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Abstract

The objective of this research is to demonstrate the necessity of the industry of the
use of functional data analysis techniques in order to analyze experiments. The type of
experiment analyzed has the peculiarity that the response is measured repeatedly through
time or through a specific signal factor. Two case studies are used in order to test the
three methods proposed. The first method is a Point-Wise approach in which a classical
ANOVA is performed in each level of the signal factor. The second uses a basis to
represent the collection of all the response functions in order to relate the coefficients of
the basis representation with the factors of the experiment. The third approach is a
modification of the second method. The only difference is that regions are predetermined
and the basis is applied and analyzed in each region separately. The three methods are

proved in order to determine their effectiveness.
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Resumen

El objetivo de esta investigacion es el demostrar la necesidad de utilizar el andlisis
de datos funcionales en experimentos industriales. El tipo de experimentos analizados
tiene la peculiaridad de que la respuesta se mide repetidamente a lo largo de un factor
sefal. Dos casos de estudio fueron utilizados para probar los tres métodos propuestos. El
primer método se basa en conducir un analisis de varianza en cada nivel del factor sefial.
El segundo se utiliza una base para representar todas las funciones. Los coeficientes de la
base estan asociados a los factores del experimento. El tercer método es una modificacion
del segundo; la unica diferencia es que se crean regiones con respecto al factor sefial. En
cada region se aplica la base y se analizan los coeficientes de la misma. Los tres métodos

fueron probados con el proposito de determinar su efectividad.
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1 Introduction

1.1 Justification

The technological developments in information processing have made real time
process monitoring possible. The result of these developments is the collection of huge
amounts of data. For that reason, new techniques are required in order to analyze and
take advantage of the data available. Today it is possible to analyze a process or a system
considering the input or output variables as functions instead of as discrete points. For
this type of analysis some techniques have been developed, for example longitudinal data
analysis and the functional data analysis (FDA). These analyses are appropriate when
each individual is measured repeatedly through time or through a specific signal factor
for example (frequencies, rotating speeds or compression loads [3]). The techniques
previously mentioned have been applied successfully in the biological sciences,
psychology, and social sciences. Only now are these techniques starting to be applied in
engineering problems that affect industry.

In every manufacturing process, it is necessary to establish standards, and monitor
the performance of the process in order to ensure the highest quality to the customer. In
most of the manufacturing process Statistical Process Control (SPC), the set of tools used
to control the process accuracy and precision. However, the implementation of an SPC
program is not enough to ensure quality. Sometimes problems occur and it is necessary
to have the proper mechanisms to detect the root causes in order to take the necessary
corrective actions. One of the most widely used tools to find the root causes of the
problems is Design of Experiments (DOE). DOE provides the mechanisms to find the
factors that affect directly the process; it can be used as an optimization tool.

For all the reasons mentioned above, it is necessary to develop the proper set of
tools to introduce FDA concepts to problems faced by industries. These tools must

integrate the analysis of functional data in order to perform successful experiments.



1.2 Objectives

Functional data analysis is very complex; it involves a lot of computational effort
and it requires the understanding of topics like, basis functions and Fourier series among
others. The main objective of this research is to integrate the capabilities of the
functional data analysis to industrial experiments in an efficient manner. Other specific
objectives are

e Develop some methods to simplify the experimentation with functional
data.

e Analyze and compare the methods proposed

e Develop a series of applications to ease the implementation of the proposed

methods in industry

1.3 Organization

Chapter 2 presents the literature review and the background of the most relevant
concepts related to the work completed in this research. These concepts include design of
experiments (DOE), an introduction to functional data analysis, which is the most
important concept, presented in this chapter and some other important topics such as
linear regression, and functional analysis of variance. The methodology used to complete
the objectives of this thesis is explained in Chapter 3. This chapter includes the
discussion of the three methods proposed for this research in detail.

Chapters 4 and 5 present the results for the two case studies selected for this
research. The first case is a simulated one; the second is a real world application. Chapter
6 explains the computer applications developed during this research. Chapter 7 presents

the conclusions and future work to expand this research.



2 Basic Concepts

Several concepts required for the FDA experimental integration are discussed in this

chapter. The concepts are design of experiments, functional data analysis, linear

regression, functional analysis of variance, and high dimensional analysis of variance.

2.1

Design of Experiments

2.1.1 General Definition and Objectives

In general terms it is possible to define the concept of design of experiments as the

systematic manipulation of certain input variables (factors) to observe their respective

impact in an output variable (response variable). The main objectives of the design of

experiments are the following

1.

A T

Obtain the maximum amount of information using the minimum of resources.
Detect the factors that shift the mean of the response variable.

Find the factors that affect the dispersion or variability of the response variable.
Detect the factors that do not have effect any effect in the response variable.
Construct an empirical model that relates the factors with the response variable.

Find the proper levels of the main factors to optimize the process.

2.1.2 Factorial Experiments

Factorial experiments are one of the most widely used experimental designs when

two or more factors are involved. The basic characteristics of a factorial design are

1.
2.

All the possible level combinations of every factor are studied.

It is necessary to investigate the interaction effects among factors.

Among the factorial experiments, the most widely used is the 2* in which each factor

has only two levels. This type of experiment has certain properties desired in

experimentation like orthogonality and projection among others.



2.2 Functional Data Analysis

2.2.1 Goals of the Functional Data Analysis

Functional data analysis (FDA) was developed for analyzing functional (or curve)

data [2]. In FDA, the data consists of functions not vectors. Samples y,,Y,...Y, taken
at time points t,t,,...are converted into functions {X(t j )}, j=12,... as shown on Figure

2-1. The goals of the functional data analysis are
1. Represent the data in ways that facilitate further analysis.
2. Display the data to highlight various characteristics.
3. Explain variation in an outcome or dependent variable by using input or
independent variable information.
4. Compare two or more sets of data with respect to certain types of variation, where
two sets of data can contain different sets of replicates of the same functions, or

different functions for a common set of replicates

o]
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Figure 2-1 Graphical Representation of the Functional Data Problem

2.2.2 Main Steps in an Functional Data Analysis

Assuming that a functional datum for replication i arrives as a set of discrete
measured values, Y, Y,,... i, , the tasks required to perform the functional data analysis
are [2]

1. The raw data is collected, cleaned and organized.



2. Data are converted to functional form. That is, the raw data for observation i are
used to define a function x; that can be evaluated at all values of t over some
interval.

3. Summary statistics and plots can be generated in order to ease the analysis.

4. The functions may be registered or aligned in some way; so important features
found in each curve occur at roughly the same argument values.

5. Exploratory analyses can be carried out on the registered data, for example
principal components analysis.

6. Models can be constructed to establish the relationship between a dependent

variable with respect one or more independent variable.

2.2.3 Representing the Functional Data as a Smooth Function

The simplest way to convert the raw data into a functional object is using
interpolation [2], [4]. This technique can be applied in cases when the measures do not
have too much observational noise. When the raw data have, considerable noise is
necessary to apply a smoother to reduce the effect of the noise in calculations and
analysis. There are several types of smoothers that can be applied to functional data for
example linear smoothing and smoothing based in basis-function methods. Those two

types are explained with more details in the following sections.

2.2.3.1 Linear Smoothing

A linear smoother estimates the function value x(t) by a linear combination of

discrete observations
%) =) S;(ty;. teT 2.1
j=l1

The behavior of the smoother at t is determined by the weights Sj(t). Linear smoothers

can be represented in a matrix form. Suppose that the sequence S, <S, <...<S, of

evaluation points in T at which the function x is to be estimated, is on hand. Notice that
the evaluation points do not need to be the same as the observation values tj. Let Xbe the

m-vector of values x(s;) and y for the vector of observed data y;. Is possible to write



X =Sy (2.2)
where S;;=Si(s).
Many widely used smoothers are linear. The linearity of a smoother is a desirable
feature for various reasons: The linearity property
S(ay + bz) = aSy + bSy
is important for obtaining various properties of the smooth representation. Simplicity of
the smoother implies relatively fast computation. The concept of linear smoothing it is

shown in Figure 2-2
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Figure 2-2 Graphical Explanation of the Linear Smoothing approach

From Figure 2-2 it is possible to observe the observed pointsy;, 1 = 1,2,3,..., at

times t,,1=1,2,3,..., and the predetermined evaluation points are S; , 1= 1,2,3,...

2.2.3.2 Smoothing Based in Basis Function Methods

The function x; can be represented by a basis function expansion, which is defined

by a set of basis functions, ¢,k =1,...,K [2]. In this approach, a functional observation

Xj 1s expressed as

X (1) = zcik¢k ® (2.3)
K



When these basis functions ¢, are specified, then the conversion of the data into a
functional data object involves computing and storing the coefficients of the expansion,
Cik, Into a coefficient matrix.
There are many bases possible, and many considerations to take into account. The
following list provides a number of the more common bases:
1. Fourier Basis, typically used for periodic data.
. B-Spline Basis, typically used for nonperiodic data.

2
3. Polygonal Basis, defining a function made up of straight-line segments.
4. Monomial Basis, consisting of the power of t: 1, t, t2, ...

5

ot

. Exponential basis, a set of exponential functions,e“s each with a different rate
parameter oy.

Of these basis functions, the first two are by far the most important [2]. The Fourier

and the Polygonal basis are used when the data does not present many local features in

extremely stable functions.

2.2.4 Summary Statistics for Functional Data

The classical summary statistics apply equally for functional data [2]. The mean,
variance, covariance and correlation are shown in this section.

1. Mean
X(t)=N"' i X, (t) (2.4)
2. Variance 7
var, (t) = (N - 1)“i[xi 0 -XM®] (2.5)
3. Covariance
cov, (t,t,) = (N —Dli{xi ) - X)X ) - Xt} (2.6)

4. Correlation

cov, (t,,t,)

2.7
JVar, (t, \Var, (t,) @7)

corr,(t,,t,) =




2.2.5 Functional Linear Regression

Sometimes it is necessary to establish the relationship between one response variable
and two or more independent variables. There are a few possible situations in which the
functional linear regression applies [2], and these are

1. Functional response with non-functional independent variables.

2. Non-functional response with functional independent variables.

3. Functional response and functional independent variables.

In this thesis, the situation under study is the first one. This is because in the design
of experiments, the set of independent variables (factors) is fixed. The design matrix (in
a 2" factorial design) contains ones and minus ones representing the two levels (low and
high) of each factor. To complete the linear regression, which is the fundament of the
analysis conducted in every design of experiment, is necessary to understand the linear

regression when the data is not functional.

2.2.5.1 Linear Regression

Linear regression analysis is probably the most widely used technique to establish
the relationship between a response variable and one or more decision (independent)
variables in the form of

y=Xpf+¢ (2.8)
where X is a matrix n x p, p is a vector p x 1 of the regression coefficients that has to be

estimated by ,3, and ¢ is the random error that are assumed to be independent are

normally distributed with constant variance.
The essence of the linear regression is obtain a model which minimizes the sum of
squared errors that are defined as
n
sum of square errors (SSE) = Z:(yi -V )2 . (2.9)
i=1
It can be proved that the coefficients that minimize the sum of the square errors can be

obtained using the formula

f=(XTX)"(XTy). (2.10)



A serious problem that may dramatically affect the usefulness of a regression
model is multicollinearity, or near linear dependence among the regression variables [5].
Regression models fit to data by the method of least of squares when strong
muticollinearity is present are notoriously poor prediction equations, and the values of the
coefficients are often very sensitive to the data in the particular sample collected [5].
Another effect of the multicollinearity problem is the physical interpretation of the
coefficients of the model obtained. The model can fit the data, but the coefficients that
are used to determine which factors are more relevant in the experiment can be seriously
affected not only in magnitude, the sign of the coefficient can affected. In order to detect
the multicollinearity problem the variance inflation factors (VIF) are used. Variance
inflation factors greater than 10 imply a serious multicollinearity problem.

In linear regression, not all the regression variables are relevant to the model all
the times. Sometimes it is necessary to eliminate some variables from the model. One of
the most widely used techniques for variable selection is the backward elimination
stepwise procedure. The procedure begins with all K candidate regressors. Then a partial
F-statistic is computed for each regressor as if it were the last variable to enter the model.
The smallest of these partial F-statistics is compared with a pre-selected value Fy (or F-
to-remove), for example, and if the smallest partial F value is less than F,,, the regressor
is removed from the model. Now a regression with K-1 regressors is fit, the partial F-
statistics for this new model calculated, and the procedure repeated. The backward
elimination algorithm terminates when the smallest partial F value is no less than the
preselected cutoff value Fy [S]. The stepwise procedure can be used to improve models
that have the multicollinearity problem; due the elimination of the variables that are

correlated, the model can be improved dramatically.

2.2.5.2 Functional Analysis of Variance (FANOVA)

The concepts of linear regression can be applied in a Point-Wise manner [2], [3] to
functional data following these steps
1. Convert the response variable into a functional form; this implies the execution of

most of the steps mentioned previously for example smoothing, registration, etc.
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2. For each selected level of the signal factor, the coefficients of the model have to

be calculated.

3. Each coefficient is converted into a function of the signal factor.

In other words the result of this procedure is a group of coefficients that are functions
of the signal factor in the same manner that the response variable. In addition, of the
functional linear regression a functional analysis of variance can be used to analyze the
effects of some variables over the response. FANOVA considers the problem as a
univariate ANOVA problem for each specific level of the signal factor. A crucial
drawback to this approach is that an enormous number of hypothesis (the number of data
points per curve can be hundreds or thousands) has to be tested simultaneously that

causes a serious multiplicity problem [9].

2.2.5.3 High-Dimensional Analysis of Variance (HANOVA)

It is a powerful overall test for functional hypothesis testing based on the
decomposition of the original functional data into Fourier or wavelet series, and applied
the adaptive Neyman and wavelet thresholding procedures to the resulting empirical
Fourier and wavelet coefficients respectively. The underlying idea based on the sparcity
of the underlying signal’s representation in the Fourier or wavelet domains that allows a
significant reduction of dimensionality [6], [9]. This procedure is not used in the methods
proposed, but it is a good example of how complex the methods developed for curves

comparison are.

2.2.5.3.1 Testing Differences among Multiple Groups of Curves
Consider the observed curves from | different groups:
X ©,i=12..,Lj=1,...,n,t=1,.,T}

It is possible to assume that

Xi®=f®O+e®) (2.11)
where {eij t),t=1,.,T } are stationary time series with mean 0. One is interested in

testing hypothesis:
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Ho:f (t)= f(t) .
ori=1,..,1 andt=1,....T
H, :f (t)= f(b)
Let {X ; (t)} be the direct Fourier transform of the vector {X i (t)}. Then {X ; (t)} satisfied
the ideal model
Xy )= (O +&; 1) (2.12)
Then the previous hypothesis is equivalent to the following problem

Ho:f (k)= f (k) fori=1,..,I andk =1,.., T then it is possible to apply the Adaptive

Analysis of Variance [6].

2.2.5.3.2 Adaptive Analysis of Variance

For simplicity of notation, it is possible to state the HANOVA as follows: let
Xi ~ N(g, 0“?) be independent and random variables [6]. One wants to test

Ho: py; =p; fori=1,...,I andj=1,..,n

2

where n is large. It is assumed that {Uij} are known. Suppose that prior knowledge

indicates that useful information is concentrated on the first m cells. Then the following
sub-problem is considered

Ho: sy = p; forj=1,..m

The maximum likelihood ratio statistic for the sub-problem is

X? :Zm:zo'i}z(xij _Y.j)2 (2.13)

j=1 i=l

with
R B— (2.14)

Thus a level-a test is to reject Ho when
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o i (S 2y, X, (-

(2.15)
1
> —— X, (I-a)=(1 =Dm

2(I_l)m{ fom(1=@) = (1 =m}

Note that when the degrees of freedom (I-1)m are large, F,, is normally distributed with
*) 5é . 2 4 ! -2 — \2 .

mean O, ZW and variance 1. Where o = ZZG”— (,uij U j) with

—1)m j=1 i=1

|
Z oy My

— i=1

i = . In practice, m must be determined as M =argmax F_ leading to the

I
-2 1<m<n
Z Oij

i=1

adaptive testing statistic, which defines the HANOVA

F, ZE%M{;;G;(X” -X,F -(0 —l)m} 2.16)

Specifically when I=2, the test statistic reduces to

F. = max ! {i(xu—le) —m} (2.17)

2 2
=M 2m = O+ 0y

From the previous sections, it is possible to observe the amount of concepts that will

be integrated and simplified on this work. As mentioned on the first chapter, the intention
of this research is to make feasible the use of these tools in industry. The next chapter
presents the details of the methodology that will be used during this work. Three methods

were proposed based on the concepts presented on this chapter.
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3 Methodology

3.1 Point-Wise method

The Point-Wise method is based on the ideas of the functional data analysis (FDA)
proposed by Ramsay and Silverman [2] in their book and papers in specific in the
functional analysis of variance (FANOVA) mentioned in the previous chapter. A linear
regression model is generated at each level of the signal factor. Then curves of
coefficients are obtained. In other words, dynamic models are generated. The main
difference of this method with respect the FDA is that no smoothing techniques have
been used. In the type of industrial experiments considered there is no interest with
respect the derivatives of the response variable; this is the justification for not using the
smoothers; also simplification is highly desired in a technique that will be applied in the
industry. In addition to the coefficients, the respective statistical tests to validate the
regression are performed at each level of the signal factor. To be more specific, an F-test
to verify the significance of the regression and a T-test to verify the contribution of each
factor are performed at each level of the signal factor resulting in curves for the F and T
tests. In addition, the residuals and the coefficients of determination are calculated at each

level of the signal factor.

3.1.1 Model Validation and Inference

As mentioned previously, an F test is applied to validate the significance of the
regression at each level of the signal factor. The F test is used to complete the following

hypothesis test
Ho: =B, == =0
H, : B; # 0 for at least one j.

The statistical test is given by

= _MsR

=20 3.1
0 = VSE G.1)
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where the MSE is the mean squared error and the MSR is the mean squared regression.
The hypothesis is rejected if Fo > Fo p-1 n-p.

The coefficients are verified in order to know which ones are making a real
contribution to the model. This is very important because the coefficients of the
regression are associated with a factor or combinations of factors in the experiment. The
hypothesis for the coefficients is given by

Hy:8;,=0
H :8;#0

The statistical test t used is given by

t, =t (3.2)

where Cj; is the diagonal element of (X’X)" corresponding to ,3 ; - The null hypothesis is
rejected if |to| >t 00k [1]-

An important measure of performance for the linear regression models is the
determination coefficient R* that is a measure of the total variability of the data explained
by the model. The formula for this coefficient is

n _ SSR

~ SSE (3-3)

Because R” always increases as more terms enter to the model [1]. It is preferred to use

the adjusted R? defined as

Rjdj=1—(”_lJ(—R2) (3.4)

In addition to the previous measures of performance, the Matlab® applications
created generate the plots for the residuals in order to validate the stochastic assumptions
for the linear regression. The model validation procedure is also part of the other two

methods that are going to be presented in this chapter.
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3.2 Basis Representation Model

The focus of this method is to represent the response functions as a sum of basis
functions. However, in this representation the coefficients of the basis functions are going
to be dependent on the factors of the experiment. The purpose of this representation is to
provide a direct way to capture the factors that have more relevance in the experiment. In
the FDA, the basis representation is used to estimate the response curves. In this method,
the idea is to relate directly the response to the factors. Several bases can be applied. The
basis selection is going to depend on the behavior of the responses. In the Matlab,
applications developed in this work three type of basis are considered: Monomial basis,
Fourier basis and a Cubic Spline basis. These bases have been widely used. To illustrate

this method, an example is presented in the next section.

3.2.1 An Example for the Basis Representation Method

Suppose that an experiment with two factors (x; and x;) and a functional response
is being analyzed. The analyst considers important the interaction between the factors and
considers that a Fourier basis will be appropriate for the data due the periodical behavior

of the response. The general form for a Fourier basis expansion is the following:

y(t) = ¢, + ¢, sin(at) + C, cos(awt) + C, sin(2at) +C, cos2at) +... (3.5
where o = 2?” and T is the highest level of the signal factor [2]. Since the interaction is

going to be considered, the first term of the expansion will be

Cy =B, + B % + B,X, + B;X, X, and the general basis representation model for this

example will be

Y() = (Lo + BioXio + B Xy + By X Xy) +

(1301 +AuX + BauX, + :H31X1X2)Sin( ot) +

(Bo, + Bu X, + B X, + By X X, Jeos( ot) + (3.6)
(/803 + X+ BuX, + By XlXZ)Sin( 2ot) +

(Bos + B X, + By Xy + B X, X, )eos( 2at) + ...

The dependence of the coefficients of the basis representation on the factors of the

experiment can be observed directly. The measures of performance discussed previously
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(Section 3.1.1) can be applied in order to determine the effectiveness of the model. If the
design matrix X have coded variables then the magnitudes of the resulting coefficients
can be used to determine which factors are the most important in the experiment. The
same procedure can be applied to the other bases; the key element is to pick the right

basis and the best number of terms for the basis expansion.

3.3 Piece-wise Method

In all the previously designed methods, the dimensionality is an issue. As the number
of levels of the signal factor increases so does the complexity of the analysis. It is
necessary to develop an approach able to deal with the dimensionality problem and detect
which factors are more relevant in the experiment. A Piece-Wise approach has been
proposed the idea of this method is the following:

e Divide the range of the signal factor in a series of regions

e Use a common basis representation in each region.

e Perform a stepwise procedure in order to simplify the model and eliminate the

non-relevant terms in the regressions.

e Verify the coefficients of the regression in order to determine which factors are

more relevant in the experiment per region.

2.5
_ Bn
21| A B
Fim :
151,
g B
T e B
0.5 ﬁ
k3|
u...&" ...... —

12345 67 8 8101M1213141516 17181320 21

-0.4

Figure 3-1 lllustration of the Piece-Wise method. In each region, there is a set of coefficients for one
experimental condition

This procedure is a modification to the basis representation method. The only

difference between both procedures is the division of the levels of the signal factor. This
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procedure is used when one desires to know which factors are affecting the response in
some specific regions of the signal factor.

A challenge behind this method is to find an optimal method to obtain the knots
that are used to divide the levels of the signal factor in regions. For a predetermined
number of knots k that divides the levels of the signal factor in k+1 region, it is necessary
to determine the optimal position of those knots. Let knots be the vector of positions for
the different levels of the signal factor, that are equally spaced. Let SSE; be the Sum

Squared of Error for the region i. The optimization problem is stated as follows

min z = SSE; (3.7)

Subject to
knots(j+1)—knots(j)>B  Vj,j=1,2,...k (3.8)

length(knots) < roor(%j -1 (3.9
knots(1) > B (3.10)
knots(k) < length(t) — B (3.11)
B>0 (3.12)

where length(t) is the number of levels of the signal factor t, and B is a parameter that
sets the minimum distance between knots in order to ensure the feasibility of the
regressions.

The first constraint forces the knots to keep a distance of B levels in order to make
the regression estimation possible. The second restriction delimits the number of knots to
be used. This number cannot be more than the total levels of the signal factor divided by
the constant B minus one; this constraint guarantees that there are enough points for the
last region. The third constraint forces the first knot to be at the B position or higher in
the levels of the signal factor, as the previous restriction this forces the regions to have
enough points to estimate the regressions required at each region. The value for the
constant B was selected to be equal to three. That value was selected in order to limit the
maximum number of knots to be less than a third part of the signal factor levels. Equation

3.11 ensures enough points for the regressions in the last region. The last restriction is for
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the values of B that must be positive. All the values of the vector knots have to be integer

due the definition of the variable. This is a limitation in terms of the software that is been

used because the optimizations tools of Matlab do not deal with integer variables.

There is another constraint that has to be considered, the continuity of the

functions at the knots. In order to force the models to obey this restriction the following

final procedure was used.

1.
2.
3.

6.

Divide the response matrix into regions delimited by the knots
Obtain the models for each region using the ordinary least of squares
Find the average of the estimated responses per experimental condition at
the last signal factor level of the first (previous) region
Use the averages previously calculated as constraints for the indicator
variables of the next region. The number of indicator variables to use will
be the number of experimental conditions minus one.
Calculate the coefficients of the regression using the restricted least of
squares procedure based on the following formula

b, =b+(X"X)'R'[R(X'X)'R"]"(r-Rb) (3.13)
where b, is the vector of the restricted coefficients obtained from Equation
3.13, b is the vector of coefficients obtained by the ordinary least of
squares regression, R and r are the restrictions expressed in the following
form RB = r. The number of rows of the matrix R will be equal to the
number of the experimental conditions minus one. The number of columns
of the R matrix it is going to be equal to the number of terms of the basis
expansion plus the number of indicator variables.

Repeat steps 3 to 5 on the other regions

A procedure was developed in order to find the optimal set of knots given a

desired number of knots. This method is not efficient but it is effective. The main idea is

to evaluate all the possible combinations of knots for a pre-selected quantity; and select

the combination that minimizes the total sum of squared errors. The computational effort

increases as the number of knots increases. The optimal knots are used to delimit the

regions and perform the rest of the procedure.
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In each region a basis, it is going to be used in order to model the behavior of the
responses. The bases that are going to be used are the monomial basis and a Fourier basis,
the cubic spline is not going to be considered. Since this basis in the previous method was
used to incorporate some delimitation of regions in the estimates. In this method is not
necessary because the signal factor has been divided before completing the basis

expansions. The following section presents a detailed example for this method.

