
A FRAMEWORK FOR DYNAMIC SCHEDULING BASED ON
QUALITY OF SERVICE METRICS

By

Wilson Ernesto Lozano Rolón

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

July 10, 2006

Approved by:

Fernando Vega. Commitee, Ph.D Date
Member, Graduate Committee

Nayda Santiago. Commitee, Ph.D Date
Member, Graduate Committee

Wilson Rivera. Commitee, Ph.D Date
President, Graduate Committee

Yolanda Ruiz-Vargas, Ph.D Date
Representative of Graduate Studies

Isidoro Couvertier, Ph.D Date
Director of the Department

Abstract of Dissertation Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

A FRAMEWORK FOR DYNAMIC SCHEDULING BASED ON
QUALITY OF SERVICE METRICS

By

Wilson Ernesto Lozano Rolón

July 10 2006

Chair: Wilson Rivera
Major Department: Electrical and Computer Engineering

In this thesis the scheduling process in production environments is improved

through the development of a framework that implements a distributed dynamic

scheduling methodology based on quality of service. Such methodology takes into

account contingency, priority fluctuations and incorporates a scheduling algorithm

referred to as Quality of Service-based Maximum Urgency First (QB-MUF) algo-

rithm. The QB-MUF algorithm gives high priority to jobs with low probability of

failing according to suitable failure probabilities for particular application environ-

ments. The contribution of this research is related to the use of quality of service

metrics, calculated from the job meta-data, as part of the information used in the

decision making process of the scheduling.

To validate the dynamic scheduling framework, two study cases are considered.

First a simplified model of the digital publishing workflow is build upon the frame-

work in order to observe the behavior of the proposed scheduling strategy. Second, a

grid environment where resources are connected via two-level hierarchical networks

is simulated. In this case, the first level is a wide area network connecting local area

ii

networks at the second level. The implemented model represents the composition

of two, wide-area distributed, image operators providing treatment of data images.

Experimental results, show that the QB-MUF algorithm outperforms tradi-

tional scheduling strategies such as the Minimum Laxity First and the First In First

Out algorithms.

iii

Resumen de Disertación Presentado a Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

Requerimientos para el grado de Maestŕıa en Ciencias

UN FRAMEWORK PARA PLANIFICACIÓN DINÁMICA BASADO
EN METRICAS DE CALIDAD DE SERVICIO

Por

Wilson Ernesto Lozano Rolón

Julio 10, 2006

Consejero: Wilson Rivera
Departamento: Ingenieŕıa Eléctrica y Computadoras

En esta tesis el proceso de planificación en entornos de producción es mejorado

a través del desarrollo de un sistema que implementa una metodoloǵıa dinámica

de planificación basada en calidad de servicio. Dicha metodoloǵıa toma en cuenta

contingencias, fluctuaciones de prioridad e incorpora un algoritmo de planificación

nombrado como “Quality of Service-based Maximum Urgency First (QB-MUF)”. El

algoritmo “QB-MUF” da mayor prioridad a aquellos trabajos con baja probabilidad

de fallar de acuerdo a algunas probabilidades de falla que se adecuan para cada

problema en particular.

La contribución de esta investigación esta relacionado con el uso de métricas

para calidad del servicio, las cuales son calculadas a partir de de meta-datos extráıdos

del trabajo, como parte de la información usada en la toma de decisiones durante el

proceso de planificación.

Para validar el sistema de planificación dinámica, dos casos de estúdio se con-

sideraron. Primero, un modelo simplificado de flujo de trabajo en impresión digital

se construye sobre el sistema para observar el comportamiento de la estrategia de

iv

planificación propuesta. Segundo, se simula un ambiente de computación en malla

donde los recursos están conectados por redes separadas jerárquicamente en dos

niveles. En este caso, el primer nivel corresponde a una red de área amplia (WAN

por su nombre en inglés) conectando redes de área local (LAN por su nombre en

inglés) como segundo nivel. El modelo implementado representa la composición de

dos operadores de imágenes, distribuidos en la red WAN, proveyendo tratamiento

para datos de imágenes.

Resultados experimentales, muestran que el algoritmo “QB-MUF” supera otros

algoritmos tradicionales como son “mı́nima laxitud primero” y “primero en entrar -

primero en salir”.

v

Copyright c© 2006

by

Wilson Ernesto Lozano Rolón

Dedicated to:

My Mother and my Father

My brother and sister

ACKNOWLEDGMENTS

I would like to tank professor Wilson Rivera, for giving me the opportunity to

work in his research group.

Thanks to the people who walked on my side in this journey, my PDC lab

partners, the ADMG people and to my friends.

The work in this thesis was partially supported by a grant from the Imaging

and Printing Group (IPG) of Hewlett-Packard.

viii

TABLE OF CONTENTS
page

ABSTRACT ENGLISH . ii

ABSTRACT SPANISH . iv

ACKNOWLEDGMENTS . viii

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xvi

LIST OF SYMBOLS . xvii

1 INTRODUCTION . 1

1.1 Overview . 1
1.2 Problem Statement . 3
1.3 Solution Approach . 3
1.4 Research Objectives . 4
1.5 Contributions . 4
1.6 Thesis Structure . 5

2 PRELIMINARY CONCEPTS AND RELATED WORK 6

2.1 Scheduling . 6
2.2 Scheduling on Digital Publishing 8
2.3 Scheduling on Grids . 9
2.4 The Maximum Urgency First algorithm 11
2.5 Related Work . 12
2.6 Gridsim . 14
2.7 SimJava . 15

3 A DYNAMIC SCHEDULING FRAMEWORK 18

3.1 General Scheduling Model . 18
3.1.1 Job . 19
3.1.2 Process . 20
3.1.3 Resource . 20
3.1.4 Set of Resources . 20

3.2 A New Urgency Criteria . 21

ix

3.3 The QB-MUF Algorithm . 28
3.4 Framework Architecture . 30

3.4.1 The Source . 32
3.4.2 The Global Scheduler and Resource Manager 34
3.4.3 The ResourceSet . 34
3.4.4 The Router . 40

3.5 Developing tools . 41
3.5.1 Programming language . 41
3.5.2 Eclipse . 42

4 QOS BASED DYNAMIC SCHEDULING APPLIED TO DIGITAL PUB-
LISHING . 43

4.1 Digital Publishing . 43
4.2 Description of Variables . 51

4.2.1 Successful Jobs on simulation time 51
4.2.2 Mean waiting time only for successful Jobs 53
4.2.3 QoS related to the order of exit of Jobs 53

4.3 Scenarios of Experimentation . 53
4.3.1 Experiment 1 . 54
4.3.2 Experiment 2 . 57
4.3.3 Experiment 3 . 60
4.3.4 Experiment 4 . 63
4.3.5 Experiment 5 . 66
4.3.6 Experiment 6 . 69
4.3.7 Experiment 7 . 71
4.3.8 Experiment 8 . 74

4.4 Summary of Results . 77

5 QOS BASED DYNAMIC SCHEDULING APPLIED TO GRID COM-
PUTING . 79

5.1 A Grid Environment . 79
5.2 Description of Variables . 84
5.3 Scenarios of Experimentation . 84

5.3.1 Experiment 1 . 84
5.3.2 Experiment 2 . 87
5.3.3 Experiment 3 . 90
5.3.4 Experiment 4 . 93
5.3.5 Experiment 5 . 95

5.4 Summary of Results . 98

6 CONCLUSIONS AND FUTURE WORKS 99

6.1 Conclusions . 100
6.2 Future Work . 101

x

APPENDICES . 103

A GUIDELINES FOR THE FRAMEWORK SOFTWARE 104

A.1 Introduction . 104
A.2 Getting started . 104

A.2.1 A first example . 104
A.3 Specifying components’ behavior 106
A.4 Setting up the simulation . 107

BIOGRAPHICAL SKETCH . 119

xi

LIST OF TABLES
Table page

4–1 Digital Publishing Workflow Stages 44

4–2 Input Variables considered in the framework simulation 52

4–3 Values of the variables considered as inputs in order to run experiment 1 55

4–4 Values of the variables considered as inputs in order to run experiment 2 57

4–5 Values of the variables considered as inputs in order to run the exper-
iment 3 . 60

4–6 Values of the variables considered as inputs in order to run the exper-
iment 4 . 63

4–7 Values of the variables considered as inputs in order to run experiment 5 66

4–8 Values of the variables considered as inputs in order to run experiment 6 69

4–9 Values of the variables considered as inputs in order to run experiment 7 71

4–10 Values of the variables considered as inputs in order to run experiment 8 74

5–1 Values of the variables considered to be inputs in order to run the
experiment 1 . 85

5–2 Values of the variables considered as inputs in order to run experiment 2 87

5–3 Values of the variables considered as inputs in order to run the exper-
iment 3 . 90

5–4 Values of the variables considered as inputs in order to run the exper-
iment 4 . 93

5–5 Values of the variables considered as inputs in order to run Experiment 5 95

xii

LIST OF FIGURES
Figure page

2–1 Scheduling Taxonomy and Tools . 8

3–1 Urgency Criteria . 22

3–2 Laxity of a Job . 25

3–3 Laxity Factor of a Job . 26

3–4 Laxity factor defined using K . 27

3–5 Summarized pseudo code of the QB-MUF. 29

3–6 Algorithm to calculate the urgency of a Job inside each stage. 30

3–7 Framework Architecture . 31

3–8 Pseudo-code of the body method in the Source Component. 32

3–9 Pseudo-code of the body method in the GlobalScheduler Component. 35

3–10 Pseudo-code of the body method in the ResourceSet Component. . . 36

3–11 Pseudo-code of the body method in the LocalScheduler Component. . 38

3–12 Pseudo-code of the body method in the Resource Component. 39

3–13 Pseudo-code of the body method in the Dispatcher Component. . . . 40

3–14 Pseudo-code of the body method in the Router Component. 41

4–1 The Automated Preflight Model . 45

4–2 Number of successful jobs vs. time in experiment 1 54

4–3 Mean waiting time for successful jobs in experiment 1 56

4–4 Number of successful jobs vs. time in experiment 2 58

4–5 Mean waiting time for successful jobs in experiment 2 58

4–6 Quality of service vs. execution order in experiment 2 59

4–7 Number of successful jobs vs. time in experiment 3 61

4–8 Mean waiting time for successful jobs in experiment 3 61

xiii

4–9 Quality of service vs. execution order in experiment 3 62

4–10 Number of successful jobs vs. time in experiment 4 64

4–11 Mean waiting time for successful jobs in experiment 4 64

4–12 Quality of service vs. execution order in experiment 4 65

4–13 Number of successful jobs vs. time in experiment 5 67

4–14 Mean waiting time for successful jobs in experiment 5 67

4–15 Quality of service vs. execution order in experiment 5 68

4–16 Number of successful jobs vs. time in experiment 6 69

4–17 Mean waiting time for successful jobs in experiment 6 70

4–18 Quality of service vs. execution order in experiment 6 70

4–19 Number of successful jobs vs. time in experiment 7 72

4–20 Mean waiting time for successful jobs in experiment 7 72

4–21 Quality of service vs. execution order in experiment 7 73

4–22 Number of successful jobs vs. time in experiment 8 75

4–23 Mean waiting time for successful jobs in experiment 8 75

4–24 Quality of service vs. execution order in experiment 8 76

5–1 Conceptual framework for wide area large scale automated informa-
tion processing . 80

5–2 Number of successful jobs vs. time in experiment 1 86

5–3 Mean waiting time for successful jobs in experiment 1 86

5–4 Number of successful jobs vs. time in experiment 2 88

5–5 Mean waiting time for successful jobs in experiment 2 88

5–6 Quality of service vs. execution order in experiment 2 89

5–7 Number of successful jobs vs. time in experiment 3 91

5–8 Mean waiting time for successful jobs in experiment 3 91

5–9 Quality of service vs. execution order in experiment 3 92

5–10 Number of successful jobs vs. time in experiment 4 93

xiv

5–11 Mean waiting time for successful jobs in experiment 4 94

5–12 Quality of service vs. execution order in experiment 4 94

5–13 Number of successful jobs vs. time in experiment 5 96

5–14 Mean waiting time for successful jobs in experiment 5 96

5–15 Quality of service vs. execution order in experiment 5 97

A–1 The simplified digital printing model 106

xv

LIST OF ABBREVIATIONS

APM Automated Preflight Model

EDF Earliest Deadline First.

