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Abstra
t of Thesis Presented to the Graduate S
hoolof the University of Puerto Ri
o in Partial Ful�llment of theRequirements for the Degree of Master of S
ien
eTOURNAMENT MATRICES: SURVEY AND NEW RESULTSByEdwin Flórez Gómez2007Advisor: Dr. Xuerong YongMajor Department: Mathemati
al S
ien
es DepartmentTournaments are simple and 
omplete dire
t graphs. In this thesis we surveyand study parti
ular 
ases of tournaments. Sin
e the famous Seven Bridges Problem,whi
h was analyzed by Leonard Euler in 1736 and stimulated the development ofgraph theory, graphs have been 
onsidered an important subje
t in mathemati
sand other applied s
ien
es, su
h as physi
s, biology, 
hemistry, et
.Over the last de
ades the study of graph spe
tra has been very interesting, be-
ause it 
hara
terizes the topologi
al stru
ture of a graph. But it turns out that thisis not easy to atta
k. In this thesis we obtain new results about tournament matri-
es, in parti
ular, about Brualdi-Li matrix and r-partite tournament matri
es. Theoriginal inspiration of the thesis was to improve and extend the ideas introdu
ed inAlgebrai
 Multipli
ity of the eigenvalue of a bipartite tournament matrix,by Yi-Zheng Fan and Jiong-Sheng Li published in SIAM Journal on Matrix Analysisand Appli
ations (SIMAX, 2002), and in An upper bound on the Perron valueof an almost regular tournament matrix, by S. Kirkland, in Linear Algebraand its Appli
ations (2003). ii



Resumen de Tesis Presentado a Es
uela Graduadade la Universidad de Puerto Ri
o 
omo requisito par
ial de losRequerimientos para el grado de Maestría en Cien
iasMATRICES DE TORNEOS: ANÁLISIS Y NUEVOS RESULTADOSPorEdwin Flórez Gómez2007Consejero: Dr. Xuerong YongDepartamento: Departamento de Cien
ias Matemáti
asLos torneos son grafos dirigidos simples y 
ompletos, pueden ser vistos 
omouna 
ombina
ión de teoría de grafos, análisis matri
ial y 
ombinatoria. En estatesis analizaremos 
asos parti
ulares de torneos. Desde el famoso problema de lossiete puentes, que fue analizado y solu
ionado por Leonard Euler en 1736 y queestimuló al desarrollo de su teoría, los grafos son tomados un tópi
o importante enmatemáti
as y en otras 
ien
ias apli
adas tales 
omo, físi
a, biología, quími
a, et
.En las últimas dé
adas el estudio del espe
tro de un grafo es una apli
a
ióninteresante, porque 
ara
teriza la estru
tura topológi
a de un grafo. En general, noes fá
il ata
ar este tipo de problemas. En la tesis mostraremos nuevos resultadosen matri
es de torneos, parti
ularmente en la matrix de Brualdi-Li y en matri
esde torneos r-partitos. La inspira
ión original de la tesis fué mejorar y extender lasideas que apare
en en Algebrai
 Multipli
ity of the eigenvalue of a bipartitetournament matrix, por Yi-Zheng Fan y Jiong-Sheng Li publi
ado en SIAM J. onMatrix Analysis and Appl (SIMAX, 2002) y en An upper bound on the Perronvalue of an almost regular tournament matrix, es
rito por S. Kirkland enLinear Algebra and its Appl. (2003). iii
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CHAPTER 1INTRODUCTION
The thesis is organized as follows: In this 
hapter we des
ribe the basi
 notionsof graphs and tournaments. Chapter 2 overviews relevant details about two 
on-je
tures of Brualdi-Li matrix. Chapter 3 introdu
es the bipartite tournaments andsome re
ent results. Chapter 4 provides a list of singular value properties for tour-nament matri
es; Chapter 5 presents our results, 
on
luding remarks, and futurework in tournaments.The tournaments are a 
lass of dire
ted graphs and are inspired from the roundrobin 
ompetitions. This topi
 has been of growing interest in the last de
ades.We will mainly fo
us on spe
tral properties and some related properties that werepublished re
ently in peer-reviewed journals. The original problem appears in the
lassi
al round robin tournament in reviewed building player ranking s
hemes. Theresear
h has motivated an extensive study of the 
ombinatorial and spe
tral proper-ties of tournament matri
es, and therefore has motivated to write some good books(see [1, 5, 6, 11, 24℄).In [1℄ the authors state that: �the theory of graph spe
tra, is like an attempt toutilize linear algebra in
luding, in parti
ular, the well-developed theory of matri
esfor purposes of graph theory and its appli
ations. However, that does not meanthat the theory of graph spe
tra 
an be redu
ed to the theory of matri
es; on the

1



2
ontrary, it has its own 
hara
teristi
 features and spe
i�
 ways of reasoning fullyjustifying it to be treated as a theory in its own right.�1.1 Tournaments, Matri
es and GraphsGraph theory originated with the paper written by Leonhard Euler on the SevenBridges of Königsberg and published in 1736. This is the �rst paper in the historyof graph theory. The study of tournaments started around the �rst half of the last
entury, resulting in the publishing of Topi
s on Tournaments by John Moon,in whi
h the author 
olle
ted the most useful results. Tournaments have manyappli
ations in statisti
s, game theory and other related areas. For example in [18℄it was proven that in round robin 
ompetition 
orresponding to T , a tournamentmatrix, the Kendall, Wei and Kamanuja
haryula's ranking s
hemes agree with theranking generated by the row sums of T .If i, j are two verti
es of a graph, we will use the notation i → j to representthe ar
 from i to j.De�nition 1. A Tournament of n verti
es is a loop-free dire
ted graph −→
G withthe property that for ea
h pair of distin
t verti
es i and j, −→G 
ontains exa
tly oneof the ar
s i → j or j → i.A Tournament Matrix is the (0, 1) adja
en
y matrix of a tournament, orequivalently, a (0, 1) matrix T su
h that T + T T = J − I where J denotes the allones matrix.Proposition 1. The number of ar
s in a tournament with n verti
es is

1

2
n(n − 1) =

(
n

2

)

.



3For the proof note that ea
h vertex has relations with the n−1 verti
es, we 
ansay that there are n(n − 1) ar
s, but this 
ount is double be
ause we 
ounted ea
har
 two times, therefore the number of ar
s for ea
h tournament is 1
2
n(n− 1) =

(
n
2

).Example 1. Figure 1�1 is an example of a tournament and its matrix.
q4 q3

q5 q2

q1

T =









0 1 0 1 0
0 0 1 1 1
1 0 0 1 1
0 0 0 0 1
1 0 0 0 0







Figure 1�1: Tournament and its matrix.Clearly,

T + T T =









0 1 0 1 0
0 0 1 1 1
1 0 0 1 1
0 0 0 0 1
1 0 0 0 0









+









0 0 1 0 1
1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
0 1 1 1 0









=









0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0









= J − I.

1.1.1 The S
ore Ve
torDe�nition 2. If A is a tournament matrix, its s
ore ve
tor is de�ned as:
s = (s1, s2, . . . , sn)T = A1.Note that if (s1, s2, . . . sn)

T is a s
ore ve
tor of a tournament A, then
n∑

i=1

si =

(
n

2

)

.



4For n = 2 there are 2 = 2(2

2) tournaments, for n = 3 we have 8 = 2(3

2), in generalwe have:Proposition 2. Let V be a set of n verti
es, then there exist 2(n

2
) di�erent tourna-ments.There are n verti
es, and (n

2

) ar
s, and ea
h ar
 has 2 possible dire
tions, so wehave 2 di�erent tournaments, therefore the proposition is true.The 
lassi
al result about s
ore ve
tors is the Landau's Theorem, see [21℄. Wegive this result below.Theorem 1. A set of integers S = (s1, s2, . . . , sn), where s1 ≤ s2 ≤ · · · ≤ sn is as
ore ve
tor of some tournament if and only if
n∑

i=1

si ≥
(

k

2

)

,for k = 1, . . . , n, with equality holding when k = n.Proof. The proof is due to Ryser [24℄ in 1964.Re
ently Ri
hard A. Brualdi and Jian Shen published a result about s
oreve
tor, see [8℄.1.1.2 Isomorphi
 TournamentsLet T1 and T2 be two tournaments with verti
es {1, 2, . . . , n}. We say that T1and T2 are isomorphi
 if there exists a bije
tive fun
tion φ : {1, . . . , n} → {1, . . . , n}su
h that
s

T1→ t =⇒ φ(s)
T2→ φ(t) or φ(s) = φ(t).



