


ABSTRACT 
 
 
 

The main objective of this study is to calculate the heat-transfer coefficients 

for natural convection from a heated, vertical flat plate into a supercritical fluid. In 

the first part of this work, an equation for the coefficient of thermal expansion or 

expansivity for a van der Waals gas was derived as a function of the temperature, 

the pressure, the  van der Waals constants, and the compressibility factor. The trend 

of the curves obtained with this equation and with values from tables of 

thermodynamic properties was similar and they diverge at critical point. These 

features confirm the validity of equation obtained in this work. 

 

In the second part, this expansivity was used in the momentum equation, 

which, with the energy and continuity equation, forms a set of coupled equations. 

This set of equations was solved numerically by finite differences. A FORTRAN 

code was written to obtain the velocity and temperature profiles along the plate. 

The local Nusselt number was then calculated and plotted as a function of the local 

Rayleigh number. It is observed in these plots that a curve obtained with 

temperature and pressure far from the critical region approaches the line obtained 

with a classic correlation. It was also observed that the curves corresponding to 

supercritical conditions are notably above of the line corresponding to the classic 

correlation, which means that the heat transfer considerably increases in the critical 

region.   
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RESUMEN 
 
 
       El objetivo principal de este estudio es calcular los coeficientes de 

transferencia de calor por convección natural para una placa plana vertical en 

contacto con un fluido supercrítico. En la primera parte de este trabajo se derivó 

una ecuación para el coeficiente de expansión térmica o expansividad para un gas 

de van der Waals en función de la temperatura, la presión, las constantes de van der 

Waals y el factor de compresibilidad. La tendencia de las curvas obtenidas con la 

ecuación calculada y valores de tablas de propiedades termodinámicas es la misma 

y ellas divergen en el punto crítico. Estas caracteristicas confirman la validez de la 

ecuación obtenida en este trabajo.  

 

        En la segunda parte, esta expansividad se usó en la ecuación de movimiento 

que, con las ecuaciones de energía y continuidad, forma un sistema de ecuaciones 

acopladas. Este sistema de ecuaciones se resolvio numéricamente por diferencias 

finitas. Se escribió un programa FORTRAN para obtener los perfiles de velocidad 

y temperatura a lo largo de la placa. Se calculó el número de Nusselt local y se 

graficó en función del número de Rayleigh local. En los gráficos se observa que la 

curva obtenida con temperatura y presión lejos de la región crítica se aproxima a la 

línea obtenida con una correlación clásica. También se observó que las curvas 

correspondientes a condiciones supercríticas quedan notablemente por encima de la 

línea correspondiente a la correlación clásica lo que significa que la transferencia 

de calor aumenta considerablemente en la región crítica.   
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CHAPTER 1 
 

INTRODUCTION 
 
1.1 Background 
 

The application of the supercritical fluids in the industry has attracted a 

great deal of attention due to the broad range of applications and low or negligible 

environmental impact. Numerous vegetable and animal substances have been 

processed with supercritical solvents to extract their valuable components. An 

important example is the extraction of essences of aromatic and medicinal plants, 

which have been carried out to a great extent with supercritical carbon dioxide.  

 

It is well known that, at the critical point, the properties of the liquid and 

vapor phases become identical and cannot be distinguished. A supercritical fluid is 

a fluid at temperatures and pressures higher than the critical ones, as seen in       

Fig. 1.1. The critical properties of common fluids used for supercritical fluid 

extraction (SFE) processes are given in Table 1.1.     

 

There is ample evidence that supercritical fluids provide an alternative to 

the use of conventional solvents to carry out a variety of processes.  First, it is 

possible to use environmentally benign fluids as water, carbon dioxide (CO2), or 

other fluids that are not that environmentally friendly, such as ammonia or the low-

molecular-weight hydrocarbons. Second, it is possible to harness the density by 

slight changes in pressure and thus adjusting its capacity as a dissolvent to optimize 

1 
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their performance and selectivity in separation processes or in chemical reactions. 

Third, the moderate temperatures often used, as in the case of CO2 or light 

hydrocarbons, are an additional advantage when dealing with labile substances 

commonly encountered in biotechnological applications.  

 

The processes involving supercritical fluids are sometimes more expensive 

than the conventional processes because they involve high-pressure equipment. 

This is partially offset in many instances, i.e., when CO2 is used, by the readily 

available and inexpensive solvent used.   

 

For more than twenty years, supercritical solvents have been used in large-

scale processes. One of the first processes was the extraction of caffeine from 

coffee beans with supercritical CO2. Supercritical extraction has also been used to 

extract substances such as hops and spices from plants. As stated previously, the 

cost associated with the compression and the confinement of the fluids at high 

pressure is what makes this technology costly, in many cases more than traditional 

methods. Nevertheless, the simplicity, the selectivity and the low or negligible 

environmental impact that supercritical-fluid technologies offers will progressively 

turn on important options, and in the future supercritical fluids will be probably 

used massively.  
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Figure 1.1. Phase diagram for a single component. 
 
 

Table 1.1. Critical properties of some compounds used as supercritical solvents 
 

 
Fluid 

Critical 
Temperature 

[K] 

Critical Pressure 
[MPa] 

ammonia 405.50 11.35 
butane 425.16 3.80 
carbon dioxide 304.10 7.38 
chlrortrifluoromethane 302.00 3.87 
cyclohexane 553.50 4.07 
ethane 305.40 4.88 
ethylene 282.40 5.04 
n-pentane 469.70 3.37 
propane 369.80 4.25 
propylene 364.90 4.60 
toluene 591.80 4.10 
trichlorofluoromethane 471.20 4.41 
trifluoromethane 299.30 4.86 
water 647.30 22.09 
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The supercritical fluids have many unique advantages. Their diffusivity 

properties are much better than those of a liquid, allowing the supercritical fluid to 

penetrate into ultra fine nanostructures. They produce no capillary stress during the 

drying process due to the absence of a liquid-gas-interface. Also, SCF can be used 

for the extraction or removal of specific material from nanostructures. 

 

Extraction is not the only application of supercritical fluids. In the 

petrochemical industry, supercritical fluids are used for the recovery of oil by 

flooding the wells with high-pressure CO2, which happens to be supercritical. 

Supercritical fluids are also used as a reaction medium in the cracking of the heavy 

components of petroleum with supercritical pentane and for the tar extraction with 

supercritical toluene. More recently, processes are being developed in the field of 

particle technology using supercritical fluids. 

 

 One of the first industrial, supercritical-extraction processes was the 

decaffeination of coffee beans, and this process will be used to illustrate the 

importance of the this investigation. To extract the caffeine from the coffee bean, 

an extractor with a heating jacket is used, inside which the coffee beans are placed 

and through which supercritical CO2 circulates, forming a supercritical-fluid bed. 

The heat must flow from the heating jacket to the supercritical fluid and from there 

to the beans. The mechanism of heat transfer in the bed is very important. In this 

case mechanisms are forced convection, due to the circulation of supercritical CO2, 
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and natural convection due to the density variations. Müller and Estévez [16] found 

that, in the case of mass transfer, the natural convection is greatly increased when 

supercritical conditions are approached. Therefore, it would not be surprising to 

find out that natural-convection heat transfer would exhibit a similar behavior.  

 

1.2 Goals and Objectives 

Given the important applications mentioned above, and the need to 

understand the relative importance of the heat-transfer mechanisms involved, it is 

the goal of this work to predict the enhancement of the natural heat-transfer 

phenomenon near the solvent critical point. This is done by obtaining a model to 

predict the natural convection heat-transfer coefficient that applies to the case 

where the medium is a supercritical fluid. To this end, a mathematical model was 

developed in two steps. First, a thermodynamic model based on a cubic equation of 

state was developed to estimate the thermal expansivity. The van der Waals 

equation was used to this end. Then, the boundary-layer, heat-transfer equations 

incorporating the dependence of the thermal expansivity on temperature were 

solved numerically to reach the desired model for the heat-transfer coefficient. 

 
 

The specific problem used to search the main goal of this work involves heat 

transfer by natural convection to or from a solid vertical, flat plate, when the fluid 

medium is a supercritical fluid. The strategy chosen comprises the following steps: 
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1. Find a general equation for the thermal expansivity ( )β  as a function of 

pressure and temperature using a cubic equation of state. Compute  in the 

vicinity of the critical point for a selected group of compounds that are or 

could be used as supercritical solvents. 

β

2. Find the governing differential equations (continuity, motion, and energy) 

for the geometry at hand. 

3. Find a numerical solution (temperature and velocity distribution) to the 

differential equations obtained in step 2, using a variable thermal 

expansivity calculated point to point from equation obtained in step 1.  

4. Compute the heat-transfer coefficient for selected fluids, at preselected 

conditions according to a “design of experiments” method. 

5. Correlate the results in terms of standard dimensionless numbers and 

compare it to standard correlations. 

 

 



CHAPTER 2 
 

PREVIOUS WORK 
 
 

The heat transfer by natural convection applied to simple geometries such 

as flat plates, spheres, and cylinders, have been extensively studied for decades. 

Information on many topics related to supercritical-fluid technologies is also 

abundant. However, studies of natural convection in supercritical fluid are very 

scarce, suggesting that not much work has been done in this field. 

 

The classical approach to mathematically describe natural convention for 

simple geometries is a follows. The energy equation and the Navier-Stokes 

equations are first stated and simplified for the particular geometry being studied. 

Then, the density of the fluid is expressed in terms of the thermal expansivity, , 

(assumed constant) and the temperature and substituted into the Navier-Stokes 

equations. The resulting differential equations are coupled (because the temperature 

appears in the Navier-Stokes equations and the velocity components appear in the 

energy equation) and thus they are solved simultaneously. Once the temperature 

distribution is obtained, the heat-transfer coefficient is readily calculated.   

β

 

Ostrach, [21] was one of the first to solve the boundary layer equations for 

natural convection from vertical flat plane using a numerical method, reducing the 

set of three equations (continuity, momentum and energy) to only two equations 

7 
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with their respective boundary conditions. He found that this type of flow is 

dependent on the Grashof number and Prandtl number. 

 

McHugh and Krukonis [14] gave an excellent introduction to the properties 

and uses of supercritical fluids. A good way to define a SCF is with a phase 

diagram that indicates the critical temperature and pressure of a substance. (For 

example, CO2; Tc = 304.10 [K], Pc = 7.38 [MPa]) Supercritical fluids are highly 

compressible and resemble gases in some aspects and liquids in others. Such fluids 

as supercritical xenon, ethane, and carbon dioxide offer a range of unusual 

possibilities in separation processes and in analytical or synthetic chemistry.  

 

  Müller and Estévez [16] made an important contribution to understanding 

mass transfer by natural convection in supercritical fluid. They modeled the 

isothermal-isobaric expansivity on mixing (analog of the thermal expansivity in 

heat transfer), through cubic equations of state for this case. They found that this 

expansivity gets to be quite high close to the critical point of the solvent. They also 

found that the dependency of this expansivity on composition is significant, 

reaching a maximum value at infinite dilution. It is has been observed that the 

mass- and heat-transfer phenomena are analog in many aspects. 
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Therefore, if the value of expansivity found by Müller and Estévez [16] is 

high in the case of mass transfer, one would expect that the thermal expansivity β 

be also high under similar conditions based on mass and heat-transfer analogies. 

 

Nishikawa and Ito [19] did modeling for free convection to supercritical 

fluids based on boundary-layer equations and similarity transformation taking into 

account variable physical properties of the fluid.  However, no effect of the 

temperature on the thermal expansivity was accounted for.  The same group also 

did experiments on free convection from thin wires [18].  Kakarala and Thomas 

[11], on the other hand, did some modeling for free and forced convection for flow 

of supercritical fluids in vertical tubes. 