3.3.1 An Example for the Piece-wise Method

Suppose that an experiment was conducted considering two factors (x; and x;),
with functional response. The analyst wants to study two regions; this means that only
one knot is required. Assume tha the optimal knot location is knwon and the initial
models were obtained, considering a monomial basis. The Figure 3-2 illustrates the
separation of the response curves of the two regions at the knot for two experimental

conditions with two replicates.

Region #1 Region #2

Cl

C2

to t

Figure 3-2 Illustration of the separation of two adjacent curves at the knot t,
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The point C1 and C2 represents the averages of the estimated responses at the last
level of the first region for two of the experimental conditions. The functions on
represents the functions obtained in each region without the continuity constraint. The
next step of this procedure is to set C1 or C2 (one of the experimental conditions must be
used as a base for the indicator variables) as the constraint for the indicator variable for
the next region model; let us take C2 for this example. Suppose that a monomial basis is
used, then the expansion for the second region is in the form of the Equation 3.14

y(t) =(bgy +byoX, + DX, +bygX X, )+ (b, +by,X, +b, %, +by XX, )t —t,) +
(3.14)
(by, +by,%, +0,,%, + 0, %%, Nt —t,)?
From Equation 3.14 it is possible to observe that the terms related to the signal factor the
knot is subtracted. The reason for this is in order to let the indicators variables to take all
the effect of the imposed restrictions. The restrictions matrix (R) and right hand side (r)
have the following form
R=(1,0,...0,1) and r =(C,) (3.15)
After imposing the restriction, the restricted least of squares procedure is completed for
the second region. The coefficients of all the regions except for the first one are obtained

using the restricted least of squares.

3.4 Metric of comparison for the all methods

In order to compare all the methods it is necessary to establish a metric or a
measure of performance. The metric considers some important quantities such as the
number of parameters estimated, the sum of all the squared sums of error and the total
number of data points used. The name given to this metric is “pseudo-MSE” and the
following equation defines it.

Pseudo MSE = Total SSE (3.16)

N — total number of parameters

where Total SSE is the total sum of all the SSE. In the basis representation method, this is
a single number but in the Point-Wise approach, there is an SSE at every level of the
signal factor. The variable N represents the total number of data points used, and the

variable total number of parameters is the total number of parameters (coefficients)
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estimated in the procedure. For the basis representation method this is the total number of
coefficients of the basis expansion, for the Point-Wise and the Piece-Wise methods is the
total number of coefficients calculated for the whole procedure. It is important to mention
that Equation 3.16 must include the indicator variables used for the continuity constraint,
which implies an additional lost of degrees of freedom. In general, the method with the
lowest pseudo-MSE will be preferred.

The next chapter presents the results obtained using the methods presented on a
theoretical case study that was developed in order to challenge the proposed methods and
verify their efficacy. Also was intended to compare the procedures as mentioned earlier

in order to determine which procedure is better than the others.
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4 Theoretical Case Study

4.1 Introduction

Two case studies are used to compare and validate the proposed methods. The first
case is presented in detail in this chapter. This chapter begins with a description of the
experiment. Then the results obtained using each method is going to be presented and

discussed.

4.2 Experiment Description

A macro was created in MS Excel® to generate the functions that correspond to
each treatment in the experiment. It is important to mention that the function used to
create the macro and the nature of the errors was unknown to the author until the end of
the study. Appendix #1 shows some details with respect to the function used. The
experiment has two factors each one with two levels (a classical 2* experiment) and 21
measures of the response variable were generated in each treatment. In addition, a central
treatment was performed in each run. A sample of a single run of this experiment is

shown in Figure 4-1.

(-1,1) 1)

i

(-1,-1) (1,-1)

Figure 4-1 A graphical representation of a full run of the theoretical case study

From Figure 4.1 shows that the response function changes at each combination of

factors. Five runs of the experiment were used to test the methods. The figures and the
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tables for all the runs are presented in the Appendix #1. The general model used as a base

for all the methods is given by
y=ﬁo+ﬁlxl+ﬁzxz+ﬁ3xlxz 4.1

where x; and x; are the factors of interest in the experiment. For the Point-Wise method,
the coefficients of Equation 4.1 are calculated at each level of the signal factor. For the
other two methods, the Equation 4.1 is inside each term in the expansions. In the same
way as presented in the example on section 3.2.1. The results for the application of each

method are presented next.

4.3 Results for Theoretical Case

4.3.1 Point-Wise Method

A variable transformation y = In(y+10) was necessary to scale all the functions.
The transformation was selected because adding the ten eliminated the possibility of
having negatives inside the logarithm and this mathematical function was used due the
shape of the original functions. This transformation is used for all the methods. From
Figure 4-2 one can observe the need of the variable transformation in order to put all the
runs of the experiment in a more suitable scale. A Matlab® program was created in order
to ease the analysis of the data. The results of the Point-Wise analysis of variance and the

measure of performance for the method are shown in the next pages.

Response functions without Transformation

90

80

70

60

50

40

30

20

10

0

-10
0
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Figure 4-2 Plot of all the functions for the five runs of the theoretical experiment. (a) Responses
without Transformation, (b) Responses Transformed.
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Location Effects vs. Signal Factor

Location Effects

Signal Factor Lewels

Figure 4-3 Location effects for theoretical case study using the Point-Wise method

The model generated in each level of the signal factor corresponds to Equation 4.1
as mentioned previously and the coefficients at each level are included in Table 4-1. It is
possible to observe from Figure 4-3 that both factors are relevant in this experiment. In
the first levels of the signal factor, the values for of the effects are very close to zero. The
effects that correspond to x; have larger magnitudes with respect x, and their interaction
on the first levels of the signal fact (0 to 2); then x, becomes more relevant than x; but the

interaction effects have the larger magnitudes on the higher levels of the signal factor (2.5
to 10).



Table 4-1 Coefficients Table

t BO Bl Bz 'é3
0 2.3016 0.001875 -5.50E-05 3.50E-05
0.5 2.3035 0.00183 -8.00E-05 0.00137
1 2.3078 0.001705 -0.00018 0.001605
1.5 2.3139 0.00178 -0.00079 0.00018
2 2.322 0.00172 -0.00172 -0.0011
2.5 2.3315 0.00207 -0.00402 -0.00549
3 2.3432 0.00302 -0.00616 -0.01015
3.5 2.3545 0.00539 -0.01182 -0.01548
4 2.3681 0.008675 -0.01905 -0.02124
4.5 2.3871 0.010345 -0.02607 -0.0322
5 2.4057 0.01938 -0.0421 -0.04274
5.5 2.4241 0.024105 -0.05247 -0.05179
6 2.4448 0.03193 -0.07309 -0.06225
6.5 2.4643 0.04327 -0.09145 -0.07266
7 2.493 0.05878 -0.12118 -0.09134
7.5 2.5238 0.078595 -0.15351 -0.11118
8 2.5666 0.11049 -0.20129 -0.14681
8.5 2.5963 0.12966 -0.23407 -0.16937
9 2.6718 0.20146 -0.32303 -0.24241
9.5 2.7434 0.2648 -0.40945 -0.30374
10 2.877 0.40942 -0.57222 -0.44798

25

The residuals plot is next. The importance of this plot is to validate the stochastic
assumptions with respect to the behavior of the regression errors. Residuals are shown in

Figure 4-4.
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Residuals vs. Signal Factor
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Figure 4-4 Residuals plot for the theoretical case using the Point-Wise method

This graph can be used to verify if the variance of the models is constant. The
obtained models variances are not constant. The problem corresponds to a specific
experimental condition (x; = 1, x, = -1). A dramatic change in the response occurs in
that experimental condition. This change can be seen in Figure 4-1 and in Figure 4-2. The
models underestimation of the response at the mentioned experimental condition
increases with the signal factor. For the rest of the experimental conditions the residuals
look approximately constant. The next three figures provide different measures of
performance in order to verify the model adequacy. These measures of performance

include the F ratio tests, the determination coefficient and the T test discussed previously.
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F-ratios vs. Signal Factor

—F——— 7 ————

Signal Factor Lewels

Figure 4-5 F ratio test for the theoretical case using the Point-Wise method

Figure 4-5 show that all the regressions conducted by the Point-Wise procedure

for this experiment were significant. The critical F distribution value for all cases is

3.0725.

Adjusted Determination Coefficient vs. Signal Factor
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Signal Factor Lewvels

for the theoretical case study using the Point-Wise method

Figure 4-6 Adjusted R?
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Figure 4-6 shows the adjusted determination coefficient for all the regressions
executed. It is possible to deduce that most of the regressions are reasonable because the
adjusted R? is over 0.60, which might be acceptable in practice. For the signal factor
levels from 0.5 to 5, the regressions are not very effective and the adjusted R*’s are very
low.

Absolute value of the Ttest vs. Signal Factor

70 T T T
| — X1
(R X2
27 ) S S - XIX2 |
—— Critical T
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Signal Factor Lewels

Figure 4-7 Absolute value of the T test for the theoretical case using the Point-Wise method

The T test plot in Figure 4-7 shows that the coefficients were significant for most
of the regressions. In the signal factor, levels from 0.5 to 5 most of the coefficients are

considered non-relevant.
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Response and Estimated Response vs. Signal Factor

Signal Factor Lewels

Figure 4-8 Response and Estimated Response Plot for the theoretical case using the Point-Wise
method. The asterisks represent the estimated response.

Figure 4-8 shows the response and the estimated response on the same set of axes.
The asterisks on the plot represent the estimated response. Form this figure can be
observed that the obtained models estimate the response function in a reasonable manner.
The next Figure 4-9 shows the lack of fit F ratio test for the Point-Wise analysis of
variance realized. This graph potentially indicates a curvature component that has not
been considered by the individual analyses of variance. This can be the reason of the low
values of the adjusted determination coefficients in this procedure. In addition, it could be

the explanation for the behavior of the residuals.
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F ratio for the Lack of Fit test vs. Signal Factor
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Figure 4-9 F ratio test for the lack of fit for the theoretical case study

The pseudo-MSE for this procedure is summarized in the next table.

Table 4-2 Pseudo-MSE for the theoretical case using the Point-Wise method

Total SSE Total Number of | Total Number of Pseudo MSE
Parameters Data Points
5.48682 84 525 0.0124

In general, this method worked is adequate for this experiment, with the
transformed data. An important fact is that the results obtained using the Point-Wise
method are exactly the same results obtained using the functions prepared by Ramsay to
perform the Functional Analysis of Variance (FANOVA) with exception of the
smoothing of the curves, the shape and the inferences obtained with both methods are the

same (see Appendix #2). In the next section, the results for the basis representation

method are presented.
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4.3.2 Basis Representation Method

4.3.2.1 Monomial Basis

The selected monomial basis has the following general form
y(t)=c, +ct+ct’ +ct’ +---c t (4.2)
Inserting the general model used in the experiment provides the following a basis
representation with k =2:
y(t) = (byy +byoX, + DX, +bygX X, )+ (B, +by, X, by, %, + by X X, )t +
(b, +10,,%, +byyX, +10,,% X, )t (43)
The k =2 was selected because a higher number in this case will produce a serious
multicollinearity problem. The results obtained for this model are shown in the next
pages. The calculations were performed using an application created in Matlab. The first
column of the Matlab output labeled as “Terms” indicates with a number which term of
the basis corresponds to each coefficient. The Table 4-3 summarizes the relationship

between the column “Term” and the coefficient of the basis that is being represented.

Table 4-3 Relation between the Matlab’s output column “Term” and the coefficients of Equation 4.3

Terms Coefficient Related Factor Basis Term
Represented
0 boo 1 1
1 bio X1 1
2 by X2 1
3 b3 X1*¥X2 1
4 bo; 1 t
5 by X1 t
6 by X2 t
7 bs; X1*X2 t
8 b 1 t
9 b1, X1 t
10 b, X2 t
11 b, X1*X2 t
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The following is the initial output generated by the application.

Table 4-4 Initial Matlab Output for the Theoretical Case Study Using the Basis Representation
Model with a Monomial Basis (K =2)

The model is not a good one due a multicollinearity problem
- %
Results for the Analysis of Variance for the Basis Representation Model
e %
Type of Basis: monomial
Number of basis functions or knots if the basis is a Cubic Spline: 2
o mm—m %
Coefficients and Variance Inflation Factors
L e e e L e e %
Term Intercept SE Coef T-test P-value
0 2.3266 0.014077 165.2737 O
Term Coefficients SE Coef T-test P-value VIF
1.0000 0.0402 0.0157 2.5534 0.0110 7.4822
2.0000 -0.0435 0.0157 -2.7635 0.0059 7.4822
3.0000 -0.0312 0.0157 -1.9827 0.0479 7.4822
4.0000 -0.0210 0.0065 -3.2125 0.0014  14.7300
5.0000 -0.0411 0.0073 -5.6316 0.0000 54.9026
6.0000 0.0489 0.0073 6.7046 0.0000 54.9026
7.0000 0.0341 0.0073 4._.6806 0.0000 54.9026
8.0000 0.0068 0.0006 10.8124 0 14.7300
9.0000 0.0068 0.0007 9.6571 0 32.2149
10.0000 -0.0091 0.0007 -12.9937 0 32.2149
11.0000 -0.0066 0.0007 -9.4092 0 32.2149
e %
R"2 and Adjusted R"2
o mmm— e %
RN2, R™N2(adj)
0.85255 0.84939
- %
Analysis of Variance
e %
Source DF SS MS F P
Regression 11 41.2436 3.7494 269.6507 0
Residual Error 513 7.1331 0.013905
Total 524 48_.3767
o mm—— %

By inspecting the VIF in Table 4-4 one can conclude that the model has a
multicollinearity problem. In addition to that problem, some of the terms must be
eliminated in order to improve the adequacy of the basis representation model. To
complete that task the stepwise command of Matlab is used. This command generates a
graphical use interface (GUI) in which the user can select the terms to eliminate. For each
term selected, the root mean squared, the determination coefficient RZ, the F ratio and the

corresponding p-value are calculated. The Figure 4-10 shows the GUI that corresponds to
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the stepwise command with all the terms in the model. When a term is eliminated, the

text and graphs that correspond to that term change the font color.

Coefficients with Error Bars Coeff. t-stat p-val
T T T T .
e | ————— 0.067156 4.6165  0.0000 Mext step:
| Move ¥4 in
X2 - — ! -0.11161 -7.9637 0.0000
| .
X3 — : -0.0868917 -6.0570 0.0000
|
X4 | —— 0.0471436 12.1842 0.0000
|
X5~ | - 0.0170524 7.0264 0.0000
|
X6 - : -0.0277619 -12.4501  0.0000
X7~ - : -0.0213331 -9.0345 0.0000
|
X8 | ® 0.00485663 13.2645 0.0000
|
X9 ® 0.00242559 8.0342 0.0000
|
X101+~ .: -0.00387255 -14.2625 0.0000
|
X ‘ ‘ * ‘ ‘ -0.00295491 -10.0937  0.0000 ‘[—]Expm B
-0.15 -0.1 -0.05 0 0.05 0.1
Intercept = 2.45445 R-square =0 F =MamM
RMSE = 0.303845 Adj R-sg = -0.0013084 P =Ma
Model History
15 T
1 —
w 05F =
%) °
=
¥ o -
-0.5 —
A1 |
1

Figure 4-10 Outputs of the Matlab stepwise command.

After the elimination of some terms, the final results using the monomial basis

representation model are obtained. The final results are shown in Table 4-5 and in Figure

4-11.
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Table 4-5 Final Matlab Output for the Theoretical Case Study Using the Basis Representation Model

with a Monomial Basis (K =2)

S
R
R
T

Results for the Analysis of Variance for the Basis Representation Model
Model with the IN variables after the Stepwise Procedure

Coefficients and Variance Inflation Factors

erm Intercept SE Coef T-test P-value
0] 2.3266 0.015659 148.5765 O

Term Coefficients SE Coef T-test P-value VIF
2.0000 0.0453 0.0095 4.7834 0.0000 2.1870
4._.0000 -0.0210 0.0073 -2.8879 0.0040 14.7300

8.0000 0.0068 0.0007 9.7201 0 14.7300
9.0000 0.0024 0.0001 17.5755 0 1.0000
10.0000 -0.0046 0.0002 -22.4980 0 2.1870
11.0000 -0.0030 0.0001 -21.4108 0 1.0000
__________________________________________________________________________ 0%
R”"2 and Adjusted R/™N2
__________________________________________________________________________ %
RN2, R™2(adj)
0.81577 0.81364
__________________________________________________________________________ %
Analysis of Variance
__________________________________________________________________________ %
ource DF SS MS F P
egression 6 39.4642 6.5774 382.2813 0
esidual Error 518 8.9125 0.017206

otal 524 48.3767




Coefficients with Error Bars Coeff. t-stat p-val
T T T T .
XL ————— 4 -0.0343765 -3.6754 0.0003 Weid stizg
Move ¥B in
X2 —_— - 0.0452763 4.7834  0.0000
X3 ————— B 0.0307664 3.2809 0.0011
X4~ — -4 -0.0209574 -2.8879 0.0040 ‘
X5 — 4 -0.0254082 -5.9838 0.0000
X6 - ———— B 0.0489016 6.2443 0.0000
X7~ —_—— B 0.0219732 5.1303 0.0000
X8~ * B 0.0068101 9.7201 0.0000
X9 ® -4 0.00242559 17.5755 0.0000
X10 - ° - -0.00459179 -22.4980 0.0000
X ‘ ‘ . ‘ ‘ ‘ - -0.00295491 -21.4108  0.0000 ‘[—]Expm
-0.06 -0.04 -0.02 0 0.02 0.04 0.06
Intercept = 2.32659 R-square = 0815763 F =382.281
RMSE = 013117 Adj R-s = 0813273 p=0
Model History
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Figure 4-11 Final results for the Monomial basis representation model.

After the elimination of some terms, the multicollinearity problem was almost
eliminated. Considering the problem presented by the model, some observations can be
realized. The terms 2, 4, 8, 9, 10, and 11 are the coefficients relevant in the model. The
Table 4-6 summarizes the results previously mentioned and shows the factors that

correspond to each of the coefficients that stayed in the model.

Table 4-6 Results summary for Monomial basis representation for the theoretical case

Terms Coefficient Value Related Basis Term
Represented Factor
2 bao 0.0453 X2 1
4 bo; -0.0210 1 t
8 boa 0.0068 1 t?
9 bis 0.0024 X1 t*
10 by, -0.0046 X2 t*
11 b3, -0.0030 X1*X2 t?
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Using the results presented in the Table 4-6 some inferences can be done. The
more relevant terms corresponds to both factors and their interaction. These results are
acceptable because most of the multicollinearity problem was solved using the stepwise
procedure. The first model had a maximum Variance Inflation Factor (VIF) over 50 and
the final model has a maximum VIF of 15. In addition, the adjusted determination
coefficient is over 80%, which is an acceptable number for that adequacy measure. The

graphs for the estimated responses and residuals are shown in the next two figures.

Original and Estimated Response Functions

Original and Estimated Responses

Signal Factor Lewels

Figure 4-12 Responses and estimated responses for the Basis Representation Final Model with a
Monomial Basis for the Theoretical Case Study. The asterisks correspond to the estimated functions.

From Figure 4-12 one can observe that estimated responses are adequate for most
of the experimental conditions. The residuals plot presented in Figure 4-13, shows that
the model does not obey the stochastic assumption for the regression model of constant

variance.
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Figure 4-13 Residuals for the Basis Representation Final Model with a Monomial Basis for the
Theoretical Case Study

The Table 4-7 presents the pseudo-MSE that is going to be used to compare this

procedure with the other methods.

Table 4-7 Pseudo-MSE for the theoretical case using the basis representation method with a
Monomial basis

Total SSE Total Number of | Total Number of Pseudo MSE
Parameters Data Points
8.9124 7 525 0.0172

The next section have the results obtained using a Fourier Basis Representation

4.3.2.2 Fourier Basis

The general Fourier series representation has the following form

y(t) =c, +, sin(at) +C, cos(at) + C, sin(2at) + C, cos(2at) +... 4.4)
where @ :ZTE and T is the highest level of the signal factor. The model used for the

experiment was the following
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y(t) = (g +0,,X, +bygX, +bygX X, )+ (by, + by, X, + 10y, X, + by, %X, )sin(wt) +
(by, +by,X, +b,,%, +by,x X, Jeos(Wt) + (by, + by, +byyX, +by,x X, )sin@wt) +  (4.5)
(5, + 0%, + by, X, + by, X X, )cos(2wt)
This type of basis is widely used when the data shows a periodical behavior. In
this case, there is no periodical behavior but the basis was used just to illustrate the
procedure. As done in the previous section the following table summarizes the terms of

the model with the Matlab output and factors related with each term.

Table 4-8 Relation between the Matlab’s output column “Term” and the coefficients of Equation 4.5

Terms Coefficient Related Factor Basis Term
Represented

0 boo 1 1

1 bio X1 1

2 bao X2 1

3 bso X1*¥X2 1

4 b()1 1 SiIl(Wt)
5 b1 X1 sin(wt)
6 by X2 sin(wt)
7 b3 X1*X2 sin(wt)
8 boa 1 cos(wt)
9 b1z X1 cos(wt)
10 ba, X2 cos(wt)
11 bs, X1*X2 cos(wt)
12 bos 1 sin(2wt)
13 b1z X1 sin(2wt)
14 by X2 sin(2wt)
15 b33 X1*X2 sin(2wt)
16 bos 1 cos(2wt)
17 b4 X1 cos(2wt)
18 bos X2 cos(2wt)
19 B4 X1*¥X2 cos(2wt)

The Matlab application created for the Basis Representation Model was used
setting the basis to be a Fourier one. The initial output produced by the application is

shown next.
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Table 4-9 Initial Matlab Output for the Theoretical Case Study Using the Basis Representation
Model with a Fourier Basis (K =2)

R —————— %
Results for the Analysis of Variance for the Basis Representation Model
O I —————— %

Type of Basis: fourier
Number of basis functions or knots if the basis is a Cubic Spline: 2
e %
Coefficients and Variance Inflation Factors
D — = — %
Term Intercept SE Coef T-test P-value
0 2.4499 0.008836 277.2606 O

Term Coefficients SE Coef T-test P-value VIF
1.0000 0.0626 0.0099 6.3336 0.0000 1.0080
2.0000 -0.1055 0.0099 -10.6832 0 1.0080
3.0000 -0.0824 0.0099 -8.3365 .0000 1.0080
4.0000 -0.1291 0.0128 -10.1228 0 1.0000

5.0000 -0.0584 0.0143 -4.0934

6

7

8

9

o

0.0000 1.0000
.0000 0.1058 0.0143 7.4202 0.0000 1.0000
-0000 0.0773 0.0143 5.4196 0.0000 1.0000
-0000 0.0655 0.0122 5.3576 0.0000 1.0076
-0000 0.0650 0.0137 4.7495 0.0000 1.0120
10.0000 -0.0900 0.0137 -6.5777 0.0000 1.0120
11.0000 -0.0625 0.0137 -4 _5666 0.0000 1.0120
12.0000 -0.0730 0.0128 -5.7238 0.0000 1.0000
13.0000 -0.0431 0.0143 -3.0232 0.0026 1.0000
14.0000 0.0677 0.0143 4.7450 0.0000 1.0000
15.0000 0.0506 0.0143 3.5464 0.0004 1.0000
16.0000 0.0310 0.0122 2.5359 0.0115 1.0076
17.0000 0.0314 0.0137 2.2929 0.0223 1.0120
18.0000 -0.0375 0.0137 -2.7437 0.0063 1.0120
19.0000 -0.0328 0.0137 -2.3975 0.0169 1.0120
B — === = — %
R”"2 and Adjusted R/™N2
P — === = %
RN2, RMN2(adj)
0.57551 0.55954
o ——— e %
Analysis of Variance
D= — = = = = — %
Source DF SS MS F P
Regression 19 27.8412 1.4653 36.0346 0
Residual Error 505 20.5355 0.040664
Total 524 48.3767
P ——— = — = ————— %

From Table 4-9 one can observe that this model does not have the
multicollinearity problem. In addition, the regression model is significant and has an
adjusted determination coefficient close to a 56%, which is not acceptable in many
applications. In this case, the stepwise procedure was not necessary because all the terms

were relevant in the model and the multicollinearity problem was not present.
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Table 4-10 Results Summary for Fourier basis representation for the theoretical case

Terms Coefficient Value Related Basis Term
Represented Factor

0 boo 2.4498 1 1

1 bio 0.0626 X1 1

2 bao -0.1055 X2 1

3 bso -0.0824 X1*X2 1

4 boi -0.1291 1 sin(wt)
5 b1 -0.0584 X1 sin(wt)
6 by 0.1058 X2 sin(wt)
7 b3 0.0773 X1*X2 sin(wt)
8 boz 0.0655 1 cos(wt)
9 b1 0.065 X1 cos(wt)
10 by -0.09 X2 cos(wt)
11 bz, -0.0625 X1*X2 cos(wt)
12 bos -0.073 1 sin(2wt)
13 b -0.0431 X1 sin(2wt)
14 by 0.0677 X2 sin(2wt)
15 bs; 0.0506 X1*X2 sin(2wt)
16 bo4 0.031 1 cos(2wt)
17 b4 0.0314 X1 cos(2wt)
18 bos -0.0375 X2 cos(2wt)
19 b4 -0.0328 X1*X2 cos(2wt)

The model with the Fourier expansion indicates that both factors and the
interaction are relevant in the model. However, this model is not very reliable because
can explain only the 50% of the variability of the data. The next plots correspond to the

estimated responses and the residuals.
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Original and Estimated Response Functions
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Figure 4-14 Responses and estimated responses for the Basis Representation Final Model with a
Fourier Basis for the Theoretical Case Study. The asterisks correspond to the estimated functions.

