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Tournaments are simple and complete direct graphs. In this thesis we survey
and study particular cases of tournaments. Since the famous Seven Bridges Problem,
which was analyzed by Leonard Euler in 1736 and stimulated the development of
graph theory, graphs have been considered an important subject in mathematics

and other applied sciences, such as physics, biology, chemistry, etc.

Over the last decades the study of graph spectra has been very interesting, be-
cause it characterizes the topological structure of a graph. But it turns out that this
is not easy to attack. In this thesis we obtain new results about tournament matri-
ces, in particular, about Brualdi-Li matrix and r-partite tournament matrices. The
original inspiration of the thesis was to improve and extend the ideas introduced in
Algebraic Multiplicity of the eigenvalue of a bipartite tournament matrix,
by Yi-Zheng Fan and Jiong-Sheng Li published in STAM Journal on Matriz Analysis
and Applications (SIMAX, 2002), and in An upper bound on the Perron value
of an almost regular tournament matrix, by S. Kirkland, in Linear Algebra

and its Applications (2003).
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Consejero: Dr. Xuerong Yong
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Los torneos son grafos dirigidos simples y completos, pueden ser vistos como
una combinacion de teoria de grafos, andlisis matricial y combinatoria. En esta
tesis analizaremos casos particulares de torneos. Desde el famoso problema de los
siete puentes, que fue analizado y solucionado por Leonard Euler en 1736 y que
estimul6 al desarrollo de su teoria, los grafos son tomados un tépico importante en
matematicas y en otras ciencias aplicadas tales como, fisica, biologia, quimica, etc.

En las altimas décadas el estudio del espectro de un grafo es una aplicacion
interesante, porque caracteriza la estructura topologica de un grafo. En general, no
es facil atacar este tipo de problemas. En la tesis mostraremos nuevos resultados
en matrices de torneos, particularmente en la matrix de Brualdi-Li y en matrices
de torneos r-partitos. La inspiracion original de la tesis fué mejorar y extender las
ideas que aparecen en Algebraic Multiplicity of the eigenvalue of a bipartite
tournament matrix, por Yi-Zheng Fan y Jiong-Sheng Li publicado en SIAM J. on
Matriz Analysis and Appl (SIMAX, 2002) y en An upper bound on the Perron
value of an almost regular tournament matrix, escrito por S. Kirkland en

Linear Algebra and its Appl. (2003).
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CHAPTER 1
INTRODUCTION

The thesis is organized as follows: In this chapter we describe the basic notions
of graphs and tournaments. Chapter 2 overviews relevant details about two con-
jectures of Brualdi-Li matrix. Chapter 3 introduces the bipartite tournaments and
some recent results. Chapter 4 provides a list of singular value properties for tour-
nament matrices; Chapter 5 presents our results, concluding remarks, and future

work in tournaments.

The tournaments are a class of directed graphs and are inspired from the round
robin competitions. This topic has been of growing interest in the last decades.
We will mainly focus on spectral properties and some related properties that were
published recently in peer-reviewed journals. The original problem appears in the
classical round robin tournament in reviewed building player ranking schemes. The
research has motivated an extensive study of the combinatorial and spectral proper-
ties of tournament matrices, and therefore has motivated to write some good books

(see [1, 5, 6, 11, 24]).

In |1] the authors state that: “the theory of graph spectra, is like an attempt to
utilize linear algebra including, in particular, the well-developed theory of matrices
for purposes of graph theory and its applications. However, that does not mean

that the theory of graph spectra can be reduced to the theory of matrices; on the



contrary, it has its own characteristic features and specific ways of reasoning fully

justifying it to be treated as a theory in its own right.”
1.1 Tournaments, Matrices and Graphs

Graph theory originated with the paper written by Leonhard Euler on the Seven
Bridges of Konigsberg and published in 1736. This is the first paper in the history
of graph theory. The study of tournaments started around the first half of the last
century, resulting in the publishing of Topics on Tournaments by John Moon,
in which the author collected the most useful results. Tournaments have many
applications in statistics, game theory and other related areas. For example in [18§]
it was proven that in round robin competition corresponding to 7', a tournament
matrix, the Kendall, Wei and Kamanujacharyula’s ranking schemes agree with the

ranking generated by the row sums of 7.

If 4,5 are two vertices of a graph, we will use the notation ¢ — j to represent

the arc from 7 to j.

H
Definition 1. A Tournament of n vertices is a loop-free directed graph G with
ﬁ
the property that for each pair of distinct vertices ¢ and j, G contains exactly one

of the arcs i — j or j — 4.

A Tournament Matrix is the (0,1) adjacency matrix of a tournament, or
equivalently, a (0,1) matrix T such that T+ T7 = J — I where J denotes the all

ones matrix.

Proposition 1. The number of arcs in a tournament with n vertices is

%n(n )= <Z)
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For the proof note that each vertex has relations with the n — 1 vertices, we can
say that there are n(n — 1) arcs, but this count is double because we counted each

arc two times, therefore the number of arcs for each tournament is %n(n —-1) = (g)

Example 1. Figure 1-1 is an ezample of a tournament and its matriz.

@
& A\@

S
!.’ ‘@

— O = OO
O OO DO
coo~,O
OO~ K~
O~ =~ O

Figure 1-1: Tournament and its matrix.

Clearly,

01010 00101 01111
00111 10000 10111
T+T"=11 001 1]l+]01000]=]1101T1|=J-1
00001 11100 11101
10000 01110 11110

1.1.1 The Score Vector

Definition 2. If A is a tournament matrix, its score vector is defined as:

s=(s1,59,...,5,) = Al.

Note that if (sq,s9,...5,)7 is a score vector of a tournament A, then
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For n = 2 there are 2 = 2(2) tournaments, for n = 3 we have 8 = 2(3), in general

we have:

Proposition 2. Let V' be a set of n vertices, then there exist 2(3) different tourna-

ments.

There are n vertices, and (72‘) arcs, and each arc has 2 possible directions, so we

have 2 different tournaments, therefore the proposition is true.

The classical result about score vectors is the Landau’s Theorem, see [21]. We

give this result below.

Theorem 1. A set of integers S = (s1,82,...,8,), where s1 < s9 < -+ < s, 05 @

score vector of some tournament if and only if

izi;si Z <];)7

for k=1,... n, with equality holding when k = n.
Proof. The proof is due to Ryser [24] in 1964. O

Recently Richard A. Brualdi and Jian Shen published a result about score

vector, see |8].
1.1.2 Isomorphic Tournaments

Let 77 and T, be two tournaments with vertices {1,2,...,n}. We say that T}
and Ty are isomorphic if there exists a bijective function ¢ : {1,...,n} — {1,...,n}
such that

st = ¢(s) 2 o(t) or  és) = d(t).



In |24] there is a classification for the number of non-isomorphic tournaments.
Clearly, if two tournaments are isomorphic, then they have the same score vector,

but the reciprocal proposition is not true. See for examples [24].

1.1.3 Permutation Matrix

Another equivalent way of characterizing isomorphic tournaments is using per-

mutation matrices.