 

To the author’s knowledge, no recent contributions on free convection in 

supercritical fluids have appeared in the literature.  The works mentioned in this 

chapter are summarized in Table 2.1. 
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Table 2.1. Summary of previous work 

Author Type of work Geometry or 
comment Contribution 

Ostrach (1952) 
[21] 

Numerical 
solution 

Heated vertical 
flat plate 

Solve numerically the 
boundary layer equations 
with constant thermal 
expansivity 

Nishikawa et al. 
(1973) [18] Experiments Wires Measured heat flux from 

wires to supercritical CO2

Nishikawa and 
Ito (1969) [19] Modeling Vertical flat plate 

Numerical solution with 
properties varying with 
temperature  

Kakarala and 
Thomas (1980) 

[11] 

Modeling of 
turbulent flow 

Flow of SCF in 
tubes 

Use surface renewal to 
model combined free and 
forced convection 

Müller and 
Estévez (1990) 

[16] 

Thermodynamic 
model 

Mass-transfer 
natural convection 

Model the isothermal-
isobaric expansivity on 
mixing, through cubic 
equations of state 

McHugh and 
Krukonis (1994) 

[14] 

Introduction to 
supercritical 

fluids 

Book on 
fundamentals and 

applications 

Introduction to the 
properties and uses of the 
supercritical fluids 

This work 

Thermodynamic 
model and 
numerical 
solution 

Heated vertical 
flat plate 

Solve numerically the 
boundary layer equations 
with variable thermal 
expansivity 

 

 
 



CHAPTER 3 
       

THERMODYNAMIC MODELING 
 

3.1 General Equation for Thermal Expansivity     

The analysis presented here begins with the definition of isobaric thermal 

expansivity β  (or simply, thermal expansivity): 

                        
PT
⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

ρ
−=β

1                                                (3.1) 

and expressing ρ as,                                              

           
Z

∗ρ
=ρ                                                           (3.2) 

where  is the ideal-gas fluid density at P and T  and ∗ρ ρ  is the actual density of the 

fluid at P and T. The derivative of Eq. (3.2) with respect to T at constant P is:  

                          
PPPP T

Z
ZTZT

Z
T

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ρ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂ ∗∗−∗

2

1 1)(                      (3.3) 

Replacing Eq. (3.3) in Eq. (3.1) yields:  
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11111        (3.4) 

where  is the ideal-gas thermal expansivity, equal to 1/T.  Eq. (3.4) is completely 

general and applies to any material, in particular, dense fluids. It can be used 

whenever the relationship 

iβ

),( TPZZ =  is known. 
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3.2 Equation-of-State Approach  

Schmidt and Wenzel [25] present a general form for cubic equations of state 

(EOS). Their equation is suitable at high pressures and temperatures such as those 

encountered in processes with supercritical fluids. The equation is: 

   22 '''' wbbVuV
a

bV
RTP

++
−

−
=                                             

(3.5) 

The polynomial form of Eq. (3.5) is:  

( )[ ] ( )[ ] ( )[ ] 0'''1''' 223 =++−−+−+−−+ aRTbPwbbbTRuauwbPVTRubPVPV
 

      (3.6) 
 

To express Eq. (3.6) in terms of Z, the following definitions are recalled:  
 

     
TR
VPZ '

=                                                    (3.7) 

 

              2)(RT
aPA =                                            (3.8) 

and 

                                                        
RT
bPB =                                                         (3.9) 

where a and b are the EOS constants normally obtained from the critical properties. 

Replacing Eqs. (3.7), (3.8) and (3.9) into Eq. (3.6) yields, after rearrangement: 

        0)()]'('[]1)1'[( 2223 =++−−−−+−−+ wBwBABZwuBBuAZBuZ

For van der Waals EOS:  
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             0'=u ,  0=w  

Therefore, the polynomial equation is reduced to: 
 
                                          (3.10) 0)1( 23 =−++− ABAZZBZ

Moreover, 

           
c

c

P
RT

a
2)(

64
27

=                                                         

(3.11) 

           
c

c

P
RT

b
8
1

=                                                                (3.12) 

and, from Eqs. (3.8) and (3.9):  
 

                            421875.0
64
27

==cA                     125.0
8
1
==cB      

          Equations (3.4) and (3.10) are the basis to obtain an expression for the 

thermal expansivity as a function of the pressure and temperature. The implicit 

derivative of Eq. (3.10) with respect to T a constant P is:  

      ( )[ ] ( ) ( ) 0123 22 =⎟
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But, from Eqs. (3.8) and (3.9): 
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Substituting Eqs. (3.14) and (3.15) into Eq. (3.13) yields: 
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                                (3.16) 

subsequent substitution of Eq. (3.16) in Eq. (3.4), gives: 
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                             (3.17) 

This is an expression for β  as a function of compressibility factor, pressure, and 

temperature. The calculation of β  involves two steps: first, the compressibility 

factor, Z, is determined by finding the appropriate root of Eq. (3.10); then, Z is 

introduced into Eq. (3.17) to obtain the value of β . Equation (3.10) is a cubic 

equation and the procedure to find its roots is shown in Appendix A. 

 

 It is interesting to verify that Eq. (3.17) converges to  at the ideal-gas 

limit. This limit is reached as  at constant T. When this happens, 

, i.e., , (Eq. 3.7) and  and , (Eqs. (3.8) and (3.9)). 

Therefore: 

T/1

0→P

TRVP →' 1→Z 0→A 0→B

T
1

=β                                                 (3.18) 

 



CHAPTER 4 
       

NATURAL CONVECTION EQUATIONS 
 

4.1 Heat Transport by Natural Convection 
 

In natural or free convective heat transfer, heat is transferred between a solid 

surface and a fluid moving over it, where fluid motion is entirely caused by the 

buoyancy forces arising from density changes that result from the temperature 

variations in the fluid. Fluid movement by natural convection can be either laminar 

or turbulent. However, because of the low velocities that usually exist in natural 

convection, laminar flow occurs more frequently than turbulent flow. In this thesis, 

attention will therefore be focused on laminar natural convective flow. 

 

 Fluid movement by free convection is due to density changes in the presence 

of a gravitational force field. It can also arise in other force fields, e.g., very large 

buoyancy in a centrifugal force field. However, in these cases, the movement is not 

normally purely natural convective. Such cases will not be considered here. A 

distinction is sometimes made between natural and free convection, the term 

natural convection then being applied to fluid movement caused by a gravitational 

force field and term free convection being applied to movement caused by any 

force field. However, current trend is to use either term to describe fluid flow 

caused by temperature-induced density changes in any force field and thus they will 

be used interchangeably here.  
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4.2 Boundary-Layer Equations for a Vertical Flat Plate  

Consider the laminar boundary layer depicted in Fig. 4.1, where the fluid 

movement is entirely driven by buoyancy forces. In this two-dimensional problem, 

the gravity acts in the negative  direction. If the temperature differences are small 

enough, the fluid properties, except the fluid density, may be assumed to be 

constant (fluid density can not be assumed constant, because its variation is what 

induces the fluid motion). Finally, it will assumed that the boundary layer 

approximations are valid. 

x
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Figure 4.1. Heated vertical plate. 
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 The body force by unit volume is –ρg, where g is the local acceleration of 

gravity. Thus, momentum equation in the x direction is, 

                       gρηρ −⎟⎟
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∂
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where, 

0=
∂
∂

t
u         (Steady state) 

2

2

2

2

x
u

y
u

∂
∂

>>
∂
∂      (Order-of-magnitude analysis) 

Then, Eq. (4.1) becomes: 
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The pressure gradients in the boundary layer correspond to hydrostatic 

effects of the fluid. Assuming that the pressure gradient inside and outside the 

boundary layer is the same, then: 

    g
x
P

∞−=
∂
∂ ρ                              (4.3) 

where  is the density outside the boundary layer. ∞ρ

Replacing Eq. (4.3) in Eq. (4.2), 
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  The first term on the right-hand side of Eq. (4.4) is the buoyancy force, 

where the density ρ  is a variable. The density may be represented by a linear 

function of temperature for small temperature differences and the change in density 

is related to the thermal expansivity, β , as:  
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⎠
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−=
ρ

ρ
1β  

 If β is approximated by: 
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(4.5) 

and Eq. (4.4) becomes:  
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where it is now apparent how the buoyancy force is related to the temperature 

difference. 

 For a vertical flat plate, the energy equation reduces to, 

     2
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y
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∂             (4.7) 

where, 
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k

ρ
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The set of governing boundary-layer equations describing the heat-transfer 

process by natural convention from a vertical flat plate may then be expressed as: 

                   0)(ρ)(ρ
=

∂
∂

+
∂

∂
y
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u                                     (Continuity)                  (4.8) 

           2
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          2
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Equation (4.8) can be simplified for incompressible fluids, to:  

        0=
∂
∂

+
∂
∂

y
v

x
u         (4.8a) 

         Based on the highest order of the dependent variables (u, v and T), the number 

of boundary conditions are: two conditions for u in y and one in x; one condition 

for v in y; and two conditions for T in y and one in x. These are: 

For   :0,0 >∀= xy ,0,0 == vu  and wTT =         (4.9) 

For   :0, >∀∞= xy ,0=u  and ∞=TT        (4.10) 

For   :0,0 >∀= yx ,0=u  and ∞=TT        (4.11) 

Since the momentum equation contains T and the energy equation contains 

u and v, Eqs. (4.6) and (4.7) are coupled and their solution must be obtained 

simultaneously.  
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4.3 Heat-Transfer Coefficient 

 The solution of the boundary-layer equations for any convection heat-

transfer problem gives the velocity and temperature distributions. This is true for 

any type of solution (analytical or numerical) and for any type of convection 

(forced or natural). Once the solution is obtained, the heat-transfer coefficient is 

obtained by realizing that as we approach the solid surface, the velocity vector is 

tangent to the surface and the heat-flux vector is normal to the surface, thus the heat 

transfer is by conduction at the limit as the distance from the wall approaches zero. 

Therefore, for the problem described in the previous section: 
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Tk wx

y 0
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hence, the local, heat-transfer coefficient, hx is given by: 
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Note the derivative in Eq. (4.13) is a function of x, thus, hx is a function of x. As 

customarily done, the average heat-transfer coefficient for a finite flat plate of 

vertical length L is: 

    '
'

1

'

dAh
A

h
A

xL ∫=         (4.14)  

In dimensionless form, the Nusselt numbers local and average, are defined as:   

                      
k
xhx

x =Nu          and        
k

Lh L
L =Nu                             (4.15) 



                                                     CHAPTER 5 

                                     NUMERICAL SOLUTION 

  

5.1 Introduction 

         Chapter 4 presents the mathematical description of the natural-convection 

problem on a vertical flat plate. This resulted in three equations of change, namely 

Eqs. (4.6), (4.7) and (4.8). This chapter describes the numerical scheme to solve 

these equations. This is done by finite-differences using the fully implicit scheme in 

the y-direction and an explicit scheme in the x-direction. Physically, the thickness 

of the boundary layer is much smaller that any characteristic length defined in the 

streamwise direction. Therefore, the changes in physical properties in the direction 

parallel to the plate are small compared to the corresponding changes in the 

direction perpendicular to the plate. Therefore, grids in the y direction should be 

much finer than in the x direction. The implicit method will be most suitable for 

this computation because it does not require any stability condition. 

 

5.2 Numerical Model 

    5.2.1 Method of Finite-Differences 

            One way of solving the boundary layer equations is by the finite-difference 

method. This method has several advantages. The method can be applied to 

problems involving arbitrary surface thermal conditions and arbitrary free stream 

velocity and is easily extended to cover the effects of variable fluid properties and 
21
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dissipation effects. The errors involved in the procedure are purely numerical and 

their magnitude can be estimated and generally reduced to an acceptable level by 

reducing the numerical step size. The disadvantages of the finite-difference method, 

and other numerical methods, are that a considerable amount of computational 

effort is usually required to obtain the solution and that they do not, in general, 

reveal certain unifying features of the solutions, such as the fact that profiles are 

similar under certain conditions. The widespread availability of modern computer 

facilities has, however, made these disadvantages relatively unimportant. 

 

5.2.2 Description of the Solution Grid 

         The finite-difference technique with an under-relaxation iterative procedure 

has been chosen. Subscripts i and j will be used to represent nodes in the x and y 

directions, respectively. Figure 5.1 shows the grid used in this work for the 

numerical solution. The grid chosen has a constant step size in the y direction and 

variable step size in the x direction, making the grid finer at the beginning of the 

plate for a better appreciation of the formation of the boundary layer. 

 

5.2.3 Boundary-Layer Equations in Dimensionless form 

          For this type of problem, although not necessary, it is often convenient to 

write the governing equations in dimensionless form before the deriving the finite- 

difference approximations. The following dimensionless variables are thus defined: 
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where 

    
f

ref T
1β =                                                         (5.2) 

and 

    ( )∞+= TTT wf 2
1                     (5.3) 

 In terms of these variables, Eqs. (4.8), (4.6), and (4.7) become, respectively: 
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where 

        
refβ
β

=β∗             (5.7) 

and 

                              
α
γ

=Pr  

When the wall temperature is uniform and the ambient fluid is stagnant, the 

boundary conditions given by Eqs. (4.9), (4.10), and (4.11) apply and become: 

        1,0:0 =θ=== VUY  

        ∞→Y :  0,0 →θ→U           (5.8) 

0,0:0 =θ== UX  
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5.2.4 Finite-Difference Equations 

To express the set of dimensionless partial differential equations in finite- 

difference form, the grid system shown in the Fig. 5.1 is used, with i-lines running 

in the Y-direction normal to the surface and j-lines running in the X-direction 

parallel to the surface. For simplicity, uniform grid spacing, Y∆  in the Y-direction 

is used. Fig. 5.2 shows the notation used to derive the finite-difference equations. 