DS Dynamic Scheduling.

MUF Maximum Urgency First Algorithm.

QOS Quality of Service

QB-MUF Quality of Service Based - Maximum Urgency First Algorithm.

xvi

LIST OF SYMBOLS

t Time (seconds)

τ Time between events.

xvii

CHAPTER 1

INTRODUCTION

1.1 Overview

Scheduling deals with the allocation of resources to tasks over time [1]. Tasks

and resources can take different forms depending on the specific problem domain.

For example, in a simplified model of a heterogeneous cluster of computers, the set

of computers can be considered as a set of available resources R = {r1, r2, ..., rm}.
Each autonomous computer rj can be weighted according to parameters, such as

mean time to perform a unit of computation. In this model, the set of jobs to

be executed, can be represented by a set of tasks, α = {α1, α2, ...αn}, which are

independent of each other.

The scheduling problem can be formulated as the following optimization prob-

lem:

Minimize

n∑
j=1

wjCj , (1.1)

for a given set of tasks {αj}n
j=1, where wj is a weighting factor and Cj is a metrics

for each task αj, 1 ≤ j ≤ n. The meaning of the objective function can be changed

according to the specific problem domain. For example, the optimization problem

can be the minimization of the aggregated completion time of a number of jobs,

each pondered with a priority factor.

There exists a variety of scheduling models, which adopt both deterministic and

non-deterministic formulations. These models include single machine[2, 3], parallel

machine[4, 5], and shop scheduling models[6–10]. The single machine model is the

1

2

simplest type of scheduling model and is a particular case among all other environ-

ments. It is often found in practice when there is only one service point or a single

stage. Algorithms developed for single machine models provide a basis for design of

exact algorithms and heuristics for more complicated machine environments. Basic

single machine models, with regular objective functions, are relatively simple and

solvable via simple priority rules. More advanced single machine models deal with

non-regular and/or multiple objective functions. These models are either solvable in

polynomial time through dynamic programming or using polynomial time approxi-

mation schemes. A generalization of the class of single machine models is the type

of parallel machine models. In parallel machine models, a job requires a simple op-

eration and may be processed on any of the m machines or on anyone that belongs

to a given subset of machines. The class of shop scheduling models comprises the

open shop, flow shop and job shop models. In an open shop model, the operations

of a job can be performed in any order. In a job shop, they must be processed in a

specific job-dependent order. A flow shop is a special case of job shop in which each

job has exactly m operations, one per machine, and the order in which they must

be processed is the same for all of the jobs. Shop models are strongly NP-hard1 in

their most general form. For the flow shop model, the case when there are more than

two machines is strongly NP-hard, although the two machine version is polynomial

solvable.

Production environments, such as print shops and grid computing, are subject

to many sources of uncertainty. Stochastic models[11, 12] have been proposed to

1 In computational complexity theory, NP-hard (Non-deterministic Polynomial-
time hard) refers to the class of decision problems that contains all problems H,
such that for every decision problem L in NP there exists a polynomial-time many-
one reduction to H, written L ≤p H. Informally, this class can be described as
containing the decision problems that are at least as hard as any problem in NP.

3

model random features, such as job processing times, by specifying their probability

distributions. Stochastic scheduling models, especially with exponential processing

time, often contain more structure than their deterministic counterparts. Conse-

quently, models that are NP-hard in a deterministic setting often allow a simple

priority policy to be optimal in a stochastic setting. In production environments,

scheduling is not merely an activity that ensures on-time delivery, but a scientific tool

that ultimately impacts their profitability, customer satisfaction and competitive-

ness. As a result, a major driving force for this research is the need to incorporating

dynamism into the scheduling process for such environments.

1.2 Problem Statement

Dynamic scheduling has the potential to relax some of the constraints imposed

by strict static scheduling approaches [13, 14]. However, most approaches to dy-

namic scheduling are based on time criteria. Furthermore, those existing approaches

targeting quality of service are based on external requirements of the jobs. This the-

sis deals with the problem of adding other dynamic factors, such as the quality of

service extracted from the internal job metadata, in the decision making process.

1.3 Solution Approach

From our point of view, the scheduling process in production environments, may

be improved through a new approach based on metrics targeting quality of service. In

order to achieve such a scheduling methodology we have concentrated our research

efforts on developing a scheduling algorithm that takes into account contingency

(unexpected events) and priority fluctuations (changes in job priorities). Such a

scheduling algorithm is a modification of the Maximum Urgent First[15] (MUF)

algorithm. The new algorithm, referred to as Quality of Service Based - Maximum

Urgency First (QB-MUF), gives high priority to jobs with low probability of failing

4

according to criteria defined in each workflow stage and allows diverse scheduling

policies.

1.4 Research Objectives

The main goal of this research is to develop a framework that implements

a distributed dynamic scheduling methodology based on quality of service. The

specific research objectives are listed below:

• To define and implement a dynamic scheduling framework that incorporates man-

agement of contingency and priority fluctuations.

• To validate the dynamic scheduling framework in two study cases: digital pub-

lishing and grid computing.

1.5 Contributions

Most of the existing dynamic scheduling methodologies are time based and use

external requirements of jobs as input for the decision making process. Algorithms

based on a laxity factor, such as MUF, have shown good schedules in the time

domain. However, normally these kinds of algorithm may deliver, with the same

probability, jobs considered to be successful or unsuccessful at the end of a workflow.

The contribution of this research is related to the use of quality of service metrics,

calculated from the job meta-data, as part of the information used in the decision

making process of the scheduling.

The main contributions of this research thesis can be summarized as follows:

• The mapping of job meta-data into quality of service metrics to be considered in

the decision making process of the workflow scheduling.

• The modification of the existing Maximum Urgency First algorithm by the inclu-

sion of a second dynamic factor to calculate the urgency criteria.

5

• The use of a distributed architecture together with a MUF based algorithm.

The importance of this new approach lies in an improved scheduling, because

of the high dynamic priority given to those jobs with the best expectation of success

at the end of the workflow.

1.6 Thesis Structure

The rest of this thesis is organized as follows: In chapter 2, related work pre-

viously done in the area is discussed. Chapter 3 describes in detail the proposed

dynamic scheduling framework. The description includes the framework compo-

nents, the QB-MUF algorithm, and the implementation issues. Chapters 4 and 5,

present examples of the application of the dynamic scheduling framework on digital

publishing and grid environments, respectively. A summary of results, conclusions

and future work is presented in chapter 6. Finally a guideline for the framework

software is presented in the appendix A.

CHAPTER 2

PRELIMINARY CONCEPTS AND RELATED

WORK

This chapter describes the concepts concerned with our research including

scheduling methodologies and the application to digital publishing and grid com-

puting. Along with the presentation of the related work, a comparative description

of our proposed scheduling strategy will be presented. This chapter also includes

the description of the simulation tools used to implement the experiments during

the different stages of the research. These simulation tools are Gridsim[16] and

SimJava[17].

2.1 Scheduling

A scheduling problem is represented as a triplet (A | P | F), where A describes

the machine environment, P provides details of processing characteristics, and F

defines the objective function to be minimized[1]. A case of interest is represented

by (Rm | Prec, Sijk | Fmetric), where tasks exchange data with each other. The

machine environment Rm consists of m parallel machines where machine i can

process task j at speed vij, which means that the speed of the machine depends on

the task to be undertaken. Precedence constraints (Prec) may require that one or

more tasks be completed before another task is allowed to start its processing. The

Sijk represents the sequence dependent upon the set up time between tasks j and k

on the machine i. Finally Fmetric is an objective function that may be defined as a

quality of service (QoS) metric.

6

7

Scheduling problems may appear under various sets of assumptions: off-line

deterministic scheduling, stochastic scheduling, online scheduling, and stochastic

online scheduling. In off-line deterministic scheduling, all information is known a

priori including the number of jobs, release times, due dates, and weights. In stochas-

tic scheduling the number of jobs is fixed and known in advance. The processing

time of a job is drawn from a given probability distribution. Thus, actual process-

ing times only become known when the processing is completed. Different jobs may

have varying processing time distributions. Release dates and due dates may also

be random variables from known distributions. In online scheduling, even less in-

formation is known ahead of time. When a job enters the system, its processing

time is a random variable from an unknown probability distribution. Finally, in

stochastic online scheduling, the type of the distribution of the processing time is

known in advance. However, the values of the parameters of the distribution for

each processing time are not known a priori.

The criteria to perform scheduling varies according to the performance goals.

System schedulers (high throughput schedulers) promote the performance of the sys-

tem over the performance of individual applications. Job schedulers and resource

schedulers, for example, optimize the number of jobs executed by the system and

the resource utilization of the system, respectively. On the other hand, applica-

tion schedulers (high-performance schedulers) promote the performance of individ-

ual applications by optimizing application-centric cost measures. It is unrealistic

to expect system schedulers to optimize application performance. Figure 2–1 illus-

trates a scheduling taxonomy in which both high throughput schedulers and high

performance schedulers can be categorized as global or local, homogeneous or het-

erogeneous, static or dynamic. Scheduling developments have been more focused

on static scheduling where execution, data dependency and resources must be de-

termined prior to job launch and cannot be changed. Dynamic scheduling allows

8

modifications in response to loss of data, availability of resources or identification

of new features in input/output. Adaptive scheduling represents a higher level of

complexity because in addition to respond to environment fluctuations, it allows

scheduling components to interact with each other to optimize scheduling results.

Figure 2–1: Scheduling Taxonomy and Tools

2.2 Scheduling on Digital Publishing

A number of commercial digital printing products provide job tracking and

scheduling capabilities including Production Manager from Hewlett-Packard, Lean

Document Production (LDP) from Xerox, Print Shop Pro Manager from EDU,

Pinnacle from Parsec, and Electronic Planning Board (EPB) from Pace Systems

Group, among many others. To the best of our knowledge the only product that

provides truly dynamic scheduling capabilities is PrintFlow from EFI. PrintFlow

was developed around the Theory of Constraints (ToC) [18] and was adapted to fit

9

the printing industry. It defines printing as a manufacturing operation comprising

interdependent links where only a few constraints control the throughput, on-time

delivery and the cost of the entire printing operation. We believe our approach,

which diverges from the ToC approach, provides a more realistic scenario since it

considers workflow priority fluctuations and contingency in a simplified formulation.

2.3 Scheduling on Grids

Although scheduling has been studied in various contexts, with the emergence

of grid computing, unique challenges have arisen. Grids are shared infrastructures

with no central control, where the applications compete for the best quality of ser-

vice from remote resources. In addition, grids exhibit fluctuations in the availability

of resources and communication latencies over multiple resource administrative do-

mains. The emerging grid technology [19, 20] has led to the need of a new generation

of applications capable of adapting its execution to changing conditions. Therefore,

the development of an adaptive application scheduler has become a major challenge

[21–24]. Research projects, such as AppLeS [25] and Nimrod/G [26], have demon-

strated that periodic evaluation of the schedule in order to adapt it to changing Grid

conditions and application dynamic demands can result in significant improvements

in performance. The Application Level Scheduling (AppLeS) project primarily fo-

cuses on developing scheduling agents for individual applications. Thus, the AppLeS

framework contains templates that can be applied to problems that are structurally

similar and have the same computational mode. Templates have been developed

for parameter sweep [27] and master/slave [28] type applications. Nimrod/G is a

Grid resource broker that provides support for formulation of parameter studies

on computational grids as well as facilities for resource discovery and scheduling.