5In [24℄ there is a 
lassi�
ation for the number of non-isomorphi
 tournaments.Clearly, if two tournaments are isomorphi
, then they have the same s
ore ve
tor,but the re
ipro
al proposition is not true. See for examples [24℄.1.1.3 Permutation MatrixAnother equivalent way of 
hara
terizing isomorphi
 tournaments is using per-mutation matri
es.De�nition 3. P is a permutation matrix if and only if P 
an be formed dire
tlyfrom I by reordering its rows or its 
olumns.Let T be a matrix and let P be a permutation matrix, then PT is the matrixformed by reordering the rows of T in same way that P reorders them. TP is samebut the reordering is applied in its 
olumns.Proposition 3. Let T1 and T2 be two tournaments with verti
es {1, 2, . . . , n}, wesay that T1 and T2 are isomorphi
 if there exists a permutation matrix P su
h that
T2 = P TT1P .Example 2. Let G1 and G2 be tournaments and T1 and T2 their tournament ma-tri
es respe
tively,

G1:
q4 q3

q1 q2

T1 =







0 1 0 1
0 0 1 0
1 0 0 0
0 1 1 1







G2:
q4 q3

q1 q2

T2 =







0 1 0 0
0 0 1 1
1 0 0 0
1 0 1 0









6Then G1 and G2 are isomorphi
. The permutation matrix is
P =







0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1







,note that isomorphs means relabeling the verti
es of graph G1 to obtain G2.Clearly, two isomorphi
 tournaments have same spe
trum.1.1.4 Paths and Cy
lesDe�nition 4. A path on a graph (also 
alled a 
hain) is a sequen
e {x1, x2, . . . , xn}su
h that (x1, x2), (x2, x3), . . . , (xn−1, xn) are graph edges and the xi are distin
t.A 
losed path {x1, x2, . . . , xn, x1} on a graph is 
alled a 
y
le or 
ir
uit.Let Ap =
(

a
(p)
ij

). The number a
(p)
ij is the (i, j) element of Ap. The next propo-sition is a 
lassi
al result.Proposition 4. The a

(p)
ij , the element of Ap, is the number of paths of length p fromvertex i to vertex j.Example 3. The graph below has a path from q1 to q3 through q4, this is a path oflength 2,

q3 q4

q1 q2

A =







0 0 0 1
1 0 1 0
1 0 0 0
0 1 1 0








learly,



7
A2 =







0 1 1 0
1 0 0 1
0 0 0 1
2 0 1 0







, A3 =







2 0 1 0
0 1 1 1
0 1 1 1
1 0 0 2







.

Note that the element a
(2)
13 = 1 means that there is one path of length 2 from q1to q3, and a

(2)
41 = 2 means that there exist two paths of length 2 from q4 to q1. Andsimilarly, a
(3)
44 = 2 means that there exist two paths of length 3 from q4 to q4, i.e.,two 
y
les of length 3.1.1.5 Transitive TournamentDe�nition 5. Let T be a tournament. T is transitive if for ea
h verti
es p, q and

r, we have that if p → q and q → r then p → r.By reordering the verti
es, the matrix for transitive tournament is upper trian-gular:
U =










0 1 1 · · · 1
0 0 1 · · · 1... ... . . . . . . ...
0 0 · · · 0 1
0 0 · · · 0 0










.

One 
hara
terization theorem is given in [24℄ for transitive tournament.Theorem 2 ([24℄). The following statements are equivalent:1. Tn is transitive.2. Vertex pj dominates node pi if an only if j > i.3. Tn has s
ore ve
tor (n − 1, n − 2, . . . , 2, 1, 0)T .



84. The s
ore ve
tor of Tn satis�es the equation
n∑

i=1

s2
i =

n(n − 1)(2n − 1)

6
.5. Tn 
ontains no 
y
les.6. Tn 
ontains exa
tly ( n

k+1

) paths of length k, if 1 ≤ k ≤ n − 1.7. Tn 
ontains exa
tly (n
k

) transitive subtournament Tk, if 1 ≤ k ≤ n.8. Ea
h prin
ipal submatrix of Tn 
ontains a row and 
olumn of zeros.1.1.6 Strongly Conne
ted TournamentDe�nition 6. A graph G is strongly 
onne
ted, if there exists a path for ea
h vertex
i to ea
h vertex j, i 6= j.Example 4. The tournament in �gure 1�2 is strongly 
onne
ted, it is easy to 
he
kthe path from any vertex to any other vertex.

q3 q4

q1 q2

Figure 1�2: Strongly Conne
ted Tournament1.2 Bipartite TournamentIf we want to make a tournament where there are two disjoint teams I and IIof players and ea
h player on Team I plays against ea
h player on Team II, we willhave a new stru
ture of tournament that we will 
all bipartite tournament. We notethat they themselves do not have the stru
ture of a tournament.The following 
hara
terizes bipartite graphs: if the greatest eigenvalue is equalto the negative of its smallest eigenvalue then the graph is bipartite [1℄.



9De�nition 7. A tournament is bipartite if there is a partition of its set of verti
esin two sets A, B, with A ∩ B = ∅ su
h that there are no ar
s between verti
es thatbelong to the same set and for all i ∈ A and j ∈ B, we have i → j, or j → i.Little is known about bipartite tournaments. In [22℄, Li gave an upper boundfor the spe
tral radius. Later, Sangwook Ree introdu
ed Hypergraphs and, in theConferen
e on Hypergraphs in Hungary 2001, he spoke about the bipartite tourna-ment matri
es. He looked at the spe
tral bounds of bipartite tournament matri
es,that is, tournament matri
es of two teams, with arbitrary team size. He indi
atedthat when bipartite matri
es exist, players and teams of the matri
es are evenlyranked.Li showed that a bipartite tournament matrix 
an be both, regular and normalif and only if it has the same team size. Also, he found the 
ondition that wasne
essary for the varian
e of the Perron ve
tor (see De�nition 11) of the bipartitetournament matrix to vanish.We use the notation Tn1n2
for bipartite tournament having sets |A| = n1 and

|B| = n2. Clearly, the unique bipartite tournament, whi
h is a tournament, is when
n1 = n2 = 1.We may let

Tn1n2
=






0n1
B

C 0n2




 , (1.1)where B + CT = Jn1n2

, and J is a matrix having all entries equal to 1.Example 5. Let T32 be a bipartite tournament with A = {q1, q2, q3} and B =

{q4, q5}. Its adja
en
y matrix and its graph are:



10
T32 =









0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 1 0 0









q3

q2

q1

q5

q4

1.3 r-partite TournamentIf we extend the same idea for bipartite tournament, into the 
ase where wemake a tournament with r teams where ea
h player of team i plays with ea
h playerof all others teams j, i 6= j, we have a new stru
ture of tournament whi
h we will
all an r-partite tournament, its matrix is














0n11
B12 · · · B1(r−1) B1r

C21 0n22
· · · B2(r−1) B2r... ... . . . ... ...

Cr−1,1 Cr−1,2 · · · 0nr−1,r−1
Br−1,r

Cr1 Cr2 · · · Cr,r−1 0nrr















,

where Bij + CT
ji = Jni,nj

and all 0i are square zero matri
es.Note that they themselves do not have the stru
ture of tournament, unless thelength of all subsets of verti
es are one.1.4 Eigenvalue Bounds for Tournament Matri
esHere we show two eigenvalue properties of tournament matri
es. These fa
tsare based on the equation T + T T = J − I.Proposition 5. The real part of every eigenvalue of any tournament matrix T isat least −1/2.



11Proof. Let T be a tournament matrix, then
T + T T = J − I, (1.2)and let λ be an eigenvalue of T and x its 
orresponding normalized eigenve
tor, i.e,

Tx = λx, and x∗x = 1. First we take the right of (1.2) then
x∗(J − I)x = x∗Jx − x∗x = x∗Jx − 1

= y∗y − 1 ≥ −1.On the other hand,
x∗(T + T T )x = x∗Tx + x∗T ∗x

= 2Reλ,then we have
−1 ≤ x∗(J − I)x = x∗(T + T T )x = 2Reλ,and the result is obtained.Proposition 6. The real part of every eigenvalue of any tournament matrix T isat most (n − 1)/2, with equality holding if and only if T is a regular tournamentmatrix.For the proof you 
an see [4℄ or for the greatest eigenvalue ρ(T ) one 
an use theLevinger's inequality,
ρ(T ) ≤ ρ

(
T + T T

)

2
=

1

2
ρ(J − I) =

n − 1

2
.The eigenvalues of T , λi(T ), i = 1, 2, . . . , n, we will be ordered as |λ1(T )| ≥

|λ2(T )| ≥ · · · ≥ |λn(T )|. In Chapter 5 we show results about the eigenvalues of T .