The equations of motion, of energy, and continuity are now discretized based on 

such notation.  

 

   

 

 

 

 

i, j-1 i , j+1 i, j 
∆x 

∆y ∆y

 
i-1, j 

Figure 5.2. Grid points used to derive the finite-difference equations. 

 

Equation of motion 

 To obtain the first finite-difference approximation for YU ∂∂ /  at the point 

, a the central-difference formula is used: ( ji, )

Y
UU

Y
U jiji

ji ∆

−
≅

∂
∂ −+

2
1,1,

,

          (5.9) 
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The central-difference approximation to the second order derivative is given by, 
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The backward-difference approximation in the X-direction is: 
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Substituting Eqs. (5.10), (5.12), (5.13) in the momentum equation gives:  
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       (5.14) 

For each value of i, i.e., for each horizontal line in Fig. 5.1, the unknown variables 

are . Therefore, Eq. (5.14) can be written in the following form: 1,,1, ,, +− jijiji UUU

                          jjijjijjij FUEUDUC =++ +− 1,,1,                   (5.15) 

where the coefficients are given by: 
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Note that the application of Eq. (5.15) along the i-th line in Fig. 5.1 to each 

of the points 1,,4,3,2 −= Nj K , gives a set of 2−N  equations and 2−N  

unknown values of U , i.e., . This set of equations has 

the following form (note that  and  are zero): 

12432 ,,,,, −− NN UUUUU K
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The set of equations can thus be written in matrix form as: 
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or: 

UjiU RUQ =,          (5.20) 

where  is a tridiagonal matrix. UQ

 

Energy equation 

 Now consider the finite-difference approximations of the energy equation: 
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Replacing Eqs. (5.21), (5.22) and (5.23) into the energy equation and 

rearranging yields: 
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This equation has the following form 

                        jjijjijjij JSHG =θ+θ+θ +− 1,,1,                                   (5.24) 

 

 



 29

where the coefficients in this equation are given by: 
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X

U
J jiji

j ∆

θ
= −− ,1,1                     (5.28) 

The application of Eq. (5.24) to each internal point on the i -th line, e.g., 

, gives again a set of 1,,4,3,2 −= Nj K 2−N  equations in the  unknown 

values of θ  (note that 

2−N

11, =θ i  and 0, =θ Ni ). This set of equations has the 

following form: 

23,22,21,2 JSHG iii =θ+θ+θ  

34,33,32,3 JSHG iii =θ+θ+θ  

                                                       M  

   1,11,12,1 −−−−−− =θ+θ+θ NNiNNiNNiN JSHG  

This set of equations is similar to that derived for the momentum equation, and can 

be expressed in matrix form as: 
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or: 

  TjiT RQ =θ ,                                                        

(5.29) 

where  is again a tridiagonal matrix. Thus, the same form of equation is 

obtained for the energy and the momentum equations.  

TQ

Continuity equation  

There are several ways to express the continuity equation in a finite-difference 

form. Fig. 5.3 shows the notation used to describe the way chosen to discretize the 

continuity equation. The derivatives are discretized at the midpoint (not a nodal 

point) denoted by  therein. This midpoint lies on the -th line, halfway 

between the nodes (  and 

( ½, −ji )

)

i

1−j j . Applying the central-difference approximation in 

the Y-direction:  

Y
VV

Y
V jiji

ji ∆

−
≅

∂
∂ −

−

1,,

2/1,

                  (5.30) 

 It is now assumed that the X-derivative at the point ( )½, −ji  is equal to the 

average of the X-derivative at the points ( )ji,  and ( )1, −ji . Therefore: 
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i, j-½ i, j-1 i, j 

∆y ∆x

 

 

 

 

 

 
i-1, j i-1, j-1

  

 Figure 5.3. Nodal points used to discretize of the continuity equation. 

       
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂
∂

≅
∂
∂

−− 1,,2/1, 2
1

jijiji X
U

X
U

X
U       (5.31) 

Substituting Eqs. (5.30) and (5.31) into: 

    
X
U

Y
V

∂
∂

−=
∂
∂                                (5.32) 

the following finite-difference approximation for the continuity equation is 

obtained: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

−
+

∆

−
−=

∆

− −−−−−

X
UU

X
UU

Y
VV jijijijijiji 1,11,,1,1,,

2
1                     (5.33) 

from which the following expression for  obtained is: jiV ,

                       ( )1,11,,1,1,, 2 −−−−− −+−⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

−= jijijijijiji UUUU
X
YVV       (5.34) 

In summary, this section has presented the derivation of the three main discretized 

equations. These are Eqs. (5.20), (5.29), and (5.34). 
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5.2.5 Thomas Algorithm to Solve a Tridiagonal System of Equations 

         When written for each value of X  in the grid (or each value of ), the 

discretized equations obtained in the previous section generate two sets of 

simultaneous, linear, algebraic equations whose matrices of coefficients are 

tridiagonal. This type of problem may be solved by a Gauss elimination procedure 

or, more efficiently, by the Thomas algorithm, a variation of Gauss elimination. 

i

 

Implicit formulas of the type described above have been found to be 

unconditionally stable. Thomas algorithm is essentially the result of applying Gauss 

elimination to the tridiagonal system of equations. In this method, the lower-

diagonal is first eliminated. The details are shown below for the momentum 

equation first, and then for the energy equation. 

Momentum Equation 

Applying Gauss elimination to Eq. (5.15) to eliminate the lower-diagonal 

term (the ) results in an upper bidiagonal form of equations given by sC j '

           

11,

21,
2

2
2,

34,
3

3
3,

23,
2

2
2,

'

'

'

−−

−−
−

−
−

ψ=

ψ=
α

+

ψ=
α

+

ψ=
α

+

NNi

NNi
N

N
Ni

ii

ii

U

U
E

U

U
E

U

U
E

U

M
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The last equation, contains only one unknown, namely, , hence 1, −NiU

        11, −− ψ= NNiU                                               (5.35) 

The solution of the remaining unknown is obtained by working upward in 

the above system. First,  is obtained from Eq. (5.35), then  is found 

from the penultimate equation as 

1, −NiU 2, −NiU

                                  1,
2

2
22, ' −

−

−
−− α
−ψ= Ni

N

N
NNi U

E
U                                           (5.36) 

and so on. The following general recursion formula is thus obtained: 

                              1,, ' +α
−ψ= ji

j

j
jji U

E
U           for 2,,3,2 L−−= NNj          (5.37) 

Decreasing the values of j  from 2−= Nj  down to  lead to an 

explicit solution provided that the 

2=j

s'α  are known. The computation of  is done 

forward from  up to 

s'α

2=j 1Nj −= . For 2=j : 

                                                   22' D=α                                                            (5.38) 

and for the rest of the equations: 

                             
1

1'
−

−

α
−=α

j

j
jjj

E
CD                for       1,,4,3 −= Nj L           (5.39)  

Similarly, the computation of the s'ψ  starts with 2=j : 

2

2
2 'α
=ψ

F
         (5.40) 
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and then for the rest of the s'jψ : 

                             
j

jjj
j

CF
'

1

α

ψ−
=ψ −              for    1,,4,3 −= Nj L                 (5.41) 

Energy Equation 

The solution of the energy equations is quite similar to the solution of the 

momentum equation. First, Gauss elimination is applied to Eq. (5.24) to eliminate 

the lower-diagonal term (the ). The following upper bidiagonal form of 

equations results: 

s'jG
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Again, the solution of the ji,θ  starts from 1Nj −= : 

                                                 11, ' −− ρ=θ NNi                                                       (5.42) 

and continues backward from 2−= Nj  down to 2=j  applying the following 

equation : 

                                 1,, ' +θ
φ

−ρ=θ ji
j

j
jji

S
        for    2,,3,2 L−−= NNj        (5.43) 

The  are calculated froms'jφ 2=j : 

    22 φ=H          (5.44) 
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and then for  up to 3=j 1−=Nj , the s'jφ  are: 

                                    
1

1

−

−

φ
−=φ

j

j
jjj

S
GH             for   1,,4,3 −= Nj L          (5.45) 

Finally, the  are computed first for s'jρ 2=j : 

    
2

22
2' φ

−
=ρ

GJ
         (5.46) 

and then on, for the rest of the : sj'

                                            
j

jjj
j

GJ
φ

ρ−
=ρ −1'

'       for  1,,4,3 −= Ni L           (5.47) 

Parameters in dimensional form 

          Once the dimensionless profiles are known, the dimensional variables are 

calculated with the following transformations: 

 2W
GLUu γ

=         
W
Vv γ

=            ( ) ∞∞ +θ−= TTTT w            
refβ
β

=β∗          (5.48) 

 

5.2.6 Relaxation Technique 

 For the solution of the three coupled equations, an iterative procedure was 

used with an under-relaxation coefficient of 0.2 for a quicker convergence of the 

temperatures and velocities. Under-relaxation is used when the equations are non-

linear; the relaxation coefficient must be between 0 and 1. This technique appears 

to be most appropriate when the convergence shows an oscillatory pattern and 
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tends to overshoot the apparent final solution. Flow diagrams of the numerical code 

are shown in the following section.  

 

5.3 Calculation of the Heat-Transfer Coefficient 

 The numerical calculation of the heat-transfer coefficient, once the 

temperature field is obtained as described in this previous section, is based on Eq. 

(4.13): 

( ) 0→∞
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
−=

yw
x y

T
TT

kh    (4.13) 

The derivative therein is calculated numerically by taking the first row of 

temperature in numerical solution, i.e., T (i, 2). Note that . Therefore: wTiT =)1,(

                                             
y

TiT
y
T w

y ∆
−

≅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

→

)2,(

0

                                         

(5.49) 

Once hx is obtained, the following dimensionless numbers are computed. 

k
xhx

x =Nu    
( )

αγ

−β
= ∞

3

Ra
xTTg wref

x  

 

5.4 Program Description 

A FORTRAN code was written to carry out the calculations described in 

this Chapter. The dimensionless velocity profiles (U and V) are calculated first; 

then, the temperature profiles ( )θ . These sequential calculations are repeated until 
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reaching convergence. Then, the corresponding dimensional profiles are obtained. 

Appendix C contains this FORTRAN code. 

 

Figure 5.4, which spans four pages, shows a flowchart of the algorithm of 

the main program. The flowchart for the subroutines that calculate the 

compressibility factor (ZETA), thermal expansion coefficient (CALCBETA), and 

Thomas algorithm (TRISOL) are shown in the Figs. 5.5, 5.6, and 5.7, respectively. 

 

 Figure 5.4. General flowchart of the program. 

START 

INPUT DATA: R , 
, W, g rT∆ , , , rT rP

READ CHOSEN FLUID: 
            1: Carbon dioxide 

               2: Butane 
               3: Water 

READ FIXED PROPERTIES 
OF THE FLUID CHOSEN:    

, , , , M cT cP cZ cV

1
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1

 

CALCULATE: 

fT , P , T , T  w ∞
 

 
CALL SUBROUTINE ZETA

 

CALCULATE : ρ , , V , γ rρ , refβ , 

Pr , , Gr , , ,  L w
oG LRa maxX

CALCULATE: β , β  ∗

CALL SUBROUTINE CALCBETA

CALCULATE GRID SIZE: 
X∆ , , maxX Y∆  

READ INITIAL AND BOUNDARY 
CONDITIONS:                        

0)1,1( =U , 0)1,1( =V , 0)1,1( =T , 
0),1( =jU , 0),1( =jV , 0),1( =jT ,

0=VCHX

2

ESTIMATE: η , , C  k P
                       1    

 

                                                

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. (Cont.) 

 
1 Estimation of viscosity, thermal conductivity, and heat capacity at supercritical conditions is 

explained in Chapter 6. 
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WHILE 

X =∆ 1

 

 

FALSE
maxXX <  
DO

X∆05.

XXX ∆+=

SOLVE ENERGY EQUATIO

CALL TRISOL

CALCULATE: T , U , V),2( j ),2( j ,2(

01.0≤VDIFF

maxXX ∆<∆
E

SOLVE MOMENTUM EQUAT

SOLVE CONTINUITY EQUAT

CALL TRISOL

CALCULATE: VDIFF ,2(( NVABS=

3

Figure 5.4. (Cont.) 
FALS
maxXX ∆=∆  

N 

, )J Nj ,1=  

 

ION 

ION 

)) VCHX−  
FALSE
TRUE

TRUE
TRUE
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3
 

CALCULATE: h  xxx Ra,Nu, 

 
PRINT RESULTS: 

T , U , V , β , refβ , X , Y  

,  xh xNu
xaR

 

 

 

  

STOP 

END

Figure 5.4. (Cont.) 