Residuals Plot
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Figure 4-15 Residuals for the Basis Representation Final Model with a Fourier Basis for the

Theoretical Case Study

From Figure 4-14, one can observe the lack of fit of the obtained model. The

residuals plot shows the non-constant variance presented by the model. Table 4-11

presents the estimated pseudo-MSE.
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Table 4-11 Pseudo-MSE for the theoretical case basis using the representation Method with a
Fourier basis

Total SSE Total Number of | Total Number of Pseudo MSE
Parameters Data Points
20.5355 20 525 0.0406

The next section shows the last type of basis selected which is a Cubic Spline.

4.3.2.3 Cubic Spline Basis

The general cubic spline basis follows the form
Y(t) = Cyy + Cot +Cput” +Cit’ + ¢ (t—7)) +¢,(t—17,)] ...c (t—7,)] (4.6)
where k is the number of basis functions and (t—7;) is defined if t—z,>0 otherwise is

zero; T represents the knots selected for the spline.
The model selected for the experiment was the following
y(t) = (0 +BioX, +byeX, +050%,%,) + (B, + By, X, + by, %, + by X%t +
(B, + b X, +0,,%, + 0, X Xt + (B, +B5X, +10,,%, + 0, %)t + (4.7)
(B, + b, X +0,,%, + 0, X %,)(E —17,)° + (B +b5X, +byX, + b XX, )t —7,)} +
(B + by X, + 0y, + 0, X X))t —17,)}
The selected knots for this model are shown in Table 4-12. The values presented were

selected looking for levels of the signal factor where the response started to change

dramatically. This selection could have a great impact in the performance of the models.

Table 4-12 Knots Location for Cubic Spline Basis

T1 2
T 6
T3 8

The relation between the terms and the Equation 4.7 are shown in Table 4-13.
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Table 4-13 Relation between the Matlab’s output column “Term” and the coefficients of Equation 4.7

Terms Coefficient Represented Related Factor Basis Term
0 boo 1 1
1 bio X1 1
2 bao X2 1
3 bso X1*X2 1
4 bo 1 t
5 by X1 t
6 by X2 t
7 bs, X1*X2 t
8 bo> 1 t
9 b1 X1 t2
10 by X2 t
11 b X1*X2 t
12 bos 1 2
13 bis X1 2
14 bos X2 t
15 b X1*X2 t
16 bos 1 (t-2°
17 b4 X1 (t-2)°
18 bos X2 (t-2)°
19 bsa X1*X2 (t-2)°
20 bos 1 (t-6)°
21 bis X1 (t-6)°
22 bos X2 (t-6)°
23 bss X1*X2 (t-6)°
24 bos 1 (t-8)°
25 bis X1 (t-8)°
26 bag X2 (t-8)°
27 bse X1*¥X2 (t-8)°

The initial output for the cubic spline it is shown in Table 4-14.
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Table 4-14 Initial Matlab Output for the Theoretical Case Study Using the Basis Representation

Model with a Cubic Spline Basis

The model is not a good one due a multicollinearity problem
) — = %
Results for the Analysis of Variance for the Basis Representation Model
= — = %
Type of Basis: Cubic_spline
Number of basis functions or knots if the basis is a Cubic Spline: 268
= = = %
Coefficients and Variance Inflation Factors
Do — — %
Term Intercept SE Coef T-test P-value
(0] 2.3017 0.020158 114.1847 0
Term Coefficients SE Coef T-test P-value VIF
1 0.0021043 0.022537 0.09337 0.92565 19.223
2 -0.00020305 0.022537  -0.0090096 0.99282 19.223
3 -0.00016942 0.022537 -0.0075177 0.994 19.223
4  0.00072865 0.055133 0.013216 0.98946 1318.2
5 -0.0022255 0.06164 -0.036105 0.97121 4913.3
6 0.0013893 0.06164 0.022539 0.98203 4913.3
7 0.0058583 0.06164 0.09504 0.92432 4913.3
8 0.0056588 0.03855 0.14679 0.88336 69141
9 0.001777 0.0431 0.04123 0.96713 1.5121e+005
10 -0.0011361 0.0431 -0.026359 0.97898 1.5121e+005
11 -0.004196 0.0431 -0.097355 0.92248 1.5121e+005
12 -0.00046446 0.0075006 -0.061924 0.95065 2.4526e+005
13 -0.00031308 0.0083859 -0.037334 0.97023 4.2866e+005
14 -1.3964e-005 0.0083859 -0.0016652 0.99867 4.2866e+005
15 0.00039213 0.0083859 0.04676 0.96272 4.2866e+005
16  0.00054622 0.0084327 0.064774 0.94838 77521
17 0.00074768 0.0094281 0.079303 0.93682 1.183e+005
18 -0.00056515 0.0094281 -0.059943 0.95223  1.183e+005
19 -0.00048651 0.0094281 -0.051603 0.95887 1.183e+005
20 0.0012965 0.0042662 0.3039 0.76133 235.11
21  0.00067352 0.0047698 0.14121 0.88776 286.36
22 -0.00041589 0.0047698 -0.087193 0.93055 286.36
23  -0.0017558 0.0047698 -0.36812 0.71294 286.36
24 0.012767 0.012917 0.98838 0.32345 25.925
25 0.017029 0.014442 1.1791 0.2389 28.722
26 -0.017546 0.014442 -1.2149 0.22499 28.722
27 -0.014239 0.014442 -0.98593 0.32465 28.722
e %
R"2 and Adjusted R™N2
= — = Y%
RN2, RN2(adj)
0.88599 0.8798
= = %
Analysis of Variance
Do — — %
Source DF SS MS F P
Regression 27 42.8614 1.5875 143.051 0
Residual Error 497 5.5153 0.011097
Total 524 48.3767
= — = Y%
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Table 4-14 has a warning indicating that there is multicollinearity problems
present in the model, as the Variance Inflation Factors (VIF) are extremely high.
Performing the same, procedure for variables elimination, a new and more reduce model
is obtained. The Figure 4-16 shows the results. The following is the Table that

corresponds to the final model.

Table 4-15 Final Matlab Output for the Theoretical Case Study Using the Basis Representation
Model with a Cubic Spline Basis

Results for the Analysis of Variance for the Basis Representation Model
Model with the IN variables after the Stepwise Procedure

f—— = — ——mm %
Coefficients and Variance Inflation Factors
P —— = = — - %
Term Intercept SE Coef  T-test P-value
0 2.3212 0.0060996  380.5503 0
Term Coefficients SE Coef T-test P-value VIF
12 0.000508 1.52E-05 33.407 0 1
13 0.000136 2_76E-05 4.929 1.11E-06 4.594
14 -0.00031 2.76E-05 -11.421 0 4.594
15 -0.00023 2.76E-05 -8.5119 2.22E-16 4.594
21 0.003977 0.000606 6.5598 1.31E-10 4.594
22 -0.00373 0.000606 -6.1512 1.54E-09 4.594
23 -0.00296 0.000606 -4.879 1.42E-06 4.594
P — = = = m %
RN2 and Adjusted R™N2
P — = = = m %

RA2,  RA2(ad))
0.88057 0.87895

P %
Analysis of Variance

fo— — — — %

Source DF SS MS F P

Regression 7 42 .5989 6.0856 544 5379 0

Residual Error 517 5.7778 0.011176

Total 524 48._.3767




Coefficients with Error Bars

x10f- ‘ —— ‘ 1-0.000406003 -0.3332 0.7391 |~| |[Mext step:
X11p —— 4 -0.00175087 -1.4397 0.1506 Wove 24 in
X2 ° 4 0.000507747 33.4066 0.0000
X3} ° 4 0.000135794 4.9290  0.0000
xiaf . 1-0.000314656 -11.4213  0.0000 ‘
XI5} . 4-0.000234503 -8.5119  0.0000
X16 | IS {-1.72106e-006 -0.0068  0.9946
X7t - 4-0.000237724 -0.4793  0.6319
X8| - 1 0.000222382 0.4483 0.6541
X19}F - 4 0.000780501 1.5770 0.1154
X0 - 4 0.00102674 1.7028 0.0892
X1t - 4 0.00397703 6.5598  0.0000
xe2| - 4 -0.00372929 -6.1512  0.0000
X3l - 4 -0.00295799 -4.8790  0.0000 ’7
4 ‘ ‘ ‘ | ——— ‘ { 0.00078433 2.6471 0.0084 |- ‘[T]
-0.04 -0.03 002 001 0 0.01 0.02 0.03 0.04
Intercept = 2.3212 R-square = 0880566 F =544 538
RMSE = 0105715 Adj R-z = 0.878718 p=0
Model History
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Figure 4-16 Final results for the Cubic Spline basis representation model.

The next figures correspond to the estimated responses and the residuals for the final

model obtained.
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Original and Estimated Response Functions

(3]
o
=
= ©
3 S
o 3
(3]
=2
T -
£ 8
Lo e , , , , %
c © I I | I I I | | |
o 9 | e N | | I
= m: | | | | | | I I I
8o i e B e e i e ol e
- I I | | I I I I I
m m | | | ik | | * | |
N I I | I I I I I I
o MM oo b o MMl — — o — — o k- — — - — —+ — — |
o~ I I I I I I I I I
v I I g I % I I I
XY 'c I I I I I I I I I
F3) R [ B Y R
2L = | LR | | i I I |
® © I I [E— Lk I I I
I I I I I I I I I
2 = e T e
M m_l ° | | | | | | | | |
faw = I I I I I I I I I
5 ..“ ym DQ.V | | P * | | | |
=1 o = I I I I I I I I I
S L 8.8 e
L = O o I I I I I I I I I
= %S m 2 | | | W | | | |
c [<5) | | I I I I | I |
2 m %..T . i e Bt Bl Rl Sl Ml Elti Tt el M
(%) oy | | | | | | | | |
SC | | | e % | | | |
o= I I I | I I I I I
-3 i e e P T e i il et i
o= | | | | | | | | |
m o) | | | Sk | | | | |
Io] v0| I I I I I I I I I
e L e ——
mm I I I I I I I I I
brd I I I - I I I I
%T I I I I I I I I I
- & I
C -
& I I I [ I I I I
= | | | | | | | | |
%_&m 1 1 1 ,% 1 1 1 1 1
D n < « N b © b N @ < 0 ©
m.ﬂ © © © © <@ <@ Q@ Q@ Q@ Q@
sasuodsay parewns3 pue feulbuo o % sjenpisay
D q )
ox c
iyt
[N D)
~ (&)
25
> 35
20
LL

10

Signal Factor Lewels
Theoretical Case Study

Figure 4-18 Residuals for the Basis Representation Final Model with a Cubic Spline Basis for the
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From Figure 4-17 it is possible to observe the fit of the estimated functions. The
estimation using the Cubic Spline looks better in comparison with the two previous bases.
Table 4-16 shows the terms that were considered relevant and the factors that are related

to those terms.

Table 4-16 Results Summary for Cubic Spline basis representation for the theoretical case

Coefficient
Terms Represented Value Related Factor | Basis Term
12 bos 0.000508 1 £
13 bis 0.000136 X1 t°
14 bas -0.00031 X2 £
15 bss -0.00023 X1*X2 t°
21 bis 0.003977 X1 (t-6)°
22 bos -0.00373 X2 (t-6)°
23 bss -0.00296 X1*X2 (t-6)°

These terms confirm once again that factors x; and x,, and their interaction are
relevant in the experiment. This model only has 8 terms and a good adjusted
determination coefficient, over 87%. Table 4-17 presents the pseudo MSE as in the

previous sections.

Table 4-17 Pseudo-MSE for the theoretical case basis using the representation method with a Cubic

Spline basis
Total SSE Total Number of | Total Number of Pseudo MSE
Parameters Data Points
5.7778 8 525 0.0111

The total SSE of this model is almost equal to the total SSE of the Point-Wise
method, but the difference in the number of terms is dramatic. In the next section, the
Piece-Wise method is applied to this Theoretical case study and their results and

discussion are shown.
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4.3.3 Piece-Wise Method without the Continuity Constraint

4.3.3.1 Monomial Basis

The models that are going to be used in each region are identical to the Equation
4.3. In order to complete, this procedure it is necessary to find the combination of knots
that provides the minimal sum of squares of error for all the regions. The objective
function and the restrictions considered for optimization were presented on Chapter 3.
The equation that corresponds to the objective function is the Equation 3.7, and the
restrictions are represented by equations 3.8 to 3.12. The Table 4-18 shows the results

obtained for this case.

Table 4-18 Summary of the Knots Search for the Theoretical Case Study using a monomial basis

Monomial Basis K=2

Number of knots | Objective function optimal knots
5 5.4869 5 9 12 15 18
4 5.4872 9 12 15 18 *
3 5.4879 10 | 15 18 * *
2 5.4929 10 18 * * *
1 5.5294 16 | * * * *

Due the small difference that exists among the objective functions for the models
with 3, 4, and 5 knots the one with the smaller number of knots was selected. In other
words, the knots selected for the procedure were 10, 15, and 18. The plots that
correspond to each region are shown in Figure 4-19. This figure shows the different

behaviors of the response functions in each region.

Figure 4-19 Plots for all the regions delimited before using the Piece-Wise procedure for the
theoretical case study with a monomial basis
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The results for this procedure are shown in the next pages. The results are
presented region by region. At the beginning of each section, the tables that correspond to
the initial outputs of Matlab are shown. Then the stepwise plots and final model details
are shown. To conclude, the results are discussed and the relevant factors for each region

are presented.

4.3.3.1.1 Results for Region #1

Table 4-19 is the initial Matlab output for the procedure in this region

Table 4-19 Initial Output for the Piece-Wise Method using a Monomial basis for region #1

- ———————————— %
Results for the Analysis of Variance for the Basis Representation Model for the
region #1
D — = = — %
Type of Basis: monomial
Number of basis functions or knots if the basis is a Cubic Spline: 2
- ———————————— %
Coefficients and Variance Inflation Factors
- ———————————— %
Terms Coefficients SE Coef T-test P-value VIF
0] 2.3013 0.0028939 795.25 0] 0
1 0.0024691 0.0032354 0.76314 0.44614 6.1818
2 -0.0012226 0.0032354 -0.37788 0.70586 6.1818
3 -0.0001135 0.0032354 -0.035081 0.97204 6.1818
4 0.00327 0.002995 1.0918 0.27601 13.656
5 -0.0021578 0.0033485 -0.64442 0.51993 47.176
6 0.0041098 0.0033485 1.2274 0.2209 47.176
7 0.0041849 0.0033485 1.2498 0.21261 47.176
8 0.0034566 0.00064071 5.3948 1.6537e-007 13.656
9 0.00087436 0.00071634 1.2206 0.22345 29.04
10 -0.0021076 0.00071634 -2.9421 0.0035816 29.04
11  -0.0024629 0.00071634 -3.4381 0.00069138 29.04
- —— %
R”"2 and Adjusted R"2
- %

RA2, RA2(adj)
0.76278 0.75182

D = — = — %
Analysis of Variance

D = — = — %

Source DF SS MS F P

Regression 11 0.25919 0.023563 69.5728 0

Residual Error 238 0.080605 0.00033867

Total 249 0.33979
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The model has a serious multicollinearity problem. In order to solve this problem

and reduce the model a stepwise procedure was performed. The following figure shows

the stepwise procedure conducted.

Coefficients with Error Bars Coeff. t-stat p-val
T T T T .
XL —0 4 0.000780382 0.4132 0.6798 vk s
| Move X6 out
X2 ® + -4 -0.00122261 -0.3796 0.7046
|
X3 “[ -4-0.000113503 -0.0352 0.9719
|
X4~ T L -4 0.00326997 1.0993 0.2727 ‘
|
X5 - --8.81166e-005 -0.0451 0.9641
|
X6 : - 0.00308493 1.5809 0.1152
X7~ : @ - 0.00408972 2.0958 0.0371
|
X8~ | - B 0.00413 23.9729 0.0000
|
X9 | o - 0.000487985 3.6945 0.0003
|
X10 - — : -4 -0.00192777 -3.6230 0.0004
|
X11p —— | - -0.00244616 -4.5972  0.0000 ‘[ Export
1 1 1 | 1 1 1 1
-8 -6 -2 0 2 4 8 10
Intercept = 2.3033 R-square = 0 760863 F =128.863
RMSE = 0.0182861 Adj R-s = 075398 p=0
Model History
0.04 T T T
°
°
0.035 . &
W 0.03- —
%)
=
@ 0.025— —
0.02— ° ° ° o B
0.015 | | | | | | |
1 2 3 4 5 6 7

Figure 4-20 Final results for the Piece-Wise method using a monomial basis for region #1.

Table 4-20 correspond to the final model after the completion of the stepwise procedure
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Table 4-20 Final Output for the Piece-Wise Method using a Monomial basis for region #1

= — = = %
Results for the Analysis of Variance for the Basis Representation Model
I —————— %
Coefficients and Variance Inflation Factors
S — %
Term Intercept SE Coef T-test P-value
0 2.3039 0.0016865 1366.0952 O

Term Coefficients SE Coef T-test P-value VIF

6.0000 0.0031 0.0020 1.5809 0.1152 16.2281
7.0000 0.0041 0.0020 2.0958 0.0371 16.2281
8.0000 0.0041 0.0002 23.9729 0 1.0000
9.0000 0.0005 0.0001 3.6945 0.0003 1.0000
10.0000 -0.0019 0.0005 -3.6230 0.0004 16.2281
11.0000 -0.0024 0.0005 -4.5972 0.0000 16.2281
b————————————-—-—-— - - - - - —C— —— —————— %
R”N2 and Adjusted R™N2
) — = — %

RA2,  RA2(adj)
0.76087 0.75496

0 — — — = %
Analysis of Variance

o — — —— m %

Source DF SS MS F P

Regression 6 0.25854 0.04309 128.8631 0

Residual Error 243 0.081255 0.00033438

Total 249 0.33979

o — — —— m %

The model still having the multicollinearity problem but is not as serious as the
initial one. Table 4-21 shows the most relevant terms and the factors that are associated

with the coefficients.

Table 4-21 Results summary for Region #1

Terms Coefficient Value Related Basis Term
Represented Factor
6 by 0.0031 X2 t
7 bs; 0.0041 X1*X2 t
8 boz 0.0041 1 t°
9 bz 0.0005 X1 t*
10 bay -0.00019 X2 t°
11 b1, -0.0024 X1*X2 t*
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The main factors and their interaction are relevant in the experiment. The
following pages show the results for the second region. The next figures correspond to
the estimated responses and the residuals. Figure 4-21 shows the estimated responses that
look adequate for this region and Figure 4-22 , shows the non-constant variance problem

presented by this model.

Response and Estimated Response for Region #1

Response and Estimated Response

Signal Factor Levels

Figure 4-21 Response and estimated response for the region #1. The asterisks correspond to the
estimated functions.

Residuals Plot for Region #1
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Figure 4-22 Residuals plot for region #1
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4.3.3.1.2 Results for Region #2

In the same way as done with the previous region, region #2 was also analyzed in detail.

The initial Matlab output it is shown in Table 4-22.

Table 4-22 Initial Output for the Piece-Wise Method using a Monomial basis for region #2

Results for the Analysis of Variance for the Basis Representation Model for
he region #2

- —— == %
Type of Basis: monomial
Number of basis functions or knots if the basis is a Cubic Spline: 2
= — =~ — %
Coefficients and Variance Inflation Factors
= — =~ — %
Terms Coefficients SE Coef T-test P-value VIF
0 2.3847 0.53493 4.458 1.9605e-005 0]
1 0.17257 0.59807 0.28855 0.77345 7274.4
2 -0.20932 0.59807 -0.34999 0.727 7274.4
3 -0.11727 0.59807 -0.19608 0.8449 7274.4
4 -0.023315 0.18013 -0.12944 0.89724 412.43
5 -0.066486 0.20139 -0.33013 0.74191 30107
6 0.085584 0.20139 0.42497 0.67167 30107
7 0.042236 0.20139 0.20972 0.83426 30107
8 0.005523 0.014993 0.36838 0.71328 412.43
9 0.0071735 0.016762 0.42796 0.6695 8025.3
10 -0.010418 0.016762 -0.62149 0.53553 8025.3
11  -0.0054877 0.016762 -0.32738 0.74398 8025.3
- %
R”"2 and Adjusted R"N2
- %

RA2,  RA2(ad))
0.70997 0.68173

- —— - %
Analysis of Variance

P %

Source DF SS MS F P

Regression 11 1.3601 0.12365 25.1465 0

Residual Error 113 0.55562 0.004917

Total 124 1.9157

e e e e e e % |

The problem of multicollinearity is present in this model. In this region the
problem is even higher than in the previous one. The stepwise procedure was completed
in order to improve the obtained model. In Figure 4-23, the plots for this procedure are

presented.
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Coefficients with Error Bars Coeff. t-stat p-val
T T T .
xif ——r— 4 -0.0245922 -0.8071 0.4212 Mext step
| Maove no terms
X2 B — - 0.0445041 1.4697 0.1443
| | a5 |
X3 —:0— - 0.00798566 0.2614 0.7942
|
X4~ o 4 -0.0232768 -0.1308 0.8961 ‘
|
X5 —o+ -4 -0.00844764 -0.8234 0.4119
|
X6 - J‘-O- B 0.0151951 1.4906 0.1387
X7+ —‘9- -4 0.00279852 0.2721 0.7860
|
X8~ [ ] - 0.00358497 4.9367 0.0000
|
X9 L] -4 0.00100704 5.4713 0.0000
]
X10 - + -4 -0.00214641 -11.6617 0.0000
|
X11 [} - -0.00176891 -9.6107  0.0000 ‘[—]Expm
L L L L Il L L L
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
Intercept = 2.31553 R-square = 0701988 F = 706671
RMSE = 0.0689753 Adj R-s0 = 0689571 p=0
Model History
0.16 :
0.14 — —
°
w 0121 =
2
x 014 L] |
0.08 — L4 —
°
°
0.06 | | | | |
1 2 3 4 5

Figure 4-23 Final results for the Piece-Wise method using a monomial basis for region #2

The output for the final model it is shown in Table 4-23.
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Table 4-23 Final Output for the Piece-Wise Method using a Monomial basis for region #2

D — — — — Y%
Results for the Analysis of Variance for the Basis Representation Model
e %
Coefficients and Variance Inflation Factors
g — = — %
Term Intercept SE Coef T-test P-value
0] 2.3155 0.027215 85.0822 O
Term Coefficients SE Coef T-test  P-value VIF
8 0.0035848 0.00072621 4.9363 2.5973e-006 1
9 0.001007 0.00018406 5.471 2.4845e-007 1
10 -0.0021463 0.00018406 -11.661 0 1
11 -0.0017689 0.00018406 -9.6105 2.2204e-016 1
D — — — Y%
RN2 and Adjusted R™N2
e %
RN2, R™N2(adj)
0.70196 0.69203
o — = — %
Analysis of Variance
D —— —— = — Y%
Source DF SS MS F P
Regression 4 1.3448 0.33619 70.6577 0
Residual Error 120 0.57096 0.004758
Total 124 1.9157
e %

The results summary it is presented in Table 4-24

Table 4-24 Results summary for Region #2

Terms Coefficient Value Related Basis Term
Represented Factor
8 boz 0.0041 1 t*
9 b 0.0005 X1 t*
10 ba» -0.00019 X2 t*
11 bs, -0.0024 X1*X2 t°

In this case, the design matrix for this model it is orthogonal and this eases
dramatically the analysis. Both factors are relevant, but the cross-term is the most
relevant in this case. The following plots correspond to the estimated response and
residuals. From Figure 4-24 one can observe that this model is not as good as the model
of obtained for the first region. The residuals plot shows a better behavior in terms of the

model variance if is compared to the first region model.
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Response and Estimated Response for Region #2
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Figure 4-24 Response and estimated response for the region #2. The asterisks correspond to the

estimated functions.

