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ABSTRACT

In the field of educational engineering concepts have been placed into ontological

categories that reflect the nature of those concepts. Furthermore learner miscon-

ceptions occur when students assign a concept to an incorrect ontological category

within their individual mental models. Predicate tests used to estimate the catego-

rization of student conceptions have proven to be successful for conceptual change

assessment but they have not been automated with the use of modern computing

systems. The main goal of this research is to show how predicate test automation is

possible by applying knowledge discovery in databases theory to a previously anno-

tated dataset to achieve. The secondary goal is to find which data mining techniques

can be used to extract a feature set that yields high quality text classification results.

This thesis documents how the predicate test can be automated with knowledge dis-

covery in databases techniques using data from engineering students enrolled in a

U.S. midwestern public institution.
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RESUMEN

En el campo de la ingenieŕıa de la educación los conceptos transmitidos o

adquiridos durante el aprendizaje se han colocado en ciertas categoŕıas ontológicas

que van de acuerdo con la naturaleza de cada concepto. Además la concepción

errónea de conceptos se refiere al fenómeno donde se adquieren conceptos nuevos

y la mente los asigna a una categoŕıa que no va en acorde con la categorización

correcta establecida por los expertos de la ingenieŕıa de la educación. Para el avalúo

de concepciones erróneas se han utilizan las pruebas de predicado para estimar la

categorización de las concepciones de los estudiantes pero estas técnicas no han sido

implementadas utilizando sistemas de computación modernos. El propósito princi-

pal de esta investigación es mostrar que las pruebas de predicado se pueden autom-

atizar aplicando la teoŕıa de descubrimiento de conocimiento en bases de datos a un

conjunto de datos que contengan anotaciones previas para lograr aprendizaje super-

visado. La meta secundaria será determinar las técnicas de mineŕıa de datos que

podŕıan extraer un conjunto de caracteŕısticas que produzcan resultados de clasifi-

cación de alta calidad. Esta tesis documenta cómo se puede automatizar el cómputo

de las pruebas de predicado utilizando técnicas de descubrimiento de conocimiento

en bases de datos con datos de estudiantes de ingenieŕıa matriculados en una inti-

tución pública del medio oeste de E.E.U.U.
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CHAPTER 1

INTRODUCTION

The U.S. Department of Education has long established that students must

meet the requirements associated with their current K-12 educational standards in

order to be competent in their subsequent grades. According to Pellegrino, Chu-

dowski, and Glaser [9] students tend to develop knowledge gaps due to misconcep-

tions. These misconceptions are the result of incorrect delivery of instruction and

assessment techniques [10]. When instruction is not accompanied by cognitive as-

sessment, these misconceptions are hard to detect. Thus, they must be addressed

with real-time assessment in order to avoid learning difficulties in new topics [9].

To optimize transfer of knowledge and to improve academic achievement educa-

tional systems must ensure that misconceptions are corrected in a way that students

can correctly apply newly acquired knowledge to new contexts [11]. As soon as mis-

conceptions about any given domain are identified and conceptual change occurs

students are able to improve their perception and critical thinking about a con-

cept [11][9]. Helping students apply newly acquired knowledge results in an efficient

transfer of knowledge form teachers to students [11].

According to Chi learning can occur under the following circumstances regard-

ing the topic under study: (1) the learner has no prior knowledge, (2) the learner has

some correct prior knowledge, and (3) the learner has some incorrect prior knowl-

edge [12][13]. When learners have this incorrect prior knowledge they encounter

difficulty understanding science concepts because they tend to incorrectly catego-

rize their ideas [1][6][14][15] (e.g. considering electric current to be a substance that

1
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can be contained in a battery when in fact it is an equilibrium seeking process). Thus

the third circumstance for learning must include conceptual change for knowledge

acquisition to occur.

Chi et. al. [1][6][14][15][12][16] have made substantial contributions to modern

conceptual change theory. Over the past two decades the focus of their research

has closely aligned with a process called the predicate test. Predicate tests con-

sist of extracting student predication used to describe a concept and comparing it

to correct predication used by experts. By examining the correctness of student

verbal predication found in their description of answers to multiple-choice ques-

tion answers teachers can identify each student’s mental categorization of concepts

[1][6][14][15][12][16].

The predicate test is a state-of-the-art approach for misconception assessment.

It has the potential to become a powerful tool for all types of classrooms if it be-

comes readily accessible to teachers. Its caveat is revealed once you consider the

fact that the predicate test heavily depends on educational engineering expertise to

discern which conceptual category students are assigning to acquired knowledge to

the correct category.

During this research it was possible to automate the predicate test process using

knowledge discovery in databases (KDD) theory by performing text mining using

text classification. Our proposed approach is named the Predicate Test Automation

Pipeline (PTAP) and is based on determining if a student’s mental categorization

of concepts can be predicted using text classification. The PTAP was designed to

determine if a student’s mental model about a certain concept is aligned with the

emergent process category or the sequential process category.

The KDD process was applied to an expert annotated dataset gathered from a

midwestern U.S. public institution. This dataset consists of student’s labeled textual

descriptions of answers to multiple-choice science questions about dynamics and heat
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transfer. The data was collected as part of a research project where the predicate

test is manually performed by educational engineering experts. Among the results

of that research is an expert annotated dataset where the verbs or phrases used by

students in their explanations are identified as ontological attributes. Furthermore

those ontological attributes were categorized as belonging to the emergent process

category, direct sequential process category, and a mixed category that represents

a student categorization of a concept into both the emergent and the sequential

categories simultaneously (a data point having multiple labels). [10]

The raw dataset consists of 680 textual descriptions of student answers to

multiple-choice questions about dynamics and heat transfer. Not all of the doc-

uments found in this raw data were labeled by experts. This dataset was manually

preprocessed by constructing a file in Attribute-Relation File Format (ARFF), which

is the document format used by WEKA [17]. The result was a dataset consists of 41

instances of the emergent class, 99 instances of the sequential class, and 50 instances

of the mixed class.

Textual explanations of a concept and their corresponding expert labels were

the only features extracted from the raw dataset. We chose to use the sequential

and emergent process categories as our classification labels because, as previously

stated, students also tend to confuse the inherent nature of sequential and emergent

processes [12].The feature space was created using feature extraction and selection

algorithms provided by WEKA [17].

We used this dataset to perform a multi-class, single label classification with

Support Vector Machine (SVM) as our classification algorithm. Four classification

models were built based on varying feature selection techniques and evaluated them

using 10-fold cross-validation. The selection of our best performing classification

model was based on the resulting measures of precision, recall, accuracy, f-measure,

and kappa coefficient.
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With the implementation of the PTAP we have shown that the predicate test

proposed by Chi can be automated using KDD theory.

1.1 Motivation

Chi’s predicate test is an effective yet time consuming task, which consists of ex-

pert categorization of student textual descriptions of concepts, is a time consuming,

expert dependent process that is not yet an acceptable real-time learner assessment

solution needed in modern classrooms as described by [9].

According to Chi misconception detection via predicate tests and their inter-

pretation are key players in learner assessment [12]. As previously mentioned a

state-of-the-art technique performed by educational engineering experts is known as

the predicate test is an affective yet time consuming task that requires a trained ex-

pert. In order to visualize mental models that help pinpoint student misconceptions

experts have to manually inspect and annotate student predication.

The predicate test automation process can provide precise assessment and sig-

nificantly reduce the time it takes to deliver individualized assessment feedback to

students within a learning environment, wether it be in an educational research set-

ting or an actual classroom. The presence of real time assessment within a learning

environment for each individual student can be essential in the detection of the

knowledge gaps present in his/her understanding of concepts [9]. Furthermore mod-

ern educational engineering theory states that real-time assessment performed on

each individual student can greatly improve transfer of knowledge from teacher to

student [9].

In short the PTAP solves the issue of waiting for experts to manually inspect

and annotate student predication in order to obtain real-time assessment, which

helps detect knowledge gaps in learner mental models and positively impacts the

transfer of knowledge from teacher to students.
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1.2 Problem Statement

Predicate tests require the participation of educational engineering experts to

isolate the student predication relevant to understanding a learner’s mental model

of a certain science concept under study. The main goal of this research was reduce

the time it takes for teachers to deliver real-time assessment through predicate tests

by building a classification model that could successfully learn to categorize student

textual descriptions of concepts into the emergent and sequential process ontological

categories. Developing this process, named the PTAP, was considered as a task of

KDD that makes use of text mining and text classification. The PTAP can serve

as an essential building block of a complex e-learning system with the capability

of providing individual, real-time assessment to students based on their correct or

incorrect mental categorization of concepts.