START 

CALCULATE: T , , , r rP A B  

BAP
AP
BP

×−=
=

−−=

3

2

1 1
 

CALCULATE ROOTS OF 
POLYNOMIAL EQUATION: 

032
2

1
3 =+++ PZPZPZ  

4

 

Figure 5.5. Flowchart for subroutine ZETA. 
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4  

 

 
ZV= HIGHEST ROOT 
ZL= LOWER ROOT 

 

 
RETURN 

 

 

           Figure 5.5. (Cont.) 

 

START 

 

Figure 5.6. Flowchart for subroutine CALCBETA. 

CALCULATE: T , , , r rP A B  

CALL SUBROUTINE ZETA

CALCULATE:  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

+−
−=β

ZABZZ
ABZABZ

T 123
3211

23

2

RETURN 

END 

END 
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START

 

CALCULATE: , '
2α 2ψ  

DO 
1,3 −= Nj

CALCULATE: α , ψ  '
j j

CALCULATE: , , C , D F E  

EXIT LOOP 

5

READ: 11, −− ψ= NNiU  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Flowchart for subroutine TRISOL. 

 

 



 43

 

DO 
2,2−= Nj

CALCULATE: U   ji ,

PRINT 

jiU ,  

LOOP EXIT 

5

END

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. (Cont.) 

 



CHAPTER 6 

       ESTIMATION OF FLUID PROPERTIES AND DESIGN OF RUNS  

 

6.1 Fluids Selected   

         Three fluids have been selected to run the simulations in this thesis. These are 

carbon dioxide, butane, and water. Carbon dioxide is an obvious choice given its 

widespread use in practical applications, as mentioned in Chapter 1, section 1.1 of 

this thesis. Extensive tabulation of properties are available in [2]. Light 

hydrocarbons constitute a group of substances that are also used in many 

applications, particularly in the petroleum sector. Butane has been chosen to 

represent this group. Detailed thermodynamic properties are tabulated in [7]. 

Finally, water is extensively used in a specific type of supercritical process called 

supercritical water oxidation (often referred to as SCWO). This and the extensive 

availability of properties (e.g., Keenan and Keyes, [12]) made water the third 

selected substance for this study. The main properties of the selected substances are 

shown in Table 6.1.  

             Table 6.1. Critical parameters of the fluids using for program running 

Fluid 
Pc

[MPa] 

Tc

[K] 

M 

[g/mol] 

Vc

[cm3/mol] 

Zc

[-] 

carbon dioxide 7.380 304.20 44.010 94.07 0.274 

butane 3.796 425.16 58.123 255.00 0.274 

water 22.090 647.30 18.015 55.95 0.229 

 

44
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6.2 Design of Runs 

 The design of the simulations runs was based on the theory of design of 

experiments (sometimes abbreviated as DoE). In DoE terminology, the design 

selected is a 3n factorial for each substance [15]. For two variables and three levels, 

the number of runs for each substance is 32 or 9. The variables chosen are reduced 

pressure and reduced temperature, defined as: 

c
r P

PP =                                                                 (6.1) 

c
r T

TT =            (6.2)       

The levels (values) chosen for   and  are: 1, 1.05 and 1.10. Fig. 6.1 shows 

schematically the factorial simulation design selected. 

rP rT

rP  

                      rT

1.10

1.05

1.00

1.00 1.05 1.10
 

Figure 6.1. Points in the supercritical region for the simulation analysis. 
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If the effect of Tr and Pr is to be investigated, only 5 runs are required. Therefore, 

the corner points in Fig. 6.1 were not used in this work. Also, calculations at far-

from-critical conditions )2.0and,2.0( == rr TP  and by an empirical correlation 

proposed by Churchill and Chu [6] were done for comparison purposes. 

 

Besides the basic properties presented in Table 6.1, the simulations require 

other transport and thermodynamic properties not readily available at supercritical 

conditions. These are viscosity, thermal conductivity, and heat capacity. The 

following sections describe the way these properties were estimated. 

 
.3 Viscosity Estimation  

 The procedure used to estimate the viscosity of the fluids at supercritical 

conditions has been taken from Poling et al. [22]. This method is recommended for 

dense fluids at super- or near-critical conditions. Figure 9.6 of reference [22] 

presents the product  as a function of Tr, where 

 

6

ηξ η  is the viscosity in [Pa·s], and 

 is defined as: ξ

6/1

43176.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ξ

c

c

PM
T

                                          (6.3) 

where Tc is in [K], Pc in [bar], and M in [g/mol].  

Note that  is a unique property of each fluid that does not depend on T or 

P. The values for the substances selected in this work are presented in Table 6.2. 

ξ
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The viscosity values calculated for these substances at the nine conditions of the 3n 

factorial design are presented in Table 6.3. 

 

Table 6.2. Inverse viscosity 

Fluid 
ξ×103

[µP ]-1

carbon dioxide 3.9124 

butane 5.6045 

water 3.3399 

 

 

Table 6.3. Dynamic viscosity for the fluids near the critical point 

η 

[µP ] Tr Pr

 

η ξ 

 carbon dioxide butane water 

1.00 

1.00 

1.05 

1.10 

0.90 

0.98 

1.10 

230.0383 

250.4861 

281.1579 

160.5842 

174.8583 

196.2695 

269.4657 

293.4182 

329.3469 

1.05 

1.00 

1.05 

1.10 

0.85 

0.88 

0.92 

217.2584 

224.9263 

235.1502 

151.6628 

157.0156 

164.1527 

254.4953 

263.4775 

275.4538 

1.10 

1.00 

1.05 

1.10 

0.83 

0.85 

0.87 

212.1464 

217.2584 

222.3703 

148.0943 

151.6628 

155.2314 

248.5072 

254.4953 

260.4835 
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6.4 Thermal conductivity 

 The thermal conductivity of fluids varies considerably from dilute gas to 

compressed liquid, or from vapor to supercritical fluid. It is, therefore impossible to 

predict the behavior of the thermal conductivity, especially of supercritical fluids, 

without a detailed experimental and theoretical study. Knowledge of the thermal 

conductivity is also very important in the development of molecular theories of 

fluids and fluid mixtures. The method used in this work is the one proposed by 

Stiel and Thodos [26]. They used dimensional analysis to obtain a correlation 

between , and Γ− ,,0
cZkk ρ . Then, they established the following approximate 

analytical expressions: 

( )

( )

( )
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

<ρ<
Γ

+ρ×
+

<ρ<
Γ

−ρ×
+

<ρ
Γ

−ρ×
+

=

−

−

−

8.20.2]016.2155.1[exp1060.2

0.25.0
]069.167.0[exp1014.1

5.0]1535.0[exp1022.1

5

3
0

5

2
0

5

2
0

r
c

r

r
c

r

r
c

r

Z
k

Z
k

Z
k

k        (6.4) 

where  is the ideal-gas or low-pressure limit of the thermal conductivity, 0k rρ  is 

the reduced density, calculated in this work as: 

  
cf

c
r PTZ

TP
8
3

=ρ           (6.5) 

and  is a parameter defined by: Γ
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6/1

4

3

210 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Γ

c

c

P
MT

                                               (6.6) 

where  is in [W/m·K], T0k c in [K], Pc in [bar], and M in [g/mol]. 

Table 6.4 shows the thermal conductivity ( ) obtained from tables of 

gases at atmospheric pressure and at the temperatures corresponding to the 3

0k

n 

factorial design for the carbon dioxide, butane and, water. The actual values of  

are calculated in the program using the Eq. (6.4). 

k

 

Table 6.4. Low-pressure thermal conductivity of the gas 

Fluid 
Tr 

 

T 

[K] 

30 10×k  

[W/m·K] 

carbon dioxide 

1.00 

1.05 

1.10 

304.20 

319.41 

334.62 

16.882 

18.006 

19.256 

butane 

1.00 

1.05 

1.10 

425.16 

446.42 

467.68 

30.176 

32.934 

35.691 

water 

1.00 

1.05 

1.10 

647.30 

679.66 

712.03 

46.134 

48.871 

51.615 
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6.5 Heat capacity 

 The heat capacities of real gases are related to the corresponding value in 

the ideal-gas or low-pressure state, (at the same temperature and composition) by 

the following definition: 

PPP CCC ∆+= 0             (6.7) 

where  is the so-called residual heat capacity. (This definition can be applied 

to a pure gas or to a gas mixture at constant composition.) The residual heat 

capacity can be estimated from the Lee-Kesler [13] correlation as a function of  

and : 
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and 5.9 of Reid et al. [24], respectively. At atmospheric pressure, the isobaric, 

ideal- gas heat capacity is given by [24]:     

                           ( ) ( ) ( ) 320 TCPDTCPCTCPBCPACP +++=                          (6.10) 
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where is in [J/mol·K], T is in [K], and the constants CPA through CPD are 

given in Table 6.5. 

0
PC

Table 6.5. Constants to calculate the isobaric heat capacity 

 CPA CPB CPC CPD 
carbon dioxide 19.80 734.4 -5.602×10-5 1.715×10-8

butane 9.487 0.3313 -1.108×10-4 -2.822×10-9

water 32.24 1.924×10-3 1.055×10-5 -3.596×10-9

 

Equation (6.9) was used to calculate the heat capacity of the three fluids 

selected for this study at the nine conditions of the simulations design. 

Unfortunately, Tables 5.8 and 5.9 of Reid et al. [24] have a few empty cells (filled 

with asterisks). When the value of one of those empty cells was needed, it had to be 

estimated using an extrapolation procedure described in Appendix B. Tables 6.6, 

6.7 and 6.8 show the resulting heat capacity values for carbon dioxide, butane, and 

water, respectively. Note that these tables show a total of 55 possible combinations 

of Pr and Tr. This is much more that needed for this work, but their inclusion in the 

program gives it added capabilities for future work. 
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Table 6.6. Heat capacities for carbon dioxide 

 Cp [kJ/kg·K] 

Pr Tr = 1.20 Tr = 1.15 Tr = 1.10 Tr = 1.05 Tr = 1.00 

0.20 0.969 0.965 0.963 0.965 0.971 

0.40 1.040 1.051 1.070 1.101 1.152 

0.60 1.126 1.160 1.214 1.304 1.472 

0.80 1.231 1.303 1.422 1.653 2.299 

1.00 1.362 1.494 1.745 2.410 100000.000 

1.05 1.399 1.550 1.855 3.125 16.667 

1.10 1.439 1.618 1.976 4.032 10.000 

1.20 1.524 1.757 2.291 4.791 6.536 

1.50 1.834 2.315 3.562 4.255 3.597 

2.00 2.348 2.961 47.619 3.279 2.434 

3.00 2.416 2.519 #N/A 2.205 2.035 

                                       

Table 6.7. Heat capacities for butane 

 Cp [kJ/kg·K] 

Pr Tr = 1.20 Tr = 1.15 Tr = 1.10 Tr = 1.05 Tr = 1.00 

0.20 4.081 4.009 3.936 3.864 3.794 

0.40 4.133 4.071 4.013 3.962 3.923 

0.60 4.196 4.151 4.118 4.108 4.152 

0.80 4.274 4.255 4.269 4.362 4.744 

1.00 4.370 4.397 4.508 4.921 100000.000 

1.05 4.405 4.444 4.566 5.747 15.873 

1.10 4.425 4.484 4.630 6.410 11.236 

1.20 4.492 4.594 4.921 6.752 8.696 

1.50 4.727 5.021 5.884 6.494 6.061 

2.00 5.111 5.478 9.346 5.780 4.831 

3.00 5.125 5.114 #N/A 4.739 4.543 
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Table 6.8. Heat capacities for water 

 Cp [kJ/kg·K] 

Pr Tr = 1.20 Tr = 1.15 Tr = 1.10 Tr = 1.05 Tr = 1.00 

0.20 2.297 2.304 2.319 2.345 2.386 

0.40 2.489 2.538 2.611 2.720 2.890 

0.60 2.719 2.831 3.002 3.277 3.784 

0.80 2.996 3.207 3.554 4.219 6.098 

1.00 3.331 3.700 4.390 6.189 100000.000 

1.05 3.436 3.861 4.651 7.813 52.632 

1.10 3.534 4.016 4.975 9.901 32.258 

1.20 3.738 4.356 5.730 11.770 19.231 

1.50 4.488 5.690 8.832 10.638 9.346 

2.00 5.793 7.533 22.222 8.547 6.552 

3.00 6.275 6.700 #N/A 5.917 5.456 

 



  CHAPTER 7 
 

RESULTS AND DISCUSSION 
 
7.1 Thermodynamic Analysis 
 
       7.1.1 Reference Values for β  
 
 Chapter 3 of this thesis presents a thermodynamic model to estimate β  for 

dense gases. This model was used to calculate β  for the three substances selected 

in this study. It would be desirable to compare the calculated values to 

experimental ones. Unfortunately, to the autor’s knowledge, no such data exist. 