Residuals Plot for Region #2
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Figure 4-25 Residuals plot for region #2

The next section presents the results for the region #3.
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4.3.3.1.3 Results for Region #3

The Matlab initial output for this region is presented in Table 4-25

Table 4-25 Initial Output for the Piece-Wise Method using a Monomial basis for region #3

D m e o %
Eesults for the Analysis of Variance for the Basis Representation Model for
he region #3

D — — = %
Type of Basis: monomial
Number of basis functions or knots if the basis is a Cubic Spline: 2
- — = — %
Coefficients and Variance Inflation Factors
D — = — %
Terms Coefficients SE Coef T-test P-value VIF
0 0.3001 8.246 0.036394 0.97108 0
1 -1.9237 9.2193 -0.20866 0.83539 2.9376e+005
2 2.3625 9.2193 0.25626 0.79859 2.9376e+005
3 1.9939 9.2193 0.21627 0.82947 2.9376e+005
4 0.49411 2.0659 0.23918 0.81174 3073
5 0.45747 2.3097 0.19806 0.84363 1.1831e+006
6 -0.56041 2.3097 -0.24263 0.80908 1.1831e+006
7 -0.47699 2.3097 -0.20652 0.83705 1.1831e+006
8 -0.02635 0.1291 -0.20411 0.83892 3073
9 -0.0254 0.14433 -0.17598 0.86087 2.9952e+005
10 0.029992 0.14433 0.20779 0.83606 2.9952e+005
11 0.026175 0.14433 0.18135 0.85667 2.9952e+005
D — — = %
R”"2 and Adjusted R"2
D — — = %

RA2,  RA2(adj)
0.80091 0.76615

D — == — %
Analysis of Variance

D = — = — %

Source DF SS MS F P

Regression 11 4.3998 0.39998 23.0405 0

Residual Error 63 1.0937 0.01736

Total 74 5.4935

bp--—————--—-—-—-—-—-—----"-"-"-"-"-"-"-"—"—~— -~ -~~~ ————————————————— %

Once again, the initial model is not a good one due a serious multicollinearity
problem. Figure 4-26 shows the plots that correspond to the stepwise procedure for this

region.
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Coefficients with Error Bars Coeff. t-stat p-val
T T T T .
Xt — 4 -0.0979742 -0.6055 0.5468 iEns? itz
| Maove no terms
X2 - —— B 0.125977 0.7800 0.4381
| | a5 |
X3 —:0— B 0.0902785 0.5578 0.5788
|
X4~ T L g B 0.494113 0.2477 0.8051 ‘
|
X5 * -4 -0.0243895 -0.6017 0.5494
|
X6 - ‘b - 0.0313698 0.7752 0.4409
X7+ " — 0.0224554 0.5537 0.5815
|
X8~ L) -4 0.00452183 2.0245 0.0467
|
X9 ® -4 0.00167141 6.6080 0.0000
|
X10 - + - -0.00307926 -12.1741 0.0000
|
X1 [} - -0.00223449 -8.8342  0.0000 ‘ Export
Il Il Il Il Il Il Il Il Il Il
-4 -3 -2 -1 0 1 2 3 4 5
Intercept = 2.27205 R-square = 0.796521 F = 68 5038
RMSE = 0126368 Adlj R-s0 = 0.751586 p=0
Model History
0.35 :
03— —
° °
w 0.251 L =
2}
=
o 02 —
°
0.15— —
°
0.1 | | | | |
1 2 3 4 5

Figure 4-26 Final results for the Piece-Wise method using a monomial basis for region #3.

Table 4-26 corresponds to the final model obtained.




Table 4-26 Final Output for the Piece-Wise Method using a Monomial basis for region #3
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D — = — = — %
Results for the Analysis of Variance for the Basis Representation Model
D — == = %
Coefficients and Variance Inflation Factors
D — = — = = %
Term Intercept SE Coef T-test P-value
0 2.272 0.14406 15.7717 0
Term  Coefficients SE Coef T-test P-value VIF
8 0.0045218 0.0022335 2.0245 0.046732 1
9 0.0016714 0.00025294  6.608 6.4236e-009 1
10 -0.0030793 0.00025294  -12.174 0o 1
11 -0.0022345 0.00025294 -8.8342 5.3269e-013 1
Do —————————————————————————————————————————————————————————— e %
RN2 and Adjusted RN2
Do —————————————————————————————————————————————————————————— e %

RA2,  RA2(ad))
0.79652 0.78489

H D it ittt %
Analysis of Variance

e et %

Source DF SS MS F P

Regression 4 4.3757 1.0939 68.5038 0

Residual Error 70 1.1178 0.015969

Total 74 5.4935

e ——————————— %

In this model, the terms considered in the previous region were also considered.

Once again, the final design matrix is orthogonal and the coefficients can be compared

easily. Table 4-27 is a summary for these results.

Table 4-27 Results summary for Region #3

Terms Coefficient Value Related Basis Term
Represented Factor
8 boa 0.0045218 1 t?
9 bis 0.0016714 X1 t?
10 by -0.0030793 X2 t*
11 b3, -0.0022345 X1*X2 t?

The factors and their interaction are relevant in this region. The term that has the

most influence in the model corresponds to the factor x,. The estimated response plot

(Figure 4-27) shows a better fit for the responses compared to the previous two regions.
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The residuals plot presents a better behavior in terms of the models variance with respect

the models of the previous regions.

Response and Estimated Response for Region #3

2.

asuodsay pajewinsy pue asuodsal

Signal Factor Lewels

Figure 4-27 Response and estimated response for the region #3. The asterisks correspond to the

estimated functions.

Residuals Plot for Region #3
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Figure 4-28 Residuals plot for region #3

The results for the fourth and last region are shown in the next section.
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4.3.3.1.4 Results for Region #4

Table 4-28 corresponds to the initial model obtained for this region.

Table 4-28 Initial Output for the Piece-Wise Method using a Monomial basis for region #4

D m e o %
Eesults for the Analysis of Variance for the Basis Representation Model for
he region #4

D — — = %
Type of Basis: monomial
Number of basis functions or knots if the basis is a Cubic Spline: 2
- — = — %
Coefficients and Variance Inflation Factors
D — = — %
Terms Coefficients SE Coef T-test P-value VIF
0 12.001 21.567 0.55646 0.57987 0
1 12.954 24.113 0.53725 0.59299 5.8482e+005
2 -11.816 24.113 -0.49005 0.6258 5.8482e+005
3 -13.317 24.113 -0.55228 0.58271 5.8482e+005
4 -2.1542 4.5472 -0.47374 0.63732 4333
5 -2.8794 5.0839 -0.56638 0.57315 2.3507e+006
6 2.6506 5.0839 0.52137 0.60393 2.3507e+006
7 2.9452 5.0839 0.57931 0.56445 2.3507e+006
8 0.12418 0.2393 0.51893 0.60563 4333
9 0.1625 0.26754 0.60736 0.5458 5.9295e+005
10 -0.15262 0.26754 -0.57045 0.5704 5.9295e+005
11 -0.16583 0.26754 -0.61981 0.53762 5.9295e+005
D — — = %
R”"2 and Adjusted R"2
D — — = %
RN2, R™2(adj)
0.86992 0.84721
D — — = %
Analysis of Variance
D — — = %
Source DF SS MS F P
Regression 11 25.1315 2.2847 38.3014 0
Residual Error 63 3.758 0.05965
Total 74 28.8895
- ——— o o= %

As in the previous regions, the model has a serious multicollinearity problem. The next

page shows the plots for the stepwise procedure.



Coefficients with Error Bars Coeff. t-stat p-val
T T T .
Xt —— -0.700942 -1.8677 0.0661 W= €5y
Move ¥B in
X2 - —— 0.75377 2.0164 0.0476
X3k 0.650116 1.7262 0.0888
X4~ -2.1542 -0.4549 0.6506 ‘
X5 e -0.148445 -1.8764 0.0648
X6 - [ 0.159528 2.0245 0.0468
X7~ L] 0.137745 1.7350 0.0872
X8~ ] 0.0108264 2.8762 0.0053
X9 ° 0.00328491 9.1310 0.0000
X10 - ° -0.0048709 -13.5395 0.0000
X1 ° -0.00371749 -10.3334  0.0000 ‘[ Export
Il Il Il Il Il Il Il Il Il
-12 -10 -8 -6 -4 -2 0 2 6
Irtercept = 1 76521 R-zrjuare = 0 845045 F=85436
RMSE = 0.252885 Adj R-s0 = 0833877 p=0
Model History
07 \ \
°
0.6 — |
w 0.5~ ° 7
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0.4 ° |
0.3 —
° ]
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Figure 4-29 Final results for the Piece-Wise method using a monomial basis for region #4.

Table 4-29 output shows the final results for this region.
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Table 4-29 Final Output for the Piece-Wise Method using a Monomial basis for region #4

- %
Results for the Analysis of Variance for the Basis Representation Model
D — = = — %
Coefficients and Variance Inflation Factors
P %
Term Intercept SE Coef T-test P-value
(0] 1.7852 0.34159 5.2262 1.7057e-006
Term Coefficients SE Coef T-test P-value VIF
8.0000 0.0108 0.0038 2.8762 0.0053 1.0000
9.0000 0.0033 0.0004 9.1310 0.0000 1.0000
10.0000 -0.0049 0.0004 -13.5395 0] 1.0000
11.0000 -0.0037 0.0004 -10.3334 0.0000 1.0000
D —— — = — %
R"2 and Adjusted R"N2
et e e e e %
RN2, RMN2(adj)
0.84504 0.83619
P mm e %
Analysis of Variance
D —— — = — %
ISource DF SS MS F P
Regression 4 24_4129 6.1032 95.436 0
Residual Error 70 4.4766 0.063951
Total 74 28.8895
D — = = — %

The same terms obtained for the previous two regions were selected again by the

stepwise procedure. Table 4-30 summarizes the results.

Table 4-30 Results summary for Region #4

Terms Coefficient Value Related Factor | Basis Term
Represented
8 bos 0.0108 1 t?
9 bis 0.0033 X1 t?
10 by -0.0049 X2 t*
11 by -0.0037 X1*X2 t?

This model has the peculiarity that has an adjusted determination coefficient over
80%. The most relevant terms in this model correspond to the factor x, and the cross-
term. The following plots correspond to the estimated responses and residuals for this

region. Figure 4-30 shows the estimated responses for this region. This looks to be the
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Figure 4-31 Residuals plot for region #4

region with the best fit. The residuals plot shows a behavior very close to a model with

constant variance, this is presented in Figure 4-31
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The next plots correspond to the estimated responses and the residuals for all the regions

combined.
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Estimated and Original Response Functions Plot
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67

Figure 4-33 shows that the residuals present the same behavior than the obtained
with the basis representation method. In the next pages, the results for the same procedure

using a Fourier Basis are shown.

4.3.3.2 Fourier Basis

In order to begin with the procedure the knots location was completed. Table 4-31

presents the results of the knots search.

Table 4-31 Summary of the Knots Search for the Theoretical Case Study using a Fourier basis

Fourier

Basis K=2

Number of | Objective

knots function optimal knots
) 7.5641 3 6 9 12 16
4 5.5241 3 7 11 16 *
3 5.4986 6 11 16 * *
2 5.6749 11 16 * * *
1 6.7496 16 * * * *

The selected quantity of knots is 3 and the selected knots are 6, 11, and 16. Due

the use of a Fourier Basis, the models in each region are going to equal to the Equation

4.5. The Figure 4-34 presents the plots for each of the four regions delimited by the

knots.

Figure 4-34 Plots for all the regions delimited before using the Piece-Wise procedure for the

The next sections show the results obtained in each region in detail.

theoretical case study with a Fourier basis
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4.3.3.2.1 Results for Region #1

As done with the previous basis, the initial Matlab output is presented in order to

show the results obtained for this region.

Table 4-32 Initial Output for the Piece-Wise Method using a Fourier basis for region #1

- ———————————————————————————————————— %
Results for the Analysis of Variance for the Basis Representation Model for
‘the region #1
o= == = e %
Type of Basis: fourier
Number of basis functions or knots if the basis is a Cubic Spline: 2
0p——————— %
Coefficients and Variance Inflation Factors
Jo— - %
Terms Coefficients SE Coef T-test P-value VIF
0 2.3127 0.00099084 2334.1 0 0
1 0.0018039 0.0011078 1.6284 0.10587 1.08
2 -0.00096109 0.0011078 -0.86757 0.38723 1.08
3 -0.00013464 0.0011078 -0.12153 0.90346 1.08
4 -0.0084468 0.0014771 -5.7187 7.0121e-008 1
5 2_.415e-005 0.0016514 0.014624 0.98835 1
6 0.0007692 0.0016514 0.46579 0.64215 1
7 0.0012705 0.0016514 0.76932 0.4431 1
8 0.0027616 0.0013211 2.0903 0.038536 1.0667
9 9.657e-005 0.0014771 0.06538 0.94797 1.12
10 -0.0007232 0.0014771 -0.48962 0.62523 1.12
11  -0.0016348 0.0014771 -1.1068 0.27044 1.12
12 -0.0020372 0.0014771 -1.3792 0.1702 1
13 5.1963e-005 0.0016514 0.031466 0.97495 1
14  0.00015014 0.0016514 0.09092 0.9277 1
15 3.9023e-005 0.0016514 0.02363 0.98118 1
16 0.001068 0.0013211 0.80841 0.42033 1.0667
17 7.6214e-005 0.0014771 0.051598 0.95893 1.12
18 -0.00035591 0.0014771 -0.24096 0.80996 1.12
19 -0.0009557 0.0014771 -0.64703 0.51875 1.12
Yo %
R"2 and Adjusted R"2
Jo— %
RA2, R™N2(adj)
0.27208 0.1657
- ——————————— %
Analysis of Variance
R e T e L L B e %
Source DF SS MS F P
Regression 19 0.0066259 0.00034873 2.5575 0.00098176
Residual Error 130 0.017726 0.00013636
Total 149 0.024352
Yo m e %

This model does not have the multicollinearity problem presented by the

monomial basis, but it has a series of non-relevant terms that can be eliminated. This in



69

order to improve and simplify the model the stepwise procedure was completed. Figure

4-35 correspond to this procedure.

Coefficients with Error Bars Coeff. t-stat p-val
x| ‘ ‘ — ] 0.00183 1.7769 0.0777|=~| |Next step:
x| ——— {1  -0.00114 -1.1078 0.2698 Wove X171 out
X3 —0:— —1-0.000254217 -0.2401 0.8106 ‘
Xa - —_— | - -0.00844551 -5.9182 0.0000
X5 “.‘ —2.42129e-005 0.0151 0.9880
X6~ ® - 0.000768488 0.4804 0.6317
X7~ : -~ 0.00127468 0.7979 0.4262
X8 : —_— - 0.00303094 2.4525 0.0154 —
X9 —_— - 0.000117776 0.0849 0.9324
|
X10+- —_— -4 -0.00110015 -0.8149 0.4165
X1 —0—?— -4 -0.00194733 -1.4441 0.1509
X121 —_— - -0.00203789 -1.4332 0.1540
|
X131+ » —5.43942e-005 0.0340 0.9729
X14 - ‘“ - 0.000151627 0.0947 0.9247
X15+ ) ) ) ) ) T - ) ) -3.86296e-005 0.0241 0.9808 | . ‘ Export ...
-12 10 -8 6 -4 0 2 4 6
Intercept = 2.31285 R-square = 02419558 F=115706
RMSE = 0.0112818 AdjR-sq=0215818 P =3.515-008
Model History
0.013 T T
°
0.0125 |- -
7
s 0.012 — —
x
0.0115— —
°
L4 °
0.011 | | | |
1 3 4 5

Figure 4-35 Final results for the Piece-Wise method using a Fourier basis for region #1.

Table 4-33 corresponds to the final model it is shown next.
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Table 4-33 Final Output for the Piece-Wise Method using a Fourier basis for region #1

= = e e e e e e e %
Results for the Analysis of Variance for the Basis Representation Model
O — — — = — %
Coefficients and Variance Inflation Factors
O — — — = — %
Term Intercept SE Coef T-test P-value
0 2.3129 0.00094403 2450.0134 O

Term Coefficients SE Coef T-test P-value VIF
1.0000 0.0018 0.0010 1.7793 0.0773 1.0000
4.0000 -0.0084 0.0014 -5.9183 0.0000 1.0000
8.0000 0.0030 0.0012 2.4503 0.0155 1.0000

11.0000 -0.0019 0.0013 -1.4432 0.1511 1.0000

o — = — = %
RN2 and Adjusted RN2

o — = — = %

RN2, R™N2(adj)

0.24195 0.22103

U —— —— == — %
Analysis of Variance

U —— —— == %

Source DF SS MS F P

Regression 4 0.0058919 0.001473 11.5698 3.5191e-008

Residual Error 145 0.01846 0.00012731

Total 149 0.024352

o — = — = %

The model is not a good one; it only describes 24% of the variability of the data.
Inferences using this model are not appropriate only two factor related terms were
considered relevant by the model and two additional terms corresponding to the intercept
of the model. The next plots (Figure 4-36 and Figure 4-37) show the lack of fit and
variance problems that this model has. This is expected to happen in all the regions, due

the basis selection.
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Response and Estimated Response for Region #1

2.36
235F -

asuodsay parewns3 pue asuodsay

2.29

2.5

15

Signal Factor Levels

0.5

Figure 4-36 Response and estimated response for the region #1. The asterisks correspond to the

estimated functions.

Residuals Plot for Region #1
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Figure 4-37 Residuals plot for region #1
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Table 4-34 is the initial Matlab output; the stepwise plots and the final model are

presented in the next pages.

Table 4-34 Initial Output for the Piece-Wise Method using a Fourier basis for region #2

Do — — = = %
Results for the Analysis of Variance for the Basis Representation Model for the
region #2
D — — %
Type of Basis: fourier
Number of basis functions or knots if the basis is a Cubic Spline: 2
D — — %
Coefficients and Variance Inflation Factors
Do — — = = %
Terms  Coefficients SE Coef T-test P-value VIF
0 2.3711 0.0032493 729.72 0 0
1 0.0089025 0.0036328 2.4506 0.015914 1.0937
2 -0.020265 0.0036328 -5.5783 1.905e-007 1.0937
3 -0.023839 0.0036328 -6.5621 2.0578e-009 1.0937
4 0.031921 0.0054923 5.812 6.6951e-008 1.25
5 0.0065675 0.0061406 1.0695 0.28728 1.25
6 -0.016107 0.0061406 -2.6231 0.010009 1.25
7 -0.016505 0.0061406 -2.6879 0.0083636 1.25
8 -0.003161 0.0042543 -0.74301 0.45913 1.05
9 -0.0012625 0.0047565 -0.26543 0.7912 1.125
10 0.0025425 0.0047565 0.53454 0.5941 1.125
11 0.002605 0.0047565 0.54768 0.58508 1.125
12 -1.2757e+014 2.0057e+013 -6.3606 5.3344e-009 39.65
13 -3.3397e+013  2.2424e+013 -1.4894 0.13939 41.25
14  7.3368e+013  2.2424e+013 3.2719 0.0014463 41.25
15 6.6529e+013 2.2424e+013 2.9669 0.0037255 41.25
16 -0.12477 0.019917 -6.2645 8.3644e-009 39.45
17 -0.031685 0.022267 -1.4229 0.15772 41.094
18 0.070557 0.022267 3.1686 0.0020065 41.094
19 0.065179 0.022267 2.9271 0.0041952 41.094
Do — = — = — %
RN"2 and Adjusted R™2
P — %
RN2, RM2(adj)
0.62116 0.5526
e e e e %
Analysis of Variance
Po———— %
ISource DF SS MS F P
Regression 19 0.20773 0.010933 9.061 1.0325e-014
Residual Error 105 0.12669 0.0012066
Total 124 0.33442
Do — — = = %
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It is possible to observe that the model has a multicollinearity problem. In

addition, the determination coefficient for the model is relatively low. The stepwise plots

are shown in Figure 4-38.

Coefficients with Error Bars Coeff. t-stat p-val
- + b 0.009362 2.2445 0.0266 |~| |MNext step:
X2~ f B -0.021038 -5.0438 0.0000 Move no terms
X3+ [ ] B -0.02436 -5.8402 0.0000 ‘
X4~ + B 0.016298 2.7629 0.0066
X5 * B 0.0024775 0.3743 0.7088 ‘
X6 ® 4 -0.0071225 -1.0807 0.2820
|
X7~ ® 4 -0.0083575 -1.2705 0.2064
X8~ * -4 -0.00322257 -0.6448 0.5203 [—
X9 ® 1 -0.00155821 -0.2785 0.7811
X101+~ + - 0.00292036 0.5223 0.6024
X1 * 4 0.00260536 0.4659 0.6421
X12 - * -4-3.97633e+012 -1.0367 0.3020
|
X131+ L T --1.94587e+012 -0.4535 0.6510
X14 - : g - 3.2099e+012 0.7493 0.4552
X151+ ) - ; L g ; . -1.67805e+012 0.3910 0.6965 |, ‘ Export ...
-1 -0.5 0 0.5 1
Intercept = 2.37173 R-square = 0375712 F=150347
RMSE = 0.0417108 Adj R-s0 = 0.3497 P =1.24438e-011
Model History
0.055 T T
[ ]
0.05— —
w
2 °
@
0.045— —
[ ]
® [ ]
0.04 | | | | |
1 2 3 4 5

Figure 4-38 Final results for the Piece-Wise method using a Fourier basis for region #2.

Table 4-35 provides the details with respect the final model obtained after the

execution of the stepwise procedure.
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Table 4-35 Final Output for the Piece-Wise Method using a Fourier basis for region #2

- —— —————— e —m e ——— o= %
Results for the Analysis of Variance for the Basis Representation Model
Bl = = = = = = = = %
Coefficients and Variance Inflation Factors
Dl = = = = = = = = e %
Term Intercept SE Coef T-test P-value
0 2.3717 0.0037311 635.6675 0

Term Coefficients SE Coef T-test P-value VIF
1.0000 0.0094 0.0042 2.2447 0.0266 1.0000
2.0000 -0.0210 0.0042 -5.0424 0.0000 1.0000
3.0000 -0.0244 0.0042 -5.8393 0.0000 1.0000
4.0000 0.0163 0.0059 2.7625 0.0066 1.0000

RA2, RA2(adj)
0.37563 0.35482

D — == — %
Analysis of Variance

D = — = — %

Source DF SS MS F P

Regression 4 0.12563 0.031406 18.0484 1.254e-011

Residual Error 120 0.20881 0.0017401

Total 124 0.33444

hp——————————————_——_—_—_—_——_——_———————————————E—E—E—E——E————E———————_- -, — . — . %

The final model is not a good one. Only around 35% of the total variability of the
data is explained. Only the first four terms are relevant and the one that correspond to the
cross-term in is the most relevant. In general, this model cannot be used to conclude with
respect this region. Plots presented in figures 4-39 and 4-40 show the lack of fit presented

by this model. The next section shows the results for region #3.
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Response and Estimated Response for Region #2
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Figure 4-39 Response and estimated response for the region #2. The asterisks correspond to the

estimated functions.

Residuals Plot for Region #2
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Figure 4-40 Residuals Plot for region #2
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4.3.3.2.3 Results for Region #3
Table 4-36 corresponds to the initial model for this region

Table 4-36 Initial Output for the Piece-Wise Method using a Fourier basis for region #3

P ————m %
Results for the Analysis of Variance for the Basis Representation Model for the
region #3
P ————m %
Type of Basis: fourier
Number of basis functions or knots if the basis is a Cubic Spline: 2
e it %
Coefficients and Variance Inflation Factors
Do — = — = — - %
Terms  Coefficients SE Coef T-test P-value VIF
0 2.469 0.0079599 310.18 0 0
1 0.046331 0.0088994 5.2061 9.6428e-007 1.0937
2 -0.097173 0.0088994 -10.919 0 1.0937
3 -0.076934 0.0088994 -8.6449 6.5947e-014 1.0937
4 0.71764 0.17487 4.1039 8.0472e-005 295.61
5 0.39114 0.19551 2.0006 0.048012 316.72
6 -0.72718 0.19551 -3.7194  0.00032255 316.72
7 -0.42635 0.19551 -2.1807 0.031436 316.72
8 -0.048996 0.013455 -3.6416 0.00042265 1.25
9 -0.027054 0.015043 -1.7984 0.074979 1.25
10 0.049308 0.015043 3.2779 0.0014187 1.25
11 0.029391 0.015043 1.9538 0.05338 1.25
12 2.0336e+014 4.9133e+013 4.1389 7.0606e-005 472 .63
13 1.1123e+014 5.4933e+013 2.0249 0.045415 516.75
14 -2.0631le+014 5.4933e+013 -3.7557  0.00028408 516.75
15 -1.2125e+014 5.4933e+013 -2.2072 0.029475 516.75
16 0.32367 0.078626 4.1166 7.6768e-005 102.45
17 0.17611 0.087907 2.0034 0.047713 106.72
18 -0.32841 0.087907 -3.7359 0.0003045 106.72
19 -0.1929 0.087907 -2.1944 0.030412 106.72
P — = — = = - %
RN2 and Adjusted RN2
Do — = — = = - %
RN2, RN2(adj)
0.73981 0.69272
Do — = — = = - %
Analysis of Variance
D= — = = = = = %
ISource DF SS MS F P
Regression 19 2.1618 0.11378 15.7129 0
Residual Error 105 0.76031 0.0072411
Total 124 2.9221
= — = — = = — - %

This model has a better initial determination coefficient than the initial models for

the first two regions. The model has a serious multicollinearity problem; in addition there
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are some terms that are not relevant in the model. The plots that correspond to the

stepwise procedure are presented by Figure 4-41.

Coefficients with Error Bars Coeff. t-stat p-val
xif ‘ '3 ‘ 1  0.047336 4.9533 0.0000 || |Nextstep:
X+ ‘6 B -0.09834 -10.2904  0.0000 Move no terms
X3+ . 4 -0.077842 -8.1455 0.0000 ‘
X4t ‘9 - -0.00486514 -0.4245 0.6720
x50 'Y 4 -0.00431929 -0.3370 0.7367
X6 - ‘o 4 0.00578214 0.4513 0.6526
X7+ ‘, 1 0.00444929 0.3471 0.7291
X8 ‘6 4 -0.024092 -1.7826 0.0772 [—
X9+ ° 4 -0.013425 -0.8877 0.3765
X101 ‘9 4 0.024045 1.6017 0.1119
X11p ‘6 E 0.014545 0.9623 0.3378
X121 = 11.40503e+012 0.5518 0.5821
X131 1 - 41.15753e+012  0.4065 0.6851
X141 : +-1.48224e+012 -0.5208 0.6035
xsp ‘ ‘ —o— ‘ ‘ ‘ 1-1.00178e+012 -0.3834  0.7021|. ‘[ExpT]
-8 6 -4 2 0 2 4 6 8
Intercept = 2.47 R-square = 0 624946 ” F = 4995856
RMSE = 0.0955647 Adj R-s = 0609313 p=0
Model History
0.16 3 ‘
0.14|~ -
& 0.12|~ ¢ -
2
[ ]
0.1~ ° o -
0.08 | | | | |
1 2 3 4 5

Figure 4-41 Final results for the Piece-Wise method using a Fourier basis for region #3.

