
A MIMO MODELING FRAMEWORK USING A SOFTWARE
DEFINED RADIO PARADIGM

by

Angel Camelo Vásquez

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

University of Puerto Rico
Mayagüez Campus

2012

Approved by:

Nayda Santiago, Ph.D. Date
Member, Graduate Committee

Kejie Lu, Ph.D. Date
Member, Graduate Committee

Domingo Rodŕıguez, Ph.D. Date
President, Graduate Committee

Mrs. Isabel Rios, MBA Date
Representative, Graduate Studies

Pedro I. Rivera Vega, Ph.D. Date
Chairperson of the Department

Abstract of Thesis Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

A MIMO MODELING FRAMEWORK USING A SOFTWARE
DEFINED RADIO PARADIGM

By

Angel Camelo Vásquez

July 2012

Chair: Domingo Rodŕıguez
Major Department: Electrical and Computer Engineering

This thesis presents the theory, design, and implementation of a computational

framework for modeling MIMO (Multiple Input Multiple Output) systems and sim-

ulate them under the Software Defined Radio paradigm. Likewise, it presents a set

of tools for this type of simulation, such as certain class of time frequency repre-

sentation tools: Short Time Fourier Transform, Ambiguity Function, Wigner, and

Choi-Williams. This thesis also describes interfaces to the computational framework

SIRLAB: webSIRLAB and SIRDroid. Finally, modeling examples are presented for

the GNUradio software.

ii

Resumen de Tesis Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Maestro en Ciencias

UN ENTORNO DE TRABAJO PARA MODELAMIENTO MIMO
UTILIZANDO EL PARADIGMA DE RADIO DEFINIDO POR

SOFTWARE

Por

Angel Camelo Vásquez

Julio 2012

Consejero: Domingo Rodŕıguez
Departamento: Ingenieŕıa Eléctrica y Computadoras

Esta tesis presenta la teoŕıa, el diseño y la implementación de un simulador

para modelamiento de sistemas MIMO (Multiple Input Multiple Output) para ser

utilizado bajo el paradigma de Radio Definido por Software. Aśı mismo, presenta

un conjunto de herramientas asociadas a este tipo de simulación, como lo son cier-

tas clases de representaciones en tiempo frecuencia: Short Time Fourier Transform,

Ambiguity Function, Wigner y Choi-Williams. Esta tesis también describe algunas

interfaces para el marco computacional SIRLAB: webSIRLAB y SIRDroid. Final-

mente, se muestran algunos ejemplos que son presentados integrando todo en el

software de GNUradio.

iii

Acknowledgments

I want to express my most sincere gratitude and acknowledgement to my advi-

sor, Dr. Domingo Rodriguez for his patient guidance, encouragement and excellent

advice throughout the course of study. Also, I am grateful to my thesis commit-

tee members, Dr. Nayda Santiago and Dr. Kejie Lu for their review and helpful

criticism. Thanks to all the Professors during the three years of study: Dr. Miguel

Vélez-Reyes, Dr. Vidya Manian, Dr. Fernando Vega, and Dr. Pedro Vásquez. I also

express my gratitude to the Electrical Engineering Department, Puerto Rico Seis-

mic Network, and R&D Staff. Last but not least, I take this opportunity to express

my profound gratitude to my family and my friends for their support during this

work. Also, to all the people who have been involved directly of indirectly during

my studies at Mayaguez, Puerto Rico.

iv

Table of Contents

Abstract English . ii

Abstract Spanish . iii

Acknowledgments . iv

Table of Contents . v

List of Tables . viii

List of Figures . ix

List of Abbreviations . xi

1 Introduction . 1

1.1 Motivation . 1
1.2 Literature Review . 3
1.3 Summary of Following Chapters 6

2 Theoretical Formulation . 7

2.1 Mathematical Preliminaries . 7
2.1.1 Abstract Algebra . 7
2.1.2 Signals . 9
2.1.3 Kronecker Products . 11
2.1.4 Discrete Fourier Transform 12

2.2 Definitions . 14
2.2.1 MIMO System . 14
2.2.2 Modeling Framework . 16
2.2.3 Paradigm . 17
2.2.4 Software Defined Radio . 17

2.3 Parallel Computing . 19
2.3.1 Parallel Programming Software 21
2.3.2 Kuck’s Model . 22
2.3.3 Kronecker Products in DSP Parallel Algorithms 22

2.4 Time-Frequency Representations 24

v

2.4.1 Short Time Fourier Transform Distribution 24
2.4.2 Ambiguity Function Distribution 26
2.4.3 Wigner Distribution . 28
2.4.4 Choi-Williams Distribution 29

2.5 MIMO Channel Modeling . 31
2.5.1 Modulation-Convolution-Delay (MCD) 32
2.5.2 Delay-Convolution-Modulation (DCM) 32

3 Time-Frequency Signal Representation Tools 34

3.1 webSIRLAB . 36
3.2 SIRDroid . 40

3.2.1 SIRDroid Implementation 42
3.3 Installation . 44

4 Software Implementation . 45

4.1 GNU Radio . 45
4.1.1 Creating Custom Blocks 47
4.1.2 Programing Custom Blocks 47

4.2 Time Frequency Analysis . 48
4.2.1 Short Time Fourier Transform 48
4.2.2 Ambiguity Function . 49
4.2.3 Wigner Distribution . 50
4.2.4 Choi-Williams . 50

4.3 MIMO Analysis . 51
4.3.1 SISO Block . 51
4.3.2 4x4 MIMO Example . 51

4.4 Applications and Testing . 52
4.4.1 Applications . 52
4.4.2 Algorithm Complexity . 57
4.4.3 Parallel Results . 57

5 Conclusions and Future Work . 61

5.1 Conclusions . 61
5.2 Future Work . 62

References . 63

APPENDICES . 68

A Basic Block Structure . 69

B Internal Loop Example . 70

C Generated Code . 71

D VESO-Mesh Integration . 74

vi

E Installation . 76

E.1 webSIRLAB, SIRDroid(Server) 76
E.2 SIRDroid(Client) . 76
E.3 SIRDroid(Source) . 76
E.4 aiplab-gnuradio . 77

vii

List of Tables

2–1 Software Defined Radio . 18

3–1 Time-Frequency Toolboxes . 34

viii

List of Figures

1–1 Communication Model . 1

2–1 4x4 MIMO Model . 14

2–2 Software Defined Radio Paradigm . 18

2–3 Kuck’s Model . 22

3–1 SIRLAB Architecture . 35

3–2 webSIRLAB Main Page . 37

3–3 Frame at webSIRLAB . 37

3–4 webSIRLAB Architecture . 38

3–5 webSIRLAB Frame Parameters . 39

3–6 webSIRLAB Window Parameters . 39

3–7 webSIRLAB Presentation Parameters 40

3–8 SIRDroid Architecture . 42

3–9 SIRDroid Result . 42

3–10 SIRDroid Class Diagram . 43

4–1 GNU Radio Architecture . 46

4–2 GNU Radio Companion . 46

4–3 GNU Radio Custom Block . 47

4–4 Block Class Diagram . 48

4–5 Short Time Fourier Transform Block 49

4–6 Ambiguity Function Block . 49

4–7 Wigner Distribution Block . 50

ix

4–8 Choi-Williams Block . 51

4–9 MCD and DCM SISO Model . 52

4–10 4x4 MIMO Model . 52

4–11 MIMO Block . 53

4–12 STFT Cognitive Radio Diagram . 53

4–13 STFT Cognitive Radio Result . 54

4–14 Auto Ambiguity Function Diagram 54

4–15 Auto Ambiguity Function . 55

4–16 Phase Detection Diagram . 55

4–17 Phase Detection Result . 55

4–18 MIMO Ambiguity Function Diagram 56

4–19 MIMO Ambiguity Function Result 56

4–20 Execution Time, Milliseconds . 57

4–21 Intel T5850 Kuck Model . 58

4–22 Intel T5850 Time . 58

4–23 Intel 2630QM Time . 59

4–24 Intel 2630QM Speed Up . 59

D–1 SORA Block . 75

D–2 SORA System . 75

x

Abbreviations

API Application Programming Interface
ASIC Application Specific Integrated Circuit
AWGN Additive White Gaussian Noise
CPU Central Processing Unit
CR Cognitive Radio
DCM Delay Convolution Modulation
DFT Discrete Fourier Transform
DSP Digital Signal Processing
EMEDS Extended Method of Exact Doppler Spread
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
GPU Graphic Unit Processing
GRC GNUradio Companion
IDE Integrated Development Interface
LCD Liquid Crystal Display
MCD Modulation Convolution Delay
MIMO Multiple Input Multiple Output
MMEA Modified Method of Equal Areas
MPS Multipath Simulator
OFDM Orthogonal Frequency Division Multiplexing
SCTM Scatter Centre Target Model
SDR Software Defined Radio
SIMD Single Instruction Multiple Data
SIRLAB Signal Representation Laboratory
SISO Single Input Single Output
SNR Signal to Noise Ratio
SPMD Single Program Multiple Data
STFT Short Time Fourier Transform
USRP Universal Software Radio Peripheral
WYSIWYG What You See Is What You Get
XML Extensible Markup Language

xi

Chapter 1

Introduction

1.1 Motivation

In a model of communication as shown in Figure 1–1, there are three main parts,

the transmitter, receiver and the channel, the latter where there is no control of its

operation. It is a limited resource, subject to multiple variables that determine the

amount of information that can be transmitted, ie its capacity. One way to improve

that capacity is to use a MIMO system. MIMO (Multiple input, Multiple Output)

systems are leading research in radar and communications, due to their flexibility

and utilization of the channel. A MIMO system uses multiple antennas at both

transmission and reception in order to increase data rates. MIMO systems has been

implemented in the 3G, WiMAX, and 802.11n standards[1].

Figure 1–1: Communication Model

Applications in communication and radar systems have been using MIMO tech-

nology for a number of years, in communications algorithms such as beamforming,

spatial multiplexing, and noise power[2]. In radar systems, MIMO applications have

been useful for object detection[3].

1

2

On the other hand, Software Defined Radio (SDR) has also been widely used

in communication systems in recent years. SDR is defined as a communication

system technology where the radio components are implemented in software instead

of physical analog devices[4].

The use of SDR includes signal processing applications in coding, modulation,

acoustic data transmission, sonar, and others[5]. However, the use of SDR technol-

ogy for MIMO systems is an emerging trend[6]. A framework for SDR simulations

of MIMO systems may be a potential contribution.

One of the most successful implementations of SDR is GNU radio. GNU radio

is an open source, extensible, and modular implementation of SDR. GNU Radio uses

a WYSIWYG approach to editing the data flow. In order to extend GNU Radio to

MIMO systems, four basic functions need to be implemented: STFT, DCM channel,

MCD channel, and ambiguity function.

A Master’s thesis in engineering sciences may include three contributions or

axes in their development: A theoretical axis, where new theories are proposed. An

application axis, where these theories are implemented; and a technological axis,

where technologies are used at the existing time and extended beyond their original

capabilities. This thesis aims to contribute in these three areas as follows: firstly,

a theoretical contribution is provided by developing and proposing the mathemat-

ical formulations for various time-frequency representations, as well as modeling

of MIMO channels. Secondly, these formulations are implemented as a software

prototype. Finally, existing technologies are improved by extending the DSP de-

velopment platform and laboratory GNU Radio signal representations for SIRLAB

beyond their original capabilities.

