

ELASTICALLY REPLICATED INFORMATION SERVICES

By

Jose E. Torres-Berrocal

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2004

Approved by:

______________________________ ____________
Jaime Seguel, Ph.D. Date
Member, Graduate Committee

______________________________ ____________
Manuel Rodriguez-Martinez, Ph.D. Date
Member, Graduate Committee

_______________________________ ____________
Bienvenido Velez-Rivera, Ph.D. Date
President, Graduate Committee

_______________________________ ____________
Haedeh Gooransarab, Ph.D. Date
Representative of Graduate Studies

_______________________________ ____________
Jorge L. Ortíz-Alvarez, Ph.D. Date
Chairperson of the Department

 ii

Abstract

This thesis introduces elastically replicated information systems (ERIS). ERIS are

distributed storage clusters (DSC) capable of sustaining their availability over a threshold

value even in the presence of topological changes to the configuration of the system by

dynamically adjusting their replication level and object allocation scheme. Such

topological changes may be caused by external factors such as changes in demand or

dynamic repartitioning of resources, but also by internal factors such as storage node

failures. Various replication methods are reviewed and compared to ERIS. A simple

mathematical model of a DSC is introduced which forms the basis of several simulation

results characterizing the availability of various replication schemes in response to

changes in the number of nodes. We present experimental data from a DSC simulator

used to compute the availability of a DSC under alternative replication schemes. These

results demonstrate that availability decreases quickly enough to render elastic replication

necessary even in DSC’s with tens of nodes. The results also validate the hypothesis that

static replication levels are not enough to guarantee a sustained level of availability.

Finally, we exploit some observed patterns in the results in order to synthesize an

elastically replicated scheme and demonstrate its ability to sustain availability above our

target level as nodes are added to a DSC.

 iii

Resumen

Esta tesis introduce los Sistemas de Información Elásticamente Replicados

(ERIS). ERIS son conjuntos distribuidos de almacenaje (DSC) capaces de sostener su

disponibilidad sobre un valor de umbral incluso en la presencia de cambios topológicos a

la configuración del sistema ajustando dinámicamente su nivel de replicación y esquema

de localización de objetos. Tales cambios topológicos pueden ser causados por factores

externos tales como cambios en demanda o repartición dinámica de recursos, pero

también por factores internos tales como fallas en los nodos de almacenaje. Varios

métodos de replicación son revisados y comparados con ERIS. Diseñamos un modelo

matemático simple de un DSC que forma la base de varios resultados de simulaciones

que caracterizan la disponibilidad de acuerdo a varios esquemas de localización de

objetos en respuesta a cambios en el número de nodos en un DSC. Presentamos datos

experimentales de un simulador utilizado para computar la disponibilidad de un DSC

bajo esquemas alternativos de replicación. Estos resultados demuestran que la

disponibilidad disminuye tan rápidamente que hace la replicación elástica necesaria,

incluso en sistemas DSC con solo decenas de nodos en discordancia con sistemas de

replicación fija como en sistemas RAID. Los resultados también validan la hipótesis que

niveles constantes de replicación no son suficientes para garantizar un nivel sostenido de

disponibilidad. Finalmente, explotamos algunos patrones observados en los resultados en

orden de sintetizar un esquema elásticamente replicado y demostramos su habilidad de

sostener la disponibilidad sobre el nivel del objetivo de disponibilidad mientras se añaden

nodos al DSC.

 iv

Dedication

I want to dedicate this thesis work to my loving family. To my parents, Wilda

Joan and Jose Rafael, for giving me their support and liberty to pursue my own path. To

my grandmother, Gloria Zegarra, for having me on her prayers. And finally to my love

and caring wife, Maria Ivelisse, for her support and patience.

 v

Acknowledgements

 I gratefully acknowledgement the financial support for this work from the

Program for Research in Computing and Information Sciences and Engineering

(PRECISE) under the NSF-EIA Grant 99-77071. To Dr. Bienvenido Velez, thanks a lot

for giving me the opportunity to work in this project, and for the opportunity to be your

teaching assistant in the Advanced Programming course. I would like to thank

Dr. Edgar Acuña Fernandez and Dr. Robert W. Smith for their help on Stochastic

Processes. Also, I want to thank William T. Vetterling for his consent to use part of the

source code from the “Numerical Recipes in C” book. A special acknowledgement to

Dr. Manuel Rodriguez Martinez and Dr. Jaime Seguel for accepting to be members of my

graduate committee, and for a great experience during your courses. To Pablo J. Rebollo

for his support and diligence in the PRECISE laboratory.

I also wish to thank the Department of Electrical and Computer Engineering for

giving me the opportunity to pursue the master degree in Computer Engineering coming

from Computer Science.

Finally, I wish to thank my dear wife Maria Ivelisse. Her enthusiasm helped me

go through this hard period of my life and motivated me to finish this thesis report.

 vi

Table of Content

List of Tables ... viii

List of Figures .. ix

List of Symbols and Abbreviations... xii

List of Appendixes... xiii

Chapter I. Introduction.. 1

Chapter II. Previous Work .. 8

A. Previous Methods.. 8

B. Mathematical Background .. 11

Chapter III. Modeling Distributed Storage Clusters ... 15

A. Mathematical Model of a DSC ... 15

B. The DSC Simulator... 18

Chapter IV. Experimental Results .. 22

A. Simulation Results .. 22

B. Finding a Mathematical Relationship between Availability, Replication and

Tagging ... 39

C. ERIS Parameter Estimation .. 45

Chapter V. Conclusions and Future Work.. 55

A. Conclusions... 55

B. Future Work .. 57

 vii

Bibliography ... 59

Appendix... 63

 viii

List of Tables

Table Page

Table IV-1. Calibration and System Confidence results used on Figure IV-2. 24

Table IV-2. Deviation results used on Figure IV-2. .. 25

Table IV-3. ERIS calculated parameters... 51

 ix

List of Figures

Figure Page

Figure I-1. f(#nodes) reflects the availability of a DSC with a constant replication

scheme. Our goal is to design dynamic replication schemes yielding an availability

response similar to g(#nodes). .. 3

Figure III-1. Impact of Migration and Replication on DSC Matrix................................ 15

Figure IV-1. Uniform distribution. (A) DSC initial state. (B) DSC after adding one node.

(C) DSC after adding next node. (D) Keep adding nodes until #nodes = #objects. . 22

Figure IV-2. Validation Curve... 23

Figure IV-3. Centric mechanism. No distribution. No matter how many nodes are added

all objects are kept in the same node. ... 25

Figure IV-4. Availability and Tagging relationship. The dotted curves are not meant to

be understood as lines. .. 26

Figure IV-5. Comparison curves for Extreme algorithms ... 27

Figure IV-6. Uniform Distribution with various replication levels in logarithmic scale. 28

Figure IV-7. Uniform Distribution with various replication levels in normal scale........ 28

Figure IV-8. (a) Left to Right - Tagging sample DSC matrix. Replication calculation

example (b) Left to Right - Tagging sample DSC matrix. Tagging calculation

example. .. 30

Figure IV-9. Balance - Tagging sample DSC matrix. Tagging calculation example. 30

Figure IV-10. Hybrid algorithm setting variable node utilization or tagging in the Up

region and fixed in the lower or down region... 31

 x

Figure Page

Figure IV-11. Availability of hybrid algorithm for variable down tagging and fixed up

tagging at 33% overall replication. ... 34

Figure IV-12. Left-to-right(lr) and Balance(b) mechanisms with 35% replication, 50%

Up tagging, and 25% down tagging.. 35

Figure IV-13. MTTF comparison between the uniform and centric algorithms and a

hybrid algorithm. Hybrid plot is for Up tagging of 50%, down tagging of 5% and

33% replication. .. 36

Figure IV-14. Tagging or overall utilization% comparison between the basic algorithms

and the hybrid algorithm. Hybrid plot is for Up tagging of 50%, down tagging of

5% and 33% replication. ... 36

Figure IV-15. (a) d = 12%, u = 100%, pr = 48%, n = 9, o = 10; SM with 9 nodes and 10

objects. d - Down region tagging%. u - Up region tagging%. pr - replication%.

n - node count. o - object count. General Tagging = 100%. (b) The same SM as

Figure IV-15(a) but with the effective space used.. 38

Figure IV-16. DSC curve family for 1% replication. .. 41

Figure IV-17. DSC curve family for 49% replication. .. 44

Figure IV-18. Step vs. MTTF curve fitting, to obtain a and b constants........................ 45

Figure IV-19. ERIS algorithm part I. Down tagging calculation. 48

Figure IV-20. ERIS algorithm part II. Replication, threshold, and number of nines

calculation. .. 49

 xi

Figure Page

Figure IV-21. Availability result using the very first ERIS Prototype. The continuous

line is the reliability for 5 and 4 nines... 50

Figure IV-22. Comparison of trends for parameters calculated by ERIS....................... 54

 xii

List of Symbols and Abbreviations

Abbreviator Meaning
ERIS Elastically Replicated Information System
DSC Distributed Storage Cluster
RAID Redundant Arrays of Inexpensive Disks
MTTF Mean Time To Failure
MTBF Mean Time Before Failure
SM Storage Matrix
MTTR Mean Time To Repair
S Probability of survival
SN Probability of survival for N nodes, where N is the number of nodes
P Probability of failure
PN Probability of failure for N nodes, where N is the number of nodes
λ Rate of failure of one node
λn Rate of failure of the DSC
DSCMTTF MTTF for the DSC
∆Sn MTTF difference between step n and step n-1, where n is the number of

the step.
C Number of total copies
D Down tagging
pr Percent of replication
MOD Modulus operation
n_obj Number of original objects
node_count Number of nodes
RES Relative Effective Space
ES Effective Space
UES Up effective space
DES Down effective space

 xiii

List of Appendixes

Appendix .. 63

1

Chapter I

Introduction

State-of-the-art high-capacity storage systems are typically assembled by

interconnecting several off-the-shelf disks through some storage area network (SAN)

together with a layer of software implementing an image of a single storage system. We

call this type of system a distribute storage cluster (DSC). To compensate for the

potential reduction in reliability induced by the high numbers of components with

independent failure modes, some of the storage units hold enough redundant information

to reconstruct any information in the advent of a disk failure. It is common to encounter

high-end storage systems that support the dynamic addition of storage units, also known

as hot swapping, to the system without suspending its operation. The popularity of the

Internet and the consequent flourishing of e-commerce, have dramatically increased the

importance of a hot swapping capability from a requirement of few high end systems

affordable only by large corporations, to a common necessity of any firm wishing to

provide continuous 24/7 operation.