1.3 Scope

The research presented in this document describes the use of multi-class, single

label classification using text categorization of student predicate use. Due to the

nature of conceptual change assessment via predicate tests our text classification

task could have been aligned to multi-class, multi-label classification where student

predication can contain components of more than one class [16]. The scope of this

work is limited to multi-class classification or hard classification.

In addition this research proposed and developed a methodology for autom-

atizing predicate tests assuming there is an existing pre-labeled dataset that has

already been gathered. In other words this research is not involved with the gath-

ering of student data and assumes the data is already available for preprocessing,

transformation, classifier training and evaluation.

1.4 Contributions

The main contribution brought forth by this research is a novel approach that

combines Chi’s predicate tests with KDD theory to reduce the time it takes to
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deliver predicate test results while helping teachers deliver real-time, individualized

misconception assessment to students studying science concepts. We have shown

that it is possible to successfully classify learner’s textual descriptions of a science

concepts as belonging to the emergent and sequential concept categories described by

Chi. This in turn reveals information about each student’s mental categorization of

such concepts, thus revealing knowledge gaps in their understanding of that concept.

The approach documented in this thesis for predicate test automation can help

to ease the difficulties associated with learning new topics due to accumulated mis-

conceptions within actual learning environments. This is why our research directly

impacts the efficiency of transfer of knowledge from teachers to students, which

affects academic achievement in all educational systems [9][11].

Although the PTAP can quickly become useful for speeding up misconception

research it can further be used as an essential component a system that automatically

collects and classifies student data to provide for a fully automated (including data

gathering) predicate tests.

1.5 Outline

The following chapter details Chi’s misconception theory and the reasons as

to why Chi’s misconception theory was chosen for this research. It also details

the definition of text classification and modern tools used for text mining. The next

chapter describes our proposed solution for performing text classification on students

answers. Our research objectives and methodology follow. The chapter that follows

presents our experimental results and results discussion. The last chapter of this

document states our conclusions and future work.



CHAPTER 2

LITERATURE REVIEW

This chapter focuses on documenting our literature review on which this re-

search was built on. Section 2.1 discusses conceptual change research. Sections

2.2 and 2.3 detail Knowledge Discovery in Databases theory and Educational Data

Mining theory respectively. The following section, Section 2.4 discusses text clas-

sification. Section 2.5 mentions related work in the field of student modeling for

learner assessment.

2.1 Conceptual Change in Science Education

Science education research focuses on how learners acquire knowledge about

science and how that knowledge is applied. Within the domain of conceptual change

research two broad perspectives have emerged to describe the nature of knowledge

structure coherence, misconceptions, and conceptual change. These are known as the

knowledge-as-theory perspectives and the knowledge-as-elements perspectives [18].

These perspectives state that science domain knowledge acquired by learners can

be broadly described, respectively, as unified frameworks with coherent theoretical

structure or as independent collections of elements [18].

This research is aligned with the knowledge-as-theory perspectives, specifically

the perspective documented by Chi et. al. in [1][6][14][15][12][16]. Chi et. al.’s

knowledge structure theory describes how science concepts can be ontologically cat-

egorized by learners and how incorrect categorization of concepts gives way to mis-

conceptions and the need for conceptual change.

7



8

This remainder of this section describes the role of ontologies in misconceptions

and provides a formal definition of conceptual change theory. It also includes a dis-

cussion about the difficulties involved in conceptual change and its assessment. The

last section discusses predicate tests and their use in conceptual change assessment.

2.1.1 Ontologies and Conceptual Change in Science Education

Conceptual change in the past two decades has become aligned with the notion

that novice and expert understanding of concepts is based on ontological categories.

When a learner incorrectly categorises a concept the he or she is said to have a

misconception of that concept. This theory has been prominently documented by

Chi, Slotta, et. al. in [1][6][14][15][12][16].

The definition of conceptual change established by Chi, Slotta, et.al. is based

on a combination of accepted positions within conceptual change literature and is

an attempt to systematically diagnose and assess conceptual change. Three types

of conceptual change have been defined by Chi: belief revision, mental model trans-

formation and categorical shift [12]. These three types of conceptual change are

all based on the assumptions that entities in the world can be ontologically catego-

rized, that the nature of physics science concepts dictates their categorization into

constraint-based interaction concepts, and that students hold näıve preconceptions

aligned with substance-based descriptions of concepts. [10]

A contradicting theory documeted by Gupta et. al. in recent years [19][20][21][22]

has surfaced which proposes that associating physics science concepts to a single on-

tological category can be detrimental in the development of expertise. Gupta et.

al. claim that novices do cross ontological boundaries when describing physics sci-

ence concepts. Also they claim that resources which have been associated with a

specific ontological category can be utilized to help teach concepts from different

ontological categories as well [21]. Gupta et. al. argue that students do not have
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rigid ontological commitments, rather they can switch from matter based under-

standing to process based understanding of concepts, although most novice cate-

gorization of concepts tends to be substance based [21]. Gupta et. al.’s evidence

is based on the inspection of expert literature and novice description of concepts.

Although their findings are theoretically coherent, their research does not explain

how it is acceptable for experts to use substance-based descriptions for constraint-

based interaction concepts. In other words, the fact that expert literature contains

substance-based conceptions or examples of constraint-based interaction concepts

proves that metaphors can be used to describe constraint-based interaction concepts

with substance-based descriptions. In addition, this does not prove that concepts

which belong to the constraint-based interaction category can also belong to the sub-

stance category [6]. For these reasons we subscribe to Chi’s definition of conceptual

change.

The following section of this document is dedicated describing the role of on-

tologies in Chi’s conceptual change theory. Following that section it is noted why

some types of conceptual change are apparently difficult. The next section details

how the predicate test can be used to determine if and when conceptual change must

take place.

2.1.1.1 Three Suppositions of Conceptual Change

As stated before, this work focuses on describing Chi’s theory of conceptual

change, which is based on three assumptions. The first is an epistemological as-

sumption about the natural categorization of entities in the world. The second is

a metaphysical assumption that describes how most science concepts belong to the

process or constraint-based interactions category. The third is a psychological as-

sumption related student’s näıve preconceptions [6]. This section details those three

assumptions.
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2.1.1.1.1 Epistemological Proposition of Conceptual Change. The

epistemological proposition of Chi’s theory of conceptual change states that entities

in the world naturally belong to certain major ontological categories, these being

matter, processes, and mental states [6] (refer to Figure 2–1 for an example of this

categorization of entities). The theory is loosely aligned with the exact names of

those three major categories and states that more than three can exist, but focuses

on the matter and processes categories or their equivalent descriptions [12].

Ontological attributes are those properties that an ontological category can

possess due to being associated to that category. The following example aims to

explain this notion: considering a shoe as an artifact from the matter category it

can be said that the shoe must have defining attributes like a sole, most frequently

has characteristic attributes like laces, and can potentially be worn, which is an

ontological attribute [6].

Figure 2–1: Three major ontological trees from Chi et. al.’s epistemological propo-
sition of conceptual change theory. Adapted from [6].

Ontological trees are considered distinct if they possess mutually exclusive on-

tological attributes [6][12]. In other words, ontological attributes from a given on-

tological tree cannot be applied to categories that belong to a different tree. For

example, entities categorized as matter have ontological attributes such as“storable”

and “having color, volume, or mass”, which are attributes that cannot be assigned

to a process category. In a similar way, ontological attributes such as “resulting

in” or “occurring over time” can only be assigned to entities that form part of the
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processes tree. Categories within the same ontological tree can also be ontologically

distinct when their respective categories cannot be shared between them [6][12].

Ontological categorization is the basis of Chi’s theory of conceptual change since

conceptual change happens when students shift their categorization of concepts from

one distinct ontological category to another [6]. This category shift by students can

occur across major ontological trees or within them [6][12].

2.1.1.1.2 Metaphysical Proposition of Conceptual Change. The sec-

ond proposition of Chi’s conceptual change theory is about the nature of science

concepts. It exposes how the constraint-based interaction category, a subcategory

of the processes ontological tree, can be used to describe many science concepts

[6][12]. Constraint based interactions are unpredictable and emergent with no def-

inite beginning or end. This category encompasses concepts such as heat, electric

current, and light, which are processes that cannot be assigned to any subcategories

of the matter ontological tree [6][12]. For example, electric current exists when a

charged particle moves through an electric field. Thus the electric current process is

considered a constraint-based interaction which emerges from the interaction of var-

ious components that belong to the matter ontological tree such as particles, wires,

and batteries [6]. Since constraint-based interactions involve components from the

matter category this can be confusing for students [6]. This assumption can apply

to concepts outside of the physical sciences [6].

