -(² -C ₆₀)(² phen)Cr(CO) ₃	27
with [C ₆₀]/[PPh3] at 313.2 K and 500nm	

3.15	Plot of k_{obsd} versus Ratio of $[C_{60}]/[P(Cy)_3]$ (mol/L) for the reaction of <i>fac</i> -(² -C ₆₀)(² phen)Cr(CO) ₃	30
	with [C ₆₀]/[P(Cy) ₃] at 313.2 K and 500nm	
3.16	Eyring plot of $\ln(k_{obsd2}/T)$ vs. 1/T for C ₆₀ displacement from <i>fac</i> -(² -C ₆₀)(² phen)Cr(CO) ₃ by piperidine	30
	in chlorobenzene. The k_{obsd2} values were obtained under flooding conditions where	
	$[pip] >> [fac-(^{2}-C_{60})(^{2}-phen)Cr(CO)_{3}].$	
3.17	Eyring plot of $\ln(k_{obsd}/T)$ vs. 1/T for C ₆₀ dissociation from <i>fac</i> -(² -C ₆₀)(² -phen)Cr(CO) ₃	31
	in chlorobenzene by tri-phenylphospine. The k_{obsd} values were obtained under flooding conditions where	
	$[PPh_3] >> [fac-(^2-C_{60})(^2-phen)Cr(CO)_3].$	
3.18	Eyring plot of $\ln(k_{obsd}/T)$ vs. 1/T for C ₆₀ dissociation from <i>fac</i> -(² -C ₆₀)(² -phen)Cr(CO) ₃	31
	in benzene by tri-phenylphosphine. The k_{obsd} values were obtained under flooding conditions where	
	$[PPh_3] >> [fac-(^2-C_{60})(^2-phen)Cr(CO)_3].$	
3.19	Eyring plot of $\ln(k_{obsd}/T)$ vs. 1/T for C ₆₀ dissociation from <i>fac</i> -(² -C ₆₀)(² -phen)Cr(CO) ₃	32
	in toluene by tri-phenylphosphine. The k_{obsd} values were obtained under flooding conditions where	
	$[PPh_3] >> [fac-(^2-C_{60})(^2-phen)Cr(CO)_3].$	
3.20	Proposed mechanisms for C_{60} displacement from <i>fac</i> -(² -C ₆₀)(² -phen)Cr(CO) ₃ . The mechanism	34
	describes a solvent assisted displacement of C_{60} . I_A and I_B are steady-state intermediates. TS_A and TS_B	
	are plausible transition states.	
3.21	Eyring plots of $\ln(k_{obsd}/T)$ vs. 1/T for C ₆₀ dissociation from <i>fac</i> -(² -C ₆₀)(² -phen)Cr(CO) ₃	36
	in chlorobenzene, benzene and toluene by tri-phenylphosphine.	
4.1	Schematic representation of the vacuum line used to transfer and mix reagents in electrochemical runs.	39
4.2	Schematic representation of the Electrochemical cell with a three-electrode configuration used for	40
	electrochemical runs.	
4.3	Cyclic voltammetric responses recorded at a glassy carbon working electrode on dichloromethane	43
	solution containing , 0.1 M TBPF6, <i>fac-</i> (2 -C ₆₀) (2 -phen)Cr(CO) ₃ (saturated solution), and traces	
	of decamethylferrocene (Fc) scan rate 100 mV/s.	
4.4	Cyclic voltammetric responses recorded at a glassy carbon working electrode on dichloromethane	46
	solution containing, 0.1 M TBPF6, <i>fac-</i> (2 -C ₆₀))(2 -phen)Cr(CO) ₃ (saturated solution), and traces	

xi

of decamethylferrocene (Fc) scan rate 100 mV/s.

4.5	Cyclic voltammetric responses recorded at a glassy carbon working electrode on dichloromethane	
	solution containing, 0.1 M TBPF6, <i>fac</i> -(2 -C ₆₀))(2 -phen)Mo(CO) ₃ (saturated solution), and traces	
	of decamethylferrocene (Fc) scan rate 100 mV/s.	
4.6	Cyclic voltammetric responses recorded at a glassy carbon working electrode on dichloromethane	47
	solution containing, 0.1 M TBPF6, <i>fac</i> -(2 -C ₆₀)(2 -phen) W(CO) ₃ (saturated solution), and traces	
	of decamethylferrocene (Fc) scan rate 100 mV/s.	
4.7	Plots of ln (k/T) vs. 1/T showing the isokinetic region for the solvent-assisted C_{60}	49
	displacement from <i>fac</i> -(2 -C ₆₀)(2 - phen)Mo(CO) ₃ in chlorobenzene	
4.8	Plots of $ln(k_{obsd}/T)$ versus $1/T$ in Toluene, Benzene and Chlorobenzene for the complexes	50
	<i>fac</i> -(2 -C ₆₀)(2 phen)M(CO) ₃ (were M = Cr, W and Mo)	

Chapter I

Introduction

In 1985, Harold Kroto, James R. Heath, Sean O'Brien, Robert Curl, and Richard Smalley, discovered C_{60} ; shortly thereafter, they discovered the fullerenes, the third allotropic form of carbon¹. Fullerenes are spherical molecules containing an arrangement of five- and six-member carbon atom rings¹. The most common fullerenes contain an array of 60 or 70 carbon atoms. Some of the fullerenes properties include high cohesive force, high hydrophobicity, high compressibility, hardness, heat resistance and superconductivity, photo-activity, ability to accept and release electrons, and relatively high reactivity that allows structural modifications.^{1,5}

Fullerenes are slightly soluble in many solvents. [60] Fullerene (C_{60}) is the only known allotrope of carbon that can be dissolved in common solvents at room temperature.⁶ Toluene, benzene, carbon disulfide, ethanol, and 1-chloronaphthalene are the most common solvents used. For example, C_{60} solubility at room temperature ranges from 0.001 mg / mL in ethanol and up to 51 mg / mL in 1-chloronaphthalene.⁶

The solubilization of fullerenes in water has been investigated extensively, since their applicability was limited due to the poor solubility in polar solvents.⁷ C_{60} has been solubilized in water combined with -cyclodextrin, -cyclodextrin, polyvinylpyrrolidone, and fluoroalkyl oligomer. [60] Fullerene can also solubilize in water by connecting it with functional chargeable groups such as carboxylic acids or amines, or by adding polarizable phenyl groups to C_{60} to stabilize its anion⁸.

Over the past few years, several studies showed that [60] fullerene derivatives can be used as biologically active compounds in medicinal chemistry⁹. They have attracted much attention for their unique cage-like shape and biological activities such as HIV-1 protease inhibition. Fullerenes were under study for potential medicinal use, such as binding specific antibiotics to its structure and even target certain cancer cells⁵. Likewise, studies of [60] fullerenes as light-activated antimicrobial agents⁵ and as free-radical sponges¹¹ have been reported. These properties have made C_{60} an extensive area of study in the field of nanotechnology.⁵

There is a variety of organometallic complexes functionalized with C_{60} . [60] Fullerene can be coordinated to organometallic complexes because it has a high electron affinity¹² and can participate in -back bonding with transition metals¹². [60] Fullerene coordinates transition metals in a dihapto (²) mode resembling an olefinic-metal mode of coordination.¹³ An example of these complexes are: *fac*-(²-phen)(²-C₆₀)W(CO)₃¹⁴ and *fac*-(²-phen)(²-C₆₀)Mo(CO)₃¹⁵. The functionalization of C₆₀ is also of interest in organometallic catalysis. [60] Fullerene has the potential to modify and enhance the catalytic capacity of existing organometallic catalysts because it can labilize, coordinated ligands bonds and stabilize electron rich transition states or intermediate species involved in the complexes ligand exchange reactions.¹⁶⁻¹⁷

This work presents the kinetic and mechanistic studies on the dissociation of C_{60} from *fac*-(²-phen)(²-C₆₀)Cr(CO)₃, and also establishes a relationship on the profile of the complexes *fac*-(²-phen)(²-C₆₀)M(CO)₃ (M = W, Mo and Cr).

1.1 Objectives

To establish a relationship between the electronic structure, molecular structure and the reactivity of fullerenemetal complexes of *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ (M = Cr, W, Mo), the electrochemical profile of [60] fullerenemetal carbonyl complexes needs to be studied. Similarly, the mechanistic pathway of *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ kinetics needs to be studied, as well. The kinetics and mechanistic pathway of *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ reactions (M = W, Mo) were previously reported in our research group.^{14,15} This will contribute to our efforts in obtain further comprehension on these systems.

Specific Project Objectives

- 1. To prepare and characterize the complex fac-(²-C₆₀)(²-phen)Cr(CO)₃
- 2. To establish the mechanism of the C_{60}/L exchange reactions on *fac*-(²-C₆₀)(²-phen)Cr(CO)₃
- 3. To measure the half-wave potential values $(E_{1/2})$ of *fac*- $(^2-C_{60})(^2-phen)M(CO)_3$ (M = Cr, W, Mo) complexes and compare these values with the corresponding values for the uncoordinated C₆₀.
- 4. To study the electronic profile and obtain electronic structure information of *fac*-(2 -C₆₀)(2 -phen)
 - $M(CO)_3$ (M = Cr, W, Mo) using electrochemical properties.

Chapter II

Previous Work

Since their discovery in the middle 1980s, fullerenes have been of great interest because of their unique structure and properties¹. It was then realized that C_{60} was also unique among the experimentally available fullerenes because of its high symmetry and stability¹.

Previous investigations have demonstrated that a secondary amine undergoes multiple additions to C_{60} , under photochemical conditions in an aerobic environment to produce tetra (amino)- fullerene epoxide.³ The reaction of C_{60} and piperidine (pip) was previously reported.^{18,27} The reaction product is a tetra (pip)fullerene epoxide, presented in figure 2.1. The rate of the epoxide appearance was monitored by observing an increase in absorbance at 407 nm (Figure 2.2). The reactions were studied under flooding conditions and the rate constants values were dependent of the concentration of piperidine.^{18,27}

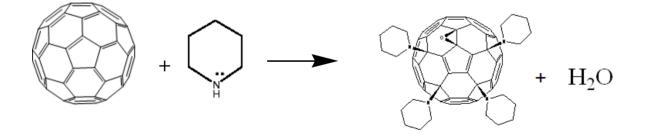


Figure 2.1 Schematic representation for reactions of C_{60} with piperidine to produce tetra(pip)-fullerene epoxide¹⁸.

The coordination behavior of fullerenes was first reported by Fagan *et al.*, who crystallographically established the ²-bonding mode for [60] fullerene in [Pt(²-C₆₀)(PPh₃)₂] and [{M(PEt₃)₂}₆(²-C₆₀)] (M = Pd or Pt). Since then, several works reported this type of fullerene to metal coordination, for a range of transition metals.² Organometallic derivative complexes such as (²-chelate)(²-C₆₀)M(CO)_{5-2n} (M = Cr, Mo, W)^{14-15,19-20} are another example of ²-bonding mode for [60] fullerene. For instance, displacement reactions of C₆₀ from (²-C₆₀)Cr(CO)₅ (n = 0) by piperidine (pip) producing (¹-pip)Cr(CO)₅ (figure 2.2) has also been described²⁷. For these reactions, plots of absorbance versus time consist of three segments: the first decreasing segment of the plot was ascribed to the displacement of C₆₀ from the parent complex, whereas the second and third increasing segments were assigned to stepwise additions of piperidine to uncoordinated C₆₀.^{18,20,27}

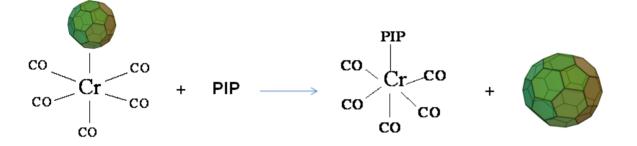
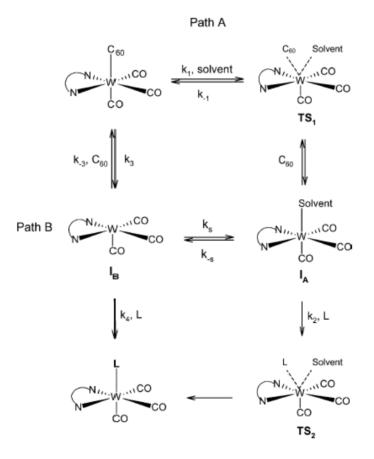



Figure 2.2 Schematic representation for displacement reactions of C_{60} from $Cr(CO)_5(C_{60})$ through piperidine.

The displacement reaction of C_{60} from organometallic complexes such as *fac*-(²-C₆₀)(²-phen)W(CO)₃ (n = 1) with triphenyl phosphine (PPh₃) and tricyclohexyl phosphine (P(Cy)₃) can be obtained through a dissociative or an associative mechanistic pathway. Figure 2.3 presents both mechanisms: Path A involves an initial solvent assisted dissociation of C_{60} , while Path B describes a dissociative displacement.

Figure 2.3 Proposed mechanisms for C_{60} displacement from *fac-*(2 - C_{60})(2 -phen)W(CO)₃. Path A describes a solvent-assisted displacement of C_{60} , Path B describes a dissociative displacement. I_A and I_B are steady-state intermediates. TS₁ and TS₂ are plausible transition states¹⁴

The preferred dihapto (2) mode of coordination of C₆₀ is due in part to its electronic structure, when the three-degenerated LUMOs are directed away from each other on the spherical surface of [60] fullerene. Comparison of the electrochemical profile of uncoordinated [60] fullerene with the corresponding profile of C₆₀-metal complexes permits assessment on the electron donor/acceptor capacity of [60] fullerene.² These [60] fullerene properties open a door in its use to design new inorganic catalysts and/or to modify precursors of existing ones.

Chapter III

Displacement of C_{60} from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ by L (L = pip, PPh₃ and P(Cy)₃

3.1 Materials and Methodology

3.1.1 General

Benzene, toluene and chlorobenzene were dried over phosphorous pentoxide and fractionally distilled under nitrogen. All reactions were performed on nitrogen atmosphere to avoid oxidation of reagents. Infrared spectra were performed with Bruker Vector 22TM Fourier transform, infrared spectrophotometer and a KBr cell of 0.10 mm light path was used for IR measurements. Concepts of group theory and symmetry were applied to predict the number of active IR bands in the CO stretching region (CO).

UV/VIS spectra were obtained using a Perkin Elmer UV-Visible Lambda 25^{TM} spectrophotometer. In order to determine radiation wavelength, (when L= PPh₃ and P(Cy)₃) where the reaction was monitored, a UV/VIS scan was performed to a solution with the complex *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ and the reacting ligands. The reactions progress was monitored until a significant change in absorbance was observed and this significant change occurred at 500 nm for L = PPh₃ and P(Cy)₃). Temperature was controlled using a Julabo F-12TM constant temperature bath, which consists of an EC model heating and refrigerating circulator and a K/J Fluke digital thermometer equipped with a bead thermocouple.

The rate constant values were determined from the plots of absorbance versus time using a non-linear regression computer program (OriginPro 7.5TM). The error limits of the rate constant values are given in parenthesis as the uncertainties of the last digit of the reported value and these are within one standard deviation.

3.1.2 Preparation of (²-phen)Cr(CO)₄

The complex (2 -phen)Cr(CO)₄ was prepared thermally (figure 3.1) following a modified published procedure.⁴⁰ In a three-necked 100 mL round bottomed flask, equipped with a magnetic stirring bar, a condenser and a nitrogen inlet, 0.32773 g (0.149 mmol) of chromium hexacarbonyl (figure 3.2) and 0.25047 g (0.728 mmol) of 1,10-phenantroline were dissolved in 15 mL of toluene and heated under nitrogen for approximately four hours. The progress of the reaction was monitored by observing the decrease of the CO band intensity at 1982 cm⁻¹ of chromium hexacarbonyl and the growth of the (2 -phen)Cr(CO)₄ CO bands intensities. The resulting reddish-brown product and solvent was purged with nitrogen and the product was characterized as (2 -phen)Cr(CO)₄ from its CO absorbencies in toluene, (CO, cm⁻¹): 2007, 1898, 1890, and 1842 (figure 3.3).

