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The advent of single pixel imaging brings the promise of lower sensor costs and higher 

efficiency by implementing spatial compression at the same time the image is sensed. This is 

achieved with the use compressed sensing (CS) principles and digital micro-mirror devices. 

Remote sensing systems with hyper spectral imaging capabilities could benefit greatly from 

sensor cost reduction and more computationally efficient compression techniques. However in 

order to analyze the image captured with a single pixel camera it must first be reconstructed, 

which is a computationally intensive process. Typical remote sensing applications like 

surveillance or target detection where a large number of images have to be analyzed, most of 

which will show to be of no great interest after the fact, are ill suited for these imaging systems 

as most of the time would be spent reconstructing images that will later prove to be of low 

significance. 

In an effort to bring the benefits promised by single pixel imaging closer to these applications the 

present work develops the theory, design and implementation of CS on hyper spectral imaging. 

Progressive implementations of CS are performed on images, starting with spectral compression, 

followed by spatial compression and culminating with the proposal of a spatial CS 

implementation that allows recursive 2 stage reconstructions. 
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The proposed system can be implemented on single pixel cameras while reducing the amount of 

computing power and time required by plain CS implementations to perform image 

reconstruction. The introduction of a partially recovered image also allows for a preliminary 

analysis of the image, allowing applications to determine if the image needs any further analysis 

before engaging in full image reconstruction. The partially reconstructed image is an 

arrangement of the measurements from spatially compressed image sections. The final 

compression stage can tackle each section as a separate image to be reconstructed; this is 

achieved using a structured measurement matrix. 

The following chapters provide tests and experiments that compare processing times, 

classification statistics and error rates that point towards the systems practicality, making it an 

interesting option for signals with high data volumes like those found in hyper spectral imaging.  
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La implementación de cámaras de un pixel trae consigo la promesa de reducciones en los costos 

de los sensores y una mayor eficiencia gracias a que comprimen la imagen espacialmente al 

mismo tiempo que hacen el sensado de la misma. Esto se logra gracias a la aplicación de los 

principios de compressed sensing (CS) con el uso dispositivos de micro-espejos digitales. 

Sistemas de sensado remoto que capturan imágenes híper espectrales podrían beneficiarse 

enormemente de una reducción en los costos de los sensores y de técnicas de compresión más 

eficientes. Sin embargo el uso de un solo pixel hace necesaria la reconstrucción de la imagen 

capturada antes que esta pueda ser analizada, lo cual es un proceso computacionalmente intenso. 

Aplicaciones típicas de sensado remoto como vigilancia o detección en las cuales un alto número 

de imágenes tienen que ser analizadas, la mayoría de las cuales mostraran ser de poco interés 

luego del hecho, hacen poco práctico el uso de este tipo de sistemas debido a que los mayores 

esfuerzos se harían reconstruyendo imágenes que terminaran siendo de poco significado. 

En un esfuerzo por acercar los beneficios prometidos por las cámaras de un pixel a dichas 

aplicaciones el presente trabajo escrito desarrolla la teoría, diseño e implementación de CS en 

imágenes híper espectrales. La implementación de CS en imágenes se hace de forma gradual, 

empezando con la compresión espectral, seguida de compresión espacial y culminando en la 
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propuesta de una forma de compresión espacial que permite reconstrucción recursiva de la señal 

en dos fases. 

El sistema propuesto pude implementarse en cámaras de un pixel al mismo tiempo que se reduce 

el tiempo y poder computacional requerido pata reconstruir las imágenes. La introducción de una 

imagen parcialmente reconstruida permite que se haga un análisis preliminar de la imagen, de 

manera que las aplicaciones puedan decidir si la imagen requiere un análisis más detallado antes 

de embarcar en el proceso de reconstrucción completa de la imagen. La reconstrucción parcial es 

un arreglo hecho con las mediciones tomadas de la compresión espacial de secciones de la 

imagen. La etapa de reconstrucción final puede procesar cada una de las secciones como una 

imagen independiente, esto se logra con una matriz de medición estructurada. 

Los capítulos siguientes presentan la teoría, pruebas y resultados comparando los tiempos de 

procesamiento, estadísticas de clasificación y tasas de error que indican que tan práctico es el 

sistema, volviéndolo una opción interesante para señales con altos volúmenes de datos como los 

encontrados en imágenes híper espectrales. 
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1. INTRODUCTION 

1.1 Motivation 

Spectral imaging systems capture light in tens or hundreds of narrow contiguous spectral bands, 

constructing an image for each one. These bands provide additional information on the materials 

in the image, making them ideal for a wide range of classification applications in fields like 

agriculture, geology, biology, and surveillance among many others. 

Signal processing algorithms analyze the data from spectral imaging systems in order to distil 

specific information tailored to an application, such as mapping out the materials in the image, or 

pointing out a target. While more data helps algorithms reach better conclusions by providing 

additional information, the increase in data also means they will have to work harder sifting 

through it and drawing the spectral and spatial relations in the data before presenting the desired 

information. Aside from the limitations imposed from the large data sets, another hurdle in the 

proliferation of spectral imaging is the high costs of the sensors, making sensors that can capture 

larger regions of the spectrum several times more expensive than regular imaging sensors with 

the same spatial resolution. 

Imaging systems that only use a single pixel sensor (instead of a sensor array) while performing 

spatial compression of the image at the sensing stage have been developed with the use of digital 

mirror devices (DMD) and compressed sensing (CS) techniques [2]. These are referred to as 

single pixel cameras and Figure 1-1 illustrates the main blocks used in the implementation 

described in [2]. Single pixel imaging starts like conventional imaging systems by capturing light 

from the objects in the camera field. The light beams that reach the camera are focused on the 

DMD’s by an optical array. The DMD’s then switch on or off so they reflect or deflect the 
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desired pixels towards or away from another optical array that focuses the beams on the single 

pixel sensor. The result is a measurement that corresponds to the sum of the reflected pixels. The 

only additional computation required is that used to store and execute the DMD’s switching 

order and timing. 

 
Figure 1-1 Single Pixel Camera layout [2]. 

 

The use of a single pixel sensor would reduce the cost in hyper spectral imaging applications, 

and the simultaneous sensing and compression of the signal would facilitate its storage and 

transmission in remote sensing applications where the sensor (i.e. an imaging satellite) has 

limited processing capabilities due to hardware and power restrictions. 

CS theory is behind image reconstruction from a series of pixel measurements, making single 

pixel imaging possible. CS is a lossy compression method as the recovered image is an 

approximation of the original, the quality of the recovered image is affected by the number of 

measurements used for reconstruction and the selection of a basis on which to represent the 

image. The approximation is the result of an optimization problem that is solved with the help of 

linear programing algorithms. This process is computationally intensive, but has to be performed 

before any analysis on the image content can be made because the measurements do not present 

DMD Object 

Optics 

Single Pixel Sensor 

Reflected Beams 

Deflected Beams 
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any of the image’s spatial information. The time needed to solve the optimization problem and 

reconstruct the image makes implementing CS in applications oriented towards image analysis 

such as classification or target detection less attractive, especially when the application requires 

the system to process a stream of images. 

An example of an application ill-suited for single pixel imaging would be RS, HSI surveillance 

systems (i.e. a satellite scanning the oceans in search of boats) in which many images have to be 

analyzed, most of which are not of large interest (images of open sea without any boats). 

Therefore most of the extensive computation invested in image reconstruction would be wasted 

on images that are not of interest to the final user. 

Another way to implement CS in said application and keep the pixels from mixing, thus 

preserving the spatial information is compressing the spectral signatures along the individual 

pixels. This approach would allow some analysis of the image content before having to invest in 

its reconstruction, while still allowing a more detailed analysis to be made by decompressing the 

spectral information. However it does not allow for the use of a single pixel sensor, and 

combining the spectrographs components would increase the cameras complexity. 

A single pixel imaging scheme with a two stage reconstruction is presented in hopes of reducing 

the amount of processing needed before being able to analyze the image. The method introduces 

a partial reconstruction of the image that is less computationally intensive to reach than full 

reconstruction. This partial reconstruction should allow image classification to be performed in 

an effort to peer into the image content and determine if the image is of interest. If the partial 

analysis determines the image worthy of being analyzed in greater detail it should possible to 

fully reconstruct the image from the partial reconstruction through additional processing. 
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1.2 Outline 

In order to understand many of the concepts dealt with in the present document a brief 

introduction to the related subjects is given in the following chapter “Background and Literature 

Review”, including the areas of: Hyper spectral Imaging, Compressed Sensing and 

Classification. After the reader has been presented with the knowledge needed to understand the 

proposed two stage reconstruction scheme and its implications the objectives are numbered to 

clarify the goal of the thesis in the “Objectives” chapter. The reader is then presented with a 

chapter of “Implementation” where the stages required for the satisfactory completion of the 

objectives are numbered and described in detail. The “Results” chapter is divided into sections 

that mirror those in the previous chapter, displaying the outcome of the experiments proposed for 

each of the stages of execution. The final chapter “Conclusions and Future Work” is where the 

results are analyzed to produce a series of points relating the different variables and the system’s 

efficiency, as well as, humbly giving a direction for further development and improvement. 
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2. BACKGROUND AND LITERATURE REVIEW 

This chapter presents fundamental concepts, and the review of previous work pertinent to this 

research. The concept of hyper spectral imagery is described, as well as compressed sensing, 

discrete cosine and wavelet transforms, and classification methods. 

2.1 Hyper spectral Imaging 

The human eye can capture and translate visible light into electrical signals; similarly spectral 

imaging systems register the information from a larger number of the electromagnetic spectrum’s 

frequency bands and convert it to electrical signals [16]. These bands provide additional 

information on the objects in the sensor’s field of view. Different materials reflect, absorb, 

transmit and emit electromagnetic radiation in distinct patterns according to their composition; 

these patterns can be registered by the sensor and later be used to identify them or discriminate 

among them. The sensors capability to capture more and narrower bands will affect the ability to 

distinguish the materials present in the image. Figure 2-1 illustrates the different spectral imaging 

types according to the number of bands captured; ranging from panchromatic that has a single 

but wide band, multispectral that has several to tens of bands, to hyper spectral containing 

hundreds of narrow bands. 

Therefore spectroscopy imaging can be defined as the image acquisition of a scene or object, 

where each pixel in the image has a spectral radiance given by the amount of radiation (energy) 

arriving at the sensor at a given frequency or wavelength. The data captured is arranged in a cube 

whose face is the spatial coordinates (image captured at a certain frequency or band) and depth is 

the spectral information as shown in Figure 2-2. 



8 

 

 
Figure 2-1 Types of spectral imaging and electromagnetic bands by wavelength (Near Infra-Red; Short, 

Medium and Long, Wave Infra-Red). 

 

 
Figure 2-2 Hyper spectral data cube deconstruction. 

 

Given the higher number of bands and therefore of data in hyper spectral images (HSI), it would 

be the type of spectral imaging that would benefit the most from an efficient compression 

scheme. For that reason it becomes the main target of this document. Among HSI applications, 

remote sensing (RS) has benefited from an increased level of attention in the last decades due to 

its potential to capture objects or properties on the earth’s surface using sensors located on 

aircraft or satellites. The sensors elevation gives RS systems a larger field of view, characterizing 
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large expansions of land in a single image, making it ideal for applications in agriculture, 

mineralogy, surveillance and meteorology. 