2.1.1.1.3 Psychological Proposition of Conceptual Change. The third

proposition of Chi’s conceptual change theory states that students hold näıve knowl-

edge or preconceptions about science concepts [6][12]. It explains the nature of some

science misconceptions through a psychological point of view. In short, students’

näıve conceptions of physical science concepts tend to consist of assigning process

concepts to the matter category.
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These preconceptions can exist at the proposition and mental model levels.

Näıve knowledge at the proposition level is simple to remove, is referred to as non-

robust misconceptions, and is corrected with conceptual reorganization. In other

words, those preconceptions can be easier to correct or remove [6][12]. Some näıve

knowledge can be resistant to creative types of pedagogy approaches and is referred

to as robust misconceptions [6][12]. Diagnosing the presence or absence of precon-

ceptions in individual students reveals information about the incorrect category to

which those preconceptions have been assigned by students.

2.1.2 Conceptual Change Difficulty

In their research Chi et. al. [6] documented how science concepts can be rep-

resented with ontology trees. This theory is based on the assumption that entities

in general are part of ontological categories like matter and processes. According

to those authors [6], science concepts can be categorized by students to create indi-

vidual mental models of representation and the incorrect categorization of concepts

leads to certain types of misconceptions. Identifying this mis-categorization reveals

how conceptual change can be assessed by comparing the ontological categorization

of concepts by students with domain expert categorization of concepts. The diffi-

culty lies within student’s own lack of awareness of misconceptions, student’s naive

misconceptions, and the incompatibility between student and expert categorizations

[6][12].

When students learn new science concepts they automatically try to assign

those new concepts to an ontological category within their understanding. This

becomes a burden when the category for new concepts does not exist within the

student’s mental model [6][12].

It has been stated by Chi et. al. in [14] that when students are learning science

they have two problems: learning many things at once which are missing from

their current understanding and holding näıve preconceptions. Those authors also
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established that näıve preconceptions have two properties: they are often incorrect

and they often impede acquiring deep knowledge of concepts.

Some mis-categorizations of concepts can seem to be easier to repair than others

depending on each student’s prior conceptions. Furthermore it has been documented

by Chi et. al. in [6][14] that misclassification of a concept into a hierarchically related

category is not considered a robust misconception and its repair is not considered

conceptual change rather conceptual reorganization.

Chi and Roscoe have stated in [14] that conceptual shift is not difficult. It

becomes difficult when students lack awareness for its need and they have limited

knowledge of the categories to which their ontologically incorrect concept should be

correctly assigned.

2.1.3 Predicate Tests and Conceptual Change Assessment

Contributions by Chi and her colleagues Slotta, deLeuw, Santiago, et.al. have

documented the use of the predicate test as the means to assess conceptual change,

i.e. concept re-categorization at the ontological tree level [1][15][16]. The predicate

test theory states that verbs used by students and experts to describe concepts corre-

spond to ontological attributes of those concepts [10]. Decades of research document

how novices use matter-based predicates to describe substance-based concepts and

constraint-based interaction concepts with the same frequency [1][6][14][15][12][16].

Since it is usual for novice predication to contain ontological attributes of the wrong

category predicate tests consist of analyzing verbal predicates used by students and

contrasting them to the predicate use of experts.

It is also noted that expert predicate use contains a high frequency of substance-

based predicates when describing substance-based concepts. In addition, the predi-

cate use profiles reveal high frequency of constraint-based interaction predicate use

for constraint-based interaction concept descriptions [1][15][16]. This is aligned with

psychological proposition of conceptual change, which considers that novices hold
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näıve preconceptions causing the alignment of their mental models with substance-

based predication for constraint-based interaction physics concepts [6]. In contrast,

the proposition also states that experts consistently use constraint-based interaction

predicates for constraint-based interaction descriptions of physics concepts.

Slotta et. al. developed expert taxonomies based on expert explanations of

substances and processes. The taxonomies describe predicates in the form of single

or multiple word phrases or ideas that are explicitly associated to certain ontolog-

ical attributes and the ontological categories to which the associated ontological

attributes belong to [1]. These taxonomies are used as the main criteria for predi-

cate tests. Refer to Table 2.1.3 for a snippet of the substance and process predicate

taxonomies.

Table 2–1: Snippet of substance and constraint-based interaction predicate tax-
onomies proposed by Slotta et. al. in [1].

Substance Predicates Process Predicates

block movement process

move excitation

consume equilibrium seeking

quantify systemwide

accumulate simultaneous

equivalent amounts transfer

The following describes the events that lead up to and occur after predicate

tests take place. Given a carefully crafted multiple-choice question about a certain

science topic (e.g., dynamics, heat transfer) the students are required to explain their

selected answer. The textual description of their answer is then examined to isolate

predicates and the ontological attributes they contain. Then the isolated words,

phrases, and sentences are classified as belonging to a certain ontological category

that may or may not be the category to which the concept being described belongs
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to. This last step is considered to be the actual predicate test. In other words the

predicate test does not include crafting multiple-choice questions whose answers can

best reveal mental models of whoever answers them, administering the questions, or

isolating predicates from textual descriptions the selected multiple-choice question

answer. What it does include is the analysis of determining which of Chi’s ontological

categories for science concepts the student’s predication corresponds to.

The resulting predicate test analysis is used to demonstrate the robustness of

student’s incorrect ontological categorizations by determining whether conceptual

change should take place at the ontological tree level and to what degree [1][15][16].

2.1.3.1 Predicate Test and Concept Incommensurability

The predicate test is a comparison of student and expert predication as a pro-

tocol analysis, which helps to draw inferences about the difference in ontological

commitments between expert and novice language of the science domain [1][15][16].

This is used to estimate the need for conceptual change in a student as well as

the degree of incommensurability between novice and expert predication. The in-

commensurability between concepts or ontological categories is defined by Chi and

Roscoe in [14] as “irresolvable differences in concepts, propositions, and explanations

of theories”. They further explain that concepts can be considered incommensurate

if the one can replace the other, be differentiated from each other, or coalesced to

further understand a single concept [14]. This theory of incommensurability helps

detect if robust conceptual change is needed or is taking place by using the results

of a predicate test to estimate incommensurability [14].

The predicate test is performed by analyzing student predication of a certain

concept. Experts determine which ontological categories are present in a given stu-

dent predication by analyzing if it contains attributes from the substance category,

the constraint-based instructions category, or any of their subcategories. The stu-

dent’s conception of that given concept can then be considered commensurate or
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incommensurate with respect to the correct predication established by experts. In

early discussions of this literature it is assumed that ontological categories which

facilitate science thinking are reliably incommensurate [14].

As stated in the previous section, conceptual reorganization differs from mis-

classification of concepts into lateral or hierarchically distinct categories, which is

considered a robust misconception and its repair is considered robust conceptual

change [6][14]. Estimating the incommensurability between expert and novice pred-

ication of physics science concepts distinguishes if conceptual reorganization or ro-

bust conceptual change must take place or is already happening [1][14].

Chi and her collegues were able to relate misconceptions to the identification

of ontological boundaries between two explanations [1][6][10][14][15][16]. This does

not explain the actual change of conception in student mental models but allows

for a systematic approach for the assessment of conceptual change and pinpoints

when it must take place [1][6][10][14][15][16]. The predicate test stands as proof

that näıve conceptions of the physics sciences are based on the matter category,

experts predicate use is consistent with ontological attributes from a category that

is equivalent to the constraint-based interactions category, that novice predicate

use is not [1][6][14][15][16], and the degree to which conceptual change must take

place is directly related the concept incommensurability between student and expert

perceptions of a science topic under study.

2.2 Knowledge Discovery in Databases

In essence KDD refers to the process of obtaining useful knowledge from large

datasets. The KDD process consists of the sequential iteration of selecting data of

interest from a large dataset, preprocessing and transforming the data into a format

that is appropriate for mining, and extracting models or patterns from the trans-

formed data. Figure 2–2 illustrates the major steps involved in the KDD process.

The following bullet list further describes each major step in the KDD process:
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Figure 2–2: Steps involved in the KDD process.

1. Data Selection: a relevant dataset that could potentially be useful for

knowledge acquisition is extracted from an existing data warehouse.

2. Data Preprocessing: selected data is cleaned to minimize noise introduced

by missing, irrelevant, or erroneous data points. This step enhances data

reliability.

3. Data Transformation: this step aims to represent the preprocessed data in

a format that is appropriate for mining. Transformation can include feature

selection, feature extraction, feature weighting, dimensionality reduction,

etc.

4. Data Mining: this step is where knowledge is discovered in the form of

associations, patterns, anomalies, and other significant data structures using

machine learning algorithms.

5. Evaluation: discovered knowledge is interpreted and validated using charts,

graphs, and other data illustration tools.