Definition 3. P is a permutation matriz if and only if P can be formed directly

from I by reordering its rows or its columns.

Let T be a matrix and let P be a permutation matrix, then PT' is the matrix
formed by reordering the rows of 7" in same way that P reorders them. T'P is same

but the reordering is applied in its columns.

Proposition 3. Let Ty and Ty be two tournaments with vertices {1,2,...,n}, we
say that Ty and T are isomorphic if there exists a permutation matric P such that

T, = P'T,P.

Example 2. Let Gi and Gy be tournaments and Ty and Ty their tournament ma-

trices respectively,

(@) 0101
|00 10

Gy =11 00 0
@ @ 0111

@ @ 0100

0011

G L=1100 0
@ @ 1010



Then G1 and Gy are isomorphic. The permutation matriz is

O = O O
o O O
oo = O
_— o O O

note that isomorphs means relabeling the vertices of graph G to obtain G.

Clearly, two isomorphic tournaments have same spectrum.

1.1.4 Paths and Cycles

Definition 4. A path on a graph (also called a chain) is a sequence {x1,zs,...,z,}
such that (1, x9), (22, 23), ..., (x4_1,x,) are graph edges and the z; are distinct.
A closed path {x,z5,...,x,, 21} on a graph is called a cycle or circuit.

Let AP = <ag)). The number ag) is the (i, j) element of A?. The next propo-

sition is a classical result.

(»)

Proposition 4. The a;;’, the element of AP, is the number of paths of length p from

vertex 1 to verter j.

Example 3. The graph below has a path from q; to qs through qq, this is a path of

length 2,

i
I
O = = O

_ o O O
_ o = O
o OO =

clearly,



N O = O
OO O =
_ o O =
O = = O
_— O O N
O = = O
O ==
DN = = O

Note that the element a%) = 1 means that there is one path of length 2 from ¢,
to q3, and afl) = 2 means that there exist two paths of length 2 from q4 to ¢;. And
similarly, aﬁ) = 2 means that there exist two paths of length 3 from q4 to qu, i.e.,

two cycles of length 3.
1.1.5 Transitive Tournament

Definition 5. Let T be a tournament. 7' is transitive if for each vertices p,q and

r, we have that if p — ¢ and ¢ — r then p — r.

By reordering the vertices, the matrix for transitive tournament is upper trian-

gular:
01 1 1
00 1 1
U=|:: o
00 0 1
00 0 0

One characterization theorem is given in |24] for transitive tournament.

Theorem 2 ([24]). The following statements are equivalent:

1. T, is transitive.
2. Vertex p; dominates node p; if an only iof j > 1.

3. T, has score vector (n —1,n—2,...,2,1,0)7.



4. The score vector of T,, satisfies the equation

", nan—1)2n-1
;s,:( Jon 1)

T,, contains no cycles.
T, contains exactly (kil) paths of length k, if 1 <k <n—1.

T, contains exactly (Z) transitive subtournament Ty, if 1 < k <n.

RS &

Each principal submatriz of T,, contains a row and column of zeros.
1.1.6 Strongly Connected Tournament

Definition 6. A graph G is strongly connected, if there exists a path for each vertex

i to each vertex j, 1 # j.

Example 4. The tournament in figure 1-2 is strongly connected, it is easy to check

the path from any vertex to any other vertex.

>

Figure 1-2: Strongly Connected Tournament
1.2 Bipartite Tournament

If we want to make a tournament where there are two disjoint teams I and II
of players and each player on Team I plays against each player on Team II, we will
have a new structure of tournament that we will call bipartite tournament. We note

that they themselves do not have the structure of a tournament.

The following characterizes bipartite graphs: if the greatest eigenvalue is equal

to the negative of its smallest eigenvalue then the graph is bipartite [1].



Definition 7. A tournament is bipartite if there is a partition of its set of vertices
in two sets A, B, with AN B = () such that there are no arcs between vertices that

belong to the same set and for all i € A and j € B, we have 1 — j, or j — 1.

Little is known about bipartite tournaments. In [22|, Li gave an upper bound
for the spectral radius. Later, Sangwook Ree introduced Hypergraphs and, in the
Conference on Hypergraphs in Hungary 2001, he spoke about the bipartite tourna-
ment matrices. He looked at the spectral bounds of bipartite tournament matrices,
that is, tournament matrices of two teams, with arbitrary team size. He indicated
that when bipartite matrices exist, players and teams of the matrices are evenly

ranked.

Li showed that a bipartite tournament matrix can be both, regular and normal
if and only if it has the same team size. Also, he found the condition that was
necessary for the variance of the Perron vector (see Definition 11) of the bipartite

tournament matrix to vanish.

We use the notation 7,,,,, for bipartite tournament having sets |A| = n; and
|B| = ny. Clearly, the unique bipartite tournament, which is a tournament, is when

n1:n2:1.

We may let

On, | B
Tyiny = , (1.1)
C |0,

where B+ CT = J,,,,,, and J is a matrix having all entries equal to 1.

Example 5. Let T3, be a bipartite tournament with A = {q1,q,q3} and B =

{q4,q5}. Its adjacency matriz and its graph are:



@4@

0 001 O
00001
T50=10 0 0|1 O
01 0[O0 O
10 1]0 0

1.3

If we extend the same idea for bipartite tournament, into the case where we
make a tournament with r teams where each player of team ¢ plays with each player

of all others teams j, i # j, we have a new structure of tournament which we will

r-partite Tournament

call an r-partite tournament, its matrix is

0n11 Bl2 Bl(r—l) Blr

Cor Opy, Bop—1y By
C17“—1,1 C17“—1,2 Onr,l’r,l Br—l,r

Crl Cr2 Cr,r—l Onrr

T . .
where B;; + Cji = Jn;n; and all 0; are square zero matrices.

Note that they themselves do not have the structure of tournament, unless the

length of all subsets of vertices are one.

1.4 Eigenvalue Bounds for Tournament Matrices

Here we show two eigenvalue properties of tournament matrices. These facts

are based on the equation T+ 7T7 = J — I.

Proposition 5. The real part of every eigenvalue of any tournament matriz T s

at least —1/2.
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Proof. Let T be a tournament matrix, then
T+TT=J-1, (1.2)

and let A be an eigenvalue of T" and x its corresponding normalized eigenvector, i.e,

Tx = Az, and x*z = 1. First we take the right of (1.2) then

2 (J—Nr=z"Jr—z'x=a"Jr—1

=y'y—1>—-1.
On the other hand,

(T + TNy = 2a*Te + 2" T

= 2ReA,

then we have

—1<a*(J =Dz =T +T")x = 2Re),

and the result is obtained. O

Proposition 6. The real part of every eigenvalue of any tournament matriz T s
at most (n — 1)/2, with equality holding if and only if T is a regular tournament

matrix.

For the proof you can see [4] or for the greatest eigenvalue p(T') one can use the

Levinger’s inequality,

p(T—l—TT) 1 n—1

o1y < B = S ="

The eigenvalues of 7', \;(T), i = 1,2,...,n, we will be ordered as |\ (T)| >

[Ao(T)| > -+ > |[Au(T)]. In Chapter 5 we show results about the eigenvalues of 7.
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1.5 Perron Frobenius Theory

In tournament theory we use only matrices with entries equal to 0 or 1.