HSI has three main characteristics: the spatial resolution that determines the spatial size of the 

pixels in the image, the spectral resolution that is the wavelength width of the different frequency 

bands recorded by the sensor, and the radiometric resolution that could be described as the 

sensors sensitivity; some prominent examples of RS, HSI and their characteristics are listed in 

Table 2-1. 

Hyper Spectral Sensor: AVIRIS HYDICE HYPERION 

Spectral Range (nm) 400-2500 400-2500 400-2500 

Spectral Resolution (nm) 10 10 10 

Spectral Samples (bands) 224 210 220 

Spatial Resolution (m) 20 1-4 30 

Radiometric Resolution (bits) 12 16 16 
Table 2-1. Examples of Hyper Spectral Sensors and their imaging capabilities. 

 

Most remote sensing spectral imaging systems build up the image cube by scanning through it 

spatially. There are four conventional methods to scan through the cube: line, whiskbroom, push-

broom and filter, the first 3 are shown in Figure 2-3. 

 
Figure 2-3 Scanning methods [16]. 

 

A single pixel camera like that shown in Figure 1-1 could capture the image as if a conventional 

imaging sensor array was being used, removing the need to scan the image mechanically. 
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2.2 Compressed Sensing 

"It is vain to do with more what can be done with fewer" 

William of Ockham 

The Nyquist-Shannon sampling theorem establishes that in order to avoid frequency aliasing and 

guarantee correct reconstruction of a bandlimited signal the sampling frequency used must be at 

least twice that of the highest frequency component present in the signal [25]. In today’s digital 

world it has become ubiquitous in signal acquisition protocols used in consumer audio and visual 

electronics, medical imaging devices, radio receivers, and many others. It In the case of signals 

such as images that are not naturally bandlimited it plays an implicit role in the selection of an 

antialiasing low-pass filter to bandlimit the signal before sampling. However, no matter the 

source or signal type, if the signal is to be compressed, i.e. to facilitate storage, transmission or 

manipulation, large amounts of the data collected at the sensor will only be discarded at the 

compression stage. The main reason behind these implications is that sensing is traditionally 

done in a uniform manner, so a signal with size   would require   samples from one or more 

sensors (cases where the samples are temporally or spatially sensed respectively). These 

traditional sampling schemes have proven to be inefficient as they capture more data than 

information, and lead to signals with higher dimensionality (number of samples required). 

Compressed Sensing or Sampling (CS) uses non-adaptive (non-signal dependent), efficient, 

sensing protocols designed to capture and condense the useful information in a sparse signal by 

correlating it with a measurement matrix   [10]. 
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The output of a CS system is a series of measurements    or lineal combinations of the signals 

original   samples (   ) obtained as: 

        

     

      
Eq. 2-1 

The dimensions of   are:    , where   is the number of columns in   or measurements, and 

  is the length of the columns and corresponds to the length of the signal. The Research in CS 

establishes that the minimum value of   is proportional to the: sparsity level of the signal, as 

well as to the coherence of the measurement matrix ( ( )  √       |    |). Recovering the 

exact signal from the   measurements is not a trivial matter as CS constructs an 

underdetermined set of equations that are solved by means of linear programing. 

When reconstructing non-sparse signals from its measurements CS will only be able to recover 

an approximation of the signal. This approximation corresponds to the signals   largest 

coefficients when represented on a basis chosen before reconstruction. The value of   is 

proportional to the number of measurements taken for signal reconstruction, a larger number of 

measurements means that the approximation will include more coefficients and will therefore be 

closer to the original signal. CS is therefore a form of lossy compression, and the reconstruction 

error is related to the number of measurements, as well as the basis chosen to represent the 

signal. A basis that concentrates the signal in fewer coefficients will achieve a better 

approximation because the S highest coefficients will include more of the signal. An adequate 

basis is one that achieves a sparse representation of the signal, which is why it is referred to as 

the sparsifying basis. 
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By knowing which sparsifying basis will be used for reconstruction, and having some knowledge 

on the signal, it is possible to determine the minimum number of measurements needed to have 

the reconstruction fall within a vicinity from the original signal. This minimum measurement 

requirement places a roof on the level of compression that can be achieved. However, being able 

to estimate beforehand how close the reconstructed signal will be means applications like 

classification can anticipate the information loss, and determine (theoretically or by 

experimentation) if the available number of measurements would reach a reconstruction that 

allowed the analysis algorithms to reach the expected results. 

 The relation between the number of measurements, the recovered approximation and the 

sparsifying basis will be expanded on in Section 2.6, it is worth mentioning that CS literature has 

shown that a random binary measurement matrix with a Gaussian distribution is practical 

because it behaves similarly with any fixed sparsifying basis while also being signal 

independent. 

In spite of the prospect of losing signal information and the computational requirements for 

signal reconstruction the use of measurements instead of samples (implementing CS) has a series 

of intrinsic advantages [46] that have lead researchers to continue to develop the subject. These 

advantages are: 

 Signal independent compression that can be built into the sensor stage as demonstrated 

by the implementation of single pixel camera [2]. 

 Sampling complexity is reduced, making it easier to implement in remote systems with 

limited processing power. 
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 It is possible to estimate the minimum number   measurements required for the 

approximation to be within a desired range of the original signal, while allowing the 

reconstruction to improve with additional measurements further reducing the level of 

error. 

 Measurements are “democratic” [46]; each one carries roughly the same amount of signal 

information so they are equally important or un-important (i.e. unlike compression 

schemes such as Principal Component Analysis (PCA) where losing one of the 

coefficients with higher information content will greatly impact the reconstructed signal). 

 The reconstruction algorithms are flexible and independent of the acquisition process. 

Several sparsifying basis can be chosen to formulate the signal reconstruction equations, 

posing an optimization problem that can be solved with various linear programing 

algorithms. 

2.3 Signal Sparsity 

A sparse signal has very few values that are different from   this translates into the signal having 

a large amount of data (number of samples) with very few of them containing useful information 

(as most are  ). Sparse signals are very convenient in the field of digital signal processing as it 

reduces the number of operations that have to be realized when operating on the signal (sums and 

multiplications that involve samples with value   can be ignored or shortcut). Sparse signals also 

make information extraction and analysis easier because the relevant information is condensed in 

very few samples. 

A great number of linear operations and methods can be easily implemented to remove the 

redundant data without losing the information contained in the signal, thus sparsity allows for 
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signals to be compressed and in general the sparser the signal the more it can be compressed (and 

later fully recovered satisfactorily). To illustrate this concept we present a trivial form of 

compression that represents the signal with only the relevant values and its positions (sample 

number). If a signal is sparse this can be done with very few values as most are known to be   or 

negligible by its very definition; furthermore as the signal’s degree of sparsity increases the 

amount of data required for a good representation is reduced. However this type of compression 

is signal dependent, deeming it impractical for many applications.  

A natural mathematical measurement of a signal’s level of sparsity is its   norm (  ) for small 

values of   as defined in [6] and [44]: 

‖ ‖  (∑|  |
 

 

)

 
 

 

     

  ‖ ‖    

      

Eq. 2-2 

 

In CS literature, a signal’s level of sparsity is normally measured using the    “norm” as defined 

by Donoho, it is a pseudo norm and is referred to in some literature in quotation marks as it does 

not satisfy the more severe requirements of a norm
1
, here however we will shed their use. It is 

shown in the following equation as described in [6]: 

‖ ‖  
 ∑|  |  

 

   

 

       

|  |  
 {

      
      

 
Eq. 2-3 

 

Real life signals, like those taken by a microphone, camera or wireless communication system 

are not sparse in the high dimension sampling base, but if they possess some low dimensional 

                                                 
1
 The strict mathematical definition of the    norm was established by Banach's Theory of Linear Operations. 
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structure, that is, they lie on or near low-dimensional subspaces, sub-manifolds, or stratifications 

they can be represented or decomposed sparsely in some other basis [35]. This phenomenon is a 

generalization of the uncertainty principle which originally relates signals sparsity in the time 

and frequency domains, establishing that the same signal can not be band-limited in both time 

and frequency domains. A textbook example of this is the ideal Dirac delta or Spike; it is the 

sparsest signal imaginable in the time domain but spans evenly along the entire frequency 

domain. 

The field of digital signal processing has benefited greatly of the fact that whole categories of 

signals of great interest in engineering applications have sparse representations on fixed basis 

that are easily reached by means of linear transforms (i.e. Fourier or Wavelet transforms) and 

whose algorithms have reached a point of high efficiency and have been adapted to better serve 

specific applications and signal types [52]. 

2.4 Signal Decomposition and Sparse Representations 

A signal can be decomposed or expressed as a linear combination of expansion functions or 

waveforms   . This can be expressed mathematically in the following form: 

 ( )  ∑      ( )

 

   

 Eq. 2-4 

 

Decomposing a signal gives us a different view of the signal, revealing certain characteristics 

that lay hidden beneath all the original data. The coefficients   ( ) assigned to each of the 

waveforms indicate how dominant that waveforms structure is in the signal, a basis that is well 

paired with the signal’s inherent characteristics will require a small or sparse set of coefficients 

  ( ), thus facilitating its analysis. 
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A signal will rarely have a representation where most coefficients are exactly  , which means the 

definition for sparse representation has to be broadened to include signals whose coefficients 

decay rapidly after being sorted by magnitude. This means the smallest ones can be discarded 

using only the largest to reconstruct an approximation of the original signal without generating 

large levels of error. 

In order to express a signal as in Eq. 2-4 the sequence of waveforms {  } must form a frame of 

the vector space of   that also contains them (    ). This guarantees that any arbitrary 

element   of the vector space (    ) can be reconstructed as: 

  ∑     

 

   

 Eq. 2-5 

 

In mathematics a frame is a set of vectors {  } that span   (if it does not span   there will be at 

least one   that is orthogonal to every {  }), however for it to be considered a frame {  } must 

satisfy for any   of   the properly called “frame condition” which was established in 1952 by 

Duffin Schaeffer and is described as follows: 

 ‖ ‖  ∑|〈 |  〉|
 

 

   

  ‖ ‖  

 

           
       

        

Eq. 2-6 

 

If the elements in the frame are also linearly independent it is considered a base, which is a 

specific type of frame that guarantees a unique set of coefficients    for each  . The trivial basis 

matrix for a   dimensional signal is the identity matrix  , this is often referred to as the standard 

basis, natural basis, canonical basis, or sampling basis. This last one is due to the fact that it can 

be used to represent the process of signal sampling by using translated Dirac functions as 

waveforms to indicate the signals value when sampled (i.e. sampling in time) as follows: 
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Eq. 2-7 
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2.4.1 Fixed Complete Ortho-Normal Basis 

Different types of data have come to be associated to bases that have proven to be effective at 

information extraction of that type of data (achieving a sparse representation). In this document 

we are concerned with imaging, which is normally associated to discrete cosine transform (DCT) 

and discrete wavelet transforms (DWT). The sparse representations will be used to reconstruct 

the images as will be shown later when describing the CS implementation. 