The steps involved in the KDD process can iteratively repeated when the se-

lected preprocessing and transformation techniques do not yield satisfactory results.
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Although steps 3, 4, and 5 of the KDD process are sometimes collectively re-

ferred to as data mining our research is aligned with the notion that data mining

refers to the specific task of extracting patterns from data and KDD refers to the

overall process from data selection to results evaluation.

2.2.1 Data Mining

According to knowledge discovery in databases (KDD) theory data mining is

an essential step of the KDD pipeline. Data mining is usually accomplished using

machine learning techniques, which include and are not limited to:

1. Classification. This mining technique is based on the use of previously

labeled data, known as a training set, to inductively construct a model for

each known label based on the features of each class. The process of building

a model for each class results in a set of classification rules, which can be

applied to classify future data or to gain insight into previously existing data.

2. Prediction. As its name states this mining technique is used to predict

value distributions of attributes or to predict missing values of attributes

belonging to a set of objects. It is based on the determining a set of attributes

that represent independent variables to be used for predicting a relevant

attributes of interest considered as dependent variables. For example, a

theatre’s attendance for an upcoming day of the week can be predicted by

analyzing the theater’s previous attendance distribution of that same week

day.

3. Clustering. Clustering is used to identify collections or clusters of data

objects considered similar with respect to one another. The term similar

is relative and can be defined with distance measurements or any type of

function that describes the difference between two data points. High quality

clustering results are considered as such when intra-cluster similarity is high

and inter-cluster similarity is low. In other words objects belonging to the



19

same cluster are considered to be highly similar and objects belonging to

different clusters should be easily differentiable. For example, employees

from a certain company can be clustered according to their area of expertise

or college degree major.

4. Association Rule Discovery. The aim of this technique is to deter-

mine which patterns, associations, or correlations occur with most frequency

within a given data repository. The representation of discovered associations

is denoted as X → Y where X and Y are collections of one or more items

known as item sets, and the presence of an item set X in a database implies

the presence of Y . For example, an association rule can describe how a de-

partment store customer that buys a movie is likely to buy popcorn as well

in the same transaction.

Discovered associations are evaluated with measures of support and confi-

dence. Support refers to the fraction of data that contain both item sets

X and Y . Confidence measures how often item set Y is implied by item

set X. The process of discovering association rules consists of two major

steps known as frequent item set generation and association rule genera-

tion. Frequent item set generation determines which item sets have support

count above a minimum threshold and association rule generation deter-

mines which frequent item sets have the highest confidence score.

2.3 Educational Data Mining

Educational data mining (EDM) focuses on applying knowledge discovery tech-

niques to large datasets generated in educational contexts [2][23]. It is an emerging

field of research that combines three major domains: education, computer science,

and statistics [2]. The Venn diagram found in Figure 2–3 illustrates the interdisci-

plinary nature of EDM, where the intersection of the main domains comprise the

subdomains that are closely related to EDM.
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Figure 2–3: Venn diagram illustrating the multiple disciplines associated with edu-
cational data mining. Adapted from [2].

The core purpose of EDM is to facilitate the understanding of how students

learn, further enhance educational managerial issues, and aid in resolving educa-

tional research issues [2][23]. Further descriptions of EDM objectives can be speci-

fied in terms of its users or stakeholders. Refer to Table 2–2 for the aforementioned

descriptions.

Table 2–2: EDM stakeholders and their respective objectives [2].

Stakeholders/Users Objectives
Teachers Gain insight on how students learn in order to im-

prove the pedagogical approaches, teaching perfor-
mance, etc.

Students Improve learning performance, provide assessment
feedback, gain insight on individual student situa-
tions, etc.

Administrators Find optimal ways to organize institutional re-
sources, etc.

Researchers Determine which data mining approaches are best
suited for specific educational tasks, and mea-
sure the learning effectiveness of educational tasks
when employing different data mining methods.
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The process of knowledge discovery within educational data is same as the tra-

ditional KDD process with the single constraint, which dictates that data generated

in educational contexts must be used as input to the first step (data warehousing)

of the KDD process [2].

The following are KDD tasks that have been proven to be relevant to EDM [2]:

• Prediction

• Clustering

• Outlier Detection

• Relationship Mining

• Social Network Analysis

• Process Mining

• Text Mining

• Distillation of Data for Human Judgement

• Discovery with Models

• Knowledge Tracing

• Nonnegative Matrix Factorization

During this research we utilized text mining or text data mining techniques to

achieve our goal of predicate test automation. Furthermore, our text mining tasks

were carried out using text classification.

2.4 Text Classification

Text classification is a modern topic of information processing that finds uses in

spam filtering, knowledge-base creation, information retrieval, etc. [10][24][17][25][26].

There are two types of classification known as supervised and unsupervised classifi-

cation.

According to classification theory a set of document-category tuples (dj, ci) can

result from the cross product D × C of all available documents D to be classified

into known or unknown categories C [10][24][17][26][27].
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The process of supervised text classification involves three major steps for de-

termining a category for any given document or vice versa. These steps are known as

preprocessing, model creation or classifier training, and classification into previously

defined categories [10][24][17][25][26].

In supervised text classification for each (dj, ci) tuple the semantic similarity

or distance between dj and ci is estimated and thresholded to decide which known

category ci each document dj belongs to [24][17][26][27]. Boolean and weighted

values can be assigned to each (dj, ci) ∈ D × C as well [24][17][26][27].

Conversely unsupervised text classification involved preprocessing of data and

assigns unknown categories to documents without undergoing classifier training. The

aim is to cluster related documents based on their content and assign a category to

each document cluster.

During this research we focused solely on supervised learning to achieve our

classification tasks. For this reason further discussion of text classification is assumed

to describe supervised text classification.

Types of classification tasks include [24][17][26]:

• Binary - determine if a new document does or does not belong to a certain

category. Is this an article about mathematics?

• Multi-class - assign a label to a document from a previously defined set of

labels. Which sport if this article about?

• Multi-label - assign zero or more categories to a new document. Which

are the best career choices for this high school graduate?

• Ranking - assign categories with ranks to a new document. Rank the

best career choices for this high school graduate according to the student’s

probability of success.

Preprocessing is the first step of text classification, which includes everything

from parsing to feature extraction, weighting, and extraction. Once a dataset has
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been transformed classification algorithms such as Support Vector Machines (SVM)

and Näıve Bayes (NB) inductively construct a model using a subset of the prepro-

cessed dataset known as the training set [24][17][26][27]. The model is then used to

perform classification on unknown data points.

Aside from using a larger training set compared to the test set no definitive

ratio of training data to testing data that is considered a standard [17].

2.4.1 Classifier Evaluation

Measures used to evaluate classifiers include precision, accuracy, recall, and

f-measure, and kappa coefficient (κ). These measures vary with different combina-

tions of data set size, training-test set ratios, preprocessing, feature selection, and

classification algorithms [24][17][26][27]. The following lists the equations for each

of the aforementioned measures:

Accuracy =
TP + TN

N
(2.1)

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

F −measure = 2
Recall ∗ Precision
Recall + Precision

(2.4)

κ =
ObservedAccuracy − ExpectedAccuracy

1− ExpectedAccuracy
(2.5)

ErrorRate =
FP + FN

N
(2.6)
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Accuracy refers to the ratio of instances that are correctly categorized. Pre-

cision, also known as positive predictive value, describes how well a positive result

actually predicts the presence of the positive category. Recall, also known as sensi-

tivity or true positive rate is the probability that a datapoint is classified as positive

given that it actually is positive. F-measure is a ratio that combines measures of

precision and recall into a single measure.

Kappa or inter-rater agreement is a metric used to compare a classifier’s accu-

racy with random chance and measures the agreement between the classifications

and the true classes. The kappa statistic reveals information about a classifier’s per-

formance and is used to compare the performance between two or more classifiers.

[3][4][5]

Tables 2–3, 2–4, and 2–5 show guidelines for interpreting kappa measures pro-

posed by Cicchetti et. al. [3] Landis et. al. [4], and Fleiss et. al [5] respectively.

Table 2–3: Guidelines by Chicchetti et. al. for interpreting kappa measures [3]

Rating κ
Poor κ < 0.40
Fair 0.40 < κ < 0.59

Good 0.60 < κ < 0.74
Excellent 0.75 < κ < 1.0

Table 2–4: Guidelines by Landis et. al. for interpreting kappa measures [4]

Rating κ
Poor κ < 0.20
Fair 0.21 < κ < 0.40

Good 0.41 < κ < 0.60
Very Good 0.61 < κ < 0.80
Excellent 0.81 < κ < 1.0

Classification results are presented in the form of a confusion matrices where a

two-by-two contingency table is constructed for each binary classification problem

of N documents. The cells in this table contain the following information:
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Table 2–5: Guidelines by Fleiss et. al. for interpreting kappa measures [5]

Rating κ
Poor κ < 0.39
Good 0.40 < κ < 0.74

Excellent 0.75 < κ < 1.0

• True Positives (TP) - the amount of positive instances which have been

correctly classified as such. For example, healthy people determined to be

healthy by a classifier.