Definition 8. An n X n matrix A with real entries is said to be nonnegative if
a;; > 0 for each 7 and j and positive if a;; > 0. Similarly, a vector x = (x1,...,z,)"

is said to be nonnegative if each x; > 0 and positive if each z; > 0.

Applications of these matrices are found in geometry and combinatorics see [2]

and the Leontief input-output models in economics.
1.5.1 Irreducible Matrix

Definition 9. An n x n matrix A is said to be a reducible matriz if and only if for
some permutation matrix P, the matrix PT AP is block upper triangular, i.e, it has

this form

P AP — A | Ao
0 | Ag

were Ay and Agy are of square order smaller than n.

If a square matrix is not reducible, it is said to be an wrreducible matriz. The

following conditions on an n x n matrix A are equivalent.

1. Ais an irreducible matrix.

2. The digraph associated to A is strongly connected.

3. For each i and j, there exists some k such that (A%);; > 0.

4. For any partition of the index set {1,2,...,n} into nonempty disjoint sets [;

and [, there exist ¢ € I; and j € I, such that a;; # 0.

Proposition 7. Let A be an n X n non-negative matriz. Then A is irreducible if

and only if (I + A" > 0.
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Proof. Let y € R™ be such that y > 0 and y # 0 and write
z=(I+Ay=y+ Ay. (1.3)

With a process that is shown in [20] we can say that (I +A)" "'y > 0, for any y > 0,
y # 0 and therefore the necessary condition is ready. The converse is easy because

the graph associated with (I + A) is strongly connected, and hence A is too. O

Example 6. Let A be a matriz of the form

* K ¥ X X
* ¥ ¥ X X
S *x ¥ O O
O % *x O O
* ¥ ¥ X X

it 1s reducible, because if we permute row 8 with 5, and then column 3 with 5, we

obtain

L I S
EOE I O
* K ¥ K X
* %X O OO
* ¥ O OO

and therefore it is clearly block triangular.

Note that if a matrix has a row or column with all entries zero then the matrix

is not strongly connected.

For certain applications, irreducible matrices are more useful than reducible
matrices. In particular, the Perron-Frobenius Theorem (see next page) gives more
information about the spectra of irreducible matrices than that of reducible matrices.
It is known that the Perron Theory is for positive matrices and Frobenius extended

similar properties for nonnegative matrices.
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Example 7. The digraph of figure 1-3 is a bipartite tournament,

@ 01100

— S 00000
®) @) A=]0 o000 0
01100

(%) 01100

Figure 1-3: Bipartite tournament and its reducible matrix.

Let

s

I
coo o
o~ oo o
—roooo
co oo

then

PTAP =

o OO OO
o OO OO
O OO OO
O Ol V= -
o Ol =

clearly A is reducible.

1.5.2 A Useful Theorem

Definition 10. Let A be a (0, 1)-matrix, and p(A) its spectral radius. Let h, index
of itmprimitivity or index of cyclicity, be the number of eigenvalues having modulus

equal to the spectral radius. If h = 1 the matrix is called primitive.

Proposition 8. If A if primitive then it is irreducible.

Proof. See Berman’s book [2]. O
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The next theorem is part of the famous Perron-Frobenius theory.

Theorem 3. Let A > 0 be irreducible of order n. Then the following hold.

1. p(A) is a simple eigenvalue, and any eigenvalue of A of the same modulus is
also simple.

2. If A has h eigenvalues \g = 1% N\, = re? ... A1 = re? 1 of modulus
p(A) =7, with 0 = 0y < 0; < --- < 0,1 < 27, then these numbers are the
distinct roots of \* —r" = 0.

3. More generally, the spectrum S(A) = Ao, A1, -+, Aa_1 goes over into itself under
a rotation of the complex plane by 27 /h.

4. If h > 1, there exists a permutation matriz P such that

0 As 0 - 0
0 0 Ay - 0
PAPT =+ ¢ o |
0 0 0 - Ay
Ay 00 - 0

where the zero blocks along the main diagonal are square.
Definition 11. The spectral radius p(7") of a nonnegative irreducible matrix is
called the Perron value and the corresponding eigenvector is a positive vector,

which is called the Perron vector for 7.
1.6 Regular and Almost Regular Tournament Matrices

Definition 12. A matrix 7" of a tournament is regular if the out-degree of all
vertices of T is the same, i.e., if T1 = ((n — 1)/2)1, where 1 is the vector with all

entries equal to one.

The definition is equivalent if each of the row sums of 1" is ”T_l (Observe that

necessarily n must be odd.) It is known in [3, 13] that for odd n, the matrix that
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maximize the Perron value over the class of n X n tournament most be a regular

tournament matrix.

A matrix 7" of tournament where the first n/2 rows have sums equal to (n —
2)/2 and the last n/2 row have sums equal to n/2 is called an almost regular

tournament matrix.

An almost regular tournament matrix can be a principal submatrix of a regular

tournament matrix, as we can see in the next example.

Example 8. Let T be a reqular tournament matriz of order 7

~

I
== -0 O O O
-0 OO o O
o O o O = =
O O DD = ==
OO O = = = O
OO = = = O O
Ol—R = = O OO

when T'1 = 3 -1. Note that if we remove the last row and the last column we have

T =

—_0 O O O
O OO O
OO OO ==
OO O = ==
OO = = = O
O == =00

almost regular tournament matriz such that T'1 = | ———
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1.7 Hypertournament and Generalization of Tournament Matrices

Hypertournament and generalized tournament matrices not only provide a
means for inquiring into the properties of tournament matrices but also are the

source for matrix analytic challenges of independent interest.

A matrix A is called an h-hypertournament if it has zero diagonal entries and
A+ At = hh! — I for some non-zero h € R™. If h = 1, any ones vector, an h-
hypertournament matrix A satisfies A + A* = J — I, where J denotes the all ones
matrix. If all the entries of a 1-hypertournament matrix A are in {0, 1}, then A is
called a tournament matriz, and if all the entries of A are non-negative, then A is

called a generalized tournament matriz.

Maybee and Pullman [23] show that every h-hypertournament matrix is (diag-
onally) similar to a 1-hypertournament matrix. Thus, the discussion of the spec-
tral properties of an h-hypertournament matrix can be reduced to the case of 1-

hypertournament matrices. It is further shown in [23| that

1 n—1
— =< A<
2_Re <5

(1.4)

whenever ) is an eigenvalue of an hA-hypertournament matrix. Moreover, the eigen-

values of a generalized tournament matrix satisfy (see [14])

1 T
< — S
IImA| < 5 cot (2n> . (1.5)



CHAPTER 2
THE BRUALDI-LI MATRIX By

2.1 Two Conjectures

Brualdi and Li conjectured that the matrix that minimizes the Perron value

over the class of irreducible n x n tournament matrices is:

01 0 0 0 0 0
00 1 0 0 0 0
100 1 0 0 -0
110 0 1 0 -0
o . (2.1)
11 1 1 0 o0 1
11 1 1 1 0 0

Notice that the score vector of this matrixis (1,1,2,3,4,...,n—3,n—2,n—2)%,
Let us denote this vector by o,.. If, for a tournament matrix 7', there is a permutation
matrix P such that the score vector of PTPT is o,, then we say that the scores of

T are equivalent to o,.