Discrete Cosine Transform 

The Discrete Cosine Transform (DCT), was introduced by Ahmed, Natarajan and Rao in 1974 

[29] and since then it has become one of the most known and used transforms in digital signal 

processing of image data, particularly image compression [30]. The DCT is a Fourier related 

transform because like the Discrete Fourier Transform (DFT) it uses sinusoids oscillating at 

different frequencies as waveforms, but unlike the DFT which uses both cosine and sine 

functions (as complex exponentials) to approximate the signal, the DCT uses only cosine 

functions (real component of the complex exponentials). 

One of the main uses of the DCT is image compression and coding as it has a strong “energy 

compaction” property that locates the larger coefficients at the low frequency components of the 

basis [53]. The two dimensional DCT measures the correlation of the neighboring pixels in both 



18 

 

horizontal and vertical direction, unlike the one dimensional DCT. This makes the two 

dimensional DCT separable into one dimensional DCTs by first transforming the rows (columns) 

of the data matrix and then transforming the columns (rows) of the semi-transformed matrix 

[33]. 

Discrete Wavelet Transform 

Fourier analysis of a signal gives us a signal’s frequency content, describing stationary or 

periodical signals efficiently. However because it decomposes the signal into long (ideally 

infinite) cosine signals, when the signal has brief variations in time it is not the best fit as these 

signal characteristics become invisible. It is impossible to tell when an event took place by just 

looking at the Fourier transform of a signal [35]. Fourier analysis is therefore ill suited for 

signals with abrupt changes such as fingerprint images. The Short Time Fourier Transform 

(STFT) solves this inconvenience through the use of a smaller Fourier transform that slides along 

the signal (technique known as windowing). The STFT has a fixed window size, which means its 

resolution in time and frequency is fixed. The next logical step is to implement a windowing 

technique with variable window sizes. This makes wavelet analysis capable of showing trends, 

breakdown points, discontinuities in higher derivatives and self-similarity within the signal [35]. 

Because the discrete wavelet transform (DWT) is a linear transformation it can be just as easily 

described as a transformation matrix - signal vector product, and to generate the transformation 

matrix we use the method proposed by the authors of [26] where they describe a DWT that can 

be constructed from smaller filter matrices described in Eq 2-8 to 2-10. 
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Eq. 2-9 
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Eq. 2-10 

 ( )  [

 (  )      (  )  (  )

 (  )  (  )  (  )    (  )  (  )
       
      (  )  

] 
( ) 

 

Even though the authors present even more efficient ways of performing the DWT by arranging 

the individual operations in a recursive fashion, we will use this initial recursion described above 

as our sole interest is the DWT transformation matrix. As was the case with the DCT before, the 

possibility of representing the DWT as a matrix vector operation makes its application to regular 

CS reconstruction algorithms straight forward. 
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2.4.2 Over-complete Basis 

A spike is a signal that is maximally sparse on the sampling base, but when converted a Fourier 

basis its coefficients are spread over the basis. A sampled cosine signal has very few values that 

are cero or negligible, but when translated to a Fourier basis it becomes very sparse. These are 

examples of signals that have fairly straight forward sparse representations (the spike on the 

sampling base and the cosine on a Fourier base); however there are some signals that present 

greater a challenge when searching for a way to represent them sparsely. An illustrative example 

is a signal that is the result of adding a cosine wave and a spike or delta as shown in Error! 

Reference source not found.. 

  ( )  Spike   ( )   Cosine  ( )    ( )    ( ) 

Eq. 2-11 

  ( )   (    )   ( )  ∑   (    )  (   )

 

   

 

 ( )  ∑   (    )  (   )  

 

   

 (    ) 

 

Because  ( ) is the sum of   ( ) and   ( ), for  ( ) to be sparse both   ( ) and   ( ) have to 

be sparse on whichever basis is used as reference. Analyzing the components that make up  ( ) 

we see that they are at odds when searching for a sparse representation. As mentioned before on 

the sampling base, the spike is maximally sparse while the cosine is not sparse at all; moving the 

signals to a Fourier base makes the cosine signal sparse, but eliminates all sparsity from the spike 

portion of the signal. Therefore neither basis makes it possible to represent  ( ) sparsely. 

The sparse representation of each component on a different basis can be exploited by rewriting 

 ( ) as in Eq. 2-12 (a). The spike component   ( ) is sparse in the sampling base   , therefore 



21 

 

most of the coefficients     will be  . Most coefficients     from the representation of   ( ) on 

the Fourier basis    are   as well. Therefore most coefficients   from Eq. 2-12 (b) will be  , its 

level of sparsity   ‖ ‖  
  is just the sum of that from     and    , or        . The 

combination of the coefficients also implies the combination of the basis    and    into a 

greater basis   that allows  ( ) to be sparse, and it is referred to as an over-complete basis. 

 ( )  ∑    
    

( )

 

   

 ∑    
    

( )

 

   

 ( ) 

Eq. 2-12 

 ( )   ∑      ( )

  

   

 ( ) 

        

   {
    

                                        

      
                           

  

   {
   

                                        

     
                           

  

 

Over-complete basis incorporate a number of waves greater than the size of the original signal 

(the signal is size  , but the basis is size   ). Increasing the diversity of waves to include groups 

with different characteristics will increase the probability of efficiently representing a signal, 

thus generating a highly sparse approximation. Therefore over-complete basis trade complexity 

at the basis for a possibly simpler (sparser) representation of the signal; making it easier to 

analyze a broader range of signals when extracting information, however this presents a new 

problem. 

To illustrate the issue that arises we return once more to  ( ) from Eq. 2-121 as an example, it is 

possible to approximate  ( ) in the same basis   in any of the 3 forms shown in Eq. 2-123. 
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         ( ) 

Eq. 2-13 
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     ( ) 

   {
                                                
    

     
                               ( ) 

 

 The approximations in Eq. 2-13 (b) and (c) are simply those from representing both the 

components   ( ) and   ( ) in only one of the individual basis that compose  ,    or    

respectively. Because all 3 approximations are valid, it is up to the user to deem one of them best 

according to the objective (exactitude, sparsity). In this case we wish to reach a higher level of 

sparsity, so the clear choice is Eq. 2-13 (a).  

In cases where none of the basis’ components (waves) line up closely to the signal, one of many 

possible weighed combinations (the larger the basis the larger the number of possible 

combinations) must be chosen to maximize sparsity. Each possible combination has a level of 

sparsity (how many coefficients are required), as well as a level of error (how good the 

approximation is), making the search for the sparsest combination possible a topic for 

researchers that propose intricate methods of achieving said objective. 

In summary, complete orthonormal basis will always generate a single set of coefficients for the 

signals representation on that basis, making the signals levels of sparsity dependent on the 

selection of a basis. Using a over-complete basis will not generate a unique representation of the 

signal, but might achieve higher levels of sparsity, however finding the sparsest group of 

coefficients that best fits the signal among the possible combinations belongs to a class of 

“computationally intractable problems, the set of NP-hard problems” [39]. The fact that optimal 
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solutions would become increasingly difficult as the signal size and dictionary size get larger 

researchers have worked on sub-optimal algorithms that achieve a good enough approximation. 

The theory behind these algorithms has spawned several of the concepts being applied to CS, and 

it is why the subject of frames, over-complete bases or over complete dictionaries is touched 

upon as an introduction to the algorithms: Matching Pursuit and Basis Pursuit. The literature on 

these algorithms refers to the frames as over-complete or redundant dictionaries composed of 

atoms, so we will do so as well during the following sections, keeping in mind that it is just a 

pseudonym for a frame composed of orthogonal waves. 

MatchingPursuit 

The Matching Pursuit (MP) algorithm was introduced by Mallat and Zhang [24] in 1993 as an 

algorithm that “decomposes any signal into a linear expansion of wave-forms (  ) that belong to 

a redundant dictionary ( ) of functions” by providing an “interpretation of the signal structures. 

If a structure does not correlate well with any particular dictionary element, it is sub-composed 

into several elements and its information is diluted” [24]. This is achieved by means of a greedy 

approach that chooses at each iteration a waveform     that is best adapted to approximate the 

signal, or the residual of the previous stage    as shown in the following equivalence: 

  〈     〉       
Eq. 2-14 

 

       

 ( )                        ( ) 

   〈   〉  ∫  ( ) ̅( )  
 

  

 

Eq. 2-15 
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Since     is orthogonal to   , then: 

‖ ‖  |     |
 
 ‖  ‖  

Eq. 2-16 

 

To minimize ‖  ‖ the    that maximizes |    | must be found, to do so MP implements a 

optimality factor   (     ) that chooses the    that is best or at the very least “almost the 

best” [24]: 

|〈     〉|       
   

|〈    〉| 
Eq. 2-17 

 

The residual    is later sub-decomposed by projecting it on another vector of   that matches it 

as closely as possible as it was done for  . 

The following is a step by step explanation of the     element of the decomposition: 

      
( ) 

Eq. 2-18 
|〈       〉|       

   
|〈      〉| ( ) 

 

The residual     is sub-composed into: 

 

     〈       〉          
( ) 

Eq. 2-19 
‖   ‖   |〈       〉|
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The order   decomposition of   as a concatenated sum is: 

  ∑(         )

   

   

     ∑〈       〉   

   

   

     
( ) 

Eq. 2-20 
‖ ‖  ∑(‖   ‖  ‖     ‖ )

   

   

 ‖   ‖  
( ) 

‖ ‖  ∑|〈       〉|
 

   

   

 ‖   ‖  
( ) 

 

This last equation shows that although the matching pursuit decomposition is non-linear there is 

energy conservation like in orthonormal complete basis. 

Published research has shown that the MP method does not deconstruct certain signals optimally 

due to the fact that if a mistake is made at the beginning of the procedure the greedy approach it 

implements will not correct it but try to fit the reconstruction using the remaining waves in the 

dictionary, making it miss when seeking sparsity or super resolution [27] and [40]. 

These observations on the MP’s performance have been corrected with the development of the 

Orthogonal Matching Pursuit (OMP) by adding an additional step that solves: 

   
  

‖  ∑     

 

   

‖

 

 
Eq. 2-21 

 

For all the   terms that have been entered up to that stage ( ) to later form the residual [38] and 

[39]. 
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 [ ]    ∑  
( )

   

 

   

 
Eq. 2-22 

 

This additional step solves the issues related to MP but increases the computation time 

dramatically in cases that should be fairly straightforward [27]. 