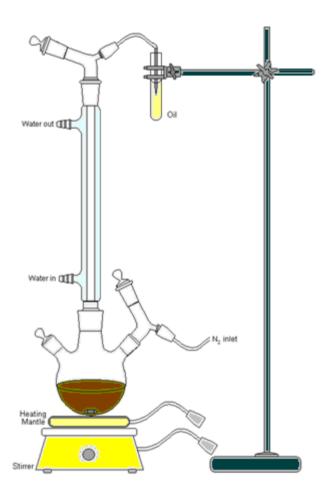
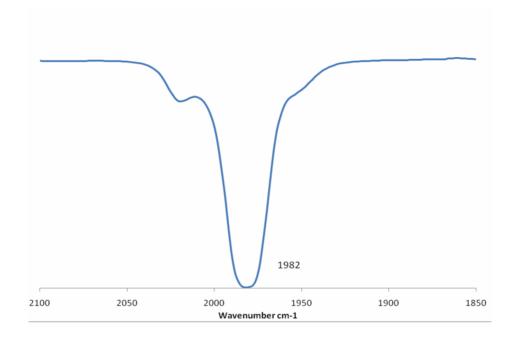
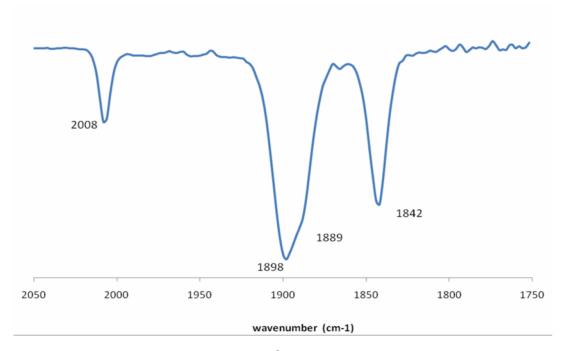
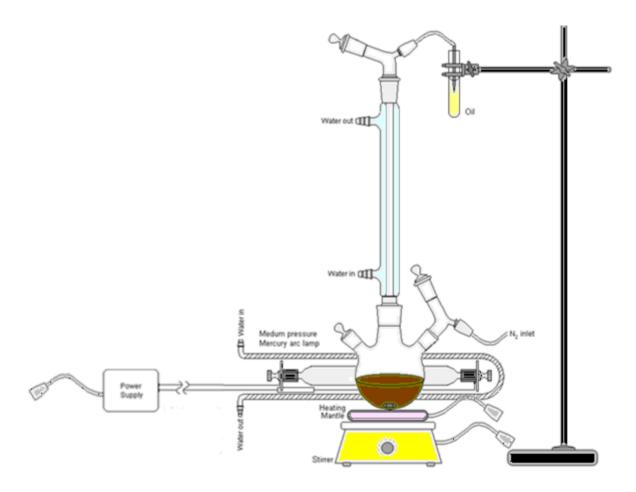
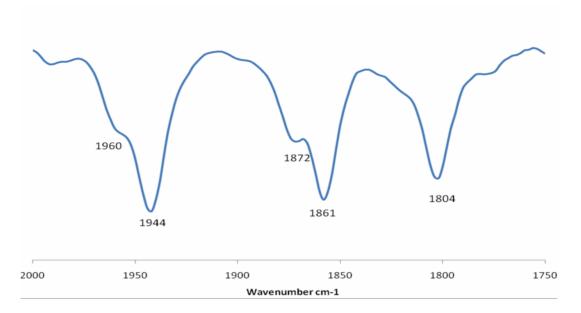


Figure 3.1 Schematic Representation of the equipment used for the thermal preparation of (²-phen)Cr(CO)₄.¹⁸

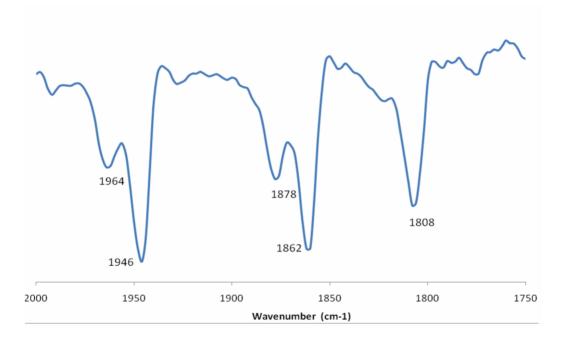



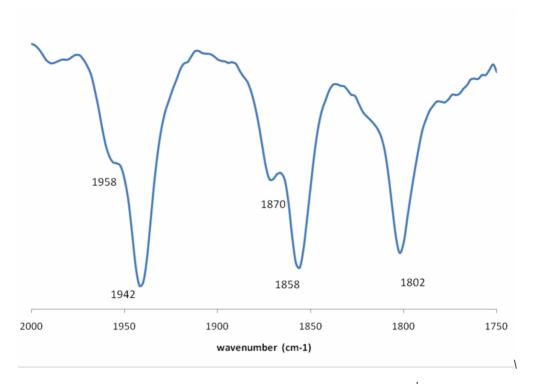

Figure 3.2 Infrared Spectrum in the carbonyl region of Cr(CO)₆ in toluene.


Figure 3.3 Infrared Spectrum in the carbonyl region of (²-phen)Cr(CO)₄, produced from the thermal reaction of Cr(CO)₆ with 1,10-phenantroline in toluene.

3.1.3 Preparation of *fac*-(²-C₆₀)(²-phen)Cr(CO)₃

The complex fac-(²-C₆₀)(²-phen)Cr(CO)₃ was prepared photochemically (figure 3.4) from (²-phen)Cr(CO)4 and C₆₀ using a medium pressure mercury arc lamp. In a three-necked 100 mL round bottomed flask equipped with a magnetic stirring bar, a condenser and a nitrogen inlet, 0.03199 g (0.0930 mmol) of (²-phen)Cr(CO)₄ and 0.05070 g (0.0704 mmol) of [60] fullerene were dissolved in 15 mL dried toluene. After the reacting mixture was purged with nitrogen, it was irradiated with a medium pressure mercury arc lamp under a slow and continuous flow of nitrogen for approximately two hours. The reaction was considered complete after judging the infrared spectrum; consequently, toluene was purged with nitrogen from the reaction mixture. The resulting brown solid was then dissolved in approximately 10 mL of carbon disulfide (CS2). Thin layer chromatography analysis showed two components. The two components were separated by column chromatography, using a 15 cm long and 1cm diameter glass column, packed with 62 grades, 60-2000 mesh, and 150 Å silica gel. The first component, identified as [60] fullerene from its distinctive purple color and its Rf value, was eluted using carbon disulfide. The second fraction was nitrogen-purged. After nitrogen-purged, the product was characterized as fac-(²-C₆₀)(²-phen)Cr(CO)₃ (figure 3.5) from its CO absorbencies in toluene, (CO, cm⁻ ¹): 1960, 1944, 1872, 1861, and 1804. The product was obtained in a low yield of 23%.


Figure 3.4 Schematic representation of the photochemical preparation of fac-($^{2}-C_{60}$)($^{2}-phen$)₃Cr(CO)₃.


Figure 3.5 Infrared Spectrum in the Carbonyl region of fac-(2 -C₆₀)(2 -phen)Cr(CO)₃, produced from the photochemical reaction of (2 -phen)Cr(CO)₄ with C₆₀ in toluene.

3.1.4 Preparation of (¹-pip)₃Cr(CO)₃

The complex (1 -pip)₃Cr(CO)₃ was prepared thermally from (2 -phen)Cr(CO)₄ and piperidine. In a threenecked 100 mL round bottomed flask, equipped with a magnetic stirring bar, a condenser, and a nitrogen inlet, a solution of 0.03039 g (0.0883 mmol) of (2 -phen)Cr(CO)₄ and a pinch of piperidine were poured into toluene (15 mL), followed by a two hours reflux. The intermediate species was characterized as *fac*-(1 -pip)(2 -phen)Cr(CO)₃, from its CO absorbencies in toluene (CO, cm⁻¹): 1964, 1946, 1878, 1862, and 1808, followed by the characterization of the product (1 -pip)₃Cr(CO)₃ (figure 3.7) from its CO absorbencies in toluene, (CO, cm⁻¹):1958, 1942, 1870, 1858, and 1802.

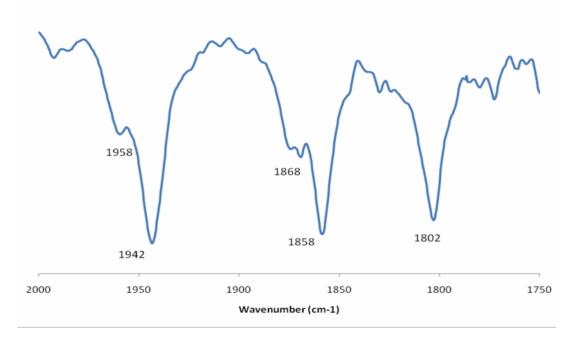

Figure 3.6 Infrared Spectrum in the Carbonyl region for an actual sample of the intermediate species *fac*-(1 -pip)(2 -phen)Cr(CO)₃ produced in the thermal reaction of (2 -phen)Cr(CO)₄ with piperidine in toluene, t = 0:50minutes.

Figure 3.7 Infrared Spectrum in the carbonyl region for an actual sample of the product $(^{-1}-pip)_3Cr(CO)_3$, produced in the thermal reaction of $(^{-2}-phen)Cr(CO)_4$ with piperidine in toluene, where t = 0:90minutes.

3.1.5 Preparation of (¹-pip)₃Cr(CO)₃

The complex $(^{-1}-pip)_3Cr(CO)_3$ was prepared thermally, also from the complex *fac*- $(^{-2}-C_{60})(^{-2}-phen)Cr(CO)_3$ and piperidine. In a three-necked 15mL round bottomed flask equipped with a magnetic stirring bar, a condenser, and a nitrogen inlet, a solution of 0.00339g (0.00327mmol) of *fac*- $(^{-2}-phen)(^{-2}-C_{60})Cr(CO)_3$ and a pinch of piperidine were poured into 10 mL of toluene and thermally refluxed for 40 minutes. The solution was purged under nitrogen and characterized as $(^{-1}-pip)_3Cr(CO)_3$, from it CO absorbencies in toluene, (CO, cm⁻¹): 1958, 1942, 1868, 1858, and 1802.

Figure 3.8 Infrared Spectrum in the Carbonyl region for an actual sample of the product $(^{-1}-pip)_3Cr(CO)_3$ produced in the thermal reaction of *fac*- $(^{-2}-C_{60})(^{-2}-phen)Cr(CO)_3$ with piperidine in toluene, where t = 0:40minutes.

3.2 Kinetic Experiments of *fac*-(²-C₆₀)(²-phen)Cr(CO)₃

3.2.1 Kinetic Experiments for reactions of *fac*- $(^2-C_{60})(^2-phen)Cr(CO)_3$ with piperidine in chlorobenzene

The reactions of fac-(²-C₆₀)(²-phen)Cr(CO)₃ with piperidine were studied, observing an increase in absorbance followed by a decrease in absorbance at 407 nm. The reactions were dissolved into chlorobenzene at 313.2, 323.2, and 333.2 K; under flooding conditions, where [pip] >>> [fac-(²-C₆₀)(²-phen)Cr(CO)₃].

3.2.2 Kinetic Experiments for the reactions of *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ with PPh₃ in

chlorbenzene

The reactions of fac-(²-C₆₀)(²-phen)Cr(CO)₃ with PPh₃, were studied observing a decrease in absorbance at 500 nm. The reactions where dissolved into chlorobenzene at 303.2, 313.2, 323.2, and 333.2 K under flooding conditions where [PPh₃] >>> [fac-(²-C₆₀)(²-phen)Cr(CO)₃].

3.2.3 Kinetic Experiments for reactions of *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ with PPh₃ in toluene

The reactions of fac-(²-C₆₀)(²-phen)Cr(CO)₃ with PPh₃, were studied observing a decrease in absorbance at 500 nm. The reactions where dissolved into toluene at 303.2, 313.2, 323.2, and 333.2 K under flooding conditions where [PPh₃] >>> [fac-(²-C₆₀)(²-phen)Cr(CO)₃].

3.2.4 Kinetic Experiments for the reactions of *fac-*(2 -C₆₀)(2 -phen)Cr(CO)₃ with PPh₃ in benzene The reactions of *fac-*(2 -C₆₀)(2 -phen)Cr(CO)₃ with PPh₃, were studied observing a decrease in absorbance at 500 nm. The reactions were studied into benzene at 303.2, 313.2, 323.2, and 333.2 K under flooding conditions, where [PPh₃] >>> [*fac-*(2 -C₆₀)(2 -phen)Cr(CO)₃].

3.3 Data Analysis

3.3.1 Kinetics data for the displacement of C₆₀ from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ by PPh₃

Kinetics data was analyzed using OriginPro 7.5TM, as the non-linear least-squares computer program. The graphs of absorbance vs. time for the reactions under flooding conditions when the ligands were PPh₃ and $P(Cy)_{3}$, consist of a mono-exponential decay. The fit that best describes the behavior of the experimental data points is of first order and the function that's provided by the computer program is given through:

$$Y = (A_1) e^{-x/t} + Y_0$$
 Equation (3.1)

Where Y is the dependant variable at time t; Y_0 is the value of Y at time 0 or initial value; A_1 is the amplitude; x is the independent variable and 1/t is the rate constant. The family of equations obtained by the computer program is mathematically equivalent to a first order rate equation that represents the monitored change of absorbance. The value of absorbance (A) is proportional to the concentration of the species involved in the reaction. The equation for a first order reaction is represented as:

$$A_t = (A_0 - A_0) e^{-K^* t} + A$$
 Equation (3.2)

Where the correspondence is: $A_t = Y$; $(A_0 - A_1) = A_1$; k = 1/t; t = x and $A_1 = Y_0$. A_t represents the value of absorbance at a given time, A_0 represents the absorbance at time zero, A_1 represents the absorbance at infinite time, k is the observed rate constant, and t represents time.

3.3.2 Kinetics data for the displacement of C₆₀ from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ by piperidine

Kinetic data was analyzed using OriginPro 7.5TM. The graphs of absorbance vs. time for L = piperidine were biphasic consisting of two consecutive segments. The first segment, increased with time and the second segment, decreased with time. The rate constant values for the reaction were determined using a non-linear least squares computer program. The mathematical equation which best describes the behavior of the experimental data points for reactions that consists of two segments is:

$$Y = -A_1 e^{-x/t_1} + A_2 e^{-x/t_2} + Y_0$$
 Equation (3.3)

Where Y is the dependent variable, Y_0 is the Y offset, A_1 and t_1 are the amplitude and the decay constant for the second segment, respectively, A_2 and t_2 are the amplitude and the decay constant for the second segment, respectively, and x is the independent variable. The computer program performs the necessary parameters initialization. It also sets Y_0 to an appropriate fixed number, which is close to the asymptotic value of the Y variable for large x values. The creation of the mathematical fit is produced by an iterative procedure. The mainframe fitter computes the Variance-Covariance matrix in each of the iterations using the previous iteration value. This matrix depends on the fitting function, the number of parameters, and the data set assignments. The analysis made by the computer program is adaptable to chemical kinetics conditions since a physical property, such as absorbance, is monitored. Thus, the equation becomes:

$$A_t = -e^{-kAt} + e^{-kBt} + A$$
 Equation (3.4)

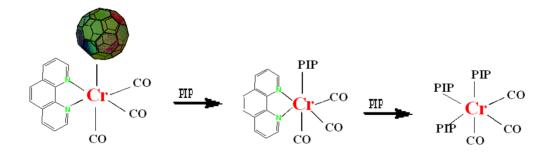
Where the correspondence is: $A_t = Y$; $= A_1$; $= A_2$; k = 1/t; t = x and $A = Y_0$. In which A_t is the value of the absorbance at a given time, A_0 represents the absorbance at time zero, A represents the absorbance at time infinite, and are pre-exponential constants, k is the observed rate constant, and t is the time.

3.3.3 Eyring Plots

Eyring plots were constructed to estimate the activation parameters. The Eyring equation (equation 3.5) expresses the temperature dependence of a rate constant, based on the transition state model. A plot of ln(k/T) versus 1/T is expected to be linear for small temperature ranges.

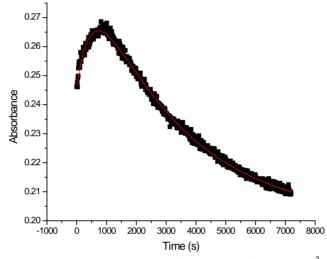
$$\ln\frac{k}{T} = -\frac{\Delta H^{\mp}}{R} \left(\frac{1}{T}\right) + \ln\frac{k_B}{h} + \frac{\Delta S^{\mp}}{R}$$
Equation (3.5)

Where $k_B = Boltzmann's constant [1.381x10^{-23} J \cdot K^{-1}]$, T = absolute temperature in Kelvin (K), R = Gas constant [8.3145 J/K·mol], and h = Plank's constant [6.626x10^{-34} J \cdot s].


The values of enthalpy of activation can be estimated from the slope: H = -R(slope) and the values of the entropy of activation can be estimated from the intercept: S = R (intercept $-\ln(k_B/h)$).

3.4 Results

3.4.1 Displacement reactions of C₆₀ from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ by piperidine


The reaction of fac-(²-C₆₀)(²-phen)Cr(CO)₃ with piperidine producing fac-(¹-pip)₃Cr(CO)₃ in chlorobenzene were biphasic. The reactions were studied at temperatures of 313.2, 323.2, and 333.2 K. The plots of absorbance vs. time consisted of two consecutive segments. The first segment (increasing) of the plot was assigned to step-wise additions of piperidine to uncoordinated C₆₀. The second segment (decreasing) was ascribed to solvent-assisted displacement of C₆₀ from fac-(²-C₆₀)(²-phen)Cr(CO)₃. The rate of disappearance of fac-(²-C₆₀)(²-phen)Cr(CO)₃ was monitored observing an increase followed by a decrease of absorbance values at 407 nm.