121.5 Perron Frobenius TheoryIn tournament theory we use only matri
es with entries equal to 0 or 1.De�nition 8. An n × n matrix A with real entries is said to be nonnegative if
aij ≥ 0 for ea
h i and j and positive if aij > 0. Similarly, a ve
tor x = (x1, . . . , xn)tis said to be nonnegative if ea
h xj ≥ 0 and positive if ea
h xj > 0.Appli
ations of these matri
es are found in geometry and 
ombinatori
s see [2℄and the Leontief input-output models in e
onomi
s.1.5.1 Irredu
ible MatrixDe�nition 9. An n × n matrix A is said to be a redu
ible matrix if and only if forsome permutation matrix P , the matrix P T AP is blo
k upper triangular, i.e, it hasthis form

P T AP =






A11 A12

0 A22




 ,were A11 and A22 are of square order smaller than n.If a square matrix is not redu
ible, it is said to be an irredu
ible matrix. Thefollowing 
onditions on an n × n matrix A are equivalent.1. A is an irredu
ible matrix.2. The digraph asso
iated to A is strongly 
onne
ted.3. For ea
h i and j, there exists some k su
h that (Ak)ij > 0.4. For any partition of the index set {1, 2, . . . , n} into nonempty disjoint sets I1and I2 there exist i ∈ I1 and j ∈ I2 su
h that aij 6= 0.Proposition 7. Let A be an n × n non-negative matrix. Then A is irredu
ible ifand only if (I + A)n−1 > 0.



13Proof. Let y ∈ R
n be su
h that y ≥ 0 and y 6= 0 and write

z = (I + A)y = y + Ay. (1.3)With a pro
ess that is shown in [20℄ we 
an say that (I +A)n−1y ≥ 0, for any y ≥ 0,
y 6= 0 and therefore the ne
essary 
ondition is ready. The 
onverse is easy be
ausethe graph asso
iated with (I + A) is strongly 
onne
ted, and hen
e A is too.Example 6. Let A be a matrix of the form









∗ ∗ 0 0 ∗
∗ ∗ 0 0 ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 ∗









,

it is redu
ible, be
ause if we permute row 3 with 5, and then 
olumn 3 with 5, weobtain








∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗









,

and therefore it is 
learly blo
k triangular.Note that if a matrix has a row or 
olumn with all entries zero then the matrixis not strongly 
onne
ted.For 
ertain appli
ations, irredu
ible matri
es are more useful than redu
iblematri
es. In parti
ular, the Perron-Frobenius Theorem (see next page) gives moreinformation about the spe
tra of irredu
ible matri
es than that of redu
ible matri
es.It is known that the Perron Theory is for positive matri
es and Frobenius extendedsimilar properties for nonnegative matri
es.



14Example 7. The digraph of �gure 1�3 is a bipartite tournament,
q5

q4

q1

q3

q2

A =









0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 1 1 0 0







Figure 1�3: Bipartite tournament and its redu
ible matrix.Let

P =









1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0









,

then
P T AP =









0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0









,
learly A is redu
ible.1.5.2 A Useful TheoremDe�nition 10. Let A be a (0, 1)-matrix, and ρ(A) its spe
tral radius. Let h, indexof imprimitivity or index of 
y
li
ity, be the number of eigenvalues having modulusequal to the spe
tral radius. If h = 1 the matrix is 
alled primitive.Proposition 8. If A if primitive then it is irredu
ible.Proof. See Berman's book [2℄.



15The next theorem is part of the famous Perron-Frobenius theory.Theorem 3. Let A ≥ 0 be irredu
ible of order n. Then the following hold.1. ρ(A) is a simple eigenvalue, and any eigenvalue of A of the same modulus isalso simple.2. If A has h eigenvalues λ0 = reiθ0 , λ1 = reiθ1 , . . . , λh−1 = reiθh−1 of modulus
ρ(A) = r, with 0 = θ0 < θ1 < · · · < θh−1 < 2π, then these numbers are thedistin
t roots of λh − rh = 0.3. More generally, the spe
trum S(A) = λ0, λ1, · · · , λn−1 goes over into itself undera rotation of the 
omplex plane by 2π/h.4. If h > 1, there exists a permutation matrix P su
h that

PAP T =










0 A12 0 · · · 0
0 0 A23 · · · 0... ... ... . . . ...
0 0 0 · · · Ah−1,h

Ah1 0 0 · · · 0










,

where the zero blo
ks along the main diagonal are square.De�nition 11. The spe
tral radius ρ(T ) of a nonnegative irredu
ible matrix is
alled the Perron value and the 
orresponding eigenve
tor is a positive ve
tor,whi
h is 
alled the Perron ve
tor for T .1.6 Regular and Almost Regular Tournament Matri
esDe�nition 12. A matrix T of a tournament is regular if the out-degree of allverti
es of T is the same, i.e., if T1 = ((n − 1)/2)1, where 1 is the ve
tor with allentries equal to one.The de�nition is equivalent if ea
h of the row sums of T is n−1
2
. (Observe thatne
essarily n must be odd.) It is known in [3, 13℄ that for odd n, the matrix that



16maximize the Perron value over the 
lass of n × n tournament most be a regulartournament matrix.A matrix T of tournament where the �rst n/2 rows have sums equal to (n −

2)/2 and the last n/2 row have sums equal to n/2 is 
alled an almost regulartournament matrix.An almost regular tournament matrix 
an be a prin
ipal submatrix of a regulartournament matrix, as we 
an see in the next example.Example 8. Let T be a regular tournament matrix of order 7
T =













0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 0 0 0 0













,

when T1 = 3 · 1. Note that if we remove the last row and the last 
olumn we have
T ′ =











0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
1 0 0 0 0 1
1 1 0 0 0 0









almost regular tournament matrix su
h that T ′1 =






3 · 1

2 · 1




.



171.7 Hypertournament and Generalization of Tournament Matri
esHypertournament and generalized tournament matri
es not only provide ameans for inquiring into the properties of tournament matri
es but also are thesour
e for matrix analyti
 
hallenges of independent interest.A matrix A is 
alled an h-hypertournament if it has zero diagonal entries and
A + At = hht − I for some non-zero h ∈ R

n. If h = 1, any ones ve
tor, an h-hypertournament matrix A satis�es A + At = J − I, where J denotes the all onesmatrix. If all the entries of a 1-hypertournament matrix A are in {0, 1}, then A is
alled a tournament matrix, and if all the entries of A are non-negative, then A is
alled a generalized tournament matrix.Maybee and Pullman [23℄ show that every h-hypertournament matrix is (diag-onally) similar to a 1-hypertournament matrix. Thus, the dis
ussion of the spe
-tral properties of an h-hypertournament matrix 
an be redu
ed to the 
ase of 1-hypertournament matri
es. It is further shown in [23℄ that
− 1

2
≤ Re λ ≤ n − 1

2
, (1.4)whenever λ is an eigenvalue of an h-hypertournament matrix. Moreover, the eigen-values of a generalized tournament matrix satisfy (see [14℄)

|Imλ| ≤ 1

2
cot
( π

2n

)

. (1.5)



CHAPTER 2THE BRUALDI-LI MATRIX B2N

2.1 Two Conje
turesBrualdi and Li 
onje
tured that the matrix that minimizes the Perron valueover the 
lass of irredu
ible n × n tournament matri
es is:















0 1 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
1 0 0 1 0 0 · · · 0
1 1 0 0 1 0 · · · 0... ... . . . . . . . . . . . . ...... ... . . . . . . . . . . . . ...
1 1 · · · 1 1 0 0 1
1 1 · · · 1 1 1 0 0
















(2.1)
Noti
e that the s
ore ve
tor of this matrix is (1, 1, 2, 3, 4, . . . , n−3, n−2, n−2)T .Let us denote this ve
tor by σr. If, for a tournament matrix T , there is a permutationmatrix P su
h that the s
ore ve
tor of PTP T is σr, then we say that the s
ores of

T are equivalent to σr.Steve Kirkland et al. proved, the 
onje
ture in 1996 [17℄, establishing two mainresults. First, they showed that if T is a tournament matrix whi
h minimizes thePerron value over the 
lass of irredu
ible tournament matri
es of order n, then thes
ore of T is equivalent to σr. Then they showed that among all the tournament18



19matri
es whose s
ores are equivalent to σn, the matrix given by (2.1) yields thesmallest Perron value.The se
ond 
onje
ture, made by Brualdi and Li in 1983 in [7℄, says that thematrix whi
h maximizes the Perron value 
an be written as
B2n =






Un U t
n

U t
n + I Un




 ,where Un denotes the matrix of order n with ones above the diagonal, and zeros onand below the diagonal. This type of matrix 
orresponds to a transitive tournament.The �rst three B2n matri
es are

B2 =

[
0 0
1 0

]

, B4 =







0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0







, B6 =











0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0









The Brualdi and Li 
onje
ture is still open, nevertheless there has been greatprogress made on it. This 
onje
ture has been 
on�rmed for small sizes, and thereis supporting eviden
e for its validity asymptoti
ally (as the order grows large) [9,13, 19℄.In [9℄ the authors prove that the Brualdi-Li matrix B2n, has the largest Perronvalue among the matri
es in

Mn =












T T T

T T + I T




 : T is an n × n tournament matrix



. (2.2)Note that Mn 
ontains the Brualdi-Li matrix B2n.