Table 4-37 corresponds to the stepwise procedure it is shown in the next page.




Table 4-37 Final Output for the Piece-Wise Method using a Fourier basis for region #3
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Term Intercept SE Coef T-test P-value
0 2.47 0.008548 288.9553 O

Term Coefficients SE Coef T-test P-value VIF
1.0000 0.0473 0.0096 4.9528 0.0000 1.0000
2.0000 -0.0983 0.0096 -10.2896 0 1.0000
3.0000 -0.0778 0.0096 -8.1452 0.0000 1.0000
8.0000 -0.0241 0.0135 -1.7825 0.0772 1.0000

RA2,  RA2(ad))
0.62491 0.61241

Source DF SS MS F P
Regression 4 1.8261 0.45651 49.9819 0
Residual Error 120 1.096 0.0091336

Total 124 2.9221

This is model it is better than the previous ones in terms of the adjusted

determination coefficient. The model describes 63% of the total variability of the data.

This quantity is not excellent but is acceptable in some applications. Table 4-38

summarizes the obtained results.

Table 4-38 Results summary for region #3 of the Piece-Wise method using a Fourier basis

Terms Coefficient Value Related Basis Term
Represented Factor
1 bio 0.0473 X1 1
2 b -0.0983 X2 1
3 bso -0.0778 X1*X2 1
8 boa -0.0241 1 cos(wt)

Terms 1 to 3 correspond to the factors without a sine or cosine term. By the

magnitudes of the coefficient the factor, x; is the most relevant in this region.




Figure 4-42 Response and estimated response for the region #3. The asterisks correspond to the

Response and Estimated Response

Residuals

Response and Estimated Response for Region #3
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estimated functions.

Residuals Plot for Region #3
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Figure 4-43 Residuals for region #3
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The estimated responses plot presents a better fit compared to the previous two.

The residuals plot shows the problem of non-constant variance for this model. The next

section shows the results for the region #4, which is the last one due the number of knots

used.
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As done with all the regions in this procedure Table 4-39 corresponds to the initial model

for this region.

Table 4-39 Initial Output for the Piece-Wise Method using a Fourier basis for region #4

Po-————————————————— %
Results for the Analysis of Variance for the Basis Representation Model for the
region #4
% ___________________ 0U
Type of Basis: fourier
Number of basis functions or knots if the basis is a Cubic Spline: 2
% ___________________ 0U
Coefficients and Variance Inflation Factors
% ___________________ 0U
Terms Coefficients SE Coef T-test P-value VIF
0 2.6833 0.019566 137.14 0 0
1 0.21396 0.021875 9.7812 2.2204e-016 1.0937
2 -0.33833 0.021875 -15.466 0 1.0937
3 -0.25323 0.021875 -11.576 0 1.0937
4 -2.4028 0.44484 -5.4015 4.1446e-007 226.15
5 -2.3104 0.49735 -4.6453 9.8854e-006 226.15
6 2.8705 0.49735 5.7716 8.0325e-008 226.15
7 2.3266 0.49735 4.6781 8.6648e-006 226.15
8 0.024987 0.025618 0.97538 0.33161 1.05
9 0.029249 0.028641 1.0212 0.30949 1.125
10 -0.031858 0.028641 -1.1123 0.26855 1.125
11 -0.027494 0.028641 -0.95996 0.33928 1.125
12 -6.3378e+014 1.2077e+014 -5.2478  8.065e-007 420.55
13 -6.1025e+014 1.3503e+014 -4.5195 1.6321e-005 428.65
14 7.5719e+014 1.3503e+014 5.6077 1.6724e-007 428.65
15 6.1479e+014 1.3503e+014 4.5531 1.4287e-005 428.65
16 -1.3836 0.26694 -5.1831 1.064e-006 195.45
17 -1.3285 0.29845 -4.4513 2.1344e-005 203.59
18 1.6526 0.29845 5.5371 2.2862e-007 203.59
19 1.3385 0.29845 4.485 1.87e-005 203.59
% ___________________ 0U
RA"2 and Adjusted R™2
% ___________________ 0U
RN2, RM"2(adj)
0.86579 0.84151
% ___________________ 0U
Analysis of Variance
% ___________________ OU
Source DF SS MS F P
Regression 19 29.6349 1.5597 35.6505 0
Residual Error 105 4.5938 0.043751
Total 124 34.2287
% ___________________ OU

It is not surprising to obtain a model with the presence of the multicollinearity

problem. In addition, some terms are not relevant in the model. For those reasons, once
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again the stepwise procedure was used. The plots and final model are shown in the next

pages.
Coefficients with Error Bars Coeff. t-stat p-val
xif ‘ ‘ PS ‘ 0.223161 7.6600 0.0000 |=| |Mextstep:
Xt ° -0.348015 -11.9456  0.0000 Move no terms
X3+ ° -0.262063 -8.9953  0.0000 ‘
X4t ° -0.073578 -1.8024 0.0740
X5 ® -0.06757 -1.4740 0.1431
X6 ° 0.08769 1.9248 0.0566
X7+ ° 0.067185 1.4654 0.1454
X8t ) 0.0288426  0.8272  0.4097 [—
X9t ° 0.03403 0.8733 0.3843
X101 ° -0.0365929 -0.9395 0.3494
X1+ ° -0.0322579 -0.8275 0.4096
X2+ o 5.50755e+012  0.6699  0.5042
X3+ o 3.85978e+012  0.4194 0.6756
X4+ -6.38639e+012 -0.6949  0.4885
X15 ‘ ‘ ‘ ‘ —o ‘ ‘ ‘ ‘ ‘ | |~3-86674e+012 -0.4202  0.6751|. ‘ Export ..
2.5 2 -1.5 -1 0.5 0 0.5 1 1.5 2 2.5
Intercept = 269103 R-square = 0 699965 F =94 D966
RMSE = 0291332 Adj R-z0 = 0.690043 p=0
Model History
0.6 ‘
]
0.5+ —
w [ ]
2] [ —
2 04
@ °
0.3 ° —
0.2 | | | |
1 2 3 4

Figure 4-44 Final results for the Piece-Wise method using a Fourier basis for region #4.

The details related with the final model for this region are shown in Table 4-40.
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Table 4-40 Final Output for the Piece-Wise Method using a Fourier basis for region #4

p———————————————————————— %
Results for the Analysis of Variance for the Basis Representation Model
e %
Coefficients and Variance Inflation Factors
f— — = — %
Term Intercept SE Coef T-test P-value
0 2.691 0.026058 103.2727 O
Term Coefficients SE Coef T-test P-value VIF
1 0.22316 0.029133 7.66 5.0999e-012 1
2 -0.34801 0.029133 -11.946 0] 1
3 -0.26206 0.029133 -8.9952 3.9968e-015 1
D — = — %
RN2 and Adjusted R™N2
e et ettt %
RN2, RM"2(adj)
0.69996 0.69253
Jf— — = — %
Analysis of Variance
pm e %
Source DF SS MS F P
Regression 3 23.9589 7.9863 94.0954 0
Residual Error 121 10.2698 0.084874
Total 124 34.2287
% Yy

The model obtained is the best one for the Fourier basis. The adjusted
determination coefficient is close to a 70% and the model has an orthogonal design

matrix. The next table shows the results summarized.

Table 4-41 Results summary for region #4 of the Piece-Wise method using a Fourier basis

Terms Coefficient Value Related Basis Term
Represented Factor
1 bio 0.22316 X1 1
2 bao -0.34801 X2 1
3 bso -0.26206 X1*X2 1

The relevant terms correspond to the terms that not are multiplied by a sine or

cosine term. This is exactly what happened with the previous region. The term that

corresponds to the factor x, is the most relevant in this model. Figure 4-45 shows the

estimated responses as constant lines; this behavior is caused by the elimination of all the

terms related to the signal factor. The residuals plot shows the same problems presented

by the models of the previous regions.
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Response and Estimated Response for Region #4
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Figure 4-46 Residuals plot for region #4

8.2

The next section summarizes the results for the Piece-Wise method without the continuity

constraint.
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4.3.3.3 Results Summary for the Piece-Wise Method without the Continuity

Constraint

After performing, the Piece-Wise method for the theoretical case study is
important to summarize and make some remarks with respect the results obtained. The
next tables show a summary for the two bases used by region. These tables also present

the results for the pseudo-MSE for both bases.

Table 4-42 Summary for the Piece-Wise procedure using a Monomial Basis

Table 4-43 Summary for the Piece-Wise procedure using a Fourier Basis

Monomial Number of Number of Data | Adjusted
Basis Terms MSE Points RN2
Region 1 7 0.00033438 250 0.75496
Region 2 5 0.004758 125 0.69203
Region 3 5 0.015969 75 0.78489
Region 4 5 0.063951 75 0.83619

Pseudo-
MSE 0.012418718

Fourier Number of Number of Data | Adjusted
Basis Terms MSE Points RN2
Region 1 7 0.00012672 150 0.22469
Region 2 7 0.0017288 125 0.35902
Region 3 8 0.0090161 125 0.61098
Region 4 4 0.084874 125 0.69253

Pseudo-
MSE 0.023173788

From tables 4-42 and 4-43 one can notice the difference in the adjusted
determination coefficients for both bases. The monomial basis has a better performance
compared to the Fourier basis. This result was expected due the behavior of the response
functions that do not have a periodical behavior. The pseudo-MSE for the monomial
basis it is approximately the half of the pseudo-MSE of the Fourier basis. Both bases
worked better in their respective regions 3 and 4. Also for both bases, the factor x, was
the most relevant for the last region. In general, the method worked out decently well for

this case in specific when the monomial basis was used. The next section of this chapter
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presents the results for the Piece-Wise method with the incorporation of the continuity

constraints.

4.3.4 Piece Wise Method with the Continuity Constraint

In order to ensure the continuity among the regions for all the curves, a set of
constraints were imposed to the models. As mentioned on Chapter 3, these constraints are
incorporated to the models using a series of indicator variables, after the stepwise
procedure. The number of those variables is equal to the number of experimental
conditions minus one. The reasoning of subtracting one experimental condition is to
create a reference or a base for the rest of the indicator variables. Then the restrictions to
these indicator variables are the averages of the responses at the last level of the signal
factor of the previous region. The restricted least of squares algorithm it is used to find
the regression coefficients for each region. The following sections are going to present
the implementation of this procedure, it is important to understand that the terms
considered for the final regressions are the same terms selected by the stepwise procedure

for the models without the continuity constraint. The results obtained are next.

4.3.4.1 Monomial Basis

4.3.4.1.1 Results for Region #1

The results obtained for this region are exactly the same results obtained for the model
without the continuity constraint, because this region does not involve the restrictions.

The next tables show the results summary for this region.
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Table 4-44 Final Matlab Output for Region #1

= — = = = = = %
Results for the Analysis of Variance for the Basis Representation Model
R ———— %
Coefficients and Variance Inflation Factors
U — %
Term Intercept SE Coef T-test P-value
0 2.3039 0.0016865 1366.0952 O

Term Coefficients SE Coef T-test P-value VIF
6.0000 0.0031 0.0020 1.5809 0.1152 16.2281
7.0000 0.0041 0.0020 2.0958 0.0371 16.2281
8.0000 0.0041 0.0002 23.9729 0 1.0000
9.0000 0.0005 0.0001 3.6945 0.0003 1.0000

10.0000 -0.0019 0.0005 -3.6230 0.0004 16.2281

11.0000 -0.0024 0.0005 -4.5972 0.0000 16.2281

RA2,  RA2(adj)
0.76087 0.75496

o ——— %
Analysis of Variance

g — = = %

Source DF SS MS F P

Regression 6 0.25854 0.04309 128.8631 0

Residual Error 243 0.081255 0.00033438

Total 249 0.33979

g — = = %

Table 4-45 Results Summary for Region #1

Terms Coefficient Value Related Basis Term
Represented Factor
6 by 0.0031 X2 t
7 bs; 0.0041 X1*X2 t
8 boz 0.0041 1 t*
9 b1 0.0005 X1 t°
10 bay -0.00019 X2 t*
11 b -0.0024 X1*¥X2 t*

As mentioned previously the model has the multicollinearity problem but both

factors were considered as relevant.
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4.3.4.1.2 Results for Region #2

The results of the analysis of variance for this region are shown on the next tables

Table 4-46 Matlab Output for Region #2

Analysis of Variance for the Final Model with the restricted coefficients for
the region #2

Type of Basis: monomial
Number of basis functions or knots if the basis is a Cubic Spline: 2

Source DF SS MS F
Regression 8 -0.4375 -0.0547 0 1
Residual Error 116 0.5644 0.0049
Total 124 0.1269

Coefficients and Variance Inflation Factors

Term Coefficient SE Coef T-test P-value VIF
0 2.4561 0.0196 125.0281 0
8 0.0242 0.0042 5.7108 0 1
9 0.0205 0.0047 4.3445 0 2.0345
10 -0.0194 0.0047 -4.1053 0.0001 2.0345
11 -0.0239 0.0047 -5.0538 0 2.0345
ind 1 -0.0725 0.0281 -2.5766 0.0112 3.2552
ind 2 -0.0024 0.0281 -0.0856 0.9319 3.2552
ind 3 -0.115 0.0281 -4.0868 0.0001 3.2552
ind 4 -0.0686 0.0232 -2.9517 0.0038 2.2207

This model is completely inadequate if is compared to the model without the

continuity constraints. Inferences with this model are not reliable. The next section

presents the results for the third region.
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4.3.4.1.3 Results for region #3

As done on the previous sections the results for the third region are in the following

tables.

Table 4-47 Matlab Output for the region #3

Analysis of Variance for the Final Model with the restricted coefficients for
the region #3

Y — = = %
Type of Basis: monomial
Number of basis functions or knots if the basis is a Cubic Spline: 2
Y — = e %
Coefficients and Variance Inflation Factors
Y —— = %
Term Coefficient SE Coef T-test P-value VIF
0 2.5404 Inf 0 1
8 0.2427 Inf 0 1 0
9 0.2433 Inf 0 1 0
10 -0.0349 Inf 0 1 9.7965
11 0.0349 Inf 0 1 9.7965
ind 1 -0.1244 Inf 0 1 0
ind 2 0.2654 Inf 0 1 0
ind 3 -0.1938 Inf 0] 1 0
ind 4 -0.0563 Inf 0 1 0
1.0e+015 *
Y —— %
R”N2 and Adjusted R™N2
Y —— — = —— %

RA2  adj RA2
0.7069 0.6714

Y —— m %
Analysis of Variance

Y — = — Y%

Source DF SS MS F P
Regression 8 2.4026 0.3003 19.8983 6.77E-15
Residual Error 66 0.9961 0.0151

Total 74 3.3988

Y — = — %

The multicollinearity problem is extremely severe. The effect of the indicator

variables in the model was very adverse on it inference capabilities.
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4.3.4.1.4 Results for region #4

The results for the last region analyzed are presented on the next couple of tables.

Table 4-48 Matlab Output for Region #4

L N AGAOAHG i A A SO A -l iiBHi i i AAASASSsaG_iipid Y%
Analysis of Variance for the Final Model with the restricted coefficients for
the region #4
= = %
Type of Basis: monomial
Number of basis functions or knots if the basis is a Cubic Spline: 2
Y —— ——m %
Coefficients and Variance Inflation Factors
Y —— Y%
Term Coefficient SE Coef T-test P-value VIF
0 2.631 Inf 0 1
8 0.6381 Inf 0 1 0
9 0.5668 Inf 0 1 0
10 -0.0288 Inf 0 1 9.7965
11 0.0288 Inf 0 1 9.7965
ind 1 -0.2854 Inf 0 1 0
ind 2 0.4175 Inf 0 1 0
ind 3 -0.0417 Inf 0 1 0
ind 4 -0.2173 Inf 0 1 0
1.0e+015 *
= — %
RN2 and Adjusted R"2
= — %
RN2 adj R™2
0.4034 0.3311
g m — %
Analysis of Variance
= = %
Source DF SS MS F P
Regression 8 7.1038 0.888 5.5794 2.11E-05
Residual Error 66 10.5039 0.1592
Total 74 17.6077
= = %

Similar to the previous two regions the cost of the imposition of the continuity

constraint has been a dramatic loss on inference capabilities. It is important to mention

that the constraint was not incorporated to the models obtained using the Fourier bases

because from the shape of the response functions it is clear that this type of basis is not

appropriate. The Table 4-49 summarizes the results obtained



Table 4-49 Results Summary for the Piece-Wise method with Continuity Constraints

90

Number

Monomial | Number of of Data | Adjusted

Basis Terms SSE MSE Points R"2
Region 1 7 0.081255 | 0.00033438 250 0.75496
Region 2 9 0.5644 0.0049 125 0
Region 3 9 0.9961 0.0151 75 0.6714
Region 4 9 10.5039 0.1592 75 0.3311

Pseudo- | 024737
MSE

The next and last section of this chapter summarizes and compares the obtained
results for all the methods applied on this case. The comparison it is based on the Pseudo

MSE presented on Chapter 3.

4.4  Comparison of Results for the Three Methods for the Theoretical Case

Study

After completing the discussion of the three methods individually, it is important to
make some comparisons in order to verify the adequacy of the methods to determine
which procedures are better. In general, the conclusions driven by the three procedures
were the same. Both factors and their interaction were considered as relevant by every
procedure. An important inference obtained by the Point-Wise procedure is the
significance of a curve component that was not captured or considered in the experiment.
The main purpose of the pseudo-MSE as explained in Chapter 3 is to ease the comparison
of the three methods. The following table presents a summary of the pseudo-MSE for all

the methods used to analyze the experiment.
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Table 4-50 Pseudo-MSE for all the methods applied to the theoretical case study

Method Basis Total SSE Total Total Pseudo
Used Number of | Number MSE
Parameters | of Data
Points
Point-Wise N/A 5.48682 84 525 0.01244177
Basis Representation | Monomial 8.9124 7 525 0.01720541
Basis Representation Fourier 20.5355 20 525 0.04066436
Basis Representation Cublc 5.7778 8 525 0.01117563
Spline
Plece-Wise without |y omial | 6.246615 22 525 | 0.01241872
continuity constraints
Plece-Wise without | g0 ier  11.56372 26 525 | 0.02317379
continuity constraints
Piece-Wise with ;o omial | 1214566 34 525 | 0.024737

continuity constraint

The procedures that involved a Fourier bases are less effective in comparison with
the other procedures. They have the highest SSE totals. As previously mentioned this
behavior was expected due the nature of the response functions. The Point-Wise method,
the Piece-Wise using a monomial basis and the basis representation using the cubic spline
basis provided the best results in terms of the pseudo-MSE, considering the number of
terms that each model has. It is highly desired that the final models have the lowest
quantity of terms as possible, this in order to have a simple model able to describe the
data under study. The basis representation model with the cubic spline basis provided the
second lowest number of terms and the second lowest pseudo-MSE can be considered the
selected model for this case.

This model has a good determination coefficient (approximately 83%), a low
number of terms and a low SSE. The Piece-Wise method can be an alternative if is
desired to investigate some specific regions of the signal factor. With the monomial basis
in some regions, the factor x, was the most relevant and in other regions the cross-term
had the greatest impact. This is very interesting because the factors can affect the
response functions differently depending on the levels of the signal factor. This can be a
real contribution for some engineering applications. The Piece Wise method provided a

good fit for all the regions but the inferential capabilities of this method are questionable.
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The work with the theoretical case study was completed successfully. The three
methods were executed, analyzed and compared. The results were consistent among the
methods and conclusions could be obtained for each procedure. The next chapter presents
the application of all the techniques used in the theoretical case study in a real world

application, the analysis of the reflection coefficient of rectangular slot ring antennas.

5
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An Applied Case Study: Reflection Coefficient Analysis for
Rectangular Slot Ring Antennas

5.1 Introduction

Recently the Design of Experiments (DOE) has been used in the analysis and
characterization of Antennas [13]. In this chapter, the methods applied to the Theoretical
case study are going to be applied to an experiment in order to analyze the behavior of
the Reflection Coefficient for this structure in a range of frequencies. A set of runs where

simulated in order to collect data for the analysis.

(2) (b)

Figure 5-1 (a) A single RSRA. (b) Two concentric RSRA. Two examples of the antennas used for the
experiments

5.2 Experiment Description

Initially, some simulations were performed for the single Rectangular Slot Ring
Antenna (RSRA) shown in Figure 5-1(a). Two different substrates were used. One with a
relative permittivity of 3 and a thickness of 0.76 mm and the other with a relative
permittivity of 6.15 and a thickness of 0.635 mm. The perimeter and the width of the
slot of the antenna were varied in order to have an initial data to compare with. In the
frequencies where the observations were made the reflection coefficient was very high

for both substrates.
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In order to improve the matching of the antenna to 50 Q an open circuit stub is
implemented in a new set of antennas. Then, a third set of antennas with an open circuit
stub and an exterior ring are simulated. For some, cases a low reflection coefficient was

achieved as it is shown in Figure 5-2.

Comparison of the Three cases for an specific antenna
T T

N
1S}

KN
5}

Reflection Coefficient (dB)

—— Single Ring and Stub
—— Single Ring
T T T

|
|
|
|
|
— Single Ring, Stub and Exterior Ring r
|
|
|
|

T

| |

25 I I I
3 35 4 45 5

5.5
Frequency (Hz)

Figure 5-2 A case where a low reflection coefficient is observed with the structure proposed.

According to Figure 5-1(b), the parameters that can be varied are the substrate
permittivity (&, ), the substrate thickness (H), the slot ring perimeters (L1 y L»), the slot
width (W), the open circuit stub (Ls), the fed slot width (G) and the fed conductor width

(Ws). The factors to be considered in this design with its respective levels are shown in

Table 5-1.

Table 5-1 Factors and levels considered for the experiments

Factor Low level High level
e, 3 6.15
W 0.25mm Imm
L, 12 22,
L, 22 /19 2.6 ﬂg
L, 0.25 Zg 0.3 Zg

The factors Lj, Ly, and Ls depend onxig. For these DOE designs the design

frequency ( f,) is 5.77 GHz. The other variables such as Wi and G depend on the
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substrate permittivity and are obtained as follows. For & =3 and H= 0.76 mm a 50 Q
CPW line is used with a slot width G, of 0.25 mm, a central conductor width Ws, of 6.435
mm and slot length L, of 10.32 mm. For & =6.15 and H= 0.635 mm a 50 Q CPW line is
used with a slot width G, of 0.25 mm, a central conductor width Ws, of 1.725 mm and slot
length L, of 7.634 mm. Considering all the experimental conditions of the five factors, it
is necessary to run 32 simulations. In order to make regression coefficients comparable,
factor physical dimensions need to be transformed into coded factors: low level as -1 and
high level as 1. Additionally, the combination of ¢ and W will be coded as shown in

Table 5-2.

Table 5-2 Coding for the combination of £, and W

& W Indicator Variable
-1 -1 T,

1 -1 T,
-1 1 Ts

1 1 Ty

Only one of these combinations is present in the model:

y=B,+BT +B,T,+B.T, +B,L, +B.L, + B, (5.1)
Where y is the response to be analyzed, in this case it is the reflection coefficient;

T,,i=0,..4 is one of the experimental condition shown in table 5.2, and only three of

these variables are shown in Equation 5.1 because are indicator variables that used T4 as

the base and B i j =0,..3 are the regression coefficients in the model. The range of

frequency where the experiments were performed is from 5.7 GHz to 6GHz.



96

5.3 Results for the Applied Case Study

5.3.1 Point-Wise Method

Figure 5-3(a) shows some of the 32 responses that correspond to each
experimental condition. The frequency range in the graphs is form 3 GHz to 8 GHz. The
Point-Wise method was applied. Only in some frequency intervals the model was reliable
enough to derive reasonable conclusions. The selection of the frequency range was based
in the adjusted determination coefficient for the model and the frequency of design. This
coefficient measures the variability of the data explained by the model and its value is
between zero and one. Figure 5-3(b) shows the determination coefficients for the

frequency considered.

Response Functions Determination Coefficient vs. Frequency

@)

lection Coefficient

Determination Coefficient

©
@
sl — o
IS

(a) (b)

Figure 5-3 (a) Observed responses, (b) Determination Coefficient.

The selected region is from 5.7 to 6 GHz. This range corresponds to the
frequencies used for the design of the antenna. The Figure 5-4 shows the response

functions for the selected range.
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Response Functions

Response Functions

5 i i i i
a7 6875 a8 6.85 a9 jagsia) B 6.05
Signal Factor Levels « WDQ

Figure 5-4 Response functions for the selected range of frequencies

Location Effects vs. Signal Factor Absolute value of the Ttest vs. Signal Factar

Location Effects
Ttest

K i i I I
a7 875 6.8 685 ] 6,95 [ 6.05
Signal Factor Levels

(a) (b)

Figure 5-5 (a) Factor effects, (b) Absolute value of the T test.

Signal Factor Levels 2

From Figure 5-5(b) it is possible to infer that the factors Ty, T1 and L; are the most
significant effects in the selected region. Because T; and T, are indicator variables that
represent levels of the same factor T, which is a combination of & and W they cannot
coexist. T, has the strongest influence on the response and that is the level that has to be
selected over this region. The others factors such as Ls, L, and T3 have low impact on the
reflection coefficient. The intercept is not shown in the figures in order to ease the
visualization of the effects; this is because the magnitude of the intercept is greater than
the rest of the effects. In Figure 5-5(a), the four highest effects are positive for this reason
it 1s necessary to set these factors to their low level in order to minimize the reflection
coefficient as it is desired. Some additional plots related with the implementation of this

method are presented in the next figures.
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Residuals vs. Signal Factor Adjusted Determinaticn Coefficient R s Signal Factor
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Figure 5-6 Residuals and Adjusted Determination Coefficients Plots

From Figure 5-6(a) it is possible to observe that the residuals look constant for
almost all the responses. A few ones make some changes for frequencies that are higher
than 5.9 GHz. The Figure 5-6(b) shows the determination coefficients for the selected
range of frequencies. This coefficients drop dramatically for frequencies higher than 5.85
GHz. Table 5-3 shows the pseudo-MSE generated by the applications, necessary to ecase

the comparison of the methods.