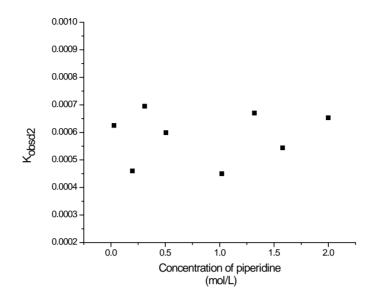
The reactions' progress was also followed by monitoring the stretching carbonyl region(CO, cm⁻¹) 1700 to 2100. The results suggest the formation of *fac*-(1 -pip)(2 -phen)Cr(CO)₃ as an intermediate species, followed by the formation of the corresponding kinetically inaccessible product (1 -pip)₃(2 -phen)Cr(CO)₃ (figure 3.9).

Figure 3.9 Schematic representation of the displacement of C_{60} from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ by piperidine.

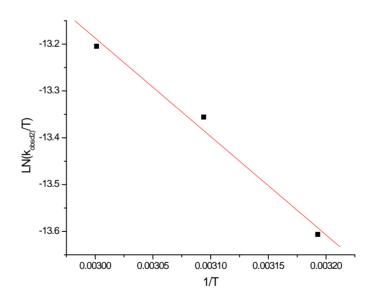
The nature of the reaction product was established by comparison of the CO spectrum of the reaction product with the spectra of the authentic samples. A plot of absorbance vs. time for the reaction of *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ with piperidine ([pip] = 1.59 M in chlorobenzene at 313.2 K) is given in figure 3.10. The equation 3.3, describes the relation between Absorbance and time (where A₁ = 0.05301, A₂ = 0.09884; 1/t₁ = 1.92(5)*10⁻³ s⁻¹; 1/t₂ = 3.26(6)*10⁻⁴ s⁻¹ and Y₀ = 0.20062).

Figure 3.10 Plot of absorbance (407nm) vs. time (s) for C_{60} displacement from $fac \cdot ({}^2-C_{60})({}^2-phen)Cr(CO)_3$ through piperidine dissolved in chlorobenzene, producing $fac \cdot ({}^1-pip)_3Cr(CO)_3$ at 313.2K under conditions, where $[pip] >>> [fac \cdot ({}^2-C_{60})({}^2-phen)Cr(CO)_3]$. The dissociation of C_{60} from $fac \cdot ({}^2-C_{60})({}^2-phen)Cr(CO)_3$ to form $fac \cdot ({}^1-pip)Cr({}^2-phen)Cr(CO)_3$ as an intermediated species was ascribed to the second segment of the plot, while the first segment was ascribed to the step-wise addition of piperidine to uncoordinated C_{60} . The function that best describes the relation between Absorbance vs. time is: $Y = -A_1e^{-x/t1} + A_2e^{-x/t2} + Y_0$; where $A_1 = 0.05301$, $A_2 = 0.09884$; $1/t_1 = 1.92(5)*10^{-3} s^{-1}$, $1/t_2 = 3.26(6)*10^{-4} s^{-1}$, and $Y_0 = 0.20062$.

The rate constant (k_{obsd1}) for the first segment is dependent on the concentration of piperidine.^{18, 20} The average rate constant value $(k_{obsd1}$ and $k_{obsd2})$ determined for various piperidine concentrations and temperatures are presented in table 3.1.


Table 3.1 Average Rate constants values for the displacement reactions of C_{60} from *fac*-(²- C_{60})(²phen)Cr(CO)₃ by piperidine (pip) in chlorobenzene at different temperature, under flooding conditions, where [pip] >>> [*fac*-(²- C_{60})(²phen)Cr(CO)₃]

Temp (K)	Average k _{obsd1} (10 ⁻³ s ⁻¹)	Average k _{obsd2} (10 ⁻⁴ s ⁻¹)
313.2	2.24 (±0.94)	3.86 (±0.60)
323.2	5.10 (±3.8)	4.96 (±0.85)
333.2	11.43 (±2.9)	5.77 (±1.77)


*The values in parenthesis are the standard deviation of the average rate constants.

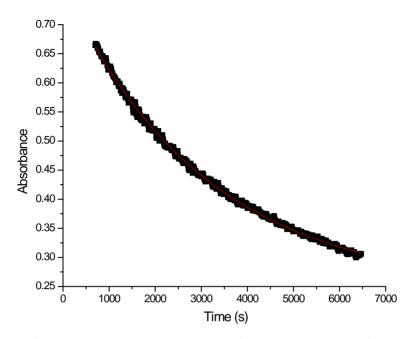
**The single rate constant values (kobsd1 and kobsd2) are presented on the Appendix D, tables D1, and D2 respectively.

The rate constants values (k_{obsd2}) for the second segment, were independent of piperidine concentration (figure 3.11) for the reactions of *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ with piperidine in chlorobenzene. The corresponding activation parameters, presented in table 3.2, were determined from the Eyring plot (3.12)

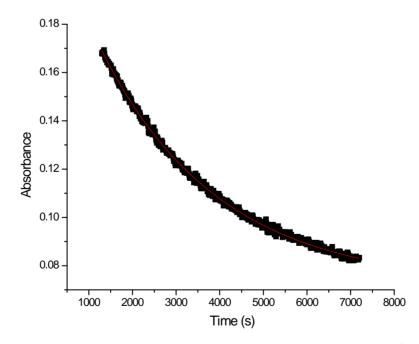
Figure 3.11 Plot of k_{obsd2} versus [pip] for C_{60} dissociation from fac-(²- C_{60})(²phen)Cr(CO)₃ in chlorobenzene by piperidine at 333.2 K. The K_{obsd2} values were obtained under flooding conditions where [pip] >>> [fac-(²- C_{60})(²phen)Cr(CO)₃]. The plot shows that the k_{obsd2} values are independent on the concentration of piperidine.

Figure 3.12 Eyring plot of $\ln(k_{obsd2}/T)$ vs. 1/T for C₆₀ displacement from (²-C₆₀)(²-phen)Cr(CO)₃ by piperidine in chlorobenzene. The k_{obsd} values were obtained under flooding conditions where the [pip] >> [fac-(²-C₆₀)(²-phen)Cr(CO)₃], H[±] = 17(4) kJ/mol and S[±] = -177(64) J/K mol.

Table 3.2 Table 3.2 Activation Parameters values for the dissociation of C_{60} from *fac*-(2 - C_{60})(2 -phen)Cr(CO)₃ through piperidine in chlorobenzene. The values of enthalpy of activation can be estimated from the slope: H = -R(slope) and the values of the entropy of activation can be estimated from the intercept: S = R (intercept – ln(k_B/h) of the equation 3.5.


Ligand	H [‡] (kJ/mol)	S [‡] (J/K mol)
Piperidine (pip)	17 (4)	-177 (64)

**The values in parenthesis are the reported uncertainties.


3.4.2 Displacements of C₆₀ from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ by PPh₃ and P(Cy)₃

The complex *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ was also studied with the ligands triphenhylphosphine (PPh₃) and tricyclohexylphosphine (P(Cy)₃). The reactions of *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ with PPh₃ and P(Cy)₃ in chlorobenzene, benzene and toluene were monophasic. The reactions were studied at temperatures of 303.2, 313.2, 323.2, and 333.2 K. The rate of *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ disappearance was monitored by observing the decrease of the absorbance values at 500nm for both ligands. The reactions were studied under flooding conditions where (i) the concentrations of L and C₆₀ (0 [C₆₀]/[L] 1) were greater than the concentration of *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ and (ii), where the concentrations where [L] >> [*fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃]. For both conditions, the rate constant values were independent on the chemical nature of the L and of the concentration of L, but dependent of the nature of the solvent.

A plot of absorbance vs. time for the reaction of fac-($^{2}-C_{60}$)(2 -phen)Cr(CO)₃ with PPh₃ ([PPh₃] = 0.133 M in chlorobenzene at 313.2 K) and with P(Cy)₃ ([P(Cy)₃] = 0.103 M in chlorobenzene are given in figures 3.13 and 3.14, respectively.

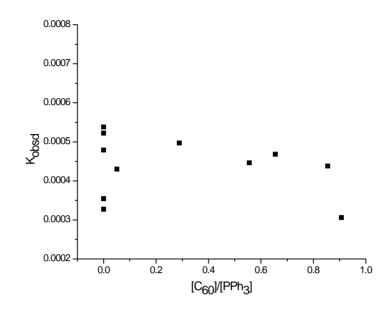
Figure 3.13 Plot of absorbance (500 nm) vs. time (s) for C_{60} displacement from *fac*-(²- C_{60})(²-phen)Cr(CO)₃ through PPh₃ ([PPh₃] = 0.133 M) in chlorobenzene to form *fac*-(¹-PPh₃)(²-phen)Cr(CO)₃ at 313.2 K, under flooding conditions, where [PPh₃] >>> [*fac*-(²- C_{60})(²-phen)Cr(CO)₃]. The equation that best describes the relation between absorbance and time is: $Y = (A_1) e^{-x/t} + Y_0$, where $A_1 = 0.52572$, $1/t_1 = 3.27(3)*10^{-4} s^{-1}$ and $Y_0 = 0.24434$.

Figure 3.14 Plot of absorbance (500 nm) vs. time (s) for C_{60} displacement from fac-($^2-C_{60}$)(2 -phen)Cr(CO)₃ by P(Cy)₃ ([P(Cy)₃] = 0.103 M) in chlorobenzene to form fac-($^{1-}P(Cy)_3$)(2 -phen)Cr(CO)₃ at 313.2K, under flooding conditions where [P(Cy)₃] >>> [fac-($^{2-}C_{60}$)($^{2-}$ -phen)Cr(CO)₃]. The equation that best describes the relation between absorbance and time is: $A_t = (A_0 - A_1) e^{-k^2 t} + A_1$, where $A_0 - A_1 = 0.52572$, $k_{obsd} = 3.70(2)*10^{-4}$ and $A_1 = 0.07215$.

The average rate constant values (k_{obsd}) determined for various ligand concentrations and temperature in various solvents under conditions, where [L] >> [*fac*-(²-C₆₀)(²-phen)Cr(CO)₃], are presented in table 3.3. The k_{obsd} values, determined under conditions where 0 [C₆₀]/[L] 1, are presented in table 3.4. The k_{obsd} values were independent of ligand's concentration under conditions where 0 [C₆₀]/[L] 1 as shown in figures 3.15 and 3.16, respectively.

Table 3.3 Average rate constants values (k_{obsd}) for the displacement reactions of C_{60} from*fac*- $(^2-C_{60})(^2phen)Cr(CO)_3$ by triphenylphosphine (PPh₃) in chlorobenzene, benzene and toluene at various temperatures, under flooding conditions, such that [PPh₃] >>> [*fac*-($^2-C_{60})(^2phen)Cr(CO)_3$]

Solvent	Temp (K)	Average k _{obsd} (10 ⁻⁴ s ⁻¹)	
Chlorobenzene	303.2	3.69 (±0.56)	
	313.2	4.39 (±0.87)	
	323.2	4.98 (±0.66)	
	333.2	5.52 (±0.55)	
Benzene	303.2	3.32	
	313.2	4.06 (±0.69)	
	323.2	5.09 (±0.67)	
	333.2	6.04 (±1.16)	
Toluene	303.2	3.04	
	313.2	4.09 (±0.92)	
	323.2	4.95 (±0.24)	
	333.2	5.72 (±0.45)	


*The values in parenthesis are the standard deviation of the average rate constants.

**The single rate constant values (k_{obsd1}) are presented in Appendix D, table D3.

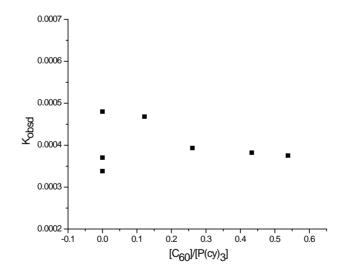

Ligand	[L] *10 ⁻³ M	[C ₆₀] *10 ⁻⁴ M	[C ₆₀]/[L] *10 ⁻¹ M	$k_{obsd} * 10^{-4} s^{-1}$
PPh ₃	2.61	7.56	2.89	4.97(3)
	2.26	12.6	5.56	4.46(3)
	1.09	7.14	6.55	4.68(3)
	1.13	10.0	8.85	4.38(3)
	0.496	4.50	9.07	3.06(1)
	2.87	1.47	0.512	4.30(3)
	100	0	0	3.54(7)
	1.16	0	0	5.22(3)
	14.5	0	0	4.79(2)
	0.351	0	0	5.38(2)
	13.3	0	0	3.27(3)
P(Cy) ₃	11.5	0	0	4.80(3)
	10.3	0	0	3.70(2)
	46.3	0	0	3.38(3)
	3.09	3.78	1.22	4.68(2)
	2.75	7.19	2.61	3.93(4)
	2.24	9.69	4.33	3.82(2)
	1.10	5.92	5.38	3.75(3)

Table 3.4 Rate constant values (K_{obsd}) for the displacement of C_{60} from *fac*-(2 - C_{60})(2 phen)Cr(CO)₃ by triphenylphosphine and tricyclohexyl phosphine in chlorobenzene at various [L] and [C_{60}]/[L] at 313.2 K and 500 nm

*The values given in parenthesis are the uncertainties of the last digit reported for the rate constant.

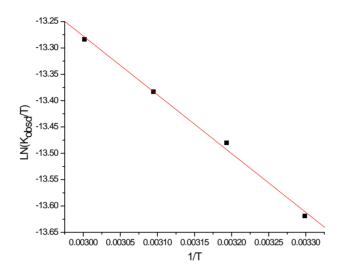


Figure 3.15 Plot of k_{obsd} versus $[C_{60}]/[PPh_3]$ for C_{60} dissociation from *fac*-(²-C₆₀)(²phen)Cr(CO)₃ by triphenylphosphine at 313.2 K and 500 nm. The K_{obsd} values were obtained under flooding conditions, where $[C_{60}]/[PPh_3]$ >>> [*fac*-(²-C₆₀)(²phen)Cr(CO)₃]. The plot shows that the k_{obsd} values are independent of the concentration of C_{60} and PPh₃.

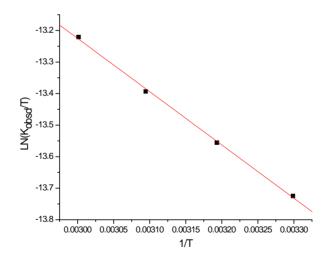


Figure 3.16 Plot of k_{obsd} versus $[C_{60}]/[P(Cy)_3]$ for C_{60} dissociation from $fac - (^2-C_{60})(^2phen)Cr(CO)_3$ by tricyclohexyl phosphine at 313.2 K and 500 nm. The K_{obsd} values were obtained under flooding conditions, where $[C_{60}]/[PPh_3] >>> [fac - (^2-C_{60})(^2phen)Cr(CO)_3]$. The plot shows that the k_{obsd} values are independent on the concentration of C_{60} and PPh₃.

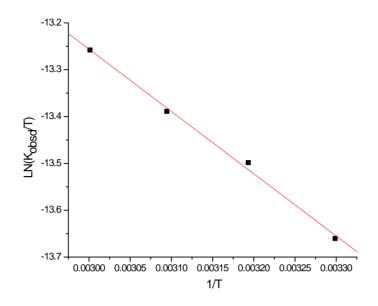

The constructed Eyring plots for the displacement reactions of C_{60} from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ by $L = PPh_3$ in chlorobenzene, benzene, and toluene are shown in figures 3.17, 3.18, and 3.19, respectively.

Figure 3.17 Plot of $\ln(k_{obsd}/T)$ vs. 1/T for C₆₀ displacement from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ in chlorobenzene by triphenylphospine. The k_{obsd} values were obtained under flooding conditions where [PPh₃] >> [*fac*-(²-C₆₀)(²-phen)Cr(CO)₃]. where H[±] = 9(3) kJ/mol and S[±] = -280(38) J/K mol.

Figure 3.18 Plot of $\ln(k_{obsd}/T)$ vs. 1/T for C₆₀ displacement from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ in benzene by triphenylphosphine. The k_{obsd} values were obtained under flooding conditions where [PPh₃] >>[*fac*-(²-C₆₀)(²-phen)Cr(CO)₃]. where H[±] = 14(3) kJ/mol and S[±] = -265(33) J/K mol.

Figure 3.19 Plot of $\ln(k_{obsd}/T)$ vs. 1/T for the displacement of C_{60} from $fac-(^2-C_{60})(^2-phen)Cr(CO)_3$ in toluene by triphenylphosphine. The k_{obsd} values were obtained under flooding conditions where [PPh₃] >> [$fac-(^2-C_{60})(^2-phen)Cr(CO)_3$]. where $H^{\pm} = 10(4)$ kJ/mol and the $S^{\pm} = -275(48)$ J/K mol.