Alternatively, the calculated values are compared to: (i) ideal-gas values, (ii) liquid-

phase values (in the case of water) and (iii) values obtained from tabulated 

densities. The values obtained from tabulated, accurate densities are assumed to be 

accurate values of β  therefore will be used in lieu of experimental values, and will 

be referred to as reference values in the remainder of this thesis.   

  

  For all three substances, the ideal-gas the thermal expansivity coefficient 

was calculated as the inverse absolute temperature. The thermal expansivity 

coefficient for liquid water was taken from the Appendix I of Welty et al. [27]. The 

reference values of β  are calculated using the definition of β  as a starting point.  

PT
⎟
⎠
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⎜
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ρ
−=β

1           (7.1) 
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Then, the partial derivative of β  in Eq. (7.1) is substituted by its numerical 

approximation along the isobar corresponding to pressure P in the table: 
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where ,  and  are consecutive values in the table at ,  and , 

respectively. The resulting 

1−ρi iρ 1+ρ i 1−iT iT 1+iT

iβ  is the reference value at  and P. iT

 

 The tabulated densities for each of three substances used in this work were 

obtained from references indicated in Table 7.1. 

Table 7.1. Bibliography used for tabulated densities 

Fluid Reference 

carbon dioxide 

butane 

water 

Angus et al. [2] 

Haynes and Goodwin [7], Table 21 

Keenan et al. [11] 

 

        7.1.2 Results 
 

     This section presents results of  calculated by the thermodynamic 

model developed in Chapter 3, based on the van der Waals EOS, Eq. (3.17). These 

values are presented graphically, where they are compared to ideal-gas and 

reference values. In this part of the thesis, for the water the calculation were carried 

out a three different pressures: 0.5P

β

c, Pc, 1.5Pc, i.e., values of reduced pressure of 

0.5, 1, and 1.5. For the carbon dioxide the pressures used were: 3.69 MPa (0.5Pc),          



 56

7.38 MPa (Pc), and 10 MPa. Finally, for the butane the pressures were: 1.80 MPa, 

3.796 MPa (Pc), and 5.50 MPa. 

 

   Figures (7.1), (7.2), and (7.3) represent three β versus T isobars for this 

fluid where the values calculated are compared to the reference values. It can be 

seen that the van der Waals equation of state, despite its simplicity, does provide an 

excellent representation of the data. Also interesting is the fact that β diverges at 

the critical point (Tr = 1, Pr = 1), and this happens regardless of the EOS used. Fig. 

7.4 shows the three isobars including the calculated values. The ideal-gas β  is 

included for comparison purposes. 

 

 It is well known that β  for liquids at low (atmospheric) pressure increases 

with temperature, while the opposite is true for low-pressure gases. Higher-pressure 

isobars show a liquid-like behavior at lower (subcritical) temperatures, a gas-like 

behavior at higher (supercritical) temperatures, and a maximum at an intermediate 

temperature, close but not necessarily equal to Tc. At even higher temperatures, all 

isobars approach the ideal-gas behavior. 

 

 Figures (7.5), (7.6), (7.7), and (7.8) for butane and Figs. (7.9), (7.10), 

(7.11), and (7.12) for water show similar plots, where the qualitative observations 

presented above for carbon dioxide apply equally well to the others fluids. 
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Figure 7.1. Thermal expansion coefficient of carbon dioxide at 3.69 [MPa]. 
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Figure 7.2. Thermal expansion coefficient of carbon dioxide at its critical pressure.    
                     . 
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Figure 7.3. Thermal expansion coefficient of carbon dioxide at 10 [MPa]. 

 

0.000

0.002

0.004

0.006

0.008

0.010

0 100 200 300 400 500 600
Temperature, [K]

Th
er

m
al

 e
xp

an
si

vi
ty

, [
1/

K
]

van der Waals at 3.69 [MPa]

van der Waals at Pc (7.38 [MPa])

van der Waals at 10.00 [MPa]

 

Figure 7.4. Thermal expansion coefficient of carbon dioxide at various pressures. 
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Figure 7.5. Thermal expansion coefficient of butane at 1.80 [MPa]. 
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Figure 7.6. Thermal expansion coefficient of butane at its critical pressure. 
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Figure 7.7. Thermal expansion coefficient of butane at 5.50 [MPa]. 

0.000

0.002

0.004

0.006

0.008

0.010

0 100 200 300 400 500 600 700

Temperature, [K]

Th
er

m
al

 e
xp

an
si

vi
ty

, [
1/

K
]

van der Waals at 1.80 [MPa]

van der Waals at Pc (3.796 [MPa])

van der Waals at 5.50 [MPa]

 

Figure 7.8. Thermal expansion coefficient of butane at various pressures. 

 



 61

0.000

0.002

0.004

0.006

0.008

0.010

0 200 400 600 800 1000 1200

Temperature, [K]

Th
er

m
al

 e
xp

an
si

vi
ty

, [
1/

K
] Ideal Gas

van der Waals at 11.045 [MPa]

Liquid

 

Figure 7.9. Thermal expansion coefficient of water at 11.045 [MPa]. 
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Figure 7.10. Thermal expansion coefficient of water at its critical pressure. 
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Figure 7.11. Thermal expansion coefficient of water at 33.135 [MPa]. 
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Figure 7.12. Thermal expansion coefficient of water at various pressures. 
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7.2 Heat Transport by Natural Convection 
 
 7.2.1 Grid Convergence Tests 
 
 Before carrying out the final calculations, detailed grid dependency test and 

code validation studies were performed. The numerical codes for variable and 

constant thermal expansivity coefficient were used to obtain the figures shown 

below. A variable grid size in the x-axis is used for the first 75% of the heated 

vertical flat plate with the variable step size calculated with Eq. (7.2). Then, a 

constant step size, calculated with Eq. (7.3), is used for the rest of the plate. In the 

y-axis, the grid step size is constant throughout the solution domain and it is 

calculated with Eq. (7.4).  

∑
=

=∆ 100

1
05.1

75.0

i

i

maxX
X                  (7.2) 

( )10005.1XX max ∆=∆                (7.3) 

N
Y 1
=∆             (7.4) 

Table 7.2, shows a summary of the grid convergence tests performed for 

carbon dioxide as fluid medium at 05.1=rP  and 05.1=rT  for variable thermal 

expansivity coefficient. For all these convergence test the following results were 

constants: the length of the plate is 0.01610 m, the plate temperature is 340.70 K, 

the free-stream fluid temperature is 298.12 K, the Grashof, Prandtl, and Rayleigh 

number were also constants, , 81020.5Gr ×= 02.2Pr =  and . This 

Rayleigh number indicates that the fluid flow inside the boundary layer is laminar. 

91005.1Ra ×=
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Table 7.2. Results of the temperature variation with the grid points 

Variable grid points 
along x-axis (i) 

50 100 150 200 250 

Dimensional length 
in x(i) [m] 0.011446 0.011496 0.011500 0.011500 0.011500 

Temperature [K] 313.381 313.435 313.518 313.520 303.520 

 

Table 7.2 shows the temperature variation as a function of the number of 

grid points along of the plate (x-axis). This temperature variation is quite small and 

does not change significantly due to the grid convergence and to the small size of 

the plate. Also, this table shows that the dimensional length of the plate is almost 

constant when varying the number of grid points. Therefore, a value of  was 

selected as grid points that it corresponds to a value of length of the plate in this 

point of 0.011496 [m] and a temperature of 313.435 [K]. These values are indicated 

in bold in Table 7.2 and they were chosen by give the best results to the executing 

the program. The dimensional length on the y-axis for this table was of 8×10

100=i

-5 [m] 

for a value of grid points constant of j=25. When 100=i  along of the plate, the 

grid changes from variable step size to constant step size. A value of  was 

used for all the computations. The same grid convergence test was performed for 

the water and butane as fluid medium obtaining similar results as for carbon 

dioxide.  

300=N
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7.2.2 Literature correlation 

An empirical correlation was proposed by Churchill and Chu [6] that is 

applicable over a wide range of Rayleigh numbers. This is: 

 
( )[ ] 9/416/9

4/1

Pr/492.01

Ra670.068.0Nu
+

+= L
L     for         (7.5) 910Ra0 << L

Although Eq. (7.5) better accuracy may be obtained for laminar flow and may be 

applied for constant heat flux, as well as for constant surface temperature. But Eq. 

(7.5) is given for average Nusselt number and the plots are given in local Nusselt 

number as function of local Rayleigh Number. Therefore, an equation was 

calculated for the whole range of laminar flow. The more important details are 

given below.  

Table 7.3 shows the selected values of Prandtl number for each fluid used 

with Eq. (7.5). Theses values were selected between a maximum and minimum 

value of Prandtl number for three fluids through the program runs. 

 

Table 7.3. Prandtl number for analytical equation 

Fluid Prandtl number 

carbon dioxide 2.02 

butane 2.16 

water 1.23 
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To derivative this equation, the local and average Nusselt numbers are first 

defined. The local Nusselt number is defined in terms of the local heat-transfer 

coefficient, , as xh

           
k
xhx

x =Nu           (7.6) 

and the average Nusselt number is defined in terms of the average coefficient, Lh  , 

and of the length of the plate, L : 

k
Lh L

L =Nu           (7.7) 

 For a rectangular plate, the average heat-transfer coefficient is related to the 

local heat-transfer coefficient by [9]: 

                 ∫=
L

xL dxh
L

h
0

1          (7.8) 

This equation is useful to obtain an analytical expression for Lh  when one 

for  is available. Conversely, if an equation is available for xh Lh , the local  can 

be obtained from:   

xh

                        )( Lh
dL
dh LLxx ==          (7.9) 

and expressing Eq. (7.9) in terms of the Nusselt number, it follows that  

                       LLxx dL
dL NuNu ==        (7.10) 
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Using the chain rule: 

      
dL

d
d
dL L

L

L
Lxx

Ra
Ra
NuNu ==        (7.11) 

then, the derivative of the Rayleigh number with respect L is: 

LdL
d LL Ra3Ra

=         (7.12) 

substituting Eq. (7.12) in Eq. (7.11) gives: 

L

L
LLxx d

d
Ra
NuRa3Nu ==        (7.13) 

recalling the following identities: 

LLL dd NulnNuNu =         (7.14) 

LLL dd RalnRaRa =         (7.15) 

and substituting Eq. (7.14) and Eq. (7.15) into Eq. (7.13) gives: 

L

L
LLxx d

d
Raln
NulnNu3Nu ==         (7.16) 

Defining  

    
L

L

d
dm

Raln
Nuln

=        (7.17) 

and inserting Eq. (7.17) into Eq. (7.16): 

   LLxx m Nu3Nu ==           (7.18) 

Using Table 7.1 of reference [8], for 410Ra ≥L  ,           

4
1

=m  
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then  

    LLxx Nu
4
3Nu ==       (7.19)  

and for 410<LRa ,                
4
10 <<m  

Now, expressing the derivative of Eq. (7.17) in numerical (central difference) and 

considering form, two points such as: LL Ra05.1Ra 2 =  and , gives LL Ra95.0Ra 1 =
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Simplifying, 
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substituting Eq. (7.21) in Eq. (7.18), this gives 
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Finally, replacing Eq. (7.5) in Eq. (7.23) and taking the values of Prandtl number 

from Table 7.3, the local Nusselt number may be expressed for the three fluids as 

For the water 
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For the carbon dioxide 
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For the butane 
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 Equations (7.24), (7.25) and (7.26) are empirical correlations use to 

generate curves to be compared to those obtained by the numerical code in graphs 

of Nusselt versus Rayleigh number. 

 

7.2.3 Results 

 The Nusselt number values computed as a function at the Rayleigh number 

for supercritical carbon dioxide and variable thermal expansivity coefficient are 

shown in Fig. 7.13. The simulations were performed at 05.1=rP  and values of  

of 1.00, 1.05 and 1.10. The results of these simulations are plotted in logarithmic 

scale so the curves approach straight lines. The first line at 

rT

00.1=rT , stands alone 

way above the rest. This is most likely because it is at the critical temperature and 

at a pressure near the critical point. This line exhibits some oscillations due to the 

transition from sub critical to supercritical region. The next two lines down are 

results of the simulations at the same pressure and increasing reduced temperature 

from  to . The fourth line was computed at far-from-critical 05.1=rT 10.1=rT
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conditions. The curve corresponds to the empirical correlation; values were 

computed with Eq. (7.25). 