Table 5-3 Pseudo-MSE for the Applied Case Using the Point-Wise Method

Total SSE Total Number of | Total Number of Pseudo MSE
Parameters Data Points
22985.9 476 2176 13.521
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5.3.2 Basis Representation Method

5.3.2.1 Monomial Basis

This type of basis was the first attempt to fit the selected range of frequencies the
following series of figures tables and outputs shows the results obtained. The first
monomial base used was expanded two times (k = 2) terms in the following form
y(t) = By, + BT, + By T, + By, T; + B, L, + By, L, + By L +
(B, +B,T,+B,T,+B,T,+B,L +B,L,+B, L)t + (5.2)
(B, + BT, + BT, + B,,T, + B,,L, + B,L, + B, L, I°

The Table 5-4 shows all the terms and the factors associated with them.

Table 5-4 Relation between the Matlab’s output column “Term” and the coefficients of Equation 5.2

Terms Coefficient Related Factor Basis Term
Represented
0 B()o 1 1
1 Bio T1 1
2 By T2 1
3 Bso T3 1
4 Bao L1 1
5 Bso L2 1
6 B60 Ls 1
7 Bo: 1 t
8 B11 T1 t
9 B21 T2 t
10 B3 T3 t
11 B4 L1 t
12 Bs; L2 t
13 B61 Ls t
14 Bo, 1 t°
15 B, Tl t*
16 By, T2 t*
17 Bi, T3 t°
18 By L1 t*
19 Bs, L2 t
20 Be2 Ls t




The initial output for this expansion it is presented in Table 5-5.
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Table 5-5 Initial results for the applied case using the basis representation method with a Monomial

Basis (K =2)

N

S
R
R
T

Type of Basis: monomial

umber of basis functions or knots if the basis is a Cubic Spline: 2

Term Intercept SE Coef T-test P-value
0] 1249.2824 691.0816 1.8077 0.070789

Term Coefficients SE Coef T-test P-value VIF

1 -2356.3 977.34 -2.411 0.015993 3.61E+07
2 -2585.8 977.34 -2.6458 0.00821  3.61E+07
3 -31.053 977.34 -0.03177 0.97466  3.61E+07
4 -1140.1 345.54 -3.2995 0.000985  2.40E+07
5 -138.89 345.54 -0.40194 0.68777  2.40E+07
6 -18.24 345.54 -0.05279 0.95791  2.40E+07
7 -4.18E-07  2.36E-07 -1.771 0.076694 87744
8 7.83E-07  3.34E-07 2.3446 0.019135  1.44E+08
9 8.72E-07  3.34E-07 2.6089 0.009146  1.44E+08
10 -4.23E-09  3.34E-07 -0.01266 0.9899  1.44E+08
11 3.87E-07  1.18E-07 3.2783 0.001061  9.62E+07
12 4.16E-08  1.18E-07 0.35248 0.72451  9.62E+07
13 8.62E-09 1.18E-07 0.072996 0.94182  9.62E+07
14 3.47E-17  2.02E-17 1.719 0.085767 87744
15 -6.48E-17 2.86E-17 -2.2712 0.023236  3.61E+07
16 -7.32E-17 2.86E-17 -2.5636 0.010427  3.61E+07
17 1.71E-18 2.86E-17 0.060034 0.95213  3.61E+07
18 -3.28E-17 1.01E-17 -3.252 0.001164  2.41E+07
19 -3.06E-18 1.01E-17 -0.30352 0.76152  2_41E+07
20 -9.58E-19 1.01E-17 -0.09486 0.92443  2_41E+07

0.58379 0.57992

ource DF SS MS F P
egression 20 32673.959 1633.698 151.131 0
esidual Error 2155 23295.1436 10.8098

otal 2175 55969.1026
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The outputs shows that a serious multicollinearity problem. As an attempt to solve
this situation, some terms are eliminated. The final output for the simplified model is

shown next.

Table 5-6 Stepwise procedure results for the applied case using the basis representation method with
a Monomial Basis (K = 2)

The model is not a good one due a multicollinearity problem
D= — = — %
Results for the Analysis of Variance for the Basis Representation Model
Dl — = — %
Coefficients and Variance Inflation Factors
Dl — = — %
Term Intercept SE Coef T-test P-value
0 16.5949 6.6728 2.4869 0.01296
Term Coefficients SE Coef T-test P-value VIF
1 -1123.7 698.67 -1.6083 0.10792 1.80E+07
2 -1353.1 698.67 -1.9367 0.052914 1.80E+07
4 -1140.1 349.32 -3.2638 0.0011166 2 .40E+07
5 -34.019 4.7184  -7.2099  7.71E-13 4385.1
6 14 .536 4.7184 3.0806 0.0020918 4385.1
7 -4 .65E-09 1.14E-09 -4.0794 4 _68E-05 2.0005
8 3.70E-07 2.39E-07 1.5475 0.12188 7.22E+07
9 4 _58E-07 2.39E-07 1.9172 0.055343 7 .22E+07
10 4.99E-10  3.44E-11 14.494 0 1.5001
11 3.87E-07 1.19E-07 3.2428 0.0012015 9.62E+07
12 5.78E-09 8.06E-10 7.1742 9.95E-13 4385.1
13 -2 .58E-09 8.06E-10 -3.203 0.0013796 4385.1
15 -3.01E-17 2.04E-17 -1.4768 0.13988 1.81E+07
16 -3.85E-17 2.04E-17 -1.8859 0.059443 1.81E+07
18 -3.28E-17 1.02E-17 -3.2168 0.0013154 2.41E+07
D) — = = — %
R"2 and Adjusted R™M2
T e T %
RN2, RN2(adj)
0.57365 0.57068
D) — e Y%
Analysis of Variance
Dl — == — %
Source DF SS MS F P
Regression 15 32106.4339 2140.4289  193.7473 0
Residual Error 2160 23862 .6688 11.0475
Total 2175 55969.1026
D — == — %

Table 5-6 is the result after using the stepwise procedure of the application. The

graphs that correspond to the stepwise procedure are shown in Figure 5-7.
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Coefficients with Error Bars Coeff. t-stat p-val
X1+ ‘ ‘ - B -136.981 -10.3760 0.0000 |=| |Mextstep:
X2 s B -80.6407 -6.1083  0.0000 Move no terms
X3+ ° B -43.5349 -6.5918  0.0000
X4+ o B -1140.75 -3.3004 0.0010
X5 ° E -34.0216 -7.2889  0.0000 ‘
X6\ o B -18.0812 -0.0523 0.9583
X7E ° 1-1.23373e-008 -7.7340  0.0000
X8t ° -2.45927e-008 10.9011  0.0000 [—|
X9+ . 41.51796e-008  6.7285  0.0000
X100+ ® -4-4.1038e-007 -1.7373 0.0825
X1+ ° -3.87484e-007  3.2793  0.0011
X2+ . -5.78507e-009  7.2529  0.0000
X3+ ° -12.38785e-009  2.9913  0.0028
X4+ ° -2.78547e-019  0.0276  0.9780
x5 ‘ ‘ ‘ o ‘ 1-3.0177e-017 -1.4948 0.1351 |. ‘[T]
-2000 -1500 -1000 -500 0 500
Intercept = 61 5722 R-square = 0581452 F =215057
RMSE = 328778 Adj R-zg = 0.578585 p=0
Model History
5.5 :
s ® o _
w 45+ —
[ ]
35 ° ° ° ° ° ° ° ° ° ° o |
3 | | | | | | |
2 4 6 8 10 12 14

Figure 5-7 Final Results for the Monomial Basis Representation Model with k =2.

The results for the basis representation method are not reliable with the use of a

monomial basis with k = 2. A severe multicollinearity problem is present and for that

reason, the inferences that can be drawn for the model are not correct. It is not

appropriate to use this model to describe the region under study. In general, the monomial

basis is not a good one to analyze the range of frequencies selected in this experiment. In

the next section, a Fourier Basis is used to analyze the experiment under study.
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5.3.2.2 Fourier Basis

As a second option a Fourier basis it is going to be used in order to analyze the

experiment under study. The expansion of terms selected was k = 2 and the general

model has the form shown in Equation 5.3

y(t) = BOO + BIOTl + BZOTZ + B30T3 + B40 I‘l + BSO L2 + B60 LS +
(B, +B, T, +B,T, +B,T, + B, L, +B,L, + B, L, )sin(at) +
(B,, +B,,T, +B,,T, +B,,T, + B,,L, + B,,L, + B, L, )cos(at) +
(By; + BT, + B,,T, + B,;T, + B,,, + B,;L, + B, L, )sin(2at) +

(B, +B,,T, +B,,T, + B, T, + B,,L, + B, L, + B,,L, )cos(2at)

(5.3)

Table 5-7 relates the terms in Equation 5.3 with the Matlab output
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Table 5-7 Relation between the Matlab’s output column “Term” and the coefficients of Equation 5.3

Terms Coefficient Related Factor Basis Term
Represented

0 Boo 1 1

1 Bio T1 1

2 Byo T2 1

3 Bso T3 1

4 Bao L1 1

5 Bso L2 1

6 BG() Ls 1

7 Bo] 1 Sil’l(Wt)
8 B T1 sin(wt)
9 B21 T2 SiIl(Wt)
10 Bs; T3 sin(wt)
11 B41 L1 SiIl(Wt)
12 B 51 L2 Sil’l(Wt)
13 Bs: Ls sin(wt)
14 B> 1 cos(wt)
15 B, Tl cos(wt)
16 B2 T2 cos(wt)
17 Bs, T3 cos(wt)
18 Bs L1 cos(wt)
19 Bs» L2 cos(wt)
20 Bes> Ls cos(wt)
21 B03 1 sin(2wt)
22 B3 Tl sin(2wt)
23 By; T2 sin(2wt)
24 Bs; T3 sin(2wt)
25 B4 L1 sin(2wt)
26 B53 L2 sin(2wt)
27 Bss Ls sin(2wt)
28 B4 1 cos(2wt)
29 Bis Tl cos(2wt)
30 Bos T2 cos(2wt)
31 B4 T3 cos(2wt)
32 Bus L1 cos(2wt)
33 Bs,4 L2 cos(2wt)
34 Bsas Ls cos(2wt)

The initial output for this model as follows.
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Table 5-8 Initial results for the applied case using the basis representation method with a Fourier

Basis (K =2)
= e e %
Results for the Analysis of Variance for the Basis Representation Model
e —m %
Type of Basis: fourier
Number of basis functions or knots if the basis is a Cubic Spline: 2
D —— %
Coefficients and Variance Inflation Factors
o — %
Term Intercept SE Coef T-test P-value
0 -10.625 0.14205 -74.799 0
Term Coefficients SE Coef T-test P-value VIF
-0000 6.9295 -2009 34.4951 0 1.5012
-0000 8.1937 .2009 40.7881 0 1.5012
.0000 2.9021 .2009 14.4464 0 1.5012
-0000 1.7321 .0710 243883 0 1.0008

.0710 -2.4093 0.0161 1.0008
.0710 -8.1153 0.0000 1.0008
.2013 5.4461 0.0000 4.0019
.2846 -6.4969 0.0000 2.0012
.2846 -3.9343 0.0001 2.0012
.2846 -4.8749 0.0000 2.0012
-1006 -0.9933 0.3207 1.0006
-1006 -4.4025 0.0000 1.0006
-1006 2.7572 0.0059 1.0006
.2005 5.2266 0.0000 4.0028
.2835 -6.9326 0.0000 2.0018
.2835 -5.3249 0.0000 2.0018
.2835 -3.0678 0.0022 2.0018
-1002 -4.7855 0.0000 1.0010
-1002 -3.3454 0.0008 1.0010
.1002 1.6303 0.1032 1.0010
.1997 -1.2443 0.2135 4.0032
.2824 0.5596 0.5758 2.0022
.2824 1.1139 0.2655 2.0022
.2824 -0.0910 0.9275 2.0022
.0998 0.5025 0.6154 1.0012
-0998 -0.3623 0.7172 1.0012
.0998 -0.2582 0.7963 1.0012
.2021 3.7446 0.0002 4.0005
.2858 -4.7323 0.0000 2.0003
.2858 -3.1657 0.0016 2.0003
.2858 -3.6540 0.0003 2.0003
.1010 -0.4864 0.6267 1.0002
.1010 -3.5227 0.0004 1.0002
.1010 1.3934 0.1636 1.0002

.0000 -0.5764

-0000 1.0962

.0000 -1.8493

-0000 -1.1199
10.0000 -1.3876
11.0000 -0.1000
12.0000 -0.4431
13.0000 0.2775
14.0000 1.0479
15.0000 -1.9657
16.0000 -1.5098
17.0000 -0.8698
18.0000 -0.4797
19.0000 -0.3354
20.0000 0.1634
21.0000 -0.2485
22.0000 0.1580
23.0000 0.3145
24.0000 -0.0257
25.0000 0.0502
26.0000 -0.0362
27.0000 -0.0258
28.0000 0.7567
29.0000 -1.3524
30.0000 -0.9047
31.0000 -1.0443
32.0000 -0.0491
33.0000 -0.3559
34.0000 0.1408

1
2
3
4
5.0000 -0.1711
6
7
8
9

[ejeNoNolooojoojolelojo o ocojoololoNoolelo ol oo oo oo NoNe]

RA2,  RA2(adj)
0.58046 0.5738

D — — — %
Analysis of Variance

D — = = = %

Source DF SS MS F P

Regression 34 32487.8485 955.525 87.1239 0

Residual Error 2141 23481.2541 10.9674

Total 2175 55969.1026




106

The stepwise procedure was implemented in order to improve the model. The final output

and the stepwise procedure graphs are shown in the next.

Table 5-9 Stepwise procedure results for the applied case using the basis representation method with
a Fourier Basis (K = 2)

o = = = = — %
Results for the Analysis of Variance for the Basis Representation Model
o = = = = — %
Coefficients and Variance Inflation Factors
o = = = = — %
Term Intercept SE Coef T-test P-value
0 -10.6173 0.14224 -74.644 O
Term Coefficients SE Coef T-test P-value VIF
-0000 6.9236 .2012  34.4180 0 5006
-0000 8.1853 .2012  40.6898 0 5006

-0000 2.8931
.0000 1.7323

1
2

3 .2011  14.3834 0
4

5.0000 -0.1703

6

7

8

9

.0711  24.3583 0]
.0711 -2.3951
.0711 -8.0665
.2016 5.4980
.2851 -6.6015
.2851 -4.0012
.2851 -4.8916
-1008 -4_4708
.1008 2.7534
-1419 4.2974
.2459 -6.1389
.2459 -4.3629
.1004  -4.7585
.1004  -3.2367
.2023 3.8130
.2861 -4.7593
.2861 -3.2246
.2861 -3.6626
.1012 -3.4951

-0000 -0.5736

-0000 1.1084

-0000 -1.8821

-0000 -1.1408
10.0000 -1.3945
12.0000 -0.4507
13.0000 0.2775
14 .0000 0.6100
15.0000 -1.5093
16.0000 -1.0726
18.0000 -0.4775
19.0000 -0.3249
28.0000 0.7715
29.0000 -1.3618
30.0000 -0.9227
31.0000 -1.0480
33.0000 -0.3536

eNoNoloNoNoNoNoNoloNoloNoloNoloNoNoNoNoNoNe]
o
o
o
o
PFNNNRMRRRPRPNRPRNNNARRRRERRRE =
o
o
o
=

[eNeoNoloNoloNoNoloNoNoNooNoNoNoNoNe)
o
o
o
o

RA2,  RA2(adj)
0.57676 0.57243

bo--————— %
Analysis of Variance

bo-—————— %

Source DF SS MS F P

Regression 22 32280.6522 1467 .3024 133.36 0

Residual Error 2153 23688.5236 11.0026

Total 2175 55969.1758
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Coefficients with Error Bars Coeff. t-stat p-val
xtF ‘ ‘ —— j 6.92543 34.3776 0.0000|=~| |Mext step:
X2 —— 4 8.18645 40.6376  0.0000 Move no terms
X3+ —— B 2.89877 14.3895 0.0000
X4 - E 1.73233 24.3242  0.0000
X5 - s 4 -0.170347 -2.3917 0.0169 ‘
X6 * 4 -0.573631 -8.0552  0.0000
x7L —— 4 1.11034 5.4998 0.0000| |
X8 - — B -1.88409 -6.5990 0.0000
X9 — 4 -1.14197 -3.9997  0.0001
X101 — E -1.40097 -4.9069  0.0000
X11p - E -0.10892 -1.0791 0.2807
X12 - - 4 -0.450666 -4.4645 0.0000
X131 - E 0.277519  2.7495  0.0060
X141 —— E 1.03541 5.1510 0.0000
X5 — ‘ ‘ ‘ ‘ ‘ 4 -1.93469 -6.8056 0.0000- ‘ Export
2 0 2 4 6 8
Intercept = -10.61591 R-square = 0575173 F =1458383
RMSE = 3 3267 Adlj Resey = 0 571033 p=0
Model History
55 \ \
5 ® R i
w 45- —
: . . |
°
3.5 L4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° o |
3 | | | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Figure 5-8 Final Results for the Fourier Basis Representation Model with k =2.

The final model obtained is not good at all, but at least it is able to describe
approximately the 60% of the variability of the data. The most relevant terms of this

model are summarized in Table 5-10.
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Table 5-10 Results Summary for Fourier Basis Representation for the Applied Case

Terms Coefficient Value Related Basis Term
Represented Factor

1 Bio 6.9223 T1 1

2 B 8.1844 T2 1

3 Bso 2.8924 T3 1

4 Byo 1.7321 L1 1

5 Bso -0.1706 L2 1

6 Beo -0.576 Ls 1

7 By, 1.0883 1 sin(wt)

8 B -1.8406 Tl sin(wt)

9 By, -1.1086 T2 sin(wt)
10 Bs -1.3759 T3 sin(wt)
12 Bs, -0.4436 L2 sin(wt)
13 Bei 0.2771 Ls sin(wt)
14 Boa 0.6157 1 cos(wt)
15 B, -1.5345 Tl cos(wt)
16 Bn -1.0821 T2 cos(wt)
18 By -0.4798 L1 cos(wt)
19 Bs, -0.3346 L2 cos(wt)
28 By 0.7603 1 cos(2wt)
29 By -1.3564 T1 cos(2wt)
30 By -0.9099 T2 cos(2wt)
31 By -1.0496 T3 cos(2wt)
33 Bsy -0.3557 L2 cos(2wt)

The terms presented in the table shows that the most relevant factors in the

experiment are T1, T2, T3, and L1. These factors are the same factors considered as

relevant by the Piece-Wise approach. As mentioned before the factor Ls is completely

non-relevant to the experiment. Most of the terms that include Ls were eliminated by the

stepwise procedure. The plots that correspond to the residuals, estimated response are

presented in the next figures.
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Response Functions

Response Functions

-35
57 575 5.8 5.85 59 595 5 B.05
Signal Factor Levels . mg

Figure 5-9 Responses for the Basis Representation Final Model with a Fourier Basis for the Applied
Case Study.

Estimated Response Functions

Estimated Responses

Signal Factor Lewels 9

Figure 5-10 Estimated responses for the Basis Representation Final Model with a Fourier Basis for
the Applied Case Study.
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Residials

25 | 1 i 1
a 10 20 30 40 a0 G0 70
Signal Factor Levels

Figure 5-11 Residuals for the Basis Representation Final Model with a Fourier Basis for the Applied
Case Study.

From Figure 5-10 it is possible to observe the lack of fit of the models. The
selected basis is unable to fit the local features of some of the responses. The metrics for
this procedure are summarized in the following table

Table 5-11 Metrics for the Applied Case Using the Basis Representation Method using a Fourier
Basis with k=2

Total Number of Pseudo MSE

Total SSE Total Number of
Parameters Data Points
2176 10.985

23617.8 26
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5.3.2.3 Piece-Wise Method without the Continuity Constraint

In order to complete the comparison among the methods, the Piece-Wise method
is applied for this applied case study. Only the Fourier basis it is going to be used. The
main reason for this is the poor performance of the monomial basis and the cubic spline
in the previous method. Due the high computational effort of the knots search procedure
the quantities of knots tested were 1, 2, and 3. Table 5-12 shows the results of the search

procedure.

Table 5-12 Knots Search for the Piece-Wise method for the applied case study

Fourier Basis K=2
Objective
Number of knots function optimal knots
3 23066 10 22 35
2 23085 14 31 *
1 23142 24 * *
Minimal 23066

The selected knots were 10, 22, and 35. The general model in each region is
exactly the same model presented as Equation 5.3. Figure 5-12 presents the four regions

delimited by the knots search.

Figure 5-12 Plots for all the regions delimited before using the Piece-Wise procedure for the applied
case study with a Fourier basis

The next sections show the results for this procedure in detail. As done in the
previous chapter the initial model, stepwise procedure and the final model are presented

per each region.



5.3.2.3.1 Results for Region #1

Table 5-13 corresponds to the initial model is shown next.

Table 5-13 Initial Output for the Piece-Wise Method using a Fourier basis for region #1

112

r---——— %
Eesults for the Analysis of Variance for the Basis Representation Model
or the region #1
Y —m %
Type of Basis: fourier
Number of basis functions or knots if the basis is a Cubic Spline: 2
b %
Coefficients and Variance Inflation Factors
D — = = = — %
Terms  Coefficients SE Coef T-test P-value VIF
0 -8.8963 0.26472 -33.606 0 0
1 3.2922 0.37437 8.7939 2.2204e-016 1.5476
2 5.746 0.37437 15.348 0 1.5476
3 0.89029 0.37437 2.3781 0.018062 1.5476
4 1.08 0.13236 8.1595 1.088e-014 1.0317
5 -0.9667 0.13236 -7.3035 2.818e-012 1.0317
6 -0.29931 0.13236 -2.2613 0.024493 1.0317
7 0.012943 0.35969 0.035984 0.97132 4.1143
8 -0.0038653 0.50867 -0.0075988 0.99394 2.0857
9 -0.0068824 0.50867 -0.01353 0.98921 2.0857
10 -0.015631 0.50867 -0.030728 0.97551 2.0857
11 0.0015116 0.17984 0.008405 0.9933 1.0476
12 0.0031899 0.17984 0.017737 0.98586 1.0476
13 0.0024999 0.17984 0.0139 0.98892 1.0476
14 0.14078 0.3885 0.36237 0.71735 4
15 -0.41488 0.54943 -0.75511 0.4508 2
16 -0.28839 0.54943 -0.52489 0.60007 2
17 -0.1692 0.54943 -0.30796 0.75834 2
18 -0.089061 0.19425 -0.45848 0.64696 1
19 -0.097349 0.19425 -0.50114 0.61666 1
20 -0.00076938 0.19425 -0.0039607 0.99684 1
21 -0.060006 0.3885 -0.15445 0.87736 4
22 0.17901 0.54943 0.32581 0.7448 2
23 0.12407 0.54943 0.22582 0.8215 2
24 0.072177 0.54943 0.13137 0.89558 2
25 0.038809 0.19425 0.19979 0.84179 1
26 0.042464 0.19425 0.2186 0.82712 1
27 0.00034518 0.19425 0.001777 0.99858 1
28 0.0044164 0.35969 0.012278 0.99021 4.1143
29 -0.0021857 0.50868 -0.0042968 0.99657 2.0857
30 -0.0028494 0.50868 -0.0056017 0.99553 2.0857
31 -0.0053194 0.50868 -0.010457 0.99166 2.0857
32 0.00032012 0.17984 0.00178 0.99858 1.0476
33 0.00083329 0.17984 0.0046334 0.99631 1.0476
34 0.00078824 0.17984 0.0043829 0.99651 1.0476
b %
RN2 and Adjusted R"N2
D — = %
R™2, RM2(adj)
0.5986 0.55072
Dy — — = =~ %
Analysis of Variance
D — %
Source DF SS MS F P
Regression 34 2309.4382 67.9247 12.5006 0
Residual Error 285 1548.6063 5.4337
Total 319 3858.0445
Y —— %
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The obtained model has many non-relevant terms. The stepwise procedure was

executed in order to simplify the model and eliminate the terms that are not contributing

to the model.