Prophet [29] is an automated scheduler for data parallel applications that utilizes a

10

performance model for predicting application performance on different resource com-

binations. Gallop [30] is a wide-area scheduling system that implements scheduling

models across different sites.

High performance schedulers employ predictive models to evaluate the perfor-

mance of the application on the underlying system; they use this information to

determine the assignment of tasks, communication, and data to resources with the

goal of leveraging the performance potential of the target platform. The high per-

formance scheduling problem consists of the following steps: selection of a set of

resources on which to schedule the application (resource allocation), assign appli-

cation tasks to compute resources (partitioning), distribute data and computation

(data placement), order tasks on computer resources (computation scheduling), and

finally order communication between tasks (communication scheduling). High per-

formance schedulers are software systems that use scheduling models to predict per-

formance, determine application schedules based on these models, and take action

to implement the resulting schedule. A high performance scheduling model consists

of an application model, which abstracts the set of programs to be scheduled, a per-

formance model, which abstracts the behavior of the application, and a scheduling

policy, a set of rules for scheduling.

Application models for high performance schedulers represent the application by

a data-flow-style application graph or by a set of application characteristics, which

may or may not include a structural task dependency graph. SEA [31] and VDCE

[32] represent an application as dependency graphs of coarse-grained tasks. MARS

[33] builds application dependency graphs under the assumption that applications

are partitioned into independent sequential phases. On the other hand, AppLes and

I-SOFT [34] take the approach of representing programs in terms of their resource

requirements. Dome [35] and SPP(X) [36] provide language abstractions that are

compiled into a low-level application dependency graph.

11

Current performance models can be classified as scheduler-derived (e.g., Dome,

SPP(X), MARS, VDCE) or userderived (e.g., AppLeS, I-SOFT, SEA). While scheduler-

derived performance models are built using dynamic information combined with ei-

ther language abstraction or dependency graphs, user-derived scheduler models are

provided by the user. Providing predictable application execution times is a chal-

lenge due to fluctuations in resource capacities. Advanced reservation (e.g. Maui

[37]) offers exclusive use of a portion of the capacity of a resource for grid jobs.

The drawback of this approach is that not all local schedulers provide advanced

reservation support. Predictive techniques (e.g. AppLes) use statistical extrapola-

tion of historical data to forecast utilization and performance of the resources. It

is assumed that the data of past executions on specific resources is available, which

may be a limitation. Feedback control (e.g CHAIMS [38], GrADSoft [39]) compare

measured performance with desired performance to provide correction dynamically.

This approach requires extensive use of application development and profiling tools.

A number of sophisticated scheduling policies have been devised to address

the scheduling problem [40–42]. Although scheduling policy is an area that has

been investigated for a long time in distributed computing; grid computing systems

present unique characteristics that demand reexamination.

We consider our approach provides an improved scenario for dynamic scheduling

on grid computing by introducing the use of quality of service metrics.

2.4 The Maximum Urgency First algorithm

The Maximum Urgency First (MUF) scheduling algorithm was proposed by

Stewart et. al.[15, 43, 44] as a flexible scheduler to support changing behaviors in

sensor-based control systems. The proposed QB-MUF algorithm is the result of a

modification of the manner in which the urgency criteria of a job is calculated. The

original MUF algorithm gives each job an urgency factor defined as a combination

12

of two fixed priorities (criticality and user priority) and a dynamic priority (laxity).

On the other hand, the QB-MUF algorithm proposes the change of a static priority

on behalf of a second dynamic priority based on the quality of service for the job.

See sections 3.2 and 3.3 for a detailed definition of the new urgency criteria and the

proposed QB-MUF algorithm, respectively.

MUF combines the advantages of the Earliest Deadline First (EDF) and Mini-

mum Laxity First (MLF) algorithms. EDF uses the deadline of a job as its priority.

The job with the earliest deadline has the highest priority to be executed. MLF as-

signs a laxity to each job and selects the job with the minimum laxity to be executed

next. The difference between EDF and MLF is that MLF considers the execution

time of a job, while EDF does not.

A particular application of the MUF algorithm in avionics mission comput-

ing was proposed by Levine et. al. [14]. They introduced the use of the MUF

as a dynamic scheduling strategy to address issues such as under-utilization of re-

sources, variations in activities and flexible prioritization of jobs. Furthermore, the

use of MUF intends to avoid the trade off carried by traditional dynamic scheduling

strategies which include a higher run-time scheduling overhead and an additional

application development complexity.

2.5 Related Work

The following are different efforts in the application of dynamic scheduling

strategies as well as the comparison between their approaches and our proposed

QB-MUF algorithm.

Kalogeraki et. al. [45] proposed a dynamic scheduling algorithm that monitors

the computation times and resource requirements of a job to determine a feasible

schedule of method invocations on processors. Such a schedule is driven by the laxity

and the priority of the job. Ligang et. al. [46] proposed a dynamic framework with

13

local and global schedulers based on the EDF criteria. In this approach, jobs are

rejected if their deadlines cannot be met under the condition of still guaranteeing

the requirements of existing jobs. Zolfaghari et. al. [47] proposed an improvement

for the MLF algorithm. Our approach is a departure from the above work providing

a new formulation of the urgency criteria that includes information related to the

relevance and laxity of the jobs as well as the probability of job failure. The later

factor is defined as a QoS metric and represents the major difference of our approach.

Hartmann et. al. [48] presented a framework for data scheduling in packet-

based wireless systems. This approach is based on the assumption that each user

is characterized by a set of QoS requirements as his/her flow is accepted into the

system. The authors define the residual time as a generalized measure for the

urgency of the next packets over the flow. This residual time may be interpreted as

a kind of laxity measure. Although the authors deal with QoS, the urgency of each

packet is calculated based on the packet’s residual time, leaving the QoS merely as

a guide for the assignment of packets to the adequate cell. Our proposed QB-MUF

algorithm deals with QoS parameters created from the dynamic characteristics of

each job, generating a QoS Factor that is included together with a Laxity Factor

into the urgency of a Job.

Yuan et. al. [49] conveyed an analysis of the QoS properties in Manufacturing

Grids (MG). A MG workflow can be defined as the composition of manufacturing

activities executed on heterogeneous and distributed manufacturing resources. The

authors presented a scheduling algorithm based on QoS. The main difference with

our approach is that ours takes into account the dynamic internal characteristics of

a job to calculate its probability of success.

An approach that includes the concept of QoS degradable jobs was presented

by Mittal et. al.[50] They proposed dynamic scheduling algorithms for integrated

scheduling of hard and QoS degradable jobs in real-time multiprocessor systems.

14

The real-time jobs are represented by two workload models, imprecise computation

and (m,k)-firm guarantee, which quantify the trade-off between schedulability and

result quality. This trade-off analysis will be introduced in our dynamic scheduling

framework as an additional feature.

The next sections make a brief description of GridSim and SimJava, two simu-

lation tools used to implement a proof of concept and to complete the first version

of our framework, respectively.

2.6 Gridsim

GridSim1 is a Java-based discrete-event grid simulation toolkit, which allows

modeling and simulation of entities in parallel and distributed computing systems.

Those computing systems refereed to by GridSim as GridResources may be hetero-

geneous, using both time-shared and space-shared execution policies. In this way,

GridSim allows the facility to simulate different heterogeneous resources, applica-

tion, resource brokers and schedulers.

Some important features of GridSim are:

• It enables the representation of heterogeneous types of resources

• Resources can be modeled operating under space-shared or time-shared mode

• Resources can be booked for advance reservation

• It supports simulation of both static and dynamic schedulers

• Network speed between resources can be specified.

1 http://www.gridbus.org/gridsim/

15

A simple scheduling model was implemented on GridSim as the proof of concept

for the proposed QB-MUF algorithm. This model includes a source of jobs, a

local scheduler and a resource with the capability to generate simple reports. The

simplicity of this model avoids the requirement of a global scheduler or dispatchers.

The objective of the proof of concept is to observe the tendency of the output

of the QB-MUF algorithm and to confirm that its output behavior points to the

expected results.

During the implementation of the proof of concept model, the need to address

an important quantity of information about the job according to each stage it passes

through was notorious. In spite of the benefits of GridSim and its resource oriented

model, it does not count with a generous managing of internal job characteristics.

The limited capacity to address job characteristics and the desire to construct

a general framework, instead of just a grid-oriented framework, generates a search

one level down in the architecture of GridSim. In this search, SimJava was found;

SimJava is the discrete event simulation package where GridSim is implemented on.

The next section, further explores SimJava and its features.

2.7 SimJava

SimJava2 is a process based discrete event simulation package for Java, with

animation facilities. For SimJava, a simulation is composed of a set of entities each

running in its own thread. Such entities are connected together and can stay in

communication with each other by sending and receiving event objects. These event

objects should be sent and received by output and input ports respectively which

are predefined inside each entity.

2 http://www.icsa.informatics.ed.ac.uk/research/groups/hase/simjava/

16

In SimJava, a central system class controls all the running threads, advances

the simulation time, maintains the internal event queues, and delivers the events.

Furthermore, entities synchronization issues are addressed by passing objects of the

class Sim event.

The following is a short description of some steps used to construct a simulation

using SimJava:

• Write in code the behavior of each simulation entity by overriding their body()

methods. Each simulation entity has to extend the standard Sim entity class to

inherit the body method.

• It is necessary to add an instance of simulation entity to the static Sim system

object by using its add() method.

• Link the adequate entities’ ports together by using the method link ports() of

the Sim system object.

• The last step is to activate the simulation by calling the run() method of the

Sim system object.

SimJava was used to implement the first version of the proposed dynamic

scheduling framework, which supports the QB-MUF algorithm. The components

of the framework architecture together with their behavior were mapped into enti-

ties of the SimJava class Sim entity. Also, a main program which encases the logic

to build the representation of a whole scheduling environment was implemented.

This program supports scheduling algorithms including FIFO and a laxity based al-

gorithm besides the proposed QB-MUF. Another feature of the implemented frame-

work is the possibility of implementing other scheduling methodologies by imple-

menting the abstract class LocalScheduler but restricted to using the job charac-

teristics pre-defined with in the framework.

17

A more detailed explanation about the implementation of the proposed dynamic

scheduling framework and the proposed QB-MUF algorithm will be provided in

chapter 3.

CHAPTER 3

A DYNAMIC SCHEDULING FRAMEWORK

This chapter presents the developed framework in detail. Section 3.1 describes

a general scheduling model used as a base for the scheduling framework. Section 3.2

introduces a new urgency criteria; it is a key concept used in the proposed QB-MUF

algorithm. Section 3.3 describes the proposed QB-MUF algorithm. Finally, section

3.4 shows a full description of the framework architecture, their components and

their functionality.

3.1 General Scheduling Model

When a Job to be processed arrives, the first step is to extract static meta-data

from the job and customer information to map it into a characterized job that can

be managed by the scheduler framework. This meta-data includes a Job Id, the

deadline of the job, a relevance of the job and the existence or absence of faults

in the original job file. Secondly, a job path is defined, step by step, based on

the urgency (see the particular definition of urgency used in section 3.2) of the job

and the on-time status of the resources of the system. Next, a workflow engine may

move the job from one resource to another in order to execute the required processes.

Each set of resources or stages of the path release meta-data that helps calculate the

actual capability of the system and a measure of probability of error for the job in

the following stages. This probability of error is calculated based on the occurrence

of faults in the job (see section 3.2).

18

19

In each set of resources (stage) in the system, a local scheduler manages its own

schedule into the stage according to the job urgency and the expected and unex-

pected events present within the resources of the system. Defining a model implies

describing the most important components identified as part of the workflow pro-

cess. The following sub-sections describe job, process, resources and set of resources

in a general scheduling model.