Table 3.5 Activation Parameters values for the dissociation of C_{60} from *fac*-(²- C_{60})(²-phen)Cr(CO)₃ by PPh₃ in chlorobenzene, benzene, and toluene. The values of enthalpy of activation can be estimated from the slope: H = -R(slope) and the values of the entropy of activation can be estimated from the intercept: S = R (intercept - ln(k_B/h) of the equation 3.5.

Solvent	H [‡] (kJ/mol)	S [‡] (J/K mol)
Chlorobenzene	9 (3)	-280 (38)
Benzene	14 (3)	-265 (33)
Toluene	10 (4)	-275 (48)

**The values in parenthesis are the reported uncertainties.

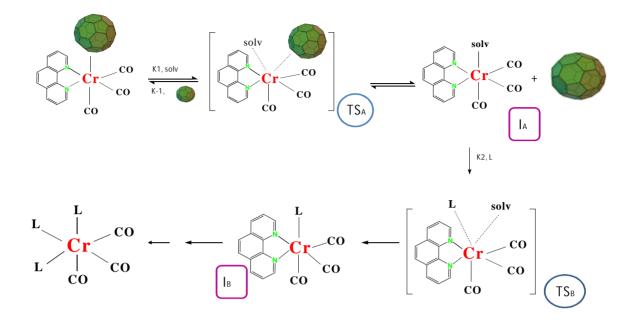
3.5 Discussion

The Lewis bases (L) piperidine (pip), triphenyl phosphine (PPh₃), and tricyclohexyl phosphine (P(Cy)₃) displace C_{60} from *fac*-(²- C_{60})(²-phen)Cr(CO)₃ to produce *fac*-(¹-L)(²-phen)Cr(CO)₃, as an intermediate species, and (¹-L)₃Cr(CO)₃ as a product of the reaction. Kinetic experiments were limited and to established the mechanistic pathway, it was assumed that *fac*-(¹-pip)(²-phen)Cr(CO)₃ was the product of reaction and not an intermediate species.

The k_{obsd} values are independent of chemical nature of L, [L] and of $[C_{60}]/[L]$. These observations suggest that L is not involved in the steps contributing to the k_{obsd} values. The proposed mechanism (figure 3.20) was reported for the molybdenum analogous and it is being adopted here for the reactions under study. This mechanisms involves a solvent-assisted C_{60} displacement producing *fac*-(solvent)(²-phen)Cr(CO)₃ as an intermediate species (I_A). Assuming that the concentration of this intermediate species, I_A, is at steady-state concentration, this mechanism predicts the following rate-law (equations 3.6 and 3.7).

$$-\frac{d[S]}{dt} = k_{obsd}[S]$$
 Equation (3.6)

Where S = substrate = fac-(²-C₆₀)(²-phen)Cr(CO)₃ and the value of K_{obsd} is given by:


Equation (3.7)

$$k_{obsd} = \frac{k_1 k_2 [L]}{k_{-1} [C_{60}] + k_2 [L]}$$

The observation that k_{obsd} values are [L] independent is in accord with the approximation that $k_{-1}[C_{60}] \ll k_2[L]$ and equation 3.7 becomes:

$$k_{obsd} \approx k_1$$

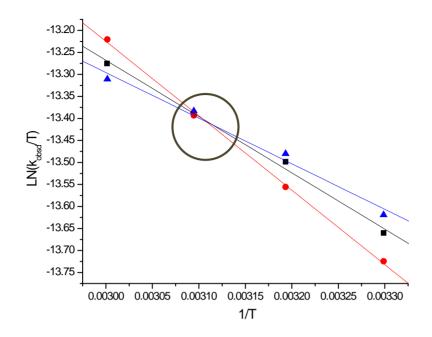

Equation (3.8)

Figure 3.20 Proposed mechanisms for C_{60} displacement from *fac*-(2 - C_{60})(2 -phen)Cr(CO)₃. The mechanism describes a solvent assisted displacement of C_{60} . I_A and I_B are steady-state intermediates. TS_A and TS_B are plausible transition states.

Since the concentration of $[C_{60}]$ can be experimentally controlled when $L = PPh_3$ and $P(Cy)_3$, the rate constant values were determined under conditions where 0 $[C_{60}]/[L]$ 1. The observation that k_{obsd} values are independent of $[C_{60}]$ and of $[C_{60}]/[L]$, demonstrate, that $k_{-1} \ll k_2$. The high selectivity of the intermediate species $(k_{-1} \ll k_2)^{15,22,29\cdot30}$ and the activation parameters for the reactions of *fac*-(²- C_{60})(²-phen)Cr(CO)₃ with L= PPh₃ in chlorobenzene ($H^{\ddagger} = 9(3)$ kJ/mol, $S^{\ddagger} = -280(38)$ J/Kmol) indicate that the rupture Cr- C_{60} bond in *fac*-(²- C_{60})(²-phen)Cr(CO)₃ is assisted by the solvent and that the TS₁ involves a concerted solvent-Cr bond making and C_{60} -Cr bond breaking. The same results were observed for the reactions of *fac*-(²- C_{60})(²-phen)Cr(CO)₃ with L = PPh₃ in benzene and toluene. The role of the solvent in the ligand exchange reactions of metal carbonyl complexes have been previously reported.³¹⁻³⁷ Aromatic solvents may interact with the substrate and intermediate species through an

olefinic linkage³¹⁻³³, agnostic linkage,^{35,36} or a lone pair (in halogenated solvents).³⁴ The coordinated solvent may undergo a "chain walk" isomerization to attain the most stable mode of coordination³¹⁻³². The k_{obsd} value depends on the nature of the solvent; activation parameters reflect a variation from solvent to solvent and the fact that k_{obsd} values for the reactions of *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ with L = PPh₃ were almost the same at 323.2 K in chlorobenzene, benzene, and toluene (table 3.5) suggest that an isokinetic temperature should be observed. Figure 3.21 presents the plots of ln(k_{obsd} /T) vs.1/T for the reactions in chlorobenzene(), benzene () and Toluene (). Activation parameters for these plots are presents in table 3.5. Notice that smaller H[±] values are associated with more negative S[±] values, indicative of an isokinetic point. In fact figure 3.21 shows a common region of intersection for all the plots.

Figure 3.21 Plot of $\ln(k_{obsd}/T)$ vs. 1/T showing the isokinetic region in the vicinity of 323.2K for the solvent-assisted C₆₀ displacement from *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ in chlorobenzene(), benzene() and Toluene() by tri-phenylphosphine. The k_{obsd} values were obtained under flooding conditions where [PPh₃] >> [(²-C₆₀)(²-phen)Cr(CO)₃].

This common point of intersection, in the vicinity of 323.2 K, corresponds to the isokinetic temperature or the temperature where the rate constant values are the same for all reactions in different solvents. The existence of an isokinetic temperature with chemical or physical meaning has been addressed elsewhere.^{15,30} Often, the common intersection occurs at temperatures experimentally-inaccessible and the uncertainty of the intersection is large. In the present study, the isokinetic temperature was experimentally accessible (T_{iso} 323.2 K). This suggests that regardless of the variation of the activation parameters and rate constant values, the L/C₆₀ exchange takes place via a common mechanism.

Chapter IV

Profile of the ligand displacement reactions of fac-(²-C₆₀)(²-phen)M(CO)₃ (M = W, Mo and Cr)

4.1 Materials and Methodology

4.1.1 General

Electrochemical studies were performed at room temperature and at a low pressure atmosphere using a BAS CV-50WTM potentiostat. A high vacuum line (figure 4.1) was used to transfer and mix reagents. Dichloromethane was used as a solvent for all electrochemical experiments.

Tetrabutilammoniumhexafluorophosphate (TBPF6) was used as a supporting electrolyte in all electrochemical measurements. The supporting electrolyte was recrystallized from an ethanol/H₂O (95:5) mixture and dried in vacuo prior to use. Decamethylferrocene (Fc)/ decamethylferrocenium (Fc+) couple was used as internal standard in all measurements.

A three-electrode configuration was used consisting of a glassy carbon working electrode (3 mm in diameter), a platinum wire (Pt-wire) counter electrode, and a non-aqueous silver wire in contact with a solution of approximately 0.01M TBPF₆ in CH₂Cl₂ separated from the bulk solution by a fine glass frit as pseudo reference electrode. The working electrode was polished before use with a 0.25 μ m diamond polishing compound (Metadi II) and a microcloth (BAS). The Pt-wire was cleaned by exposing it to a flame for approximately 30 seconds, and the silver wire was rinsed with acetone and deionized water to remove impurities.

The electrochemical cell that was used in all electrochemical experiments was custom made. The cell contained two special arm adapters (figure 4.2), which allowed sequential mixing. The sample of the species that was to be studied was placed in one of the arm adapters (the enough amount to obtain a solution of approximately 0.5 mM to1.0 mM in 3 mL) and ferrocene was placed in the other arm adapter.

In a typical electrochemical experiment, the supporting electrolyte is placed in the cell (ca. 0.12 g of TBPF6).

In order to remove moisture from the supporting electrolyte and the cell, the cell containing the electrolyte was heated with a heat gun for five seconds. This process was repeated until the supporting electrode was dry. The cell was then opened to the vacuum line (10 - 5 to 10 - 6 mmHg) for roughly 10 minutes. Approximately 3 mL of dichloromethane were transferred to the cell directly through the vacuum line. After direct solvent transfer was accomplished, the whole ensemble was disconnected from the vacuum line and allowed to warm at room temperature. Electrochemical measurements were obtained while the cell was kept at the equilibrium vapor pressure of the solvent. The solution was stirred between scans using a magnetic stir bar controlled by a stirring motor located beneath the electrochemical cell. The background voltammogram of the solvent and supporting electrolyte was recorded prior to the electrochemical measurement of the sample. All cyclic voltammograms, unless otherwise specified, were run at a scan rate of 100 mV/s.

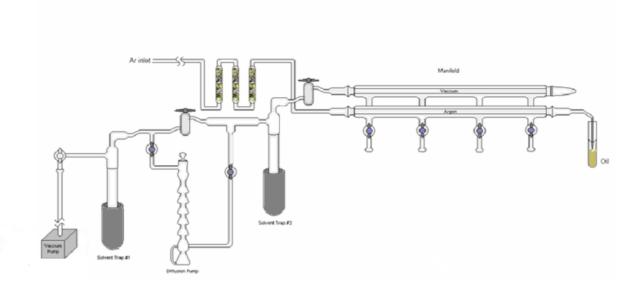


Figure 4.1 Schematic representation of the vacuum line used to transfer and mix reagents in electrochemical runs.²⁰

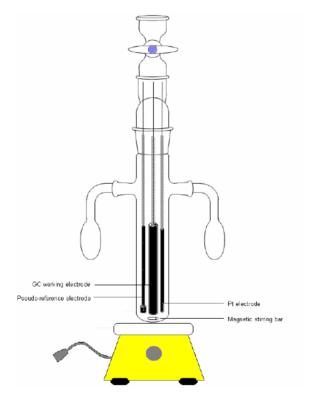
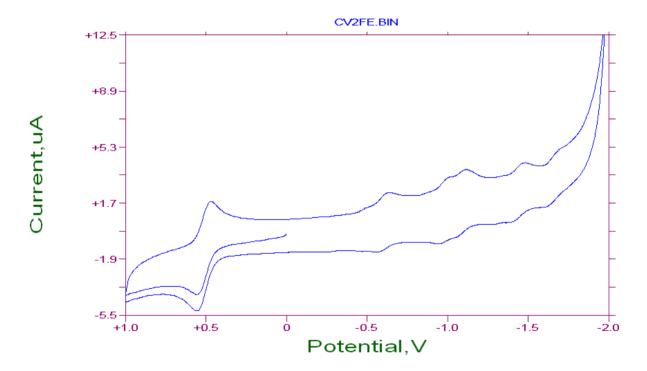


Figure 4.2 Electrochemical cell with a three-electrode configuration used for electrochemical runs.^{19,20}

4.1.2 Preparation of fac-(²-C₆₀)(²-phen)Mo(CO)₃


The complex *fac*-(2 -C₆₀)(2 -phen)Mo(CO)₃ was prepared photochemically following a published procedure,¹⁵ which uses (2 -phen)Mo(CO)₄ and C₆₀. In a 100 mL round bottomed flask equipped with a magnetic stirring bar, a condenser, and a nitrogen inlet; 0.02508 g (0.123 mmol) of (2 -phen)Mo(CO)₄ and 0.03784 g (0.053 mmol) of C₆₀ were dissolved in 15 mL of dried toluene followed by irradiation with the medium pressure mercury arc lamp under nitrogen during approximately 1.5 hours. After the reaction was completed, judging by the infrared spectrum, toluene was nitrogen-purged from the reaction mixture. The resulting brownish solid was then dissolved in approximately 10 mL of carbon disulfide (CS₂). Thin layer chromatography analysis showed two components. The two components were separated by column chromatography using a 15 cm long (1.0 cm diameter) column packed with 62 grades, 60-2000 mesh, 150 Å silica gel. The first component identified as unreacted C₆₀ was eluted using CS₂. The remaining component was isolated by dissolving the contents of the chromatography column in 10 mL of dichloromethane followed by suction filtration. Dichloromethane was then nitrogen purged, the yellowish-brown solid was characterized as *fac*-(2 -C₆₀)(2 -phen)Mo(CO)₃ from it CO absorbencies in chlorobenzene (CO,cm⁻¹): 1971, 1896, and 1829.

4.1.3 Preparation of *fac*-(²-C60)(²-phen)W(CO)₃

The complex fac-(2 -C₆₀)(2 -phen)W(CO)₃ was prepared thermally, following a published procedure.¹⁴ In a 100 mL round-bottomed flask equipped with a magnetic stirring bar, a condenser, and a nitrogen inlet; 0.02648 g (0.089 mmol) of (2 -phen)W(CO)₄ and 0.04011 g (0.056 mmol) of C₆₀ were dissolved in 15 mL of dried chlorobenzene. The resulting reddish solution was stirred under nitrogen and refluxed for 90 min. During reflux the solution turned brown. The progress of the reaction was monitored by observing and recording the decrease of the CO (cm⁻¹): 2003, 1889, 1872, and 1835 and the increase of the band intensities at 1966, 1889, and 1822, corresponding to $(^{2}-phen)W(CO)_{4}$ and fac- $(^{2}-C_{60})(^{2}$ phen)W(CO)₃ complexes, respectively. After the reaction was complete, judged by the infrared spectrum, chlorobenzene was nitrogen purged directly into the mixture. The reddish-brown solid was then dissolved in approximately 10 mL of carbon disulfide. Thin layer chromatography analysis showed three components. The three fractions were separated by column chromatography using a 15 cm long (1 cm diameter) column packed with 62 grade, 60-2000 mesh, 150 silica gel. The first fraction was eluted using CS_2 and contained unreacted C_{60} . The other two fractions were eluted with chlorobenzene. The first of the two fractions eluted with chlorobenzene was identified as $fac - (^2-C_{60})(^2-phen)W(CO)_3$. The second fraction was identified as $(^{2}-phen)W(CO)_{4}$. The CO of $fac-(^{2}-C_{60})(^{2}-phen)W(CO)_{3}$ in dichloromethane showed three bands: (CO, cm⁻¹): 1966, 1890, and 1823.

4.2 Data Analysis

The cyclic voltammogram of the complexes *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ (were M = Cr, Mo and W) in dichloromethane, are shown in Figure 4.4 to 4.6. The reversible waves half peak potentials (E_{1/2}) are calculated relative to the potential of ferrocene/ferrocenium (Fc/Fc+) which was used as internal standard. Let's consider the case of *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ in Figure 4.3.

Figure 4.3 Cyclic voltammetric responses recorded at a glassy carbon working electrode on dichloromethane solution containing, 0.1M TBPF6, *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ (saturated solution), and traces of decamethylferrocene (Fc) scan rate 100 mV/s. The E_{1/2} for Fc/Fc+ is 515mV. The E_{1/2} for *fac*-(2 -C₆₀) (2 -phen)Cr(CO)₃ are -1110, -1547 and -1933 mV and 2172 mV vs. Fc/Fc+. T = 20 °C

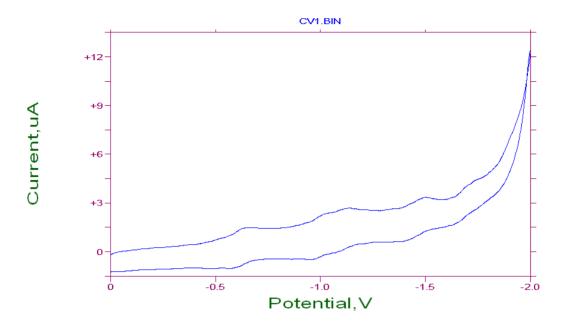
In order to determine the internal standard potential (*STD* $E_{1/2}$) Fc/Fc+ one must take the sum of the reduction potential (E_{red}) and the oxidation potential (E_{ox}) and divide the sum by two:

$$E_{1/2}^{std} = \frac{E_{red} + E_{ox}}{2}$$
Equation 4.1

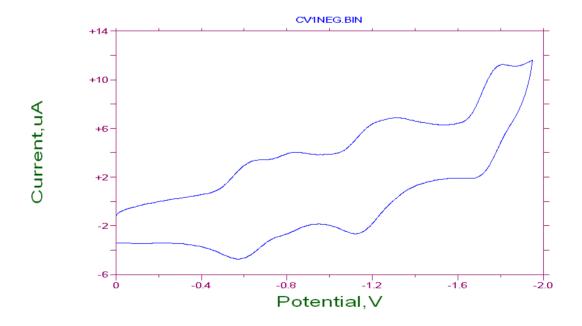
In order to calculate each reversible one-electron reduction waves vs. Fe/Fe⁺ the equation used is:

$$E_{1/2}^{n} = \frac{E_{red} + E_{ox}}{2} - E_{1/2}^{std}$$
Equation 4.2

Difference from equations 4.1 and 4.2 allow the calculation of the one-electron reduction waves, relatives to Fe/Fe⁺.