Steve Kirkland et al. proved, the conjecture in 1996 [17|, establishing two main
results. First, they showed that if T" is a tournament matrix which minimizes the
Perron value over the class of irreducible tournament matrices of order n, then the

score of T is equivalent to o,. Then they showed that among all the tournament

18
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matrices whose scores are equivalent to o,, the matrix given by (2.1) yields the

smallest Perron value.

The second conjecture, made by Brualdi and Li in 1983 in [7], says that the

matrix which maximizes the Perron value can be written as

U, |U

n

B2n: ;
Ut 411U,

where U,, denotes the matrix of order n with ones above the diagonal, and zeros on

and below the diagonal. This type of matrix corresponds to a transitive tournament.

The first three B,, matrices are

= = =IO O O
= = OO0 O
O = =IO o O

O O Ol = O
O O kOO

_— O OO = =

The Brualdi and Li conjecture is still open, nevertheless there has been great
progress made on it. This conjecture has been confirmed for small sizes, and there

is supporting evidence for its validity asymptotically (as the order grows large) [9,

13, 19).
In [9] the authors prove that the Brualdi-Li matrix Bs,, has the largest Perron

value among the matrices in

T T _ '
M, = : T is an n X n tournament matrix p . (2.2)

T +1 T

Note that M,, contains the Brualdi-Li matrix Ba,.
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2.2 Recent Results

The following are some results obtained recently:

The first one is due to Brauner and Gentry [3], it was shown that if 7" is an

n X n tournament matrix then

n—1

pT) < ——,

with equality holding if and only if the tournament is regular.
A result of Kirkland in [19] showed that for a sufficiently large even n, an n xn
tournament matrix which maximizes the Perron value must be almost regular.

Kirkland has also proved in [17] that
(B)_n—l e —1 Lo 1
PR = T T e 1 ) nd )
Friedland obtained in [11] that for any matrix 7" of the almost regular tourna-

n—1 3 1
< — 2 — .
pT) < 2 8n+0(n2)

The new bound obtained by S. Kirkland in [17] put the last two results together.

ment of order n

For all sufficiently large even n, a tournament matrix 7" which maximizes the

Perron value satisfies

2 n n?
where
3 e2—1
0375 = = <, < ——— ~ 0.380797.
8§ =T"=52 1)

He found the best lower bound for ,, that is,

2 (2%/3) — 343 +13

~ 0.377453.
34
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In [15], the authors give two forms of the characteristic polynomial of the
Brualdi-Li tournament matrix. They use the first form to show that the roots of the
characteristic polynomial are simple and that the Brualdi-Li tournament matrix is
diagonalizable, and using the second form an expression is found for the coefficients
of the powers of the variable A\ in the characteristic polynomial. These coefficients
give information about the cycle structure of the directed graph associated with the

Brualdi-Li tournament matrix.

The most recent result about the spectral radius is given in [25], where it is

proved that if 7" is an almost regular tournament matrix of order n = 2m, then
m—1 m? —1
p) 2 —5—+\ = (2.3)

2.3 The Determinant for B,

A beautiful and “simple” result for the Brualdi-Li matrix is the calculation of
its determinant. We calculate this determinant in Chapter 5. If 7" is an n X n
tournament matrix with n > 1, it is shown that for the particular subclass M,, of

almost regular tournament matrices of order 2n, like (2.2), the following is true |9]
det(Mr) = (—=1)(n — 1) det(T + I) + (=1)" 'ndet(T),
when My € M,,. For Brualdi-Li matrix 7" = U we have

det(My) = (=1)(n — 1) det(U + I) + (=1)""'ndet(U) = 1 — n. (2.4)

2.4 The Characteristic Polynomial for B,

For Bs,, you might think that, because of its simple structure, it is easy to find

the characteristic polynomial, but in [15] this problem was solved ten years after the
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conjecture was formulated. In the proof they used the results in |16] and this paper

uses results in [11] and [12].

In the first work they proved that the sequence 2n(n— 1 —p(Ba,)) is convergent
and found the limit. They also showed that asymptotically, the sequence is mono-
tonically decreasing. This problem was established in [12] and was used to find the

next theorem.

Theorem 4. Suppose that n > 2, let By, be the Brualdi-Li matriz of order 2n, and

let p(Bs,) be its Perron value. Then

1
20%(Ban) — 2(n — 1)p(Bay) — (n — 1) = e (2.5)
p(an>+1> 11
< p(B2n)
In [15] it is shown that the equation
(23 =2(n— DA = (n = 1)) ((L 4+ X)*" + X*") = 3" = 0. (2.6)

is satisfied for the value p(Ba,).

It is easy to check that A = —3 is a root of multiplicity 2 in (2.6). Observe that
—% is not in the spectrum of any tournament matrix because it is not an algebraic
integer. This is true because the characteristic polynomial for any (0, 1)-matrix the

main coefficient is 1 and therefore it doesn’t have a rational 1/2 as a root.

Theorem 5. Let n > 2 be an integer and Bs, the Brualdi and Li matriz. Then

(A% —2(n — DA — (n — 1)) ((1 + N2  A2n) — (20

p(A) = (1+2))

, (2.7)
s the characteristic polynomial of Bs,.

They used this polynomial to prove that its roots are simple and B, is diag-

onalizable. They also changed the last expression to find other expression, for the
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characteristic polynomial. This expression gives the information about the cycle

structure of the direct graph associated with the Brualdi-Li tournament matrix.

Theorem 6. The Brualdi and Li matriz B, has its characteristic polynomial c(\)

equal to
n—1

A= (n = 1= 2j)(A+ 1)P 970\ (2.8)

J=0

and for each k, such that 0 < k < 2n — 2, the coefficient of \¥ is

Lk/2] .
~f2n—25 =2
ck:—g (n—1—2j)< k2 )

J=0

More recently, X. Yong has obtained further results about tournament matrices

and the Brualdi-Li matrices [26].



CHAPTER 3
BIPARTITE TOURNAMENT

We should mention that all that will be presented in this chapter is referenced
from [10] and the Richard A. Brualdi talk in the Aveiro Graph Spectra Workshop
2006. We used similar techniques of bipartite tournament matrices to consider the

r-partite tournament matrices, which will be presented in chapter 5.
Example 9. Let A be the matriz of a tournament show below.

e

I
Y =
cor~ oo
cCoo o~
coor o
coor o

Then calculate its spectrum
S(A) = {iv2, —iv2, V2, —v/2,0} ~ {1.18921, —1.189214, 1.18921, —1.18921, 0},
we see that the index of imprimitivity, h(A) = 4.