In the following pages we define the background information of SDR, MIMO,

and the proposed extensions to GNU Radio.

3

1.2 Literature Review

The work presented by M. Patzold, et al., deals with the modeling, analysis,

and simulation of MIMO forms of mobile-mobile communications [7]. It tackles

the problem of how the channel is modeled between mobile-mobile units under the

assumption that both the transmitter and the receiver are surrounded by an infinite

number of scatterers.

The theory behind this work is centered in the concepts of stochastic and de-

terministic models. There is a reference model derived from a two-ring scattering

model, where both the transmitter and the receiver are moving. It is extended by a

stochastic simulation model using only finite numbers of scatterers. The stochastic

model is extended into a deterministic simulation model where all the parameters are

fixed. Various methods of parameter computation are presented. They include: Ex-

tended Method of Exact Doppler Spread (EMEDS) and Modified Method of Equal

Areas (MMEA).

This work is considered important for this thesis for the following reason: It

provides both stochastic and deterministic models for a MIMO system. These deter-

ministic models are more significant in the context of computational simulation. It

also provides a few methods to compute the parameters involved in the simulation.

In the work presented by P. Carlos, et al., the problem addressed is how to

determine the effect of indoor environment modeling precision on MIMO channel

characterization when dealing with a 3D raytracing with electromagnetic wave prop-

agation [8]. There are specific tools proposed to solve this problem. First, there is a

characterization of a MIMO channel using a channel transfer matrix H, a correlation

measurement, and a capacity measurement. Two different indoor environments are

set and studied. The propagation parameters are set. Finally, the antenna number

4

and spacing are changed in order to detect the variation in characteristic param-

eters. This work is significant since it establishes a method to perform a channel

characterization. Also, a simulation setting would be necessary for it.

In the work described by S.H. Zhou, et al., the main problem is how to detect

a target using and statistical approximation [9]. It involves the theory in the field

of detection. The detection presents two approach. One approach is the target

present hypotheses. The other one is the target absent hypotheses. The target

present hypotheses uses the concept that any echo signal will have an statistical

distribution. This statistical distribution can be used if, for example, an array of

antennas are placed to receive a signal, then those signal would have an statistical

correlation showing the presence of the target. This antenna array is a MIMO radar.

The tools used by S.H. Zhou are a mathematical model that comprises the

signal model for diversity MIMO radar. The first tool is the Round-Shaped Scatter

Centre Target Model (SCTM). A large object can be divided into many small size

objects. Another tool is presented as the configuration of a diversity MIMO radar,

where, there are M separated stations.

That work is related with our thesis in the sense that there are an approximation

in the use of signal and an antenna array to detect objects. Our formulation includes

the time-frequency representations where a target is a change into the environment,

resulting into a change in the signal representation.

In the work described by Z. Jindong, et al., the problem to solve is how to use

the ambiguity function to characterize the range and spatial properties of MIMO

radars [10]. To solve this, several tools are presented. First, the ambiguity function

is introduced as a fundamental tool for radars. This function is then extended to

the MIMO radar. Finally, range and spatial resolutions are obtained.

Another important tool for the work presented by Z. Jindong is the simulation

of several waveforms and its corresponding ambiguity functions. The predictions

5

are then validated. This work is related to our thesis as we are considering not only

the ambiguity function, but other time-frequency representations.

In the work developed by P. Hallbjorner, et al., the problem is how to make

measurements over a multipath simulator [11]. It is a study where such simulator

is used to characterize dual antenna performance. The tool presented in this work

is a multipath simulator (MPS) comprising 16 antennas that simulates a 2D signal

environment. This work presents measurements useful to the reconstruction of a

software based simulator for such paths.

The problem addressed by M. Dickens, et al., is how to build a software radio

with commercial over-the-shelf components. Such device includes a general pur-

pose processor on a small-form-factor motherboard, radio hardware, touchscreen

and LCD, and audio speakers. It also includes an internal battery. The tools used

for the proposed solution involve both hardware and software level. The hardware

is a single computational piece with the elements mentioned above. At the software

level a Linux operating system is used. Both, this thesis and the work done by M.

Dickens use GNU Radio for the DSP level operations.

L. Garcia Reis, et al., introduce the Software Defined Radio approach [4]. The

problem formulation is: what a software defined radio can do?. To solve this, all

the characteristics of the SDR are presented. A computational tool is introduced:

GNU Radio as the main component in a SDR architecture.

This article is important for this thesis because it shows how the GNU Radio

software is becoming the de-facto software in the modeling and implementation of

SDRs; also, its GPL license is compatible with the objectives of this thesis. This

explains why we are choosing GNU Radio as the development platform for the

proposed framework.

6

1.3 Summary of Following Chapters

This thesis document is presented in the following manner: In Chapter 2, the

theoretical background is introduced. It includes mathematical descriptions and

formulas used in the investigation. Chapter 3 presents SIRLAB, its current imple-

mentations and its extensions for web and Android platforms. Chapter 4 introduces

the Software Radio Paradigm and how it has been used to build the proposed frame-

work. Conclusions and future work are presented in chapter 5.

Chapter 2

Theoretical Formulation

2.1 Mathematical Preliminaries

2.1.1 Abstract Algebra

First, we introduce some fundamental concepts regarding signal algebra [12]

Definition 1. A non empty set G is said to be a group if there is a binary operation

denoted by �, such that it satisfies the following properties:

1. a � b P G, @a, b P G. This is the closure property.

2. a � pb � cq � pa � bq � c. Associative property.

3. De P G such that @a P G, a � e � e � a � a. e is the identity.

4. @a P G, Db P G such that a � b � e. Inverse existence within the group.

If also, @a, b P G we have a � b � b � a, that group is said to be commutative or

abelian.

A set H is a subgroup if H � G and G is a group.. From this definition, every

group G has two trivial subgroups: Identity teu, and itself G.

Definition 2. Let R be a non empty set. R is a ring if there are two binary

operations � and �, and the following properties are satisfied:

1. a� b P R. Closure for �.

2. a� b � b� a. � is commutative.

3. pa� bq � c � a� pb� cq. � is associative.

4. D0 P R such that @a P R, a� 0 � 0 � a � a. Zero element.

7

8

5. @a P R, Dp�aq P R such that a� p�aq � 0. Additive inverse.

6. a � b P R. Closure for �.
7. a � pb � cq � pa � bq � c. Associative for �.
8. a � pb� cq � a � b� a � c and pa� bq � c � a � c� b � c. Distributive.

If also D1 P R (exists an unique 1 element) such that @a P R, a � 1 � 1 � a � a,

R is a ring with a unit.

Definition 3. A field F is a commutative ring with a unit such that @a P F, Db (b

is unique) such that a � b � b � a � 1.

Definition 4. A non empty set V is a vector space over a field F if V is an abelian

group over a binary operation �, and @α P F@v, w P V , αv P V is defined with the

following properties:

1. αpv � wq � αv � αw, α P F, v, w P V .

2. pα � βqv � αv � βv, α, β P F, v P V .

3. αpβvq � pαβqv, α, β P F, v P V .

4. 1v � v, v P V .

A set W is a subspace if W � V and W is a vector space

Definition 5. Let be V,W vector spaces over a field F . A linear transform or

homomorphism from V to W is a function T : V Ñ W such that:

1. T pv1 � v2q � T pv1q � T pv2q, @v1, v2 P V .

2. T pαv1q � αT pv1q, @v1 P V, @α P F .

The set of all the homomorphisms from V to W is symbolized by HompV,W q.
This set is a vector space with two operations:

1. pT1 � T2qpvq � T1v � T2v, @T1, T2 P HompV,W q and v P V .

2. pαT qv � αpT pvqq, @T P HompV,W q, v P V and α P F .

9

Definition 6. An algebra over a field F is a vector space V over F with an additional

operation called vector operation where:

� : V � V Ñ V

pv0, v1q ÞÑ v � v0 � v1

Such new operation must satisfy the following properties:

1. v0 � pv1 � v2q � pv0 � v1q � v2, @v0, v1, v2 P V .

2. v0 � pv1 � v2q � v0 � v1 � v2, @v0, v1, v2 P V .

3. pv0 � v1q � v2 � v0 � v1 � v2, @v0, v1, v2 P V .

4. αpv0 � v1q � pαv0q � v1 � v0 � pαv1q, @v0, v1 P V ;α P F .

If D1 P V such that 1 � v � v � 1 � v, @v P V , then V is said to be an algebra

with unit over F and 1 is called the identity.

An algebra V is commutative if v0 � v1 � v1 � v0.
The set of all the homomorphisms in a vector space HompV, V q is an algebra

with identity and its operation is the function composition.

Definition 7. The function composition is defined as

� : HompV, V q � HompV, V q Ñ HompV, V q
pT1, T2q ÞÑ T,

where

pT1 � T2qv � T1pT2pvqq, T1, T2 P HompV, V q. (2.1)

2.1.2 Signals

Definition 8. An unidimensional complex finite signal is a function

x : ZN Ñ C

n ÞÑ xrns.

10

If the signal energy is defined as:

Epxq �
N�1̧

n�0

xrnsx�rns. (2.2)

A finite signal or finite numeric sequence can be seen as a vector:

x �

�
��������

xr0s
xr1s

...

xrN � 1s

�
��������
.

The space of the unidimensional signals is denoted by l2pZNq.
Finally, we characterize the set of the unidimensional signals giving the following

statements:

1. l2pZNq is an abelian group V under the cyclic convolution operation. The

identity element for this group is the signal r1, 0, . . . , 0s.
2. l2pZNq is an abelian group W under the Hadamard product operation. The

identity element for this group is the signal r1, . . . , 1s.
3. There is a group homomorphism between the groups V and W . The DFT

maps each element in V into an element W .

4. Adding the � operation as usual to the groups described in 1 and 2 makes a

ring. Its zero element in both cases is the signal r0, .., 0s.
5. The rings obtained in 4 are commutative under the � operation, each one.

This results into a field, each one.

6. From 5 one can extend the l2pZNq set and define it as a vector space over the

Field pCq. Such vector space can have the cyclic convolution operation, the

Hadamard operation, or the usual vector sum operation. The Fourier matrix

FN P HompV,W q.

11

2.1.3 Kronecker Products

The Kronecker product (or tensor product) properties have been studied deeply.

In this work, Kronecker products signal algebra is used to analyze and formulate

computational algorithms for time-frequency representations, following the work of

J.P. Soto Quiros[13]. We came to the conclusion that the Kronecker product is

a powerful tool for parallel algorithm formulations in different platforms: SIMD,

vectorial and mixed architectures [14]. The Kronecker product is defined as follows:

Definition 9. Let An1,n2 and Bm1,m2 be two arbitrary matrices of dimension n1�n2

and m1 �m2, respectively.

AN1,N2 �

�
�����

a0,0 � � � a0,n2�1

...
. . .

...

an1�1,0 � � � an1�1,n2�1

�
����� ,

BM1,M2 �

�
�����

b0,0 � � � b0,m2�1

...
. . .

...

bm1�1,0 � � � bm1�1,m2�1

�
����� .

The Kronecker product of A and B, C � pAbBq is defined as the N1�M1 by

N2 �M2 matrix given by

C � pAN1,N2 bBM1,M2q �

�
�����

a0,0B � � � a0,n2�1B

...
. . .