4.3 Results

The half peak potentials of *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ (M = Cr, Mo, W) and C₆₀ are given in Table 4.1 and their corresponding cyclic voltammograms are shown in Figures 4.4 to 4.6. The cyclic voltammogram of the complex *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ in dichloromethane, shown in Figure 4.4, exhibits five reversible one-electron reduction waves corresponding to the formation of *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃⁻, and *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃⁵⁻ respectively. The reversible waves have peak potentials (E_{1/2}) at -1110, -1547,-1603, -1933, and -2172 mV, relative to the potential of ferrocene/ferrocenium (Fc/Fc+), which was used as internal standard.


The cyclic voltammogram of the complex fac-($^{2}-C_{60}$)(2 -phen)Mo(CO)₃ in dichloromethane, shown in Figure 4.5, exhibits four reversible one-electron reduction waves corresponding to the formation of fac-($^{2}-C_{60}$)(2 -phen)Mo(CO)₃⁻, fac-($^{2}-C_{60}$)(2 -phen)Mo(CO)₃⁻, fac-($^{2}-C_{60}$)(2 -phen)Mo(CO)₃⁻ and fac-(($^{2}-C_{60}$)((2 -phen)Mo(CO)₃⁴⁻, respectively. The reversible waves have peak potentials (E_{1/2}) at -1323, -1909, -2456 mV, and -271 mV relative to the potential of ferrocene/ferrocenium (Fc/Fc+), which was used as an internal standard.

The complex *fac*-(2 -C₆₀)(2 -phen)W(CO)₃ exhibits three reversible one-electron reductions waves. The peak potentials (E_{1/2}) are located at -1189, -1485, and -2183 mV relative to the potential of ferrocene/ferrocenium (Fc/Fc⁺) (Figure 4.6).

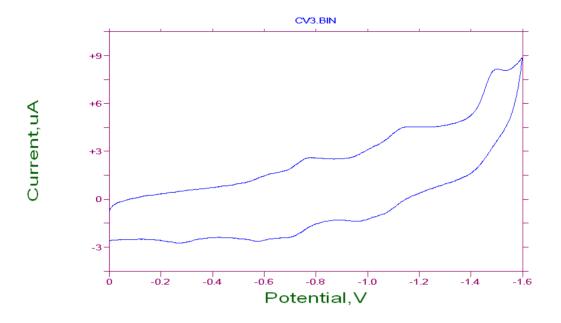

The previously reported cyclic voltammogram of C_{60} under same conditions shows three reversible reductions.¹⁹ The potential values of the complexes *fac*-(²-C₆₀)(²-phen)M(CO)₃ (were M= Cr, W, and Mo) were shifted to more negative potentials relative to the corresponding potentials of the uncoordinated C_{60} .

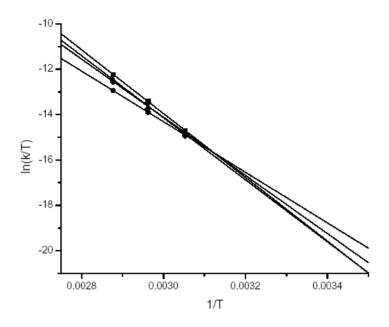
Figure 4.4 Cyclic voltammetric responses recorded at a glassy carbon working electrode on dichloromethane solution containing, 0.1 M TBPF6, *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ (saturated solution), and traces of decamethylferrocene (Fc) scan rate 100 mV/s.

Figure 4.5 Cyclic voltammetric responses recorded at a glassy carbon working electrode on dichloromethane solution containing, 0.1 M TBPF6, *fac*-(2 -C₆₀)(2 -phen)Mo(CO)₃ (saturated solution), and traces of decamethylferrocene (Fc) scan rate 100 mV/s.

Figure 4.6 Cyclic voltammetric responses recorded at a glassy carbon working electrode on dichloromethane solution containing, 0.1 M TBPF6, *fac*-(2 -C₆₀)(2 -phen)W(CO)₃ (saturated solution), and traces of decamethylferrocene (Fc) scan rate 100 mV/s.

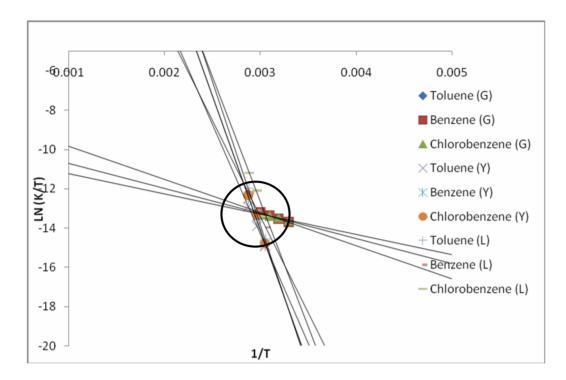
Table 4.1: Half-wave potentials ($E_{1/2}$) of the *fac*-(2 -C₆₀)M(CO)₃ complexes (M = Cr, Mo and W) and C₆₀ in dichloromethane at room temperature.

Complexes	E ¹ ^{1/2} ,red (mV)	E ² 1/2, red (mV)	E ³ 1/2, red (mV)	E ⁴ ^{1/2} , red (mV)	E ⁵ _{1/2, red} (mV)
**C ₆₀	-998	-1391	-1860		
$fac-(^{2}-C_{60})(^{2}-phen)Cr(CO)_{3}$	-1110	-1547	-1603	-1933	-2172
$fac-(^{2}-C_{60})(^{2}-phen)Mo(CO)_{3}$	-1323	-1909	-2456	-2711	
$fac-(^{2}-C_{60})(^{2}-phen)W(CO)_{3}$	-1189	-1485	-2183		


All half wave potential are in mV vs. Fc/Fc+ at 100 mV/s scan rate.

** Previously reported values found in reference 19

4.4 Discussion


The Lewis bases (L) piperidine (pip), triphenyl phosphine (PPh₃), and tricyclohexyl phosphine (P(Cy)₃) displace C_{60} from *fac*-(²-C₆₀)(n²-phen)M(CO)₃ to produce *fac*-(²-phen)(n¹-L)M(CO)₃ and *fac*-(¹-L)₃M(CO)₃, which depends on M. The progress of the reactions was followed by observing the change of absorbance values at various wavelengths, depending on M and entering ligand (L). The reactions were also monitored by observing the carbonyl stretching region from 1700 to 2100 cm⁻¹ to establish the nature of non-steady-state intermediate species and products. For example, the reactions of *fac*-(²-phen)(²-C₆₀)W(CO)₃ produced *fac*-(²-phen)(¹-L)W(CO)₃ as the only product. The plots of absorbance vs. time are monophasic, where k_{obsd} is independent of L and [L] when [C₆₀] <<< [L]; but dependent of the solvent nature and [C₆₀], when 0 [C₆₀]/[L] 1. Activation parameters suggest that the displacement of C₆₀ takes place via an initial solvent-assisted dissociation of C₆₀ when the solvent is benzene, but also the activation parameters and competition ratios values support a dissociative displacement of C₆₀ for the reactions in chlorobenzene and toluene¹⁴.

In the case of M = Mo, the formation of *fac*-(2 -phen)(1 -L)Mo(CO)₃ was followed by thermal decomposition and the plots of absorbance vs. time are biphasic. The k_{obsd} is independent from L, [L] and of [C₆₀]/[L] but dependent on the solvents nature. Activation parameters suggest that the displacement of C₆₀ take place via an initial solvent-assisted dissociation of C₆₀. Eyring plots also show an isokinetic temperature in the vicinity of 323.2 K (figure 4.7).

Figure 4.7 Plots of ln (k/T) vs. 1/T showing the isokinetic region for the solvent-assisted C_{60} displacement from *fac*-(2 - C_{60})(2 -phen)Mo(CO)3 in chlorobenzene (), toluene (), bromobenzene (), and benzene ().

Interestingly, the complex *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ also exhibits an isokinetic temperature in the vicinity of 323.2 K, but the fact that the complex *fac*-(2 -C₆₀)(2 -phen)W(CO)₃, does not exhibit an isokinetic temperature opens an interrogative regarding the behavior of the Eyring plots for the three complexes. The figure 4.8 presents the plots of ln(k_{obsd}/T) vs. 1/T for the complexes *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ (where M = W, Mo and Cr).

Figure 4.8 Plots of LN(k_{obsd}/T) versus 1/T showing the isokinetic region for the solvent-assisted C₆₀ displacement from the complexes *fac*-(2 -C₆₀)(2 phen)M(CO)₃ (were M=Cr, W and Mo) in toluene, benzene and chlorobenzene

The fact that the plots of the complexes fac-(²-C₆₀)(²-phen)M(CO)₃ (M = Mo and Cr) present a common region of interception in the vicinity of 323 K; confirmes the existence of an isokinetic temperature, but because the complex fac-(²-C₆₀)(²-phen)W(CO)₃ passes through this common region it confirms that not only we were working on an isokinetic temperature, in fact we were working on an isokinetic region. For that reason, regardless of the variation on the activation parameters, constant values and also of the complex involved (M = Mo, W or Cr) the L/C₆₀ exchange reactions would take place via a common mechanism.

Chapter V

Conclusion

The Lewis bases (L): piperidine (pip), triphenyl phosphine (PPh₃) and tricyclohexyl phosphine (P(Cy)₃) displace [60] fullerene (C₆₀) from *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ to produce *fac*-(2 -phen)(1 -L)M(CO)₃ and *fac*-(1 -L)₃M(CO)₃, depending on M. The progresses of the reactions were followed by observing the change of absorbance values at various wavelengths, depending on M and entering ligand (L). The reactions were also monitored by observing the stretching carbonyl region from 1700 to 2100 cm⁻¹ to establish the nature of non-steady-state intermediate species and products.

The reactions of *fac*-(2 -phen)(2 -C₆₀)W(CO)₃ produced *fac*-(2 -phen)(1 -L)W(CO)₃ as the only product. For M = Mo, the formation of *fac*-(2 -phen)(1 -L)Mo(CO)₃ was followed by thermal decomposition. For, M = Cr, the formation of *fac*-(2 -phen)(1 -L)Cr(CO)₃ was followed displacement of phenantroline producing *fac*-(n¹-L)₃Cr(CO)₃. For example, plots of absorbance vs. time were biexponential for reactions under flooding conditions, where [pip] >>> [*fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃]. The plots of absorbance vs. time consisted of two consecutive segments. The first segment (increasing) of the plot was assigned to step-wise additions of piperidine to uncoordinated C₆₀. The second segment (decreasing) was ascribed to the displacement of C₆₀ from *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃.

The dissociation of C_{60} is solvent-assisted. The activation parameter values, the high selectivity of the intermediate species, the non-dependence of k_{obsd} values on the nature of L and [L], the dependence of k_{obsd} values on the nature of the solvent support, to some degree, the conclusion that was reached. This was that the solvent–Cr bond formation in the TS₁ leads to the formation of *fac*-(solvent)(²-phen)Cr(CO)₃.

The observation of an experimentally-accessible isokinetic temperature suggests that the seemingly different mechanistic path for the systems investigated, is actually limiting case of the general mechanism.

The reduction and oxidation potentials of the metal-fullerene complexes studied in this work seem to depend on (i) the extent of -back donation between C_{60} and (ii) the degree of distortion of the spherical surface of C_{60} upon coordination. The extent of -back donation favors negative potential shifts relative to uncoordinated C_{60} .

5.2 Future works

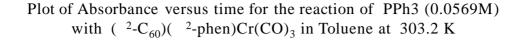
Following the investigations described in this thesis, a number of projects could be taken up, involving the modified infrared and kinetics studied:

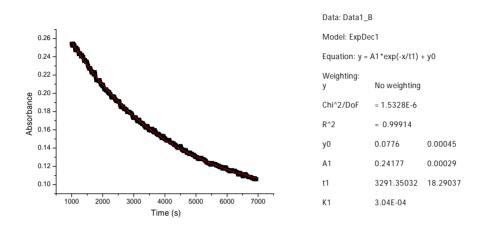
- 1. It would be interesting to obtain information on:
 - a. The bond distance of M-C₆₀ and M-benzene on the complexes *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ (M = C, W, Mo).
 - b. The energy of M-C₆₀ and M-benzene on the complexes *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ (M = C, W, Mo).

These studies will contribute to our efforts in obtain further comprehension on these systems and establish a better explanation of the solvent-assisted mechanism for the displacement of C_{60} from the complexes *fac*-(2 -C₆₀)(2 -phen)M(CO)₃ (M = C, W, Mo).

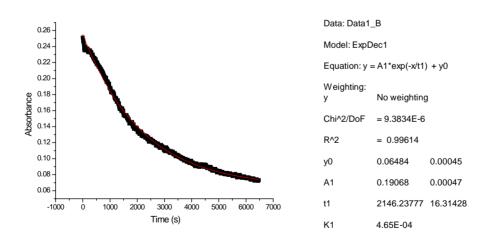
References

- Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K; Huffman, D. R. *Nature* 1990,347, 354. Bürgi, H. B.; Blanc, E.; Schwarzenbach, D.; Liu, S.; Lu, Y.; Kappes, M. M.; Ibers, *J. Angew. Chem., Int. Ed. Engl.* 1992, 31, 640. Satpathy, S. *Chem.Phys. Lett.* 1986, 130, 545. Hawkins, J. M; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J., *Science* 1991, 252, 313.
- Zanello P.; Laschi F.; Fontani M.; Mealli C.; Ienco A.; Tang K.; Jin X.; Li L., J. Chem. Soc., Dalton Trans., 1999, 965–970.
- 3. Isobe, H.; Tomita, N.; Nakamura, E. Org. Lett., 2000, 2, 3663-3665.
- 4. Modin, J.; Johansson, H. Grennberg, H. Org. Lett., 2005, 7, 3977 3979.
- 5. Kroto, H. W., Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature, 1985, 318, 162-3.
- 6. Ruoff, R.S.; Tse, D. S.; Malhotra, R.; Lorents, D.C. J. Phys. Chem., 1993, 91, 3379-3383.
- Fukami T., Mugishima A., Suzuki T., Hidaka S., Endo T., Ueda H., Tomono K., *Chem. Pharm. Bull.* 2004. 52(8) 961—964.
- 8. Miki S., Kitao M. and Fukunishi K, Tet. Lett., 1996, 37: 2049-2052.
- Tamisier-Karolak S., Pagliarusco S., Herrenknecht C., Brettreich M., Hirsch A., Céolin R., Bensasson R.V., Szwarc H., Moussa F., *Electrophoresis* 2001, 22, 4341–4346.
- Tegos, G.; Demidova, T.; Arcila-Lopez, D.; Lee, H.; Wharton, T.; Gali, H.; Hamblin, M. *Chem. & Biol.*, 2005, 12, 1127-1135.
- 11. Tumanskii B.L., Bashilov V.V., Kalina O.G, Sokolov V.I., J. Organomet. Chem. 2000, 599: 28-31.
- 12. Lerke, S.A., Parkinson, B.A., Evans, D.H., Fagan, P.J., J. Am. Chem. Soc., 1992, 114, 7807.
- 13. Chernega A.N., Green H., Haggitt J., Stephens H.H., J. Chem. Soc. Dalton Trans. 1998, 755.
- Rivera-Rivera, L. A.; Crespo-Román, G.; Acevedo-Acevedo, D.; Ocasio-Delgado, Y.; Cortés-Figueroa, J. E. *Inorg. Chim. Acta*, 2004, 357, 881-887.