Example 10. The matriz

_— o Ol OO
SO = OO OO
OO RO OO
S OO = =
S OO O
S OO = O

24
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has spectrum {i, —i,1.4142136, —1.4142136,¢, —i} and therefore has an indez of im-

primitivity equal to 2.

h(A) can be obtained from the associated directed graph D(A) of A by The-
orem 7. The relation between the index of imprimitivity and the associated graph
is using the circuits of the associated graph. The following theorem is a classical

result.

Theorem 7. (See [2]) Let A > 0 be irreducible of order n. Let S; be the set of all of
the lengths m; of circuits in D(A) through the vertices i, and h; = g.c.d,, cg.{;}.

Lemma 1. Let T, ,, be a bipartite tournament matriz. Then h(T,, n,) = 2 or

Ty ny) = 4.
See examples above, and for the proof see [10].

If the matrix T}, ,, 1 = ne = n (that is, the two teams have the same number

of players n), then one can consider the spectral radius of 75, ,,.

Note that the maximum spectral radius of bipartite tournament matrices of
order 2n is less than n, and the minimum over irreducible bipartite tournaments

matrix of order 2n is greater than 1.

Corollary 1. Let T,,, »,. Then the numbers of nonzero eigenvalues and distinct

nonzero eigenvalues are both even.

Theorem 8. Let T, ,, be the corresponding bipartite tournament G. Then the

following are equivalent.

1. h(A) =4.

2. G has the structure of Figure 3-1.
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S
L

Figure 3-1: Structure of bipartite tournament with h = 4.

3. The spectrum is S(A) = {p(A), —p(A),ip(A),ip(A), 1 Tn2=41,

4. The algebraic multiplicity of the eigenvalue 0 of A is nqy + ny — 4.

3.1 The Algebraic Multiplicity of the Eigenvalue 0

Lemma 2. Let T, n, be a bipartite tournament having the form of (3.1), where
L+lo+- -+l =n, mi+me+---+my =ng, 2<k <ng. ThenT,, », has exactly
2k nonzero eigenvalues and ny + ny — 2k zero eigenvalues, and, for each of these

ergenvalues, the algebraic multiplicity is the same as the geometric multiplicity.

Ol1 thml
012 le,mz
Olk Jlmmk
Toyny = (3.1)
Oml,h Jmhlz T Jml,lk Oml
OmQ,ll Jm2712 e Omz
Jmkflvlk
Omk,ll T Jmk,lkq Jmkylk Omk
Theorem 9. Lett =ni;+no—2k, k=2,3,...,n. For any ny,ny there exists some

matriz T, n, whose eigenvalue 0 has the same algebraic and geometric multiplicity

equal to t.
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More recently, we have obtained further results about r-partite tournament

matrices in [27].



CHAPTER 4
SINGULAR VALUES OF TOURNAMENT
MATRICES

In this chapter we survey some results about singular values of tournament ma-
trices, including the the most recent results obtained by D. Gregory and S. Kirkland
in [13].

The method for determining how close any matrix A,, is to a matrix of smaller
rank involves factoring A into a product UXV*, where U and V are orthogonal
matrices of order n, and X is n X n matrix whose off-diagonal entries are all 0’s and
whose diagonal elements are oy, 09,...,0, and satisty oy > 05 > --- > 0, > 0. The
0;’s determined by this factorization are unique and are called singular values of A,

and the factorization UX V™ is called the singular value decomposition of A.

We see that since V' diagonalize A*A, it follows that the v;’s are eigenvectors
of A*A, and similarly way for AA*. Another way of calculating the singular values
of A is to calculate the nonnegative square roots of the eigenvalues of A*A or,
equivalently, of AA*. If the eigenvalues are also taken in nondecreasing order then
02(A) = N(A*A) = N(AA*), i = 1,...,n. In particular, 03(A) = p(A*A). The

largest singular value, o1 (A), is also called spectral norm of A because o1(A) = || A||2,

the operator norm induced by the usual Euclidean norm || - ||o.

Definition 13. Let T be a tournament matrix of order n and s = T'1 its score

vector. We will call o(T) = £ 37 (s; — %51)? = % — (251)? the score variance.
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For example for a regular tournament matrix 7', o(T) = 0, and for an almost

n

regular tournament matrix 7', o*(T) = %.

It is easily seen that if 7" is normal then the singular values of 7" are the module
of its eigenvalues. A tournament matrix 7' is nearly normal in the sense that the

rank one perturbation, i.e., T' — %J is a normal matrix. To see this, note that

11 1, ifty =1
T- 57 =D, when d;; = | ’
—1, if tij = 0,
\
(
1 \* 1 1 -1, ift; =1
(T - §J) - (T* - §J) = SE, when e;; = | !
1, if tij = 0,
\
and
I \" 1 1
T— 5 T — §J = ZED = ZA where a;; = Zeijdij
J
1 L\ 1 1
(T -5 ) (T - §J) = DE=1B  where b = > dijeys
J
we see that a;; = b;;, this is because e;; = —ej; and d;; = —d;; for ¢ # j, then
CLZ'j = bzy

4.1 Majorization

Definition 14. Let x,y € R™. We say that x is weakly majorized by y and write
x < y if for each kK = 1,...,n, the sum of the k largest entries of x is less than or
equal to the sum of the k largest entries of y. We say that x is majorized by y and

write x <y if <, y and >z, = > v

Example 11. Let x = (0,2,3,4,5,6)7 and y = (0,2,4,4,4,7)T. Then x <, y and

x Ay because
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k Zf:l Z; 2521 Yi
1 0 0
2 2 2
3 5) 6
4 9 10
) 14 14
6 20 21

Table 4-1: x weakly majorized by y.

From the necessary condition in Landau’s theorem and the properties of ma-
jorization we have that ||T'1||s < ||[U1]]s, then U is a transitive tournament matrix.

This is equivalent to o*(T) < o*(U) = ”2151, for all tournament matrices 7" of order

n.

A similar and important result is shown below.

Theorem 10. If U is the upper triangular tournament matriz of order n > 2, then,

for all tournament matrices T of order n

(4.1)

Equality holds if and only if M s the matriz of a transitive tournament.

Below we describe bounds on the minimum value of ¢;(7") and the maximum

value of 0,,(T). These are easily verified.

Definition 15. A tournament matrix 7" of order n > 2 is called doubly reqular
if every pair of vertices in the associated tournament jointly dominates the same

number of vertices (necessarily, “22).

We see that T is doubly regular if and only if 77T = "T“I + "T_?’J. Such
matrices are also called Hadamard tournament matrices since they are coexistent

with skew Hadamard matrices of order n + 1.
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Proposition 9. Let T be a tournament matriz of order n and let o;(T') be its singular

values in nonincreasing order . Then

1. oo(T) > "T_l with equality holding if and only if M is regqular.

2. o,(T) < V";l with equality holding if and only if M is doubly regular.

Definition 16. Let 7" be a tournament matrix of order n. The spread of T', noted

by sp(7), is max |\ — |, where the maximum is taken over all eigenvalue A, p of T'.

Proposition 10. Let T be a tournament matriz of order n. Then

1. sp(TTT) > @ with equality holding if and only if T is doubly reqular.