 

 Figure 7.14 shows Nux as a function of Rax for butane at constant Pr and 

different values of Tr.  The same trend shown in Fig. 7.13 is observed here, except 

for the line at  and 05.1=rP 00.1=rT  (critical temperature) that presents more 

noise for . This type of noise is more likely to occur at or very close to 

the critical temperature. The behavior observed in Fig. 7.15 is similar to that in Fig. 

7.13. In all the cases, the numerical calculations are compared to the empirical 

correlation. Finally, it is important to observe in Figs. 7.13, 7.14, and 7.15, that the 

higher the temperature, the closer the lines are to that representing the empirical 

correlation. Here, the effect of the temperature on the local heat-transfer coefficient 

can be seen. 

410Ra <x
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Figure 7.13. Nux as a function of Rax for carbon dioxide at Pr =1.05. 
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Figure 7.14. Nux as a function of Rax for butane at Pr =1.05. 
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Figure 7.15. Nux as a function of Rax for water at Pr =1.05. 
 
 

 Numerical computations were also carried at variable pressure and constant 

temperature. Fig. 7.16 shows the local Nusselt number as a function of Rax for 

carbon dioxide at 05.1=rT  and reduced pressure of 1.05, and 1.10. Note that these 

two lines are almost superimposed. Therefore, it can be concluded that the effect of 

the pressure is not significant. Additionally, a line at conditions removed from the 

critical point (  and 20.0=rP 20.1=rT ),  has been included. This line happens to 

be away from the other two lines and closer to the empirical correlation line. 

Similar trends are observed in Fig. 7.17 for butane and in Fig. 7.18 for water.  
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Figure 7.16. Nux as a function of Rax for carbon dioxide at Tr =1.05. 
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Figure 7.17. Nux as a function of Rax for butane at Tr =1.05.  
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Figure 7.18. Nux as a function of Rax for water at Tr =1.05. 
 

 
 For illustration purposes, the velocity profiles for variable and constant 

thermal expansivity for water, at an arbitrarily chosen value of x, are plotted in Fig. 

7.19. The values of u were obtained at 02176.0=x [m] for  and 

. The Prandtl number computed by the numerical code is 1.23 and is in 

good agreement with the given values for supercritical water. The numerical 

simulation also gives: the wall temperature, 

05.1=rP

05.1=rT

80.724=wT [K]; the fluid temperature, 

[K]; the total length of the plate, 20.634=fT 03047.0=L [m] and the local 

Rayleigh number, . Note that the velocity profile with variable 

thermal expansivity has a velocity maximum much higher than the one with 

91005.1Ra ×=x
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constant thermal expansivity. Also, at that point the thickness of the boundary layer 

for variable thermal expansivity is lower than that for constant thermal expansivity.  

 

 Figure 7.20 shows the temperature profiles at the same conditions of Fig. 

7.19. This figure confirms that the boundary layer for variable thermal expansivity 

is thinner that the one for constant thermal expansivity. It should also be noted that 

the agreement is very good if the velocity and temperature profiles obtained with 

numerical code at constant thermal expansivity are compared to given those in the 

classical books. 
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Figure 7.19. Dimensional velocity profile for water at 02176.0=x [m], , 
and 

05.1=rP
05.1=rT . 
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Figure 7.20. Dimensional temperature profile for water at [m], 02176.0=x
05.1=rP , and 05.1=rT . 

 
 
 Finally, nice velocity contour lines for water at 05.1=rP  and , are 

presented in Fig. 7.21. These contour lines were computed along the entire plate 

and in the whole domain of solution in the y-direction. The velocity maximum is at 

the heart of all these lines and the velocity gradually approaches zero, the velocity 

outside the boundary layer. 

05.1=rT

 

Figure 7.22 shows the temperature contour lines for the water at the same 

conditions as in Fig. 7.21. The temperature gradually decreases from 

[K] to [K]. The results shown in Figs. 7.21 and 7.22 were 

obtained with variable thermal expansivity, using Tecplot Software. 

80.724=wT 20.634=∞T
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Figure 7.21. Velocity contour line for water at 05.1=rP  and . 05.1=rT
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CHAPTER 8 
 

CLOSURE 
 
 
8.1 Conclusions 
 
 8.1.1 Thermodynamic Model 
 

A thermodynamic model has been developed to represent the thermal 

expansivity of real fluids based on an equation-of-state approach. This model has 

been further developed for the van der Waals EOS, and used to calculate the 

isobars of β versus T for three fluids normally used as supercritical solvents and 

compared to values computed for accurate density values. It is concluded that this 

approach produces very good results even when a simple EOS such as the van der 

Waals EOS is used.  

 

 This contribution is important in various regards. First, in any practical 

application of supercritical-fluid extraction where heat transfer plays a role, the 

effect of free convection has to be taken into account because of the huge 

enhancement of this phenomenon in the supercritical region of the solvent. Second, 

when developing a model or correlation for free convention, it is normally assumed 

that is a constant. In view of the results presented here, when working near the 

critical point of the solvent this assumption is no longer true. 

β
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8.1.2 Numerical Model 

A numerical model was developed for the analysis of the free-convection 

flow about a heated vertical flat plate with variable thermal expansivity coefficient. 

Three fluids were used to perform the numerical simulations: carbon dioxide, 

butane, and water. The equation for the thermal expansivity coefficient obtained 

through the thermodynamic model was used in the momentum equation. A 

numerical code was used to solve the coupled boundary layer equations. 

 

Velocity and temperature profiles were plotted obtaining excellent results. 

Also velocity and temperature profiles were plotted at constant thermal expansivity 

showing good agreement with the existent literature value. The results were 

expressed in terms of dimensionless numbers as local Nusselt and Rayleigh 

numbers. It was found that at constant pressure the lines obtained approach the line 

computed with the empirical correlation, it can be seen with the increases 

temperature. Finally, it was found that at constant temperature these lines are 

almost superimposed suggesting that the effect of pressure is weak. 
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8.2 Suggestions for Future Work 
 
 Possible extensions to the present work that are pertinent to the issues 

discussed in this thesis, are: 

 

• An experimental validation of the numerical solution of this study is highly 

desirable to verify the numerical simulation. 

• To gain a better physical insight in natural convection in supercritical 

fluids, experiments can be performed with different type of geometries.  

• This study could be extended to other type of heat transfer such as in forced 

convection flow and heat transfer in supercritical fluids at turbulent flow. 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 81

8.3 Bibliography      
 
 
[1] Arai, Y., Sako, T., Takebayashi, Y.; 2001; Supercritical Fluids-Molecular 
Interactions, Physical Properties and New Applications. First Edition, Springer, 
Berlin, Germany. 
 
[2] Angus, S.; B. Armstrong, B.; Reuck, K.; 1976; International Thermodynamic 
Tables of the Fluid State-Carbon Dioxide. First Edition, Pergamon Press, 
Headington Hill Hall, Oxford OX3 0BW, England. 
 
[3] Bejan, A.; 1984; Convection Heat Transfer. First Edition, Wiley, New York, 
NY. 
 
[4] Bird, R., B.; Stewart, W.; Lightfoot, E.; 1960; Transport Phenomena. Wiley, 
New York, NY. 
 
[5] Constantinides, A.; Mostoufi, N.; 1999; Numerical Methods for Chemical 
Engineers with MATLAB Applications. First Edition, Prentice-Hall PTR, New 
Jersey, NJ. 
 
[6] Churchill, S. W. and H. H. S. Chu; 1975; “Correlation Equations for Laminar 
and Turbulent Free Convection from a Vertical Plate,” Int. J. Heat Mass Transfer, 
18, 1323. 
 
[7] Haynes, W., M.; Goodwin, R., D.; 1982; Thermophysical Properties of Normal 
Butane from 135 to 700 K at Pressures to 70 MPa. U.S. Department of Commerce. 
U.S. Government Printing Office. Washington, DC. 
 
[8] Holman, J. P.; 1981; Heat Transfer. Fifth Edition, McGraw-Hill Book 
Company, New York, NY. 
 
[9] Incropera, F. P., DeWitt, D. P.; 1981; Fundamentals of Heat Transfer. First 
Edition, John Wiley & Sons, Inc, New York, NY 
 
[10] Kakac, S.; Aung, W.; Viscanta, R.; 1985; Natural Convection: Fundamentals 
and Applications. Hemisphere Publishing Corp., New York, NY.  
 
[11]  Kakarala, C. R.; Thomas, L. C.; 1980; “Turbulent Combined Forced and Free 
Convection Heat Transfer in Vertical Tube Flow of Supercritical fluids,” Int. J. 
Heat & Fluid Flow, 2, 3. 
 



 82

[12] Keenan, J., H.; Keyes, F., G.; Hill, P., G.; Moore, J., G.; 1969; Steam Tables. 
Wiley, New York, NY. 
 
[13] Lee, B. I., and Kesler, M. G.; 1975; AIChE J., 21:510 
 
[14] McHugh, M. A., Krukonis, V. J.; 1994; Supercritical Fluid Extraction: 
Principles and Practice. Butterworth-Heinemann. 
 
[15]  Montgomery, D. C.; 2001; Design & Analysis of Experiments. Fifth Edition, 
Wiley, New York, NY. 
 
[16] Müller, E., A.; Estévez, L., A.; 1990. “Mixing Expansivities and Grashof 
Number in Supercritical Fluids Using Cubic Equations of State” J.  Supercrit. 
Fluids, 3, 136-142. 
 
[17]  Müller, E., A.; Olivera-Fuentes, C., and Estévez, L., A.; 1989; “General 
Expressions   for Multicomponent     Fugacity     Coefficients   and    Residual   
Properties    from    Cubic Equations of State,” Lat. Am.  Appl.  Res., 19, 99-109. 
 
[18]  Nishikawa, K.; Ito, T.; Yamashita, H.; 1973; “Free-Convective Heat Transfer 
to a Supercritical fluid,”  J. of  Heat Transfer. 
 
[19]  Nishikawa, K.; Ito, T.; 1969; “An analysis of Free-Convective Heat Transfer 
from an Isothermal Vertical plate to Supercritical fluid,”  Int. J. Heat Mass 
Transfer, 12, 1449-1463. 
 
[20] Oosthuizen, P.; Naylor, D.; 1999; An Introduction to Convective Heat Transfer 
Analysis. First Edition, McGraw-Hill, New York, NY. 
 
[21] Ostrach, S.; 1952; An Analysis of  Laminar Free-Convection Flow and Heat    
Transfer about a Flat Plate Parallel to the Direction of the Generating Body Force. 
Report 1111- Supersedes NACA TN 2635. 
 
[22] Poling, B., Prausnitz, J., O’Connell, J.; 2001; The Properties of Gases and 
Liquids. Fifth Edition, McGraw-Hill, New York, NY. 
 
[23] Plawsky, J., L.; 2001; Transport Phenomena Fundamentals. Marcel Dekker, 
New York, NY. 
 
[24] Reid, R., Prausnitz, J., Poling, B.; 1987; The Properties of Gases and Liquids. 
Fourth Edition, McGraw-Hill, New York, NY. 
 
[25] Schmidt, G.; Wenzel, H.; 1980; Chem. Eng. Sci. 35, 1503. 



 83

 
[26] Stiel, L. I., and Thodos, G.; 1964; AIChE J., 10:26. 
 
[27] Welty, J.; Wicks, C.; Wilson, R.; 1984; Fundamentals of Momentum, Heat, 
and Mass Transfer. Third Edition, Wiley, New York, NY. 
 
 
 
 
 
 
  
 
   
 



Appendix A 
 

 
Analytical Solution for Cubic Polynomial Equations 

 
 
This Appendix presents the analytical solutions x1, x2 and x3 for a cubic polynomial 

equation written as: 

                          (A.1) 032
2

1
3 =+++ pxpxpx

 

Let       
9

3 2
12 ppQ −

= ;      
54

2279 3
1321 pppp

R
−−

= ;      23 RQD +=∗

 
  is called the discriminant and its value determines the domain of the 

roots to Eq. (A-1): (1) If , all roots are real and unequal; (2) if , all 

roots are real and at least two are equal; and (3) if , only one root is real and 

two are conjugate complex. 