...

an1�1,0B � � � an1�1,n2�1B

�
����� .

The Kronecker product A b B is computed by substituting any element an1,n2

of matrix A with the product an1,n2B. So, we can consider the Kronecker product

as a matrix decomposition because a very large matrix can be decomposed as the

product of two smaller matrices.

The Kronecker product has the following properties:

12

Associative Property

Let A, B, and C three matrices, then

Ab pB b Cq � pAbBq b C. (2.3)

Distributive over matrix multiplication property

Let A, B, and C three matrices, then

pAbBq pC bDq � pAC bBDq . (2.4)

Inversion Property

Let A and B two non-singular matrices, so C � pAbBq, then

C�1 � pAbBq�1 � �A�1 bB�1
�
. (2.5)

Transposition Property

Let t denote matrix transpose, then

pAbBqt � �At bBt
�
. (2.6)

2.1.4 Discrete Fourier Transform

The Discrete Fourier Transform is defined as the mapping

DFT : l2pZNq Ñ l2pZNq
x ÞÑ X,

such that

Xrks �
N�1̧

n�0

xrnse�j2π knN , k P ZN . (2.7)

An algorithm to perform this calculation is described in the Algorithm 1

The complexity of this algorithm is given by two nested loops with N iterations

each one. This contains the principal multiplication. It gives a complexity of Opn2q.

13

Algorithm 1 Discrete Fourier Transform

Input: Signal xrns P l2pZNq.
Output: Signal Xrks P l2pZNq.
1: M Ð tN

w
u

2: for k � 0 Ñ N � 1 do
3: Xrks Ð 0
4: for j � 0 Ñ N � 1 do
5: Xrks Ð Xrks � xrnse�j2π knN
6: end for
7: end for

A lower complexity algorithm is given by the FFT algorithm. The most com-

mon and fundamental one was discovered by J.W Cooley and John Tukey. The

algorithm[15] described in Algorithm 2 has an Opnlogpnqq complexity. This algo-

rithm requires the length of x be a power of two. However, the speed increase is

significantly better. Taking a 1024 length signal, the traditional DFT would take

1048576 multiplications. The FFT would need 20480 multiplications which is a

considerable speed-up. For this reason, the FFT is the most important numerical

algorithm, given the multiple applications of the DFT. This result is fundamental

in the implementation of algorithms discussed in 2.4.

Algorithm 2 Fast Fourier Transform ditfft2(x,N ,s)

Input: Signal xrns P l2pZNq, N P Z, s P Z.
Output: Signal Xrks P l2pZNq.
1: if N � 1 then then
2: Xr0s Ð xr0s � trivial size-1 DFT base case
3: else
4: Xr0 : N

2
� 1s Ð ditfft2pxrn P 2Zs, N

2
, 2sq � DFT of pxr0s, xr2ss, xr4ss, ...q

5: XrN
2

: N � 1s Ð ditfft2pxrn P 2Z� 1s, N
2
, 2sq � DFT of

pxrss, xrs� 2ss, xrs� 4ss, ...q
6: for k � 0 Ñ N

2
� 1 do � combine DFTs of two halves into full DFT:

7: tÐ Xrks
8: Xrks Ð t� e�i2π

k
NXrk � N

2
s

9: Xrk � N
2
s Ð t� e�i2π

k
NXrk � N

2
s

10: end for
11: end if

14

2.2 Definitions

2.2.1 MIMO System

MIMO refers to Multiple Input Multiple Output. It is the ability to have

multiple antennas at both the transmission and reception as shown in Figure 2–

1 where a 4 � 4 MIMO system is given as an example. Actually, is a field with

great opportunities for research and its results are implemented in today’s common

products such as 3G cellular, WiMax, and 802.11n.

Figure 2–1: 4x4 MIMO Model

Spatial diversity improves performance by using multiple antennas at the re-

ception and combining them optimally. This reduces the noise power in the signal

and thus increase the signal to noise ratio (SNR).

In an optimal combiner, signal yiptq is modulated as xiptq P C, multiplying by

predefined weights wi P C getting the signal S0 P C [16] .

The signal at the reception is composed of the desired signal, noise and inter-

ference. If xdptq is the desired signal, xn is the noise, and xjptq are the interference

signals, then x is

x � xd � xn �
L�1̧

j�0

xj. (2.8)

15

Assuming that both the noise and interference are uncorrelated, then the cor-

relation matrix is:[17]

Rnn � σ2I�
L�1̧

j�0

E
�
u�j � uTj

�
. (2.9)

Although the ideal goal is to eliminate the noise, in practice, it is only necessary

to reduce it enough so the SNR increases and the desired signal can be recovered

[18]. In this way, the weights wiptq can be obtained in a more simple way using an

adaptive algorithm.

In a system with an antenna at the reception and N transmission antennas can

be used to suppress an optimal combiner M � 1 interference. This is assuming an

ideal case without noise.

The channel capacity significantly improved using this method in more realistic

environments. In a Rayleigh fading transmission system with N simultaneous users,

N � 1 interferers can be canceled with K �N antennas.

Multipath occurs when the signal has multiple propagation paths, that is re-

flected in the objects in its path. This improves the channel capacity as well. A good

example is BLAST, a digital communication system with Rayleigh fading character-

istics of simultaneous N users where the receiver knows the channel parameters [19].

If using a N �N MIMO system, N transmitters and N receivers capacity increases

linearly with N . Assuming AWGN (Additive White Gaussian Noise) channel is

approximated by the matrix H.

Hmn � Normalp0, 1?
2
q �Normalp0, 1?

2
q, (2.10)

where  is the imaginary unit.

Thus, H is distributed Chi-square with two degrees of freedom. The lower

bound is

C ¡
ņ

k�1

log2

�
1 � ρ

n
χ2
2k

�
b{s{Hz, (2.11)

16

where ρ � P
N

is the signal to noise ratio with P the average signal power at the

receiver and N the average noise power at the receiver.

As experimental data, a 6 � 6 MIMO system has a capacity of 300b{s{Hz.

The simplest model of a MIMO system is y � Hx � N . The receiver can not

always know the coefficients. If H is diagonalizable then you can get

H � UΣV �, (2.12)

so

U�1y � ΣpV �xq �N. (2.13)

That is, you can preprocess the signal to send and postprocessing after receiving

it, knowing in advance some approximation non-singular H.

2.2.2 Modeling Framework

A software framework is an abstraction in which software providing generic

functionality can be selectively changed by user code. It is a collection of software

libraries providing a defined application programming interface.

Scientific Modeling is the process of generating abstract, conceptual, graphical

and mathematical models. This offers a growing collection of methods, techniques

and theory about all kinds of specialized scientific modeling.

A modeling framework is a software framework that is intended to be used in

scientific modeling. A simulation is the implementation of a model. A simulation

brings a model to life and shows how a particular object or phenomenon will be-

have. Such a simulation can be useful for testing, analysis, or training in those cases

where real-world systems or concepts can be represented by models. As every mod-

eling framework is an implementation of a model, then it must be able to perform

simulations.

17

2.2.3 Paradigm

The word paradigm has been used in science to describe a pattern. It is defined

as a philosophical and theoretical framework of a scientific school or discipline within

which theories, laws, and generalizations and the experiments performed in support

of them are formulated.

In this context, a paradigm with radars and communications is the analog

one. Under this scope, the laws are defined by the laws of electromagnetism. The

paradigm used in this thesis uses the laws used in the context of Digital Signal

Processing.

2.2.4 Software Defined Radio

Now we explain what is software defined radio[20]. Here is a traditional radio

in that it does what it typically makes a traditional radio, send and receive signals.

Not like a traditional radio because several components that were previously done

in hardware, are now computationally implemented in software. In conclusion, the

software defined radio is to bring the software closer to the antenna.

A traditional radio system comprises both a transmitter and a receiver. The

stages in the transmission and reception are as follows. First the source coding / de-

coding, channel coding then / decoding, after baseband modulation / demodulation

and finally the upconverter / downconverter. In a traditional radio, software reaches

the source decoding. The next steps are implemented in hardware. With software-

defined radio, software has been extended to the baseband modulator, providing

great flexibility in the implementation of these two intermediate stages as shown in

Figure 2–2. It is in this domain where monitoring is particularly important channel,

that is where we need a time frequency representation.

It then noted that SDR is possible not only to the capacity of current computers

to achieve the speed required to perform these tasks, but also the possibility to

implement in an ASIC or a FPGA that code. So from the programming, we can

18

Figure 2–2: Software Defined Radio Paradigm

implement the software defined radios in those devices. The radio devices that have

been implemented range from AM receivers to digital communication systems and

radar systems [5].

A list of popular SDR products is described in Table 2–1. The decision to

choose GNU Radio was because its flexibility in terms of licensing. It is subject to

a GPL license where we could access to the code and learn and modify it as needed.

Without any affiliation with an external company, we found this license compatible

with the objectives of this thesis, as it was required to share and redistribute our

results.

The support among the GNU community is very good and we found solutions

to the problems we encountered relatively quick as we advanced with the project.

Finally, the compatibility offered with the USRP (Universal Software Radio Periph-

eral) bring us the possibility to interact with electromagnetic signals.

Software Language License
GNU Radio Python, C++ GPL
SoRa C++ EULA
Simulink Matlab EULA

Table 2–1: Software Defined Radio

19

2.3 Parallel Computing

Parallel computing is a form of computation in which many calculations are

carried out simultaneously [21]. These calculations can be performed in different

processor circuitry, different cores, or even different computation units separated

across the world. This range of granularity levels requires mechanisms for interpro-

cess communications. According to [22], there are 4 types of parallel computers:

1. Shared Memory Multiprocessor System: this computer consists of several pro-

cessors sharing a common memory address space. Using this approach, a

dataset can be loaded into a memory segment and request each processor to

compute over a fraction of that data. Depending on the operating system,

there can be threads which are light processes sharing a large amount of data.

The modern operating systems can manage such light processes and assign

them to a set of processors to be executed.

2. Message Passing Multicomputer: This multicomputer is created by connecting

several different computers by an interconnection network. The interconnec-

tion network is responsible for sending and receiving the data and results for

each computer in the network. A process can be divided into multiple sub-

processes with its corresponding amount of data and send it to a computer in

the network. A limiting issue for this approach is the speed of the network,

specially if there is a high amount of data involved.

3. Distributed Shared Memory: this is a combination of the last two types. It is

a shared memory multiprocessor system in the way of a single address space

where each process can access. It is a message passing multicomputer where

the memory and the datasets have to be sent from its location to the processor

requiring it.

4. SIMD and MIMD: Single and Multiple Instruction, Multiple Data is an early

approach to parallel large data sets where n elements are loaded into a single

20

vector and then applied an instruction at once. The circuitry of the modern

processors permits do that using large registers and wide memory buses. Many

assembly instructions are provided to achieve this at user level.

The speedup factor of a process executed in parallel is defined as:

Spnq � ts
tp
. (2.14)

Where ts is the execution time using one processor and tp is the execution time

using a multiprocessor with n processors. From this equation one can evaluate the

maximum speed up assuming an ideal and completely parallelizable algorithm. Then

such speed is:

Spnq � ts
ts{n � n. (2.15)

However, a normal process can not be parallelized to this limit, this is due to:

1. Time where the processor is not doing useful work to the algorithm.

2. Communication latency with memory or network passing data.

3. Segment codes not parallelizable

4. Extra work on each thread

The efficiency is a measure that indicates how well the algorithm is being parallelized,

comparing it to the ideal case. The maximum efficiency is 100% for the ideal case.