202.2 Re
ent ResultsThe following are some results obtained re
ently:
• The �rst one is due to Brauner and Gentry [3℄, it was shown that if T is an

n × n tournament matrix then
ρ(T ) ≤ n − 1

2
,with equality holding if and only if the tournament is regular.

• A result of Kirkland in [19℄ showed that for a su�
iently large even n, an n× ntournament matrix whi
h maximizes the Perron value must be almost regular.
• Kirkland has also proved in [17℄ that

ρ(Bn) =
n − 1

2
− e2 − 1

2(e2 + 1)
+ O

(
1

n3

)

.

• Friedland obtained in [11℄ that for any matrix T of the almost regular tourna-ment of order n

ρ(T ) ≤ n − 1

2
− 3

8n
+ O

(
1

n2

)

.

• The new bound obtained by S. Kirkland in [17℄ put the last two results together.For all su�
iently large even n, a tournament matrix T whi
h maximizes thePerron value satis�es
ρ(T ) =

n − 1

2
− γn

n
+ O

(
1

n2

)

,where
0.375 =

3

8
≤ γn ≤ e2 − 1

2(e2 + 1)
≈ 0.380797.He found the best lower bound for γn, that is,

2
(
22/3

)
− 34/3 + 13

34
≈ 0.377453.



21In [15℄, the authors give two forms of the 
hara
teristi
 polynomial of theBrualdi-Li tournament matrix. They use the �rst form to show that the roots of the
hara
teristi
 polynomial are simple and that the Brualdi-Li tournament matrix isdiagonalizable, and using the se
ond form an expression is found for the 
oe�
ientsof the powers of the variable λ in the 
hara
teristi
 polynomial. These 
oe�
ientsgive information about the 
y
le stru
ture of the dire
ted graph asso
iated with theBrualdi-Li tournament matrix.The most re
ent result about the spe
tral radius is given in [25℄, where it isproved that if T is an almost regular tournament matrix of order n = 2m, then
ρ(T ) ≥ m − 1

2
+

√

m2 − 1

4
. (2.3)2.3 The Determinant for B2nA beautiful and �simple� result for the Brualdi-Li matrix is the 
al
ulation ofits determinant. We 
al
ulate this determinant in Chapter 5. If T is an n × ntournament matrix with n > 1, it is shown that for the parti
ular sub
lass Mn ofalmost regular tournament matri
es of order 2n, like (2.2), the following is true [9℄

det(MT ) = (−1)(n − 1) det(T + I) + (−1)n−1n det(T ),when MT ∈ Mn. For Brualdi-Li matrix T = U we have
det(MU ) = (−1)(n − 1) det(U + I) + (−1)n−1n det(U) = 1 − n. (2.4)2.4 The Chara
teristi
 Polynomial for B2nFor B2n, you might think that, be
ause of its simple stru
ture, it is easy to �ndthe 
hara
teristi
 polynomial, but in [15℄ this problem was solved ten years after the



22
onje
ture was formulated. In the proof they used the results in [16℄ and this paperuses results in [11℄ and [12℄.In the �rst work they proved that the sequen
e 2n(n− 1
2
−ρ(B2n)) is 
onvergentand found the limit. They also showed that asymptoti
ally, the sequen
e is mono-toni
ally de
reasing. This problem was established in [12℄ and was used to �nd thenext theorem.Theorem 4. Suppose that n ≥ 2, let B2n be the Brualdi-Li matrix of order 2n, andlet ρ(B2n) be its Perron value. Then

2ρ2(B2n) − 2(n − 1)ρ(B2n) − (n − 1) =
1

(
ρ(B2n)+1

ρ(B2n)

)2n

+ 1
(2.5)In [15℄ it is shown that the equation

(
2λ2 − 2(n − 1)λ − (n − 1))

) (
(1 + λ)2n + λ2n

)
− λ2n = 0. (2.6)is satis�ed for the value ρ(B2n).It is easy to 
he
k that λ = −1

2
is a root of multipli
ity 2 in (2.6). Observe that

−1
2
is not in the spe
trum of any tournament matrix be
ause it is not an algebrai
integer. This is true be
ause the 
hara
teristi
 polynomial for any (0, 1)-matrix themain 
oe�
ient is 1 and therefore it doesn't have a rational 1/2 as a root.Theorem 5. Let n ≥ 2 be an integer and B2n the Brualdi and Li matrix. Then

p(λ) =
(2λ2 − 2(n − 1)λ − (n − 1)) ((1 + λ)2n + λ2n) − λ2n

(1 + 2λ)2
, (2.7)is the 
hara
teristi
 polynomial of B2n.They used this polynomial to prove that its roots are simple and B2n is diag-onalizable. They also 
hanged the last expression to �nd other expression, for the



23
hara
teristi
 polynomial. This expression gives the information about the 
y
lestru
ture of the dire
t graph asso
iated with the Brualdi-Li tournament matrix.Theorem 6. The Brualdi and Li matrix B2n has its 
hara
teristi
 polynomial c(λ)equal to
λ2n −

n−1∑

j=0

(n − 1 − 2j)(λ + 1)2(n−j−1)λ2j (2.8)and for ea
h k, su
h that 0 ≤ k ≤ 2n − 2, the 
oe�
ient of λk is
ck = −

⌊k/2⌋
∑

j=0

(n − 1 − 2j)

(
2n − 2j − 2

k − 2j

)

.More re
ently, X. Yong has obtained further results about tournament matri
esand the Brualdi-Li matri
es [26℄.



CHAPTER 3BIPARTITE TOURNAMENT
We should mention that all that will be presented in this 
hapter is referen
edfrom [10℄ and the Ri
hard A. Brualdi talk in the Aveiro Graph Spe
tra Workshop2006. We used similar te
hniques of bipartite tournament matri
es to 
onsider the

r-partite tournament matri
es, whi
h will be presented in 
hapter 5.Example 9. Let A be the matrix of a tournament show below.
A =









0 0 1 0 0
0 0 0 1 1
0 1 0 0 0
1 0 0 0 0
1 0 0 0 0









q5

q2

q4

q1

q3

Then 
al
ulate its spe
trum
S(A) = {i 4

√
2,−i

4
√

2,
4
√

2,− 4
√

2, 0} ≈ {1.18921i,−1.18921i, 1.18921,−1.18921, 0},we see that the index of imprimitivity, h(A) = 4.Example 10. The matrix
T3,3 =











0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0









24



25has spe
trum {i,−i, 1.4142136,−1.4142136, i,−i} and therefore has an index of im-primitivity equal to 2.
h(A) 
an be obtained from the asso
iated dire
ted graph D(A) of A by The-orem 7. The relation between the index of imprimitivity and the asso
iated graphis using the 
ir
uits of the asso
iated graph. The following theorem is a 
lassi
alresult.Theorem 7. (See [2℄) Let A ≥ 0 be irredu
ible of order n. Let Si be the set of all ofthe lengths mi of 
ir
uits in D(A) through the verti
es i, and hi = g.
.dmi∈Si

{mi}.Then h1 = h2 = · · · = hn = h(A).Lemma 1. Let Tn1,n2
be a bipartite tournament matrix. Then h(Tn1,n2

) = 2 or
h(Tn1,n2

) = 4.See examples above, and for the proof see [10℄.If the matrix Tn1,n2
, n1 = n2 = n (that is, the two teams have the same numberof players n), then one 
an 
onsider the spe
tral radius of Tn,n.Note that the maximum spe
tral radius of bipartite tournament matri
es oforder 2n is less than n, and the minimum over irredu
ible bipartite tournamentsmatrix of order 2n is greater than 1.Corollary 1. Let Tn1,n2
. Then the numbers of nonzero eigenvalues and distin
tnonzero eigenvalues are both even.Theorem 8. Let Tn1,n2
be the 
orresponding bipartite tournament G. Then thefollowing are equivalent.1. h(A) = 4.2. G has the stru
ture of Figure 3�1.
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V21