∗D

0<∗D 0=∗D

0>∗D

0>∗D  

For , the real root is given by 0>∗D
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1 pTSx −+=          (A.2) 

 
and the two complex roots are ( )1−=i : 
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where 

 

   ( ) 3/1
∗+= DRS   and   ( ) 3/1

∗−= DRT  
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0=∗D  
 

If  and the imaginary parts vanish, so 3 real roots result. These are:  TSD ==∗ ,0

                                                           11 3
12 pSx −=                                        (A.4) 

                                                 132 3
1 pSxx −−==                                         (A.5) 

0<∗D  

For , the roots are given by: 0<∗D
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Appendix B 
 
 

Heat Capacity 
 
  Figure B.1 shows the inverse of the heat capacity as a function of the 

reduce pressure for carbon dioxide [24]. It can be seen that when the temperature 

increases, the inverse of the heat capacity increases. At the critical point the inverse 

of the heat capacity goes to zero. The same is true for the butane and water in Figs. 

B.2 and B.3. Therefore, using these figures, values of the heat capacity that are not 

obtained from Eq. 6.9 were interpolated.   

 

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00
Reduced Pressure

1/
He

at
 C

ap
ac

ity
, [

kg
·K

/k
J]

Tr=1.20
Tr=1.15
Tr=1.10
Tr=1.05
Tr=1.00

 
Figure B.1. Inverse of the heat capacity of carbon dioxide as a function of reduced 

pressure and temperatures. 
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Figure B.2. Inverse of the heat capacity of butane as a function of reduced pressure 

and temperatures. 
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Figure B.3. Inverse of the heat capacity of water as a function of reduced pressure 

and temperatures. 
 
 
 



Appendix C 
 
 

Numerical Code 
 
 
 !*****************************************************************           
 !  THIS PROGRAM SOLVES THE NATURAL CONVECTIVE                       
 !  LAMINAR BOUNDARY LAYER FLOW OVER A VERTICAL                   
 !  SURFACE USING THE FINITE DIFFERENCE TECHNIQUE WITH                            
 ! AN UNDER-RELAXATION ITERATIVE PROCEDURE.                                               
 !******************************************************************* 
 
   DIMENSION U(2,300),V(2,300),T(2,300),A(300),B(300) 
   DIMENSION C(300),D(300),Y(300),H(300),BET(300),BETD(300) 
   DIMENSION XX(600),VELU(600,600),VELV(600,600),TEMP(600,600) 
        DIMENSION COEF(600),NU(600),GRX(600),RAX(600),FIXP(20,20) 
   REAL MW, K, G, NU,COEFP,NUP,SUM,KO 
   INTEGER LOP   
   CHARACTER NAMEFILE*25 
   COMMON IONE,ITHREE 
   DOUBLE PRECISION DY, Y, DX, DXMAX 
   IONE=0 
   ITHREE=0  
        
 !******************************************************************* 
   OPEN(1,FILE='LAMBNAT.TXT') 
   OPEN(2,FILE='LAMBNAT2.TXT') 
   OPEN(3,FILE='LAMBNAT3.TXT') 
   OPEN(8,FILE='BLFIELD.TXT') 
   OPEN(9,FILE='BLFIELD2.TXT')           
      
 !******************************************************************* 
                                                                    
 !             PRE-PROCESSING: INPUT DATA   
                                                                   
 !******************************************************************* 
 
 !     ASSIGN KNOWN VALUES  
 
 !     UNIVERSAL CONSTANTS 
     
    R=8.314  ! UNIVERSAL CONSTANT OF GASES, [J/mol·K] 
    GR=9.81  ! ACCELERATION OF GRAVITY, [m/s^2] 
 
 !     RUN REDUCED FILM CONDITIONS (USED FOR FLUID PROPERTIES) 
 !     PROBLEM VARIABLES 
  
    W=0.0010   ! WIDTH OF THE SOLUTION DOMAIN, [m] 
    DELTATR=0.14  
    TRE=1.0  ! REDUCED FILM TEMPERATURE  
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    PRE=1.0   ! REDUCED FILM PRESSURE      
      
    WRITE(*,*)'INPUT TYPE OF FLUID:' 
    WRITE(*,*)'1=CARBON DIOXIDE' 
    WRITE(*,*)'2=BUTANE' 
    WRITE(*,*)'3=WATER' 
 
    READ(*,*)LOP 
 
    IF(LOP.EQ.1) THEN  
   NAMEFILE='CPCARBONDIOXIDE.TXT' 
   ELSE IF(LOP.EQ.2) THEN  
   NAMEFILE='CPBUTANE.TXT' 
   ELSE  
   NAMEFILE='CPWATER.TXT' 
    END IF 
 
    WRITE(*,*)NAMEFILE ! CONTAINS MATRIX WITH FLUID PROPERTIES 
    WRITE(*,*)' ' 
 
    OPEN(12,FILE=NAMEFILE,STATUS='OLD') 
 

!  FIRST 11 ROWS CONTAIN CP AT PREESTABLISHED CONDITIONS: 
   ! ROWS   : PR1=0.20, PR2=0.40, PR3=0.60, PR4=0.80, PR5=1.00, PR6=1.05,  
  !                 PR7=1.10, PR8=1.20, PR9=1.50, PR10=2.00, PR11=3.00 
    
   ! COLUMNS: TR1=1.20, TR2=1.15, TR3=1.10, TR4=1.05, TR5=1.00 
 
    N1=12    ! NUMBER OF  ROWS OF THE MATRIX 
    M1=5    ! NUMBER OF  COLUMNS OF THE MATRIX 
 
    DO I1=1,N1 
    READ(12,*)(FIXP(I1,J1),J1=1,M1)   
    END DO 
     
  NN1=5     ! ROW OF THE SEARCH VALUE 
  MM1=5      ! COLUMN OF THE SEARCH VALUE 
 
  CP=FIXP(NN1,MM1)           ! HEAT CAPACITY, [J/kg·K] 
 
 !   ROW 12 CONTAINS THE FOLLOWING PROPERTIES OF THE FLUID 
 
  TC=FIXP(N1,1)  ! CRITICAL TEMPERATURE OF FLUID, [K]   
  PC=FIXP(N1,2)                 ! CRITICAL PRESION OF FLUID, [Pa] 
  ZC=FIXP(N1,3)                ! CRITICAL COMPRESSIBILITY FACTOR 
  VC=FIXP(N1,4)                ! CRITICAL VOLUME, [m^3/mol] 
     MW=FIXP(N1,5)               ! MOLECULAR WEIGHT, [kg/mol] 
 
 !    END INPUT DATA 

!    CALCULATION OF DIMENSIONAL RUN CONDITIONS 
  DELTAT=DELTATR*TC 
  TA=TRE*TC    ! AVERAGE TEMPERATURE OF FLUID, [K] 
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  P=PRE*PC    ! PRESSURE OF THE FLUID, [Pa]   
  TW=TA+DELTAT/2.          ! WALL TEMPERATURE, [K] 

TF=TA-DELTAT/2.  ! FLUID TEMP. OUTSIDE BOUNDARY LAYER, [K] 
 
   CALL ZETA (P,TA,PC,TC,ZV,ZL,IROOT) 
      
 !      ESTIMATION OF KINEMATIC VISCOSITY 

!       FIGURE 9-6, PAGE 9.32 OF POLING ET AL. (2001) 
   
         DENS=MW*P/(ZV*R*TA)  ! DENSITY, [kg/m^3] 
         ETAEX=0.88       ! DIMENSIONLESS PARAMETER 
         EXS=0.176*(TC/((MW*1E+3)**3*(PC/1E+5)**4))**(1./6)! INVERSE VISCOSITY 
         VISD=ETAEX*1E-7/EXS  ! DYNAMIC VISCOSITY, [Pa·s] 

        VIS=VISD/DENS   ! KINEMATIC VISCOSITY, [m^2/s] 
 
 !     ESTIMATION OF THERMAL CONDUCTIVITY  
 !     EQS. (10-5.2, 3, 4), PAGE 10.22 OF POLING ET AL. (2001) 
 
       KO=18.006E-3 ! THERMAL CONDUCTIVITY AT LOW PRESSURE 
       GAM=210*(TC*(MW*1E+3)**3/(PC/1E+5)**4)**(1./6)! INV. THERMAL COND. 
       VOL= ZV*R*TA/P                ! VOLUME,  [m^3/mol] 
                   !DENR=VC/VOL                ! REDUCED DENSITY 
               DENR=3.*P*TC/8./ZV/TA/PC 
 
  IF (DENR.LT.0.5) THEN 

K=1.22E-2*(EXP(0.535*DENR)-1.0)/(GAM*ZC**5)+KO !THERMAL COND., [W/m·K] 
  ELSE IF (DENR.LT.2.0) THEN 
  K=1.14E-2*(EXP(0.67*DENR)-1.069)/(GAM*ZC**5)+KO 
  ELSE 
  K=2.60E-3*(EXP(1.155*DENR)+2.016)/(GAM*ZC**5)+KO 
   END IF 
 
! CALCULATION OF PLATE LENGTH FOR LAMINAR FLOW   
   
 BETAR=1./TA  
 PR=VISD*CP/K     ! PRANDLT NUMBER 
 DL=(1.05E+9*VIS**2/(BETAR*GR*(TW-TF)*PR))**(1./3) ! LENGTH OF THE PLATE, [m] 
 WRITE(*,*)DL 
 
! DIMENSIONLESS PARAMETERS 
 
GRL=BETAR*GR*(TW-TF)*DL**3/(VIS**2) ! GRASHOF NUMBER 
G=BETAR*GR*(TW-TF)*(W**4)/((VIS**2)*DL) ! DIMENSIONLESS COEFFICIENT   
RAL=GRL*PR                       ! RAYLEIGH NUMBER      
XMAX=1./G                                ! DIMENSIONLESS DOMAIN LENGTH    
WRITE(*,*)G,XMAX,TW,TF,TA,BETAR  
        
 REX=0.2                 ! UNDERRELAXATION FACTOR 
 
WRITE(*,*)'Grashof=',GRL,' Prandtl=',PR,'  Rayleigh=',RAL 
WRITE(*,*)'DENS=',DENS,' CP=',CP,' VISD=',VISD,' VIS=',VIS,' K=',K 
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!WRITE(*,*)ZL,ZV           
              
CALL CALCBETA(P,TW,PC,TC,BETA) 
 
    BET(1)=BETA 
    BETD(1)=BETA/BETAR 
      
    X = 0.0 
 
    SUM=0 
    NUMP=100 
 
    DO IT=1,NUMP 
    SUM=SUM+1.05**IT 
    END DO 
 
    DX =0.75*XMAX/SUM              
    DXMAX=DX*(1.05**NUMP)             
 
 
    II=1 
    N = 300 
    Y(1) = 0.0 
    DY = 1./N    !DY=W/N      
  
    DO J = 2,N 
  
   Y(J) = Y(J-1) + DY 
 
    END DO 
 
  
 !****************** ASSIGN INITIAL VALUES *********************** 
  
    U(1,1) = 0.0 
    V(1,1) = 0.0 
    T(1,1) = 1.0 
  
    DO J = 2,N 
  
   U(1,J) = 0.0 
   T(1,J) = 0.0 
   V(1,J) = 0.0 
  
    END DO 
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 !******************************************************************* 
  
 !               PROCESSING: KERNEL ALGORITHM    
      
 !******************************************************************* 
  
 !    SOLUTION BEGINS  
  
  NX=0 
 
    DO WHILE (X.LT.XMAX) 
  
    NX=NX+1 
    ITER=0 
    VCHX=0.0 
  
    DO J = 1,N 
  
     U(2,J) = U(1,J) 
     T(2,J) = T(1,J) 
     V(2,J) = V(1,J) 
  
    END DO 
  
    IF(DX.LT.DXMAX) THEN 
     DX=1.05*DX 
    ELSE 
     DX=DXMAX 
    END IF 
  
    X = X + DX 
  
    V(2,1) = 0.0 
    U(2,1) = 0.0 
    T(2,N) = 0.0 
    T(2,1) = 1.0 
  
   DO NIT=1,100 
  
    ITER=ITER+1 
  
 !************* SOLVE ENERGY EQUATION TO GET "T" ******************** 
  
     A(1)=1.0 
     B(1)=0.0 
     C(1)=0.0 
     D(1)=T(2,1) 
  
     DO J = 2,N 
  
    A(J) = (2.0/(DY*DY*PR))+(U(2,J)/DX) 
    B(J) = V(1,J)/(2.0*DY)-1.0/(DY*DY*PR) 
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    C(J) = -V(1,J)/(2.0*DY)-1.0/(DY*DY*PR) 
    D(J) = U(2,J)*T(1,J)/DX 
 
     END DO 
  
     A(N)=1.0 
     B(N)=0.0 
     C(N)=0.0 
     D(N)=0.0 
  
     CALL TRISOL(N,A,B,C,D,H) 
  