It is defined as:

E � Spnq
n

� 100%. (2.16)

This efficiency is measured empirically. An analytical way to calculate the speed up

factor and the efficiency was given by Gene Amdahl in its famous law, defined as:

Spnq � ts
fts � p1 � fqts{n � n

1 � pn� 1qf , (2.17)

21

where f P r0, 1s is the fraction that can not be parallelized into concurrent tasks.

This imposes a limit to the speed up factor with infinite processors:

lim
nÑ8

Spnq � 1

f
. (2.18)

2.3.1 Parallel Programming Software

Several programming languages and Application Programming Interfaces (API)

have been released to perform parallel computing. A representative list include, but

is not limited to: MPI, OpenMP, OpenCL and MOSIX. Message Passing Interface

is a standardized and portable message passing system to be used in a Message

Passing Multicomputer[23], it is used in a wide range of scientific computing ap-

plication, such as weather simulation [24] . The standard defines the syntax and

semantics of a core of library routines useful for write programs in Fortran or C.

OpenMP is an application programing interface to write programs in a shared mem-

ory multiprocessor[25]. It consists of several compiler directives, library routines and

environmental variables. OpenMP is widely supported by the majority of C, C++

and Fortran compilers such as gcc and Intel. Another API for parallel program-

ming is OpenCL. It is an extension of OpenGL (A standard for computer graphics)

oriented to take advantage of the SIMD and MIMD capabilities offered by graphic

cards[26]. It is cross platform and is supported by the commercial GPU hardware

providers. MOSIX is a UNIX kernel extension to build a distributed shared memory

computers [27]. For purposes of this thesis, the API selected for parallelizing algo-

rithms is OpenMP. This selection was done due to the cross compatibility offered

by its developers, great support among the GNU users and easiness to program a

parallel algorithm with a few directive lines.

22

2.3.2 Kuck’s Model

Kuck’s model [28], as seen in Figure 2–3 is a machine model which shows hier-

archical processing elements, local memory, shared memory, and its network paths

into a single image. Its parameters are:

• P i
0: Processor i Speed.

• M i
0: Processor’s i Memory Amount.

• SMN1: Shared Memory 1 Speed i Speed.

• SMi: Shared Memory i Amount.

• N0
0.5: Interprocessor Network Speed.

This model enables us to compare analytically different architectures and make

predictions about the efficiency and speed of such architectures [29].

Figure 2–3: Kuck’s Model

2.3.3 Kronecker Products in DSP Parallel Algorithms

One of the reasons for using Kronecker product in DSP algorithms formulation

is the fact there is a clear relation between the structural distribution of a Kronecker

matrix and the viability of a very efficient algorithmic implementation in terms of a

specific computational architecture.

23

Let Cn a Kronecker matrix given by:

Cn � pIs bBrq �

�
�����������

Br

Br

Br

. . .

Br

�
�����������
,

where Is is the identity matrix of order s.

In most DSP algorithms (including the matrix DFT implementations) is nec-

essary to compute some matrix multiplications, for instance, Yn � pCnqXn, where

Xn is the input data vector. As Cn has a special structure, making a multiplication

in regular form would be inefficient. It would be better to take advantage of the

symmetry of pIs bBrq by splitting the vector Xn into s subvectors xi of length r

and performing the matrix product pBrqxi on each case. So, for

I3 �

�
�����

1 0 0

0 1 0

0 0 1

�
����� and B2 �

�
�� b0,0 b0,1

b1,0 b1,1

�
�� ,

then, Y6 � C6X6 � pI3 bB2qX6:

�
���������������

y0

y1

y2

y3

y4

y5

�
��������������

�

�
���������������

b0,0 b0,1 0 0 0 0

b1,0 b1,1 0 0 0 0

0 0 b0,0 b0,1 0 0

0 0 b1,0 b1,1 0 0

0 0 0 0 b0,0 b0,1

0 0 0 0 b1,0 b1,1

�
��������������

�
���������������

x0

x1

x2

x3

x4

x5

�
��������������

.

24

If we think in the Single Program Multiple Data (SPMD) paradigm, easily we

can see the relationship among this approach and the referred paradigm. This prod-

uct can be performed in three independent processors at the same time. Splitting

the input vector X6 into 3 sub-vectors of length 2 and performing the matrix product

pB2qX2 on each processor. So,

In Processor 0:

�
�� y0

y1

�
�
�

�
�� b0,0 b0,1

b1,0 b1,1

�
�

�
�� x0

x1

�
�
,

in Processor 1:

�
�� y2

y3

�
�
�

�
�� b0,0 b0,1

b1,0 b1,1

�
�

�
�� x2

x3

�
�
,

in Processor 2:

�
�� y4

y5

�
�
�

�
�� b0,0 b0,1

b1,0 b1,1

�
�

�
�� x4

x5

�
�
.

This way, the Kronecker matrices of the form Is b Br are associated with

the SPMD algorithm implementations. This approach would need s processors

pProcessor0, P rocessor1 � � �Processors�1q and each processor would process a sub-

vector of X with r elements.

2.4 Time-Frequency Representations

2.4.1 Short Time Fourier Transform Distribution

The STFT is a continuous function [30] S:

S : L2pRq � L2pRq Ñ L2pR2q
px,wq ÞÑ Sx,w,

25

such that:

Sx,wpt, wq �
»
xptqwpt� τqe�j2πwtdt. (2.19)

Its definition for the discrete case is

S : l2pZNq � l2pZMq Ñ l2pZN � ZMq
px,wq ÞÑ Sx,w,

such that:

Sx,wrk,ms �
¸
nPZN

xrnswrn�mse�j2π knN . (2.20)

Now, the Cyclic Short Time Fourier Transform (CSTFT) is defined as the

mapping:

S : l2pRq � l2pZNq Ñ l2pZN
2q

px,wq ÞÑ Sx,w,

such that:

Sx,wrk,ms �
N�1̧

n�0

xrnswrxn�mRyN se�j2π
kn
N , (2.21)

where R P N is the displacement constant. The parameter m is limited by m ¤ P �
rN
R
s. The algorithm is described in the Algorithm 3.

Algorithm 3 Short Time Fourier Transform

Input: Signal xrns P l2pZNq, Window width w ¡ 0 P Z, Zero-padding P ¡ 0 P Z.
Output: Matrix srM srP s
1: M Ð tN

w
u

2: for i � 0 ÑM � 1 do
3: wn P ZN Ð 0
4: y P ZP Ð 0
5: for j � 0 Ñ w � 1 do
6: wnrj � w � is Ð 1
7: end for
8: for j � 0 Ñ N � 1 do
9: yrjs Ð xrjs � wnrjs
10: end for
11: sris Ð dftpyq
12: end for

26

To evaluate the complexity of this algorithm, the number of cycles on the outer

loop is a fraction of N . There is a number of N multiplications in the second inner

loop. This algorithm takes advantage of the FFT algorithm to calculate the DFT

which has a complexity of Opnlogpnqq. Taking this into consideration, this algorithm

has a complexity of Opn2logpnqq. The outer loop is parallelizable.

2.4.2 Ambiguity Function Distribution

The Ambiguity function is a mapping [31]

A : L2pRq � L2pRq Ñ L2pR2q
pf, gq ÞÑ Af,g,

such that:

Af,gpτ, fq �
»
fptqg�pt� τqe�j2πftdt. (2.22)

The discrete Ambiguity transform is the map

A : l2 pZNq � l2 pZNq Ñ l2 pZN � ZNq
pf, gq ÞÑ Af,g,

where,

Af,g rm, ks �
¸
nPZN

f rns g� rxn�myN s e�j2π
kn
N . (2.23)

Where f rts is the broadcast signal, grts is the return signal, g� rts the complex

conjugate of the return signal, m is the delay between the broadcasting of the signal

and the returning time that the signal is detected at the receiver, k represents the

Doppler frequency, xn�myN is the module N operation of n�m addition and ZN

is an integer group in the interval r0, N � 1s.
Then, if we take into consideration the Kronecker product properties, we can

write the Ambiguity Function A1
x,y P CN2�1 as:

A1
f,g � rIN b pP d F �

Nqs v, (2.24)

27

where d is the Hadamard product, and P P CN�N :

P rτ, vs �

$''''&
''''%

ej2πxmvtyN N Odd, 2m � 1modN

ej2πxvtyN N Even, xvtyN N
2

ej2πpxvtyN�Nq N Even, xvtyN ¥ N
2
,

(2.25)

with v P CN2�1 �
�����

v0
...

vN�1

�
����� , (2.26)

and vi � ryr0s, yr1s, . . . , yrN � 1ssT such that yrns � xrxn � jyN sx�rns for

j, n P ZN .

Calculating the Kronecker product we have:

A1
x,y �

�
�����

pP d F �
Nqv0

...

pP d F �
NqvN�1

�
����� . (2.27)

Reorganizing into Ax,y P CN�N such that

Ax,y � rpP d F �
Nqv0 | pP d F �

Nqv1 | . . . | pP d F �
NqvN�1s. (2.28)

The algorithm to perform this function is described on Algorithm 4.

Algorithm 4 Ambiguity Function

Input: Signal xrns P l2pZNq, yrns P l2pZNq
Output: Matrix ArN srN s
1: for i � 0 Ñ N � 1 do
2: for j � 0 Ñ N � 1 do
3: y1rjs Ð conjpyrmodpj � i, Nqsq
4: end for
5: for j � 0 Ñ N � 1 do
6: zrjs Ð xrjs � y1rjs
7: end for
8: Aris Ð dftpzq
9: end for

28

To evaluate the complexity of this algorithm, the number of cycles on the outer

loop is N . There is a number of N multiplications in the inner loops. This algorithm

takes advantage of the FFT algorithm to calculate the DFT which has a complexity

of Opnlogpnq. Taking this into consideration, this algorithm has a complexity of

Opn2logpnqq. The outer loop is parallelizable.

2.4.3 Wigner Distribution

The discrete Wigner distribution is a mapping [32]

Wx : L2pZNq Ñ l2pZN � ZNq
pxq ÞÑ Wx,

such that:

Wxrn, ks � 1

N

N�1̧

τ�0

N�1̧

v�0

N�1̧

l�0

ρNe
j2πvlxrxl � τyN sx�rlse�j 2πN pnv�kτq. (2.29)

We can redefine the Wigner distribution as a linear operator Wx. First, we

define the matrix W 1
x P CN2�1 such that

W 1
x � 1

N
pFN b FNqA1

x

� 1
N
pFN b FNqrIN b pP � F �

Nqsv.
(2.30)

Resolving the Kronecker expression

W 1
x �

1

N

�
�����

F0A
1
x

. . .

F0A
1
x

�
����� , (2.31)

where Fm P CN�N2

Fm � rwm�0
N � FN | wm�1

N � FN | . . . | wm�pN�1q
N � FN s, (2.32)

with wN � e�j
2π
N and m P ZN .