Coefficients with Error Bars Coeff. t-stat p-val
xtf } S R — 3.29251  9.3376  0.0000|=| [Nextstep:
X2 : — 5.74679 16.2980 0.0000 Move no terms
X3 | —— 0.892268 2.5305 0.0119 ‘
X4 } —.— 1.07976  8.6612  0.0000
X5+ —— : -0.967168 -7.7581  0.0000 ‘
X6 —.— -0.299641 -2.4036 0.0168
X7+ —‘,— 0.00674685 0.0397 0.9684| |
X8 + 0.00978061 0.0288 0.9771
X9+ —— 0.00650012 0.0191 0.9848
X101 —#— -0.00280392 -0.0083 0.9934
X1 + 0.00167268 0.0098  0.9922
X121 —— 0.00344657 0.0203 0.9838
X131 —‘p— 0.0026322 0.0155 0.9877
X141 + -0.0773421 -0.4156 0.6780
xis| —— ‘ ‘ ‘ ‘ -0.274109 -0.7369 0.4617|.| [ Ewet.. |
1 0 2 3 4 6
Intercept = -5.59794 R-square = 0596523 F=77126
RMSE = 223003 Adj R-=g = 0.557493 p=0
Model History
35 » ‘
. 3 o i
%]
= °
25 ° =
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Figure 5-13 Stepwise Plots for the Region #1 of the Applied Case Study Using A Fourier basis (K=2)

The final model obtained after the stepwise procedure it is shown in Table 5-14.
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Table 5-14 Final Output for the Piece-Wise Method using a Fourier basis for region #1

D= — — = = — %
Results for the Analysis of Variance for the Basis Representation Model
D= — — = — %
Coefficients and Variance Inflation Factors
D — — = — %
Term Intercept SE Coef T-test P-value
0 -8.8979 0.24933 -35.6873 O
Term Coefficients SE Coef T-test P-value VIF
1 3.2925 0.35261 9.3376 0 1.5
2 5.7468 0.35261 16.298 0 1.5
3 0.89227 0.35261 2.5305 0.01188 1.5
4 1.0798 0.12467 8.6612 2.2204e-016 1
5 -0.96717 0.12467 -7.7581 1.2279e-013 1
6 -0.29964 0.12467 -2.4036 0.016818 1
D ——— %
R”"2 and Adjusted R"N2
D ———m %
RN2, RN2(adj)
0.59652 0.58879
D — — = %
Analysis of Variance
D — — = %
Source DF SS MS F P
Regression 6 2301.4111 383.5685 77.126 0
Residual Error 313 1556.6334 4.9733
Total 319 3858.0445
D= — — = = %

After the stepwise procedure all the terms that stayed in the model, are terms that
do not are multiplied by a sine or cosine term. Of those terms, the less relevant is the term
that correspond to the factor Ls. The factors L1, L2 and the combinations of W and &,
have a considerable relevance in this model as shown in Table 5-15. The model is not
very good. Only explains around a 60% of the total variability of the data, but most of

their terms are relevant. The next section shows the results for the next region.

Table 5-15 Results Summary for Region #1

Terms Coefficient Value Related Basis Term
Represented Factor
0 Boo -8.8973 1 1
1 Bio 3.2925 T1 1
2 B 5.7468 T2 1
3 Bso 0.8923 T3 1
4 Bao 1.0798 L1 1
5 Bso -0.9672 L2 1
6 Beo -0.2996 Ls 1




5.3.2.3.2 Results for Region #2

Table 5-16 presents the initial model obtained for this region.

Table 5-16 Initial Output for the Piece-Wise Method using a Fourier basis for region #2
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D — — %
Results for the Analysis of Variance for the Basis Representation Model
[for the region #2
D)= — = = — %
Type of Basis: fourier
umber of basis functions or knots if the basis is a Cubic Spline: 2
D= — = — %
Coefficients and Variance Inflation Factors
D — — %
Terms Coefficients SE Coef T-test P-value VIF
0 -9.5316 0.22526 -42.313 0 0
4.897 0.31857 15.372 0 1.5341
2 6.8848 0.31857 21.612 0 1.5341
3 1.6482 0.31857 5.1738 3.8761e-007 1.5341
4 1.4254 0.11263 12.655 0 1.0227
5 -0.60844 0.11263 -5.4021 1.2216e-007 1.0227
6 -0.33045 0.11263 -2.9339 0.0035689 1.0227
7 0.18672 0.3254 0.57381 0.56647 4.0266
8 -0.43232 0.46018 -0.93945 0.34815 2.0172
9 -0.30946 0.46018 -0.67246 0.50173 2.0172
10 -0.22049 0.46018 -0.47915 0.63213 2.0172
11 -0.095537 0.1627 -0.5872 0.55745 1.0092
12 -0.094815 0.1627 -0.58276 0.56043 1.0092
13 0.016254 0.1627 0.099904 0.92048 1.0092
14 -0.084179 0.31159 -0.27016 0.7872 4.0808
15 0.18479 0.44065 0.41936 0.67521 2.0572
16 0.13143 0.44065 0.29826 0.76569 2.0572
17 0.096099 0.44065 0.21808 0.82749 2.0572
18 0.043491 0.15579 0.27916 0.78029 1.0314
19 0.040125 0.15579 0.25755 0.7969 1.0314
20 -0.011005 0.15579 -0.070637 0.94373 1.0314
21 0.060941 0.31692 0.19229 0.84762 4.0685
22 -0.14238 0.44819 -0.31768 0.75092 2.0464
23 -0.10187 0.44819 -0.2273 0.82032 2.0464
24 -0.072093 0.44819 -0.16085 0.8723 2.0464
25 -0.031265 0.15846 -0.19731 0.8437 1.0252
26 -0.031201 0.15846 -0.1969 0.84402 1.0252
27 0.0049886 0.15846 0.031482 0.9749 1.0252
28 -0.070607 0.32021 -0.2205 0.82561 4.0555
29 0.16057 0.45284 0.35457 0.72312 2.0369
30 0.11457 0.45284 0.253 0.80042 2.0369
31 0.082108 0.45284 0.18132 0.85622 2.0369
32 0.036335 0.1601 0.22695 0.8206 1.02
33 0.034946 0.1601 0.21827 0.82735 1.02
34  -0.0073094 0.1601 -0.045654 0.96361 1.02
Df— = = = — — %
RN2 and Adjusted R™N2
D= — = = — — %
RN2, RN2(adj)
0.69342 0.66355
D — — %
Analysis of Variance
D — — — %
Source DF SS MS F P
Regression 34 3759.7825 110.5818 23.2164 0
Residual Error 349 1662.3155 4.7631
Total 383 5422.0981
D — = = — %
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There is a lot of term that are not contributing to the model. The stepwise

procedure is executed in order to eliminate those terms and simplify the model. The plots

that correspond to the procedure are shown next.

Coefficients with Error Bars Coeff. t-stat p-val
xtF ‘ ‘ —e— 4.89561 16.0963 0.0000|=| [Mext step:
X2 — 6.88377 22.6331  0.0000 Move no terms
X3k — 1.6477 5.4175  0.0000 ‘
Xa - — 1.42534 13.2550  0.0000
X5 - -0.608792 -5.6615  0.0000 ‘
X6|- - -0.330793 -3.0762  0.0022
X7 —— -0.0527994 -0.3368 0.7364| |
X8 — -0.239644 -0.7649 0.4448
Xor —_— -0.120004 -0.3828 0.7021
X101} —_— -0.0331131 -0.1056 0.9159
X111 —— -0.0928702 -0.5927 0.5538
X12}- —— -0.0924137 -0.5897  0.5557
X13}- —— 0.0155121  0.0989  0.9212
X141 —— 0.0156853 0.1052 0.9163
xasp | —e— ‘ ‘ ‘ ‘ ‘ 0.0864857 0.2000 0.7720|.| [ Ewet.. |
1 0 1 2 3 4 5 7
Intercept = -9.53145 R-square = 0 691271 F =140.689
RMSE = 210713 Adj R-zg = 0685538 p=0
Model History
4 | \
[ ]
351 -
w
: i
[ ]
251 -
[ ]
2 ! ! ! e b L4
1 3 4 5 6 7

Figure 5-14 Stepwise Plots for the Region #2 of the Applied Case Study Using A Fourier basis (K=2)

The details for the final model are shown in Table 5-17.
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Table 5-17 Final Output for the Piece-Wise Method using a Fourier basis for region #2

- %
Results for the Analysis of Variance for the Basis Representation Model
o — = — = %
Coefficients and Variance Inflation Factors
U —— —— == — %
Term Intercept SE Coef T-test P-value
0 -9.5315 0.21506 -44.3193 O
Term Coefficients SE Coef T-test P-value VIF
1 4.8956 0.30415 16.096 0 1.5
2 6.8838 0.30415 22.633 0 1.5
3 1.6477 0.30415 5.4175 1.0798e-007 1.5
4 1.4253 0.10753 13.255 0 1
5 -0.60879 0.10753 -5.6615 2.9772e-008 1
6 -0.33079 0.10753 -3.0762 0.0022493 1
U —— —— == %
R"2 and Adjusted RN2
- %
RN2, R™2(adj)
0.69127 0.68636
o — = — = %
Analysis of Variance
U —— —— == %
Source DF SS MS F P
Regression 6 3748.1381 624.6897 140.6892 0
Residual Error 377 1673.96 4.4402
Total 383 5422.0981
- %

Table 5-18 Results Summary for Region #2

Terms Coefficient Value Related Basis Term
Represented Factor
0 Boo -9.5315 1 1
1 Bio 4.8956 T1 1
2 B 6.8838 T2 1
3 Bso 1.6477 T3 1
4 Ba4o 1.4253 L1 1
5 Bso -0.6088 L2 1
6 Beo -0.3308 Ls 1

The same terms selected by this procedure in the previous region were selected
for this one. Those terms are the terms that relate W and &,, and the terms that correspond
to L1 and L2. There is a term that corresponds to Ls but it has the lowest magnitude
among the other coefficients. This model is better than the previous one in terms of the
adjusted determination coefficient, which is close to a 70%. The execution of the Piece-

Wise method on region #3 is shown in the next section.
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5.3.2.3.3 Results for Region #3

Table 5-19 corresponds to the initial model obtained for this region.

Table 5-19 Initial Output for the Piece-Wise Method using a Fourier basis for region #3

D — = — = —— %
esults for the Analysis of Variance for the Basis Representation Model for
he region #3
D — = = = %
Type of Basis: fourier
Number of basis functions or knots if the basis is a Cubic Spline: 2
D — = — = — %
Coefficients and Variance Inflation Factors
D — = — = —— %
Terms  Coefficients SE Coef T-test P-value VIF
0 -10.256 0.24538 -41.796 0 0
1 6.472 0.34702 18.65 0 1.5294
2 7.9918 0.34702 23.03 0 1.5294
3 2.4279 0.34702 6.9965 1.1869e-011 1.5294
4 1.8058 0.12269 14.719 0 1.0196
5 -0.28722 0.12269 -2.341 0.019746 1.0196
6 -0.43949 0.12269 -3.5821 0.00038498 1.0196
7 -0.16884 0.34988 -0.48256 0.62969 4.0435
8 0.33825 0.4948 0.68361 0.49463 2.0285
9 0.23096 0.4948 0.46677 0.64093 2.0285
10 0.15069 0.4948 0.30455 0.76088 2.0285
11 0.089698 0.17494 0.51274 0.60843 1.0154
12 0.057168 0.17494 0.32679 0.74401 1.0154
13 -0.037958 0.17494 -0.21698 0.82834 1.0154
14 -0.12594 0.34414 -0.36594 0.71461 4.0626
15 0.26777 0.48669 0.55018 0.58252 2.0426
16 0.1856 0.48669 0.38136 0.70315 2.0426
17 0.12941 0.48669 0.26591 0.79045 2.0426
18 0.06832 0.17207 0.39704 0.69156 1.0232
19 0.051957 0.17207 0.30195 0.76285 1.0232
20 -0.023156 0.17207 -0.13457 0.89302 1.0232
21 0.02703 0.33756 0.080074 0.93622 4.072
22 -0.051285 0.47739 -0.10743 0.9145 2.052
23 -0.034725 0.47739 -0.07274 0.94205 2.052
24 -0.021411 0.47739 -0.044851 0.96425 2.052
25 -0.013858 0.16878 -0.082105 0.93461 1.0286
26 -0.0076899 0.16878 -0.045561 0.96368 1.0286
27 0.0067976 0.16878 0.040274 0.9679 1.0286
28 0.095049 0.35623 0.26682 0.78975 4.0098
29 -0.19475 0.50378 -0.38658 0.69928 2.0062
30 -0.13408 0.50378 -0.26615 0.79027 2.0062
31 -0.090036 0.50378 -0.17872 0.85825 2.0062
32 -0.050499 0.17811 -0.28352 0.77693 1.0033
33 -0.035083 0.17811 -0.19697 0.84396 1.0033
34 0.019556 0.17811 0.10979 0.91263 1.0033
D — = — = —— %
[ R"2 and Adjusted R™N2
D — = — = —— %
RN2, RN2(adj)
0.70805 0.68199
D — = = = %
[ Analysis of Variance
D — = = = — %
Source DF SS MS F P
Regression 34 5674.8544 166.9075 27.1766 0
Residual Error 381 2339.9442 6.1416
Total 415 8014.7985
ﬁ —————————————————————————————————————————————————————————————————————————————————— %
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Once again, the model has a good quantity of terms that are not contributing to the

model. The stepwise procedure once again provides a new simplified model. The plots

that correspond to this procedure are shown in Figure 5-15.

Coefficients with Error Bars Coeff. t-stat p-val
xtF ‘ ‘ ‘ [P j 6.47121 19.4649 0.0000|=| |Mext step:
X2 — B 7.99106 24.0365 0.0000 Move no terms
x3|- — 4 2.42681  7.2997  0.0000 ‘
x4k - g 1.80584 15.3636  0.0000
X5 - 4 -0.287876 -2.4492 0.0147 ‘
X6 - 4 -0.439952 -3.7430 0.0002
X7+ —— 4 0.00951232 0.0564 0.9550|__|
x| — 4 0.159197 0.4725 0.6369
X9+ —e 4 0.0576783 0.1711 0.8642
X10| — 4 -0.0187504 -0.0556 0.9557
X11f —— 4 0.0849019 0.5040 0.6146
x12| —— 4 0.0533557 0.3166 0.7517
x13| —— 4 -0.0364546 -0.2163 0.8288
X14| —— 4 0.0193105 0.1168 0.9071
xasp | —e— ‘ ‘ ‘ ‘ ‘ ‘ ‘ , | 0.130708 0.3953 0.6929. [ et |
1 0 1 2 3 4 5 6 7 8 9
Intercept = -10.2561 F-square = 0 706705 F =164.253
RMSE = 239737 Adj R-=g = 0.701683 p=0
Model History
45 3 ‘
al B
°
w 35 -
%]
E oo . .
25— ® ° ° L] 7
2 | | | | | | |
1 2 3 4 5 6 7

Figure 5-15 Stepwise Plots for the Region #3 of the Applied Case Study Using A Fourier basis (K=2)

The details for the final model are presented in Table 5-20.
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Table 5-20 Final Output for the Piece-Wise Method using a Fourier basis for region #3

- ——————— %
Results for the Analysis of Variance for the Basis Representation Model
= == e %
Coefficients and Variance Inflation Factors
o ——— - %
Term Intercept SE Coef T-test P-value
0] -10.2561 0.23508 -43.628 O
Term Coefficients SE Coef T-test P-value VIF
1 6.4712 0.33245 19.465 0 1.5
2 7.9911 0.33245 24037 0 1.5
3 2.4268 0.33245 7.2997 1.5155e-012 1.5
4 1.8058 0.11754 15.364 0 1
5 -0.28788 0.11754 -2.4492 0.014738 1
6 -0.43995 0.11754 -3.743  0.00020787 1
o — - — %
RN2 and Adjusted RN2
o ——— %
R™2, RM2(adj)
0.70671 0.70241
fm —— —m %
Analysis of Variance
- ——————————— . —————————————— %
Source DF SS MS F P
Regression 6 5664 .1254 944 _.0209 164.2528 0
Residual Error 409 2350.6731 5.7474
Total 415 8014.7985
o ——— e %

Once again, the constant terms were selected by the procedure. The model
explains a 70% of the variability of the data. This is almost equal to the model for region

#2. The next table presents a summary of these results. The next table summarizes these

results.
Table 5-21 Results Summary for Region #3
Terms Coefficient Value Related Basis Term
Represented Factor
0 Boo -10.2561 1 1
1 Bio 6.4712 T1 1
2 Boo 7.9911 T2 1
3 B 2.4268 T3 1
4 Bao 1.8058 L1 1
5 Bso -0.2879 L2 1
6 Bio -0.4400 Ls 1

The next section presents the results for the region #4, which is the last one.
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5.3.2.3.4 Results for Region #4

In the same way as in the previous section the Matlab output for the initial model it is

presented first.

Table 5-22 Initial Output for the Piece-Wise Method using a Fourier basis for region #4

f— = = — %
Results for the Analysis of Variance for the Basis Representation Model for
the region #4
= — — %
Type of Basis: fourier
umber of basis functions or knots if the basis is a Cubic Spline: 2
e e e %
Coefficients and Variance Inflation Factors
= = — %
Terms Coefficients SE Coef T-test P-value VIF
0 -11.709 0.25535 -45.852 0 0
1 8.9599 0.36112 24.811 0 1.5052
2 9.4994 0.36112 26.305 0 1.5052
3 4.1743 0.36112 11.559 0 1.5052
4 2.0027 0.12768 15.686 0 1.0035
5 0.27792 0.12768 2.1767 0.02973 1.0035
6 -0.80924 0.12768 -6.3382 3.4821e-010 1.0035
7 -1.0964 0.35937 -3.0509 0.0023407 4.0118
8 1.342 0.50822 2.6406 0.0084026 2.0077
9 1.1039 0.50822 2.1721 0.030077 2.0077
10 1.1733 0.50822 2.3086 0.021167 2.0077
11 -0.088834 0.17968 -0.4944 0.62113 1.0042
12 0.30719 0.17968 1.7096 0.087636 1.0042
13 -0.23103 0.17968 -1.2858 0.19881 1.0042
14 -0.035729 0.36285 -0.098469 0.92158 4.0071
15 -0.22989 0.51315 -0.44801 0.65424 2.0046
16 0.23196 0.51315 0.45204 0.65133 2.0046
17 -0.70884 0.51315 -1.3814 0.16747 2.0046
18 0.28085 0.18142 1.548 0.12192 1.0025
19 -0.25225 0.18142 -1.3904 0.16472 1.0025
20 0.048552 0.18142 0.26762 0.78905 1.0025
21 0.37463 0.35712 1.0491 0.2944 4.0127
22 -0.32811 0.50504 -0.64968 0.51605 2.0088
23 -0.43287 0.50504 -0.8571 0.39159 2.0088
24 -0.26835 0.50504 -0.53135 0.59529 2.0088
25 0.03991 0.17856 0.22351 0.82318 1.0048
26 -0.045391 0.17856 -0.25421 0.79939 1.0048
27 0.07497 0.17856 0.41986 0.67467 1.0048
28 0.21428 0.36505 0.587 0.55734 4.0025
29 -0.041564 0.51626 -0.080509 0.93585 2.0016
30 -0.28299 0.51626 -0.54815 0.58371 2.0016
31 -0.010145 0.51626 -0.019651 0.98433 2.0016
32 0.020609 0.18253 0.11291 0.91013 1.0009
33 0.033339 0.18253 0.18266 0.8551 1.0009
34 0.017307 0.18253 0.094817 0.92448 1.0009
D — = — %
R”2 and Adjusted R"N2
= — — %
RN2, RN2(adj)
0.54666 0.53157
D — — %
Analysis of Variance
D — — = ——— %
Source DF SS MS F P
Regression 34 21120.4829 621.1907 36.2113 0
Residual Error 1021 17514.8358 17.1546
Total 1055 38635.3188
D — = — %




The following graphs correspond to the stepwise procedure for this region.
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Coefficients with Error Bars Coeff. t-stat p-val
x| | ‘ ‘ ‘ f—e— j 8.9552 24.9143 0.0000|=| [Mext step:
X2 ! — E 9.48615 26.3915  0.0000 Move 17 in
X3\ : —— E 4.17933 11.6273  0.0000 ‘
X4 ‘ - E 2.00072 15.7530  0.0000
X5 e E 0.273318 2.1520 0.0316
X6 - | 4 -0.802471 -6.3184  0.0000
|
X7E — E -1.11085 -3.1067 0.0019| |
X8|~ | —— 4 1.34971 2.6691  0.0077
X0 ——— R 1.12538 2.2255  0.0263
|
X101{- ——— E 1.16543 2.3047 0.0214
X11{- - 4 -0.0824751 -0.4611 0.6448
X12}- +o— E 0.302736 1.6948  0.0904
|
X131} —.r 4 -0.232781 -1.3025 0.1930
X141 - 4 -0.214711 -1.1885 0.2349
xasp — ‘ ‘ ‘ ‘ ‘ 4 -0.265347 -0.7341 0.4631]. ‘ Export ..
2 0 2 4 6 8 10
Intercept = -11 996 R-zquare = 0539274 F=122316
RMSE = 41272 Adj R-z0 = 0.534425 p=0
Model History
6.5
T T
Y } |
(]
w 550 -
%]
z
51 . =
[ ]
45} -
[ ] [ ]
2 ! ! ! ! | I hd hd hd hd ®
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Figure 5-16 Stepwise Plots for the Region #4 of the Applied Case Study Using A Fourier basis (K=2)

The final model details are presented in the Table 5-23
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Table 5-23 Final Output for the Piece-Wise Method using a Fourier basis for region #4

h--—-——— %
Results for the Analysis of Variance for the Basis Representation Model
o — = = — %
Coefficients and Variance Inflation Factors
e st e %
Term Intercept SE Coef T-test P-value
0 -11.6996 0.25416 -46.032 O
Term Coefficients SE Coef T-test P-value VIF
1 8.9552 0.35944 24.914 0 1.5018
2 9.4861 0.35944 26.391 0 1.5018
3 4.1793 0.35944 11.627 0 1.5018
4 2.0007 0.12701 15.753 0 1
5 0.27332 0.12701 2.152 0.031625 1
6 -0.80247 0.12701 -6.3184 3.9053e-010 1
7 -1.1108 0.35757 -3.1067 0.0019431 4
8 1.3497 0.50568 2.6691 0.0077231 2.0018
9 1.1254 0.50568 2.2255 0.026262 2.0018
10 1.1654 0.50568 2.3047 0.02138 2.0018
- %
RN2 and Adjusted RN2
- %
RN2, R™N2(adj)
0.53927 0.53487
o — = = — %
Analysis of Variance
e %
Source DF SS MS F P
Regression 10 20835.036 2083.5036 122.3161 0
Residual Error 1045 17800.2828 17.0338
Total 1055 38635.3188
h--—-——— %

This model has more terms considered relevant due the behavior of some of the
response functions in this region. For the previous regions, all the curves behave as
constant functions. However, in this region some of the responses differ from that pattern.

This is shown in the next figure.



Response Functions for the Region 4

Figure 5-17 Response Functions for Region #4
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For the behavior of the response functions in this region, the adjusted

determination coefficient is close to a 50%. Table 5-24 summarizes the terms that were

considered as relevant by this model.

Table 5-24 Results Summary for Region #4

Terms Coefficient Value Related Factor | Basis Term
Represented
0 Boo -11.6996 1 1
1 Bio 8.9552 Tl 1
2 Byo 9.4861 T2 1
3 B3 4.1793 T3 1
4 Buao 1.9987 L1 1
5 Bso 0.2807 L2 1
6 B60 -0.8025 Ls 1
7 Boi -1.1108 1 sin(wt)
8 B 1.3497 T1 sin(wt)
9 B 1.1254 T2 sin(wt)
10 B3, 1.1654 T3 sin(wt)

This model considered the same factors that were pointed out as relevant in the

previous regions. However, due the low determination coefficient this results are not



125

reliable. In general, this procedure worked out in the same way than the basis
representation model. The next section presents a summary of the results obtained using
the Piece-Wise method.
5.3.2.4 Results Summary for the Piece-Wise Method without the Continuity
Constraints
The Piece-Wise method was performed in order to analyze this applied case
study. The next table shows a summary of the results obtained.

Table 5-25 Summary of the Piece-Wise Method for the Applied Case Study

Number of Number of Data Adjusted
Fourier Basis Terms SSE Points RN2
Region 1 7 4.9733 320 0.58879
Region 2 7 4.4402 384 0.68636
Region 3 7 5.7474 416 0.70241
Region 4 11 17.0338 1056 0.53487
Pseudo-MSE 10.90628925

All the models contained almost the same quantity of terms for all the regions.
The only exception was the model for the region #4. The adjusted determination
coefficients obtained were relatively low. In general, in all the regions the terms T1, T2,
T3, L1 and L2 were considered as the most relevant ones. The next section is a

comparison of the three methods under for the case that corresponds to this chapter.

5.3.3 Piece-Wise Method with the Continuity Constraints

As done with the theoretical case study the procedure used to force the curves from two
adjacent regions to be joined at the knot was applied to this case. In this case, 31 indicator
variables were incorporated to the model. The consequences of the high number of
variables added to the model were dramatic. The effects on the design matrix were fatal.
The variance-covariance matrices are completely ill-conditioned. For that reasons the

obtained models are completely useless to analyze or infer with respect the factors of this
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experiment. For the reasons previously mentioned the results for this part of the piece-

wise method are not presented.

5.4 Comparison of Results for the Three Methods for the Applied Case

Study

The three methods were utilized to analyze the experiment. The pseudo-MSE it is
used as a metric of comparison for the methods. The next table shows the pseudo-MSE

for the three methods.

Table 5-26 Pseudo-MSE Table for all the methods applied for the applied case study

Method Basis Used Total | Total Number of Total Pseudo
SSE Parameters Number MSE
of Data
Points
Point-Wise N/A 22985.9 476 2176 13.521
Basis Fourier 23617.8 26 2176 10.985
Representation
Piece-Wise
without Fourier | 23328.55 37 2176 | 10.9063
Continuity
Constraints

The Point-Wise method provides the lowest total SSE but total of number of
parameters was so high that the pseudo-MSE became the highest one among the methods.
The basis representation method and the Piece-Wise procedure worked out almost in the
same way. The three methods considered €, W, L}, and L, as the most relevant parameters
for the design of a rectangular slot ring antenna considering as a measure of interest the
reflection coefficient. The next chapter presents the conclusions and future work for the

whole research.
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6 Computer Applications

6.1 Introduction

One of the objectives of this research is the development of a series of tools to ease
the implementation of the concepts developed and presented on the previous chapters in
the industry. The following sections describe the applications developed for each of the

methods developed in this study.