V12V22

V11

Figure 3�1: Stru
ture of bipartite tournament with h = 4.3. The spe
trum is S(A) = {ρ(A),−ρ(A), iρ(A), iρ(A), 0n1+n2−4}.4. The algebrai
 multipli
ity of the eigenvalue 0 of A is n1 + n2 − 4.3.1 The Algebrai
 Multipli
ity of the Eigenvalue 0Lemma 2. Let Tn1,n2
be a bipartite tournament having the form of (3.1), where

l1 + l2 + · · ·+ lk = n1, m1 +m2 + · · ·+mk = n2, 2 ≤ k ≤ n2. Then Tn1,n2
has exa
tly

2k nonzero eigenvalues and n1 + n2 − 2k zero eigenvalues, and, for ea
h of theseeigenvalues, the algebrai
 multipli
ity is the same as the geometri
 multipli
ity.
Tn1,n2

=

























Ol1 Jl1,m1

Ol2 Jl2,m2. . . . . .
Olk Jlk,mk

Om1,l1 Jm1,l2 · · · Jm1,lk Om1

Om2,l1 Jm2,l2
. . . ... Om2... . . . . . . Jmk−1,lk

. . .
Omk,l1 · · · Jmk,lk−1

Jmk,lk Omk

























(3.1)
Theorem 9. Let t = n1 + n2 − 2k, k = 2, 3, . . . , n. For any n1, n2 there exists somematrix Tn1,n2

whose eigenvalue 0 has the same algebrai
 and geometri
 multipli
ityequal to t.



27More re
ently, we have obtained further results about r-partite tournamentmatri
es in [27℄.



CHAPTER 4SINGULAR VALUES OF TOURNAMENTMATRICES
In this 
hapter we survey some results about singular values of tournament ma-tri
es, in
luding the the most re
ent results obtained by D. Gregory and S. Kirklandin [13℄.The method for determining how 
lose any matrix An is to a matrix of smallerrank involves fa
toring A into a produ
t UΣV ∗, where U and V are orthogonalmatri
es of order n, and Σ is n× n matrix whose o�-diagonal entries are all 0's andwhose diagonal elements are σ1, σ2, . . . , σn and satisfy σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The

σi's determined by this fa
torization are unique and are 
alled singular values of A,and the fa
torization UΣV ∗ is 
alled the singular value de
omposition of A.We see that sin
e V diagonalize A∗A, it follows that the vj 's are eigenve
torsof A∗A, and similarly way for AA∗. Another way of 
al
ulating the singular valuesof A is to 
al
ulate the nonnegative square roots of the eigenvalues of A∗A or,equivalently, of AA∗. If the eigenvalues are also taken in nonde
reasing order then
σ2

i (A) = λi(A
∗A) = λi(AA∗), i = 1, . . . , n. In parti
ular, σ2

1(A) = ρ(A∗A). Thelargest singular value, σ1(A), is also 
alled spe
tral norm of A be
ause σ1(A) = ||A||2,the operator norm indu
ed by the usual Eu
lidean norm || · ||2.De�nition 13. Let T be a tournament matrix of order n and s = T1 its s
oreve
tor. We will 
all α2(T ) = 1
n

∑

i(si − n−1
2

)2 = sT s
n

− (n−1
2

)2 the s
ore varian
e.28



29For example for a regular tournament matrix T , α2(T ) = 0, and for an almostregular tournament matrix T , α2(T ) = n
8
.It is easily seen that if T is normal then the singular values of T are the moduleof its eigenvalues. A tournament matrix T is nearly normal in the sense that therank one perturbation, i.e., T − 1

2
J is a normal matrix. To see this, note that

T − 1

2
J =

1

2
D, when dij =







1, if tij = 1

−1, if tij = 0,

(

T − 1

2
J

)∗
=

(

T ∗ − 1

2
J

)

=
1

2
E, when eij =







−1, if tij = 1

1, if tij = 0,and
(

T − 1

2
J

)∗(

T − 1

2
J

)

=
1

4
ED =

1

4
A where aij =

∑

j

eijdij

(

T − 1

2
J

)(

T − 1

2
J

)∗
=

1

4
DE =

1

4
B where bij =

∑

j

dijejiwe see that aij = bij , this is be
ause eij = −eji and dij = −dij for i 6= j, then
aij = bij . 4.1 MajorizationDe�nition 14. Let x, y ∈ R

n. We say that x is weakly majorized by y and write
x ≺w y if for ea
h k = 1, . . . , n, the sum of the k largest entries of x is less than orequal to the sum of the k largest entries of y. We say that x is majorized by y andwrite x ≺ y if x ≺w y and ∑xi =

∑
yi.Example 11. Let x = (0, 2, 3, 4, 5, 6)T and y = (0, 2, 4, 4, 4, 7)T . Then x ≺w y and

x 6≺ y be
ause
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k
∑k

i=1 xi

∑k
i=1 yi1 0 02 2 23 5 64 9 105 14 146 20 21Table 4�1: x weakly majorized by y.From the ne
essary 
ondition in Landau's theorem and the properties of ma-jorization we have that ||T1||2 ≤ ||U1||2, then U is a transitive tournament matrix.This is equivalent to α2(T ) ≤ α2(U) = n2−1

12
, for all tournament matri
es T of order

n. A similar and important result is shown below.Theorem 10. If U is the upper triangular tournament matrix of order n ≥ 2, then,for all tournament matri
es T of order n

σ(T ) ≤ σ(U) =
1

2
csc

π

4n − 2
. (4.1)Equality holds if and only if M is the matrix of a transitive tournament.Below we des
ribe bounds on the minimum value of σ1(T ) and the maximumvalue of σn(T ). These are easily veri�ed.De�nition 15. A tournament matrix T of order n ≥ 2 is 
alled doubly regularif every pair of verti
es in the asso
iated tournament jointly dominates the samenumber of verti
es (ne
essarily, n−3

4
).We see that T is doubly regular if and only if T T T = n+1

4
I + n−3

4
J . Su
hmatri
es are also 
alled Hadamard tournament matri
es sin
e they are 
oexistentwith skew Hadamard matri
es of order n + 1.



31Proposition 9. Let T be a tournament matrix of order n and let σi(T ) be its singularvalues in nonin
reasing order . Then1. σ1(T ) ≥ n−1
2

with equality holding if and only if M is regular.2. σn(T ) ≤
√

n+1
2

with equality holding if and only if M is doubly regular.De�nition 16. Let T be a tournament matrix of order n. The spread of T , notedby sp(T ), is max |λ− µ|, where the maximum is taken over all eigenvalue λ, µ of T .Proposition 10. Let T be a tournament matrix of order n. Then1. sp(T TT ) ≥ n(n−3)
4

with equality holding if and only if T is doubly regular.2. sp(T TT ) ≤ 1
4
csc2 π

4n−2
with equality holding if and only if T is transitive tour-nament matrix.Theorem 11. Let T be a tournament matrix of order n ≥ 4. Then T has pre
iselytwo distin
t singular value if and only if T is doubly regular.The next proposition provides a lower bound on the spe
tral norm, σ1(M), ofa tournament matrix of order n. When n is odd, it agrees with Proposition 9 andthe regular tournament matri
es are those that give equality. When n is even, itwill yield the lower bound in Corollary 2 below. In that lower bound, equality holdsonly in the spe
ial 
ase that n = 2m where m is odd.Proposition 11. Let T be a tournament matrix of order n ≥ 2 and let

B =






(
n−1

2

)2
+ α2 nα

2

nα
2

α2 + 1
4




 ,where α2 is the s
ore varian
e of T . Then

σ2
1(T ) ≥ ρ(B) = σ2 +

1

8

(

n2 − 2n + 2 + n
√

(n − 2)2 + 16α2
)

.