We are particularly interested in DSC’s to which nodes could be added or

removed at any time during the operation of the system and that must operate

continuously. Such systems are becoming part of many IT departments offering services

over the Internet, since there is always somebody awake somewhere in the world that can

access the service. This design constraint forces the system to conduct as many

 2

configuration changes as possible while the system is operating, thus there is a need to

automate the process of determining and implementing any actions required to

compensate for the consequent loss of data availability due to the topological changes.

Availability in general terms is the capacity of a system to satisfy successfully the request

for its resources at a particular moment in time.

The obvious way to achieve redundancy is by making copies or replicas of the

existing objects; a process that is commonly called replication. Our research explores the

use of replication as a means for sustaining the availability of a distributed storage cluster

above some fixed threshold even while the system suffers dynamic changes to its

configuration or topology. Even thought there are extensive works on applying

replication to achieve reliability and availability, many of the systems proposed in the

past either had a constant replication scheme or used replication in a somewhat ad-hoc or

naïve manner. A constant replication scheme may result in a continuous decrease in

availability as the number of components in the system increases. As the number of

components increases so does the number of opportunities for the system to fail. In this

research, I present experimental data sustaining this claim.

This work explores the feasibility of designing DSC’s capable of sustaining their

availability above a fix threshold value even in the presence of topological changes to the

configuration of the system by dynamically adjusting their replication level and object

allocation scheme. Our central hypothesis is that distributed storage clusters (DSC)

that suffer dynamic changes to their configuration or topology should dynamically

 3

adjust their replication levels in order to sustain data availability above a given

threshold.

Several factors may induce dynamic changes in the topology of a DSC. Some

external factors may include seasonal changes in storage demands, or dynamic

repartitioning of resources due to load balancing, among others. However, we foresee

that node failures by themselves will become a major internal factor driving the frequent

reconfiguration of DSCs. When a node fails, the DSC should dynamically compensate

for the potential loss of data, redundant or otherwise, in such a way as to bring the system

back to a level of availability above the target threshold.

Figure I-1. f(#nodes) reflects the availability of a DSC with a constant replication scheme. Our goal
is to design dynamic replication schemes yielding an availability response similar to g(#nodes).

Figure I-1 shows a hypothetical plot of DSC availability vs. number of nodes. It

also shows three lines. The horizontal dotted line represents the minimal level of

availability that a given DSC should provide at all times. We call this the target

 4

availability. The curve f(#nodes) denotes the expected availability response of a DSC that

uses a constant replication level. Our goal is to develop dynamic replication algorithms

achieving a constant level of availability at all times as depicted by the g(#nodes). In

order to achieve this goal, we must first understand the functional relationship between

availability and DSC topology for different replication schemes. An important

contribution of our work consists of a mathematical/simulation framework that can be

used to conduct explorations in this direction.

Availability is easy to achieve via replication if one is not concerned with storage

utilization and performance. We can simply keep as many copies of each object as the

number of failures we want to tolerate. However, redundant data takes room that could

otherwise be used for non-redundant data. Space utilization thus decreases. Moreover,

the amount of work necessary to maintaining consistency among all copies increases at

least linearly with the number of copies of the data. Our goal is thus to understand what

is the minimal redundancy that is necessary to achieve our target availability.

History has demonstrated that we always find ways to use any extra storage that

we get. The “need” for storage capacity grows faster than the amount of storage per

dollar. Everyday more and more sites connect into the global network, and each site

demands more online storage capacity due to the addition of more users and services.

This implies that, even thought storage is becoming cheaper and denser we cannot

assume an unlimited online storage capacity. Effective storage utilization is desirable not

only for write-intensive, but also for read-only workloads as well. Data cannot be naively

 5

replicated in order to achieve availability without concern for performance and

utilization. In fact, we demonstrate that there is an inherent trade off between utilization

and availability. Maximum availability can always be obtained at the expense of minimal

utilization and vice versa.

When new storage nodes are added to a DSC the additional storage capacity can

be used to increase availability in one of two ways: replication or migration. As

mentioned before, replication is the process of storing multiple redundant copies of

objects on different storage nodes. Migration, on the other hand, is the process of

relocating data objects among storage nodes in order to reduce the probability of losing

the object due to a node failure. For instance, migration could be used to move objects to

components that are more reliable.

Migration by itself does not increase the amount of redundant objects in a DSC,

but it increases storage utilization by distributing objects among several available nodes.

Replication reduces storage utilization because it increases the amount of space occupied

by redundant copies. In write intensive systems, extensive use of replication may

significantly degrade the system performance, since for each write event, a certain

number of copies have to be updated in order to maintain consistency. Our goal is

designing DSC’s that sustain their availability over a desired threshold by means of

dynamically balancing replication and migration while simultaneously maximizing

utilization. We use the name Elastically Replicated Information Service (ERIS) to

 6

systems that have the ability to sustain availability and maximize utilization using

dynamic replication.

The need for ERIS arises in several different contexts and at different levels of

abstraction. Examples of distributed storage systems include distributed file systems,

RAID systems and distributed database systems, among others. In this work, we exploit

a simple abstract model of a DSC and present data from simulations of the DSC’s

availability response under alternative replication and object allocation schemes. Our

results indicate that some sort of elastic replication algorithm is needed to implement

DSC’s capable of sustaining a desired level of availability as the number of nodes in the

DSC changes. For instance, a DSC with 35% replication and uniformly distributed

objects within five (5) nodes will drop its reliability one nine (9) factor after increased to

10 nodes. Based on these simulations, we have found some availability patterns that we

exploit to formulate one possible elastically replicated algorithm.

This dissertation is divided in the following chapters and sections. In chapter two,

Previous Work, we present some basic mathematical background necessary to understand

the rest of the document, as well as some previous methods used to sustain availability.

In chapter three, we defined a mathematical model of a DSC then described the use of a

DSC simulator for our research. Following is the Experimental Results chapter where it

shows results based on the use of the DSC simulator and we explained a mathematical

relationship between Availability, Replication and Tagging. In the same chapter, with

the use of the mathematical relationship we described a way to estimate ERIS parameters

 7

to obtain the object allocation scheme. Finally, we state our conclusions and propose

future work in chapter five.

8

Chapter II

Previous Work

In this chapter, we present one section of methods currently used on DSC systems

related with replication and then a section of mathematical formulations. The previous

methods section is a brief summary among the extensive literature about replication,

important to compare and to support this research. The mathematical background section

describes various accepted definitions and formulas needed to understand this

investigation. We refer to the reader to [16] and [26] for the basic definitions of the

following concepts: Nondeterministic experiment, Random variable, and Probability.

A. Previous Methods

In general, data replication has been a subject of active research for over 30 years.

The literature on the subject is extensive, but due to space limitations, only an extract of

the most relevant previous work is presented here. Approaches to data replication can be

classified into four different groups: Consensus Based, Data Trading, Caching, and

RAID.

Consensus-based systems, also known as voting replication system, disseminate

replicated data to various nodes in a network with a certain degree of correctness. In

order to identify the correctness of the data that arrive to a given node during any event,

the method requires comparing the data that arrived to that of the other nodes.

9

Since the correctness of the data at each receiving node in the network is

uncertain, in order to decide whether the data is correct, the method uses consensus

between the nodes. Each node casts a vote and the majority determines which data is

correct. If a node does not belong to the majority, is either disabled or the data is resent

to it. The availability of the system depends on the correctness of the data, which

depends in turn, on the count of nodes involved in the voting process. The count of

nodes has to be sufficiently large to overcome the “Byzantine failure assumption”, that is,

a majority of incorrect votes. Consensus-based replication is more concerned with the

problem of coordinating object updates so that the latest update is always available; ERIS

is more concerned with determining how many copies and where should they be stored in

order to sustain a specific availability level. ERIS and consensus based systems

complement each other. Examples of consensus-based systems are [22] and [5].

The next replication method is Data Trading. This method is characterized, as the

name suggests, by the exchange of data among nodes. For instance, if a node A has 1GB

of data and 2GB of spare allocation space, and a node B, with a similar description,

interchange part or all of their data, the result is that data from node A will be replicated

in node B, and vice versa. The actual interchange is usually done through a

communication network. This interchange is driven by the help of a set of particular

policies. These policies determine the conditions under which the nodes form a

relationship. The relationship can be a free exchange society or one based on economic

factors. The rules involved in the relationship have to be determined, as well. For

example, the amount of resources used in an interchange can be determined by a load

10

balancing scheme, or be restricted by time constraints, or by other type of policy.