Basis Pursuit 

Basis Pursuit was introduced in 2001 by Shaobing Donoho and Saunders in [27], where they go 

into detail explaining the virtues and shortcomings of the different implementations for sparse 

signal de-composition on over complete dictionaries. They show that by implementing linear 

programing (LP) to the decomposition problem they can achieve higher levels of sparsity and 

super-resolution. This is achieved by expressing the problem of finding the sparsest coefficients 

as a minimization problem, where the level of sparsity is represented by the    norm of the signal 

and becomes the objective function of the optimization problem. The signal equivalence is used 

to generate the constraints in the formulation. The initial mathematical model is shown side by 

side with linear programing’s standard form [41][40]: 

Objective Function Equality Constraints Source 

            Linear Programming Standard Form 

   ‖ ‖  
      Basis Pursuit Equations 

 

The search for the coefficients generates a non-quadratic, convex set of equations, that require a 

higher effort to solve than the other decomposition methods. They implement a primal dual log 

barrier LP algorithm taking advantage of the advances in the field of linear programing, 

including the development of interior point methods that allow for a quick and efficient solution. 
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2.5 Large Scale Linear Programming 

In a LP problem the collection of feasible points that satisfy the constraint function      

       delimit a convex polyhedron on    with a number of vertices equal to the size of the 

vector   (this might be different from   if the matrix   is not square). This polyhedron is also 

referred to as a simplex and its vertex or extreme points are defined by each of the constraints, 

and one of them minimizes    . The name of the shape in    lends its name to the most tried 

and true LP algorithm: the simplex algorithm, which bounces between the vertices looking for an 

improvement on the objective function until it cannot further optimize (minimize) the objective 

function. The simplex method can be visualized as sorting through the vertices on the surface of 

a multidimensional object until it reaches its goal while implementing anti cyclic rules to avoid 

infinite loops. 

However, upon visualizing the process, one might imagine that a reduction in the number of 

steps taken might be achieved if a path is cut through the inside of the object as a form of short-

cut to re-emerge at the surface on the goal vertex. These methods are known as interior point 

methods, and have been of great interest for researchers since Karmarkar presented his 

algorithm. Even though increased efficiencies over simplex algorithms were never scientifically 

proven, it was widely considered at the time to provide a lower polynomial time complexity 

boundary than the traditional simplex methods [43]. The greater impact of Karmarkar’s 

development however was the revitalization of research on interior point methods and 

algorithms, which on some case by case basis have proven faster than their simplex counterparts, 

especially with large problem sizes [43]. 
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2.5.1 Duality in LP 

Duality allows for the reformulation of a standard form LP problem into an equivalent 

representation which achieves higher computational efficiencies. 

If we express a problem  : 

          

Subject to: 

      

    

Eq. 2-23 

 

It has an equivalent representation as  : 

          

Subject to: 

      

    

Eq. 2-24 

 

The equivalency holds in both directions, the dual representation of   is  , and   has its dual 

representation in   [50][51]. Aside from the equivalence, the weak duality principle establishes 

that: if   is unbounded, then   is infeasible; if   is unbounded then   is infeasible; and if  ̅ is 

feasible for   and  ̅ is feasible for   with    ̅     ̅, then  ̅ is an optimal solution to   and  ̅ is 

an optimal solution to   [50]. 

2.6 CS Formulation 

The measurements resulting from CS are a representation of the signal on an incomplete basis, 

meaning that determining   requires solving an undetermined set of equations. 
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As it was mentioned at the beginning of section 2.2, CS systems are capable of compressing at 

the sensor because they take a series of measurements instead of samples to represent a desired 

signal. These measurements are lineal combinations of the signal’s samples and by 

approximating the signal to its sparse representation in some basis the samples can be recovered 

from fewer measurements than samples. 

To illustrate the CS principle let us start with a sparse signal  ( ), that has a total of   values, of 

which only   are different from  . The acquisition of the measurements is described 

mathematically in the following formula: 

   ∑     ( )

 

   

 ( ) 

Eq. 2-25 

        ( ) 

 

Where:    is the measurement  ,  ( ) is the sample   and      is the coefficient that corresponds 

to the sample   for the measurement   [10]. 

In the case of 2 dimensional signals   is a matrix and the measurement    is expressed as 

follows: 

   ∑ ∑           

    

   

       

   

      
       

  (   )         Eq. 2-26 

 

The measurement matrix and signal can be rearranged as vectors, while maintaining the 

coefficient and sample pairs, so it can be expressed as the 1D case in Eq. 2-25. This presents an 

advantage when constructing the measurement vector  , as it can now be written: 
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Eq. 2-27 

 

Where   is a     vector of the taken measurements,   is a     matrix where each row is 

the re-arranged measurement matrix for that sample, and    is the signal matrix shaped as a 

vector of size    . The signals recovery would then be achieved by solving: 

         
Eq. 2-28 

 

If     then the signals dimension or data has been reduced, achieving the desired 

compression but leaving the system in Eq. 2-28 underdetermined, which means that a large 

number of vectors of size   can solve Eq. 2-28, therefore determining the exact vector    

becomes a more complicated issue. 

2.6.1 Signal Recovery 

In order to select the correct answer we include an additional characteristic in the solutions 

profile, its sparsity. Simply put the problem brought forward by CS is the reconstruction of a 

sparse signal from a limited number of linear measurements. It has been shown in general, the 

problem of constructing decoders is nontrivial as the linear system of   equations is 

underdetermined, and thus, admits infinitely many solutions. The decoder must then choose the 

“correct solution” among the infinitely many solutions. For sparse signals the problem of finding 

the desired solution can be expressed as an optimization problem where the objective is to 

maximize an appropriate measure of sparsity while simultaneously satisfying the constraints. The 

literature on CS and related subjects in sparse signal representations normally use the    pseudo 

norm detailed in Eq. 2-3 as a measure of a signal’s sparsity since it denotes how many of the 

elements are different from 0. This means the desired solution is the one that solves: 
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Objective Function: 

   
 

‖  ‖  

Subject to: 

       
Eq. 2-29 

 

CS would be of little practical use if it could only be used for sparse signals, so it must be 

extended to include signals which are not sparse when sensed. To show how this can be achieved 

we introduce a signal  ( ) which is not sparse when sampled, but which has a level of sparsity   

when represented on a sparsifying basis  . This means that: 

        

Eq. 2-30 
        

 

Therefore when applying CS to    we get: 

       ( ) 

Eq. 2-31 

         ( ) 

                                ( ) 

   
 

‖  ‖           ( ) 

 

After solving Eq. 2-31 ( ) for   , it is easy to recover    from it by means of Eq. 2-30( ). 

Implementing the    norm guarantees a sparse solution, however to solve the equations involves 

solving a combinatorial problem which is computationally impractical for signals with a large 

size  . The    norm is a much more relaxed measurement of sparsity that has been proven to 

achieve the same sparse result of the    under certain conditions, while being much easier to use 

as the objective function. 



32 

 

Restricted Isometry Property (RIP) 

In order to guarantee that the    norm will achieve the same results as the stricter    measure of 

sparsity the system must satisfy the restricted isometry property (RIP) [3][50]. 

(   )‖ ‖ 
  ‖   ‖ 

  (   )‖ ‖ 
  ( ) 

Eq. 2-32 
      {  (   )‖ ‖ 

  ‖   ‖ 
  (   )‖ ‖ 

   | |        | |} ( ) 

 

Satisfaction of the RIP condition is related to the level of mutual coherence  (   ) between the 

measurement matrix   and the sparsifying basis   and is: 

       
( ) 

Eq. 2-33 
 ( )     

       
|〈     〉| 

( ) 

    √  ( ) 

 

For two normalized basis the range of   is between   and √ , where   implies the basis are 

maximally incoherent, this is the case of the time basis   ( )   (   ), and frequency or 

Fourier basis   ( )               . 

The importance of the concept of incoherence is that researchers have used it to estimate how 

many measurements are required to reconstruct a signal. It has been proven in [18] and [19] that 

random matrices with independent and identically distributed entries that follow either Gaussian 

or Bernoulli distribution with zero mean and variance     satisfies the RIP condition as long as: 

   
 

   (   )
 

Eq. 2-34 
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Researchers Candes and Romberg in [54] have drawn a simpler numerical formulation for the 

minimum number of samples   required for a signals correct reconstruction from: 

 the signals sparsity in  ,   

 the signals original size   

         
Eq. 2-35 

LP Solution to CS Using   Norm 

Due to the fact that the    norm is convex the problem becomes much easier to solve and now 

can be expressed as: 

                    

   
 

‖ ‖  

             

             
Eq. 2-36 

 

The    norm however is not linear, so the problem above these lines can not be solved by 

implementing regular LP algorithms, it must then be worked upon further. The following 

procedure is that done in [47] for the optimization of sparse signal representation using basis 

pursuit as both LP problems are equivalent. Firs it is necessary to get rid of the non-linear 

component in the objective function of Eq. 2-36 by introducing the variable  , such that for each 

element    of   there is an element    of   expressed as: |  |     for      . 
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Rewriting the relation between    and    as           does away with the absolute value, 

and Eq. 2-36 can be written as: 

                    

Eq. 2-37 
                  ∑   

 

   

      
    

 

Where    is a vector of ones of length   and   is a vector of length   composed of the 

individual   . The constraints have to be expanded into: 

      

    

     
Eq. 2-38 

 

Finally the problem can be expressed as: 

Objective Function: 

     
    

             

      

      

      

Eq. 2-39 

 

This problem is linear and convex, and can be solved using any suitable LP algorithm such as the 

simplex or interior point implementations. 
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By invoking the duality principle described in Eq. 2-23 and Eq. 2-24 the problem can rewritten 

as: 

Objective Function: 

        

Constraints: 

           

       

    

    

Eq. 2-40 

 

By solving the second constraint for   and placing it in the first and third constraints we get: 

             

 

              

       

    

Eq. 2-41 

 

Replacing     for      , so      and: 

             

           

        

     

Eq. 2-42 

 

Finally the problem can be written as: 

                    

        

             

            

       

Eq. 2-43 
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This LP problem can be solved using any traditional algorithm much easier than the initial CS 

formulation by having gotten rid of the    norm and solving for the unrestricted variable  . 

2.6.2 CS implementations 

The desire to capture images with greater detail has driven an increase in the resolution of 

imaging systems, which has been made possible by progressive technological improvements in 

imaging technology. A higher image resolution automatically triggers an increase in image size, 

and that coupled with the growing number of imaging systems have created a need for digital 

image compression methods to make their storage, transmission and analysis more practical. 

These compression methods rely mostly on a sparse approximation of some linear transformation 

operated upon the image (i.e. DCT and JPEG) and are completely independent of the sensor or 

source of the data. 

Therefore in order to produce an image with a higher resolution a larger sensor array will be 

needed. If the application is trying to register low intensity signals the sensors in the array will 

need a higher light sensibility which is related to the sensor area (a greater area captures more 

energy or light at a given instant). The area of the sensor and the size of the sensor array are 

directly related to its cost, and can make some applications impractical or harder to implement. 

To make matters worse, no matter how high the complexity and costs of the imaging system 

(optics, sensor and electronics) most the data obtained will be discarded in a later compression 

stage. 

Research in CS and the development of Texas Instruments DMDs have made it possible to 

implement a single pixel camera that can compress the image at the sensor while using the 

smallest possible sensor (a single pixel) [2]. This implementation uses the DMDs to perform the 
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product between the binary measurement matrix and the pixels or samples by having them reflect 

the light from the pixels towards, or away from, optics that add the contribution of the pixels 

completing the inner product between the image and measurement matrix. This brings additional 

benefits aside from those of CS, such as reduced complexity at the analog to digital converters 

and higher noise tolerance [2]. This scheme can also be implemented with HSI, as they operate 

on the same basic principle as cameras, and would process every band simultaneously. Switching 

the DMDs according to the measurement matrices allows it to constructs the   measurements 

required to guarantee correct reconstruction at a later stage. 