     DO J = 1,N 
  
    T(2,J) = T(2,J)+REX*(H(J)-T(2,J)) 
 
  
     END DO 
  
 !************ SOLVE MOMENTUM EQUATION TO GET "U" **************** 
  
     A(1)=1.0 
     B(1)=0.0 
     C(1)=0.0 
     D(1)=0.0 
  
     DO J = 2,N 
  
    TEMP1= T(2,J)*(TW-TF)+TF 
 
    CALL CALCBETA(P,TEMP1,PC,TC,BETA) 
  
    BET(J)=BETA 
    BETAD=BETA/BETAR 
    BETD(J)=BETAD 
  
    A(J) = (2.0/(DY*DY))+(U(2,J)/DX) 
    B(J) = V(2,J)/(2.0*DY)-1.0/(DY*DY) 
    C(J) = -V(2,J)/(2.0*DY)-1.0/(DY*DY) 
    D(J) = U(2,J)*U(1,J)/DX+BETAD*T(2,J)  
     
  
     END DO 
  
     A(N)=1.0 
     B(N)=0.0 
     C(N)=0.0 
     D(N)=0.0 
  
     CALL TRISOL(N,A,B,C,D,H) 
  
     DO J = 1,N 
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    U(2,J) = U(2,J)+REX*(H(J)-U(2,J)) 
     END DO 
 
 !************ SOLVE THE CONTINUITY EQUATION TO GET "V" ************* 
  
     DO J = 2, N 
    V(2,J) = V(2,J-1)-(DY/(2.0*DX))*(U(2,J)-U(1,J)+U(2,J-1)-U(1,J-1)) 
     END DO 
  
 
 !************ CHECK CONVERGENCE *************** 
  
     VDIFF=ABS(V(2,N)-VCHX) 
       IF(VDIFF.LE.0.01) EXIT 
     VCHX=V(2,N) 
   END DO 
  
 ! *************************** SAVING DATA ******************** 
  
     II=II+1 
  
     DO J=2,N 
  
    XX(II)=X 
    VELU(II,J)=U(2,J) 
    VELV(II,J)=V(2,J) 
    TEMP(II,J)=T(2,J) 
     
     END DO 
 
 ! *************************** RETURN VALUES *********************** 
  
     DO J=1,N 
      U(1,J)=U(2,J) 
      V(1,J)=V(2,J) 
      T(1,J)=T(2,J) 
     END DO 
  END DO 
  WRITE(*,*)NX,ITER 
 
 !******************************************************************* 
  
 !            POST-PROCESSING: PRINTING THE RESULTS                
  
 !******************************************************************* 
  
 !   RESULTS IN THE DIMENSIONLESS DOMAIN 
  
  WRITE (8,*) 'TITLE="TEMPERATURE FIELD"' 
  WRITE (8,*) 'VARIABLES = "Y", "X", "VELV", "VELU", "TEMPERATURE"' 
  WRITE (8,*) 'ZONE T="ZONE001", I=', II, '  J=', N,  ' F=BLOCK' 
  WRITE (1,35) 'DIMENSIONLESS VALUES'    
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  WRITE (1,*) ' ' 
  WRITE (1,40) 'Y', 'U', 'V', 'T', 'BETAD'  
  WRITE (1,*) ' ' 
  
    XX(1)=0.0 
  
    DO J = 1,N 
   VELU(1,J)=0.0 
   VELV(1,J)=0.0 
   TEMP(1,J)=0.0 
  
    END DO 
 
    DO I = 1,II 
   TEMP(I,1)=1.0 
    END DO 
  
    DO J=1,N 
    WRITE(8,25) (Y(J),I=1,II) 
    END DO 
  
    DO J=1,N 
    WRITE(8,25) (XX(I),I=1,II)            
    END DO 
  
    DO J=1,N 
    WRITE(8,25) (VELV(I,J),I=1,II) 
    END DO 
  
    DO J=1,N 
    WRITE(8,25) (VELU(I,J),I=1,II) 
    END DO 
 
    DO J=1,N 
    WRITE(8,25) (TEMP(I,J),I=1,II) 
    END DO 
 
    DO J=1,N 
    WRITE(1,30)Y(J),VELU(100,J),VELV(100,J),TEMP(100,J),BETD(J)  
    END DO 
 
    CLOSE(1) 
 
 ! ********************* RESULTS IN THE DIMENSIONAL DOMAIN ********* 
  
  WRITE (9,*) 'TITLE="TEMPERATURE FIELD"' 
  WRITE (9,*) 'VARIABLES = "Y", "X", "VELV", "VELU", "TEMPERATURE"' 
  WRITE (9,*) 'ZONE T="ZONE001", I=', II, '  J=', N,  ' F=BLOCK' 
  WRITE (2,45)'DIMENSIONAL VALUES'    
  WRITE (2,*) ' ' 
  WRITE (2,50) 'y', 'u', 'v', 'T', 'BETA','BETAR'   
  WRITE (2,*) ' ' 
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  WRITE (3,55) 'x','T','h','Nu','Ra' 
  WRITE (3,*) ' ' 
  
    XX(1)=0.0 
  
    DO J = 1,N 
   VELU(1,J)=0.0 
   VELV(1,J)=0.0 
   TEMP(1,J)=0.0 
 ! 
    END DO 
  
    DO I = 1,II 
   TEMP(I,1)=1.0 
    END DO 
  
 !    RETURNING TO THE DIMENSIONAL DOMAIN 
  
    DO I = 1,II 
   XX(I)=XX(I)*DL*G 
    END DO 
 
    DO J = 1,N 
    Y(J)=Y(J)*W   
    END DO  
 
    DO J = 1,N     
     DO I = 1,II      
    VELU(I,J)=VELU(I,J)*VIS*DL*G/(W**2)   
    VELV(I,J)=VELV(I,J)*VIS/W             
    TEMP(I,J)=TEMP(I,J)*(TW-TF)+TF        
     END DO      
     END DO 
    
 !     CONVECTIVE COEFFICIENT, [W/m^2·K] 
          
     DO I=1,II        
     COEF(I)=-K*(TEMP(I,2)-TW)/(DY*W*(TW-TF)) 
     END DO       
   
 !     NUSSELT NUMBER 
 
     DO I=1,II 
     NU(I)=COEF(I)*XX(I)/K 
     END DO 
  
 !     GRASHOF NUMBER 
  
      DO I=1,II  
      GRX(I)=BETAR*GR*(TW-TF)*XX(I)**3/VIS**2 
      END DO      
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 !    RAYLEIGH NUMBER 
  
      DO I=1,II 
      RAX(I)= GRX(I)*PR 
      END DO 
 
 !     AVERAGE CONVECTIVE COEFFICIENT  
 
    S=0 
 
    DO I=1,II-1 
      S=S+(COEF(I+1)+COEF(I))*(XX(I+1)-XX(I))/2 
    END DO 
 
    COEFP=S/DL 
 
     
 !     AVERAGE NUSSELT NUMBER 
 
    NUP=COEFP*DL/K 
 
    DO J=1,N 
    WRITE(9,25) (Y(J),I=1,II) 
    END DO 
  
    DO J=1,N 
    WRITE(9,25) (XX(I),I=1,II) 
    END DO 
  
    DO J=1,N 
    WRITE(9,25) (VELV(I,J),I=1,II) 
    END DO 
  
    DO J=1,N 
    WRITE(9,25) (VELU(I,J),I=1,II) 
    END DO 
  
    DO J=1,N 
    WRITE(9,25) (TEMP(I,J),I=1,II) 
    END DO 
  

DO J=1,N           
WRITE(2,30)Y(J),VELU(100,J),VELV(100,J),TEMP(100,J),BET(J),BETAR   

    END DO 
 
    DO I=1,II 
    WRITE(3,31)XX(I),TEMP(I,2),COEF(I),NU(I),RAX(I)     
    END DO 
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   WRITE(3,*)' ' 
   WRITE(3,*)'AVERAGE CONVECTIVE COEFFICIENT' 
   WRITE(3,*)COEFP 
   WRITE(3,*)'AVERAGE NUSSELT NUMBER' 
   WRITE(3,*)NUP 
 
    25 FORMAT (1X,300F15.5) 
    30 FORMAT (6E15.6) 
    31 FORMAT (5E15.6) 
    35 FORMAT (25X,A20) 
    40 FORMAT (9X,A1,14X,A1,14X,A1,14X,A1,12X,A5) 
    45 FORMAT (25X,A18) 
    50 FORMAT (9X,A1,14X,A1,14X,A1,14X,A1,14X,A4,10X,A5) 
    55 FORMAT (9X,A1,14X,A1,14X,A1,14X,A2,14X,A2)           
 

    STOP 
     CLOSE(2) 
         END 
 
 !******************************************************************* 
  
    SUBROUTINE TRISOL(NN,A,B,C,D,H) 
  
 !********** THIS IS A TRI-DIAGONAL MATRIX SOLVER ******************* 
  
 !   THIS TRIDIAGONAL MATRIX SOLVER USES THE THOMAS ALGORITHM 
 
          DIMENSION A(300),B(300),C(300),D(300),H(300),W(300),Q(300),G(300) 
  
    W(1)=A(1) 
    G(1)=D(1)/W(1) 
  
    DO K=2,NN 
   K1=K-1 
   Q(K1)=B(K1)/W(K1) 
   W(K)=A(K)-C(K)*Q(K1) 
   G(K)=(D(K)-C(K)*G(K1))/W(K) 
    END DO 
  
    H(NN)=G(NN) 
    N1=NN-1 
  
    DO K=1,N1 
   KK=NN-K 
   H(KK)=G(KK)-Q(KK)*H(KK+1) 
    END DO 
 
    RETURN 
    END 
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 !****************************************************************** 
 
       SUBROUTINE ZETA(P,T,PC,TC,ZV,ZL,IROOT)  
    
 !************** THIS IS TO COMPUTE COMPRESSIBILITY FACTOR ********* 
 
   DOUBLE PRECISION ARG, QQ, RR, DD 
   COMMON IONE,ITHREE  
   PI=3.14159  ! PI IN RADIANS 
 
  
 !  DIMENSIONALESS VARIABLES 
 
   TRED=T/TC  ! REDUCED TEMPERATURE 
   PRED=P/PC  ! REDUCED PRESSURE 
          
   A=(27./64)*(PRED/TRED**2) 
   B=(1./8)*(PRED/TRED) 
 
 !  SOLVING POLINOMIAL EQUATION OF THE FORM: Z**3+P1*Z**2+P2*Z+P3=0 
 
   P1=-B-1 
   P2=A 
   P3=-A*B 
 
   QQ=(3*P2-P1**2)/9 
   RR=(9*P1*P2-27*P3-2*P1**3)/54 
   DD=QQ**3+RR**2   !DISCRIMINANT 
 
  IF(DD.GE.0) THEN 
   BASE=RR+SQRT(DD) 
   SS=SIGN((ABS(BASE))**(1./3),BASE) 
 
   BASE=RR-SQRT(DD) 
   TT=SIGN((ABS(BASE))**(1./3),BASE) 
 
   ZV=SS+TT-(1./3)*P1 
   ZL=ZV 
 
   IROOT=1 
   IONE=IONE+1 
  ELSE 
   ARG=RR/DSQRT((-QQ)**3)   
   ALPHA=ACOS(ARG) 
   RQ=SQRT(-QQ) 
   Z1=2*RQ*COS(ALPHA/3)-(1./3)*P1 
   Z2=2*RQ*COS(ALPHA/3+2*(PI/3))-(1./3)*P1 
   Z3=2*RQ*COS(ALPHA/3+4*(PI/3))-(1./3)*P1 
    ZL=MIN(Z1,Z2,Z3) 
    ZV=MAX(Z1,Z2,Z3) 
    IROOT=3 
    ITHREE=ITHREE+1 
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  END IF  
  RETURN 
  END 
 
 !****************************************************************** 
 
   SUBROUTINE CALCBETA(P,T,PC,TC,BETA) 
 
 !*********************** THIS IS TO COMPUTE BETA ****************** 
 
   COMMON IONE,ITHREE 
   CALL ZETA(P,T,PC,TC,ZV,ZL,IROOT) 
 
   Z=ZL 
 
 ! DIMENSIONALESS VARIABLES 
  
   TRED=T/TC  ! REDUCED TEMPERATURE 
   PRED=P/PC  ! REDUCED PRESSURE 
         
   A=(27./64)*(PRED/TRED**2) 
   B=(1./8)*(PRED/TRED) 
                
    FZ=1-(Z**2*B-2*A*Z+3*A*B)/(3*Z**3-2*Z**2*(B+1)+Z*A) 
   BETA=FZ/T 
  
  RETURN 
  END 
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