Although the level of replication in the system may vary dynamically, the system does

not have enough control of how much its replication varies across the system. Data

Trading was never designed with the same constraints as ERIS to sustain a specific level

of availability. For instance, the system may reach a state in which some objects have no

replication while other objects are excessively replicated. Examples of data trading

systems include [12] and [15].

In Caching, storage is partitioned so that the primary copies of objects remain

separate from the replicas. Typically, the replicas are located closer to the data consumer

and in smaller memories for faster access. This type of storage organization is primarily

designed for performance instead of reliability. When the cached data is modified, the

primary copies are modified according to a policy specifying how and when the change

propagation is going to be performed. The Caching method is adequate for data that does

not change too often. Otherwise, it requires a mechanism for getting consistent updates

and conflict resolutions among the participating nodes. This is usually done by some

consensus method. Two examples of caching systems are [1] and [28].

Redundant arrays of inexpensive disks (RAID) are similar to ERIS in their use of

replication to overcome the loss in reliability due to the use of multiple storage nodes

with independent failure modes. Different RAID levels were originally proposed based

on four parameters: the percentage of replication, the type of replication used (parity or

full), the size of the data unit (striped or not striped), and the location or arrangement

(distributed or not) of the units in the group of nodes (discs). What distinguishes RAID

11

from ERIS is that these parameters are normally fixed at the time the system is

configured. Examples of RAID systems are: [30] and [11].

A distributed storage system is said to be elastically redundant if it incorporates

algorithms that automate the choice between migration and replication in order to

maintain a desired level of availability in the presence of dynamic changes to the number

of nodes. There have been distributed file systems that provide a level of replication that

is fixed at system configuration time [24]. Others provide facilities to create objects with

different levels of replication [21]. Deceit [34] provides operations to dynamically alter

the level of replication of a file. However, none of these systems automatically adjusts

the level of replication in response to a change in the number of nodes to sustain

availability above a fix threshold.

B. Mathematical Background

Before we proceed to present the model of DSC used in the next chapter, we

discuss some fundamental concepts of the theory of probabilities necessary to understand

the remainder of the dissertation.

A Bernoulli trial is a nondeterministic experiment that results in one of two

possible perpendicular or independent outcomes. The outcome of each trial depends on a

predefined probability in such a way that its outcome can often be interpreted as either a

success or a failure. A series of successive independent Bernoulli trials comprise a

Bernoulli process. The probability][kSP N = of obtaining k successes out of N

12

independent trials, given a probability p of success is:

[] () kNk
N pp

k
N

kSP −−

== 1 (1)

where is the binomial coefficient,

()!!
!

kNk
N

k
N

−
=

A Poisson process is a process satisfying the following properties. The numbers

of changes in no overlapping intervals are independent for all intervals, the probability of

exactly one change in a sufficiently small interval nt 1≡ is ntP λλ ≡= , where λ is

the probability of one change and n is the number of trials, the probability of two or more

changes in a sufficiently small interval t is essentially 0. In the limit of the number of

trials becoming large, the resulting distribution is called a Poisson distribution.

A Poisson process differs from a Bernoulli process in that its outcomes describe

the behavior of events occurring on a continuous time line. A Poisson process represents

the limit, as ∆t → 0, of a Bernoulli process, taking one trial every ∆t units of time and

defining the probability p of a success as tp ∆= λ . When a trial succeeds during one

such trial, we say that an arrival has occurred. The probability)(kP that k events arrive

during a time interval t is:

() ()
!k
et

kP
tk λλ −

= (2)

k
N

13

Availability)(tA generally refers to the probability that a system is operating

correctly at any given moment, while reliability is the property that a system can run

continuously without failure. Reliability)(tR is often measured in terms of “9’s” (four

9’s means that the system is available 99.99% of the time). When a system does not have

repair time,)(tA =)(tR .

The mean time to failure (MTTF) defines the reliability property of a group of

disks. It can have different values depending on the use of the disks in the group such

that data can have different distributions, with or without redundancy, and with or

without repair. The acronym MTBF (mean time before failure) is used interchangeably

with MTTF, when the system does not have repair time ()(tA =)(tR).

The following formula is the currently accepted for the MTTF of a system

compose of a group of disks, where the group can be divided itself in subgroups:

()
() () ()3,

*1**

2

MTTRCGnCD
MTTFMTTF

G

Disk
RAID −++

=

where D is the total count of disks, C is the count of check disks or redundant disks per

subgroup, G is the count of disks per subgroup, Gn is the count of subgroups, and

MTTR is the mean time to repair one disk for a system with repair time.

()
() ()4,

* G

Disk
RAID nCD

MTTFMTTF
+

=

for a system without repair time.

14

The previous concept can be translated to DSC systems changing the disks by any

kind of node.

15

Chapter III

Modeling Distributed Storage Clusters

A. Mathematical Model of a DSC

For future reference, we will define the following terms. A logical storage node

(or simply a node) is any indivisible unit capable of storing information. A distributed

storage cluster (DSC) comprises two or more storage nodes. The member nodes of a

DSC should function in a coordinated fashion to provide an illusion of a single storage

system. We want to point out that these definitions apply to any storage system in

question. In particular, we are interested in DSC’s that allow dynamic reductions or

additions of storage nodes with minimal system interruption.

We model a DSC as a Boolean O x D storage matrix SM[o,d]. The storage

matrix relates objects to the storage nodes where they reside at any given point in time.

Figure III-1. Impact of Migration and Replication on DSC Matrix.

We set SM[o,d] to 1 when at least one copy of object o resides in node d.

SM[o,d] equals zero otherwise (See Figure III-1 above).

16

We assume that all objects stored in the DSC are equally necessary. This implies

that the system is available if at least one copy of each object is available at some node.

Otherwise, we encounter a system failure. The assumption that all objects are equally

necessary significantly simplifies our analysis, but may seem to induce some loss of

generality. However, any storage system supports transactions that require a group of

objects to be available in order to operate. Our assumption simply considers each such

transactional group as having a separate availability goal. Different transactions may

require different groups of objects, each of which may have a different availability target

depending on the target probability that the corresponding transaction can take place.

The Availability)(tA of a system at some point t in time refers to the probability

that the system is operating at time t whether or not it has suffered from any individual

node failure. In our case, the DSC is available until it encounters a system failure. In the

introduction, we explained that replication can be used to avoid the failure of the system.

Note that if one node of the DSC gets unreachable the objects in that node are also

unreachable, but if those objects were replicated in other nodes of the DSC that remain

reachable, the objects can still be accessed, and therefore the system as a whole remains

available.

Another simplifying assumption is that all DSC storage nodes are connected to

one another. We treat a lost connection to a node as a node failure. We leave the

relaxation of this assumption for future work.

17

For some simple object allocation schemes, it is relatively easy to formulate their

availability response function in closed mathematical form. For instance, for the special

case of a DSC with a uniform distribution of objects and storing one original of each

object, the mathematical formulations are the following. By taking equation (2), with

k = 0, t = 1 (this implies that the system starts with a refresh set of nodes every time), and

λ = 1/MTTF, we obtain the probability S of survival of one node, 1/eλ. The failure of

one node P = 1 – S. Equation (1) with k = 0 and N equal to the number of nodes in the

system gives PN = (1 – (1/eλ))^N. Since successive Poisson processes produce a Poisson

process, we can take PN as the probability failure of the DSC as a whole. The λN of the

DSC equals ln(1/(1-PN)) and MTTFDSC = 1/ λN. The availability probability SN of the

DSC equals 1 – PN.

We define tagging as the action of marking, placing, or allocating at least one

object into a node. Tagging percent is then the percent of nodes that have at least one

allocated object. In our work, we used the term tagging to imply node utilization to avoid

confusion with the generalized meaning of the word “utilization” which is often used for

total space utilized by data, redundant or otherwise.

The availability of a storage node is a function of the mean time to failure

(MTTF) of the node. We selected the MTTF metric for experimentation purposes

because it is the most commonly used mathematical model of system availability.

Manufacturers of storage hardware often provide reliability data for their products in

terms of their MTTF.

18

B. The DSC Simulator

In order to test our hypotheses we implemented a simulator for the DSC model

previously described to execute simulations. We use the DSC simulator as a tool to find

the relationship between different parameters involved in the DSC survival, in particular

replication percent, allocation schemes, and the count of nodes. By running the simulator

with a strategic variation of these parameters, we intend to find a mathematical

relationship among them. In our case, since we are not experimenting with real DSC’s,

but using a simulator, the experiments are pseudo-empirical. We validated the simulator

results against currently accepted mathematical formulations for object allocation

schemes for which such formulations were tractable.

 The simulator accepts a storage matrix SM, its dimensions O and D, and the

individual failure rate common to all storage nodes (This implies another simplifying

assumption). The simulation algorithm consists of a typical discrete time event loop

where iterations model the passage of finite time lapses or ticks. Each time around the

loop, the simulator flips a biased fail/not-fail coin for each storage node in the system,

based on its failure rate. The list of non-failed nodes is used to determine if at least one

copy of each object is available at some available node. If this is not the case, the

simulator has detected a system failure. Otherwise, the simulation continues. The

elapsed time from the beginning of the simulation up to the first system failure is the

actual time to failure. The mean time to failure is simply the average of the actual times

to failure taken over several runs.

19

In order to simulate the availability response of an object replication/migration

scheme we run the simulation several times with different storage matrices representing

the changes in object allocation induced by the scheme.

The object arrangement in the DSC and the total amount of replicas of each object

is a crucial factor in determining the availability, and the various costs of the system. The

costs can include the effective space used, the capacity of space required to allow the

allocation of all objects, originals and replicas, and performance, among others.