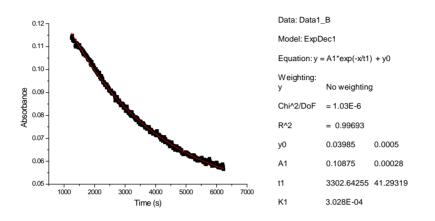

- 15. Ocasio-Delgado, Y., De Jesus-Segarra, J.; Cortés-Figueroa, J. E., J. Organomet. Chem. 2005, 690, 3366–3372.
- Hsu, H.F., Du, Y., Albrecht-Schmitt, T.E., Wilson, S.R., Shapley, J.R., Organometallics 1998,17, 1756.
- 17. Song, L.-C., Zhu, Y.-H., Hu, Q.-M. Polyhedron, 1997, 16, 72, 2141.
- 18. Capella-Capella, C., Thesis M.S. University of Puerto Rico, Mayagüez, P.R. May 2008.
- 19. Ocasio-Delgado, Y. Thesis M.S. University of Puerto Rico, Mayagüez, Jul 2005.
- 20. Igartua-Nieves, E. Thesis MS. University of Puerto Rico at Mayagüez, Jul 2006.
- 21. Perrin, L. Maron, O. Eisentein, L.F. Lapert. New J. Chem, 2003, 27, 121-127.
- 22. Ocasio-Delgado, Y., Rivera-Rivera, L.A., Crespo-Roman, G., Cortés-Figueroa, J.E., Inorg. React. Mech. 2003, 5, 13-19.
- 23. Igartúa-Nieves, E.; Ocasio-Delgado, Y.; Cortés-Figueroa, J. E. J. Coord. Chem., 2007, 60, 449-456.
- 24. Balch A.L., Hao L., Olmstead M.M, Angew. Chem., Int. Ed. Engl. 1996, 35, 188.
- 25. Fagan P.J., Calabrese J.C, Malone B., Science 1991, 252, 1160.
- Balch A. L., Costa D.A., Olmstead M.M., *Chem. Commun.*, **1996**, 2449; H.-F. Hsu, S. R. Wilson and J. R. Shapley, *Chem. Commun.*, **1997**, 1125.
- Igartúa-Nieves, E.; Ocasio-Delgado, Y.; Torres-Castillo, María D. L. A.; Rivera- Betancourt, O.; Rivera-Pagán, J. A.; Rodriguez, D.; López, G. E.; Cortés- Figueroa, J. E. *Dalton Trans.* 2007, 1293-1299.
- 28. Langford, C.H., Moralejo, C., Sharma, D.K., Inorg. Chim. Acta 126, 1987, L11.
- 29. Yang, G.K., Vaida, V., Peters, K.S., Polyhedron 7, 1989, 1619.
- 30. McBane, G.C., J. Chem. Educ. 75, 1998, 919.
- 31. Simon, J.D., Xie, X., J. Phys. Chem. 93, 1989, 291.

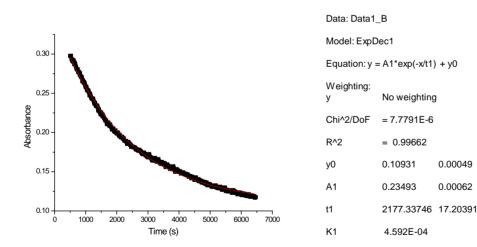

- 32. Xie X., Simon J.D., J. Am. Chem. Soc. 112, 1990, 1130.
- 33. Zhang S., Dobson G.R., Inorg. Chem. 29, 1990, 3477.
- 34. Zhang S., Dobson G.R., Polyhedron 9, 1990, 2511.
- 35. Brookhart M., Green M.L.H., J. Organomet. Chem. 250, 1983, 395.
- 36. Saillard J.-Y, Hoffmann R., J. Am. Chem. Soc. 106, 1984, 206.
- 37. Dobson G. R., Asali K.J., Cate C.D., Cate C. W., Inorg. Chem. 30, 1991, 4471.
- 38. Lewis K.E., Golden D.M., Smith G.P., J. Am. Chem. Soc. 106, 1984, 3905.
- 39. Graham G.R., Angelici R.J., Inorg. Chem. 6, 1967, 2082.
- 40. Morse J., Parker G., Burkey T.J., Organometallics 7, 1989, 2471.
- 41. Grim, S. O., Brigs, W.L., Barth, R. C., Tolman, C. A., Inorg. Chem. 13, 1974, 1095.
- 42. Shapley, J.R., Koefod, R. S., Xu, C., Lu, W, J. Phys. Chem., 1992, 96, 2928.
- 43. Alexander N. Chernega, Malcolm L. H. Green, Jane Haggitt and Adam H. H. Stephens, J. Chem. Soc., Dalton Trans., 1998, 755–767.
- 44. Li-Cheng S., Ying-Huai Z., Qing-Mei H., J. Chem. Research, 1999, 56.
- 45. Chatt J., Leigh G.H., Thankarajan N.. J. Organomet. Chem, 1971, 29, 105.

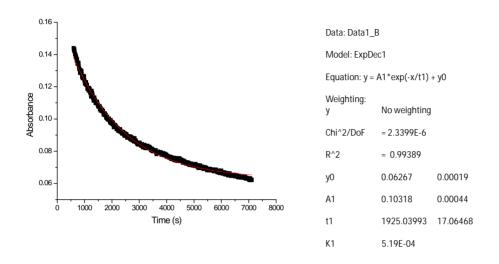
APPENDICES

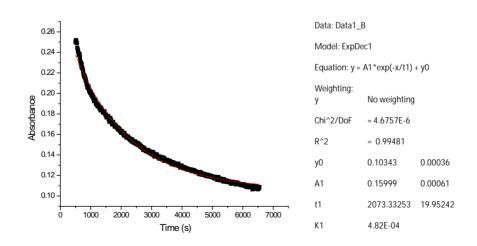

APPENDICES A

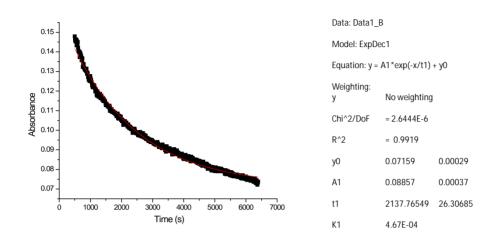
APPENDIX A-1 Plot of Absorbance versus time for the reaction of fac-(2 -C₆₀)(2 -phen)Cr(CO)₃ with the Lewis base Tri-phenylphosphine in Toluene

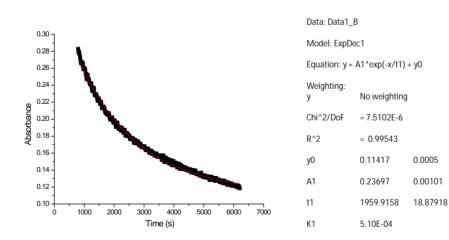


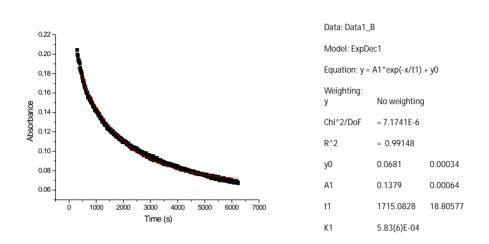

Plot of Absorbance versus time for the reaction of PPh3 (0.0519M) with $(^{2}-C_{60})(^{2}-phen)Cr(CO)_{3}$ in Toluene at 313.2 K


Plot of Absorbance versus time for the reaction of PPh3 (0.552M) with ($^{2}\text{-}\text{C}_{60}$)($^{2}\text{-}\text{phen})\text{Cr(CO)}_{3}$ in Toluene at 313.2 K

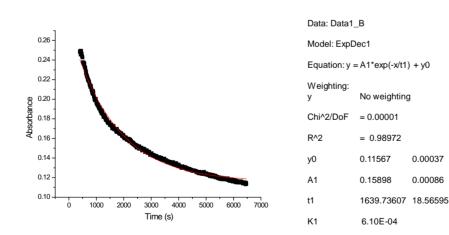

Plot of Absorbance versus time for the reaction of PPh3 (0.0966M) with $(^{2}-C_{60})(^{2}-phen)Cr(CO)_{3}$ in Toluene at 313.2 K


Plot of Absorbance versus time for the reaction of PPh3 (0.0589M) with $(^{2}-C_{60})(^{2}-phen)Cr(CO)_{3}$ in Toluene at 323.2 K

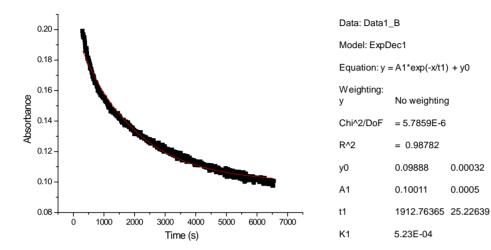

Plot of Absorbance versus time for the reaction of PPh3 (0.152M) with (2 -C₆₀)(2 -phen)Cr(CO)₃ in Toluene at 323.2 K



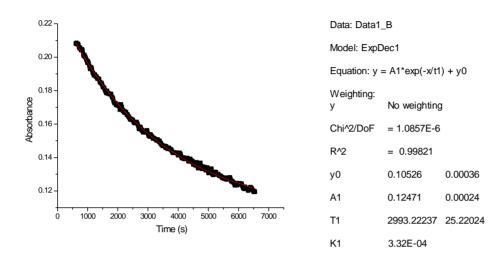
Plot of Absorbance versus time for the reaction of PPh3 (0.632M) with (2 -C₆₀)(2 -phen)Cr(CO)₃ in Toluene at 323.2 K


Plot of Absorbance versus time for the reaction of PPh3 (0.0461M) with $(^{2}-C_{60})(^{2}-phen)Cr(CO)_{3}$ in Toluene at 323.2 K

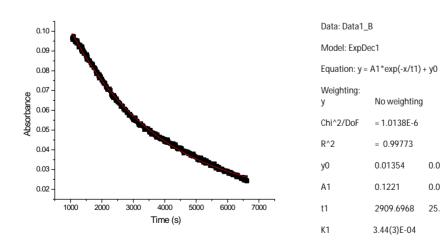
Plot of Absorbance versus time for the reaction of PPh3 (0.402M) with (²-C₆₀)(²-phen)Cr(CO)₃ in Toluene at 333.2 K and 500nm


Plot of Absorbance versus time for the reaction of PPh3 (0.611M) with (2 -C₆₀)(2 -phen)Cr(CO)₃ in Toluene at 333.2 K

0.00037


0.00086

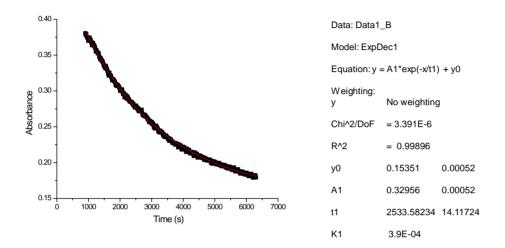
Plot of Absorbance versus time for the reaction of PPh3 (0.0461M) with (2 -C₆₀)(2 -phen)Cr(CO)₃ in Toluene at 333.2 K



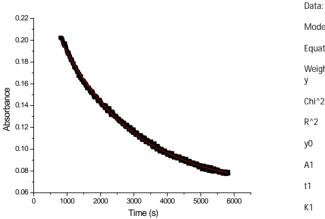
APPENDIX A-2 Plot of Absorbance versus time for the reaction of fac-(2 -C₆₀)(2 -phen)Cr(CO)₃ with the Lewis base Tri-phenylphosphine in Benzene

Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3(0.187M) in benzene at 303.2 K

Plot of Absorbance vs time for the reaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.541M) in benzene at 500nm and 313.2 K

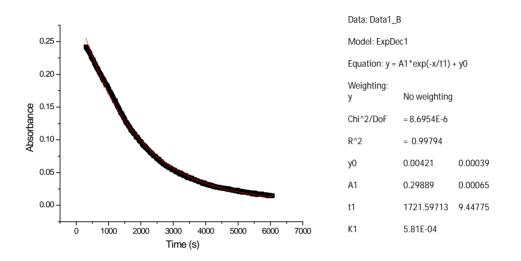


0.00033

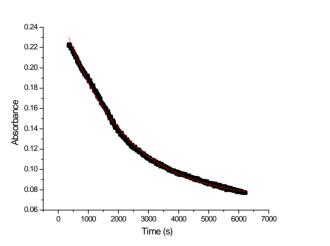

0.00025

25.29412

Plot of Absorbance vs time for the eaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.0516M) in benzene at 500nm and 313.2 K

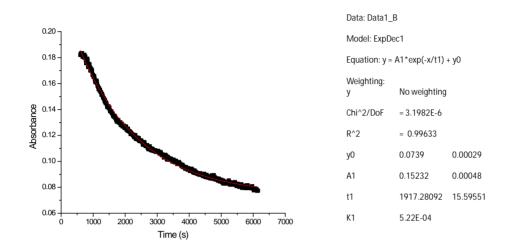


Plot of Absorbance vs time for the reaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.531M) in benzene at 500nm and 323.2 K

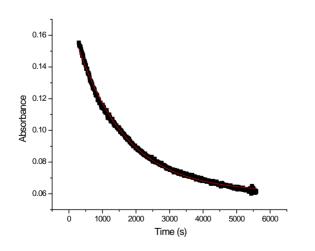


Data: Data1_B		
Model: ExpDec1		
Equation: y =	A1*exp(-x/t1)	+ y0
Weighting: y	Noweighting	
Chi^2/DoF	= 1.9791E-6	
R^2	= 0.99847	
уО	0.06398	0.00036
A1	0.19639	0.00038
t1	2220.9149	14.46871
K1	4.50E-04	

Plot of Absorbance vs time for the reaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.0517M) in benzene at 500nm and 323.2 K

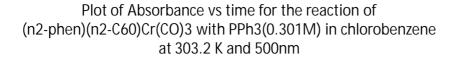


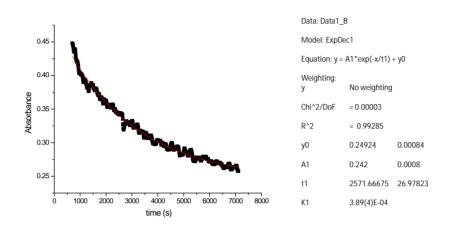
Plot of Absorbance vs time for the reaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.147M) in benzene at 500nm and 323.2 K

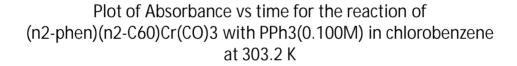


Data: Data1_B		
Model: ExpDec1		
Equation: y =	A1*exp(-x/t1)	+ y0
Weighting: y	No weighting	
Chi^2/DoF	= 4.2098E-6	
R^2	= 0.99754	
уО	0.06942	0.00033
A1	0.19079	0.00042
t1	2019.84727	13.14474
K1	4.95E-04	

Plot of Absorbance vs time for the reaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.207M) in benzene at 500nm and 333.2 K

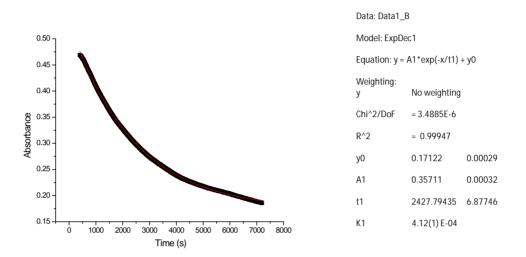


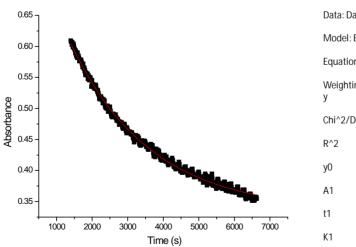

Plot of Absorbance vs time for the reaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.478M) in benzene at 500nm and 333.2 K

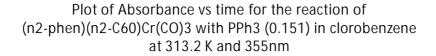


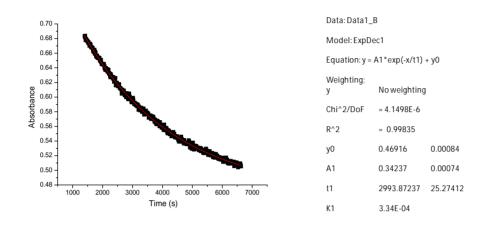

Data: Data1_	B	
Model: ExpDec1		
Equation: y =	A1*exp(-x/t1)	+ y0
Weighting: y	No weighting	
Chi^2/DoF	= 1.3612E-6	
R^2	= 0.99751	
у0	0.06095	0.00014
A1	0.11132	0.0003
t1	1457.80623	8.76029
K1	6.860E-04	

APPENDIX A-3 Plot of Absorbance versus time for the reaction of fac-(2 -C₆₀)(2 -phen)Cr(CO)₃ with the Lewis base Tri-phenylphosphine in chlorobenzene

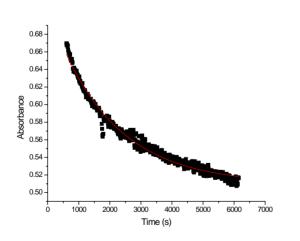




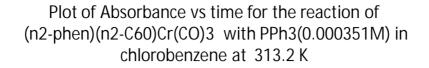

Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3(0.879M) in chlorobenzene at 303.2 K and 500nm