29

Finally, we get the matrix representation for the Wigner distribution

Wx � 1

N
rF0A

1
x | F1A

1
x | . . . | FN�1A

1
xs. (2.33)

Algorithm 5 describes a procedure to obtain the Wigner distribution

Algorithm 5 Wigner

Input: Signal xrns P l2pZNq, yrns P l2pZNq
Output: Matrix W rN srN s
1: for i � 0 Ñ N � 1 do
2: for j � 0 Ñ N � 1 do
3: y1rjs Ð conjpyrmodpj � i, Nqsq
4: end for
5: for j � 0 Ñ N � 1 do
6: zrjs Ð xrjs � y1rjs
7: end for
8: Aris Ð dftpzq
9: end for
10: W1 Ð dft2pAq
11: W Ð W1T

To evaluate the complexity of this algorithm, the number of cycles on the outer

loop isN . There is a number ofN operations in the inner loops. This algorithm takes

advantage of the FFT algorithm to calculate the DFT which has a complexity of

Opnlogpnq. Finally, the bidimensional FFT has a complexity Opn2logpnqqq. Taking

this into consideration, this algorithm has a complexity of Opn2logpnqq. The outer

loop is parallelizable.

2.4.4 Choi-Williams Distribution

The Choi-Williams function is defined as the mapping [33]

Cx : L2pRq Ñ L2pR2q
pxq ÞÑ Cx,

such that:

Cxpt, fq �
» 8

�8

Axpη, τqΦpη, τqej2πpηt�τfqdηdτ, (2.34)

30

where the kernel is defined as:

Φpη, τq � e�αpητq
2

, α P C. (2.35)

Its definition for the discrete case is a mapping

Cx : l2pZNq Ñ l2pZN � ZNq
pxq ÞÑ Cx,

such that:

Cxrt, f s �
N�1̧

m�0

N�1̧

k�0

Axrm, ksΦrm, ksej 2πN pkt�mfq, (2.36)

where the kernel is defined as:

Φrm, ks � e�αpmkq
2

. (2.37)

Its matrix representation is a matrix Cx P CN2�N2
such that:

Cx � rF0pA1
x d Φq | . . . | FN�1pA1

x d Φqs , (2.38)

where Φ P CN2�1, Φmrks � Φrm, ks,

Φ �

�
�����

φ0

...

φN�1

�
����� , (2.39)

and Fl P CN�N2
such that

Fl �
�
wl�0N FN | . . . | wl�pN�1q

N FN

�
. (2.40)

Algorithm 6 summarizes the procedure to obtain the Choi-Williams distribu-

tion.

To evaluate the complexity of this algorithm, the number of cycles on the outer

loop is N . There is a number of N operations in the inner loops. This algorithm

31

Algorithm 6 Choi-Williams

Input: Signal xrns P l2pZNq, yrns P l2pZNq, α
Output: Matrix W rN srN s
1: for i � 0 Ñ N � 1 do
2: for j � 0 Ñ N � 1 do
3: y1rjs Ð yrmodpj � i, Nqs
4: end for
5: for j � 0 Ñ N � 1 do
6: zrjs Ð xrjs � conjpy1rjsq
7: end for
8: Aris Ð dftpzq
9: for j � 0 Ñ N � 1 do
10: Arisrjs Ð Arisrjs � e�αpi�jq2
11: end for
12: end for
13: W1 Ð dft2pAq
14: W Ð W1T

takes advantage of the FFT algorithm to calculate the DFT which has a complexity

of Opnlogpnq. The conjugate operations is a Opn2q algorithm. Finally, the bidi-

mensional FFT has a complexity Opn2logpnqqq. Taking this into consideration, this

algorithm has a complexity of Opn2logpnqq. The outer loop is parallelizable.

2.5 MIMO Channel Modeling

Let be M the number of input antennas, N the number of output antennas. A

MIMO channel may be modeled as a linear system

y � Hx, (2.41)

where x � rx0 | x1 | . . . | xM�1s, y � ry0 | y1 | . . . | yN�1s; xi, yj P l2pZDq. Using

this approach, every pair transmitter/receiver is modeled as a single operator. Thus,

the output at each antenna is the sum:

ya �
M�1̧

b�0

Ha,bpxbq. (2.42)

32

The operator Ha,b is modeled as a SISO (Single Input Single Output). Two

SISO models are presented as a operator composition. Each model has 3 stages:

Modulation, Convolution, and Delay.

Assuming that: xbptq, t P R, b P ZM is a continuous signal and a digital signal

xbpn � Tsq Ñ xbrns, n P ZD, Ts � 1 and D "M �N our two models are:

2.5.1 Modulation-Convolution-Delay (MCD)

The first model is the MCD model whose result is a signal ya,b P l2pZDq:

ya,b � ga,b fD δma,b , (2.43)

where ga,b P l2pZDq
ga,b � Tha,btfa,bu, (2.44)

where fa,b P l2pZDq
fa,b � xb dD Xka,b . (2.45)

Composing these 3 equations give us the following equation

ya,b � pTha,btxb dD Xka,buq fD δma,b . (2.46)

2.5.2 Delay-Convolution-Modulation (DCM)

The second model is the DCM model whose result is a signal ya,b P l2pZDq:

ya,b � ga,b dD Xka,b , (2.47)

where ga,b P l2pZDq
ga,b � Tha,btfa,bu, (2.48)

where fa,b P l2pZDq
fa,b � xb fD δma,b . (2.49)

33

Composing these 3 equations give us the following equation

ya,b � pTha,btxb fD δma,buq dD Xka,b . (2.50)

Finally, we have two general equations for a MIMO system:

ya �
M�1̧

b�0

pTha,btxb dD Xka,buq fD δma,b , (2.51)

ya �
M�1̧

b�0

pTha,btxb fD δma,buq dD Xka,b . (2.52)

Where 2.51 is the MCD model received at the antenna a, and 2.52 is the DCM

model received at the antenna a.

Chapter 3

Time-Frequency Signal Representation Tools

Several Time-Frequency toolboxes were considered. Its main characteristics are

shown in Table 3–1:

Software Developer Language
TFTB Rice Univ Matlab, Octave
TFSA Univ of Queensland Matlab
DiscreteTFDs Jeff O’ Neill Matlab
SIRLAB AIPLAB C

Table 3–1: Time-Frequency Toolboxes

Several criteria were used to select the main Time Frequency Representation

tools:

1. Speed

2. GNU/Linux compatible

3. Free source

4. Documentation

SIRLAB was chosen as the main Time-Frequency Signal Representation tool. It

is written in C which is faster than Matlab code generally speaking. Also is compat-

ible with GNU/Linux, is open source and well documented. Other approaches only

works with Matlab. The toolbox from Rice University will be used for benchmarking

and comparison.

34

35

SIRLAB gives a skeleton to the development and testing of new algorithms for

signal processing operators. It was developed at the AIPLAB at the University of

Puerto Rico, Mayaguez campus. It is specially suitable for the development of sig-

nal representation algorithms such as the Short Time Fourier Transform, its main

example. Seen as a framework, SIRLAB provides a tool to use time-frequency oper-

ators in other works at the AIPLAB. Such tool is implemented as various functions

for the input - processing - output application of an algorithm. That functions are

grouped into several libraries:

1. Inputlib: reads parameters from a parameters file and from a .wav file

2. Processlib: signal management .wav segment reads, zeropadding and colormap

3. Aritmetlib: basic arithmetic operations, Hadamard, normalization and maxi-

mum

4. Outputlib: Graphical elements for output frames.

SIRLAB is based in OpenCV and FFTW open source libraries. As seen on the

Figure 3–1 the architecture is very simple:

Figure 3–1: SIRLAB Architecture

1. A wav file and a parameters file are the input to SIRLAB

2. SIRLAB process the wav file according to the received parameters and using

its own libraries, FFTW, and OpenCV.

3. Finally, produces a set of output files, which are stored in local storage.

36

A typical implementation with SIRLAB is the computation of the Short Time

Fourier Transform and the Ambiguity Function. These functions are written in C.

However, several challenges with SIRLAB are:

• Hard to install: it requires programming and compilation abilities. In many

systems there is not all the libraries installed. An entry level user would avoid

the technical effort involved with the installation.

• Powerful machine: the computational requirement for time frequency analysis

turns SIRLAB not suitable for netbooks, smartphones, and tablets.

• Hard to test: creation and modification of a parameter file is not as straight-

forward as it seems.

Keeping all this in mind we propose a set of interfaces for SIRLAB, they are

webSIRLAB and SIRDroid.

3.1 webSIRLAB

webSIRLAB is a web interface for SIRLAB where its advantages are:

1. No install: a new user only has to type one web address. It is recommended

to have a set of wav files or a program for recording that ones.

2. Client Server Architecture: The client only has to make every requirement

while the server is processing the data.

The Figure 3–2 shows the typical webSIRLAB page. At the left side there is a

data form where the parameters are adjusted. Initially it takes the default values.

At the right side the results are displayed in a image grid. Clicking on any image

pops up a frame containing the zoomed image as seen on Figure 3–3.

The architecture for webSIRLAB is shown on Figure 3–4. It explanation is as

follows:

1. The user fills the form, uploads a wav file, and submits.

37

Figure 3–2: webSIRLAB Main Page

Figure 3–3: Frame at webSIRLAB

2. webSIRLAB takes the parameters and the wav file and executes SIRLAB,

producing a short log and, if no errors, the time frequency images.

3. The user’s browser retrieves the images from the server.

38

Figure 3–4: webSIRLAB Architecture

4. The images are shown in the browser.

In order to take advantages of the capacities of SIRLAB, webSIRLAB has a

set of variables that can be modified in the web form. The Figure 3–5 shows the

complete wav file signal to be processed, and two boxes -A and B- containing a

detailed description of such signal, these details that are contained in Box A, are

explained in the Figure 3–6 while the Box C is explained in the Figure 3–7. Each

number in the figures represents a parameter. There are:

1. Num Samples Frame: number of samples that each frame contains and repre-

sents in its STFT

2. Frame Overlay: is a percentage of ’Num Samples Frame’ and tells webSIRLAB

how much every frame advances, being 0 not advance and 100 a full advance

without overlap.

39

Figure 3–5: webSIRLAB Frame Parameters

Figure 3–6: webSIRLAB Window Parameters

3. Window width: number of samples that are taken in a single window, a shorter

number gives better temporal resolution. A greater one gives better spectral

resolution.

4. Jump Samples: is a percentage of ’Window Width’ used to define how much

the window advances, being 0 not advance and 100 a full advance without

overlap.

40

Figure 3–7: webSIRLAB Presentation Parameters

5. Zeropadding: zeroes are appended to the window to complete this number of

samples, usually a power of two. This signal will be operated by the DFT.

6. Min Freq: is the minimal frequency that will be displayed on the result.

7. Max Freq: is the maximal frequency that will be displayed on the result.

8. Start Percent: the starting percentage at which the complete wav file signal

will be processed.

9. End Percent: the ending percentage at which the complete wav file signal will

be processed.

3.2 SIRDroid

SIRDroid is an Android interface for SIRLAB. In this lab we saw the importance

of new mobile technologies. Noting that devices such as tablets and smartphones

have every day a greater market share, and operating system android is more popular

in this segment, it was decided to implement an application that could bring SIR-

LAB to these devices[34]. Because these devices do not have the processing power

required by SIRLAB, takes on particular significance the client-server architecture

given earlier. SIRDroid can record environmental data, send them to process and

41

receive in seconds The main objective with SIRDroid was to improve the end-user

experience with the STFT on a tablet. Such devices give us several advantages such

as:

• Mobility. Long life batteries and improved portability with lightweight com-

ponents.