As an important first step of any simulation research, we must refine and validate

the model and simulator used. As mentioned before the simulator is run several times to

take an average time to failure. During the validation and refinement process of the

research (instead of finishing at a predetermined number of repetitions, 500 repetitions),

the simulator finishes when the average time to failure converges as determined by a

specific tolerance value.

In particular, the formula used into the loop code is:

()
()() ()5

100*2
loopstopTolerance

currentprevious
currentpreviousabsIF

≤

+

−

This means that the percent (%) of difference between the current value and the

previous value has to be less or equal to the tolerance in order to stop running the

simulation. To obtain a good confidence value, we set the tolerance equal to 0.0001, or

99.99% of difference. The comparison value used in the formula is called the

20

convergence factor; in particular, we used the standard deviation or the average. For

instance, the tenth and eleventh simulation run has a tenth and eleventh deviation value,

and during the eleventh run, the current deviation value is the current convergence factor,

and the tenth deviation value is the previous convergence factor.

 During the validation and refinement process, the deviation value was taken to be

the convergence factor in order to be able to refine and validate against the Poisson

formulations used, and during the remainder of the research, the average value was taken

as the convergence factor.

In order to be able to stop the running average or deviation with a convergence

process we need to calculate the average and deviations values in a one pass style while

not knowing a priory the repetitions or final sample size, N.

The following deviation formula is used:

∑ −==
=−

N

i
iN XNXSS

1

22
1

12 (6),

which can be rewritten as:

∑

−∑ =

=− N

X
X

N

i
iN

i
iN

2

1

1

2
1

1 (7),

to permit a one pass style calculation.

21

Finally, we want to point out that the results presented in this dissertation were

obtained by fixing the number of objects to one hundred (100) and varying number of

storage nodes within a range of one (1) to a hundred (100).

22

Chapter IV

Experimental Results

A. Simulation Results

In order to test our hypotheses we conducted several simulations. The first

simulation validated the availability response function generated by the simulator against

the mathematical formulations discussed in chapter three for the case in which objects are

uniformly distributed among storage nodes and no replication is used. The second

simulation tests different object allocation mechanisms and various static combinations of

replication and migration values. The third simulation tests a simple elastic replication

scheme that sustains the availability of the DSC above a threshold while maximizing

tagging.

⇒

(D)

⇒ ⇒

(C)(B)(A)

⇒⇒

0019

1008

0107

0016

1005

0104

0013

1002

0101

0010

210

0019

1008

0107

0016

1005

0104

0013

1002

0101

0010

210

19

18

17

16

15

14

13

12

11

10

0

19

18

17

16

15

14

13

12

11

10

0

109

018

107

016

105

014

103

012

101

010

10

109

018

107

016

105

014

103

012

101

010

10

10000000009

01000000008

00100000007

00010000006

00001000005

00000100004

00000010003

00000001002

00000000101

00000000010

9876543210

10000000009

01000000008

00100000007

00010000006

00001000005

00000100004

00000010003

00000001002

00000000101

00000000010

9876543210

⇒

(D)

⇒ ⇒

(C)(B)(A)

⇒⇒

0019

1008

0107

0016

1005

0104

0013

1002

0101

0010

210

0019

1008

0107

0016

1005

0104

0013

1002

0101

0010

210

19

18

17

16

15

14

13

12

11

10

0

19

18

17

16

15

14

13

12

11

10

0

109

018

107

016

105

014

103

012

101

010

10

109

018

107

016

105

014

103

012

101

010

10

10000000009

01000000008

00100000007

00010000006

00001000005

00000100004

00000010003

00000001002

00000000101

00000000010

9876543210

10000000009

01000000008

00100000007

00010000006

00001000005

00000100004

00000010003

00000001002

00000000101

00000000010

9876543210

Figure IV-1. Uniform distribution. (A) DSC initial state. (B) DSC after adding one node. (C) DSC
after adding next node. (D) Keep adding nodes until #nodes = #objects.

23

For validation purposes, we ran the simulator with a series of DSC’s with

increasingly higher numbers of nodes. Objects are uniformly distributed across all

storage nodes and no redundant copies are kept. Figure IV-1 illustrates the storage

matrix corresponding to this object arrangement. The theoretical and experimental

results are depicted in Figure IV-2. The experimental line shows some variation around

each point as illustrated by the box plots. However, both the theoretical and simulated

results show remarkable similarity. Figure IV-2 is assembled with the data in Table IV-1

and the data in Table IV-2. Table IV-2 also shows that the deviation values correspond

to the mathematical formulations used, in particular the curves does in fact trail a Poisson

distribution. This result evidenced that our simulator was working as expected.

Figure IV-2. Validation Curve.

24

Another interesting observation that can be drawn from this result is that

availability decreases by an order of magnitude even before the number of nodes reaches

ten. This result suggests that the problem of dynamically sustaining availability is of

importance even in rather small DSC’s. The uniformly distributed arrangement achieves

minimal availability since any node failure would make the system as a whole fail.

However, uniform distribution achieves high storage utilization because all storage nodes

are used to store objects.

Table IV-1. Calibration and System Confidence results used on Figure IV-2.

#objects #discs Average
MTBF

Expected
MTBF

%Error
MTBF

System
Confidence

100 1 194072 200000 2.964 0.999995
100 2 96688 100000 3.312 0.999990
100 3 60461 66666 9.307593 0.999985
100 4 49786 50000 0.428 0.999980
100 5 44196 39999 10.49276 0.999975
100 6 27837 33333 16.48816 0.999970
100 7 26832 28571 6.086591 0.999965
100 8 24680 24999 1.276051 0.999960
100 9 21764 22222 2.061021 0.999955
100 10 21178 19999 5.895295 0.999950
100 20 12205 9999 22.06221 0.999900
100 30 6271 6666 5.925593 0.999850
100 40 4900 4999 1.980396 0.999800
100 50 3426 3999 14.32858 0.999750
100 60 2808 3333 15.75158 0.999700
100 70 2298 2857 19.56598 0.999650
100 80 2485 2499 0.560224 0.999600
100 90 2174 2222 2.160216 0.999550
100 100 2001 1999 0.10005 0.999500

25

Table IV-2. Deviation results used on Figure IV-2.

#objects #discs Experimental
Deviation

Expected
Deviation

%Error
Deviation

100 1 194330 194072 0.13294
100 2 95502 96688 1.226626
100 3 59337 60461 1.85905
100 4 46296 49786 7.010003
100 5 44460 44196 0.597339
100 6 27775 27837 0.222725
100 7 25574 26832 4.688432
100 8 22087 24680 10.50648
100 9 21757 21764 0.032163
100 10 20301 21178 4.14109
100 20 11556 12205 5.317493
100 30 5817 6271 7.239675
100 40 4699 4900 4.102041
100 50 3464 3426 1.109165
100 60 2684 2808 4.415954
100 70 2161 2298 5.961706
100 80 2050 2485 17.50503
100 90 2042 2174 6.071757
100 100 2040 2001 1.949025

Figure IV-3. Centric mechanism. No distribution.
No matter how many nodes are added all objects are kept in the same node.

A second approach yields opposite results to uniform distribution. In this centric

scheme, all objects are stored in a single node independently of how many nodes are

available. Figure IV-3 illustrates the resulting storage matrix. Although this arrangement

26

is of little or no practical use, it does provide us with an upper bound of the availability

that a system can achieve without replication. In this scenario, the system fails if one

specific node of the system fails; the one that holds all the objects. Thus, the availability

of the system is equal to the availability of a single node.

Figure IV-4. Availability and Tagging relationship.
The dotted curves are not meant to be understood as lines.

The uniform and centric approaches are opposite ends of the continuum of

possibilities depicted in Figure IV-4. At one end of the spectrum (left) are those

arrangements that maximize availability at the cost of space utilization. At the other end

are those arrangements that maximize utilization at the expense of availability. Both

objective functions are thus inherently opposed. Our goal is set at finding the point or

points towards the center of the spectrum that sustains availability at some desired level,

while simultaneously achieving maximal utilization across topological changes.

27

Figure IV-5 compares the experimental results obtained for the uniform and

centric approaches. The centric curve shows quite some variation, but on average stays at

the level of availability of a single node, which in this experiment was considered 1190

weeks or 200,000 hrs. [12]. We need to point out that due to those variations we decided

to use the average value instead of the standard deviation value as the convergence factor

in all our experiments.

Figure IV-5. Comparison curves for Extreme algorithms

The next simulation compares the availability achieved by uniformly distributed

scenarios with fixed replication levels. Replication is calculated as R = C/(C + O)*100,

that is the percentage of objects that are redundant, where C is the number of object

copies and O is the number of original objects. For instance, a replication level of 50%

indicates that 50% of the objects are redundant copies. Figure IV-6 below shows the

availability results of a uniformly distributed DSC with varying static level of replication.

28

Figure IV-6. Uniform Distribution with various replication levels in logarithmic scale.

Figure IV-7. Uniform Distribution with various replication levels in normal scale.

29

These results indicate that even at fixed levels of replication, availability

decreases rapidly as the number of storage nodes increases. If we fix the level of

replication too high, we may achieve more availability than needed at the expense of a

decrease in space utilization and performance due to the unnecessary additional copies.

If we set it too low, we may not achieve the desired level of availability as the number of

nodes increases. This result clearly evidences the need for some form of elastic

replication.

In addition to the centric and uniform approaches, we tested some hybrid

mechanisms as well. We partitioned the set of objects into two different levels of

replication. More specifically one group of objects is replicated and another group is not.