3.1.1 Job

A job may be defined as any existent file that requires the execution of a se-

quence of processes supported by the stages of a defined workflow. Jobs are con-

sidered aperiodic, meaning that job arrivals are not known a priori. Each Job has

particular static parameters that describe it. These parameters include job arrival

time (Jai), job deadline (Jdi), job relevance (Jri) and job size (Jsi). Also, dynamic

parameters are calculated in real time according to the characteristics of the system.

These dynamic parameters include job latency (Jlati) and job laxity (Jlaxi). Job

latency is the time required to complete a job. Job laxity is the difference between

the job deadline and the sum of the job latency and the current time at any moment

of the job processing (see section 3.2 for more details). Furthermore, we take into

account a special kind of job parameter, the faults. The occurrence of a fault in

a job indicates the existence or absence of a specific feature according to a specific

problem. Faults may be detected when a job arrives to the system as well as during

the processing of the job. This means that processing of a job in the system can

cause the elimination or generation of faults. Normally faults are considered to be

the cause of failed jobs as an outcome from the system. The explanation of how job

faults are mapped as possible job failures is presented in the section 3.2.

20

3.1.2 Process

A process can be defined as an action performed on a job. Commonly, a job

with a defined path requires a specific order for the realization of a specific process.

Processes are related to resources in the system; each resource can perform a specific

process on a job. Furthermore, the system may have heterogeneous sets of resources

serving as a unique process but on different levels of performance or quality.

3.1.3 Resource

A resource performs a process on a job. A resource may be a software tool, an

expert or a machine executing a process on a job. Different kinds of entities exist

that can execute similar processes but with different specifications. As an example,

in digital publishing, different preflight tools may execute a preflight process but

offer different levels of artifact1 recognition services. A more detailed explanation

about the application of the proposed framework on digital publishing is presented

in chapter 4.

3.1.4 Set of Resources

A set of resources is defined as an entity that contains a number of homo-

geneous resources. However, the resources in different sets of resources may have

different characteristics. This gives the framework the opportunity of addressing

heterogeneous sets of resources.

Processes, sets of resources and resources may be formally defined as:

R = {rjkj lkj
} ∀ j = 1, ...,m ∧ kj = 1, ..., nj ∧ lkj

= 1, ..., skj
, (3.1)

1 The name artifact is used to define any type of defects in digital documents.

21

where m is the number of processes (stages) in the system, nj corresponds to the

number of sets of resources available to perform the process Pj and skj
corresponds

to the number of resources available in the set of resources kj. In this way, rjkj lkj
is

an identifier for each autonomous resource which can execute the process Pj. The

different number of heterogeneous sets of resources that can execute the process Pj

may be represented by the variation of the sub-index kj between 1 and nj where

nj is different for each process Pj. In the same manner, the different number of

homogeneous resources that can execute the process Pj on a given set of resources

kj, may be represented by the variation of the sub-index lkj
between 1 and snj

where

snj
is different for each set of resources Kj.

On the other hand, the property of a set of resources that affects the behavior

of the system and the outcomes of the scheduling process is the mean of the urgency

of the jobs that compose the load of a set of resources (Rmjkj
). This measure shows

the tendency of the urgency of most jobs waiting for process in a set of resources

Rjkj
at a specific time. The load of each resource can be managed by the scheduler

through the process of generating a schedule for each job that requires the resource.

3.2 A New Urgency Criteria

Our scheduling strategy focuses on providing high priority to jobs with low

probability of failing. To achieve this a new urgency criteria equation is introduced

to account for relevance, laxity and probability of failures of incoming jobs. The

probability of the failure of a job will be estimated according to the fault occurrence

in a job because the presence of faults or the combination of some of these faults

can eventually become errors, depending on their severity.

The proposed urgency criteria is based on one static and two dynamic pa-

rameters (See Figure 3–1) each pondered by a weighting factor, W1, W2 and W3

respectively. These parameters are defined as follows:

22

Figure 3–1: Urgency Criteria

1. Criticality (Relevance). This static factor is initially established by the user

according to experience and/or job importance. Criticality values range between

0 and 100. The presence of this factor intends to account for the importance of

a job at the time of generating a scheduling for a job. Since the research focuses

on the contribution of merging QoS and time parameters, the scenarios used for

our experiment do not consider variations for this factor in sets of incoming jobs.

This consideration does not mean that the experiments will not present priority

fluctuation for jobs. The priority fluctuation will be introduced for two specific

situations:

• The variations on laxity, caused by the simulation time going forward and

by the changes in the eventual redefinitions of job’s deadline, will generate

possible variations of the priority of the jobs during a simulation.

• The possible changes in the definition of the function for the quality of service

factor (QoSF), in different processes, will produce priority fluctuation of jobs

between different stages.

The following two items in this list will deepen the explanation of the quality of

service and the laxity factors.

2. Quality of Service (QoS). Scheduling involves matching of the job needs with

the resource availability and capability, and addressing the concern of the quality

of the match. In the scheduling strategy for this research, the QoS is defined as

the probability of success for each job and its value ranges between 0 and 100.

23

This QoS will be used as the quality of service factor QoSF in the function that

defines the urgency of a job in the QB-MUF algorithm. A way to define the

probability of success for a job is in terms of its probability of failure. Thus, the

QoSF of a job can be defined as:

QoSF = 100 − JPF ∗ 100 (3.2)

where JPF is the job probability of failure. The JPF can be defined as a mapping

of the presence of selected faults in a job. An example of a JPF definition where

faults are mapped into a probability of failure is:

JPF =





[random() ∗ 6/100] if f1 = 0 ∧ f2 = 0

40 + [random() ∗ 16/100] if f1 = 1 ∧ f2 = 0

20 + [random() ∗ 21/100] if f1 = 0 ∧ f2 = 1

50 + [random() ∗ 21/100] if f1 = 1 ∧ f2 = 1

(3.3)

where f1 and f2 are two kinds of faults present in a job and random() is a function

that returns a real random number Rn such that Rn ∈ [0..1). In general, from

3.2 and 3.3, it is possible to define the the quality of service factor (QoSF) as a

function of possible faults of a job:

QoSF = F (f1, f2, ...fn), (3.4)

where fi are the faults that can become failures when present in a job. Such

QoSF definition can be different for each different scheduling problem.

On the other hand, different QoS metrics can be defined according to the ob-

jectives of the scheduling strategy in use. Since the QoS definition, in this case,

is based on the probability of success for each job, the quality of service met-

rics for this strategy should be defined targeting to exhibit how the algorithms

under evaluation address the probability of success of a job. Two metrics were

24

defined to observe during the experimentation. First, the number of successful

jobs delivered. Second, the mean waiting time of successfully delivered jobs.

The number of successful jobs delivered can be represented by a graphic showing

on the y-axis the number of successful jobs delivered and on the x-axis the simu-

lation time. The objective of this graphic is to observe the behavior of the metric

number of successful jobs delivered while the simulation time goes forward. The

expected behavior of the metric is that for those algorithms that take into ac-

count QoS, the number of successful jobs delivered increases faster than in other

algorithms, especially in the first part of the simulation.

The mean waiting time of successfully delivered jobs (SJwt) is defined by a

equation of the form:

SJwt =

∑i=NJ
i=1 Jwti ∗ Succesi

NSJ
(3.5)

where NJ is the number of processed jobs, Jwti is the time that the job Ji has

to wait since it was received until it starts processing, NSJ is the number of

successful jobs at the end of the simulation and Successi can take only the values

0 or 1 according to whether Ji was failure or success, respectively.

The mean waiting time of successfully delivered jobs metric can be represented

by a bars graphic. This graphic shows a bar with the value of the mean waiting

time for each algorithm under evaluation. The expected behavior of the met-

ric, is that for those algorithms that take into account QoS, the mean waiting

time of successfully delivered jobs be shorter than the mean waiting time for the

successfully delivered jobs in the simulation of other algorithms.

3. Laxity. This dynamic factor is defined as the difference between the job deadline

and the sum of the job latency and the current time (tnow) at any moment of job

25

processing. Thus, laxity can be represented as:

Jlax = Jd− (tnow + Jlat), (3.6)

where Jd is the Job deadline, tnow is the current time of calculation, and Jlat is

the expected latency of the Job. Figure 3–2 provides a graphic illustration of the

meaning of laxity.

Figure 3–2: Laxity of a Job

Laxity as defined above is not bounded (it is as large as the difference between

the job deadline and the sum of the job latency and the calculation time) and

may lead to unrealistic urgency criteria values. The reasons for this are, first the

meaning of the use of laxity as urgency criteria; second a possible definition of a

laxity factor, which emerges from a requirement of itself, where its value has to

range between 0 and 100. The reasons are explained in detail as follows:

(a) The strategies that take into a count the laxity as a way to prioritize jobs,

should give a higher priority to jobs with a low laxity value. This shows that

the relation between laxity and priority of a job are inversely related.

(b) From (a) and with the requirement of generating values of a laxity factor

between 0 and 100, a initial definition for a laxity factor can be:

LaxityF =
1

Jlax
∗ 100 ∀ Jlax ≥ 1 (3.7)

26

This definition presents a special situation; when the value of Jlax is relatively

large, all the values of LaxityF will approach 0.

lim
Jlax→∞

1

Jlax
∗ 100 = 0 (3.8)

The figure 3–3 shows an illustration of this phenomenom.

Figure 3–3: Laxity Factor of a Job

Since the range of values for laxity and units of time can vary for different schedul-

ing problems, the situation revealed above may lead to laxity not achieving the

desired effect in the urgency of a job. A worse case if that because of select-

ing a unit for time to small, the laxity values be always bigger therefore all the

calculated values of laxity factor be 0.

One way to compensate for this is to define a modulator factor K (units of

time). The magnitude of such factor should be properly defined (in units of

time) according to the expected values of laxity for each particular scheduling

problem.

The objective of the modulator factor is to normalize the values of laxity when

they are larger than the modulator factor. Selecting a proper value for the mod-

ulator factor will lead to a laxity factor with the expected values between 0 and

27

100. Using the proposed modulator factor, the Laxity factor is defined as follows:

LaxityF =





(K/Jlax) ∗ C if Jlax > 0 ∧ Jlax ≥ K

C + (1− (Jlax/K)) ∗ (100− C) if Jlax > 0 ∧ Jlax < K

(3.9)

where C is a constant. Figure 3–4 shows the behavior of the laxity factor accord-

ing as defined in the equation 3.9.

Figure 3–4: Laxity factor defined using K

In the case that Laxity < 0, a degradation of the quality of service on delivery

time for a job will be permitted. Thereby a new deadline Jd must be generated by

taking into account the probability of success of the job. The new Jd is calculated

as Jd = timenow +(f(Jlat)∗MF), where f(Jlat) is a function of job latency and

MF is a multiply factor. The multiply factor MF works as a correction factor

to penalize Jobs according to their quality of service; as a particular example, in

one proposed scenario for Digital Publishing the MF is calculated according to

the QoS of the job as follows:

28

MF =





0.9 if QoS ≥ 80

1.1 if 60 ≥ QoS < 80

1.2 if QoS < 60

(3.10)

The function for MF must be redefined to fit the requirements of each particular

scheduling problem.