32Equality holds if and only if T has at least n − 2 eigenvalues with real part −1
2
.Corollary 2. If T is a tournament matrix of even order n = 2m, then

σ2
1(T ) ≥ 1

8

(

(n − 2)2 + n
√

(n − 2)2 + 4
)

.Equality is attained if and only if m is odd, and T is permutation similar to a matrixof the form 




R X

J − XT S




 ,where R and S are regular tournament matri
es of order m and X is an m × m

{0, 1}-matrix with 
onstant row and 
olumns sums (m − 1)/2.If n = 2m where m is odd, then the minimum spe
tral norm for tournamentmatri
es of order n is given the lower bound in Corollary 2. Although we do notknow minimum spe
tral norm for all 
ases where n = 2m, it is proven in Theorem 12that any tournament matrix of even order that attains the minimum spe
tral normmust be almost regular. The following 
orollary to Proposition 9 will be needed inthe proof.Corollary 3. If T is a tournament matrix of even order n and T is not almostregular, then
σ2

1(T ) ≥ ρ(B) =
1

8n

(

n3 − 4n2 + 4n + 16 + n
√

n4 − 4n3 + 8n2 + 32n
)

,where B is de�ned above with α2 = 1
4

+ 2
n
.



33Lemma 3. Let R be a regular tournament matrix of odd order m and let
M =












R 0 RT 1

1T 0 0T 0

RT + I 1 R 0

0T 1 1T 0










where 1 and 0 are 
olumn m-ve
tor. Then M is an almost regular tournament matrixof order n = 2(m + 1), dim WM = 4, and σ1 = 1

2
, σ2 =

√
m, σ3 = 1

2
.Theorem 12. If T is a tournament matrix of even order n with minimum spe
tralnorm, then T is almost regular.The last result is same as the one given by Kirkland in [19℄.



CHAPTER 5THE NEW PROPERTIES
In this 
hapter we give our results about the Brualdi-Li tournament matrix and

r-partite tournament matri
es.5.1 A Simple Cal
ulation of the Determinant for B2nPreviously we proved that B2n− 1
2
J is normal, now we 
al
ulate its determinantand next the determinant for B2n. To get this result we use the next theorem.Theorem 13. If A, B, C, D are square matri
es of order n and AC = CA the

∣
∣
∣
∣

A B
C D

∣
∣
∣
∣
= |AD − CB|.Proof. This result is a dire
t appli
ation of S
hur's 
omplement.Let B2n be the Brualdi-Li matrix, and

B2n − 1

2
J =






U − 1
2
J UT − 1

2
J

UT + I − 1
2
J U − 1

2
J




 . (5.1)

34



35using that U + U ′ + I = J then
det

(

B2n − 1

2
J

)

= det

((

U − 1

2
J

)2

−
(

UT + I − 1

2
J

)(

UT − 1

2
J

))

= det

(

UT + I − 1

2
J

)

= det

(
1

2
(UT − U + I)

)

=
1

2
,sin
e the 
al
ulation of det(UT − U + I) is easy: note that it is equal to 2n−1.For the 
al
ulation of the determinant of the Brualdi-Li matrix we use againS
hur's 
omplement with respe
t to (UT + I) in the ex
hange matrix from B2n, i.e.,

det(PB2n), so
∣
∣
∣
∣
∣
∣
∣






I 0

−U(UT + I)−1U I











UT + I U

U I






∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣









UT + I U

0 UT − U(UT + I)−1U









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= det
(
UT + I

)
det
(
UT − U(UT + I)−1U

)

= 1 · (−1)n−1(n − 1)

= (−1)n−1(n − 1).To see this, observe that U(UT + I)−1U = −U and det(UT + U) = det(J − I) =

(−1)n−1(n − 1), when so ex
hange the blo
k rows. The determinant for this matrixpermutation
P =






0 I

I 0




is (−1)n and therefore �nally det(B2n) = 1 − n.The above 
al
ulation is a
tually similar to the one presented in [9℄, this 
al-
ulations is only for B2n while the other 
al
ulation is for any tournament, when

U = T .



365.2 The Perron Value of B2nNow we 
onsider the Perron value of the Brualdi-Li matrix, we �rst present aproposition and next a theorem from Berman's book [2℄. Next we give a proof forproposition 12.Proposition 12. Let B
(0)
2n be the Brualdi-Li matrix. Let k ≥ 0 and

B
(k+1)
2n =

(
D(k)

)−1
B

(k)
2n D(k),where D(k) = diag

(

B
(k)
2n 1

). Then
B

(k)
2n 1 → ρ(B2n)1, when k → ∞.To prove the proposition, we use the following 2 fa
ts:1. The �rst one is to 
al
ulate B

(k+1)
2n =

(
D(k)

)−1
B

(k)
2n D(k).

D(k) = diag
(

d
(k)
1 , d

(k)
2 , . . . , d(k)

n

)

,then
B

(k+1)
2n =

(
D(k)

)−1
B

(k)
2n D(k) =

(

b
(k+1)
ij

)

, (5.2)where, b
(k+1)
ij = b

(k)
ij

(

d
(k)
i

)−1

d
(k)
j for i, j = 1, . . . , n.2. The se
ond one is to 
al
ulate B

(k+1)
2n 1.

B
(k+1)
2n 1 =

(
D(k)

)−1
B

(k)
2n D(k) =

(
n∑

j=1

b
(k)
ij

(

d
(k)
i

)−1

d
(k)
j

)

=

(
(

d
(k)
i

)−1
n∑

j=1

b
(k)
ij d

(k)
j

)

, (5.3)for i = 1, . . . , n.



37Now, be
ause
B2n =






Un UT
n

I + UT
n Un




 ,where Un is a transitive tournament matrix of order n and therefore B2n1 =






n−2
2

1

n
2
1




by de�nition, then

B
(1)
2n =

(
D(0)

)−1
B

(0)
2n D(0) =

(

b
(0)
ij

(

d
(0)
i

)−1

d
(0)
j

)

=

=







1 2
n−2

n−2
2

= 1, for i = 1, . . . , n
2
, j = i + 1, . . . , n

2
,

1 2
n−2

n
2

= n
n−2

, for i = 1, . . . , n
2
, j = n

2
+ 1, . . . , n

2
+ i − 1,

1 2
n

n−2
2

= n−2
n

, for i = n
2

+ 1, . . . , n, j = 1, . . . , i − n
2
,

1 2
n

n
2

= 1, for i = n
2

+ 1, . . . , n, j = i + 1, . . . , n,

0, otherwise,and
B

(1)
2n 1 =

(

d
(0)
i

)−1
n∑

j=1

b
(0)
ij d

(0)
j =

=







2

n − 2

n∑

j=1

b
(0)
ij d

(0)
j =

2

n − 2





n/2
∑

j=i+1

b
(0)
ij d

(0)
j +

n/2+i−1
∑

j= n
2
+1

b
(0)
ij d

(0)
j



 ,

2

n

n∑

j=1

bijdj =
2

n





i−1∑

j= n
2

bijdj +

n/2+i−1
∑

j=i+1

bijdj



 ,

=







2
n−2

[(
n
2
− i
)
1n−2

2
+ (i − 1)1n

2

]
= n

2
− i + (i − 1) n

n−2
,

2
n

[(
i − n

2

)
1n−2

2
+ (n − i)1n

2

]
=
(
i − n

2

)
+ n − i,

B
(1)
2n 1 =







n2−4n+4i
2(n−2)

, for i = 1, . . . , n
2
,

n2+2n−4i
2n

, for i = n
2

+ 1, . . . , n.



38Again,
B

(2)
2n =

(
D(1)

)−1
B

(1)
2n D(1) =

(

b
(1)
ij

(

d
(1)
i

)−1

d
(1)
j

)

=

=







1 2(n−2)
n2−4n+4i

n2−4n+4i
2(n−2)

= 1, for i = 1, . . . , n
2
, j = i + 1, . . . , n

2
,

n
n−2

2(n−2)
n2−4n+4i

n2+2n−4i
2n

= n2+2n−4i
n2−4n+4i

, for i = 1, . . . , n
2
, j = n

2
+ 1, . . . , n

2
+ i − 1,

n−2
n

2n
n2+2n−4i

n2−4n+4i
2(n−2)

= n2−4n+4i
n2+2n−4i

, for i = n
2

+ 1, . . . , n, j = 1, . . . , i − n
2
,

1 2n
n2+2n−4i

n2+2n−4i
2n

= 1, for i = n
2

+ 1, . . . , n, j = i + 1, . . . , n,

0, otherwise,and
B(2)

n 1 =
(

d
(1)
i

)−1
n∑

j=1

b
(1)
ij d

(1)
j =

=







2(n−2)
n2−4n+4i

[(
n
2
− i
)
1n2−4n+4i

2(n−2)
+ (i − 1) n

n−2
n2+2n−4i

2n

] for i = 1, . . . , n
2
,

2n
n2+2n−4i

[(
i − n

2

)
n−2

n
n2−4n+4i

2(n−2)
+ (n − i)1n2+2n−4i

2n

] for i = n
2

+ 1, . . . , n,

=







n3−6n2+16ni−16i2+8i−4n
2(n2−4n+4i)