The resulting storage matrix can be viewed as divided into two regions. The up region

holds the objects that are replicated while the down region holds the objects that have not

been replicated. During the object allocation of original objects and its replicas, if the

total replicas are less than an integral multiple of the total count of original objects, the

reminder replicas are allocated top to bottom. This forms two regions in the matrix. The

up region will have at least one additional redundant copy of each object than the down

region. Each region can have different allocation schemes, which may give different

tagging percentages. The upper region is said to have an Up tagging and the lower

region is said that has a Down tagging. For simplicity and without loss of generality in

both cases, objects are assigned to nodes in left-to-right fashion. Figure IV-8 (below)

illustrates two views of such a matrix. The left view (a) shows how replication is

calculated for the matrix while the right view (b) shows how tagging is calculated for the

30

up and down regions. The left matrix has six out of its ten objects replicated for a

resulting replication level of 6/16 (about 37.5%). The objects 0-5 are stored in nodes 0-3,

and objects 6-9 are stored in nodes 0-1. The matrix has an up region in which four out of

ten nodes hold original copies for a resulting tagging level of 40%. The down region

achieves a tagging level of 20%. In overall, the matrix has a 40% tagging since the up

region include the nodes in the down region.

Figure IV-8. (a) Left to Right - Tagging sample DSC matrix. Replication calculation example
(b) Left to Right - Tagging sample DSC matrix. Tagging calculation example.

Figure IV-9. Balance - Tagging sample DSC matrix. Tagging calculation example.

Figure IV-9 shows an alternative arrangement in which the set of objects with

replicas and the set of objects without replicas are stored in disjoint sets of storage nodes.

Objects 0-5 are stored in nodes 0-3, and object 6-9 are stored in nodes 8-9, or in a

31

balanced arrangement. The replication factor and the tagging level of each region is the

same as in Figure IV-8, but this balanced arrangement achieves an overall tagging of

60%, since the up and down regions use non-overlapping sets of nodes, and thus achieves

higher utilization. In cases where the number of nodes is small or the number of objects

is large, the balanced arrangement may yield sets of nodes used by the up and down

regions that have some overlap. Although this object allocation scheme is not in itself an

algorithm, it is not hard to visualize that a family of algorithms can be devised that

simply maintain this particular object arrangement as an invariant. For this reason we use

the terms elastically replicated scheme and algorithm interchangeably during the

remainder of the dissertation.

Figure IV-10. Hybrid algorithm setting variable node utilization or tagging
in the Up region and fixed in the lower or down region.

32

Figure IV-10 (above) shows the availability of the hybrid algorithm with 33%

replication with 5% tagging in the down region, but varying the Up tagging. (We used

tagging factors from 5% to 50%) The factors 10% to 50% produced exactly the same

MTTF response and the 5% factor responds with different values but with the same trend

to the point that is hard to distinguish between the curves. This means that varying the

tagging in the Up region does not appear to change the MTTF response as the number of

nodes increases.

The following statements are an informal proof of why the Up region does not

have an appreciable impact on the MTTF of the DSC:

Let Ap be the probability of survival of the DSC system.

Let A1 be the probability of survival of the group of nodes in the DSC with its

objects not replicated.

Let A2 be the probability of survival of the group of nodes in the DSC with its

objects replicated with one (1) redundant object each.

Let Np be the total number of nodes of the DSC system with objects.

Let N1 be the number of nodes of the group of nodes in the DSC with A1.

Let N2 be the number of nodes of the group of nodes in the DSC with A2.

Let Np = N1 + N2 then, Ap = A1 • A2.

Since A1 tends to zero (0) for N1 >> 1, Ap tends to zero (0) for N1 >> 1.

33

Then, the Up region does not have an appreciable impact because the Up region

contains the nodes with the objects that are replicated with one (1) redundant object each,

while the Down region contains the nodes with the objects without replication.

Then Ap = A1 • A2 where N1 is the Down region and N2 is the Up region, thus if N1 >> 1

the Up region does not have an appreciable impact in the MTTF.

The MTTF is zero for the curve with 33% replication, 5% Up tagging, and 5%

Down tagging for less than 40 nodes because the SM requires at least 40 nodes in order

to be able to allocate all the objects in the DSC. Since tagging is an integer term, the

nodes allowed to use by the tagging percent have to be an integer number of nodes.

The formula used to calculate the allowed nodes is the following:

Nodes_allowed_up = total_nodes * Up_tagging% (8a)

Nodes_allowed_down = total_nodes * Down_tagging% (8b)

Using the previous formulas, we obtain on integer calculations:

Nodes_allowed_up = 40 * 5/100 = 2; Nodes_allowed_down = 40 * 5/100 = 2

Nodes_allowed_up = 39 * 5/100 = 1; Nodes_allowed_down = 39 * 5/100 = 1

Nodes_allowed_up = 20 * 5/100 = 1; Nodes_allowed_down = 20 * 5/100 = 1

34

For 33% replication to allocate the original objects plus the objects copy, we need

at least two (2) nodes. According to the calculations above, we need at least 40 total

nodes in order to have two (2) allowed nodes. For the range of 1 to 19 nodes, the

simulator would not even run because for less than 20 total nodes, the nodes allowed will

be zero.

Figure IV-11. Availability of hybrid algorithm for variable down tagging and
fixed up tagging at 33% overall replication.

Figure IV-11 (above) shows an example curve that uses the hybrid algorithm with

33% replication and 50% tagging in the Up region, but varying the down tagging. (We

used down tagging factors from 50% to 5% at 5% increments) Each factor produced a

different MTTF response. This means that by reducing the tagging in the down region

the MTTF increases as the number of nodes increases. This result confirms prediction

35

that reducing the down tagging reduces the probability that a failed node holds objects

without replicas.

Figure IV-12. Left-to-right(lr) and Balance(b) mechanisms with 35% replication,
50% Up tagging, and 25% down tagging.

We compared both the left-to-right and the balanced arrangements by running

several simulations with the same tagging factors on the corresponding regions. The

results consistently demonstrated that the availability of both arrangements was very

similar, as can be seen from the example shown in Figure IV-12. The left-to-right

allocation differs with the balance allocation in the way the objects with 0% replication is

allocated. The objects with 50% replication are allocated equally in both schemes. Since

the region or group of nodes with 0% replication objects is the critical factor, as

explained earlier, the two schemes behave the same. Therefore, we decided to use the

balanced mechanism since it achieves higher overall tagging than the left-to-right

mechanism.

36

Figure IV-13. MTTF comparison between the uniform and centric algorithms and a hybrid
algorithm. Hybrid plot is for Up tagging of 50%, down tagging of 5% and 33% replication.

Figure IV-14. Tagging or overall utilization% comparison between the basic algorithms and the
hybrid algorithm. Hybrid plot is for Up tagging of 50%, down tagging of 5% and 33% replication.

37

Figure IV-13 and Figure IV-14 plot the availability and tagging achieved by the

centric, uniform and hybrid approaches. Overall utilization decreases with the centric

approach while the MTTF decreases in the uniform approach as the node count increases.

The hybrid algorithm falls in the middle of both extreme approaches as expected in terms

of both utilization and MTTF, and sustains the availability of the DSC longer than the

uniform full distribution algorithm. In particular, the hybrid curve shown, which is for a

curve that uses Up tagging of 50%, Down tagging of 5% and 33% replication, sustains

the availability up to 40 nodes to the same level of the Centric algorithm, and continues

holding up availability significantly higher than the Uniform approach all the way up to

100 nodes.

In Figure IV-15(a), we show a DSC example after the algorithm has been applied,

with one family of values and a set of parameters for tagging and replication. Note that

object 5 is tagged in node 0 and node 5, but it is only counted once. Also, note that node

8 is tagged by objects 4, 8 and 9, but it is only counted once. Then in this case, all nodes

are tagged at least once, giving 100% general tagging. The space that appears

unoccupied is not wasted. As shown in Figure IV-15(b), this space can be used by other

groups of objects (denoted by letters A-D) that use a complementary form of the

algorithm.

38

Figure IV-15. (a) d = 12%, u = 100%, pr = 48%, n = 9, o = 10; SM with 9 nodes and 10 objects.
d - Down region tagging%. u - Up region tagging%. pr - replication%.

n - node count. o - object count. General Tagging = 100%.
(b) The same SM as Figure IV-15(a) but with the effective space used.

The group objects is a collection of objects that share the same allocation scheme.