2.7 Classification 

Because the targeted applications that might benefit the most from this approach are those whose 

end goal is classification or target detection the reconstructed images are subjected to a 

classification algorithm in order to compare their results with those achieved by the original 

image. The use of classifiers as a metric for the level of success of the signal reconstructions is 

done because correct classification was given more importance than the metrics normally used 

(i.e. quadratic error between the original and reconstructed images). This is done in hopes of 

more accurately measuring its performance in the targeted applications. It also takes into account 

that classifiers depend on several of those more traditional metrics (depending on the classifier) 

in order to differentiate the pixels and categorize them into groups, meaning that if the classifier 

groups both images in similar fashion they both share similar metrics. 

Unsupervised classification is a means by which pixels in an image are assigned to spectral 

classes without the user having foreknowledge of the existence or names of those classes. It is 

performed most often using clustering methods. These procedures can be used to determine the 
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number and location of the spectral classes into which the data falls and determine the spectral 

class of each pixel. The analyst then identifies those classes a posteriori, by associating a sample 

of pixels in each class with available reference data, which could include maps and information 

from ground visits. Clustering procedures are generally computationally expensive yet they are 

central to the analysis of remote sensing imagery. While the information classes for a particular 

exercise are known, the analyst is usually totally unaware of the spectral classes, or sub-classes 

as they are sometimes called. Unsupervised classification is therefore useful for determining the 

spectral class composition of the data prior to detailed analysis by the methods of supervised 

classification. 

2.7.1 K-Means 

The k-means classification or clustering method assumes no prior knowledge of the data beyond 

the number of classes k present in the data. It separates the data into k groups or clusters by 

splitting the data space into Voronoi cells. To construct a Voronoi diagram there needs to be a 

seed, site or generator for each cell and each cell relates to the region where the distance to the 

corresponding seed is lower than that to any other seed. In the case of k-means clustering the 

seed is the mean of the data assigned to that class or cluster, therefore it changes when data is 

moved from one cluster to another at each iteration while looking for the best classification. 

Because the seeds are not fixed in k-means clustering algorithms they need a way to determine 

which assignments are best, and it does so by minimizing the total Euclidean distance between 

the data points and its clusters mean. Mathematically the total sum of Euclidean distances for a 

cluster   , with       is: 
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Eq. 2-44 

 

The total distance for a distribution   is the sum of the total distances for each cluster, k-means 

clustering seeks to minimize that value and it is expressed as: 

    ( )     ∑ ∑ ‖     ‖
 

     

 

   

 
Eq. 2-45 

 

This problem is NP hard, and is normally solved with greedy algorithms that have the following 

basic pseudo code shown in Figure 2-4. The greedy approach can only guarantee that the result 

reached is a local minimums, and depends heavily on the selection of   
 , which is why many k-

means implementations are run several times, using different initial clusters, and choosing the 

best solution among the results [49]. When applying k-means to HSI the spectrographs       
 for 

              takes the place of   . 

 
Figure 2-4: K-means pseudo code [49]. 

Select an initial partition 𝑐𝑘
  

Compute Cluster Center (𝜇𝑘
𝑖 ) 

Generate new partition 

(𝑐𝑘
𝑖  ) using distance to 𝜇𝑘

𝑖  

𝑐𝑘
𝑖   𝑐𝑘

𝑖 ? 

End 
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3. OBJECTIVES 

3.1 General Objective 

Develop a Recursive Compressed Sensing Implementation that could be used on single pixel 

Hyper spectral Imaging with Classification or Targeting applications. 

3.2 Specific Objectives 

 Compression and decompression of   dimensional signals using CS. 

 Compression and decompression of   dimensional signals using CS. 

 Perform 2 stage compression and decompression of 2 dimensional signals. 

 Define the effects that the 2 stage compression settings have on the reconstructed images and 

the processing required at each of the stages. 

 Analyze and compare the implications of CS’s implementation on HSI with the use of filters or 

DMD’s. 
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4. IMPLEMENTATION 

Because HSIs form data cubes of size         that can be physically interpreted either as a 

series of spectrographs at different spatial locations, or as a series of still images at different light 

bands, it is natural to compress the HSI as one of the two (independent vectors or matrices as 

shown in Figure 2-2). The first case would corresponds to       vectors of length   and the 

second is a series of   matrices with dimensions      . Therefore HSIs can be compressed as 

a group of separate 1 or 2 dimensional signals, to establish a uniform notation we will refer to the 

HSI data cube as: 

 (       ) 

     

        

        

      

Eq. 4-1 

 

The first interpretation  (       ) will be represented by:       
 and the second  (     ) with:   . 

Viewing the hyper spectral image as vectors has the advantage of avoiding any spatial mixing, 

which might in turn allow for some level of classification on the fully compressed image. 

However to acquire the compressed signal or measurements (instead of the sampled signal) 

along the frequency bands the camera would need either: active filters that switched bands on 

and off for each individual pixel before reaching the sensor, or some backend signal processing 

to calculate them based on the sampled signal. None of these options reduces the camera’s 

complexity, and the need for the complete spatial information means implementation of single 

pixel imaging would not be possible, taking away the possibility for a cheaper single pixel 

sensors. 
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Compressing the image as    however would allow for a single pixel sensor at the camera, but in 

order to do any analysis on the image it would have to be fully reconstructed, which is a large 

investment of computational power, which would be wasted if there were no elements of interest 

in the image. 

Despite these limitations it is convenient to make a first approach to CS of the HSI by breaking it 

down into 1-D vectors as they are easier to process and visualize. Afterwards the HSI will be 

decomposed in  -D signals for its compression and reconstruction, and finally the recursive 

approach will be tested using the methods and algorithms developed in the first two stages. 

4.1 1 - Dimensional CS 

The image used for this series of tests is the well-known in HSI literature Indian Pines, and is 

shown in Figure 4-1. It has a spatial resolution of         pixels and     bands and was 

sourced from [48] as well as its ground truth. The total amount of data (numerical values) in the 

image is: 

                             
Eq. 4-2 

 

As mentioned in a previous section the HSI is not sparse in nature, and its representations using 

transforms like the DCT is not strictly sparse either, however it does shift significance to a 

dramatically smaller number of coefficients (as shown in Figure 4-1). It is then necessary to 

determine how many samples are required to come close to the original signal within a defined 

percentage   by calculating   such that: 

   ∑‖        (      
)‖

 
 

   

   ∑‖      
( )‖

 
 

   

 
Eq. 4-3 
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Where:    (      
) is the DCT transform of the spectrogram at a pixel      ;        (      

) 

is a vector of the absolute values from the coefficients    (      
) ordered in a descending 

fashion; and finally        (      
) is the   value of said vector, corresponding to the   

highest maximum. 

 
Figure 4-1 Indian Pines HIS. 

 

To guarantee that all the components of the HSI can be reconstructed correctly the highest value 

of   among those calculated for all the vectors       
 is used to determine the number of 

measurements required for the complete image using Eq. 2-35. 

The results obtained for an         is     , which produces       . The selected 

number of measurements for the initial tests is     , so the resulting measurement matrix   is 

of size           , where each of the rows is used to combine the samples in the 

spectrogram into a measurement. The same matrix   is used for all the spectrograms 

Image has 𝟏𝟒𝟓 samples, 𝟏𝟒𝟓 lines (𝟏𝟒𝟓  𝟏𝟒𝟓 pixels) and 𝟐𝟎𝟎 bands. Sample band (left), Spectrograph at 

pixel 𝟏𝟐𝟏 𝟔𝟓 in blue, as well as its respective DCT in red (right). 
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independently and the values in   are binary bits assigned randomly to guarantee incoherence 

with the DCT basis. 

The compressed image    is a data cube of dimensions                   , and the 

measurement   (      ) of the pixel       (           ) is calculated as: 

          ∑  (   )  

 

   

      
( )           

 
Eq. 4-4 

 

The total amount of data contained in    is:                               . 

The reduction in the amount of data due to the implementation of the measurement matrix is: 

   (  ⁄ )     (     ⁄ )     . 

The compressed spectrograph for a specific pixel       is        
: 

       
         

 
Eq. 4-5 

 

Compression of the full HSI can be done in a single operation by rearranging the spectrographs 

      
 into a matrix   of size   (     )           , (where the columns correspond to 

each of the individual spectrograms) and calculating: 

         
Eq. 4-6 

 

    is a reordered version of   , and they are related by: 

       
    ( ) 

  (    )        
Eq. 4-7 
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A sample band of the compressed Indian Pines image is shown in Figure 4-2. It should be noted 

that the bands that compose    do not correspond to any specific band in the original image, as 

they result from linear combinations (in the case of the figure determined by    ) of all the 

spectrograms in the image. 

 
Figure 4-2 Compressed Indian Pines image. 

 

The bands     of the resulting compressed image are a close representation of those in the 

original image    as there has been no spatial mixing among the pixels in the compressed image. 

This immediacy can be observed in Figure 4-1 and Figure 4-2; the visible resemblance of the two 

spectrographs makes it seem possible to draw conclusions on the full image from analysis of the 

compressed version. The reach of this concept is tested by subjecting the compressed image to 

the k-means classification tool in Envi and constructing the confusion matrix using the image 

ground truth, resulting in a percentage of correct detection of      , which is lower than the 

      of the original image under the same parameters. The confusion matrices for the original 

image and the compressed version are shown in Table 4-1 and Table 4-2 respectively. 

This result shows that some form of classification comparable to that of the original image can 

be implemented in this preliminary stage, allowing some decision making before investing the 

Compressed image 𝑰𝑪; Sample band 𝟓𝟔, 𝑰𝑪𝟓𝟔 (left), spectrograph at pixel 𝟏𝟐𝟏 𝟔𝟓 𝑰𝑪𝟏𝟐𝟏 𝟔𝟓 as well as 

its 𝐷𝐶𝑇 𝑫𝑰𝑪𝟏𝟐𝟏 𝟔𝟓 (right). 
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computational cost required to reconstruct the complete image. However, to improve the 

classification from that obtained using the compressed signal    the full sized image must be 

reconstructed. 

The reconstructed image is acquired indirectly by finding the sparsest solution to the set of 

equations formulated by the measurement matrix. The LP problem for each spectrograph is 

described mathematically as: 

       
              

 
Eq. 4-8 

   ‖        
‖

 
 

Eq. 4-9 
       

                
 

 

Where         
 is the desired sparse signal or DCT of the reconstructed spectrograph for       

and      is the matrix representation of the inverse DCT. 

The approach described in 0 is used to rewrite and solve the minimization problem, finding 

        
 and using it to reconstruct the complete image. Each separate spectrograph is 

reconstructed individually in any order independently of the others, making this process highly 

parallelizable. The resulting image composed of the reconstruction of each of the spectrograms is 

shown in Figure 4-3 next to the original image, and Figure 4-4 compares a spectrogram of the 

original and reconstructed versions of the image, as well as their DCTs. 
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Figure 4-3: Reconstructed Indian Pines. 