• Touch screen. Natural user interaction enables us to design an intuitive inter-

face.

• Connectivity. Internet access with cellular data or wi-fi hotspot can connect

to a server which process data.

• Multimedia. Microphone is used to record real time data while speakers re-

produces it.

Taking this into consideration. It was necessary to develop an application to

access the capabilities of webSIRLAB from a Tablet with Android. Android is an

operating system for mobile devices such as smartphones and tablets. It is developed

by the Open Handset Alliance. Its main features are:

• Open source: Free to use and modify as needed. The developer community is

large and very active. It is well documented.

• Best-selling platform: The platform will be supported and extensively used in

the near future.

• Solid platform: Linux is a stable and robust kernel.

SIRDroid is written in java targeting an android OS 3.2. Its architecture is

shown in Figure 3–8, and described as follows:

1. The microphone (Mic) records environmental acoustic data.

2. The client Android mobile device creates a wav file and sends it through the

Internet to a remote webSIRLAB server.

3. The Remote webSIRLAB server process the wav file with a set of standard

parameters and sends the resulting images to the client.

42

Figure 3–8: SIRDroid Architecture

4. The client receives the images and displays them in its screen as seen on the

Figure 3–9.

Figure 3–9: SIRDroid Result

3.2.1 SIRDroid Implementation

As mentioned before, the implementation was done into the Java programming

language. Its main characteristic is a Object Oriented Programming language in

which everything can be modeled as an object with a set of properties and methods.

Among other features java has:

43

1. General Purpose: Java is suitable for a wide range of applications that goes

from data management to digital signal processing.

2. Concurrent: multitasking programming, parallel execution.

3. Class Based. Robust and scalable.

Keeping this in mind, the SIRDroid application was designed as a set of classes

with certain roles. The class diagram can be seen in Figure 3–10.

Figure 3–10: SIRDroid Class Diagram

1. ImageAdapter. Display the images.

2. Microphone. Manages the internal microphone and creates the wav file signal.

3. SirlabAndroid. Manages the connection with a webSIRLAB server.

4. TestActivity. Main class, synchronizes the application.

44

3.3 Installation

SIRLAB and SIRDroid(Server) are packed together in a single deb package.

The minimum system requirements are:

• Processor: All fully compatible 686 (or newer) instruction set processors, 500

MHz

• Hard Drive space (for software): 4 MB

• Hard Drive space (for signals) : 16 GB

• RAM: 1024 MB

Recommended Minimum Configuration (for Optimal Performance):

• Processor: All fully compatible 786 (or or newer) instruction set processors, 2

GHz

• Hard Drive space (for software and temporary files): 32 GB

• RAM: 4 GB

Supported Operating Systems:

• Ubuntu Precise Pangolin 12.04(LTS)

• Debian Wheezy.

webSIRLAB will not install under older operating system versions. This is due

to the new support to OpenCV libraries.

Suggested additional software:

• Apache2

• PHP5

Chapter 4

Software Implementation

4.1 GNU Radio

According to its developer[35], GNU Radio is a free and open-source software

development toolkit. Its main characteristics are:

• Signal processing blocks.

• Can be used with readily low cost external RF hardware.

• Can be used as a simulation environment.

• Widely supported among hobbyist, academic, and commercial environments.

• GNU Radio was originally created for digital signal processing.

GNU Radio applications are primarily written using Python programming lan-

guage. The critical performance signal processing is implemented in C++. The

developer is able to implement real-time, high-throughput, signal processing paths

in a simple to use development environment called GNU Radio Companion.

The main architecture of GNU Radio can be seen on the Figure 4–1. GNU

Radio has several modules. These modules have blocks. All the blocks are ’glued’

together with the Python language.

GNU Radio Companion (GRC) is a Simulink like graphical tool to design signal

processing flow graphs. A description of its windows is shown in the Figure 4–2

• Menu bar: Is the region of the application interface where the menus are

displayed.

45

46

Figure 4–1: GNU Radio Architecture

Figure 4–2: GNU Radio Companion

• Tools bar: It has also buttons to save, load, compile, and execute the system.

• Working area: It contains the system design. The blocks are drag and dropped

into this area and its connections are defined.

• Blocks: It contains a list of all the blocks available. A block can be selected

and inserted into the working area. Custom and programmed blocks are also

included here.

47

4.1.1 Creating Custom Blocks

New custom blocks can be created by connecting existing blocks together. There

are two special block that are intended to simulate a generic input or a generic

output. Connecting such elements as a source or a sink can model more complex

systems. These new blocks can be used on other blocks. The Figure 4–3 provides

an example of how such thing can be done.

Figure 4–3: GNU Radio Custom Block

4.1.2 Programing Custom Blocks

Sometimes there is no way to make a block with the available tools at gnuradio-

companion. However it is possible to write a new block and integrate it as a new

library into GNU Radio. By this way there is more control in the algorithmic

behavior. This is done using the C++ programming language and extending the

abstract class gr block and implementing the inherited function general work(). The

class diagram can be seen on the Figure 4–4.

After extending the gr block class, it is needed to make it available to the Python

interpreter and the GRC editor. This is done following the next steps:

1. Add a python definition to the module python definition.

2. Add a XML file describing the inputs and outputs to GRC

In a GNU environment, the automatic building program ’make’ will perform

the compilation.

48

Figure 4–4: Block Class Diagram

4.2 Time Frequency Analysis

4.2.1 Short Time Fourier Transform

As discussed in subsection 2.4.1 the Short Time Fourier Transform can be seen

as a linear operator with Kronecker products. The current implementation was done

in SIRLAB and was fully ported to the GNU Radio environment using the technique

of programming a new block. As explained in section 3.1, like the original SIRLAB

version, the version has multiple configurable parameters. Likewise has an input

signal. This signal can be any source of GNU Radio. The output of this algorithm

is a screen where the Short Time Fourier Transform can be seen in real time as the

input signal is read. The block and its typical use can be seen in the Figure 4–5.

49

Figure 4–5: Short Time Fourier Transform Block

4.2.2 Ambiguity Function

The main formulation for the Ambiguity Function was discussed in subsection

2.4.2. This block was already implemented on SIRLAB and was ported to GNU

Radio programming a new block. The parameters for this block are as follows:

1. Sample Rate: The rate at which the input signals are sampled.

2. Min freq: The minimum frequency required at the Time-Frequency represen-

tation.

3. Max freq: The maximum frequency required at the Time-Frequency represen-

tation.

4. Numsamplesframe: The number of samples that each frame uses for its calcu-

lation.

Figure 4–6: Ambiguity Function Block

50

4.2.3 Wigner Distribution

The main formulation for the Wigner Distribution was discussed in subsection

2.4.3. This block was implemented into GNU Radio programming a new block. The

parameters for this block are as follows:

1. Sample Rate: The rate at witch the input signals are sampled.

2. Min freq: The minimum frequency required at the Time-Frequency represen-

tation.

3. Max freq: The maximum frequency required at the Time-Frequency represen-

tation.

4. Numsamplesframe: The number of samples that each frame uses for its calcu-

lation.

Figure 4–7: Wigner Distribution Block

4.2.4 Choi-Williams

The main formulation for the Choi-Williams Distribution was discussed in sub-

section 2.4.4. This block was implemented into GNU Radio programming a new

block. The parameters for this block are as follows:

1. Sample Rate: The rate at witch the input signals are sampled.

2. Min freq: The minimum frequency required at the Time-Frequency represen-

tation.

3. Max freq: The maximum frequency required at the Time-Frequency represen-

tation.

51

4. Numsamplesframe: The number of samples that each frame uses for its calcu-

lation.

Figure 4–8: Choi-Williams Block

4.3 MIMO Analysis

4.3.1 SISO Block

The most basic MIMO system is the 1�1 or SISO system. It has 1 transmitter

element and 1 receiver element. Two MIMO channels were presented in section

2.2.1. This is an implementation of such a model.

The two MIMO channel models presented above can be implemented under the

paradigm of SDR with gnuradio-companion IDE. Each of the combination transmit-

ter / receiver can be seen as a SISO model in which happen 3 stages: modulation,

convolution and delay for first case. In the second case there is delay, convolution

and modulation. This implementation would require only 3 blocks as shown in

Figure 4–9.

4.3.2 4x4 MIMO Example

It implements the 4 � 4 MIMO channel model assuming that each pair trans-

mitter / receiver is a SISO channel. This results in 16 SISO channels each with its

respective convolution kernel, vector modulation and delay. Figure 4–10 shows how

to carry out this process for a MCD model.

52

Figure 4–9: MCD and DCM SISO Model

Figure 4–10: 4x4 MIMO Model

Finally the new block generated from an application can be used by connecting

their respective Inputs and Outputs as shown in Figure 4–11

4.4 Applications and Testing

4.4.1 Applications

The first test we did with the STFT was in a SISO channel. In previous projects

at this laboratory, the short time Fourier transform was used for the characterization

of species in bioacoustics. It has also been used in SONAR applications.

In this example of short time Fourier transform, GNU Radio was used to gener-

ate a set of tones and the STFT to monitor that channel. There we can inspect the

tones generated at 440, 880 and 1000 kHz generated at different time, the diagram

53

Figure 4–11: MIMO Block

to achieve this can be seen on Figure 4–12. The results are shown in Figure 4–13.

There, the tones generated enter at different time.

Figure 4–12: STFT Cognitive Radio Diagram

The ambiguity function is generally used in radar and sonar applications. The

design of signals to fed a transmitter in these applications is done using the ambiguity

function. A test signal and its auto ambiguity function should have an easy-to-

discover maximum. In the example provided with the diagram 4–14, a sine signal

is generated as a source, and was rescued a complete cycle. This signal has two

54

Figure 4–13: STFT Cognitive Radio Result

copies that are sent to the ports at the ambiguity function block. The result shown

in Figure 4–15 left. Another test was done similarly to obtain a square signal and

its ambiguity function, which is shown in Figure 4–15 right.

Figure 4–14: Auto Ambiguity Function Diagram

Another application for the ambiguity function is provided as an example in

the figure 4–16.There an array of two microphones are set to register environmental

acoustic signals. Each signal is connected directly to the ambiguity function block.

Two test where performed sending a tone from different places. The ambiguity

function measures the phase between the two captured signals as can be seen in

55

Figure 4–15: Auto Ambiguity Function

Figure 4–17. The graphic in the left side shows that the signals have no phase. The

right one shows that the signals have phase. The graphics are different, and can be

used to detect at which angle or direction the tone comes from. This is also a basic

example in the use of the ambiguity function in MIMO systems.

Figure 4–16: Phase Detection Diagram

Figure 4–17: Phase Detection Result

We then put together time-frequency representations using a 2x2 MIMO DCM

and configure its doppler frequency and delay for the SISO channels that are con-

nected to the first output antenna. Then an ambiguity function is used to compare

56

the input and output signals on the channel. The diagram to achieve this can be

shown in Figure 4–18. The resulting ambiguity function is shown in Figure 4–19.