The resultant urgency criteria is defined in the following equation:

Urgency = Criticality ∗W1 + QoSF ∗W2 + LaxityF ∗W3 (3.11)

where
3∑

i=1

Wi = 1 and , Wi > 0 ∀ i (3.12)

3.3 The QB-MUF Algorithm

Inside each set of resources in the system, a local scheduler runs the QB-MUF

algorithm. The QB-MUF algorithm, in a iterative way, assigns jobs to resources

by considering resource availability and the urgency factor of each job. If there are

not available resources to process a job, then the job is sent to a waiting queue. To

deal with resource contingencies (Unexpected resources getting out of order) each

local scheduler keeps a list of the current active and available resources. Such list

is updated for the resources by sending a message of activity to the Local Scheduler

each time the resources finish a job. We assume that resources do not fail while

executing a task and only have a probability of failure after executing a task and

before to sending a message of activity to the LocalScheduler. If, for any reason,

a Resource fails, the activity message is not sent to the Local Scheduler and the

resource is not included into the list of active and available resources. In this case,

The Local Scheduler will not send new jobs to a failing Resource until the Resource

resumes and sends an activity message to the Local Scheduler. An extended pseudo

code of a Local Scheduler is presented in figure 3–11.

29

The urgency criteria of each job in the waiting queue is updated, each time that

a new job arrives or each time that a change on the waiting queue occurs, to insure

the flow of jobs with high urgency first. This means, the flow of jobs with the best

balance between high probability of success and job laxity. Such balance may be

modified, according to the requirements of each particular environment, by changing

the weighting factors (W1,W2,W3). For instance, if the desired scheduling strategy

wants to give more relevance to delivering jobs on time than to the quality of jobs at

the end of the process, the weighting factor W3 should be bigger than the weighting

factors W1 and W2. This always under the constraint
∑3

i=1 Wi = 1 and , Wi > 0 ∀ i.

The general QB-MUF algorithm inside each set of resources can be viewed in figure

3–5.

While (Arrive a new job) or (There are jobs to schedule)

if (There are available resources)

for each job i to schedule

calculate job urgency;

allocate job;

end for

else

if (Queue.length > 0)

update urgency factor

end if

insert ordered job to the queue

end if

end while

Figure 3–5: Summarized pseudo code of the QB-MUF.

To deal with the priority fluctuation introduced by de definition of the laxity

factor (see section 3.2) and by the variation on the definitions of quality of service,

30

calculate Job Urgency(Job objJob)

Urgency = (W1*objJob.Criticality

+ W2 * objJob.QoS(actualStage)

+ W3 * objJob.LaxityF)

if (Urgency <= 0)

Urgency = 1 //to ensure Urgency > 0

end if

objJob.setUrgency(actualStage, Urgency)

end

Figure 3–6: Algorithm to calculate the urgency of a Job inside each stage.

the Local Scheduler uses the Urgency criteria, which includes the above mentioned

two factors, to keep a waiting queue ordered. Ordering the waiting queue each time

a new event arrives to the Local Scheduler provides a strategy to take into account

the priority fluctuation in the scheduling strategy.

3.4 Framework Architecture

The proposed urgency criteria and scheduling algorithm are embedded into a

dynamic scheduling framework. The main goal of this framework is to provide a

reusable infrastructure to design and evaluate scheduling strategies. An important

feature is that the framework has the flexibility to be used in different production

environments including digital publishing and grid computing. The architecture of

the framework is shown in Figure 3–7.

The general components of the framework are described in the following sub-

sections. Some special components will be described inside the description of their

containers as in the case of Local Scheduler and Resources which are embedded into

each ResourceSet.

31

Figure 3–7: Framework Architecture

32

3.4.1 The Source

The Source component works as a unique entity generating new Jobs for the

framework. Figure 3–8 shows the pseudo code of the body of each Source component

in the framework.

void body()

for i=1 to i=MaximumNumberofJobs

create a new job

initialize the job parameters(size, faults)

send the job to the global scheduler

pause(randomExpNdelay.sample())

end for

end void

Figure 3–8: Pseudo-code of the body method in the Source Component.

Furthermore, the Source is in charge of generating Jobs with the characteriza-

tion required for each specific problem. Such characterization includes:

• The Size of the job. This is a number representing an amount of data; the units

(Bytes, Kb, Mb) are predefined according to the characteristics of the problem.

To generate the size of a job, we used two of the available distribution functions

provided by SimJava, a normal distribution and a exponential distribution. For

instance, Job size (Js) can be defined as follows:

Js = randomNormal.sample(); (3.13)

where randomNormal.sample() is a number generator which fits a normal dis-

tributions with fixed mean and variance.

33

• The elapsed time between the arrival of new jobs. This is the delay, in units of

time, used by the source between job generations. This delay time is drawn from a

random number generator, as in the case presented above, which is parameterized

to fit either a normal distribution or exponential distribution. For instance, Job

delay (Jdy) between job generations can be defined as follows:

Jdy = randomExpNdelay.sample(); (3.14)

where randomExpNdelay.sample() is a random generator of numbers exponen-

tially distributed with a fixed mean.

• The faults contained in each Job. Up to five faults can be considered to be

present in a job running inside the framework. The presence/absence of each

fault is generated according to a random number generator provided by SimJava.

The presence/absence of a fault in a job is commonly defined as follows:

flt = 1 if randomGene() ∗ 100 <= FT, flt = 0 otherwise; (3.15)

where flt = 1 means the fault is presented in the job, randomGene() is a number

generator capable of producing a sample uniformly distributed between 0 and 1,

and FT represents a threshold below which a fault is considered as present in a

job for a specific problem.

To generate samples from the required distributions in the Source component,

a random2 number generator, modified to fit a desired distribution is used. This

modified random number generators are provided by SimJava through the distribu-

tion classes Sim * obj. These distribution classes include generators for a normal

2 Indeed, the random number generators provided by SimJava are pseudo-random.
This makes possible the generation of repeatable experiments in the framework.

34

distribution and a exponential distribution. When an entity, such as the Source

component, requires a determined distribution, it has to make an instance of the

desired distribution class and then uses the method sample() whenever a sample is

required.

3.4.2 The Global Scheduler and Resource Manager

The Global Scheduler and the Resource Manager work as a whole central entity

executing two tasks. Playing as Global Scheduler uses the information gathered while

playing as Resource Manager to select the optimal next set of resources (Resource-

Set) available for any job that requires the execution of a process. The Resource

Manager gets the load and performance information, when required, from each set

of resources in each stage of the system. The Resource Manager maintains on line

the information of the best ResourceSet during any time of the simulation and in

any stage of The Framework. The figure 3–9 shows the pseudo code of the body of

the GlobalScheduler in the framework.

3.4.3 The ResourceSet

Each Stage of The Framework can be composed of a number of sets of resources,

each one referred to as ResourceSet. A ResourceSet is composed of one Local Sched-

uler, one Dispatcher and one or more homogeneous Resources. The ResourceSet

works as a whole entity capable of receiving a Job, processing and sending it to the

next step through a Router. Furthermore, the ResourceSet must inform the Global

Scheduler about changes in the work load caused by the processing of each Job, as

well as to receive information of the best next stage to set it up in the dispatcher

of the current ResourceSet. Figure 3–10 shows the pseudo code of the body of each

ResourceSet.

The following is the description of each of the components mentioned above:

35

void body()

While (Simulation is running)

wait for a new event

if new event is a new job event

extract the job from the event

set the job global arrival time

stamp in the job the port-name of the next stage

send the job to the next router

end if

if new event is a change on a ResourceSet

extract the info from the event

save the info of change of the ResourceSet

if the new mean < smaller mean saved

save new mean as smaller mean of the stage

if the stage where the change occurs > 1

send info of the best ResourceSet

to stages prior to current ResourceSet stage

end if

else

if ResSet with smallest mean == ResSet of new mean

find a new smallest mean

save the new smallest mean

if the stage where the change occurs > 1

send info of the best ResourceSet

to stages prior to current ResourceSet stage

end if

end if

end if

end while

end void

Figure 3–9: Pseudo-code of the body method in the GlobalScheduler Component.

36

void body()

While (Simulation is running)

wait for a new event

if new event is a new job event

extract the job from the event

set the job arrival time

set the job stage to the current stage

send the job to the LocalScheduler of

the current ResourceSet

end if

if new event is change of next port event

extract the new port from the event

set the dispatcher nextPort with the new port

end if

end while

end void

Figure 3–10: Pseudo-code of the body method in the ResourceSet Component.

37

The Local Scheduler

A Local Scheduler works as an entity embedded in each ResourceSet. The

Local Scheduler deals with the local allocation of available resources among jobs by

using the QB-MUF algorithm as well as the information of the available Resources

gathered from themselves. The Local Scheduler is also in charge of maintaining

updated the mean of the quality of service of the jobs existing in the waiting queue.

Additionally, the Local Scheduler updates a list with the currently available resources

available inside of the ResourceSet where the LocalScheduler belongs to.

Figure 3–11 shows the pseudo-code of the body of each Resource in the frame-

work.

The Resource

A Resource is an entity capable of executing a process on a job. The resource

receives a Job to be processed from the Local Scheduler. The processing time of the

Job is calculated based on the size of the Job plus a penalty in time units according

to the probability of failure of the Job. The Resource will be busy and unavailable

during the processing time calculated for the job that is currently being executed.

After processing a Job, the Resource passes it to the Dispatcher of the ResourceSet

and informs the Local Scheduler that it is available to process a new Job. Figure

3–12 shows the pseudo-code of the body of each Resource in the framework.

The Dispatcher

A Dispatcher in a ResourceSet, is an entity in charge of redirecting processed

Jobs from any Resource in a ResourceSet, to the Router connected to all of the

ResourceSets composing the next Stage in the Framework. The dispatcher also puts,

in the form of a tag inside the Job, the information concerning the most favorable

next step received from the Global Scheduler. Furthermore, the Dispatcher is in

charge of receiving information about changes in the queue of the ResourceSet. This

information, in form of the mean of the quality of service of the existing jobs in the

38

void body()

While (Simulation is running)

wait for a new event

if new event is a new job event

extract the job from the event

calculate the job processing time

calculate the job QoS

calculate the job deadline

calculate the job laxity

calculate the job Urgency

insert the job in the waiting queue ordered by Urgency

calculate the changes in the mean of the QoS

of the current jobs in the waiting queue

send the information of change through the Dispatcher

end if

if new event is a free resource event

extract the id of the free resource from the event

add the id of the free resource at the end

of list of free resources

end if

if listOfFreeResources.size > 0

if jobWaitingQueue.size > 0

extract the first job in jobWaitingQueue

send the job to the first resource

in listOfFreeResources

remove the resource in listOfFreeResources

calculate the changes in the mean of the QoS

of the current jobs in the queue

send the information of change through

the Dispatcher

end if

end if

end while

end void

Figure 3–11: Pseudo-code of the body method in the LocalScheduler Component.

39

void body()

While (Simulation is running)

wait for a new event

if new event is a new job event

extract the job from the event

set the job start execution time

generate a delay during the processing time

set the job finish execution time

send the job to the Dispatcher of the ResourceSet

announce to the LocalScheduler that

this is a resource available

end if

end while

end void

Figure 3–12: Pseudo-code of the body method in the Resource Component.

40

queue, is redirected to the GlobalScheduler in order to inform about the status of

the ResourceSet. Figure 3–13 shows the pseudo code of the body of each Dispatcher

in the framework.

void body()

While (Simulation is running)

wait for a new event

if new event is a Job event

extract the job from the event

stamp inside the job the name

of the port of the next stage

send the job to the next router

end if

if new event is a change of the queue

extract the information of change from the event

send the information of the change to

the GlobalScheduler

end if

end while

end void

Figure 3–13: Pseudo-code of the body method in the Dispatcher Component.

3.4.4 The Router

In the Framework, a Router transfers a Job between the Global Scheduler and

the first Stage, between two consecutive Stages of the Framework or between the

last Stage of the Framework and the “final” Stage of the Framework. The “final”

Stage of the Framework does not perform any process on the Job; it only receives

the Job and makes a report with the information of the process of the Job in the

whole Framework. To perform the redirection of the job toward the correct next

41

stage, the Router uses the name of the port which was previously stamped in the

job either by the dispatcher on the previous stage or by the global scheduler. The

figure 3–14 shows the pseudo code of the body of each Router in the framework.

void body()

While (Simulation is running)

wait for a new event

if new event is a redirection event

extract the job from the event

send the job to the next stage through

the port name stamped in the job

end if

end while

end void

Figure 3–14: Pseudo-code of the body method in the Router Component.