• False Positives (FP) - the amount of negative instances that have been in-

correctly classified as positive. For example, when a classifier incorrectly

determines that sick people are healthy.

• True Negatives (TN) - the amount of negative instances that have been cor-

rectly classified as such. For example, sick people that have been determined

to be sick by a classifier.

• False Negatives (FN) - the amount of positive instances that have been

incorrectly classified as negative. For example, when a classifier incorrectly

determines that healthy people are sick.

where

N = TP + FP + TN + FN (2.7)

2.5 Related Work

Misconception assessment using Machine Learning techniques has found its

place in the construction of student models within Intelligent Tutoring Systems

(ITS). In addition student models play a major role in ITS’ personalization strate-

gies. This is due to the fact that ITS incorporate adaptive learning techniques based

on each individual student’s knowledge. [28]
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This work focuses on student misconception detection at the ontological level to

develop student models that describe current ontological categorization of concepts.

In other words we have focused on categorizing misconceptions. We are not aware

of any work that uses our approach to model erroneous conceptions in students.

The the rest of this section mentions research work that has a close resemblance

to our work, although they do not address the problem of categorizing misconcep-

tions. Instead they mainly focus on the presence of misconceptions in students or

describing the general knowledge possessed by students. In addition, they focus on

determining which learning materials are needed to correct student misconceptions

or to advance to subsequent lessons respectively.

In the research documented by Liu in [29] the proposed system is already aware

of the possible misconceptions that can arise while learning statistics topics. The

system focuses on evaluating students to determine if the possess any of these pre-

viously determined misconceptions and providing feedback to make them aware of

their existence.

In order to advance to subsequent lessons Wang used a pre-test and a two-tier

tests to identify knowledge gaps and dynamically select additional learning materials

a student may need [30].

Ehimwenma et. al. in [31] propose the use of a multi-agent system to determine

which concepts have not been learned by students. Pre-assessment strategies are

employed to model current knowledge in students, then knowledge gains and gaps

are identified to determine which learning materials are recommended for learners

to able to advance to further lessons.

Bayesian Student Models (BSMs) have been used by Millán et. al. in [32] to

develop student models. They are based on using knowledge and evidence variables,

as well as their correlation, to construct Bayesian Networks. In other words the

network structure or nodes are elements that represent whether or not students
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have knowledge about a specific domain, and the answer to questions about that

domain. In addition the edges between these two types of nodes is used to describe

their correlation for a particular student.

We have observed that the previously mentioned research can model student

knowledge and identify knowledge gaps, they are not focused on misconception

categorization.



CHAPTER 3

CONCEPTUAL FRAMEWORK

It has been clearly stated by Chi’s that misconception assessment is possible

through the use of predicate tests performed on learner data [1][6][14][15][12][16].

The data for predicate tests usually consists of student answers to multiple choice

selections. Students are also asked to describe their answers and explain why they

chose the answers wherever possible. Since specific problems and questions are

chosen by domain experts each item reveals details about individual student mental

models.

The predicate test is a process where each student response is analyzed at the in-

dividual sentence or proposition level to determine the predicates used and how they

were used to describe their answer [1][16]. These authors have documented how stu-

dent predicate use is compared to expert a priori categorizations of substance-based

or constraint-based interactions verbal predicate use. This in turn reveals whether

a student used any combination of substance-based or constraint-based interaction

predication in their answer’s description.

Details of how conceptual change assessment can be interpreted as a KDD task

using text classification are discussed in Section 3.1. Section 3.2 discusses how text is

represented as word vectors in order to be used for text classification. The following

section, Section 3.3 details Support Vector Machines theory.

3.1 Text Classification of Student Predicate Use

Consider a student’s textual explanations of multiple choice science questions

as the set of documents D to be categorized into the set of ontological categories C

28
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used by Chi. According to text classification theory [24][17][26][27] the mentioned

documents could be classified into each category using text classification.

Considering the KDD process, which includes a classification step, the complete

automation of predicate tests has to account for the following:

• Gathering of textual descriptions from students

• Preprocessing and transforming the gathered data

• Performing feature selection, extraction, and weighting techniques to the

transformed data

• Building a prediction model using the resulting feature set

• Classify unknown data points into the substance category, the constraint-

based interaction category, or any combination of those categories, including

their respective sub sets.

• Results evaluation

What is needed to implement the proposed automated solution for conceptual

change assessment is an available dataset that has been manually annotated to

partition into training and testing datasets. If this were not the case and supervised

learning was to be employed then clustering would have to be performed in order to

determine relevant labels and features for use during classifier training [33][34].

The classification to be performed consists of assigning student explanations

about science topics to one or a combination of the major categories of concepts in-

volved in learning science. This is the approach taken by Chi in [1][6][14][15][12][16].

Their research has identified the three main categories used in science concept dis-

cussions as [12] substances, sequential processes, and emergent processes. These

categories can be used as our text classification labels.

3.2 Representing Text as Word Vectors

Classifier accuracy is directly related to the way data is represented and fed to

learning algorithms [7][8][35][36]. Before text classification can be applied to text



30

documents they have to be transformed into word vectors [37]. After transforming

the documents the features are extraction and selection are performed using the

resulting word vectors. This remaining data is used to train learning algorithms

that will eventually perform classification tasks.

Figure 3–1: Text as Feature Vector [7].

To transform a document to vector representation each word in a document is

tokenized, punctuation is removed, case is ignored, stop words are removed, etc.,

and a feature vector for each document is constructed. The constructed feature

vector’s components contain information about word frequency. In formal terms

each word (wi) in a text document is considered a feature or vector component with

value represented by TF (wi, di), where TF (wi, di) denotes the number of times the

word wi appears in document di [7][8][35][36].

This is known as basic attribute-value representation of text, which results in a

feature vector whose length is the size of the vocabulary being processed. Common

vocabulary size is 10,000-100,000. In other words the task of text classification is
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usually very high dimensional with near independence of features. Figure 3–1 depicts

an example document and its transformation to feature vector form.

The resulting vector representation is likely to be high dimensional in nature,

which can potentially enhance the complexity of the problem to be solved, cause

classifier overfitting, etc. That is the main reason feature reduction techniques are

called for [7][8][35][36].

3.3 Support Vector Machines

Support vector machine (SVM) algorithms are based on the structural risk

minimization principle [7]. They have been proven to achieve good results when

classifying high dimensional data sets with many relevant features [35].

SVMs have been widely applied to machine learning to search for maximal-

margin hyperplanes that separate positive and negative data points form each other

with the least true error [8]. This type of classifiers are trained with a pre labeled

dataset [7][8][35][36].

The use of SVM has been determined to be very effective in text classification

[7][8]. Joachims in [7] has stated this is due to:

• High-dimensional input space of textual data

• Textual data usually contains very few irrelevant features

• Representation of text data results in sparse vectors

• The majority of text classification problems are linearly separable

The following formally details SVM theory for machine learning:

Let T be a set of labeled training samples defined by:

T = (x1, y1), ..., (xm, ym);x ∈ Rn, yi ∈ {−1, 1}, i = 1, ...,m

T is said to be linearly separable if there exists a vector x ∈ Rn and a scalar b

that can be used to construct hyperplanes, which conform to:
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wxi − b ≥ 1 if yi = 1,

wxi − b ≤ −1 if yi = −1,

i = 1, ...,m

(3.1)

Equation 3.1 can be summarized as:

yi(wxi − b) ≥ 1 yi ∈ {−1, 1}, i = 1, ...,m (3.2)

The distance between hyperplanes is known as margin. The optimal separating

hyperplane is expressed as:

w∗xi − b∗ = 0 (3.3)

The aim is to find the maximum-margin hyperplanes that divide data points

xi when yi = 1 from data points xi when yi = −1. When T is considered to

be linearly separable we can select parallel hyperplanes with the largest possible

distance between them. Figure 3–2 shows a visual representation of hyperplanes

separating two distinct classes. The classifier on the left would yield better results

since there is a more distinct gap between classes.

Figure 3–2: SVM Hyperplanes [8].
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Finding vector w∗ and scalar b∗ that minimize ||w|| subject to yi(wxi + b) ≥

1 yi ∈ {−1, 1}, i = 1, ...,m determines a linear support vector classifier or general-

ization function as:

g(x) = sgn(wxi − b) (3.4)

where xi that lie nearest to the maximal-margin hyperplane are known as the

support vectors.