 

 
Figure 4-4: Indian Pines spectrogram reconstruction. 

 

As another point of comparison on the implementations efficiency in classification applications 

the reconstructed image is operated upon by the k-means classification tool from Envi, under the 

same parameters as the compressed version of the image. The resulting classification accuracy 

was of      , and the confusion matrix resulting from it is shown in using Indian Pines ground 

truth, the results are detailed in Table 4-3. 

 

 

 

Sample band of the original Indian Pines image 𝑰𝟏𝟐𝟓 (left), Sample band of the reconstructed 

Indian Pines image 𝑰𝑹𝟏𝟐𝟓 (right). 

Original and reconstructed spectrograph at pixel 𝟏𝟐𝟏 𝟔𝟓, 𝑰𝟏𝟐𝟏 𝟔𝟓 solid blue and 𝑰𝑹𝟏𝟐𝟏 𝟔𝟓 

dashed red (left), as well as its 𝐷𝐶𝑇 𝑫𝑰𝟏𝟐𝟏 𝟔𝟓 solid blue and 𝑫𝑰𝑹𝟏𝟐𝟏 𝟔𝟓 dashed red (right). 
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Overall Accuracy of 35.3%, (3617/10249). 

Class 
Ground Truth (Pixels) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 28 0 0 1 13 0 2 237 0 0 0 0 0 0 0 0 
2 0 254 45 48 0 0 0 0 0 0 44 43 0 0 0 10 
3 0 296 289 1 0 0 0 0 0 250 751 63 0 0 1 3 
4 0 157 45 58 1 0 0 0 0 0 1 35 0 0 0 0 
5 0 0 0 0 270 21 0 0 0 0 0 0 0 583 11 0 
6 0 3 0 0 39 354 0 0 12 1 9 0 0 9 96 0 
7 1 60 76 48 12 0 6 0 0 156 216 24 1 0 7 0 
8 17 3 0 1 83 2 20 239 0 4 11 0 0 0 7 0 
9 0 74 39 11 3 0 0 0 0 61 120 111 0 0 8 0 

10 0 117 100 2 0 0 0 0 0 239 208 117 0 0 2 0 
11 0 201 166 8 1 0 0 0 0 178 796 45 0 0 0 0 
12 0 240 61 0 1 0 0 0 0 77 254 136 0 0 0 3 
13 0 1 0 9 0 224 0 0 7 0 4 0 203 20 114 0 
14 0 0 0 0 48 41 0 0 0 0 0 0 0 653 125 0 
15 0 22 9 50 12 88 0 2 1 6 41 19 1 0 15 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77 

Table 4-1:  -means Indian Pines - Confusion matrix. 

 
Overall Accuracy of 30.5%, (3122/10249). 

Class 
Ground Truth (Pixels) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 31 7 10 12 19 38 3 26 0 9 41 36 1 0 8 22 
2 0 325 122 0 0 0 0 0 0 128 451 99 0 0 0 6 
3 0 117 245 12 0 0 0 2 0 67 249 85 0 0 0 0 
4 0 84 33 70 3 0 4 110 0 67 111 28 0 0 0 4 
5 1 6 2 9 79 71 0 0 0 1 38 6 2 0 36 26 
6 0 1 0 0 4 198 0 0 0 0 1 0 20 13 69 0 
7 12 28 7 22 8 12 7 133 0 12 28 12 0 0 5 10 
8 1 46 11 40 7 4 12 189 0 32 47 17 0 0 3 0 
9 1 133 107 66 5 0 1 18 0 74 135 48 0 0 0 4 

10 0 368 20 0 0 0 0 0 0 313 513 87 0 0 0 2 
11 0 131 1 0 0 0 0 0 0 198 399 28 0 0 0 3 
12 0 179 272 3 0 0 0 0 0 70 432 147 0 0 0 1 
13 0 1 0 0 6 204 0 0 13 0 5 0 159 2 58 3 
14 0 0 0 0 245 0 0 0 0 0 0 0 0 817 9 1 
15 0 0 0 0 69 46 0 0 0 0 0 0 0 432 132 0 
16 0 2 0 3 38 157 1 0 7 1 5 0 23 1 66 11 

Table 4-2:  -means Compressed Indian Pines - Confusion.  

 
Overall Accuracy of 34.8%, (3567/10249). 

Class 
Ground Truth (Pixels) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 21 0 0 0 4 0 6 230 0 0 4 1 0 0 0 0 
2 0 244 73 0 0 0 0 0 0 235 153 36 0 0 0 9 
3 0 211 298 6 0 0 0 0 0 43 335 119 0 0 1 1 
4 1 203 89 145 5 0 4 0 0 104 148 37 0 0 1 0 
5 9 4 1 7 122 79 1 1 8 5 10 0 6 0 42 0 
6 0 1 0 11 4 190 0 0 2 0 2 0 14 0 52 0 
7 0 30 11 58 19 22 8 2 0 24 64 29 1 0 14 0 
8 15 1 0 1 4 0 9 245 0 0 1 0 0 0 0 0 
9 0 110 50 1 0 0 0 0 0 97 95 80 0 0 0 0 

10 0 186 52 0 0 0 0 0 0 313 572 32 0 0 0 1 
11 0 138 222 7 2 0 0 0 0 26 640 73 0 0 0 0 
12 0 289 22 0 0 0 0 0 0 125 343 138 0 0 0 9 
13 0 1 0 1 5 208 0 0 10 0 4 0 184 5 74 0 
14 0 0 0 0 302 9 0 0 0 0 0 0 0 1226 109 0 
15 0 1 0 0 16 222 0 0 0 0 2 0 0 34 86 0 
16 0 9 12 0 0 0 0 0 0 0 82 48 0 0 7 73 

Table 4-3:  -means Reconstructed Indian Pines – Confusion. 
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Figure 4-5:  -means classification result for Indian Pines. 

 

As expected the classification rates for the reconstructed image are better than those of the fully 

compressed image, but are still lower than those of the original image, this is due to some loss of 

information in the process of compression and reconstruction. 

4.2 2 - Dimensional CS 

After successful implementation of CS on a HSI viewed as a group of vectors, a 2 dimensional 

implementation is the next incremental step towards achieving recursive 2 dimensional CS on 

HSI. Experiments in this regard done using the HSI Salinas-A scene of dimensions       

   , sourced from [48]. Taking advantage of the independence of the bands in the proposed CS 

method, the algorithms can be tested using a single band     treating it as a greyscale image 

which is shown in Figure 4-6. The level of sparsity is determined in a similar fashion as in the   

dimensional case by approximating the image to a sparse signal within a tolerable level of error. 

Additional considerations must first be made before determining the number of samples required 

to approximate the signal because the signal is now a  -D signal; chief among these: the  -D 

DCT is replaced by the  -D DCT which is more suitable for images. The resulting coefficients of 

the  -D DCT are shown in Figure 4-6, these are then placed in a vector        (  ) in 

descending order according to their absolute value. The level of sparsity is then determined by: 

From left to right, ground truth [48] and results for 𝑘-mean classifier using: 𝑰, 𝑰𝑪 and 𝑰𝑹. 
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Eq. 4-10 

 

For the grayscale image    and an approximation level of         , the resulting     , 

meaning that according to Eq. 2-35,        , in order to satisfy this condition tests were 

conducted for       and       . The number of measurements taken ( ) versus number 

of samples in the original image (            ) gives compression ratios of      and 

       respectively. It is interesting to note that should the other bands in the original image 

have lower values of  the data ratios achieved would not have to be changed, and the same 

measurement matrix could be used for the complete image. 

The measurement matrix   is a cube of size         composed of binary bit generated 

randomly so that it has a Gaussian distribution that is incoherent with the DCT basis. 

   ( )  ∑ ∑  (       )    (     )

  

    

  

    

 
Eq. 4-11 

 

The compressed signal for the band      
 is a vector of length  , when working with a full HSI 

the same measurement matrix is used to compress all the bands independently; and the 

compressed signal    will have dimensions     where each column corresponds to the   

measurements taken for the band  . In this particular implementation it can be said for practical 

purposes that    . 

The signals compression was achieved in Matlab by reordering the measurement matrix into an 

equivalent matrix    of size    , with         and reordering the matrix    into a vector 
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of length      
. The   measurements can then be obtained by simply operating the matrix 

vector product: 

          
           

( )    (     ) 

Eq. 4-12 
    (   )   (       ) 

       (    )   

 

In the case compression where to be performed on the totality of the   bands of the HSI    is: 

                  ( )   (     ) 

Eq. 4-13 
    (   )   (       ) 

       (    )   

 

   has dimensions    , and each column   corresponds to a    
. 

Image reconstruction is done by solving for each       the optimization problem: 

   ‖       
‖

 
 

                   
 

Eq. 4-14 

 

The reconstructed image is then: 

    
              

 
Eq. 4-15 

 

The resulting reconstructed images are shown in Figure 4-6, as well as their respective  -D     

transforms are shown in Figure 4-7. 
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Figure 4-6: Salinas-A scene sample bands. 

 

 
Figure 4-7 Salinas-A scene  -D    . 

 

The increased level of approximation achieved by taking additional measurements is noticeable 

at plain sight in Figure 4-6, however neither of the reconstructions could account for the black 

pixel located at       of the original image. This is a manifestation on the lossy nature of CS. 

4.3 Recursive 2 - Dimensional CS 

Both CS applications shown in the previous sections present some disadvantage; either the real 

world implementation becomes more complicated or additional steps are required before any 

signal analysis can be done. As a way to reach a compromise between the two options while still 

allowing for single pixel imaging, a novel CS method based on a measurement matrix 

constructed as the Kroneker product of two smaller ones is proposed. 

From left to right, sample band 8 Salinas-A scene: for the original image, reconstructions from 𝟒𝟎𝟎 measurements and 

𝟏𝟎𝟎𝟎 measurements. 

From left to right,  -D 𝐷𝐶𝑇 of Salinas-A scene: for the original image 𝑰, reconstructions 𝑰𝑪 from 𝟒𝟎𝟎 measurements and 

𝟏𝟎𝟎𝟎 measurements. 
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Figure 4-8: Proposed CS method. 

 

When the resulting measurement matrix is used to compress an image it is the mathematical 

equivalent of compressing image sections with a first measurement matrix and completing the 

compression process with a second measurement matrix as shown in Figure 4-8. 

This recursive two stage compression equivalency allows for single step compression and 

recursive decompression, so the first stage recovers the compressed image sections to form a 

partially reconstructed image suitable for analysis and decision making before full recovery of 

the original image. 

The methods and algorithms presented in the previous sections of this chapter for the 

compression and decompression of HSI will now be put to use towards the proposed 

implementation of CS. As was the case for the  -D implementation, the validity of the proposed 

methods can be tested on any  -D signals and later extended to HSI. 