3.5 Developing tools

3.5.1 Programming language

The framework was built using the Java 2 Platform, Standard Edition (J2SE)3 .

Java was built by Sun Microsystems programmers, it was formally announced in

public at a major conference in May 1995. Java is now one of the most widely used

programming languages, mainly on networks and for web service.

The major benefits of using Java as the programming language for our frame-

work software include:

3 http://java.sun.com/j2se/1.5.0/

42

• Java is object oriented, which increases the flexibility and maintainability of the

programming process.

• The multi-threading is built in. This facilitates multi-threading programming.

• Java is multi-platform, this makes possible to exchange platforms during both,

the programming process and the running program process.

3.5.2 Eclipse

The Integrated Development Environment (IDE) used to build our framework

was Eclipse4 SDK 3.1, a complete development environment for Eclipse-based tools.

We decide to use Eclipse because it allows easy programming in Java, among other

programming languages, and also provides a good environment to code, build, run,

and debug applications. Some of the relevant features considered to select Eclipse

include:

• Eclipse is open-source.

• Once the setup process of a project is done, the project is automatically compiled,

all the time.

• The debugging lets to find and fix bugs faster.

• The compilation errors are identified immediately while coding.

• Eclipse is compatible with other object oriented design tools, such IBM Rational

Software Architect.

4 http://www.eclipse.org/eclipse/

CHAPTER 4

QOS BASED DYNAMIC SCHEDULING

APPLIED TO DIGITAL PUBLISHING

4.1 Digital Publishing

Digital publishing permits the linking of printing presses to computers, thereby

bypassing the need for film and/or plate. As a result, digital publishing offers the

potential to raise the quality level for short-run printing, and enables the printing

of documents that are highly variable in data content and layout. However, the

realization of this potential has, to date, been seriously hampered by a number of

difficulties. These include the problem of getting the document to print correctly

without artifacts on the press and the difficulty of managing the increasingly com-

plex workflow that results from shorter run jobs that must be completed in less

time. Thus, digital publishing not only opens up new business but also requires

new business models which lead to new workflow designs. The fact that information

remains digital from the design stage all the way to printing leads to the potential

automation of processes that in traditional workshops are still manually executed.

The typical stages in a digital publishing workflow are summarized in Table 4–1.

For artifact detection, the traditional and the digital print shops have two pro-

cesses before sending any job to the printers: preflight and proofing. The purpose

of these processes is to make sure that the document is free of errors before it is sent

to the press. Nowadays the preflight process is almost done automatically, but the

proofing stage is still executed by human operators. In order to achieve a fully auto-

mated end-to-end digital publishing workflow, a variation to the digital publishing

43

44

Table 4–1: Digital Publishing Workflow Stages

Stage Description
Pre-flight Check if the digital document has all the elements required

to perform well in the production workflow. These elements
include page file format, image resolution, font types, safety
margins, mismatched colors.

Trapping Overlap colors to compensate for press registration. Registra-
tion is the accurate positioning of two or more colors of ink in
a printed sheet.

Imposition Arrangement of individual pages on a press sheet, so that when
folded and trimmed, the pages are correctly oriented and in the
proper order.

Proofing Check an output before printing. Conventional: film-based;
Soft proof: calibrated monitor; and digital proof (digital proof-
ing printer).

Ripping It decodes PostScript, creates an intermediate list of objects and
instructions, and finally converts graphic elements into bitmaps
for rendering on an output device.

workflow model was proposed by Santos [51]. Such modification, called The Auto-

mated Preflight Model (APM), is a framework for artifact detection before sending a

job to ripping. As shown in Figure 4–1, the proposed APM framework is composed

of the Intent process (1), the Preflight Tool (3), and the Artifact Recognition tool

(4). Such stages together with the Ripping process (6) and the Printing processes

(7), conform a modified full digital publishing workflow.

From the proposed modified full digital publishing workflow, a simplified model

was built on our framework to observe the behavior of our proposed scheduling

framework based on the QB-MUF algorithm in the digital publishing environment.

The simplified model is conformed by taking the Intent process (1), the Preflight

Tool (3), the Artifact Recognition Tool (4) and the Ripping process (6), under the

following assumptions:

45

Figure 4–1: The Automated Preflight Model

1. Since the Intent process and the Preflight process are the first processes that

extract important information about the properties and content of each Job,

the simplified model assumes that those two processes have already been done.

At this point, the framework will take into account enough information, which

gathered from the Intent process and the Preflight process, to generate a first

schedule for the Artifact Recognition and the Ripping processes.

2. The Artifact Recognition process is the first stage of the digital publishing work-

flow to be included in the framework to generate its schedule. To generate such a

schedule, two specific characteristics of the Job gathered from the preflight pro-

cess are used. Such characteristics are the faults related to fonts not embedded

and the faults related to a wrong color base. The mean probability of those two

faults, of being present in a Job, were obtained from the study of a variety of

46

PDF documents [52]. In such study, the PDF documents were analyzed by dif-

ferent preflight tools in order to identify common faults in printing documents.

The mean of the probabilities of presence for the two selected faults in a Job,

provided in such study are used to define thresholds in the equation that defines

the presence of a fault in a Job. Such thresholds are defined as follows:

FT1 = 67, FT2 = 25, (4.1)

where FT1 and FT2 are the threshold for the faults related to fonts not embedded

(f1) and the faults related to a wrong color base (f2), respectively. The values

for FT1 and FT2, 67 and 25 respectively, were drawn from the study mentioned

above. This values corresponds to the mean probability that a job contains a

fault related with fonts not embedded or a fault related with wrong color base,

respectively. From equation 4.1, the presence of the faults f1 and f2 in a job, is

defined as:

f1 = 1 if random(100) <= FT1, f1 = 0 otherwise

f2 = 1 if random(100) <= FT2, f2 = 0 otherwise;
(4.2)

where random(100) is a function that returns an integer number I such that

I ∈ [0, 99]. Using equation 4.2, the function mapping the presence of f1 and f2,

in a Job, into a probability of failure (JPF) is defined as follows:

JPF =





[random() ∗ 6] if f1 = 0 ∧ f2 = 0

40 + [random() ∗ 16] if f1 = 1 ∧ f2 = 0

20 + [random() ∗ 21] if f1 = 0 ∧ f2 = 1

50 + [random() ∗ 21] if f1 = 1 ∧ f2 = 1,

(4.3)

where random() is a function that returns a real random number Rn such that

Rn ∈ [0, 1). The objective of the JPF function is to define the probability

of failure of a job according to the kind of faults to the severity of such faults.

47

In this particular definition, the faults related to fonts not embedded (f1) are

considered more severe than the faults related to a wrong color base (f2). In this

way, the values selected for the constant in the definition of JPF are chosen to

generate the following values:

• JPF ∈ [0, 5] , if there are no faults present in the job.

• JPF ∈ [20, 40], if a fault related to a wrong color base is present in the

job.

• JPF ∈ [40, 55], if a fault related to fonts not embedded is present in the

job.

• JPF ∈ [50, 70], if both kind of faults are present in the job.

Finally, in order to calculate the quality of service factor QoSF , the JPF defined

in equation 4.3 is used as follows:

QoSF = 100− JPF (4.4)

The QoSF is used in the calculation of the urgency of each Job as shown in

equation 3.11.

3. The Ripping process is the second stage of the digital publishing workflow to

be included in the framework for the simulation. According to Santos [51], the

Artifact Recognition tool will provide two special features, the Artifact Name

and the Severity Rating. The first one contains the name given to the Artifact

by the case base engine of the Artifact Recognition tool. The second one is an

integer number between 0 and 5. This rating is equivalent to: no artifact, tolerable

artifact, low effect artifact, high effect artifact, severe artifact, and critical artifact,

respectively. For the simulated scenarios, two existent artifacts in the case base

engine of the artifact recognition tool were selected, overlapping and type-face-

change. Overlapping refers to the case when a component in a document or

their equivalent component in the approved instance of a document, overlaps

48

over other components. Type face change indicates the changes in font family,

size, and style, between a text component in one document instance and their

equivalent text component in the approved instance of a document. The severity

selected for such artifacts were 2 (low effect artifact) and 3 (high effect artifact),

respectively.

Since there is no available a study similar to the one realized for the preflight

process, it was assumed the same values for mean of probabilities of the faults

related with fonts not embedded and the faults related with a wrong color base

and, for the faults related to the overlapping and type-face-change, respectively.

In the same way a QoSF function, similar to the one defined for the artifact

recognition process, was defined in the ripping process in order to generate a

schedule.

At this point it is important to emphasize that it is not necessary to use real values

of variables or function’s definitions since it is possible to change such definitions

in the source code of the framework. For example, it was possible to run the

experiments described in this chapter with arbitrary values from the artifact

recognition process. However, along with further simulations the definition and

values for this process can be changed for realistic values or other assumed values

in order to compare the behavior of the algorithms under evaluation.

4. For all the stages defined in the framework, the definition of the laxity factor

(LaxityF) uses equation 3.9. Such definition indirectly uses the variable job

latency (Jlat). The definition of Jlat, for all of the algorithms under evaluation,

includes a penalty in processing time according to the probability of failure of

each job. The equation for Jlat is defied as follows:

Jlat =
Js

Rpr
∗ (1 + CONS ∗ (

JPF

100
)) (4.5)

49

where Js is the size of a job, Rpr is the processing rate of the resource and

CONST is a constant factor used in to calculate the Jlax in all sets of resources

of the framework. The meaning of the factor (1+CONS ∗ (JPF
100

)) is to introduce

a penalty in the latency to those jobs with high probability of failure (JPF).

The CONST value can be modified to fit the requirements of each particular

scheduling problem. In other words, the CONST value can be used to give

a larger or lower penalty in the latency to those jobs with high probability of

failure. CONS = 1 for the experiments presented in this chapter, which means

that 1 <= (1 + CONS ∗ (JPF
100

)) <= 2.

5. According to the characteristics of each scenario, it is possible that some jobs

are not processed before the estimated deadline. For this case, the framework

proposes a kind of degradation in time for the quality of service. Such degradation

implies the generation of a new job deadline with a penalty in time according to

the quality of service calculated for each job. Such penalty intends to generate

larger job deadlines (Jd) for those jobs with low probability of success. Jobs with

larger deadlines, imply jobs with a low laxity factor (LaxityF) and therefore a

low urgency for low quality of service. The function to define the new job deadline

is:

Jd = time now + Jlat ∗ (CONST2 ∗ MF), ∀ CONST2 >= 2; (4.6)

where the factor (CONST2 ∗ MF) intends to introduce larger deadlines to those

jobs with low probability of success. The function of the CONST2 value is to

ensure a minimum value of the new deadline longer than the value of (time now +

Jlat). In our case, the CONST2 value selected was 3. There exist different ways

50

to define the value of MF . In our case MF is defined as follows:

MF =





0.9 if QoS ≥ 80

1.1 if 60 ≤ QoS < 80

1.2 if QoS < 60

(4.7)

Again, the values of the MF factor intends, together with CONST2, to generate

longer deadlines to those jobs with low probability of success but, keeping a

minimum deadline value not too short in relation to the Jlat value.

6. Throughout the experimentation, a comparison of the behavior of the proposed

QB-MUF algorithm with respect to two other scheduling approaches is performed.

These scheduling approaches are the Minimum Laxity First, denoted as Laxity,

and the well known First In First Out (FIFO) scheduling algorithm.