, for i = 1, . . . , n
2
,

n3+8n2−24ni+16i2

2(n2+2n−4i)
, for i = n

2
+ 1, . . . , n.Finally,

B(3)
n =

(
D(2)

)−1
B(2)

n D(2) =

(

b
(2)
ij

(

d
(2)
i

)−1

d
(2)
j

)

=

=







1, for i = 1, . . . , n
2
, j = i, . . . , n

2
,

n3+8n2−24ni+16i2

n3−6n2+16ni−16i2+8i−4n
, for i = 1, . . . , n

2
, j = n

2
+ i, . . . , n,

n3−6n2+16ni−16i2+8i−4n
n3+8n2−24ni+16i2

, for i = n
2

+ 1, . . . , n, j = 1, . . . , i − n
2
,

1, for i = n
2

+ 1, . . . , n, j = i, . . . , n,

0, otherwise,



39and
B(3)

n 1 =
(

d
(2)
i

)−1
n∑

j=1

b
(2)
ij d

(2)
j =

=







(
n
2
− i
)

+ (i − 1) n3+8n2−24ni−16i2

n3−6n2+16ni−16i2+8i−4n
,

(
i − n

2

)
n3−6n2+16ni−16i2+8i−4n

n3+8n2−24ni−16i2
+ (n − i),

=







n4−8n3+44in2−96ni2+64in−20n2+64i3−48i2

2(n3−6n2+16in−16i2+8i−4n)
, for i = 1, . . . , n

2
,

n4+22n3+4n2−64i3−92in2+128ni2+16i2−16in
2(n3+8n2+16i2−24in)

, for i = n
2

+ 1, . . . , n,Theorem 14. Let B2n be the Brualdi-Li matrix, and
B

(k)
2n 1 = (r1, r2, . . . , rn)T , 1 = (1, . . . , 1)T .Then

min
1≤i≤n

ri ≤ ρ(B2n) ≤ max
1≤i≤n

ri.Proof. This result is from a theorem in Berman's book (page 37. [2℄)Here we presente a better result below.Theorem 15. Let A = (aij) ≥ 0 of order n and pi =
∑

j 6=i aij, for i = 1, . . . , n.Then
min
i6=j

{

aii + ajj +
√

(aii − ajj)2 + 4pipj

}

≤ ρ(A)

≤ max
i6=j

{

aii + ajj +
√

(aii − ajj)2 + 4pipj

}

.Proof. If Ax = ρ(A)x then
(aii − ρ(A))xi = −

n∑

i=1

aijxj .



40Let xp = max1≤j≤n xj , xq = max j 6=p

1≤j≤n
xj . Then

(app − ρ(A))xp ≤ Ppxq (5.4)
(aqq − ρ(A))xq ≤ Pqxq (5.5)multipli
ation of (5.4) and (5.5) yields

(app − ρ(A))(aqq − ρ(A)) ≤ PpPq,solving for ρ(A) we obtain the bounds.If A = (aij), aij ≥ 0, A1 = (s1, s2, . . . , sn)
T we have

min
i6=j

sisj ≤ ρ(A) ≤ max
i6=j

sjsj5.3 The Inverse of Brualdi-Li MatrixIn this se
tion we 
al
ulate the inverse of the Brualdi-Li matrix. For this wedesign a little s
ript fun
tion in S
ilab by whi
h we 
an obtain B2n for any n.fun
tion [B, U℄ = matrixBL(n)S = ones(n/2,n/2);U = S - tril(S);B = [U U'; (U' + eye()) U℄;endfun
tionThrough 
al
ulations, we see that if B2n is the Brualdi and Li matrix, then itsinverse has the following form:
B−1

2n =






u 1

(C2n−1 − W )−1 v




 (5.6)



41where u = (−1, 0, . . . , 0, 0), v = (0, 0, . . . , 0,−1)T of order 2n − 1,
C2n−1 = circ(1, . . . , 1

︸ ︷︷ ︸

n−1

, 0, . . . , 0
︸ ︷︷ ︸

n

),is a 
ir
ulant matrix of order 2n − 1 and
W =






0n
2

, n
2
−1 0n

2
, n
2

Jn
2
−1, n

2
−1 0n

2
−1, n

2




 . (5.7)For example for n = 4 we have

B8 =















0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
1 0 0 0 0 1 1 1
1 1 0 0 0 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0













and

B−1
8 =





















−1 0 0 0 0 0 0 1

1
3

−2
3

1
3

1
3

−2
3

1
3

1
3

0

1
3

1
3

−2
3

1
3

1
3

−2
3

1
3

0

1
3

1
3

1
3

−2
3

1
3

1
3

−2
3

0

−2
3

1
3

1
3

1
3

−2
3

1
3

1
3

0

1
3

−2
3

1
3

1
3

1
3

−2
3

1
3

0

1
3

1
3

−2
3

1
3

1
3

1
3

−2
3

0

1
3

1
3

1
3

−2
3

1
3

1
3

1
3

−1























42The general 
ase is
B−1

2n =
1

n − 1

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB�
1 − n 0 0 · · · 0 0 0 · · · 0 0 n − 1

1 2 − n 1 · · · 1 2 − n 1 · · · 1 1 0

1 1 2 − n 1 · · · 1 2 − n 1 · · · 1 0... ... . . . . . . . . . . . . ... ...
1 1 · · · 2 − n 1 · · · 1 2 − n 0

2 − n 1 1 · · · 1 2 − n 1 · · · 1 0

1 2 − n 1 · · · 1 2 − n 1 · · · 1 0... ... . . . . . . . . . . . . ... ...
1 1 · · · 2 − n 1 1 · · · 1 2 − n 0

1 1 · · · 1 2 − n 1 · · · 1 1 − n

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA
, (5.8)

where the blo
k has three diagonals, the �rst one start in entry (1, 2), se
ond onestart in entry (1, n), and last in entry (n + 1, 1).Theorem 16. The Brualdi-Li matrix is ill-
onditioned.Proof. We need to show that ‖B2n‖‖B−1
2n ‖ is very large, for any norm. Note that

‖B2n‖∞ = ‖B2n‖1 = n. On the other hand, dire
t 
al
ulations shows that ‖B−1
2n ‖∞ =

‖B−1
2n ‖1 = 4n−5

n−1
. Then,

cond∞(B2n) = cond1(B2n) = ‖B2n‖1‖B−1
2n ‖1 = n

(4n − 5)

n − 1
> 4n − 5,for any n. Therefore the matrix is ill-
onditioned for large n.For the Eu
lidean, we know that

‖B2n‖2 = λ
1/2
1

(
(B2n)T B2n

)and
λ1

(
(B2n)T B2n

)
≥ max

i≤i≤n
ciiwhere cii =

∑2n
j=1 b2

ij =
∑2n

j=1 bij . Therefore,
cond2(B2n) = ‖B2n‖2‖B−1

2n ‖2 ≥
√

n · 1 =
√

n. (5.9)



43For example if n = 100, then cond∞(B2n) > 4n − 5 = 395, and cond2(B2n) >

√
n = 10. 5.4 r-partite TournamentThe results shown here are similar to the presentation [10℄. We �rst make anextension of bipartite tournaments to 3-partite tournaments. We 
onsider if r > 3.One of the questions to prove a result that we will present later is: in allredu
ible matri
es, 
an we �nd a vertex with o�-degree or in-degree equal to zero?The answer is negative. Observe the following example.Example 12. We see that

T =











0 1 0 1 1 1
0 0 0 1 0 0
1 1 0 1 0 1
0 0 0 0 0 1
0 1 1 1 0 1
0 1 0 0 0 0











,

is a redu
ible matrix. This is true be
ause if
P =











1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1









is a permutation matrix, then we have

PTP T =











0 0 1 1 1 1
1 0 0 1 1 1
0 1 0 1 1 1
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0









is a triangular matrix by blo
ks and T does not have any row or 
olumn of zeros.