Figure 4–18: MIMO Ambiguity Function Diagram

Figure 4–19: MIMO Ambiguity Function Result

57

4.4.2 Algorithm Complexity

To prove the algorithms complexity we test each time-frequency block with

different sizes: 512, 1024, 2048, 4096, and 8192. Each execution was done using one

thread. The Figure 4–20 shows the complexity of the algorithms developed. The

graph gives the measure in milliseconds for each of the algorithms. On the X axis

are the sizes used and the corresponding execution time in milliseconds on the y

axis. We can see the trend for all algorithms is N2logpNq, as had been predicted.

Figure 4–20: Execution Time, Milliseconds

4.4.3 Parallel Results

The time took to perform the Short Time Fourier Transform was measured

changing both the size of each signal fragment, and the number of threads used for

parallelization. We test the application-level parallelization on two systems. The

first testing system was a dual core pc with the following figures of merit:

• CPU: 5850 Core2Duo 2.16GHz 4MB Cache, 2 cores, 2 threads

• Memory: 4GB DDR2 667MHz Dual Channel

• OS: GNU/Linux Debian 5.0 Kernel 2.6.32

The Kuck Model for this particular architecture can be seen on Figure 4–21 Where

• P i
r0,1s: 2.16GHz

58

Figure 4–21: Intel T5850 Kuck Model

• M i
0: 64KB

• SMN1: N/A

• SMN2: 5333.33 MB/s

• SM1: 2MB

• SM2: 4GB

• N0
0.5: N/A

The resulting time for this system is shown in Figure 4–22.

Figure 4–22: Intel T5850 Time

59

The second testing system is represented by the following figures of merit:

• CPU: 2630 Core i7 2.00GHz Nominal, 2.9GHz turbo, 6MB Cache, 4 cores, 8

threads

• Memory: 6GB DDR3 1333MHz Dual Channel

• OS: GNU/Linux Ubuntu 12.04 Kernel 3.2

The resulting time and speed up for this system are shown in Figure 4–23 and

Figure 4–24 respectively.

Figure 4–23: Intel 2630QM Time

Figure 4–24: Intel 2630QM Speed Up

60

Generally speaking, the optimal performance is achieved using as many threads

as cores. However a good recommendation is to use two threads per core. Using

more than two threads per core have disadvantages given the additional effort that

the operating system has to do managing the not-running processes.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this research work, a set of time frequency signal representations were im-

plemented as part of a framework for MIMO simulations. Also, all the interfaces for

such framework were defined and how to access them are explained. A benchmark

was executed in order to measure speed and realtime capabilities.

A web interface was provided to perform Short Time Fourier Transform over a

wav file. This enables the user to create time frequency representations on recorded

real data. Another interface for realtime was developed for Android devices such as

tablets and smartphones.

A base MIMO System was developed using two channel models: MCD (Modu-

lation Convolution Delay) and DCM (Delay Convolution Modulation). An example

of how to construct MIMO systems were provided along with a benchmark. The

interfaces for such simulation were provided. A synthetic data was designed for test

the system.

Finally, a MIMO modeling framework was designed and developed using time

frequency representation tools and a MIMO channel simulation. Such framework

is capable of performing at real data speed using a state-of-the-art computational

hardware. Also the developed framework is highly compatible with the current

61

62

signal interfaces such as wav files, data files, audio interfaces, network interfaces and

USRP devices.

Such framework is useful to verify new theory and models for MIMO scattering

channels in the electromagnetic and acoustic domains.

5.2 Future Work

• Develop input signals that can be fed to the framework in order to simulate

various channel models. This can be done numerically with a computational

environment such as Matlab. Also can be synthesized from a real data.

• Integrate with a DSP signal generator or a FPGA. This can be achieved using

the framework’s ability to connect read from the computer’s sound system.

A cable can be connected from the DSP/FPGA output to the computer in-

put. The reverse case can be done connecting the computer output to the

DSP/FPGA input.

• Integrate with the NETSIG computer module [36]. Actually the webSIRLAB

interface is being adapted. With the framework ability to transport data

remotely over a network this is useful to perform simulations remotely in a

cloud computing way.

• Create additional simulations with high order MIMO. The modularity of the

framework and the block oriented development makes this no difficult.

References

[1] IEEE Computer Society. Ieee standard for information technology– local

and metropolitan area networks– specific requirements– part 11: Wireless lan

medium access control (mac)and physical layer (phy) specifications amendment

5: Enhancements for higher throughput. IEEE Std 802.11n-2009 (Amendment

to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std

802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009), pages 1

–565, 29 2009. doi: 10.1109/IEEESTD.2009.5307322.

[2] A.I. Sulyman and M. Hefnawi. Performance evaluation of capacity-aware mimo

beamforming schemes in ofdm-sdma systems. Communications, IEEE Transac-

tions on, 58(1):79 –83, january 2010. ISSN 0090-6778. doi: 10.1109/TCOMM.

2010.01.080111.

[3] D.R. Fuhrmann, J.P. Browning, and M. Rangaswamy. Signaling strategies for

the hybrid mimo phased-array radar. Selected Topics in Signal Processing,

IEEE Journal of, 4(1):66 –78, feb. 2010. ISSN 1932-4553. doi: 10.1109/JSTSP.

2009.2038968.

[4] A. Luiz Garcia Reis, A.F. Barros, K. Gusso Lenzi, L.G. Pedroso Meloni, and

S.E. Barbin. Introduction to the software-defined radio approach. Latin Amer-

ica Transactions, IEEE (Revista IEEE America Latina), 10(1):1156 –1161, jan.

2012. ISSN 1548-0992. doi: 10.1109/TLA.2012.6142453.

[5] L. Williams and M.R. Inggs. Low cost networked radar and sonar using open

source hardware and software. In Radar Systems, 2007 IET International Con-

ference on, pages 1 –5, oct. 2007.

63

64

[6] A. Gupta, A. Forenza, and Jr. Heath, R.W. Rapid mimo-ofdm software defined

radio system prototyping. In Signal Processing Systems, 2004. SIPS 2004. IEEE

Workshop on, pages 182 – 187, oct. 2004. doi: 10.1109/SIPS.2004.1363046.

[7] M. Patzold, B.O. Hogstad, and N. Youssef. Modeling, analysis, and simulation

of mimo mobile-to-mobile fading channels. Wireless Communications, IEEE

Transactions on, 7(2):510 –520, february 2008. ISSN 1536-1276. doi: 10.1109/

TWC.2008.05913.

[8] P. Carlos, P. Yannis, V. Rodolphe, and C. Pierre. Sensitivity of the mimo

channel characterization to the modeling of the environment. Antennas and

Propagation, IEEE Transactions on, 57(4):1218 –1227, april 2009. ISSN 0018-

926X. doi: 10.1109/TAP.2009.2015791.

[9] S.H. Zhou and H.W. Liu. Target statistical correlation characteristic for spatial-

frequency jointly diversity multiple-input multiple-output radar. Radar, Sonar

Navigation, IET, 5(6):638 –649, july 2011. ISSN 1751-8784. doi: 10.1049/

iet-rsn.2010.0153.

[10] Z. Jindong, W. Kerang, and Z. Xiaohua. Spatial-dependent waveform design

for colocated uniform linear array multiple-input multiple-output radar. Radar,

Sonar Navigation, IET, 5(5):545 –550, june 2011. ISSN 1751-8784. doi: 10.

1049/iet-rsn.2009.0297.

[11] P. Hallbjorner, J.D. Sanchez-Heredia, P. Lindberg, A.M. Martinez-Gonzalez,

and T. Bolin. Multipath simulator measurements of handset dual antenna

performance with limited number of signal paths. Antennas and Propagation,

IEEE Transactions on, 60(2):682 –688, feb. 2012. ISSN 0018-926X. doi: 10.

1109/TAP.2011.2173451.

[12] Mario Paredes. Domingo Rodrigues. Jorge Villamizar-Morales. La estructura

algebraica del espacio de seales unidimensionales. Revista Integracion, UIS, 23

(2):15 –39, 2005.

65

[13] J.P. Soto Quiros. ”Computational Framework for Harmonic Treatment of Bidi-

mensional Representations”. 2011.

[14] J. Granata, M. Conner, and R. Tolimieri. Recursive fast algorithm and the role

of the tensor product. Signal Processing, IEEE Transactions on, 40(12):2921

–2930, dec 1992. ISSN 1053-587X. doi: 10.1109/78.175736.

[15] Steven Johnson and Matteo Frigo. Implementing ffts in practice. Connexions,

sep 2009.

[16] J. Winters. Optimum combining in digital mobile radio with cochannel inter-

ference. Selected Areas in Communications, IEEE Journal on, 2(4):528 – 539,

jul 1984. ISSN 0733-8716. doi: 10.1109/JSAC.1984.1146095.

[17] J.H. Winters and M.J. Gans. The range increase of adaptive versus phased

arrays in mobile radio systems. In Signals, Systems and Computers, 1994. 1994

Conference Record of the Twenty-Eighth Asilomar Conference on, volume 1,

pages 109 –115 vol.1, oct-2 nov 1994. doi: 10.1109/ACSSC.1994.471427.

[18] J. Winters. Optimum combining for indoor radio systems with multiple users.

Communications, IEEE Transactions on, 35(11):1222 – 1230, nov 1987. ISSN

0090-6778. doi: 10.1109/TCOM.1987.1096697.

[19] Gerard. J. Foschini. Layered space-time architecture for wireless communication

in a fading environment when using multi-element antennas. Bell Laboratories

Technical Journal, page 41 59, oct 1996.

[20] J. Mitola. The software radio architecture. Communications Magazine, IEEE,

33(5):26 –38, may 1995. ISSN 0163-6804. doi: 10.1109/35.393001.

[21] G. S. Almasi and A. Gottlieb. Highly parallel computing. Benjamin-Cummings

Publishing Co., Inc., Redwood City, CA, USA, 1989. ISBN 0-8053-0177-1.

[22] Barry Wilkinson and Michael Allen. ”Parallel Programing”. Prentice Hall,

1999.

66

[23] A. Skjellum, N.E. Doss, and P.V. Bangalore. Writing libraries in mpi. In

Scalable Parallel Libraries Conference, 1993., Proceedings of the, pages 166 –

173, oct 1993. doi: 10.1109/SPLC.1993.365570.

[24] E.M. Khaneghah, S.L. Mirtaheri, and M. Sharifi. Evaluating the effect of

inter process communication efficiency on high performance distributed sci-

entific computing. In Embedded and Ubiquitous Computing, 2008. EUC ’08.

IEEE/IFIP International Conference on, volume 1, pages 366 –372, dec. 2008.

doi: 10.1109/EUC.2008.11.

[25] J.C. Moreira, E. Miguez, C. Vilacha, and A.F. Otero. Parallelization of an op-

timal power flow with a multicore symmetric shared memory computer. In En-

vironment and Electrical Engineering (EEEIC), 2011 10th International Con-

ference on, pages 1 –4, may 2011. doi: 10.1109/EEEIC.2011.5874767.

[26] S. Antão and L. Sousa. Exploiting simd extensions for linear image processing

with opencl. In Computer Design (ICCD), 2010 IEEE International Conference

on, pages 425 –430, oct. 2010. doi: 10.1109/ICCD.2010.5647672.

[27] M. Hakim, J. Jais, and S. Salwa. Mosix: Implementation, trend and benchmark

in malaysia. In Information Technology, 2008. ITSim 2008. International Sym-

posium on, volume 3, pages 1 –6, aug. 2008. doi: 10.1109/ITSIM.2008.4632069.