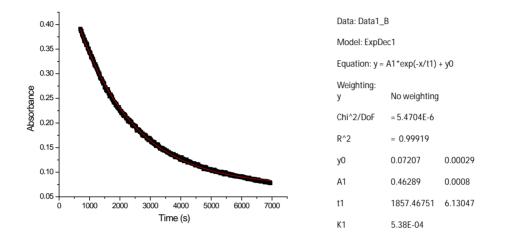


Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3 (0.272) in clorobenzene at 313.2 K and 355nm

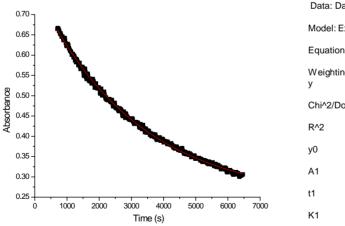


Data: Data1_B		
Model: ExpDec1		
Equation: y =	A1*exp(-x/t1)	+ y0
Weighting: y	No weighting	
Chi^2/DoF	= 0.00002	
R^2	= 0.99559	
у0	0.33428	0.00111
A1	0.50562	0.00289
t1	2238.59146	24.36114
K1	4.47E-04	

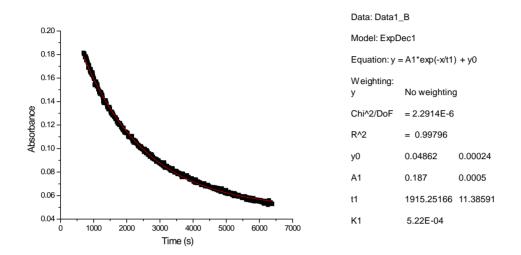




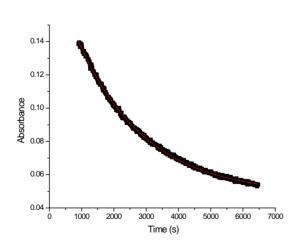
Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3 (0.149) in clorobenzene at 313.2 K and 355nm



Data: Data1_	В	
Model: ExpDec1		
Equation: y =	A1*exp(-x/t1)	+ y0
Weighting: y	No weighting	
Chi^2/DoF	= 0.00003	
R^2	= 0.98161	
y0	0.5097	0.00089
A1	0.2004	0.00147
t1	1951.34545	36.63571
K1	5.12E-04	

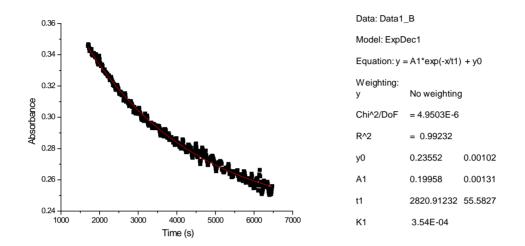


Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3(0.133M) in chlorobenzene at 313.2 K

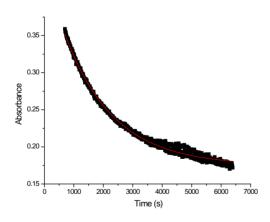


Data: Data1	_В	
Model: ExpDec1		
Equation: y	= A1*exp(-x/t1)) + y0
Weighting: y	No weighting)
Chi^2/DoF	= 0.00002	
R^2	= 0.9983	
y0	0.24434	0.0014
A1	0.52572	0.00093
t1	3052.04713	23.25659
K1	3.27E-04	

Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3(0.1.16E-03M) in chlorobenzene at 313.2 K

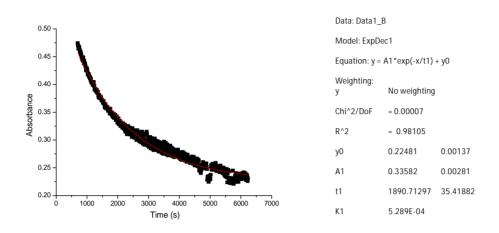


Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3(1.45E-03M) in chlorobenzene at 313.2 K

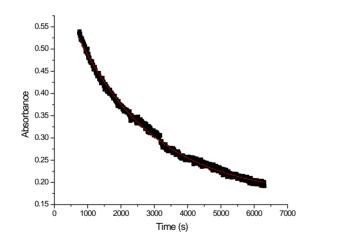


Data: Data1_B			
Model: ExpD	ec1		
Equation: y =	= A1*exp(-x/t1)) + y0	
Weighting: y	No weighting)	
Chi^2/DoF	= 5.9504E-7		
R^2	= 0.99894		
y0	0.04795	0.00015	
A1	0.14243	0.00029	
t1	2085.61169	9.72767	
К1	4.79E-04		

Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3(1.00M) in chlorobenzene at 313.2 K

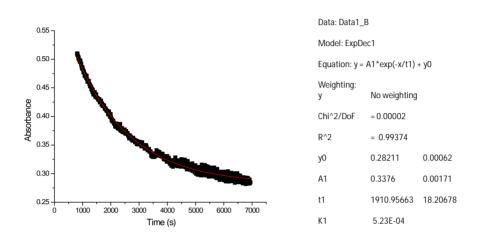


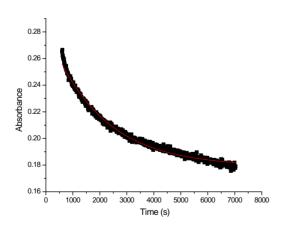
Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3 (0.0146M) in chlorobenzene at 323.2 K



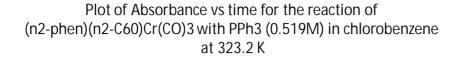
Data: Data1_B		
Model: ExpDec1		
Equation: y =	A1*exp(-x/t1)	+ y0
Weighting: y	No weighting	
Chi^2/DoF	= 0.00001	
R^2	= 0.99357	
у0	0.17488	0.00047
A1	0.26887	0.00147
t1	1665.43317	16.11422
K1	6.004E-04	

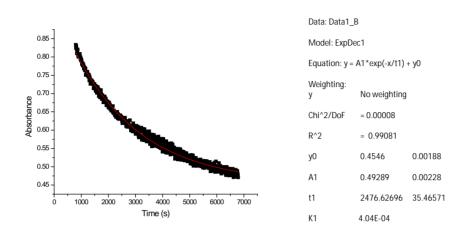
Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3 (0.0510M) in chlorobenzene at 323.2 K


Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3 (0.720M) in chlorobenzene at 323.2 K

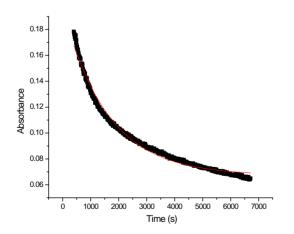

Data: Data1_B		
Model: ExpDec1		
Equation: y =	A1*exp(-x/t1)+	⊦ y0
Weighting: y	No weighting	
Chi^2/DoF	= 0.00003	
R^2	= 0.99606	
y0	0.16662	0.00131
A1	0.49191	0.00152
t1	2336.01008	22.96639
K1	4.281E-04	

80

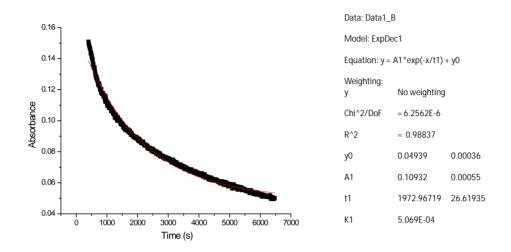

Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3 (0.309M) in chlorobenzene at 323.2 K



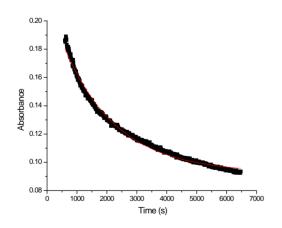
Plot of Absorbance vs time for the reaction of (n2-phen)(n2-C60)Cr(CO)3 with PPh3 (0.155M) in chlorobenzene at 323.2 K

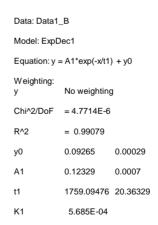


Data: Data1_B		
Model: ExpDec1		
Equation: y =	A1*exp(-x/t1)	+ y0
Weighting: y	No weighting	
Chi^2/DoF	= 4.1802E-6	
R^2	= 0.9895	
уО	0.1789	0.00027
A1	0.10396	0.00057
t1	1982.79619	23.85185
K1	5.04E-04	

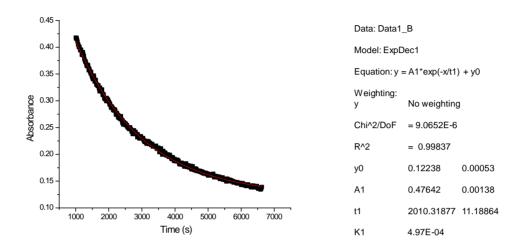


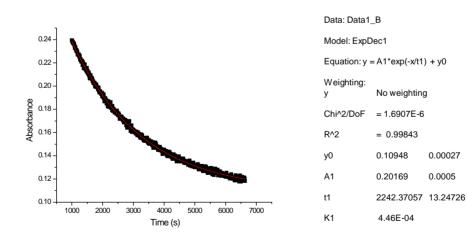
Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.241M) in chlorobenzene at 333.2 K


Data: Data1_B		
Model: ExpDec1		
Equation: y =	A1*exp(-x/t1)	+ y0
Weighting: y	No weighting	
Chi^2/DoF	= 6.2973E-6	
R^2	= 0.98892	
уO	0.06608	0.00029
A1	0.12296	0.00072
t1	1720.58103	20.29828
K1	5.81E-04	


Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.0679M) in chlorobenzene at 333.2 K

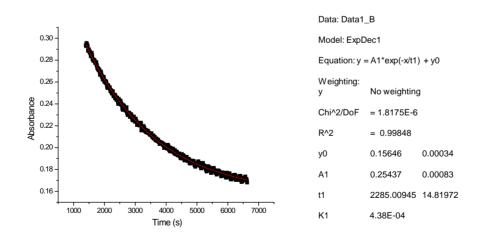
Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PPh3 (0.484M) in chlorobenzene

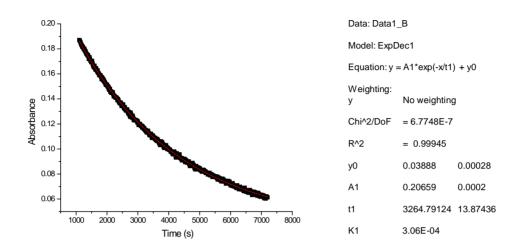


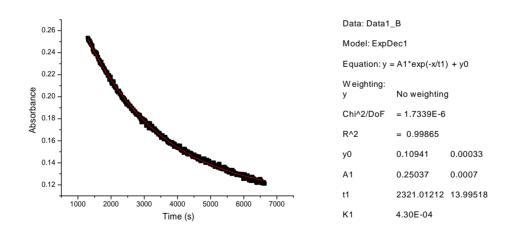


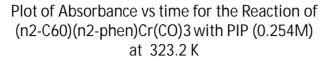
APPENDIX A-4 Plot of Absorbance versus time for the reaction of the ration between PPh₃ and C_{60} with *fac*-(2 -C₆₀)(2 -phen)Cr(CO)₃ in Chlorobenzene

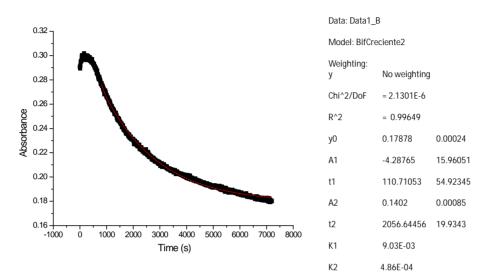

Plot of Absorbance vs time for a Ratio of 0.289 between C60(7.56E-04M) and PPh3(2.61E-03M) reacting with (n2-phen)(n2-C60)Cr(CO)3 in chlorobenzene at 313.2 K


Plot of Absorbance vs time for a Ratio of 0.556 between C60(1.26E-03M) and PPh3(2.26E-03M) reacting with (n2-phen)(n2-C60)Cr(CO)3 in chlorobenzene at 313.2 K

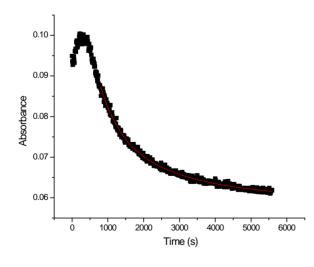

Plot of Absorbance vs time for a Ratio of 0.655 between C60(7.14E-04M) and PPh3(1.09E-03M) reacting with (n2-phen)(n2-C60)Cr(CO)3 in chlorobenzene at 313.2 K


Plot of Absorbance vs time for a Ratio of 0.885 between C60(1.0E-03M) and PPh3(1.13E-03M) reacting with (n2-phen)(n2-C60)Cr(CO)3 in chlorobenzene at 313.2 K

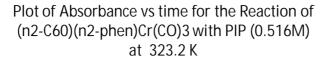

Plot of Absorbance vs time for a Ratio of 0.907 between C60(4.5E-04M) and PPh3(4.96E-04M) reacting with (n2-phen)(n2-C60)Cr(CO)3 in chlorobenzene at 313.2 K

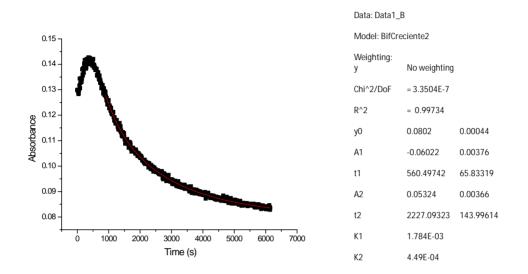


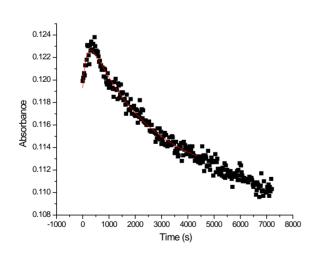
Plot of Absorbance vs time for a Ratio of 0.051 between C60(1.47E-04M) and PPh3(2.87E-03M) reacting with (n2-phen)(n2-C60)Cr(CO)3 in chlorobenzene at 313.2 K



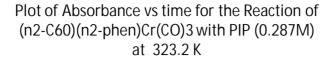
APPENDIX B Plot of Absorbance versus time for the reaction of fac-(2 -C₆₀)(2 -phen)Cr(CO)₃ with the Lewis base Piperidine in chlorobenzene

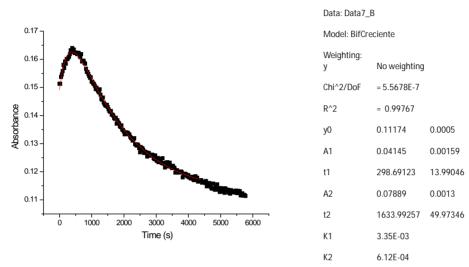


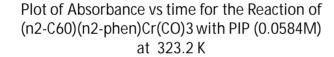

Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PIP (0.591M) at 323.2 K

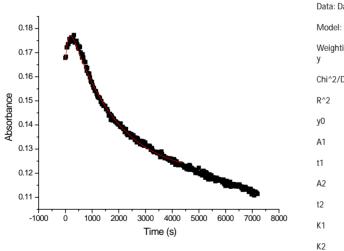

Data: Data1_B		
Model: BifCreciente2		
Weighting: y	No weighting	
Chi^2/DoF	= 1.9289E-7	
R^2	= 0.99501	
уО	0.05961	0.00052
A1	-0.05155	0.00194
t1	568.08042	55.01907
A2	0.02121	0.00286
t2	2340.38371	364.49388
K1	1.76E-04	
K2	4.27E-04	

89

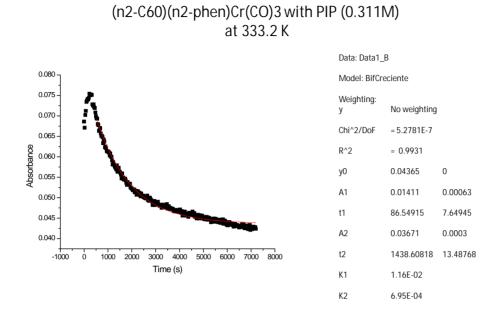


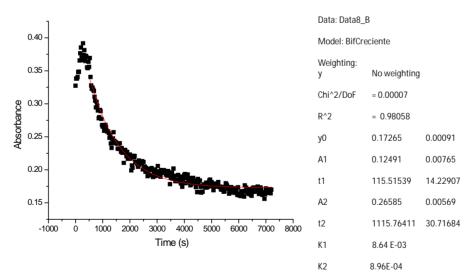



Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PIP (1.32M) at 323.2 K

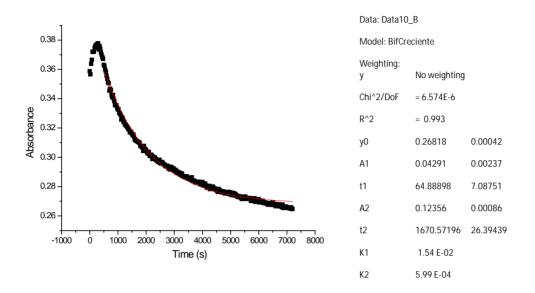


Data: Data14_B				
Model: BifCr	Model: BifCreciente			
Weighting: y	No weighting			
Chi^2/DoF	= 2.3425E-7			
R^2	= 0.97529			
у0	0.11091	0.00045		
A1	0.00573	0.00041		
t1	142.70537	20.90303		
A2	0.01411	0.00027		
t2	2413.30349	195.08419		
K1	7.01E-03			
K2	4.14E-04			