2. sp(T'T) < 1 csc? 77 with equality holding if and only if T is transitive tour-

nament matriz.

Theorem 11. Let T' be a tournament matriz of order n > 4. Then T has precisely

two distinct singular value if and only if T is doubly reqular.

The next proposition provides a lower bound on the spectral norm, o (M), of
a tournament matrix of order n. When n is odd, it agrees with Proposition 9 and
the regular tournament matrices are those that give equality. When n is even, it
will yield the lower bound in Corollary 2 below. In that lower bound, equality holds

only in the special case that n = 2m where m is odd.

Proposition 11. Let T be a tournament matriz of order n > 2 and let

RO

2

where o? is the score variance of T. Then

1
o1 (T) > p(B) :az+§ <n2 —2n+2+n\/(n—2)2+16a2> :
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Equality holds if and only if T has at least n — 2 eigenvalues with real part —%.
Corollary 2. If T is a tournament matriz of even order n = 2m, then
2 1 2
oUT) = 5 <(n—2) +n (n—2)2+4> .

Equality is attained if and only if m s odd, and T is permutation similar to a matrix

of the form
R X

J—-XT S
where R and S are regqular tournament matrices of order m and X is an m x m

{0, 1}-matriz with constant row and columns sums (m — 1)/2.

If n = 2m where m is odd, then the minimum spectral norm for tournament
matrices of order n is given the lower bound in Corollary 2. Although we do not
know minimum spectral norm for all cases where n = 2m, it is proven in Theorem 12
that any tournament matrix of even order that attains the minimum spectral norm
must be almost regular. The following corollary to Proposition 9 will be needed in

the proof.

Corollary 3. If T is a tournament matriz of even order n and T is not almost

reqular, then

1
oi(T) > p(B) = - <n3 —4n® +4n 4+ 16 + nvnt — 4n3 + 8n2 + 32n> :
n

where B is defined above with o = i +

3o
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Lemma 3. Let R be a regular tournament matriz of odd order m and let

R 0 RT 1
1T 0 o7 o
M =
RfT+I 1 R 0
oT 1 17 0

where 1 and 0 are column m-vector. Then M is an almost reqular tournament matriz

of order n=2(m+ 1), dim Wy =4, and 01 = 3, 02 = \/m, 03 = 1.

Theorem 12. If T is a tournament matriz of even order n with minimum spectral

norm, then T is almost reqular.

The last result is same as the one given by Kirkland in [19].



CHAPTER 5
THE NEW PROPERTIES

In this chapter we give our results about the Brualdi-Li tournament matrix and

r-partite tournament matrices.
5.1 A Simple Calculation of the Determinant for B,

Previously we proved that B, — %J is normal, now we calculate its determinant

and next the determinant for By,. To get this result we use the next theorem.

Theorem 13. If A, B,C, D are square matrices of order n and AC' = C'A the

'é g‘:pu)—oBy
Proof. This result is a direct application of Schur’s complement. O

Let By, be the Brualdi-Li matrix, and

1
Bgn—§<]:

U —

v-ts |uT—1
U1

UT+1—1J 1

34
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using that U + U’ + [ = J then

o (= 1) e (= 3a) = (w70 30) (07 )

:mm@ﬂ+J—%J):da(;UT—U+IO
1

Y

since the calculation of det(U” — U + I) is easy: note that it is equal to 2"

For the calculation of the determinant of the Brualdi-Li matrix we use again
Schur’s complement with respect to (UT + I) in the exchange matrix from Bs,, i.e.,

det(PBy,), so

Ur+1 U

I ‘0 UT+I‘U

T+ |1 v

0 |UT-UWUT+D)'U
=det (U + 1) det (U" —UU" +1)"'U)
=1-(-1)"(n-1)

= ()" (n—1).

To see this, observe that U(U? + I)7'U = —U and det(U? + U) = det(J — I) =
(—=1)""Y(n — 1), when so exchange the block rows. The determinant for this matrix

permutation

P =
110

is (—1)" and therefore finally det(By,) =1 — n.

The above calculation is actually similar to the one presented in [9], this cal-
culations is only for By, while the other calculation is for any tournament, when

U=T.



36

5.2 The Perron Value of B,,

Now we consider the Perron value of the Brualdi-Li matrix, we first present a
proposition and next a theorem from Berman’s book |2]. Next we give a proof for

proposition 12.
Proposition 12. Let B be the Brualdi-Li matriz. Let k > 0 and
Béi—i—l) _ (D(k)>_1 Bé’;)D(k)’

where D) = diag <B§?1>. Then

B¥1 = p(Boy)1, when k — .

To prove the proposition, we use the following 2 facts:
1. The first one is to calculate Bgffl) = (D("C))_1 Béi)D(k).
D® — diag (dg‘”, a® . dﬁf’) ,

then
BE = (D)™ B p® = (b(’?“)) , (5.2)

2n iJ

-1
where, b (k1) b <dz(~k)) dg-k) fore,7=1,....,n

2. The second one is to calculate B(]‘CJr1

s o - ($5 60

fori=1,...,n.
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Now, because

U, \ Uy
B2n = s
I+Ur| U,
n=21
where U, is a transitive tournament matrix of order n and therefore By, 1 = 2
n
21
2

by definition, then

iJ i

_ —1
B — (D)™ 5O po _ (b@ (d) dg@) _

122 =1, fori=1,....% j=i+1,. ..,

|3

2 n s n L ) n .
1m§—n_2, fOI"L—l,...,g,j—§+1,...,§—|—l—1,

=QI2B2 o2 for =] =1,
1%g:17 forizg—i—l,...,n,j:z’—i—l,...,n,
0, otherwise,
\
and
1"
Byl = (a”) > ud? -
j=1
( 5 n 9 n/2 n/2+i—1
(0) 5(0) (0) 5(0) (0) 5(0)
o2 b = DoAY+ Y vy
_ J=1 J=itl j=g5+1
= ) N 5 i—1 n/2+i—1
D budy == D bydi+ D byd; |
[ J=l i=5 j=itd
(
-2 =i -2y
S LE=3) 12+ (= 01g] = (i=3) +n -4,
(
n2—4n+4i fOI‘ 7 = ...n
BV1={ 7 i
"2+22:L‘_4Z, fori=35+1,...,n
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B — (D)™ B p) _ (bw () d;l)) _

(
2(n—2) n?2—4ntdi _ . noo.__ - n
| S WY o= 1, fori=1,...,5, 7=i+1,...,3,
n__2(n—2) n242n—4i _ n?42n—4i . n s _n n .
At o = g Ori=1.. 5 d=5+ L. 5 +i—1,
= n—2 2n n?—dn+4i _ n?—4n+4i s _n s coon
n n2t2n—4i 2(n—2)  nPien—4i’ fori=%+1,....n, j=1,...,1-3,