[28] David J Kuck. ”High Performance Computing”. Oxford University Press, 1996.

[29] Robert J. Voigt Linday B.H. May. Queueing theory modeling of a cpu-gpu

system. May 2010. URL http://www.ll.mit.edu/HPEC/agendas/proc10/

Day1/PA10_May_abstract.pdf.

[30] L. Cohen. Time-Frequency Analysis. Prentice Hall PTR, 1995.

[31] L. Auslander and R. Tolimieri. Characterizing the radar ambiguity functions.

Information Theory, IEEE Transactions on, 30(6):832 – 836, nov 1984. ISSN

0018-9448. doi: 10.1109/TIT.1984.1056980.

http://www.ll.mit.edu/HPEC/agendas/proc10/Day1/PA10_May_abstract.pdf
http://www.ll.mit.edu/HPEC/agendas/proc10/Day1/PA10_May_abstract.pdf

67

[32] E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys.

Rev., 40:749–759, Jun 1932. doi: 10.1103/PhysRev.40.749. URL http://link.

aps.org/doi/10.1103/PhysRev.40.749.

[33] W.J. Williams H. Choi. Improved time-frequency representation of multicompo-

nent signals using exponential kernels. Acoustics, Speech and Signal Processing,

IEEE Transactions on, 37(6):862 –871, 1989.

[34] MobiLens comScore. April 2012 u.s. mobile subscriber market share,

comscore reports, 2012. URL http://www.comscore.com/Press_Events/

Press_Releases/2012/6/comScore_Reports_April_2012_U.S._Mobile_

Subscriber_Market_Share. [Online; accessed 17-July-2012].

[35] GNU Radio. Gnu radio, main page, 2012. URL http://gnuradio.org. [Online;

accessed 17-July-2012].

[36] D. Rodriguez, K. Lu, and C. Aceros. Sirlab-netsig integration for environmen-

tal surveillance monitoring in wireless mesh sensor networks. In Circuits and

Systems (LASCAS), 2011 IEEE Second Latin American Symposium on, pages

1 –4, feb. 2011. doi: 10.1109/LASCAS.2011.5750270.

[37] H.M. Lugo-Cordero, R.K. Guha, Kejie Lu, and D. Rodriguez. Secure service

distribution for versatile service-oriented wireless mesh networks. In Malicious

and Unwanted Software (MALWARE), 2011 6th International Conference on,

pages 88 –94, oct. 2011. doi: 10.1109/MALWARE.2011.6112331.

http://link.aps.org/doi/10.1103/PhysRev.40.749
http://link.aps.org/doi/10.1103/PhysRev.40.749
http://www.comscore.com/Press_Events/Press_Releases/2012/6/comScore_Reports_April_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2012/6/comScore_Reports_April_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2012/6/comScore_Reports_April_2012_U.S._Mobile_Subscriber_Market_Share
http://gnuradio.org

APPENDICES

Appendix A

Basic Block Structure

class aip_example;

typedef boost::shared_ptr<gr_null_sink> gr_null_sink_sptr;

aip_example_sptr

aip_make_example (size_t sizeof_stream_item);

class aip_example : public gr_sync_block

{

friend aip_example_sptr aip_make_example (size_t sizeof_stream_item);

aip_example (size_t sizeof_stream_item);

public:

int work (int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

};

69

Appendix B

Internal Loop Example

for (j = 0; j <= ltimemax; j++)

{

// Multiply the signal by window. Return in window.

haddamard_sig(datahd, datatx1, datarx1, numsamplesframe);

// Do zeropadding to increase spectral resolution.

zeropaddingf(datainpad, zeropadding, datahd, numsamplesframe);

// Execute the plan

fftw_execute(plan1); // FFT of the padded time signal.

// Time shift of a signal.

shift_signal(datatx1, jumpsamples, numsamplesframe, 1);

// Shift the FFT result

fft_shift(datainpad, dataout, zeropadding);

// Write and shift time domain

write2matstft(zeropadding, datainpad, 1, kfreqmin, kfreqmax,

matstft, (j+numsamplesframe/2)%numsamplesframe, &maximoimag);

}

70

Appendix C

Generated Code

#!/usr/bin/env python

##

Gnuradio Python Flow Graph

Title: Top Block

Generated: Tue May 12 00:34:46 2012

##

from gnuradio import audio

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio.eng_option import eng_option

from gnuradio.gr import firdes

from grc_gnuradio import wxgui as grc_wxgui

from optparse import OptionParser

import aip

import wx

class top_block(grc_wxgui.top_block_gui):

71

72

def __init__(self):

grc_wxgui.top_block_gui.__init__(self, title="Top Block")

##

Variables

##

self.samp_rate = samp_rate = 44100

##

Blocks

##

self.gr_vector_source_x_1 = gr.vector_source_f((1,0,0,0), True, 1)

self.gr_interp_fir_filter_xxx_0 = gr.interp_fir_filter_fff(250, (1,))

self.audio_source_0 = audio.source(samp_rate, "", True)

self.audio_sink_0 = audio.sink(samp_rate, "", True)

self.ambfunc_0 = aip.ambfunc("ambfunc_0",44100,1,1,1024,0,10000,1024)

##

Connections

##

self.connect((self.gr_vector_source_x_1, 0),

(self.gr_interp_fir_filter_xxx_0, 0))

self.connect((self.gr_interp_fir_filter_xxx_0, 0),

(self.audio_sink_0, 0))

self.connect((self.audio_source_0, 0),

(self.ambfunc_0, 1))

self.connect((self.gr_interp_fir_filter_xxx_0, 0),

73

(self.ambfunc_0, 0))

def get_samp_rate(self):

return self.samp_rate

def set_samp_rate(self, samp_rate):

self.samp_rate = samp_rate

if __name__ == ’__main__’:

parser = OptionParser(option_class=eng_option, usage="%prog: [options]")

(options, args) = parser.parse_args()

tb = top_block()

tb.Run(True)

Appendix D

VESO-Mesh Integration

VESO is the acronym for Versatile Service Oriented. It is implemented by a

Wireless Mesh Sensor Network (WMSN). VESO mesh introduces the concept of a

Service Oriented Routing Algorithm (SORA). SORA provides service orientation

at the network layer, allowing integration of services. As explained by [37], SORA

utilizes a DNS service to map the location of resources into an IP address.

In order to integrate the results given in this thesis with the VESO platform

we are proposing the use of such results in this way: Take advantage of the proto-

cols developed for the VESO mesh, to perform signal sensing (acquisition), signal

communication (conveying) and signal processing(treatment), a special block has to

be written into the proposed framework. This special block should implement the

VESO mesh SORA protocols in order to decode the signal. Then that signal is pro-

cessed by a workflow into GNU Radio. After, the results can be passed to a encoder

block, that also implements the protocol for VESO mesh, sending the signal. There

each master sensor node (MSN) in the network can perform the operations required

for this signal. An example for such approach can be seen in Figure D–1 where we

have such special blocks.

A set of computing devices can instantiate the proposed model, integrating

a mesh as shown in Figure D–2. Then, the signals are acquired by a client and

distributed over the mesh.

74

75

Figure D–1: SORA Block

Figure D–2: SORA System

Appendix E

Installation

E.1 webSIRLAB, SIRDroid(Server)

A deb package has been provided to install webSIRLAB and SIRDroid into a

computer. It needs an Ubuntu 12.04 operating system. Also administrative privi-

leges. Assuming you open a terminal and are placed in the directory where the deb

package is copied, then proceed to install typing the command:

pc@user:~/\$ sudo dpkg -i stftweb_2.0-1_amd.deb

The server is then accessible typing localhost/sirlab in a web browser.

E.2 SIRDroid(Client)

In order to install SIRDroid in a tablet, an apk package is provided. After

copy such file into the device filesystem, proceed with the installation taping that

file. Android will ask to accept the required privileges. If third-party apps is not

enabled, Android will prompt you to modify the setting.

E.3 SIRDroid(Source)

For this, a zip file is provided containing the source code for SIRDroid. You

must have an eclipse SDK with the Android plugin. After import the zip package

into the workspace, create an Android device and run the application on them. More

precise instructions on how to install the Android’s SDK can be found in the next

url: http://developer.android.com/sdk/installing/index.html.

76

77

E.4 aiplab-gnuradio

A tar-gz file is provided with the source code of the blocks developed and

containing each time-frequency representation. GNU Radio and webSIRLAB must

be installed prior to install aiplab-gnuradio. Assuming you are in the next directory

where aiplab-gnuradio is copied, the installation proceeds typing this to a terminal:

pc@user:~/\$ tar -zxvf aiplab-gnuradio.tar.gz

pc@user:~/\$ cd aiplab-gnuradio

pc@user:~/aiplab-gnuradio\$./bootstrap

pc@user:~/aiplab-gnuradio\$./configure

pc@user:~/aiplab-gnuradio\$ make

pc@user:~/aiplab-gnuradio\$ sudo make install

After installing aiplab-gnuradio, gnuradio-companion shows the time-frequency rep-

resentation blocks in the category aip.

	Abstract English
	Abstract Spanish
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Literature Review
	1.3 Summary of Following Chapters

	2 Theoretical Formulation
	2.1 Mathematical Preliminaries
	2.1.1 Abstract Algebra
	2.1.2 Signals
	2.1.3 Kronecker Products
	2.1.4 Discrete Fourier Transform

	2.2 Definitions
	2.2.1 MIMO System
	2.2.2 Modeling Framework
	2.2.3 Paradigm
	2.2.4 Software Defined Radio

	2.3 Parallel Computing
	2.3.1 Parallel Programming Software
	2.3.2 Kuck's Model
	2.3.3 Kronecker Products in DSP Parallel Algorithms

	2.4 Time-Frequency Representations
	2.4.1 Short Time Fourier Transform Distribution
	2.4.2 Ambiguity Function Distribution
	2.4.3 Wigner Distribution
	2.4.4 Choi-Williams Distribution

	2.5 MIMO Channel Modeling
	2.5.1 Modulation-Convolution-Delay (MCD)
	2.5.2 Delay-Convolution-Modulation (DCM)

	3 Time-Frequency Signal Representation Tools
	3.1 webSIRLAB
	3.2 SIRDroid
	3.2.1 SIRDroid Implementation

	3.3 Installation

	4 Software Implementation
	4.1 GNU Radio
	4.1.1 Creating Custom Blocks
	4.1.2 Programing Custom Blocks

	4.2 Time Frequency Analysis
	4.2.1 Short Time Fourier Transform
	4.2.2 Ambiguity Function
	4.2.3 Wigner Distribution
	4.2.4 Choi-Williams

	4.3 MIMO Analysis
	4.3.1 SISO Block
	4.3.2 4x4 MIMO Example

	4.4 Applications and Testing
	4.4.1 Applications
	4.4.2 Algorithm Complexity
	4.4.3 Parallel Results

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	 References
	APPENDICES
	A Basic Block Structure
	B Internal Loop Example
	C Generated Code
	D VESO-Mesh Integration
	E Installation
	E.1 webSIRLAB, SIRDroid(Server)
	E.2 SIRDroid(Client)
	E.3 SIRDroid(Source)
	E.4 aiplab-gnuradio