Each group object differs in the starting column in the SM. That way the effective space

is used while keeping the same probability of loosing any of the objects. The table shows

an example SM with groups labeled A to D. Each object A belongs to group object A,

objects B belong to group object B, and so on. To clarify, the fact that the table shows all

objects in its group object with the same “letter”, that does not mean that the objects are

replicas of each other, they are just labels to identify that an object belongs to a particular

group object, or the same, to a particular allocation scheme. Each group of objects has to

have equal ratio of replication. For instance, objects zero (0) to seven (7) have groups A

to D with one copy each. Remember the Up regions have 100% tagging. The lowest

region has only one family, because in this example the D-tagging allow only one node to

be used of the nine (9) nodes.

nodes/
objects 0 1 2 3 4 5 6 7 8 tags untag
0 1 0 0 0 1 0 0 0 0 2 7
1 0 1 0 0 0 1 0 0 0 2 7
2 0 0 1 0 0 0 1 0 0 2 7
3 0 0 0 1 0 0 0 1 0 2 7
4 0 0 0 0 1 0 0 0 1 2 7
5 1 0 0 0 0 1 0 0 0 2 7
6 0 1 0 0 0 0 1 0 0 2 7
7 0 0 1 0 0 0 0 1 0 2 7
8 0 0 0 0 0 0 0 0 1 1 8

9 0 0 0 0 0 0 0 0 1 1 8
(a)

nodes/
objects 0 1 2 3 4 5 6 7 8
0 A B C D A B C D 0
1 0 A B C D A B C D
2 D 0 A B C D A B C
3 C D 0 A B C D A B
4 B C D 0 A B C D A
5 A B C D 0 A B C D
6 D A B C D 0 A B C
7 C D A B C D 0 A B
8 0 0 0 0 0 0 0 0 A
9 0 0 0 0 0 0 0 0 A

(b)

39

For the example in Figure IV-15(b) we calculated the relative effective space

(RES) from the following equations: RES = (ES/(node_count * n_obj))*100, where ES

stands for Effective Space. ES = UES + DES, where UES stands for Up effective space

and DES stand for Down effective space. UES can be calculated from the example DSC

in Figure IV-15(b), as 8 objects * 8 columns. Again, DES can be calculated from the

example DSC as 2 objects * 1 column. Both, UES and DES, have a general equation that

we used to calculate the values for different DSCs.

B. Finding a Mathematical Relationship between Availability, Replication and

Tagging

An elastic replication algorithm could be developed based on all the previous

results once we obtain a mathematical relationship between availability, redundancy and

tagging. The algorithm would simply select the minimal replication level and maximum

tagging level that achieves the desired availability and will replicate and migrate the

necessary objects to bring the allocation scheme to within these parameters.

In order to uncover a relationship between availability, tagging and replication we

conducted various simulations varying the replication and tagging parameters, to obtain

families of curves of availability. From these curves, we planned to perform curve fitting

and empirical experimentation to obtain a generalized formula that relates replication,

tagging and availability. We found that the Up region tagging does not significantly

influence the availability of the DSC and decided to set the up tagging to 100%.

Figure IV-16 and Figure IV-17 show that the availability of a DSC with 1% replication

40

and another with 49% replication is not significantly different over the MTTF range of

50,000 hrs to 200,000 hrs. The dominant factor is the down tagging. Both curves differ

under 50,000 hrs where the curves of Figure IV-16 continue its availability decrease as

the node count increases. In contrast, the curves in Figure IV-17 sustain the availability

at a higher level.

Figure IV-16. DSC curve family for 1% replication.

41

42

To sustain the availability of the DSC over 50,000 hrs we need to set the

replication level to 49%. In terms of availability 200,000 hrs translates to 0.99999 (five

nines) available time. Since we are using the Poisson distribution the probability of

survival is given by P=λ∆t. We set ∆t=1 and λ=1/MTTF, so P=1/MTTF. Then the

number of 9’s is obtained by calculating the inverse of the MTTF value. Thus,

200,000 hrs and 100,000 hrs have the same number of 9’s, being 100,000 hrs the lower

bound to the corresponding range of number of 9’s.

To sustain the availability of the DSC at 0.99999 we could set the replication

from 1% to 49% and it would make no difference. Recall that A1 tends to zero (0) for

N1 >> 1, Ap tends to zero (0) for N1 >> 1. That is the case for 1% to 49% replication.

Recall that Ap = A1 • A2. In the case of 50% replication, N1 = 0, thus A1=1 giving

Ap = A2. Then, since A2 tends to the same order of magnitude of the probability of

survival of one node, there is a big difference between 49% and 50% replication.

Another effect of our algorithm is that the availability of the DSC takes a stepwise

form. Each step is repeated on each curve and they are a function of the tagging

percentage. Recall that the DSC is modeled with the SM where the objects are

represented by a single value. Each object is indivisible so the object exists or not. You

cannot have parts of an object, to recover a lost object a complete redundant copy of the

same object has to exist. This means that when you replicate and object, it has to be an

object of integral size. For the same reason, if you want to allocate an object it has to be

allocated in whole. At the instance of filling the SM with a particular replication percent,

the redundant copies have to be an integer number of objects. Recalling that replication

43

percent, R% is defined as R%=C/(C+O)*100, then solving for C gives

C = round ((O*R)/ (100-R)), using the round function to get integer objects. Thus in

order to have a change in availability a modulus factor of the number of nodes is required

to accommodate an integral count of replicated objects.

From these curves, we can try to obtain a relationship between replication,

tagging, and availability.

Figure IV-17. DSC curve family for 49% replication.

44

45

C. ERIS Parameter Estimation

Based on the curves in Figure IV-16 and Figure IV-17 we obtained the tagging

percent in the lower region needed to get a particular MTTF for a DSC of a given node

count. Note on Figure IV-16 that for each down region tagging percentage there is a step

curve as the node count increases, and each step has the same level of availability or

MTTF. Each level step fall a ∆Sn difference that is related mathematically with the

availability of the DSC, as the duration or length of the step is related to the

“Nodes_allowed” formulas (8a) and (8b). These steps can be obtained from the function

x = (MTTF/a)^(1/b), where x is the step number, a and b are constants (in particular

a=202075, and b = -1.017 for 200,000 hrs.), and MTTF is the desired availability

threshold (DSCMTTF). The constants are obtained from the curve fitting of the steps vs.

the corresponding MTTF, as shown on Figure IV-18.

Figure IV-18. Step vs. MTTF curve fitting, to obtain a and b constants.

46

Following is a word description for the ERIS algorithm; code included in

Figure IV-19 and Figure IV-20. The relationship between the down tagging and the step

number is given by the function step = floor (node_count/(100/d)), where d is the down

tagging percent. By evaluating for d, we obtain the function

d = ceiling ((x * 100)/node_count). Since the step value can be repeated for different d

and node_count values, a confirmation is needed. If x does not equal step then d has to

be recalculated for a higher step where x = (step - 2). If x is less than 1 then there is no

step higher defined for the curves on Figure IV-16 and Figure IV-17, or for 1% to 49%

replication; then we set d = 100 and the replication percent to 50%. If x equals step or x

is not less than 1, then the d value is found but the replication percent still has to be

calculated.

To calculate the replication percent, pr, we need the definition

C = round ((n_obj * pr)/(100 - pr)), where n_obj is the count of original objects in the

DSC, and C is the count of copies or redundant objects in the DSC, based on the

replication percent or pr. Since objects cannot be fractioned, the calculation includes the

rounding function. With the value of C, we defined the mathematical concept of general

tagging without replication, tag. General tagging without replication means the percent

of total nodes that have unique objects. Becomes

tag = (C + (node_count * d) MOD (n_obj - C))/node_count * 100, where MOD is the

modulus operation. Then to calculate the pr value, we set a desired tagging to a value to

be compared to the calculation of tag. Later is done a loop of pr from zero (0) to

fortynine (49), to stop on the first value of pr that gives a tag equal to the desire tagging,

47

remember that tag is related to pr through C. If the loop goes beyond 49, then pr is set to

50%, and d is reset to 100.

The previous algorithm obtains the parameters needed to sustain the desired

DSCMTTF threshold with a desired tagging, for 100 objects as the count of nodes

increases. By integrating the algorithm into the simulator, replacing the static

configuration parameters with the calculated parameters, the DSC is able to sustain the

availability over the desired threshold.

The parameter estimation can be easily applied to other storage node MTTF

values by applying a correction factor into the calculation of d, but not in the calculation

of pr since this parameter is independent of the MTTF in the case where the threshold

value in 9’s is equal to the availability of one node . The correction factor is given by the

relation f = MTTF/MTTFb, where MTTFb is the base case value used to obtain the

experimental values of the parameters (200,000 hrs). MTTF is the new availability of

each node, and f is the correction factor. We then obtain x = (MTTF/(a*f))^(1/b), where

again, x is the step order, a and b are constants (in particular a = 202075, and b = -1.017

for 200,000 hrs), f is the correction factor, and MTTF is replaced by the threshold value.

48

Figure IV-19. ERIS algorithm part I. Down tagging calculation.

//clrate - MTTF, n_disc - #nodes, goalnines - threshold in # of 9s,
//p_d - tagging down section
//Return -1 on error, 0 for out of range, 1 for normal calculation
int get_p_d(long clrate, int n_disc, int goalnines, int& p_d) {

 float base = 200000.0; //MTTF base
 long thres0;
 long thres1;

 long a = 202075; //step function values
 float b = -1.017;

 float factor;

 //x = (MTTF/(a*f))^1/b where f = MTTF/MTTF_b
 int x;
 //step = floor(n_disc/(100/d))
 int step;
 //d = ceiling((x * 100) / n_disc)
 int d;

 int d_if = 0;

 if (goalnines == 0) goalnines = nines(clrate);
 thres0 = threshold(goalnines,0);

 // factor = float(thres0)/base;
 factor = float(clrate)/base;
 x = round(pow((float(thres0)/(float(a)*factor)),(1.0/b)));
 d = (int)ceil(((float)(x * 100))/(float)n_disc);
 if ((d > 100) || (d == 0)) return -1; //Is not defined
 step = (int)floor(((float)n_disc)/(100.0/(float)d));
 if (x != step) d_if = -1;
 else p_d = d;

 if (d_if == -1) {
 thres1 = long(factor * a * pow(float(step-2),b));
 if (goalnines != nines(thres1)) return 0;
 //There is no prior step
 else {
 x = step -2;
 d = (int)ceil(((float)(x * 100))/(float)n_disc);
 p_d = d;
 }
 }

 return 1; //Calculation completed
}

49

Figure IV-20. ERIS algorithm part II. Replication, threshold, and number of nines calculation.

void get_p_r(int n_disc, int n_obj, int p_d, int tagging, int&
p_r) {

 int C;
 int tag;
 int pr;
 bool found = false;
 pr = 0;
 do {
 C = round((n_obj * pr)/(100 - pr));
 tag = (C + (n_disc * p_d)%(n_obj - C))/n_disc * 100;
 if (tag >= tagging) found = true;
 else pr++;
 } while ((!found) && (pr <= 49));

 p_r = pr;
}

int nines(int mttf) {

double p;
double lambda;
int temp = 0;
int mul;

lambda = 1.0/double(mttf);
p = 1.0/double(exp(lambda));
mul = int(p*10);
p = p*10 - mul;

while (mul == 9) {
 temp++;
 mul = int(p*10);
 p = p*10 - mul;
}

return temp;
}

//level = 1 if threshold ~ n - 1,
//level = 0 if threshold ~ one node MTTF
long threshold(int nine, int level) {

int tn = nine - level;
long temp;
double p;

p = 1 - 1.0/double(pow(10,tn));
temp = (int long)(-1/log(p));

return temp;

}

50

Figure IV-21. Availability result using the very first ERIS Prototype.
The continuous line is the reliability for 5 and 4 nines.