If T is not a linearly separable dataset kernel functions are used to map the

data from one domain to another where data can become linearly separable. Kernel

equations can be linear, quadratic, Gaussian, etc. Linear kernel equations take the

form:

K(xi, x) = xi · x (3.5)

The support vector classifier or generalization function for nonlinear classifica-

tion is then expressed as:

g(x, α) = sgn

(
n∑

i=1

yiαiK(xi, x)− b

)
(3.6)

subject to

∀i : 0 ≤ αi ≤ C and
l∑

i=1

yiαi = 0

where xi with αi 6= 0 are the support vectors, n is the number of support

vectors, and C is the cost of classification error.

The optimal decision boundary or maximal-margin hyperplanes are determined

by computing αi and b that solve the Lagrange maximization problem:

L(α) =
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjK(xi, xj)yiyj (3.7)
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subject to

∀i : 0 ≤ αi ≤ C and
l∑

i=1

yiαi = 0



CHAPTER 4

METHODOLOGY

This chapter presents a detailed explanation of the solution use to implement

our predicate test automation problem. Section 4.1 mentions the tools used to im-

plement the PTAP. Section 4.2 details the PTAP architecture, including the specific

techniques used to implement each component. Section 4.3 describes how those

techniques were employed to perform our experiments and Section 4.4 lists the re-

search questions our experiments aim to answer. Finally Section 4.5 describes the

evaluation metrics used to measure our results.

4.1 Text Mining Tools

The main tool we used to accomplish our text classification tasks is known as

the Waikato Environment for Knowledge Analysis (WEKA) toolkit [17]. WEKA was

developed in the University of Waikato in the upper North Island of New Zealand.

It is a workbench for data mining and machine learning that supports tasks like

classification, clustering, and visualization [17].

We also made use of TextWrangler, a common text editor for OS X, for creating

our dataset in ARFF.

4.2 PTAP System Architecture

The PTAP system architecture is best described in context of the KDD process.

An alternate version of Figure 2–2 from Chapter 2, which describes the KDD process,

will be used to describe our proposed architecture. Figure 4–1 illustrates the PTAP

system architecture and the following subsections describe it in detail.
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Figure 4–1: PTAP Architecture

4.2.1 Data Gathering

Our dataset was gathered from engineering students enrolled in a midwestern

public institution. It consists of textual explanations to multiple-choice science ques-

tions [16]. The data was collected as part of a research project where the predicate

test was manually performed by educational engineering experts. Among the re-

sults of that research is an expert annotated dataset where the verbs or phrases

used by students in their explanations are identified as ontological attributes. Fur-

thermore those ontological attributes were categorized into the emergent process,

direct process, and emergent and sequential process or mixed categories by educa-

tional engineering experts as well. [10]

The dataset consists of 680 textual descriptions of students’ answers to multiple-

choice questions about dynamics and heat transfer. Unfortunately the entire dataset

was not labeled by experts. [10]

The sentences that are being considered for classifier training have not been

tampered with by experts. This suggests that any computing system can train a
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classifier with expert labeled predicate test data and compute predicate test re-

sults on student textual descriptions of science concepts that have no expert labels.

Using that approach to compute predicate test results could be considered a fully

automated predicate test. [10]

The bullet list found below shows textual descriptions written by students to

describe their selected answer to multiple-choice questions about diffusion and heat

transfer. It was extracted from the original dataset under consideration. Accord-

ing to Chi’s predicate test theory each sentence contains sequential and emergent

phrases, which reveal information of each student’s mental categorizations of con-

cepts. This phrases were identified by experts and highlighted in yellow if they were

sequential phrases and highlighted in green if they were determined to be emergent

in nature. [10]

• Stirring the water causes more molecular motion and allows more salt

become evenly dispersed throughout the container

• The air cannot escape and helium can (as stated above), therefore due to

random movement of helium, some helium is likely to escape in the process

• The rates will be the same because the non stirred glass will eventually

reach equilibrium through diffusion and have the same temperature as the

stirred glass.

• The random motion of the dye molecules causes them to collide and

move into the beaker with just the water

• Thermal excitation makes molecules move faster, therefore there is an in-

crease of the molecules random motion , therefore the concentration of the

dye reaches equilibrium with the water quicker in a heated beaker

In the mentioned research the manually annotated dataset was used to detect

if a student’s verbal description of concepts is aligned with sequential or emergent

process conceptions. Our available dataset shows the presence of more than one
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conceptual schema used by students to describe concepts. This fact points to the

use of multi-class, multi-label classification, but the multi-class, single label approach

was implemented to show that a binary SVM classifier can be used for misconception

assessment automation. [10]

4.2.2 Data Preprocessing

Our preprocessing step was manually completed by constructing a file in ARFF

format, which is the document format used by WEKA. Each labeled sentence was

extracted from the original dataset to yield a total of 41 instances of the emergent

class, 99 instances of the sequential class, and 50 instances of the mixed.

4.2.3 Data Transformation

This step is where our feature space is created. Feature extraction was per-

formed using the WEKA tool. The following describes the WEKA filters used to

complete our feature extraction tasks.

Since our experiment is aligned with multi-class classification instances that

belong to both the emergent and sequential classes were eliminated from the original

dataset. This was done with a filter known as Remove with Values, which removes

class instances with a specified value [38]. In our dataset the samples that belong

to both the emergent and sequential classes were labeled as mixed. [10]

The second filter applied to our dataset is known as the Synthetic Minority

Over-sampling Technique (SMOTE) [39]. This algorithm considers minority class

instances and their k nearest neighbors to generates synthetic data. Synthetic sam-

ples are generated in three steps .The first calculates the difference between a mi-

nority class feature vector and its chosen nearest neighbor. Then the difference is

multiplied by a random number between 0 and 1 and the result is added to the

feature vector under consideration [39]. [10]

Our dataset contains 41 examples of the emergent process class and 99 exam-

ples of the sequential process class, leading to class imbalance. We used SMOTE
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to correct this considerable bias. Emergent process class examples were randomly

oversampled by 100% with 5 nearest neighbors to obtain a total of 82 instances

from the emergent process class [10]. Although the synthetic data points double the

amount of emergent process class instances they are reliable due to the fact that

the original data point are very similar and if additional natural data points were

available, they would not be much different in comparison to the ones generated by

SMOTE.

Another filter that applied to our dataset for feature extraction is known as

StringToWordVector. This filter tokenizes each string attribute in our data samples

into a set of attributes consisting of each word in the string and information about

word occurrence [10][40] [41].

Considering the first sentence found in the sample dataset from Section 4.2.1 its

vector representation would have a component for each word in the entire dataset

and information about word occurrence for each word present in that same sentence

[10].

In addition feature selection is also supported by the StringToWordVector filter

by means of Inverse Document Term Frequency. The following parameters were

configured:

• IDFTransform - sets whether if the word frequencies in a document should

be transformed into:

TD− IDF (ti, dj, D) = TF (ti, dj)İDF (ti, D); i = 1, ...,m, j = 1, ..., n (4.1)

where TF (ti, dj) is the number of times term ti appears in document dj, D

is the data corpus under consideration, and

IDF (ti, D) = log
N

|{dj ∈ D : ti ∈ dj}|
(4.2)
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where N = |D| (total number of documents) and {dj ∈ D : ti ∈ dj} =

number of documents where term ti is present

• normalizeDocLength - sets whether if the word frequencies for a document

(instance) should be normalized or not

• tokenizer - selects the tokenizing algorithm to use on the strings

• wordsToKeep - the number of words per class to attempt to keep

Feature weighting was also performed with WEKA’s AttributeSelection filter.

The following parameters were configured for the AttributeSelection filter:

• evaluator - determines how attribute subsets are evaluated

• search - determines the search method used to find attributes based on an

information gain threshold

4.2.4 Text Mining

Our text mining tasks were performed using WEKA’s implementation of SVM

known as SMO, which uses a linear kernel function. SMO is sequential minimal

optimization algorithm for training a support vector binary classifier. It was trained

and evaluated using 10-fold cross validation.

4.2.5 Interpretation and Evaluation of Results

Our aim was to achieve approximately 75% accuracy, precision, and recall, and

80% F-measure. Further details about our chosen evaluation metrics are found on

Section 4.5. Our results discussion is found in Section 5.2 and the answers to our

experimental questions are found in Section 5.2.1.

4.3 Experiments

The following is a list of four combinations of data transformation techniques

that characterize our main experiments. We chose to document these four ap-

proaches due to the relevancy of the classification results obtained. All classification

models were build with WEKA’s SVM implementation known as SMO with 10-fold

cross validation for test/training set partitions.
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1. WEKA’s SMOTE filter was applied to duplicate emergent class instances.