𝐼𝑆𝑠  𝑠  𝐴 𝑚 
 

𝐼𝑃𝐶𝑚 
 

I 

𝐴 𝑚 
 

The original image is split into sections 𝑰𝑺𝒔𝟏 𝒔𝟐 that are compressed using a measurement matrix 𝑨𝟏𝒎𝟏
. The 

measurements 𝒎𝟏 from all the sections form a partially compressed image 𝑰𝑷𝑪𝒎𝟏
 that is fully compressed using a 

second measurement matrix  𝑨𝟐𝒎𝟐
. 
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4.3.1 Measurement matrix construction: 

The two successive compression stages can be implemented in a single step by using a 

measurement matrix that is the Kroneker product of the two smaller measurement matrices. The 

ability to obtain the measurements in a single step makes the use of a single pixel camera 

straightforward. 

There are two possible ways to mathematically obtain a measurement   (    )       , 

the first is operating directly on the complete image by using a measurement matrix constructed 

from the measurement matrices      and     
, the second implies operating the measurement 

matrix     
 on sections of the image, composing a partially compressed image with the results 

from the sections and operating on this image with the measurement matrix     
. Both methods 

produce the same measurement. 

The first measurement matrix will be referred to as     
 and is of size    , where   

      and        ,    and    are determined by the user and correspond to the number of 

sections the image will be split into along each image axis. 

The second matrix     
 is of size      , and it corresponds to the final compression stage, it 

is used to recover the partially compressed image from the final measurements. 

The measurement matrix    is: 

       
     

 
Eq. 4-16 
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According to the definition of Kroneker product this is: 
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Eq. 4-17 
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Eq. 4-18 
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Eq. 4-19 

 

The total number of measurements taken to fully compress the image is the product of the 

number of measurement matrices     
 and     

,    and    respectively; as the result of each 

measurement matrix     
is operated on by each     

. Therefore the group of measurement 

matrices   forms a cube of dimensions        , (       ). The use of a measurement 

matrices constructed using Kroneker products also requires less storage (memory), as they can be 

expressed by the two smaller measurement matrices. 
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4.3.2 Complete Compression and Reconstruction: 

As with the implementation in section 0, the   measurements can be obtained in a single step by 

reshaping   and   into    and     of dimensions     and     respectively so: 

          
Eq. 4-20 

 

The previous equation produces the     measurements required to fully recover the original 

image by solving the following LP minimization problem for each band      : 

    
           

 
Eq. 4-21 
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Eq. 4-22 
    

              
 

 

Again the image is reconstructed indirectly by first recovering the  -D sparse representation of 

the image       
 on a transform basis (DCT2 or  -D Wavelets), and later inverting the 

transform with the matrix    . The recovered image is a reordered version of     
. 

4.3.3 Partial Compression 

Partial compression is the first step in the two stage compression approach towards   . In order 

to partially compress the image must first split the image into       sections of size     for 

each individual band. These sections are: 

            (   )             

Eq. 4-23 
           (    )           

           (    )           
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The partially compressed image         is formed with the    
 measurement matrix operating 

on each          , it has size      , an is calculated as: 

       (     )  ∑ ∑     
(   )           

 

   

 

   

(   ) ( ) 

Eq. 4-24 

       (     )      
           ( ) 

 

The number of measurement matrices     
 required for correct reconstruction of the image 

sections is    and is determined by the least sparse among the image sections that will be 

compressed using     
. When it is not possible to determine the levels of sparsity of the image 

sections because of lack of access to the original image the value is based on previously acquired 

statistical knowledge of the expected image sections. 

After compressing all the sections for a band   we can construct        , this partially 

compressed image holds great interest because it resembles the original image at that band as 

evidenced in Figure 4-9 . Again as in the case from 4.1 it seems we can draw certain conclusions 

on the original image from it, in the case of target detection applications it might be possible to 

determine which sections correspond to the target of interest. As an initial test of this hypothesis 

classification of an image with only 2 classes is shown in Figure 4-9. 

 
Figure 4-9:  -means Classification on    . 

From left to right, sample band of the original image, rearranged partially compressed 

image 𝐼𝑃𝐶𝑚 
, result of 𝑘-means classifier on 𝑰𝑷𝑪. 
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It is also fairly plain to assume the quality of the analysis that can be done with     is inversely 

related to the size of the sections, as smaller sections present less spatial mixing. The lower limit 

in this relation is determined by the minimum section size possible of a single pixel, in which 

case the partially compressed image is equivalent to the original image. Section size is 

determined by the user with the selection of the number of sections    and   , this allows the 

user a level of control over the quality of the analysis (it will be shown later on that    and    

also affect the time required to recover    , creating a compromise between the two). 

4.3.4 Final Compression Stage 

To arrive at the measurements for the fully compressed image    from 4.3.2 the second 

measurement matrix    has to be used to combine the pixels from the individual partially 

compressed images        . Mathematically this is can be done by reshaping the measurement 

matrix     
 into a vector      

 of size   ,         and reshaping         into the vector 

        
 of size     and evaluating the product of the two vectors. 

           
         

 
Eq. 4-25 

 

In order to guarantee that         
 can be successfully recovered we must first have a statistical 

estimate of the level of sparsity of the partially compressed images. As with the case of the 

image sections the minimum number of measurements is determined by the least sparse among 

        
, this level of sparsity is used to determine   . 

The position of the measurement product from the partially compressed image      and the 

measurement matrix     
 in the vector     is   (    )       . The combinations, for 
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an individual band, of    and    from the groups of measurement matrices    and    

respectivly fill the   values of    in the same order as the single stage compression. 

4.3.5 Partial Reconstruction 

Whether the partially compressed image would offer some insight on the contents of the original 

image or not would not be of any use if the original image were required to construct it. To make 

it of any practical interest it must be possible to reach     from the measurements of the fully 

compressed image   . 

To avoid confusion: the partially compressed image that is obtained by rearranging the 

measurements from the compressing the image sections using     
 will be        ; while 

        will be used to refer to the partially reconstructed image or reconstructed version of 

        that is obtained from the final fully compressed measurements and   . 

The values of   that are produced by         with a fixed    and   are needed in order to 

reconstruct        . To simplify this notation we will temporarily refer to these as       . After 

being ordered according to    these measurements can be expressed as: 

                   
 

Eq. 4-26 

 

Here:     is a matrix of size     , where the rows are reshaped versions of     
;         

 is 

a vector of length   containing the same elements of        . 

Expressing the measurements in that form makes it clear that it is the same case as that from 

section 4.2 and the process can be then inverted in the same fashion as before by solving: 
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   ‖          
‖

 
 

Eq. 4-27 
                    

 

 

Unlike the application in 4.2, the sparsifying basis or transform is not specified but left open as 

   with an inverse that can be expressed in matrix form as    .  The reconstructed version of 

     is then obtained by rearranging the elements from      
 into a matrix of size      : 

     
          

 
Eq. 4-28 

 

Because the partially reconstructed image is a version of the partially compressed image it can 

also be used to perform analysis like the target detection shown in Figure 4-8, allowing for some 

decision making before investing in further reconstruction that might be wasted on image section 

that hold no valuable information. 

4.3.6 Complete Reconstruction 

In order to reconstruct     the individual sections must be reconstructed and later stitched 

together, therefore it is necessary to first determine what measurements correspond to which 

sections. 

The totality of the partially reconstructed images for a band   form a data cube      of 

dimensions         , the vector     (       ) of length    can then be extracted from the 

data cube and it corresponds to the measurements from the section      . Expressed as vector 

matrix operations: 

    (        )       
           

 
Eq. 4-29 
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And the    measurements from the compression of the section           correspond to: 

    (       )                
 

Eq. 4-30 

 

The same reconstruction procedure as in 4.2 is called upon for one last time, expressing the 

recovery of               
 as solution of the LP minimization problem: 

   ‖             
‖

 
 

Eq. 4-31 
    (       )                       

 

 

As with the previous cases in order to obtain the reconstructed version of the original signal (in 

this case the image sections) the solution to the LP problem must be subjected to the inverse 

transform, so: 

           
                  

 
Eq. 4-32 

 

However a final step must be taken in order to recover the reconstructed version of the original 

image    (     ), it requires the organization of the sections into a single image. This is done 

by using the following equivalency: 

   (     )            (   )        

Eq. 4-33 

      (    )    

      (    )    
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5. Tests and Results 

The main implementation envisioned for the proposed method is the search for targets or 

anomalies data from large areas acquired through the use of single pixel remote sensors. It is 

why, in an effort perceive how the proposed method would perform in said scenario, the image 

selected for the definitive tests is that of a cargo ship at sea. 

Specifically it is a RGB image of a cargo ship at the Gibraltar strait, it was sourced from Google 

maps (coordinates                          ) and is shown in Figure 5-1. The image was 

cropped to be         pixels in order to conduct tests for values of      and    without 

having to change or crop the image for each test. 

 
Figure 5-1: RGB satellite image of a boat at sea. 

 

To be able to draw conclusions that are closer to those desired in the intended real world 

application the recovered images are subjected to the  -means classification algorithm in order to 

𝟐𝟓𝟔  𝟐𝟓𝟔 pixels, 𝟑 bands (RGB) and 𝟐 object types 

(boat and water). 

200m 
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determine and compare the classification accuracy for each configuration at each stage. In this 

regard the image also presents an advantage as it only contains two classes (boat and sea water). 

The result of each comparison is displayed in a square matrix of size    , in this case for two 

classes    . This matrix is a confusion matrix and the columns     , for       correspond 

to the class   in the ground truth image. The rows     , for       are the pixels categorized as 

  as a result of the classification of the image. Aside from quantifying the number of pixels 

correctly assigned to each class, the presented confusion matrices have columns of: commission 

error, omission error, producer accuracy and user accuracy. Each of these is described in the 

following table: 

Commission Error 
What percentage of the pixels assigned to a class 

   are incorrect (   )? 
    

 
∑      

    
    ∑      

 
      

∑      
 
   

 

Omission Error 
What percentage of the pixels in a class    are not 

classified as such? 
    

 
∑      

 
          

∑      

 
   

 

Producer Accuracy 
What percentage of the pixels in a class    are 

classified correctly? 
             

 
      

∑      

 
   

 

User Accuracy 
What percentage of the pixels assigned to a class 

   are correct (   )? 
             

 
      

∑      
 
   

 

Table 5-1. Confusion Matrix description 

 

To complement the information presented in the confusion matrices, the boat class (  ) is 

selected as the desired target and the True Positive Rate (   ) and False Positive Rate (   ) are 

calculated accordingly for each test and plotted on a Receiver Operating Characteristic (ROC) 

chart. Using the data from a confusion matrix the formula for the     and     are described in 

Table 5-2. 

    
What percentage of the boat pixels are 

classified as boat? 

    

         

 

    
What percentage of the sea pixels are 

classified as boat? 

    

         

 

Table 5-2. ROC axis description. 
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The ROC chart has   axis, a vertical     and a horizontal    , with         and 

       . To achieve some additional clarity, the range on these axes is varied in each of 

the ROCs displayed. The ideal receiver or classifier on the ROC chart is located at the top left 

corner with a          and a     of   . The ROC chart displays the results of each 

configuration relative to each other in a visual manner, making it possible to compare them at a 

glance by their position relative to the ideal case (   ). 

Aside from the usefulness held by the recovered images in drawing conclusions on the complete 

image, running times were recorded in seconds using Matlab’s “tic”, “toc” function as estimates 

of the computational cost for each reconstruction stage in order to draw conclusions on the 

possible existence of tradeoffs or compromises. 