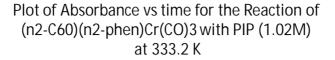


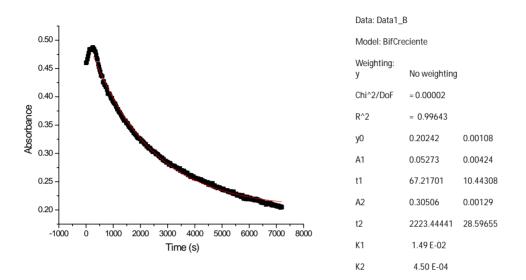
Data: Data3_B			
Nodel: BifCre	ciente		
Veighting:	No weighting		
hi^2/DoF	= 1.2476E-6		
R^2	= 0.99559		
0	0.11885	0.00051	
\1	0.02127	0.001	
1	108.29038	10.36633	
2	0.06933	0.00047	
2	1704.01265	42.11857	
(1	9.23 E-03		
2	5.87 E-04		

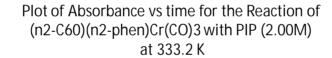


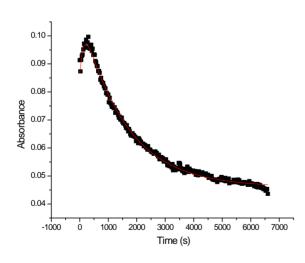
Plot of Absorbance vs time for the Reaction of

Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PIP (0.0434M) at 333.2 K

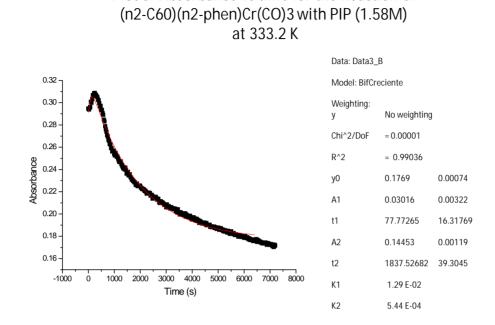

Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PIP (0.506M) at 333.2 K

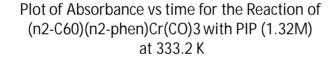


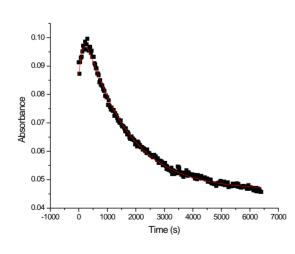

Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PIP (0.614M) at 333.2 K



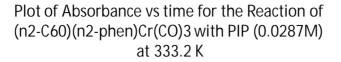
Data: Data13_B		
Model: BifCre	eciente	
Weighting: y	No weighting	
Chi^2/DoF	= 7.6514E-6	
R^2	= 0.99804	
уО	0.39451	0.00122
A1	0.02983	0.00243
t1	74.87647	11.6294
A2	0.25358	0.00091
t2	3107.44186	39.70729
K1	1.34 E-02	
K2	3.22 E-04	

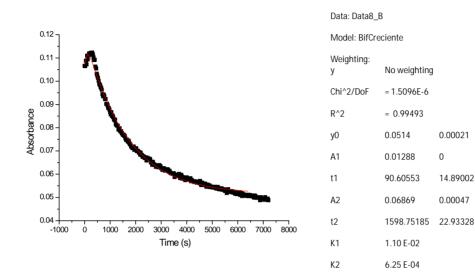


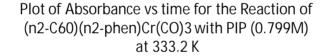


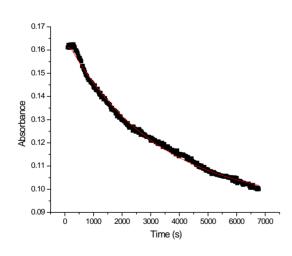


Data: Data1_B			
Model: BifCre	ciente		
Weighting: y	No weighting		
Chi^2/DoF	= 9.2644E-7		
R^2	= 0.99597		
y0	0.04605	0.00015	
A1	0.02281	0.00082	
t1	126.58715	9.22602	
A2	0.06367	0.0005	
t2	1530.69737	21.17491	
K1	7.90 E-03		
К2	6.53 E-04		

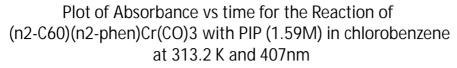


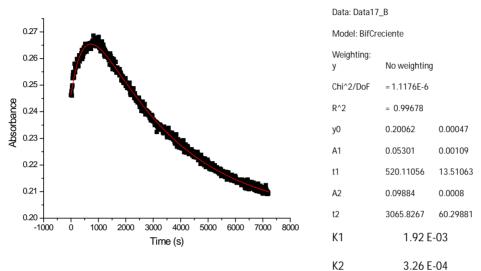

Plot of Absorbance vs time for the Reaction of

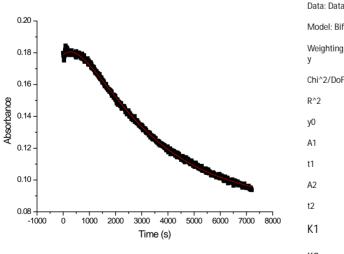




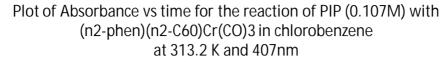
Data: Data1_B			
Model: BifCre	ciente		
Weighting: y	No weighting		
Chi^2/DoF	= 8.1755E-7		
R^2	= 0.99644		
уО	0.04638	0.00015	
A1	0.02335	0.00078	
t1	136.07335	9.21721	
A2	0.06413	0.00052	
t2	1493.02822	20.45014	
К1	7.35 E-03		
K2	6.70 E-04		

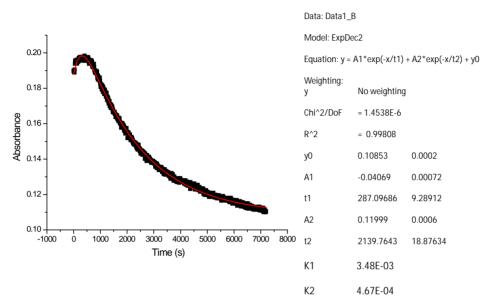




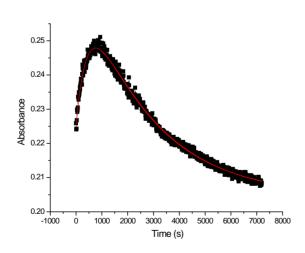


Data: Data10_B			
Model: BifCre	ciente		
Weighting: y	No weighting		
Chi^2/DoF	= 1.5724E-6		
R^2	= 0.9948		
уО	0.09336	0.00054	
A1	0.04063	0.1748	
t1	32.87984	43.78596	
A2	0.07207	0.00041	
t2	3150.66644	61.27574	
К1	3.04 E-02		
К2	3.17 E-04		

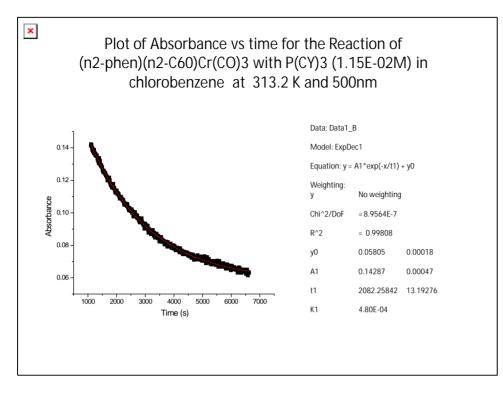




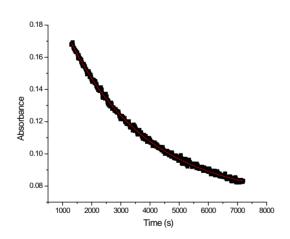
Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PIP (0.0552M) in chlorobenzene at 313.2 K and 407nm



Data: Data11	_B		
Model: BifCre	eciente		
Weighting: y	No weighting		
Chi^2/DoF	= 1.0291E-6		
R^2	= 0.99871		
y0	0.085	0	
A1	0.05306	0.00124	
t1	784.85776	18.73876	
A2	0.14686	0.00134	
t2	2765.25892	14.87993	
K1	1.27 E-03		
K2	3.62 E-04		

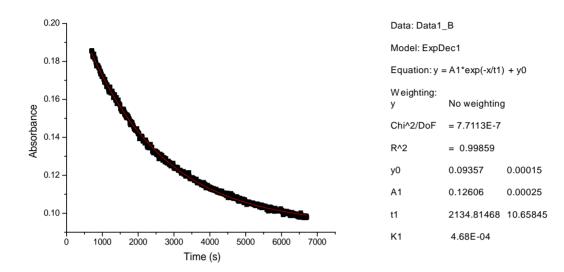


Plot of Absorbance vs time for the Reaction of (n2-C60)(n2-phen)Cr(CO)3 with PIP (1.99M) in chlorobenzene at 313.2 K and 407nm $_{_{Data: Data1_B}}$

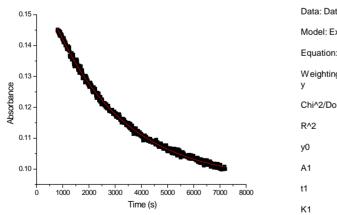


Model: BifCre	eciente		
Weighting: y	No weighting		
Chi^2/DoF	= 9.4019E-7		
R^2	= 0.99438		
уО	0.20472	0.00028	
A1	0.04931	0.00088	
t1	443.47216	10.88299	
A2	0.06989	0.00074	
t2	2583.82233	50.45775	
K1	2.25 E-03		
K2	3.87 E-04		

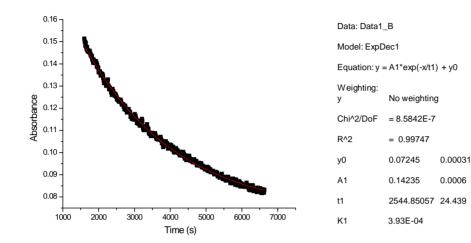
APPENDIX C Plot of Absorbance versus time for the reaction of the ratio between $P(Cy)_3$ and C_{60} with *fac*-(²-C₆₀)(²-phen)Cr(CO)₃ in Chlorobenzene



Plot of Absorbance vs time for the Reaction of (n2-phen)(n2-C60)Cr(CO)3 with P(CY)3 (0.103M) in chlorobenzene at 313.2 K and 500nm


Data: Data1_B			
Model: ExpDe	ec1		
Equation: y =	A1*exp(-x/t1)	+ y0	
Weighting: y	No weighting		
Chi^2/DoF	= 9.0868E-7		
R^2	= 0.99843		
у0	0.07215	0.00025	
A1	0.15671	0.00038	
t1	2698.31501	17.36945	
K1	3.70E-04		

Plot of Absorbance vs time for a ratio of 0.122 between C60(3.78E-04M) and P(CY)3 (3.09E-03M) Reacting with (n2-phen)(n2-C60)Cr(CO)3 in chlorobenzene at 313.2 K and 500nm


bv

Plot of Absorbance vs time for a ratio of 0.538 between C60(5.92E-04M) and P(CY)3 (1.10E-03M) Reacting with (n2-phen)(n2-C60)Cr(CO)3 in chlorobenzene at 313.2 K and 500nm

Data: Data1_B			
Model: ExpD	ec1		
Equation: y =	= A1*exp(-x/t1)	+ y0	
Weighting: y	No weighting	J	
Chi^2/DoF	= 3.2983E-7		
R^2	= 0.99788		
y0	0.09618	0.00012	
A1	0.06669	0.00014	
t1	2667.86297	17.7923	
K1	3.75E-04		

Plot of Absorbance vs time for a ratio of 0.261 between C60(5.92E-04M) and P(CY)3 (1.10E-03M) Reacting with (n2-phen)(n2-C60)Cr(CO)3 in chlorobenzene at 313.2 K and 500nm

APPENDIX D TABLES

Temp (K)	Concentration PIP (mol/L)	k _{obsd1} (10 ⁻³ s ⁻¹)	Average k _{obsd1} (10 ⁻³ s ⁻¹)
313.2	1.59	1.9(5)	2.24
	1.99	2.3(6)	
	0.107	3.5(1)	
	0.0552	1.27(3)	
323.2	0.254	9(3)	5.10
	0.591	0.18(2)	
	0.516	1.78(2)	
	1.03	7(1)	
	0.287	3.4(2)	
	0.0584	9.2(9)	
333.2	0.311	12(1)	13.3
	0.0434	8.6(1)	
	0.506	15(2)	
	0.614	13.0(2)	
	1.02	15(2)	
	2	7.9(6)	
	1.32	7.4(5)	
	1.58	13(3)	
	0.0287	11(2)	
	0.799	30(4)	

Table D.1 Values of k_{obsd1} for C_{60} displacement from *fac*-(²- C_{60})(²phen)Cr(CO)₃ by piperidine (pip) in chlorbenzene

Temp (K)	Concentration of pip (mol/L)	${k_{obsd2} \over (10^{-4} {s}^{-1})}$	Average k _{obsd2} (10 ⁻⁴ s ⁻¹)
313.2	1.59	3.26(6)	3.86
	0.107	4.67(4)	
	0.0552	3.62(2)	
	1.99	3.87(8)	
323.2	0.254	4.86(6)	4.96
	0.591	4.3(7)	
	0.516	4.5(3)	
	1.03	4.1(3)	
	0.287	6.1(2)	
	0.0584	5.9(1)	
333.2	0.311	6.95(7)	5.77
	0.506	5.99(9)	
	1.02	4.50(6)	
	0.614	3.22(4)	
	2.00	6.53(9)	
	1.58	5.44(1)	
	1.32	6.70(9)	
	0.0434	8.96(1)	
	0.799	3.17(6)	
	0.0287	6.25(9)	

Table D.2 Values of k_{obsd2} for C_{60} displacement from *fac*-(²- C_{60})(²phen)Cr(CO)₃ by piperidine (pip) in chlorbenzene

Temp (K)	Concentration of PPh3 (mol/L)	$k_{obsd} (10^{-4} \text{ s}^{-1})$	Average k _{obsd} (10 ⁻⁴ s ⁻¹)
303.2	0.100	3.05(2)	3.69
	0.301	3.89(4)	
	0.879	4.12(1)	
313.2	3.51E-04	5.38(2)	4.39
	1.16E-03	5.22(3)	
	0.133	3.27(3)	
	0.146	5.1(1)	
	0.151	3.34(3)	
	0.272	4.47(5)	
	1.00	3.54(7)	
	1.45E-02	4.79(2)	
323.2	0.0146	6.00(6)	4.98
	0.0510	5.29(1)	
	0.155	5.04(6)	
	0.309	5.23(5)	
	0.519	4.04(6)	
	0.720	4.28(4)	
333.2	0.0679	5.07(7)	5.52
	0.231	5.81(7)	
	0.484	5.69(7)	

Table D.3 Values of k_{obsd} for C_{60} displacement from *fac*-(²- C_{60})(²phen)Cr(CO)₃ by triphenylphosphine (PPh₃) in chlorbenzene

Temp (K)	Concentration of PPh3 (mol/L)	${{{k_{obsd}}}\atop{{\left({{10}^{{ m{-4}}}}{{s}^{ m{-1}}} ight)}}}$	$\begin{array}{c} Average k_{obsd} \\ (10^{-4} \text{ s}^{-1}) \end{array}$
303.2	0.187	3.32(3)	3.32
313.2	0.0516	3.95(2)	4.06
	0.146	4.80(6)	
	0.548	3.44(3)	
323.2	0.531	4.50(3)	5.09
	0.0517	5.81(3)	
	0.147	4.95(3)	
333.2	0.207	5.22(4)	6.04
	0.478	6.86(4)	

Table D.4 Values of k_{obsd} for C_{60} displacement from *fac*-(²-C₆₀)(²phen)Cr(CO)₃ by triphenylphosphine (PPh₃) in benzene

Table 5 Values of k_{obsd} for C_{60} displacement from *fac*-(2 - C_{60})(2 phen)Cr(CO)₃ by tri-phenylphosphine (PPh₃) in toluene

Temp (K)	Concentration of PPh3 (mol/L)	(10^{-4} s^{-1})	Average k _{obsd} (10 ⁻⁴ s ⁻¹)
303.2	0.0569	3.04(2)	3.04
313.2	0.0519	4.65(4)	4.09
	0.552	3.03(4)	
	0.0966	4.59(4)	
323.2	0.0589	5.19(5)	4.95
	0.152	4.82(5)	
	0.632	4.67(6)	
	0.0461	5.10(5)	
333.2	0.0461	5.23(7)	5.72
	0.402	5.83(6)	
	0.611	6.10(7)	