Then WEKA’s StringToWordVector filter was applied with the following

configuration:

• IDFTransform - false

• normalizeDocLength - No normalization

• tokenizer - WorkTokenize with delimiters .,;:’”()?!

• wordsToKeep - 10000

2. WEKA’s SMOTE filter was applied to duplicate emergent class instances.

Then WEKA’s StringToWordVector filter was applied with the following

configuration:

• IDFTransform - true

• normalizeDocLength - Normalize all data

• tokenizer - WorkTokenize with delimiters .,;:’”()?!

• wordsToKeep - 10000

3. WEKA’s SMOTE filter was applied to duplicate emergent class instances.

Then WEKA’s StringToWordVector filter was applied with the following

configuration:

• IDFTransform - true

• normalizeDocLength - Normalize all data

• tokenizer - NGramTokenizer with delimiters .,;:’”()?! considering phrases

of one to three words

• wordsToKeep - 10000

4. WEKA’s SMOTE filter was applied to duplicate emergent class instances.

Then WEKA’s StringToWordVector filter was applied with the following

configuration:

• IDFTransform - true

• normalizeDocLength - Normalize all data
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• tokenizer - NGramTokenizer with delimiters .,;:’”()?! considering phrases

of one to three words

• wordsToKeep - 10000

Finally WEKA’s AttributeSelection filter was applied with the following

parameters:

• evaluator - InfoGainAttributeEval

• search - Ranker with a threshold of 0.

4.4 Experimental Questions

With the experiments described in Section 4.3 we sought to answer the following

research questions:

1. Is is possible to classify learner descriptions about concepts into the emergent

and sequential ontological categories proposed by Chi [16] with SVM?

2. Is it possible to build a successful classification model using complete student

descriptions about concepts as the only source of input for our feature space

creation?

3. Which if the ontological categories proposed by Chi in [16] can be predicted

successfully?

4. Which combination of feature extraction, selection, and weighting techniques

is best suited for classifying learner descriptions about concepts into the

emergent and sequential ontological categories proposed by Chi [16]?

5. Can Chi’s predicate test be automated with text mining techniques?

4.5 Evaluation Metrics

Classification models are commonly evaluated using measures from information

retrieval. Commonly metrics used to evaluate classification results are known as

accuracy, precision, recall and F-measure, kappa coefficient, and error rate. Clas-

sification results are usually presented in the form on confusion matrices. Refer to

Section 2.4.1 for details about classification measures and confusion matrices.
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Unbalanced datasets that are measured with accuracy and error rate usually

lead to mis-interpretation of results. For example if a dataset has a high frequency of

positive instances and a trivial classification model makes positive predictions only,

then accuracy measure would be high and error rate would be low, but these results

are useless. The same occurs when there is a high frequency of negative data points

and a classifier predicts all instances to be negative. This is the reason why recall,

precision, and F-measure are preferred instead of accuracy and error rate. Another

relevant measure taken into consideration is known as Kappa Coefficient (κ).

To evaluate our experiments we chose a data corpus partitioning strategy known

as k-fold cross-validation. The strategy partitions the data set into k-partitions and

each partition is used as a training set with all the remaining partitions used as the

test set. The results of each constructed model was averaged to determine the final

classifier results.

For the aforementioned experiments we chose to use 10-fold cross-validation to

partition our dataset. We also chose to describe relevant results in terms of accuracy,

precision, recall, F-measure, and κ.



CHAPTER 5

EXPERIMENT RESULTS AND DISCUSSION

This first section of this Chapter presents the results we obtained from each

constructed prediction model discussed in Section 4.3.

Section 5.2 of this Chapter contains a detailed discussion of our experimental

results.

5.1 Experimental Results

Our four experiments yielded an average accuracy measure of 79.5%. This was

computed using the average accuracy between each class in each model and then

averaging each model’s average accuracy.

We also obtained an average kappa coefficient of 0.5501 using all four experiment

results.

Table shows the averaged measures of precision, recall, and F-measure.

Table 5–1: Averaged Experiment Results Using 10-Fold C-V

Label Avg. Precision Avg. Recall Avg. F-measure
Emergent 0.845 0.62.2 0.709
Sequential 0.776 0.904 0.834

Table 5–2 shows the measured and expected accuracy of each constructed model

using 10-fold cross-validation, as well as each model’s kappa coefficient.

The rest of the tables found in this chapter (tables 5–3 to 5–10) show measures

of precision, recall, and F-measure, as well as confusion matrices resulting from each

of our experiments respectively.
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Table 5–2: Measured and Expected Accuracy and Kappa Coefficient for Each Model
Using 10-Fold C-V

Experiment Accuracy Expected Accuracy Kappa Coeff.
Experiment 1 76.24% 50.69% 0.5181
Experiment 2 77.34% 50.06% 0.5366
Experiment 3 81.77% 51.94% 0.6206
Experiment 4 82.86% 63.90% 0.5251

Table 5–3: Experiment 1 Support Vector Machine Results Using 10-Fold C-V

Label Precision Recall F-measure
Emergent 0.753 0.707 0.730
Sequential 0.769 0.808 0.788

Average 0.762 0.762 0.762

Table 5–4: Experiment 1 Confusion Matrix

Emergent Sequential
Emergent 58 24
Sequential 19 80

Table 5–5: Experiment 2 Support Vector Machine Results Using 10-Fold C-V

Label Precision Recall F-measure
Emergent 0.797 0.671 0.728
Sequential 0.759 0.859 0.806

Average 0.776 0.773 0.771

Table 5–6: Experiment 2 Confusion Matrix

Emergent Sequential
Emergent 55 27
Sequential 14 85

Table 5–7: Experiment 3 Support Vector Machine Results Using 10-Fold C-V

Label Precision Recall F-measure
Emergent 0.962 0.622 0.756
Sequential 0.758 0.980 0.855

Average 0.850 0.818 0.810
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Table 5–8: Experiment 3 Confusion Matrix

Emergent Sequential
Emergent 51 31
Sequential 2 97

Table 5–9: Experiment 4 Support Vector Machine Results Using 10-Fold C-V

Label Precision Recall F-measure
Emergent 0.870 0.488 0.625
Sequential 0.821 0.970 0.889

Average 0.835 0.829 0.812

Table 5–10: Experiment 4 Confusion Matrix

Emergent Sequential
Emergent 20 21
Sequential 3 96

5.2 Results Discussion

The scope of this research focuses an a novel approach to achieve predicate test

automation with text classification techniques in order to avoid learning difficulties in

new topics due to accumulated misconceptions. According to the results presented in

Section 5.1 the proposed can PTAP successfully predict samples from the emergent

and sequential classes. This section details our analysis of the results found in

Section 5.1.

Our first classification model derived from experiment 1 has an accuracy score

of 76.24%. This is our lowest obtained accuracy score. In terms of precision and

recall 70.70% of emergent class samples were correctly classified as such, where each

data point labeled as emergent has a 75.30% chance of actually belonging to the

emergent class. Furthermore this model scored a recall of 80.80% for sequential class

samples with 76.90% precision.

This first model’s kappa score is 0.5181 which is considered fair or good accord-

ing to the kappa coefficient interpretation guidelines proposed by [4][5][3] (refer to

Section 2.4.1).



47

The classifier’s expected accuracy of 50.69% was improved by 25.55% and its

kappa coefficient and confusion matrix are indicative of good classifier performance.

Although this first model yielded our poorest results the aforementioned reasons

justified our use of these results as a benchmark with which to evaluate all consequent

experiments.

Results obtained from experiment two show a negligible 1.10% increase in accu-

racy and a negligible 0.0185 increase in its computed kappa coefficient. Experiment

two’s average F-measure was chosen to represent its precision-recall relationship.

Compared to experiment one’s average F-measure experiment two differed by a neg-

ligible .9%. For these reasons we determined that the results from experiment one

and two are the same in terms of statistical significance.

Experiment three’s accuracy was considered as the best accuracy measure with

a score of 81.76%. Its F-measure is also the highest with a score of 81%, which is a

significantly larger score when compared to the experiments one and two.

Experiment three also has a kappa coefficient measure of 0.6206, which is consid-

ered a very good kappa score according to [4][5][3]. This kappa score is considerably

higher compared to the other three experiments. When comparing its expected ac-

curacy of 51.94% vs. its measured accuracy of 81.76% experiment three yields an

impressive improvement of 29.82% compared to random chance. The classification

model constructed as part of experiment three also resulted in the lowest amount of

incorrectly classified instances in comparison to the other experiments.

These improvements in F-measure and kappa coefficient for experiment three

may have manifested as a result of using the NGramTokenizer to represent student

predication with bags of words that closely resemble the phrases which are part of

Chi’s conceptual schemas.