2 A
1 2n n“+2n 4@21’

. .
e A fori=3+1,...,n, j=1i+1,...,n,

0, otherwise,
\

1 = (a) Ty
n 1 /)
j=1

(

2(n—2) n ;)\ 1n2—4n+4i - n_ n?+2n—4i P n
nZ—An+4i [(2 i)1 -2 T ) e fori=1,...,3,
2n . n\ n=2n’—4n+4i 1 n?+2n—4i )
G [(z 1) n=2 S+ (n—lE=E | fori=3+ 1.0,
p
n3—6n2+16ni—16i2+8i—4n s n
2(n2—4n+4i) , fori=1,....3,
n3+8n?—24ni+16:2 S _n
ST Tan—dd) fori=3+1,...,n
Finally,
-1
®) — (DY ' p@p@ _ (@ (4@ @) _
B, —(D ) B, DY = (b5 |d; d; =
(
. noo- n
1, fori=1,...,5, 7=14,...,3,
n3+8n2—24ni+1652 fOI" Z =1 n _n ‘l"l n
n3—6n2+16ni—16i2+8i—4n’ g J T 1o 1
= { n3-6n24+16ni—16i>4+8i—4n ) o T
et onerier 5 fori=g5+1,...n, g=1...1—3,
1, fori=35+1,....n, y=14,...,n,
0, otherwise,
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and
B®1 = (d(-2))_1 B2 d? =

n__ - . n34+8n2—24ni—16i?
(2 Z) +(u 1)n3—6n2+16m'—16i2+8i—4n’

. n\ n®—6n2+16ni—16i2+8i—4n .
\ (Z 2) s —odni—162 (n — 1),
(

n?—8n34+44in?—96ni2+64in—20n2 46443 —48i2 fori=1 n
2(n3—6n2+16in—16:2+8i—4n) ) o

nt422n34+4n2—64i% —92in2+128ni2+16i>—16in . n
\ 2(n3+8n2+16i2 —24in) , fori=3+1,....n,

Theorem 14. Let By, be the Brualdi-Li matriz, and

Bg;)l: (T17T27”’7rn)T7 1:(1,,1)T

Then
Iin r; < p(Ban) < max ri.
Proof. This result is from a theorem in Berman’s book (page 37. [2]) O

Here we presente a better result below.

Theorem 15. Let A = (a;;) > 0 of order n and p; = >, @i, fori=1,...,n.
Then

min {aii +aj; + \/(az‘z‘ —aj;)? + 41%'191} < p(4)
(Za¥
m

Proof. If Az = p(A)z then
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Let x, = maxi<j<p Tj, Tq = Max ,», ;. Then
1<j<n

(app — p(A))zp < Py (5.4)

(agg — p(A))zq < Pz (5.5)
multiplication of (5.4) and (5.5) yields
(app — p(A))(agq — p(A)) < P1y,
solving for p(A) we obtain the bounds. O
If A= (ay), a; >0, A1 = (s1,89,...,8,) we have

min s;5; < p(A) < maxs;s,
i#j i#]

5.3 The Inverse of Brualdi-Li Matrix

In this section we calculate the inverse of the Brualdi-Li matrix. For this we

design a little script function in Scilab by which we can obtain B, for any n.

function [B, U] = matrixBL(n)

S = ones(n/2,n/2);

U=S - +tril(S);
B=1[UU; (U +eye()) Ul;
endfunction

Through calculations, we see that if By, is the Brualdi and Li matrix, then its

inverse has the following form:

-1 _
B2n -
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,0,—1)T of order 2n — 1,

.,0,0), v = (0,0,...

= (-1,0,..

where u

‘707

., 1,0,..

N——
n—1

cire(1,. .

CZn—l -

is a circulant matrix of order 2n — 1 and

(5.7)

For example for n = 4 we have

01110000
0/01 11000

0j0 01 1100

0j0 001 110
110 00 01 11

1j1. 0 0 0 011
1110 0 0 01
111110 0 00

By =

and

—
o O o o o O |
[a\][ap} [a\N[an)
e~ _ —len M _ —™
aen N
1 _ —len —lm _ —ln ™
e [a\{p)
_ —lm e _ | e —HlMm
[0 e
il —len _ o~ —HlMm _
aen e
e _ ™ —Hln —HlMm _ —lo
(el an} [\l [an)
_ e~ M _ o~
[a\lla]
o~ —|m _ ™M~ =M
—
| o0



The general case is

1-n 0 0 0 0 0 0 0 |n-1
1 2-n 1 1 2-n 1 1 1 0

1 1 2-n 1 1 2-n 1 1 0

Bl = 1 1 1 2-n 1 1 2-n| o0

n

-1l 9 5 1 1 1 2-n 1 1 0
1 2-n 1 1 2-n 1 1 0
1 1 2-n 1 1 1 2-n| o0

1 1 1 2-n 1 1 |1-n

42

where the block has three diagonals, the first one start in entry (1,2), second one

start in entry (1,n), and last in entry (n + 1,1).

Theorem 16. The Brualdi-Li matriz is ill-conditioned.

Proof. We need to show that ||Ba,|||| By, || is very large, for any norm. Note that

| Banlloo = || Banlli = n. On the other hand, direct calculations shows that || B3, ||oe =

B3, 1l = "= Then,

(4n —5)

condog(Bap) = condy(Ban) = || Baall1 || B, |h = n —

for any n. Therefore the matrix is ill-conditioned for large n.

For the Euclidean, we know that
| Baallz = A ((B2n)" Ba)

and

At ((B2n)" Ban) > max ¢y

1<i<n

where ¢; = 32" b2 = 2321 bij. Therefore,

=1 Y%

conds(Bay) = || Banll2l| Ba |2 = v - 1= /n.

> 4n — 5,

(5.9)
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For example if n = 100, then cond.,(Bs,) > 4n — 5 = 395, and condy(By,) >
/1 = 10.

5.4 r-partite Tournament

The results shown here are similar to the presentation [10]. We first make an

extension of bipartite tournaments to 3-partite tournaments. We consider if r > 3.

One of the questions to prove a result that we will present later is: in all
reducible matrices, can we find a vertex with off-degree or in-degree equal to zero?

The answer is negative. Observe the following example.

Example 12. We see that

010111
000100
110101
I'= 000O0O0T1]”
011101
010000
s a reducible matriz. This is true because if
100 00O
001000
000010
P= 000100
010000
00 0O0O0T1
1 a permutation matriz, then we have
[0 0 1|1 1 1]
10011 11
01011 11
T _
PP = 00 010 01
00 0|1 0O
| 00 0|0 1 0 |

s a triangular matriz by blocks and T does not have any row or column of zeros.
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Another question is, does any irreducible matrix have at least one nonzero ele-
ment in each column and each row? In this case the answer is positive. Let us see

the following examples:

Example 13. Tyes represents the matriz of a 3-partite tournament (left). This
matriz is irreducible because is easy to check the graph is strongly connected. On the
other hand it is clear that the 3-partite tournament matriz Teyy (right) is reducible
because the graph is not strongly connected, you can see this in vertex number 5,

which does not connect with any vertices

0 01 1{0 0 O

0 0{1 1{0 0 O 0 0]0 1|1

0 0j]0 O0]1 1 1 0 0]0 1|1
Ts=1 0 0]0 0|1 0 O Toor =11 1]0 0]1

1 10 0j0 0 O 0 0]0 O]1

1 10 1(0 0 O 0 00 0]0

1 170 1(0 0 O

J=10 0 Jn|, (5.10)
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where J,,, for i = 1,2, 3 is a square matrix of order n;. It’s easy to check that, this

type of matrix is irreducible.