Figure IV-21 illustrates how the availability is successfully sustained above a

threshold as the node count increases. In the curve, around 78 nodes, appears a point

value that goes below the threshold. This point is not significant due that it is a random

phenomenon. We know that because the point changes its location when the simulation

is run with a different seed to the random number generator used. Table IV-3 show the

actual parameters of Down Tagging, Up Tagging, Replication, according to the count of

nodes that produced the curve.

51

Table IV-3. ERIS calculated parameters.

Down Tagging% Up Tagging% Replication% #nodes #objects
100 100 1 2 100

67 100 1 3 100
50 100 2 4 100
40 100 2 5 100
34 100 1 6 100
29 100 2 7 100
25 100 3 8 100
23 100 1 9 100
20 100 4 10 100
19 100 1 11 100
17 100 3 12 100
16 100 2 13 100
15 100 2 14 100
14 100 2 15 100
13 100 3 16 100
12 100 5 17 100
12 100 1 18 100
11 100 4 19 100
10 100 7 20 100
10 100 4 21 100
10 100 1 22 100

9 100 6 23 100
9 100 3 24 100
8 100 9 25 100
8 100 6 26 100
8 100 4 27 100
8 100 2 28 100
7 100 9 29 100
7 100 7 30 100
7 100 5 31 100
7 100 3 32 100
7 100 1 33 100
6 100 10 34 100
6 100 9 35 100
6 100 7 36 100
6 100 5 37 100
6 100 4 38 100
6 100 2 39 100
5 100 13 40 100
5 100 11 41 100
5 100 10 42 100
5 100 10 43 100
5 100 8 44 100

52

Down Tagging% Up Tagging% Replication% #nodes #objects
5 100 7 45 100
5 100 6 46 100
5 100 4 47 100
5 100 3 48 100
5 100 2 49 100
4 100 15 50 100
4 100 14 51 100
4 100 14 52 100
4 100 13 53 100
4 100 12 54 100
4 100 11 55 100
4 100 10 56 100
4 100 10 57 100
4 100 9 58 100
4 100 8 59 100
4 100 7 60 100
4 100 6 61 100
4 100 5 62 100
4 100 4 63 100
4 100 3 64 100
4 100 2 65 100
4 100 1 66 100
3 100 19 67 100
3 100 19 68 100
3 100 18 69 100
3 100 17 70 100
3 100 17 71 100
3 100 16 72 100
3 100 16 73 100
3 100 16 74 100
3 100 15 75 100
3 100 14 76 100
3 100 14 77 100
3 100 14 78 100
3 100 13 79 100
3 100 13 80 100
3 100 12 81 100
3 100 11 82 100
3 100 11 83 100
3 100 10 84 100
3 100 10 85 100
3 100 10 86 100
3 100 9 87 100
3 100 8 88 100

53

Down Tagging% Up Tagging% Replication% #nodes #objects
3 100 8 89 100
3 100 7 90 100
3 100 6 91 100
3 100 6 92 100
3 100 5 93 100
3 100 4 94 100
3 100 4 95 100
3 100 3 96 100
3 100 2 97 100
3 100 21 98 100
3 100 50 99 100
2 100 50 100 100

Figure IV-22 shows the trends for the parameters calculated by the ERIS

algorithm as well as the relative effective space (RES) offered by the algorithm. Since

we are minimizing the replication, the RES resulted in a relatively small percentage of

total raw space. However, this is the RES that can be achieved by keeping at most two

copies of each object. Higher replication levels can be used to achieve even higher RES.

It is important to notice that the down tagging maximum decreases exponentially

as the node count increases in order to sustain the availability. In fact, the down tagging

has a much more significant effect than the replication level in the DSC’s availability. If

your application requires high availability, the down tagging cannot exceed a relatively

small percentage. For instance, if you have a DSC with 20 nodes, it cannot exceed 10%

down tagging or 2 nodes.

54

Figure IV-22. Comparison of trends for parameters calculated by ERIS.

55

Chapter V

Conclusions and Future Work

A. Conclusions

1. We have introduced a simple model of an abstract distributed storage system

and used this model to uncover the mathematical relationship between storage

system availability, replication and tagging under our simplified model.

2. Based on the results obtained during the validation phase of the research,

illustrated with Figure IV-2 and shown by Table IV-2, that the simulation

program yields valid results.

3. One important empirical observation is the fact that the availability of a DSC

decreases rapidly as the number of nodes increases.

4. Another important finding is that the availability of a DSC system decreases as

the number of nodes increases even using 50% of replication to within an order

of magnitude of the availability of one node.

5. Our results evidence that some sort of elastic replication is needed to

implement DSC’s capable of sustaining a desired level of availability as the

number of nodes in the DSC changes. A fixed level of replication appears no

to suffice.

56

6. In our hybrid approach, the experiments demonstrate that the group of nodes

with fewer replicas is the predominant point of failure of the DSC system (The

chain breaks on the weakest link). In some terms, the upper and down regions

could represent two different priorities. The upper region represents the high

priority objects and the down region represents the low priority objects. You

could have more than two priorities in the DSC by creating for example a

region with three copies instead of two copies, and the traditional two regions.

However, the DSC total availability will still be limited by the lower priority

objects due that the DSC responds to the law of the chain breaks on the

weakest link, and eventually those objects will be required.

7. The availability of a DSC system decreases as the down tagging increases, and

increases as the down tagging decreases. Even thought it seems a

contradiction because by increasing the tagging the objects are parallelized, the

availability decreases because the system becomes vulnerable, since the more

places the objects are distributed to the more opportunity there is for losing an

object.

8. We have also proposed an algorithm for dynamically estimating the parameters

of a DSC, necessary to re-configure the object allocation scheme that

maintains the availability threshold with minimal storage overhead.

57

Summarizing, the assumptions made during this research are:

1. All objects are important to the survival of the DSC.

2. All nodes have the same failure rate or MTTF value.

3. On every loop of the simulation, we start with a fresh set of nodes.

4. All nodes are connected peer to peer, and in the event that any node gets

disconnected, it is considered a decrease of one node in the DSC with no

loss of any object.

If we eliminate the assumptions, conclusions 1 to 7 still hold. The conclusion 8

will hold if we eliminate assumption 2, with little modification on the algorithm.

B. Future Work

We have found an ERIS algorithm that can sustain the availability of a DSC while

the node count increases, but since the replication is minimized, the relative effective

space (RES) is reduced by the algorithm found. In order to increase the RES we need to

find a better way to set the replication value to a higher value without affecting

performance reductions caused by write events. Besides finding a better setting for the

replication value to increase the relative effective space, there is a need to focus on the

relaxation of some of the simplifying assumptions made so far. For example, there is a

need to take in consideration the frequency of access for the objects. Normally in a

database only the 20% of the objects is accessed the 80% of the time. The assumption

that all objects have the same priority for the survival of the DSC and that each node has

58

the same individual MTTF value should be relaxed. In addition, the ERIS algorithm

should have factor corrections for variable object counts, and simultaneously should be

allowed to let the node count to go over the object count, which also might require a

correction factor. Another interesting research avenue consists of analyzing the

availability response of various SAN topologies.

We hope that all the lessons that we have learned during this work will be put to

practice by designing a real storage system based on the principles of elastic replication.

59

Bibliography

[1] Alonso, R. et al. Data Caching Issues in an information retrieval system. ACM
Transactions on Database Systems, 15(3), 359-384. Sep 1990

[2] Alsberg, P. A. and Day, J. D. A principle of resilient sharing of distributed
resources. In Proceedings of the 2nd International Conference on Software
Engineering, page-, 627-644, October 1976.

[3] Anderson, T. E., Culler, D. E. and Patterson, D. A. The case for now (networks of
workstations). IEEE Micro Magazine, February 1995.

[4] Anderson, T. E., Dahlin, M. D. et al. Serverless network file systems. In
Proceedings of the 15th ACM Symposium on Operating Systems Principles,
pages 15 28, December 1993.

[5] Babaogölu, Ö. On the Reliability of Consensus-Based Fault-Tolerant Distributed
Computing Systems. ACM Transactions on Computer Systems. 5(3): 394-416.
Nov 1987

[6] Barak, A., Guday, S. and Wheeler, R. C... The MOSIX Distributed Operating
System. Lecture Notes in Computer Science. Springer-Verlag, 1993.