The tests consist of image compression using measurement matrices constructed from two 

smaller ones as described in Eq. 4-16, using section sizes of    and   pixels (     and      

respectively). The second measurement matrices    are used to perform the partial 

reconstruction stage as described in sections 4.3.5 and these partial reconstructions are used to 

recover the complete image with the measurement matrices    as described in section 4.3.6. 

5.1 Partial Reconstruction 

Testing on the partially reconstructed image is meant to determine how good they are at 

providing insight to the content of the fully recovered image. The partially reconstructed images 

    are then subjected to a unsupervised  -means classifier and compared to           and 

          for the case of      and    respectively. These two reference images that are used 

as ground truths are the result of classifying the original image using the  -means classifier, and 

then assigning each section to the class with the highest presence in it. 
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Figure 5-2. Ground Truth Images for IPR 

 

For the different tests conducted the partially recovered image was used to classify the signal and 

later compared to the classification done using the partially compressed image. The levels of 

accuracy for each class are used as an indicator on how close analysis done on the partially 

reconstructed version is to the expected analysis. Each confusion matrix is shown in the Table 

5-3 to Table 5-10. 

 
S1 = 16, T1 = D, M1 = 140, T2 = D, M2 = 90, Accuracy = 198 / 256 = 77.34 

 Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 12 57 57 / 69 1 / 13 12 / 13 12 / 69 69 
Sea 1 186 1 / 187 57 / 243 186 / 243 186 / 187 187 

Total GT 13 243      

Table 5-3. Confusion Matrix for    :                            . 

 
S1 = 16, T1 = D, M1 = 140, T2 = W, M2 = 80, Accuracy = 227 / 256 = 88.67 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 13 29 29 / 42 0 / 13 13 / 13 13 / 42 42 
Sea 0 214 0 / 214 29 / 243 214 / 243 214 / 214 214 

Total GT 13 243      

Table 5-4. Confusion Matrix for    :                            . 

 
S1 = 16, T1 = W, M1 = 160, T2 = D, M2 = 80, Accuracy = 183 / 256 = 71.484375 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 13 73 73 / 86 0 / 13 13 / 13 13 / 86 86 
Sea 0 170 0 / 170 73 / 243 170 / 243 170 / 170 170 

Total GT 13 243      

Table 5-5. Confusion Matrix for    :                            . 

 
S1 = 16, T1 = W, M1 = 160, T2 = W, M2 = 80, Accuracy = 198 / 256 = 77.34 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 13 58 58 / 71 0 / 13 13 / 13 13 / 71 71 
Sea 0 185 0 / 185 58 / 243 185 / 243 185 / 185 185 

Total GT 13 243      

Table 5-6. Confusion Matrix for    :                            . 

 

 

 

From left to right: 𝐺𝑇 𝑅𝐺𝐵, 𝐺𝑇 𝐴 𝑆    and 𝐺𝑇 𝐵 𝑆    (all are scaled for detail). 
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S1 = 32, T1 = D, M1 = 59, T2 = D, M2 = 456, Accuracy = 995 / 1024 = 97.17 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 56 26 26 / 82 3 / 59 56 / 59 56 / 82 82 
Sea 3 939 3 / 942 26 / 965 939 / 965 939 / 942 942 

Total GT 59 965      

Table 5-7. Confusion Matrix for    :                            . 

 
S1 = 32, T1 = D, M1 = 59, T2 = W, M2 = 434, Accuracy = 1009 / 1024 = 98.53515625 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 52 8 8 / 60 7 / 59 52 / 59 52 / 60 60 
Sea 7 957 7 / 964 8 / 965 957 / 965 957 / 964 964 

Total GT 59 965      

Table 5-8. Confusion Matrix for    :                            . 

 
S1 = 32, T1 = W, M1 = 60, T2 = D, M2 = 437, Accuracy = 986 / 1024 = 96.29 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 55 34 34 / 89 4 / 59 55 / 59 55 / 89 89 
Sea 4 931 4 / 935 34 / 965 931 / 965 931 / 935 935 

Total GT 59 965      

Table 5-9. Confusion Matrix for    :                            . 

 
S1 = 32, T1 = W, M1 = 60, T2 = W, M2 = 426, Accuracy = 1007 / 1024 = 98.34 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 53 11 11 / 64 6 / 59 53 / 59 53 / 64 64 
Sea 6 954 6 / 960 11 / 965 954 / 965 954 / 960 960 

Total GT 59 965      

Table 5-10. Confusion Matrix for    :                            . 

 

 
Figure 5-3. Location on a ROC of     classification 
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5.2 Full Reconstruction 

Being able to gain some foresight into the contents of the signal before complete reconstruction 

would hold no value if the reconstructed signal has no liking to the original. It is therefore also 

important to compare the fully reconstructed image to the original to be sure that it can be used 

for classification or detection within certain margins of error. First the partially reconstructed 

images and the measurement matrices    are used to fully recover the original image following 

the procedure described in section 4.3.6. Again using the classification accuracy and error as an 

indicator of the we present the confusion matrices for each test (Table 5-11 to Table 5-14) as 

well as their location on the ROC chart (Figure 5-4). This ROC chart also shows the location of a 

signal compressed by only taking the highest values of the sparse representation. 

 
S1 = 16, T1 = D, M1 = 140, T2 = D, M2 = 90, Accuracy = 50746 / 65536 = 77.43 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 23511 8033 8033 / 31544 6757 / 30268 23511 / 30268 23511 / 31544 31544 
Sea 6757 27235 6757 / 33992 8033 / 35268 27235 / 35268 27235 / 33992 33992 

Total GT 30268 35268      

Table 5-11. Confusion Matrix for   :                            . 

 
S1 = 16, T1 = W, M1 = 160, T2 = D, M2 = 80, Accuracy = 51642 / 65536 = 78.80 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 23591 7217 7217 / 30808 6677 / 30268 23591 / 30268 23591 / 30808 30808 
Sea 6677 28051 6677 / 34728 7217 / 35268 28051 / 35268 28051 / 34728 34728 

Total GT 30268 35268      

Table 5-12. Confusion Matrix for   :                            . 

 
S1 = 32, T1 = D, M1 = 59, T2 = D, M2 = 456, Accuracy = 60575 / 65536 = 92.43 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 28497 2754 2754 / 31251 2207 / 30704 28497 / 30704 28497 / 31251 31251 
Sea 2207 32078 2207 / 34285 2754 / 34832 32078 / 34832 32078 / 34285 34285 

Total GT 30704 34832      

Table 5-13. Confusion Matrix for   :                            . 

 
S1 = 32, T1 = W, M1 = 60, T2 = D, M2 = 437, Accuracy = 59997 / 65536 = 91.55 

  Boat Sea Commission Omission Prod. Acc. User Acc. Total Class 

Boat 28204 3039 3039 / 31243 2500 / 30704 28204 / 30704 28204 / 31243 31243 
Sea 2500 31793 2500 / 34293 3039 / 34832 31793 / 34832 31793 / 34293 34293 

Total GT 30704 34832      

Table 5-14. Confusion Matrix for   :                            . 
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Figure 5-4. Location on a ROC of    classification 
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6. CONCLUSIONS AND FUTURE WORK 

Hardware limitations made it impossible to execute a single stage reconstruction of the image, 

leaving us wanting for empirical data on the processing time of said approach. It was therefore 

impossible to compare processing times of the recursive and direct reconstruction. However the 

hardware limitation does allow us to draw the conclusion that the proposed method can be 

executed in systems with lower processing power (system memory) than that required for direct 

or traditional CS reconstruction. 

  
   

  

   
      

    

      

Overall 

Accuracy 

   

   
   

  

     
      

    

      

Overall 

Accuracy 

 

 
          

  

16 140 54,68 DCT 4.69 77.43 16 90 35.16 DCT 1.97 86.33 19.23 4429.32 

       80 31.25 WLT 1.28 93.75 17.09 4139.52 

 160 62,5 WLT 6.34 78.8 16 80 31.25 DCT 1.61 76.56 19.53 5641.92 

       80 31.25 WLT 1.48 80.86 19.53 5579.52 

8 59 92,19 DCT 0.04 84.78 32 456 44.53 DCT 303.3 97.27 41.05 53812.29 

       434 42.38 WLT 539.1 97.27 39.07 95547.12 

 60 93,75 WLT 0.04 84.39 32 437 42.68 DCT 285 96.88 40.01 51424.68 

       426 41.6 WLT 532.1 99.02 39 95899.08 

Table 6-1: Summary of the results from the tests conducted. 

 

 

Figure 6-1: ROC chart comparison. 
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The results on the recursive implementation from the previous chapter can be condensed in Table 

6-1 and Figure 6-1. The side by side comparison of the data from the previous table as well as 

the visual indication given by the ROC charts allows us to draw the following conclusions: 

 The selection of    and    have the greatest impact on the operation of the whole system 

as they affect the extent to which conclusions can be drawn from the partially 

reconstructed image (measured through classification accuracy), as well as the processing 

time required to achieve said reconstruction when starting from the fully compressed 

measurements. The results obtained from the test with      produced higher levels of 

accuracy and better ROC charts, but took significantly longer than the tests with     . 

 The compression level also affects the quality of the analysis done on the partially 

compressed image as well as the processing time required for reconstruction. Lower 

levels of compression account for better levels of accuracy when classifying the contents 

of the signal. However, there is an inherent desire in any classification application to 

achieve the maximum reduction possible, so it makes more sense to tweak the system by 

adjusting the vales of    and    while trying to keep    and    as low as possible. 

 The complete system is highly parallelizable: the first recovery stage can be implemented 

simultaneously on    platforms in order to obtain the partially reconstructed images, 

after which the second reconstruction stage could be processed in as many as       

instances at the same time. The only bottle neck is the requirement of the totality of the 

results from the first reconstruction stage in order to further any analysis. 

 The different reconstruction stages are independent of the transformation or sparsifying 

basis as long as the signal has a greater level of sparsity in said basis than that which was 

initially determined to be the minimum level. For example, in the cases were the number 
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of samples was determined using the DCT2 but the  -D Wavelet transform presented a 

higher level of sparsity; the DCT2 could be switched for the  -D Wavelet transform and 

achieve normal operation. 

The tests conducted and conclusions drawn above would seem to guide any immediate 

development in this research towards achieving higher levels of efficiency, this could be done by 

implementing parallel processing in the reconstruction stages, as well as using finished 

reconstructions as starting points for the optimization algorithms (use the result from     as a 

staring point for    , the closer the starting point is to the optimum value the faster the 

algorithms will reach a solution) or testing other optimization algorithms that might seem better 

suited. 

The literature on CS also displays algorithms [47] and methods suited for applications on noisy 

signals which might be better suited for real world applications like the single pixel camera. 

Farther down the road it would also seem of interest to: add layers to the compression and 

reconstruction in an effort to increase the number of recursions and examine its effect on 

processing times and analysis of preliminary versions of the recovered signal; test the methods 

described on an implementation of the single pixel camera using a HSI sensor; or test the worth 

of the application of recursive CS to other types of signals aside from HSI.  
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