6.2 Point-Wise Method GUI

In order to ease the use of these tools, graphical user interfaces were created. For
each method, a Matlab GUI was created. Figure 6-1 shows the GUI for the Point-Wise
method. This GUI provides to the user with all the plots in order to complete the desired
analysis. In addition, the “pseudo MSE” is included in the final output of this form. The
next page shows the MS Front Page document created to be used as the help for this
application. The user only needs to press the “help” button of the application and the html
document appears as part of the Matlab help.

Figure 6-1 Snapshot of the Point-Wise Method user form
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6.2.1 Point-Wise Method GUI Help

In order to use the Piece-Wise procedure you need to complete the following series of
steps
e Press the "Design Matrix File" button- Select the text file with the design matrix
e Press the "Response Functions File" button- Select the text file with the responses
e Press the "Signal Factor Levels File" button- Select the text file with the
responses
e In addition to the files that must be uploaded, a probability must be entered in the
edit box provided.
e The "OK" button must be pressed in order to execute the procedure
Note: Each row of the response functions file must correspond to the row of the design
matrix, otherwise errors can occur in the analysis.

The following figure shows a snapshot of the GUI for the Piece-Wise procedure

Figure 6-2 Snapshot of the user form for the Point-Wise method presented in the help file of the
application

The popup menu has the options required. The user has to select the graphs in order

to see them in the axes. In addition, the grid can be added to the graphs if is desired.
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6.3 Basis Representation Method GUI

For the Basis Representation Method also a graphical user interface was created.
This is quite different with respect the previous one. This GUI has three main sections.
The first section, which is located at the left side of the GUI, is the input parameter
section. In this section, the user loads the files with the data. After loading the files, the
user has to select the type of basis that is going to be used and the number of basis that
are desired. If the basis is a Cubic Spline the user has to enter the desired knots for the
spline. The second section of this application is the results section, which is right in the
center of the application. All the results for the method are presented in this section,
including the results after the stepwise procedure. The last section of the GUI includes
the controls to initialize the stepwise procedure, the outputs for the “pseudo MSE” and

the help button. In the next page the html document for the help it is presented

-} method2gui

Input Parameters

2 Inflation

Dosion Malri File Tem bercept & 1 T-test
23152 0.0176
Response Functions File “ - -

Tem

r
Signal Factor Levels File N =

015627 ; ! ! X Select the "in" vector
-0.0823561 & 1}

0,0553608 ! -4 ’

0.105805 . . -

-0.158976 - 1}

-0.0893625

0.0819196

-0.0624565
-0.0431082

etermination

F-test P-walue

df M
EN EE EE E e

Calculate

Figure 6-3 Snapshot of the Basis Representation Method user form
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6.3.1 Basis Representation Model GUI Help

The design matrix must include the column for the intercept estimation. This

column of ones must be the first one in the design matrix. The number of rows of the

design matrix and the responses matrix must be the same. In addition, the number of

columns of the responses matrix and the length of the signal factor vector must be equal.

Otherwise, error messages will appear indicating the errors.

In order to use the GUI for the Basis Representation Model it is required to follow the

next sequence of steps.

Note

Load the file for the design matrix (x)

Load the file for the responses matrix (y)

Load the file for the signal factor levels (t)

Select the type of basis to be used

(1) If the basis is a monomial, or Fourier basis fill the "knots" edit text with a zero.
(i1) If the basis is a Cubic Spline fill the "Number of Basis Functions" edit text
with a zero

The knots have to be enclosed using brackets ([ ]) and each element must be
separated using spaces or commas. The knots selected must be equal to some
levels of the signal factor vector.

Press the "Calculate" Button to execute.

: If you select decide to select other type of basis unselect the previous one.

Figure 6-4 the GUI for the basis Representation Method in detail.
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Figure 6-4 Snapshot of the Basis Representation user form used in the help file of the application

To use the stepwise procedure of this application it is necessary to complete the following
steps

e Press the "Initiate" button of the application
This Button activates the Matlab stepwise procedure that opens three GUIs that are

shown in Figure 6-5
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Figure 6-5 Snapshot of the stepwise procedure of the Basis Representation user form, presented in
the help file

After eliminating al the terms that are not going to be included in the final model; use the
export option of the stepwise plot and select the option "Terms in". This option is going
to save that vector of indices in the workspace. Select the vector and create a text file
with those indices.

e Press the "Select the "in" vector" button of the application

e Select your file with the Terms in indices

e Press the "Execute" button to present the final results in the GUI

6.4 Piece-wise Method GUI

For this method a GUI was develop in order to ease their implementation. This GUI is
similar to the previous ones, but all the results of all the procedures conducted are
presented on the Matlab’s workspace instead on the GUI. The Piece Wise method is a
more complicated procedure compared to the previous two. It can be summarized in three

main steps, which are the following
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e Knots Search
e Unconstrained Piece Wise Method and variable selection via stepwise
procedure
e Constrained Least of Squares
The performance metrics for the model such as the Pseudo-F ratio will appear on the
user form. The plot for the knot search it is part of the GUI but the regression plots will

appear as separate figures. The next section presents the help for this application.

6.4.1 Piece Wise Method GUI Help

The design matrix must include the column for the intercept estimation. This column of
ones must be the first one in the design matrix. The number of rows of the design matrix
and the responses matrix must be the same. In addition, the number of columns of the
responses matrix and the length of the signal factor vector must be equal. Otherwise,
error messages will appear indicating the errors.

In order to use the GUI for the Basis Representation Model it is required to follow the
next sequence of steps.

e Load the file for the design matrix (x)

e Load the file for the responses matrix (y)

e Load the file for the signal factor levels (t)

e Select the type of basis to be used

e Define the number of basis functions

e If the knot search it is going to be executed the “Number of Knots” field must be

defined
0 Press the “Start Knot Search Button
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Figure 6-6 Piece Wise Method user form used in the help file of the application

e To execute the unconstrained piece wise method press the button “Unconstrained
Piece Wise”
O A question dialog it is going to appear asking you if you completed the
knot search
= [f the answer to this question is “not” then the program, it is going
to ask you to enter the knots using the Matlab’s vector notation on
the command window.

0 The stepwise command GUI it is going to appear for each region of the
problem (the number of knots plus one), to move to the next stepwise you
must press any key

O You must export the “in terms” of each stepwise procedure to the
workspace

e To execute the Constrained Least of Squares press the button “Constrained Least
of Squares”

0 A question dialog it is going to appear asking you if you completed the

knot search
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= [f the answer to this question is “not” then the program, it is going
to ask you to enter the knots using the Matlab’s vector notation on
the command window.
0 The program will require you to enter the in terms of the stepwise
procedure for each region, using the Matlab’s workspace
0 All the required graphs are going to appear as separate figures

e The GUI should look like the next figure if you completed all the steps mentioned

Figure 6-7 Piece Wise Method GUI after Execution

This chapter presented the main aspects of the applications developed in order to
ease the implementation of the concepts of this research in industry. The technical details

of the applications are on the appendixes. The next chapter presents the conclusions and

future work for this research.
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7 Conclusions and Future Work

7.1 Conclusions

The main contribution of this research is the demonstration of how powerful can be
the functional data analysis in order to analyze industrial experiments. The development
of new methods of analysis such as the basis representation method and the Piece-Wise
methods are also considerable contributions. The three methods were consistent, with
respect the factors considered as relevant in both of the experiments. The point wise
procedure can lead to good results but sometimes the interpretation of the graphs can be
complex. The basis representation method is more complex than the Point-Wise in terms
of computational effort, but the results obtained can be easily interpreted because is a
linear regression model. The Piece-Wise can be an option for experiments in which some
regions need to be analyzed in detail. The greatest disadvantage that this method has with
respect the previous two is the necessity of the knot search. This knot search can take a
lot of computational effort in order to find the best locations for the knots. In addition to
the knot search, the procedures to ensure the continuity of the curves among the regions
can have a serious impact on the inferential capabilities of the models. A possible
advantage of the Point-Wise method over the basis representation and the Piece-Wise
method is the non-dependence in a basis selection. In addition, the Point-Wise method is
very efficient in terms of computational effort. In general, the three methods complete
their task. They are able to find the most relevant factors that can affect the functional
response. The following table presents a summary of the respective advantages and

disadvantages for each of the methods studied in this research.
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Table 7-1 Summary of the Advantages and Disadvantages for the Three Methods Used in this

Research
Method Advantages Disadvantages
e Computationally e  Depends on graphical
Efficient interpretation
e Independent of a basis e High number of terms to
selection be calculated and analyzed
e  Useful for model e No functional form is
Point-Wise selection and obtained for the estimated
determination response
e A multiplicity problem that
increases with the number
of levels of the signal
factors
e Simple interpretation e Basis Dependent
Basis Representation e  Low number of terms e Could be computationally
intensive
e Simple interpretation e Basis Dependent
e Deeper analysis in e Computationally extensive
each region due the knot search
Piece-Wise e The approach used for to
establish the continuity
constraint induces a severe
multicollinearity problem

It is possible to observe that all the methods have advantages and disadvantages. The
final decision with respect the method to be applied is going to depend in the nature of
the problem. If the problem has a high number of levels for the signal, the Piece-Wise
method can be a problem in terms of the knot search part of the procedure. It is
recommended to use the Piece-Wise method only for situations in which is required to
analyze response functions by regions or when the signal factor does not has a high
number of levels. The other two procedures can be applied practically in every desired

situation.

7.2 Future Work

There is a lot of work to be done; in specific for the basis representation, and the
Piece-Wise methods. More types of bases can be integrated to those methods. Bases such
as wavelet, exponential, polygonal and constant could be used for those methods. New
procedures in order to complete the knots search are extremely necessary in order to

make more efficient this search in order to ease the implementation of the Piece-Wise
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method. In addition, procedures to obtain the curves continuity between regions need to
be developed in order to ensure the continuity without affecting the quality of the
regressions. In the cases studied some problems were founded with respect the
regressions. To be specific the assumption of constant variance was not followed by most
of the models. Different approaches for the parameter estimation could be tested in order
to overpass the difficulties presented by the use of the least of squares regression.

In addition to all the work completed in this research, there is a lot of work been
doing by many researchers. Statisticians and engineers must develop some robust and
practical techniques in order to demonstrate the strengths that the functional data analysis

can provide to industrial experiments.
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Appendix 1 Details form Theoretical Case
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In this first appendix, the details for the theoretical case study are going to be presented.

As mentioned in chapter 4 a VBA Macro was used to generate the response curves for the

experiment. An snapshot of the excel spreadsheet used to generate the data used for the

experiment is presented in figure A.1.1

E | c | o | e | F | &G | H | e ]k L MmN 5]

| 1 | To recalculate press CTRL+ALT=F3

2 | u El K 1 1 i

- s &l L =l i 0 Functional Responses

| 4 | t| Respl-1-11 | Respl-11] |Resp(l-1] |Resp11 | Respf0,0]

| 5 | 0.00 00261 00317 00091 00095 0002

& | 050 00023 00197 002 00410 00012 1.0 f

|7 | 100 00588 00269 00643 0103 0.0091

| & | 150 0501 003 09801 04587 0.0201

|9 | 2.00 00971 02334 02546 02106 00390 20

| 10| 250 03150 02488 04008 03042 005N

1| 200 04577 04776 06850 03574 0.06BE

| 12 | 350 05032 07030 08834 04220 00803 &0

15| 4.00 08000 07273 13696 05324 00925 r‘,f

| 14 | 450 09502 10304 18202 06827 0156 f’_“

| 15 | 5.00 11380 10008 26536 0GFEE  0.456 4.0

|15 | .50 12901 10618 27642 0791 04226 /.J

| 17 | .00 14991 13723 47049 08467 01637 ]

| 15 | .50 18385 16184 48250 OFEFT 0767 20 i =

| 19 | 7.00 22173 12114 7EFIE 08247 0.1964 P"__ﬂﬁl‘"‘\f/"‘“

| 20| 7.50 20863 16399 77693 08033 01957 Aﬁ;z:ﬁ

| 21 | 200 27472 15161 fz0i00 0830 0.2281 0.0 rn

| 2z | 250 31385 20080 16.5359 10229 0.2215

| 23 | 2.00 23522 17976 216583 097EE 02457

| 24 | 950 48005 20264 34006 11356 02048 2.0

| 25 | 10.00 47947 2024 7H4544 10728 02330 .00 200 400 600 a00 10.00
26

| 27 | |: Value 3] axis [Fesp(11) —=— Resp(i-1) Fesp(ll] —— Resp(0.0) |
28

Figure A.1.1 Snapshot of the MS Excel spreadsheet used to generate the experiment for the

theoretical case study.

The details of the VBA macro are shown in the next figure.

I(General)

j IRespDnse

Priwvate Function Response(t, X

1, x2) ks Single

2 %l M2 4+ x2 " 2 - ®H1 * w2 + 0.25

r

oz

(Sgr(-2 * Log(End(1))1) * Sin(2 * 3.1415926 * Rnd(2)]

L = blhsit)

If £ > 10 Then t = 10

fO0o = x1 - 0.5

f1 =2 * x1 * x2 + 0.75

fz =

fr = £f0 + £1 * © + £2 *

gl =2 * xl * 2 + x2 * Z 4+ 50
gl = 2 * x1 % x2 + Z.25

g2z = %2 + 0.5

gt =gl + gl * £ + g2 * ™2
Eps =

Respo

nge = £t / gt * (0.075 * Eps + 1)

End Functiod

[v]

Figure A.1.2 Snapshot of the VBA macro used to generate the functions for the Theoretical Case

Study

The numerical results of the five runs used to test the methods of analysis are shown in

the next tables.



Table A.1.1 Data for Run #1 of the Theoretical Case Study

x1
x2

Table A.1.2 Data for Run #2 of the Theoretical Case Study

x1
X2

-1

-1

1

1

0

-1

1

-1

1

0

-0.02955

-0.02701

0.009643

0.009401

-0.00974

0.00794

-0.0224

0.019626

0.043568

-0.00134

0.06313

0.025469

0.06363

0.090566

0.009705

0.127897

0.100342

0.161652

0.156327

0.022091

0.200127

0.224025

0.305872

0.194455

0.037763

0.326992

0.311946

0.463723

0.275638

0.049903

0.420874

0.53448

0.644597

0.346922

0.060038

0.584393

0.649618

1.028072

0.44136

0.083804

0.716669

0.792269

1.342418

0.488681

0.097133

0.905562

0.973432

1.876639

0.620892

0.10853

1.011142

1.104563

2.604896

0.637629

0.125836

1.414877

1.307627

2.891856

0.660031

0.137948

1.584432

1.408364

4.208405

0.762732

0.147079

1.987885

1.452143

5.395805

0.805077

0.165387

1.972278

1.817569

5.612346

0.789524

0.185538

2.574979

1.568784

8.346522

0.824069

0.200709

3.219038

1.631887

11.24417

0.936698

0.226127

3.20401

1.78047

14.04148

0.822115

0.239182

4.195609

1.822697

23.79627

0.99046

0.238341

4.922475

1.931292

31.7241

1.120306

0.258074

5.06598

2.007657

76.81027

1.042286

0.301072

-1

-1

1

1

0

-1

1

-1

1

0

-0.02506

-0.02814

0.009319

0.009185

-0.01058

0.008322

-0.01996

0.016525

0.042236

-0.00128

0.059312

0.031915

0.066759

0.101967

0.010312

0.129266

0.110564

0.162704

0.160596

0.022341

0.201625

0.196582

0.297258

0.245443

0.035951

0.337096

0.410005

0.505396

0.262178

0.048042

0.482517

0.498941

0.758635

0.389001

0.070933

0.591822

0.534093

1.003673

0.375722

0.087029

0.643676

0.806376

1.354527

0.469875

0.104813

1.00613

1.125653

1.717689

0.516822

0.095494

1.170984

1.049902

2.573347

0.574457

0.131791

1.342684

1.340854

3.061642

0.715934

0.153145

1.618439

1.325836

4.053267

0.698535

0.155132

1.730971

1.521352

4.867299

0.742636

0.180463

2.270578

1.611667

6.525233

0.774761

0.201395

2.707817

1.724198

7.626052

0.961136

0.20375

2.880525

1.861544

11.79702

0.771159

0.224973

3.502698

1.802845

15.2124

0.936421

0.234723

4.021999

1.798873

25.33165

0.9183

0.260367

4.248888

1.776384

36.97179

1.017769

0.244292

5.298789

2.191868

80.79288

0.982667

0.204118
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Table A.1.3 Data for Run #3 of the Theoretical Case Study

x1
X2

Table A.1.4 Data for Run #4 of the Theoretical Case Study

x1
x2

-1

-1

1

1

0

-1

1

-1

1

0

-0.02906

-0.0308

0.009129

0.008319

-0.01112

0.007969

-0.02145

0.015479

0.045803

-0.00132

0.069092

0.028228

0.060468

0.095082

0.009102

0.126612

0.111507

0.166558

0.145239

0.02142

0.237457

0.197497

0.296702

0.239752

0.033853

0.318097

0.354262

0.484636

0.270072

0.044545

0.393697

0.534973

0.726386

0.331751

0.057815

0.549785

0.640372

1.121206

0.454334

0.087166

0.710146

0.726084

1.453431

0.460759

0.101167

0.808599

0.957632

1.990109

0.537481

0.130697

1.163068

1.204151

2.432114

0.600821

0.123196

1.359438

1.159892

3.061314

0.71798

0.131949

1.61253

1.480099

4.293924

0.700131

0.163548

1.919435

1.377092

5.037033

0.840747

0.191638

2.395726

1.520627

6.030873

0.827303

0.20146

2.943201

1.732558

8.75532

0.91076

0.213701

3.085407

1.704156

12.55411

0.992311

0.200034

3.58548

1.698999

14.7318

0.968709

0.220278

3.319357

2.134924

24.04517

1.009499

0.255059

4.549213

1.680975

33.67556

0.938481

0.271797

5.10281

1.868435

68.98808

1.00252

0.290429

-1

-1

1

1

0

-1

1

-1

1

0

-0.02799

-0.03028

0.009709

0.007986

-0.00927

0.008035

-0.01951

0.017758

0.045331

-0.00115

0.065106

0.025831

0.073214

0.090301

0.009807

0.125944

0.114701

0.14619

0.13574

0.022432

0.248526

0.228625

0.280081

0.227296

0.037364

0.303013

0.315163

0.44326

0.285834

0.04778

0.463151

0.499487

0.706184

0.392888

0.069485

0.535819

0.74476

0.94271

0.430409

0.081568

0.725761

0.725605

1.387714

0.511043

0.087297

0.894978

1.100409

1.932457

0.588839

0.109323

1.183528

1.064585

2.804713

0.697142

0.118582

1.294208

1.413398

3.53286

0.714377

0.14214

1.582925

1.391951

3.64095

0.772333

0.15273

1.798324

1.431159

4.88521

0.777191

0.210812

2.390928

1.477567

7.834334

0.859378

0.19127

2.40153

1.627087

8.339213

0.828463

0.206762

3.173717

1.803808

12.6681

0.876307

0.247802

3.622976

2.131194

13.56933

0.954295

0.205997

4.017898

1.859688

24.40208

0.999199

0.248427

5.028654

2.13463

39.10254

0.926936

0.258994

5.236986

1.646408

82.36643

1.182261

0.240994
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Table A.1.5 Data for Run #5 of the Theoretical Case Study

x1 -1 -1 1 1 0
X2 -1 1 -1 1 0
-0.02562| -0.03041| 0.009371| 0.010595| -0.01093
0.007637( -0.02082| 0.016673| 0.03829| -0.00113
0.06271| 0.029197| 0.06654| 0.0964| 0.008378
0.13141| 0.105038| 0.166515| 0.143538| 0.023743
0.237821 0.215558| 0.234498| 0.218809| 0.029061
0.313876( 0.359247| 0.487976| 0.303875| 0.047052
0.390985( 0.499875| 0.706666| 0.364817| 0.067519
0.502899( 0.586057| 0.920314| 0.38907| 0.073615
0.751922| 0.733302| 1.312079| 0.519346| 0.108103
0.902728( 1.033647| 1.842729| 0.566822| 0.101534
1.052538| 1.229487| 2.519927| 0.601609| 0.113821
1.245388| 1.35897| 3.404696| 0.723718| 0.147072
1.867583| 1.409289| 4.152516] 0.72506| 0.140835
2.014749( 1.475526| 4.782989| 0.823508| 0.164042
2.303423| 1.353883| 6.889404| 0.883207| 0.204301
2.627156( 1.462087| 9.424388| 0.922087| 0.218063
3.046413| 1.651445| 11.1958| 0.964646| 0.207535
3.347896( 1.686946| 14.79526| 0.90296| 0.234474
4.331627| 1.846729| 22.23893| 0.866161| 0.259719
4.78677| 1.991228| 38.17537| 1.049412| 0.260177
5.896906( 2.030268| 67.59177| 1.095003| 0.281483

In the next pages the graphical representation of the response functions at each

experimental condition for all the runs are presented.

run #1
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Figure A.1.3 Graphical Representation for run #1
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run #2
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Figure A.1.4 Graphical Representation for run #2
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Figure A.1.4 Graphical Representation for run #3
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run #4
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Figure A.1.5 Graphical Representation for run #4
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Figure A.1.6 Graphical Representation for run #5

It is important to mention once again that the origin of the function used to generate this
theoretical experiment was completely unknown by the analyst of the experiment until
the end of the investigation. Also is relevant to mention that Dr. Noel Artiles Leon,

member of the thesis committee, created the function used.
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Appendix 2 Results of the Classical Functional Data Analysis for Both

Cases



149

Results of the FDA procedure to the Theoretical Case Study

The classical functional data analysis proposed by Ramsay was also used to analyze the
cases studied. In order to complete this part of the analysis the Matlab functions that
complement the book Functional Data Analysis were used. The graphical results for the
Theoretical Case are shown in the next pages.

Response Functions
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Figure A.2.2 Effects plot using the FDA Methodology
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Residual Plot vs. Signal Factor
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Figure A.2.3 Residuals Plot using the FDA Methodology
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Figure A.2.4 F- Ratio Plot using the FDA Methodology
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adjusted R?

Signal Factor

Figure A.2.5 Adjusted Determination Coefficient Plot using the FDA Methodology

Signal Factor

Figure A.2.6 SSE Plot using the FDA Methodology
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Figure A.2.7 Estimated Responses Plot using the FDA Methodology
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It is possible to observe that the plots presented in this section are almost identical

to the plots presented with use of the Point-Wise method. The main difference is that the

plots look smoother than the previous ones. This is the effect of the use of techniques

such as smoothers, registration and roughness of penalty approach among others.

However, the basic interpretation and characterization of the response are basically the

same.
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Results of the FDA procedure to the Applied Case Study

The classical FDA was also applied to the applied study case in order to verify the

performance of the Point-Wise procedure. The following graphs are the results obtained.

Response Functions
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Figure A.2.8 Response Function for the Applied Case Study
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Figure A.2.9 Location Effects for the Applied Case Study using FDA
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Residual Plot vs. Signal Factor
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Figure A.2.10 Residuals for the Applied Case Study Using FDA
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Figure A.2.11 F ratio test for the Regressions for the Applied Case Study
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Figure A.2.12 Adjusted Determination Coefficient Plot for the Applied Case Study Using FDA
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Figure A.2.13 SSE Plot for the Applied Case Study Using the FDA Procedure
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Appendix 3 Response functions, Residuals and Estimated functions
plots for the Basis Representation Model Using The Theoretical
Case Study
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Original and Estimated Response Functions

Plots for the Monomial Basis Representation
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Figure A.3.2 Residuals for the Basis Representation Final Model with a Monomial Basis for the
Theoretical Case Study
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The following plots correspond to the Fourier Basis Representation model for the

theoretical case study.

Original and Estimated Response Functions
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Figure A.3.3 Responses and estimated responses for the Basis Representation Final Model with a

Fourier Basis for the Theoretical Case Study. The asterisks correspond to the estimated functions.
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Figure A.3.5 Residuals for the Basis Representation Final Model with a Fourier Basis for the

Theoretical Case Study
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To conclude this appendix the graphs for the Cubic Spline Basis Representation Model

are presented.

Original and Estimated Response Functions
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Figure A.3.6 Responses and estimated responses for the Basis Representation Final Model with a

Cubic Sppline Basis for the Theoretical Case Study. The asterisks correspond to the estimated

functions
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Figure A.3.7 Residuals for the Basis Representation Final Model with a Cubic Spline Basis for the

Theoretical Case Study
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Appendix 4 Response functions, Residuals and Estimated functions
plots for the Basis Representation Model Using The Applied Case
Study
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The following plots correspond to the point wise analysis to the selected region in the

applied case study. The selected region as mentioned in Chapter 5 is from 5.7 to 6 GHz.
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Figure A.4.1 Plot of all the response functions for the applied case study

Estimated Response

Estimated Responses

10 20 30 40 50 B0 70
Signal Factor Levels

Figure A.4.2 Estimated Responses Plot for the Applied Case Study Using a Fourier Basis (K=2)
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Figure A.4.3 Residuals Plot for the Applied Case Study Using a Fourier Basis (K=2)
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