[7] Barak, A. and La'adan, O. The mosix multicompuer operating system for high
performance cluster computing. Journal of Future Generation Computer Systems.
13(45):361-372. March 1998.

[8] Bartlett, J. A non-stop kernel. In Proceedings of the 8th ACM Symposium on
Operating Systems Principles, pages 22-29, December 1981.

[9] Bernstein, P. A., Hadzilacos, V. and Goodman, N... Concurrency Control and
Recovery in. Database Systems. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1987.

[10] Birman, K. P. and Rennesse, R. V. Reliable Distributed Computing with the Isis
Toolkit, chapter 5, pages 79-100. IEEE Computer Society Press, Los Alamitos,
California, 1993.

[11] Chen, P.M. et al. RAID: High-Performance, Reliable Secondary Storage. ACM
Computing Surveys, 26(2), 145-185. June 1994.

[12] Cheetah 73FC Product Manual,Rev.C
http://www.seagate.com/support/disc/manuals/fc/29482c.pdf

60

[13] Cole,G. Estimating Drive Reliability in DesktopComputers and Consumer
Electronics Systems. 2000.
http://www.seagate.com/docs/pdf/newsinfo/disc/drive_reliability.pdf

[14] Cooper, B.F. and Garcia-Molina, H. Peer-to-peer Resource Trading in a Reliable
Distributed System. Electronic Proceedings for the 1st International Workshop on
Peer-to-Peer Systems, Cambridge, USA. 2002.

[15] Douglis, F. and Ousterhout, J. K. Transparent process migration: Design
alternatives and the sprite implementation. Software Practice and Experience,
21(8):757-85, August 1991.

[16] Drake, Alvin W. Fundamentals of Applied Probability Theory (New York:
McGraw-Hill Inc., 1988).

[17] Eicken, T.V., Culler, D.E., Goldstein, S.C. and Schauser, K.E. Active messages:
A mechanism for integrated communication and computation. In Proceedings of
the 19th ACM International Symposium on Computer Architecture, Gold Coast,
Australia, May 1992.

[18] El Abbadi, A. and Toueg, S. Availability in a portioned replicated database. In
Proceedings of the fifth ACM Symposium on Principles of Database Systems,
pages 240-251. 1986.

[19] Geist, A., Beguelin, A. Dongarra, J. et al. PVM: Parallel Virtual Machine - A
User's Guide and Tutorial for Networked Parallel Computing. MIT Press,
Cambridge, Massachusetts, 1998.

[20] Ghormlev, D.P., Petrou, D., Rodrigues, S. H., Vahdat, A. M. and Anderson, T.
E.. Glunix: a global layer unix for a network of workstations. Software: Practice
and Experience, 28(9):929961, July 1998.

[21] Gifford, D.K. Weighted voting for replicated data. In Proc. of the 7th Symposium
in Operating Systems Principles, pages 150 162. ACM, December 1979.

[22] Gifford, D.K. Weighted Voting for Replicated Data. Proceedings of the Seventh
Symposium on Operating Systems Principles. Pacific Grove, USA. 150-162. Dec
1997

[23] Hartman, J. H. and Ousterhout, J.K. The zebra striped network file system. ACM
Transactions on Computer Systems, August 1995.

[24] Liskov, B., Ghemawat, S., Gruber, R. et al. Replication in the harp file system. In
Proc. of the 10th Symp. on Operating System Principles, 1988.

61

[25] Litzkow M. and Solomon, M. Supporting checkpointing and process migration
outside the unix kernel. In USENIX Association 1992 Winter Conference
Proceedings, pages 283-290, December 1992.

[26] Mihram, G. Arthur. Simulation: Statistical Foundations and Methodology (New
York: Academic Press, Inc., 1972).

[27] Mullender, S. P., Rossum, G.V, Tanenbaum, A.S., Renesse, R.V. and Staveren, H
V. Amoeba: A distributed operating system for the 1990s. IEEE Computer
Magazine, 23(5), 1990.

[28] Olston, C. and Widom, J. Best-effort Cache Synchronization with Source
Cooperation. Proceedings of the ACM SIGMOD international conference on
Management of data, Madison, USA. 73-84. 2002.

[29] Ousterhout, J.K., Cherenson, A.R., et al. Welch. The sprite network operating
system. IEEE Computer Magazine, 21(2), 1988.

[30] Patterson, D.A., Gibson, G. and Katz, R.H. A Case for Redundant Arrays of
Inexpensive Disks (RAID). Proceedings of the ACM SIGMOD International
Conference on Management of Data, Chicago, USA. 109-116. June 1988.

[31] Pfister, G.F. In Search of Clusters: The Ongoing Battle in Lowly Parallel
Computing. Prentice-Hall PTR. New Jersey, 1998.

[32] Press, William H., Flannery, Brian P., Teukolsky, Saul A., Vetterling, William T.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University
Press; 2nd edition. October 30, 1992.

[33] Rosenblurn, M. and Ousterhout, J.K. The design and implementation of a log-
structured file system. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles, October 1991.

[34] Siegel, A., Birman, K. and Marzullo, K. Deceit: A Flexible distributed file
system. Technical Report TR89-1042, Cornell University, Department of
Computer Science, 1989.

[35] Skeen, D. El Abbadi, A., and Cristian, F. An efficient fault-tolerant protocol for
replicated data management. In Proceedings of the Fourth ACM Symposium, on
Principles of Database Systems, pages 215-229, 1985.

[36] Stonebraker, M. et al. Mariposa: A Wide-Area Distributed Database System.
VLDB Journal, 5(1), 48-63. Jan 1996

62

[37] Vogels, W., Dumitriu, D., Birman, K. et al. The design and architecture of the
microsoft cluster service: A practical approach to high-availability and scalability.
In Proceedings of the 28th symposium on Fault-tolerant Computing, Munich,
Germany, June 1998.

63

Appendix

Email communication with “Numerical Receipts in C” people to obtain their

consent to use their code for this thesis research.

Jose,

Thank you for your explanation. If I understand properly, you do not
intend to distribute your software to other people, and you will not be
printing the
Numerical Recipes routines within the thesis. In this case, it will
not be necessary to have any permission from us for redistribution.
Although it is normally

necessary to purchase either the software or the book in order to copy
any of the Recipes to your computer, you may take this email as our
express permission for the use of the Numerical Recipes routine "ran2"
and its supporting function in your thesis work without any license
fee.

We wish you luck with your research.

Regards,

William T. Vetterling
Numerical Recipes Software
vetterw@nr.com

==

From: "Jose E. Torres" <jetorres@ece.uprm.edu>
To: Internet Mail::[vetterw@nr.com]; Internet Mail::["William T.
Vetterling" <vetterw@nr.com>]

Subject: Re: Licensing question
Date: 4/10/03 4:57 PM

William:

Hello!

What I do with the "ran2" routine (along with the supporting functions)
is to use it instead of the ANSI C "ran" function. The research is
actually a Thesis. I need a large period random function because the
simulator runs over extensive calls to a random function. The numbers
produced by the function are used like failure/success values. With
these numbers the simulator intends to model a RAID failure rate.

64

The code for the random function (and its supporting funtions) does not
need to be printed in the Thesis document, because the purpose of the
research is to create an algorithm to sustain the availability of a
distributed storage system over topological changes, using the outcomes
obtained during the simulator process.

The simulator code will be printed, and the intended algorithm. I can
write a comment line with a reference to all your routine's book and
page, to notify/direct the commitie/reader where it came the function
in case they want to see how the random numbers were generated. The
goal/final algorithm does not depend on the "ran2" function, although
will be tested against, to verify if it works.

I want to inform again. I do not own the book, I used it from the
University library.

Cordially;

Jose Torres

On Thu, 10 Apr 2003, William T. Vetterling wrote:

>
> Jose,
>
> Thanks for your email.
>
> Technically, the answer is yes. When you own a copy of the Numerical
> Recipes book, you have an "immediate license" (defined in the front
of
> the
> book) that allows you to type the programs into a single computer and
> use them. However, this license does not allow you to distribute the
> programs to anyone else. Therefore you would need a different ftype
> of license in
> order to get permission for reproducing the software in your report,
or
> for
> distributing the software as source code or executable code to other
people.
>
> However, we often make exceptions to these rules for cases in which
> the use of the software is academic, and the distribution is very
> limited. For example, we routinely allow the use of up to 5 of the
> Numerical
Recipes
> in printed form in technical reports such as your paper. Also, we
can
> give explicit permissions for the distribution of the code with
> limitations on the type of distribution and number of copies.
>
> Perhaps if you described to us exactly how you wish to use the

65

> software, we can suggest a way that would not involve any license
fee.
>
> Regards,
>
> William T. Vetterling
> Numerical Recipes Software
> vetterw@nr.com
>
> ==
>
> From: "Jose E. Torres" <jetorres@ece.uprm.edu>
> To: Internet Mail::[vetterw@nr.com]; Internet Mail::[nr@nr.com]
>
> Subject: Licensing question
> Date: 4/9/03 3:05 PM
>
> Hello!
>
> I am a computer science student doing research. In my research
> project I need a random generator to support a simulator program. I
> found on
my
> university library a copy of your book and write down the random
> routines on chapter 7 to use them on my simulator.
>
> I have been using ran2() for some time, and now I found this site
> saying that there is a license cost to use a machine readable
> software.
>
> I know that I have to write/notify on my report the use of your
> routines, but do I have to buy a license too?
>
> Cordially;
>
>
> Jose Torres
>
>
> PS: Please answer promptly.
>