7. In order to provide a fair scenario for all the algorithms under evaluation, all

the algorithms will run under the same conditions, penalties, quality of service

definitions, including the urgency definition. In this order, the FIFO and laxity

algorithms will be generated by changing the values of the weighting factors

(W1, W2, W3) properly. The value for the weighting factors will change as

follows: For the QB-MUF algorithm,

W1 = 0.2, W2 = 0.45, W3 = 0.35 (4.8)

for the FIFO algorithm,

W1 = 1.0, W2 = 0.0, W3 = 0.0 (4.9)

and finally for the Laxity algorithm,

W1 = 0.0, W2 = 0.0, W3 = 1.0 (4.10)

51

8. Since the purpose of the Artifact Recognition process includes the detection of

artifacts (errors) in a Job before it is sent to the Ripping and the Press processes,

the treatment of the Jobs will be in the following order: first Artifact Recognition,

second Ripping and finally the Press process.

9. Initially, in the scenarios for simulation, the faults found at a stage in each Job will

not be fixed during any of the following stages. However, this could be changed

for different scenarios.

10. The Printing process will be the final stage of the simplified model. Since, for our

purpose, there is no further information offered by this process than the failure

or success of a Job, the processing time considered for any Job is zero. On the

other hand, other processes for reporting purposes will be run during this stage

of the framework.

11. Despite that in the simplified model the number of stages considered is always two,

the number of sets of resources (ResourceSet) per stage can be varied. Moreover

the number of resources (Resource) inside each ResourceSet will also be considered

variable.

4.2 Description of Variables

The name and description of those variables considered to be inputs in the simu-

lation are presented in the table 4–2. The results of the scenarios of experimentation

discussed in section 4.3 are presented in three different graphical representations as

described in the following sub-sections.

4.2.1 Successful Jobs on simulation time

This graphic shows on the y-axis the number of successful jobs and on the x-

axis the simulation time. The measure of the number of successful Jobs is completed

52

Table 4–2: Input Variables considered in the framework simulation

Variable Description
Number of Jobs
(NJ)

NJ corresponds to the number of Jobs that will be gener-
ated for processing during simulation.

Arrival rate of Jobs The arrival rate of Jobs for the system will be guided by
three parameters: a distribution function (AJ), a mean for
the distribution (AJfm) and a variance (AJfv) in case the
selected distribution requires it

Size of the Jobs
(SJ)

The size of the Jobs arriving to the system will be generated
from a Normal Distribution function with a mean SJfm
and a variance SJfv

Resource processing
rate (Rpr)

The processing rate of a resource (Rpr) is the number of
units processed per unit time. This rate is used in the
function which calculates the processing time for a Job on
a resource

Multiply factor
(MF)

The multiply factor, MF , works as a correction factor to
penalize the processing time of the Jobs according to their
quality of service. An example of the definition for the MF
is shown in the equation 3.10

Fault threshold
(FT)

The fault threshold is a value for each of the 5 faults con-
sidered (FT1, FT2, FT3, FT4, FT5) in the framework.
This value is used to compare a random number generated
for each fault at each job, if the value is larger than its
threshold, then it is considered that the job presents such
fault.

Quality of Service
factor (QoSF)

The QoSF defines the probability of success for a job. Such
QoSF is defined for a function (QoSF = F (f1, f2, ...fn))
based on those faults considered for each particular system.
The values of each fault fi are considered as 1 if the fault
is present in the Job and 0 if it is not present.

Weighting factor
for Job relevance
(W1)

W1 is a variable included in the Job urgency function; a
large value of this W1 makes the urgency function give
more urgency to those Jobs with a larger criticality factor

Weighting factor
for Job QoS (W2)

W2 is a variable included in the Job urgency function; a
large value of this W2 makes the urgency function give
more urgency to those Jobs with a larger QoS factor

Weighting factor
for Job laxity (W3)

W3 is a variable included in the Job urgency function; a
large value of this W3 makes the urgency function give
more urgency to those Jobs with a larger laxity factor

Modulator factor
(K) for the Laxity
Factor function

The modulator factor (K) is included in the Laxity Factor
(LaxityF) function to normalize the unbounded outcomes
of traditional laxity functions.

Number of Re-
sourceSets (n)

The number of ResourceSets n corresponds to the number of
sets of resources available to perform a process in a specific
stage of the workflow.

53

periodically, with the same period for all algorithms under evaluation in the frame-

work. The objective of this graphic is to observe the behavior of the metric number

of successful jobs delivered while the simulation time goes forward. The expected

behavior of the metric is that in the QB-MUF algorithm the number of successful

jobs delivered increases, especially in the beginning of the simulation, faster than in

the other algorithms.

4.2.2 Mean waiting time only for successful Jobs

In this graphic, the bars represent the mean waiting time of the successful Jobs

in the simulation. The graphic shows a bar with the value of the mean waiting

time for each algorithm under evaluation. The expected behavior of the metric

mean waiting time of successful jobs, is that in the QB-MUF algorithm the mean

waiting time of successful delivered jobs be shorter than the mean waiting time for

the successfully delivered jobs in the simulation of the other algorithms.

4.2.3 QoS related to the order of exit of Jobs

In this graphic, the y-axis represents the QoS of the jobs and the x-axis rep-

resents the order of exit of jobs in the simulation. Unlike the metric number of

successful jobs, this graphic intends to show the QoS (independently if the job was

success or failure) of all the delivered jobs. The expected behavior of the graphics is

that the jobs with large quality of service get service first than those jobs with low

quality of service.

4.3 Scenarios of Experimentation

The following subsections explain the conditions established to run each exper-

iment. Each sub-section also describes the resulting behavior for each algorithm

under evaluation according to the graphics described in the sub-sections 4.2.1, 4.2.2

and 4.2.3. For the first experiment (sub-section 4.3.1) a table with the whole set

54

of variables and its values is presented. Further experiments will show a table with

only the most relevant variables of the scenario together with those variables which

suffer a change.

4.3.1 Experiment 1

Table 4–3 shows the set of values of those variables considered as inputs in

order to run the first experiment. Figures 4–2 and 4–3 correspond to the successful

Jobs vs the simulation time and to the mean waiting time only for successful Jobs,

respectively.

Figure 4–2: Number of successful jobs vs. time in experiment 1

Figure 4–2 shows a better behavior of the QB-MUF algorithm in terms of

successful jobs delivered. Such improvement is notorious during certain time of the

simulation near the 17,000 units of time. Figure 4–3, shows a better behavior of the

QB-MUF algorithm in terms of waiting time for delivered successful jobs.

55

Table 4–3: Values of the variables considered as inputs in order to run experiment 1

Variable Value
Number of Jobs (NJ) 1000

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 15.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 700
SJfv = 160

Resource processing
rate (Rpr)

20 (size units / time units)

Multiply factor (MF) MF =





0.9 if QoS ≥ 80
1.1 if 60 ≥ QoS < 80
1.2 if QoS < 60

Fault threshold (FT) FT1 = 67, FT2 = 25

Quality of Service fac-
tor (QoSF)

QoSF =





100− [random() ∗ 5] if f1 = 0 ∧ f2 = 0
60− [random() ∗ 16] if f1 = 1 ∧ f2 = 0
80− [random() ∗ 21] if f1 = 0 ∧ f2 = 1
50− [random() ∗ 21] if f1 = 1 ∧ f2 = 1

Weighting factor for
Job relevance (W1)

W1 =





0.2 for QB −MUF algorithm
0.0 for Laxity algorithm
1.0 for FIFO algorithm

Weighting factor for
Job QoS (W2)

W2 =





0.45 for QB −MUF algorithm
0.0 for Laxity algorithm
0.0 for FIFO algorithm

Weighting factor for
Job laxity (W3)

W3 =





0.35 for QB −MUF algorithm
1.0 for Laxity algorithm
0.0 for FIFO algorithm

Modulator factor (K)
for the Laxity Factor
function

40

Number of Resource-
Sets (n)

two (2) per stage with one (1) resource each.

56

Figure 4–3: Mean waiting time for successful jobs in experiment 1

57

4.3.2 Experiment 2

In this experiment the number of jobs was reduced from 1000 to 100. The

behavior of figures 4–4 and 4–5 was similar to the behavior in experiment 1.

Table 4–4: Values of the variables considered as inputs in order to run experiment 2

Variable Value
Number of Jobs (NJ) 100

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 15.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 700
SJfv = 160

Fault threshold (FT) FT1 = 67, FT2 = 25

Quality of Service fac-
tor (QoSF)

QoSF =





100− [random() ∗ 5] if f1 = 0 ∧ f2 = 0
60− [random() ∗ 16] if f1 = 1 ∧ f2 = 0
80− [random() ∗ 21] if f1 = 0 ∧ f2 = 1
50− [random() ∗ 21] if f1 = 1 ∧ f2 = 1

Modulator factor (K) 40
Number of Resource-
Sets (n)

two (2) per stage with one (1) resource each.

In this experiment Figure 4–6 shows quality of service (QoS) vs order of execu-

tion. This figure verifies that the QB-MUF algorithm, gives a high priority to those

jobs with higher quality of service.

58

Figure 4–4: Number of successful jobs vs. time in experiment 2

Figure 4–5: Mean waiting time for successful jobs in experiment 2

59

Figure 4–6: Quality of service vs. execution order in experiment 2

60

4.3.3 Experiment 3

For this experiment, the arrival rate of the jobs was increased in order to gen-

erate a large queue in each stage of the framework.

Table 4–5: Values of the variables considered as inputs in order to run the experiment
3

Variable Value
Number of Jobs (NJ) 1000

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 10.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 700
SJfv = 160

Fault threshold (FT) FT1 = 67, FT2 = 25

Quality of Service fac-
tor (QoSF)

QoSF =





100− [random() ∗ 5] if f1 = 0 ∧ f2 = 0
60− [random() ∗ 16] if f1 = 1 ∧ f2 = 0
80− [random() ∗ 21] if f1 = 0 ∧ f2 = 1
50− [random() ∗ 21] if f1 = 1 ∧ f2 = 1

Modulator factor (K) 40
Number of Resource-
Sets (n)

two (2) per stage with one (1) resource each.

With longer queues the space possible decisions increase for all of the algorithms.

The QB-MUF takes advantage of this, which can be noticed by the increase of the

gradient of the number of successful jobs delivered in the beginning of the simulation.

61

Figure 4–7: Number of successful jobs vs. time in experiment 3

Figure 4–8: Mean waiting time for successful jobs in experiment 3

62

Figure 4–9: Quality of service vs. execution order in experiment 3

63

4.3.4 Experiment 4

In this experiment the number of jobs was reduced from 1000 to 100, but the

arrival rate of the jobs was the same as in experiment 3.

Table 4–6: Values of the variables considered as inputs in order to run the experiment
4

Variable Value
Number of Jobs (NJ) 100

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 10.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 700
SJfv = 160

Fault threshold (FT) FT1 = 67, FT2 = 25

Quality of Service fac-
tor (QoSF)

QoSF =





100− [random() ∗ 5] if f1 = 0 ∧ f2 = 0
60− [random() ∗ 16] if f1 = 1 ∧ f2 = 0
80− [random() ∗ 21] if f1 = 0 ∧ f2 = 1
50− [random() ∗ 21] if f1 = 1 ∧ f2 = 1

Modulator factor (K) 40
Number of Resource-
Sets (n)

two (2) per stage with one (1) resource each.

64

Figure 4–10: Number of successful jobs vs. time in experiment 4

Figure 4–11: Mean waiting time for successful jobs in experiment 4

65

Figure 4–12: Quality of service vs. execution order in experiment 4

66

4.3.5 Experiment 5

In this experiment the mean of the size of the jobs is chosen larger than in the

precious experiments.