The next example is for an irreducible matrix, i.e when the graph is strongly

connected.

Example 14. Let A be a tournament of order 4,

o O = O
o = O O
_ o O =
S O = =

Note that the matriz has, in all rows and all columns, at least one nonzero element

and note that its graph s strongly connected.

For any n ,we thought that if 7},, tournament matrix, has in-degree and out-
degree in all its vertices the T,Ei_)l, the tournament obtained to remove the vertex 7,
has same property. We try to use this approach, but that is not true, let us observe

the following example:

Example 15. In this ezample we see that if we remove any vertex, then the resulting

graph will not have the previous property.

@
o0
@ B

Definition 17. A circuit of length m in a graph G(V,FE) is a sequence of arcs

(il, 'ég), (’ég, 'ég), ey (im_l, im), (im, 21) Of V.
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A circuit of length n, will be called an n-cycle.

Lemma 4. Let T),,,, be a bipartite tournament whose vertices have in-degree and

out-degree. Then T, ., has a 4-cycle.

Proof. Let T be a bipartite tournament matrix. By Proposition 4 each element in the
main diagonal of T is a number a 4-cycle, we suppose that n, = ny and let A, be of
the form A, = [% ¢ ], and A* = [BGBC 9.1, note that BCBC = (BJ — BBT)?,
and CBCB = (BBT — JB)?, therefore we need to prove that any element in the
same position of BCBC' in the row a column is different from zero (similarly for
BCBC). First we use BJ — BB', it has of form (BJ — BB');; = r;; such that
Tij = ony bi(1 — b)) > 0, if @ = j it is clearly, that b (1 — bj) = 0. Now if
i # j there exist ko, jo such that by, = 1 and bj,, = 0. Existence of ko, jo is
ascertained by the hypothesis and for 7;,; there exists &' such that b; , = 1. The
proof is finished if we can prove that b;k’ = 0. We will continue by contradiction.
We suppose that k" exists for b;;» = 1 and not for b;r = 0, so we need to change for
other 7o, but if we continue this way, the ith row has all entries equal to one, this is

not possible because this contradicts the hypothesis that all vertices have in-degree

and out-degree, therefore by = 0 and all vertices have 4-cycle. U

Example 16. Consider

10000 01000 10101
01000 10101 36221
10010 12011 6 6 6 1 3],
11100 2 220 1 6 9 4 3 4
10101 23210 78526
B BJ— BB  BCBC = (BJ— BB')?

Note that the element 6 of the diagonal of (BJ — BB')? in position 2 comes from the

inner product of row 2, (1,0,1,0,1) with column (1,0,2,2,3)T, which has at least
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one nonzero element in the same position because for row 2 of B, we can find other

different row itself such that by, (1 — bji) there exist jo, ko.

In [10] the authors prove that if A is an irreducible bipartite tournament matrix
then h(A) = 2 or h(A) = 4. For r-partite tournament matrices with r» = 3, if A is

irreducible we have the only cases h = 1 or h = r = 3. For example:

0[1]0 1
0/0|1 0
0/1]0 0
is irreducible and h = 1, but
01|10 O 0 Ju 0
0j0]1 1
Thip = =10 0 Jiaf,
11010 0 J 0 0
1(0]0 0 21

—

has a property like equation (5.10) and h = 3. For r > 3 we have the next theorem.

Theorem 17. Let r > 3. If A is a r-partite tournament matriz then A is primitive,

i.e, h=1.

Proof. Without loss of generality we only have to consider the case r = 4. Let A
be a 4-partite tournament matrix. Labeling the vertices of the associated graph we

have
On, A1z Az Ay

Ay 0, Agy A
A: 21 23 24 ’ (511)

As; Asy 0, Ay

Ay A Agg Oy,
when all 0,, are square zero matrices an A;; + A;i = Jpn;- Suppose that A is

irreducible, and we will proceed by contradiction. Suppose that A = 4, then by



48

Theorem 3 part 4 there exists a permutation P such that

0 A 0 0

0 0 Ay 0
PAPT = “ , (5.12)

0 0 0 A

Ay 0 0 0

where the zero blocks along the main diagonal are square. Clearly this matrix does

not satisfy the definition of 4-partite tournament. If h = 3, then the new matrix has

the form
0 A 0
PAP" = 0 0 Ayl (5.13)
As; 0 0

this matrix can be only a 3-partite tournament matrix. Similar case for h = 2.

We consider other values h > 4 and complete the proof for r = 4, we consider

one more case, for example A = 5. In this case the matrix has the form

0 Ao O 0 0
0 0 Az O 0
PAP"=1 10 0 0 Ay 0 |, (5.14)
0 0 0 0 Ay
Ay 0O 0 0 0

We divide its vertices into subsets Vi, V5, V3, V), V5 such that each arc is from V;
to Viyq1 for some 1 < i <4, or V5 to V3. We use this partition to obtain the 4-partite
tournament matrix again. We can join Vj and V3, since there exist no arcs between,

them so we obtain the matrix below
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Llololo o
olo|lw|lo o
olo|lo|lo «
olo|lolw o
olu|olo o

and clearly it is not the 4-partite tournament matrix.

The same argument can be applied to consider for h > 4. So we can claim that

h=1. O

In the next section we state the conclusion and possible future work in this

area.

5.5 Conclusion and Future Work

We observed that the tournament matrices are special (0, 1)-matrices.

Since Perron-Frobenius theory about nonnegative matrices, many people have
paid much attention to the topics because of their many applications in the real
world. We can use their eigenvalue properties to attack the problems. However, it is
not easy to obtain the spectrum of graphs, and there are still many open problems.
For example, which graphs have distinct eigenvalues? This is important in graph
spectra because the spectrum characterizes the topological structure of a graph.
According to our understanding, the combination of graph theory, matrix analysis

and combinatorics makes this topic really interesting.

In all the considerations above, finding a better bound for Perron value of
Brualdi-Li matrix is not easy and it seems that we need different techniques. We
hope that the similarity techniques in the paper of Savchenko in 25| can help attack

the problem. The maximization problem for spectral radius seems hard and ....



50

Anyway, in this attempt we learned other techniques or properties of Brualdi-Li

matrix.

The study of r-partite tournament matrix is currently in infancy, but very
active, we continue our research on the topic and we hope that we can publish our

papers soon.

We are working on the following problems:

1. Calculate the algebraic multiplicity of eigenvalue 0 and calculate the number of

distinct eigenvalues in the r-partite tournament matrices.

2. Explore the spectrum of bipartite tournaments: Let 7 (R,S) denote the set
of all bipartite tournaments with score vectors R and S, for given R and S,
determine max p(7T") and min p(7") over all matrix in 7 (R, S). Currently there

are many people working on the nearly regular bipartite tournaments.
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