44Another question is, does any irredu
ible matrix have at least one nonzero ele-ment in ea
h 
olumn and ea
h row? In this 
ase the answer is positive. Let us seethe following examples:Example 13. T223 represents the matrix of a 3-partite tournament (left). Thismatrix is irredu
ible be
ause is easy to 
he
k the graph is strongly 
onne
ted. On theother hand it is 
lear that the 3-partite tournament matrix T221 (right) is redu
iblebe
ause the graph is not strongly 
onne
ted, you 
an see this in vertex number 5,whi
h does not 
onne
t with any verti
es
T223 =













0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 1 0 0
1 1 0 0 0 0 0
1 1 0 1 0 0 0
1 1 0 1 0 0 0













T221 =









0 0 0 1 1
0 0 0 1 1
1 1 0 0 1
0 0 0 0 1
0 0 0 0 0









q4

q7

q2

q6

q1

q5

q3

q4

q2

q5

q1

q3

Let J be the 3-partite tournament matrix having the stru
ture
J =





0 Jn1
0

0 0 Jn2

Jn3
0 0



 , (5.10)



45where Jni
for i = 1, 2, 3 is a square matrix of order ni. It's easy to 
he
k that, thistype of matrix is irredu
ible.The next example is for an irredu
ible matrix, i.e when the graph is strongly
onne
ted.Example 14. Let A be a tournament of order 4,

A =







0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 0







q3 q4

q1q1 q2

Note that the matrix has, in all rows and all 
olumns, at least one nonzero elementand note that its graph is strongly 
onne
ted.For any n ,we thought that if Tn, tournament matrix, has in-degree and out-degree in all its verti
es the T
(i)
n−1, the tournament obtained to remove the vertex i,has same property. We try to use this approa
h, but that is not true, let us observethe following example:Example 15. In this example we see that if we remove any vertex, then the resultinggraph will not have the previous property.

q6

q3 q2

q4 q5

q1

De�nition 17. A 
ir
uit of length m in a graph G(V, E) is a sequen
e of ar
s
(i1, i2), (i2, i3), . . . , (im−1, im), (im, i1) of V .



46A 
ir
uit of length n, will be 
alled an n-
y
le.Lemma 4. Let Tn1n2
be a bipartite tournament whose verti
es have in-degree andout-degree. Then Tn1n2
has a 4-
y
le.Proof. Let T be a bipartite tournament matrix. By Proposition 4 ea
h element in themain diagonal of T 4 is a number a 4-
y
le, we suppose that n1 = n2 and let Ann be ofthe form Ann =

[
0n B
C 0n

], and A4 = [ BCBC 0
0 CBCB ], note that BCBC = (BJ −BBT )2,and CBCB = (BBT − JB)2, therefore we need to prove that any element in thesame position of BCBC in the row a 
olumn is di�erent from zero (similarly for

BCBC). First we use BJ − BB′, it has of form (BJ − BB′)ij = rij su
h that
rij =

∑n
k=1 bik(1 − bjk) ≥ 0, if i = j it is 
learly, that bik(1 − bjk) = 0. Now if

i 6= j there exist k0, j0 su
h that bik0
= 1 and bj0k0

= 0. Existen
e of k0, j0 isas
ertained by the hypothesis and for rj0i there exists k′ su
h that bj
0k′

= 1. Theproof is �nished if we 
an prove that bik
′ = 0. We will 
ontinue by 
ontradi
tion.We suppose that k′ exists for bj0k′ = 1 and not for bik′ = 0, so we need to 
hange forother j0, but if we 
ontinue this way, the ith row has all entries equal to one, this isnot possible be
ause this 
ontradi
ts the hypothesis that all verti
es have in-degreeand out-degree, therefore bik′ = 0 and all verti
es have 4-
y
le.Example 16. Consider









1 0 0 0 0
0 1 0 0 0
1 0 0 1 0
1 1 1 0 0
1 0 1 0 1

















0 1 0 0 0
1 0 1 0 1
1 2 0 1 1
2 2 2 0 1
2 3 2 1 0

















1 0 1 0 1
3 6 2 2 1
6 6 6 1 3
6 9 4 3 4
7 8 5 2 6









,
B BJ − BB′ BCBC = (BJ − BB′)2.Note that the element 6 of the diagonal of (BJ −BB′)2 in position 2 
omes from theinner produ
t of row 2, (1, 0, 1, 0, 1) with 
olumn (1, 0, 2, 2, 3)T , whi
h has at least



47one nonzero element in the same position be
ause for row 2 of B, we 
an �nd otherdi�erent row itself su
h that bik(1 − bjk) there exist j0, k0.In [10℄ the authors prove that if A is an irredu
ible bipartite tournament matrixthen h(A) = 2 or h(A) = 4. For r-partite tournament matri
es with r = 3, if A isirredu
ible we have the only 
ases h = 1 or h = r = 3. For example:
T112 =







0 1 0 1
0 0 1 0
1 0 0 0
0 1 0 0







,is irredu
ible and h = 1, but
T112 =







0 1 0 0
0 0 1 1
1 0 0 0
1 0 0 0







=





0 J11 0
0 0 J12

J21 0 0



 ,has a property like equation (5.10) and h = 3. For r > 3 we have the next theorem.Theorem 17. Let r > 3. If A is a r-partite tournament matrix then A is primitive,i.e, h = 1.Proof. Without loss of generality we only have to 
onsider the 
ase r = 4. Let Abe a 4-partite tournament matrix. Labeling the verti
es of the asso
iated graph wehave
A =












0n1
A12 A13 A14

A21 0n2
A23 A24

A31 A32 0n3
A34

A41 A42 A43 0n4












, (5.11)
when all 0ni

are square zero matri
es an Aij + A′
ji = Jninj

. Suppose that A isirredu
ible, and we will pro
eed by 
ontradi
tion. Suppose that h = 4, then by



48Theorem 3 part 4 there exists a permutation P su
h that
PAP T =












0 A12 0 0

0 0 A23 0

0 0 0 A34

A41 0 0 0












, (5.12)
where the zero blo
ks along the main diagonal are square. Clearly this matrix doesnot satisfy the de�nition of 4-partite tournament. If h = 3, then the new matrix hasthe form

PAP T =









0 A12 0

0 0 A23

A31 0 0









, (5.13)this matrix 
an be only a 3-partite tournament matrix. Similar 
ase for h = 2.We 
onsider other values h > 4 and 
omplete the proof for r = 4, we 
onsiderone more 
ase, for example h = 5. In this 
ase the matrix has the form
PAP T =















0 A12 0 0 0

0 0 A23 0 0

0 0 0 A34 0

0 0 0 0 A45

A41 0 0 0 0















, (5.14)
We divide its verti
es into subsets V1, V2, V3, V4, V5 su
h that ea
h ar
 is from Vito Vi+1 for some 1 ≤ i ≤ 4, or V5 to V1. We use this partition to obtain the 4-partitetournament matrix again. We 
an join V1 and V3, sin
e there exist no ar
s between,them so we obtain the matrix below
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







0 0 J 0 0
0 0 0 J 0
0 J 0 0 0
0 0 0 0 J
J 0 0 0 0









,
and 
learly it is not the 4-partite tournament matrix.The same argument 
an be applied to 
onsider for h > 4. So we 
an 
laim that
h = 1.In the next se
tion we state the 
on
lusion and possible future work in thisarea. 5.5 Con
lusion and Future WorkWe observed that the tournament matri
es are spe
ial (0, 1)-matri
es.Sin
e Perron-Frobenius theory about nonnegative matri
es, many people havepaid mu
h attention to the topi
s be
ause of their many appli
ations in the realworld. We 
an use their eigenvalue properties to atta
k the problems. However, it isnot easy to obtain the spe
trum of graphs, and there are still many open problems.For example, whi
h graphs have distin
t eigenvalues? This is important in graphspe
tra be
ause the spe
trum 
hara
terizes the topologi
al stru
ture of a graph.A

ording to our understanding, the 
ombination of graph theory, matrix analysisand 
ombinatori
s makes this topi
 really interesting.In all the 
onsiderations above, �nding a better bound for Perron value ofBrualdi-Li matrix is not easy and it seems that we need di�erent te
hniques. Wehope that the similarity te
hniques in the paper of Sav
henko in [25℄ 
an help atta
kthe problem. The maximization problem for spe
tral radius seems hard and ....



50Anyway, in this attempt we learned other te
hniques or properties of Brualdi-Limatrix.The study of r-partite tournament matrix is 
urrently in infan
y, but verya
tive, we 
ontinue our resear
h on the topi
 and we hope that we 
an publish ourpapers soon.We are working on the following problems:1. Cal
ulate the algebrai
 multipli
ity of eigenvalue 0 and 
al
ulate the number ofdistin
t eigenvalues in the r-partite tournament matri
es.2. Explore the spe
trum of bipartite tournaments: Let T (R, S) denote the setof all bipartite tournaments with s
ore ve
tors R and S, for given R and S,determine max ρ(T ) and min ρ(T ) over all matrix in T (R, S). Currently thereare many people working on the nearly regular bipartite tournaments.
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