Results from our fourth experiment varied from our first three due to the use of

the AttributeSelection filter applied for information gain. This fourth classification
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model yielded the highest accuracy of 82.86%. This could have led us to believe

that experiment four yielded the best performance, but upon careful inspection of

the statistical significance of those results we concluded otherwise.

Experiment four’s results are biased due to the unbalance distribution of data

points used as input for the cross-validation process. The unbalanced dataset reflects

the use of AttributeSelection filter applied for information gain, which resulted in

the removal of emergent class data points generated using SMOTE (refer to Section

4.3). In other words the test data used to evaluate this classifier was biased by

having twice the amount of sequential class samples than emergent class samples.

Furthermore the expected accuracy for the fourth model we constructed is

63.90%. This expected accuracy is the highest amongst all other experiment’s ex-

pected accuracy, meaning that there is a higher probability that if classification is

left to random chance the model constructed for experiment four could yield a better

performance compared to the other experiments.

It is worth noting that upon considering both the kappa coefficient (refer to

Table 5–2) and confusion matrix (refer to Table 5–10) obtained from experiment

four it could be possible to use this model for accurate predictions of sequential

class samples only. This is because experiment four yielded the worst results for the

emergent.

After analyzing the overall accuracy, precision, recall, F-measure, and kappa

coefficient of each classification model we concluded that our best performing clas-

sification model resulted from experiment 3. This is because its F-measure is the

highest with a score of 81%, its kappa coefficient measure is also the highest with

a score of 0.6206, it showed the most significant improvement over random chance,

and it resulted in the least amount of incorrectly classified instances when compared

to the other experiments.
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5.2.1 Experimental Questions Answered

With the results obtained from the experiments described in Section 4.3 we

answer the following research questions:

1. Is is possible to classify learner descriptions about concepts into the emergent

and sequential ontological categories proposed by Chi [16] with SVM?

Considering the results shown in tables 5–3, 5–5, 5–7 and 5–9, yes it is possible

to classify learner descriptions about concepts into the emergent and sequential

ontological categories proposed by Chi [16] with SVM. This answer is based on our

best performing model, which clarifies unknown data point with an acceptable mean

absolute error of 18.23%.

2. Is it possible to build a successful classification model using complete student

descriptions about concepts as the only source of input for feature space

creation?

This question is also answered with the same results that answer experimental

question number one. According to these results a successful classification model

can be built using complete student descriptions about concepts as the only source

of input for feature space creation. This answer is based on our best performing

model, which clarifies unknown data point with an acceptable mean absolute error

of 18.23%.

3. Which combination of feature extraction, selection, and weighting techniques

is best suited for classifying learner descriptions about concepts into the

emergent and sequential ontological categories proposed by Chi [16]?

Our best performing classifier was based on manual feature extraction and bag

of words theory (3-Gram Tokenizer) for feature selection. Our results indicate that

the feature selection technique known as bag of words used to build the classification

model in experiment three yielded the best results. It is with noting that combining
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feature selection with bag of words and feature weighting in the form of information

gain negatively impacted our classification results.

4. Which of the two ontological categories chosen our classification labels and

proposed by Chi in [16] can be predicted successfully using text classifica-

tion?

It is possible to successfully predict both of the proposed labels (emergent and

sequential) using text classification. The answer to this question is based on the

results obtained from our best performing model (experiment three). Refer to Tables

5–7 and 5–8 for details about precision, recall, F-measure, and kappa coefficient for

experiment three.

5. Can Chi’s predicate test be automated with text mining techniques?

We have shown that Chi’s predicate test can be automated by applying KDD

theory to a expert annotated dataset that assigns student textual descriptions of

science concepts into their corresponding ontological category.



CHAPTER 6

IMPLICATIONS AND FUTURE WORK

6.1 Implications

This research is based on Chi’s conceptual change theory. Chi’s research argu-

ments that learners assign newly acquired knowledge about a science concept to an

ontological category that best describes the nature of the such concept. Misconcep-

tions occur when learners assign an incorrect category to concepts under study. In

addition Chi has developed a process known as the predicate test, which aids in the

assessment of misconceptions by inspecting student textual descriptions of science

concepts and categorizing the descriptions as belonging to an emergent process, a

sequential process, or both. This process is known to be a time consuming task that

can only be performed by trained experts from the educational engineering domain.

We sought to automate Chi’s predicate test by applying the KDD process to

existing predicate test results. We used this previously annotated dataset to train a

SVM classifier in order to show that the emergent and sequential process categories

can be successfully learned.

The main purpose of our research was to explore the possibility of reducing the

time it takes to deliver predicate test results while helping teachers in the deliv-

ery real-time, individualized misconception assessment to students studying science

concepts.

Our dataset was collected from engineering students enrolled in a U.S. midwest-

ern public institution. Student explanations to multiple choice question answers were

considered documents for classification belonging to two categories: sequential and
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emergent. Furthermore we experimented with bags of words for feature selection

and information gain for feature weighting to determine which is best suited for

predicting the emergent and sequential ontological categories. We built our classi-

fication models with WEKA’s SVM implementation known as SMO and evaluated

our classification models based on measures of accuracy, precision, recall, F-measure,

and kappa coefficients.

According to our classification results we have concluded that it is possible to

classify learner descriptions about concepts into the emergent and sequential on-

tological categories proposed by Chi [16]. We also found it is possible to build a

classification model of acceptable performance using complete student descriptions

about concepts as the only source of input for our feature space creation. Further-

more, we have determined that our best performing classification model resulted

form experiment number three, which is based on using bags of words theory for

feature selection without the use of feature weighting. We have arrived at this

conclusion because experiment number three has the highest score of F-measure

of 81%, its kappa coefficient measure is also the highest with a score of 0.6206, it

showed the most significant improvement over random chance, and it resulted in the

least amount of incorrectly classified instances when compared to the other three

experiments.

A positive contribution to the science of educational engineering has resulted

from the combination of Chi’s predicate tests with KDD theory. With the intent to

automatize Chi’s predicate tests we have documented a methodology (PTAP) for

exploring the possibility of having teachers deliver real-time, individualized miscon-

ception assessment to students. This is because the PTAP can reveal insight about

a learner’s mental categorization of concepts aiding teachers to pinpoint learner

misconceptions and knowledge gaps.
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Although the PTAP can quickly become useful for speeding up misconception

research it can further be used as an essential component in a system that auto-

matically collects and classifies student data to provide a fully automated (including

data gathering) predicate tests.

The PTAP has the potential to serve as on of many basic building blocks used

in the development of modern e-learning systems due to its positive impact on the

efficiency of transfer of knowledge from teachers to students, which affects academic

achievement in all educational systems.

6.2 Future Work

Issues for future work can be described in terms of classification algorithm of

choice, the supervised vs. unsupervised learning paradigm, and dataset alteration.

First of all we have not yet explored the possibility of improving our results

by using alternate classification algorithms. For example Näıve Bayes (Multinomial

Näıve Bayes), Multinomial Logistic Regression (Maximum Entropy) [42], or Neural

Networks [43]. The results of exploring the performance of these classifiers as part

of our research’s future work would be necessary to identify which is better suited

for the task of predicate test automation.

Another topic to be considered for future work is centered around the absence

of an expert annotated dataset for classifier training. The research would focus

on prototyping a solution for predicate test automation using clustering to gather

similar student descriptions and assign a category to them. The resulting clusters

can be inspected in order to document wether the clustered categories are useful

or relevant within the context of conceptual change assessment. This clustering

approach could also yield a training set that can be used in the construction of a

classification model based on supervised learning [25][40][44].

The discussion found in Section 4.2.1 describes the available dataset as lacking

in size and consisting in entire textual description, the phrases experts identified
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as features for categorization, and the category they actually belonged to. Our

classification results can be improved by increasing the size of our dataset with

an even distribution of samples for each class. In addition since we only explored

the use of student textual descriptions a the only input for feature space creation

we are aligned with the notion that using the annotated phrases as the input for

feature space creation may improve classifier performance. It is also possible that

the combination of textual descriptions and the phrases that experts used to identify

student categorization of concepts can both be used to improve performance.

Considering the social, political, intellectual, and economic context of a learner

can also open the door to another variant of future work for this research. That

would lead to the exploration of the unmeasured relationships between the social,

political, intellectual, and economic stories present in a learner’s life at a given point

in time, and how that learner is achieving the understanding of science concepts and

the retention of that newly acquired knowledge.

Future work for this research encompasses applying the PTAP to the domain

of mathematics as well.
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APPENDIX A

RAW DATASET EXAMPLES

Figure A–1: Raw dataset example

56



57

Figure A–2: Raw dataset example
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