Table 4–7: Values of the variables considered as inputs in order to run experiment 5

Variable Value
Number of Jobs (NJ) 1000

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 15.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 1000
SJfv = 200

Fault threshold (FT) FT1 = 67, FT2 = 25

Quality of Service fac-
tor (QoSF)

QoSF =





100− [random() ∗ 5] if f1 = 0 ∧ f2 = 0
60− [random() ∗ 16] if f1 = 1 ∧ f2 = 0
80− [random() ∗ 21] if f1 = 0 ∧ f2 = 1
50− [random() ∗ 21] if f1 = 1 ∧ f2 = 1

Modulator factor (K) 40
Number of Resource-
Sets (n)

two (2) per stage with one (1) resource each.

67

Figure 4–13: Number of successful jobs vs. time in experiment 5

Figure 4–14: Mean waiting time for successful jobs in experiment 5

68

Figure 4–15: Quality of service vs. execution order in experiment 5

69

4.3.6 Experiment 6

In this experiment the number of jobs was reduced.

Table 4–8: Values of the variables considered as inputs in order to run experiment 6

Variable Value
Number of Jobs (NJ) 100

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 15.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 1000
SJfv = 200

Fault threshold (FT) FT1 = 67, FT2 = 25

Quality of Service fac-
tor (QoSF)

QoSF =





100− [random() ∗ 5] if f1 = 0 ∧ f2 = 0
60− [random() ∗ 16] if f1 = 1 ∧ f2 = 0
80− [random() ∗ 21] if f1 = 0 ∧ f2 = 1
50− [random() ∗ 21] if f1 = 1 ∧ f2 = 1

Modulator factor (K) 40
Number of Resource-
Sets (n)

two (2) per stage with one (1) resource each.

Figure 4–16: Number of successful jobs vs. time in experiment 6

70

Figure 4–17: Mean waiting time for successful jobs in experiment 6

Figure 4–18: Quality of service vs. execution order in experiment 6

71

4.3.7 Experiment 7

In this experiment the rate of processing of the resources was increased.

Table 4–9: Values of the variables considered as inputs in order to run experiment 7

Variable Value
Number of Jobs (NJ) 1000

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 15.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 1000
SJfv = 200

Resource processing
rate (Rpr)

25 (size units / time units)

Fault threshold (FT) FT1 = 67, FT2 = 25

Quality of Service fac-
tor (QoSF)

QoSF =





100− [random() ∗ 5] if f1 = 0 ∧ f2 = 0
60− [random() ∗ 16] if f1 = 1 ∧ f2 = 0
80− [random() ∗ 21] if f1 = 0 ∧ f2 = 1
50− [random() ∗ 21] if f1 = 1 ∧ f2 = 1

Number of Resource-
Sets (n)

two (2) per stage with one (1) resource each.

72

Figure 4–19: Number of successful jobs vs. time in experiment 7

Figure 4–20: Mean waiting time for successful jobs in experiment 7

73

Figure 4–21: Quality of service vs. execution order in experiment 7

74

4.3.8 Experiment 8

In this experiment the number of jobs was reduced.

Table 4–10: Values of the variables considered as inputs in order to run experiment
8

Variable Value
Number of Jobs (NJ) 100

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 15.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 1000
SJfv = 200

Resource processing
rate (Rpr)

25 (size units / time units)

Fault threshold (FT) FT1 = 67, FT2 = 25

Quality of Service fac-
tor (QoSF)

QoSF =





100− [random() ∗ 5] if f1 = 0 ∧ f2 = 0
60− [random() ∗ 16] if f1 = 1 ∧ f2 = 0
80− [random() ∗ 21] if f1 = 0 ∧ f2 = 1
50− [random() ∗ 21] if f1 = 1 ∧ f2 = 1

Number of Resource-
Sets (n)

two (2) per stage with one (1) resource each.

75

Figure 4–22: Number of successful jobs vs. time in experiment 8

Figure 4–23: Mean waiting time for successful jobs in experiment 8

76

Figure 4–24: Quality of service vs. execution order in experiment 8

77

4.4 Summary of Results

Two metrics were observed throughout the experimentation: the number of suc-

cessfully jobs delivered and the mean waiting time of successful delivered jobs. The

whole set of experiments ran under the same conditions, except in those explicitly

mentioned cases.

In general, results show a reduction of waiting processing time of the QB-MUF

over laxity and FIFO approaches in those simulation scenarios where the generated

queue is relatively large. The reason is that large queues give to the QB-MUF

algorithm a better opportunity to affect the making decision process. In a similar

way and for the same reasons, the QB-MUF algorithm exhibits a better behavior

in terms of the number of successful jobs over time compared to the traditional

approaches.

In order to observe changes in the simulation behavior, different scenarios where

generated by inducing changes in simulation parameters. For example, after reduc-

ing the number of generated jobs from 1000 to 100, the following changes in metrics

behavior were noticed:

• Despite that the mean waiting time is still lower for the QB-MUF algorithm than

for the other algorithms, the difference between the mean waiting time of the

QB-MUF algorithm and the other algorithms presents a significant reduction.

• The advantage of the QB-MUF algorithm noticed in the graphic of successful

jobs on simulation time is less notorious.

The reduction in the number of jobs generated in the simulation yield short waiting

queues and thereby less opportunities of acting for the QB-MUF algorithm.

Other changes in simulation parameters include the increase of the arrival rate of

jobs (Experiments 3 and 4) and the increase of the mean size of the jobs (Experiments

5 and 6). The increase of these parameters consequently enlarge the queue in the

78

beginning of the simulation, thereby increasing the opportunity of the QB-MUF

for taking decisions. As a result, the advantage of the QB-MUF algorithm is more

evident in the graphics of successful jobs on simulation time and mean waiting time.

In Experiments number 7 and 8, the processing rate of the resources together

with the mean of the job size were increased in comparison with the Experiments 1

to 4. In experiment 7, the number of jobs (1000) and the increased mean size of the

jobs reduce the possible effect of the increased processing rate of resource (reduce the

job queue). However, in Experiment 8, the relative small number of jobs used, mixed

with the increased processing rate of the resources, produce a scenario with short

queues and fast resources that reduces the opportunities of the QB-MUF algorithm

for taking action in the decision making process. As a result, the advantage of the

QB-MUF algorithm in the graphics of successful jobs on simulation time and mean

waiting time of successful delivered jobs were considerably reduced, but it was still

an advantage.

In almost all the scenarios, except the experiment 8, the graphic of successful

jobs on simulation time presents a point near the first third part of the simulation

time, where the curve shows an evident change in its gradient. This point can be

considered as the point where the QB-MUF have done its best effort on pumping

the jobs with better QoS toward their execution in a resource. The decreasing of

the curve gradient is because after this point the number of remaining jobs in queue

has low QoS. At this point, the number of arriving jobs with god QoS compared to

the number of jobs with low QoS remaining still in queue, is not enough to maintain

sending jobs with good QoS to execution in a resource.

CHAPTER 5

QOS BASED DYNAMIC SCHEDULING

APPLIED TO GRID COMPUTING

5.1 A Grid Environment

The availability of powerful computers and high-speed network technologies as

low-cost commodity components has changed the way we solve large scale problems.

These technology opportunities have led to the possibility of using geographically dis-

tributed computers as a single, unified computing resource. Grid computing enables

coordination, storage and networking of resources across geographically dispersed

organizations in a transparent way for users. The first generation of grid technolo-

gies has demonstrated the feasibility of grids for addressing challenging large scale

problems (e.g. Grid Physics Network (GridPhyN)1 and Teragrid2 among many

others). Next generation of grid applications will be increasingly dynamic. This

implies that the current static infrastructures will not be adequate unless adaptive

functionalities are provided.

For example, the Wide Area Large Scale Automated Information Processing

(WALSAIP)3 project aims at developing an infrastructure for the treatment of

signal-based information arriving from physical sensors in a wide-area, large scale

1 http://www.griphyn.org/

2 http://www.teragrid.org/

3 http://walsaip.ece.uprm.edu

79

80

environment. As illustrated in figure 5–1, signals are acquired from sensors, through

a sensor array structure (SAS), on one end of the model and sequentially treated

until information is extracted and delivered at the other end of the model struc-

ture to an information rendering system (IRS). This standard model structure is

improved with the formulation of a new conceptual model which accentuates a

distributed space-time processing format, which permeates all other system sub-

structures such as distributed sensor networks for signal acquisition, distributed

databases for database management, and distributed signal processing, as well as

overall distributed computing.

Figure 5–1: Conceptual framework for wide area large scale automated information
processing

The conceptual framework of WALSAIP centers primarily on the manner in

which systems, tools, and applications are being integrated, under a computing and

information processing (CIP) environment infrastructure to deliver end-to-end in-

formation relevant to users through tailored requests. Formally, CIP environment

deals with the algorithmic treatment of signal-based large scale content in order to

extract information relevant and important to a user. In this regard a CIP environ-

ment can be thought of as the aggregate of the following seven (7) components: A

81

set of input entities, a set of output entities, a database infrastructure, a set of gen-

eralized computing and information processing operators, a set of composition rules

for these operators, a set of actions rules for the operators to act on input entities

in order to produce targeted and desired output entities, and a user interface.

We focus on a specific component of the CIP environment, the computing and

information processing operators for data images. The operators are in charge of

the treatment of sensing data information (Data images specifically). An image

operator takes an image and performs certain tasks such as noise reduction, edge

detection, feature enhancement, spectral analysis, etc.

In order to build a simplified model, which makes possible to observe the be-

havior of our scheduling framework based on the QB-MUF algorithm in a grid com-

puting environment, the composition of two specific data images unary operators4

were used.

The simplified model was conformed by taking the Sharpen and Emboss oper-

ators [53], under the following assumptions:

1. The composition of the two selected data operators, should be performed always

in the same order. The sharpen operator followed by the emboss operator.

2. Despite that in the simplified model the number of stages considered is always two.

The number of sets of resources (ResourceSet) per stage can be varied. Moreover,

the number of resources (Resource) inside each ResourceSet is considered variable.

3. Each framework ResourceSet will represent a LAN in the scope of the grid envi-

ronment selected.

4 Unary operators are those that operates over just one image.

82

4. Each ResourceSet will contain a number s of available Resources to perform

an operator over a job. All Resources inside a ResourceSet are considered as

homogeneous resources. This means that the resources have the same processing

rate.

5. The whole set of Resourcesets (LANs) represents a Wide Area Network.

6. Different LANs, performing the same operator can operate with different rate of

processing.

7. Preemption is not considered as a possibility in the model. When a job arrives

to a Resource, the job will use the whole resource processing capacity available.

8. Since the size of a Job is an important factor for operators, it is considered into

the definition of the presence of a fault in the Job.

9. The criterion used to select a path between the existing Resourcesets is a function

which combines two factors: the completion ratio of a Resourceset and the QoS

mean of the waiting queue of each Resourceset.

10. For all the stages defined in the framework, laxity factor (LaxityF) is defined by

equation 3.9. The variable job latency (Jlat) is indirectly used in this definition.

The definition of Jlat, for all of the algorithms under evaluation, includes a

penalty in processing time according to the probability of failure of each job.

The equation for Jlat is defied as follows:

Jlat =
Js

Rpr
∗ (1 + CONS ∗ (

JPF

100
)), (5.1)

where CONS = 1 for the experiments presented in this chapter. However the

CONS value can be modified for each particular scheduling problem.

11. According to the characteristics of each scenario, it is possible that some jobs

are not processed before the estimated deadline. For this case, the framework

83

proposes a kind of degradation in time for the quality of service. Such degradation

implies the generation of a new job deadline with a penalty in time according to

the quality of service calculated for each job. Such penalty intends to generate

larger job deadlines (Jd) for those jobs with low probability of success. Jobs with

larger deadlines, imply jobs with a low laxity factor (LaxityF) and therefore a

low urgency for low quality of service. The function to define the new job deadline

ii:

Jd = time now + (Jlat ∗ CONST2 ∗ MF) (5.2)

where MF is defined as follows:

MF =





0.9 if QoS ≥ 80

1.1 if 60 ≥ QoS < 80

1.2 if QoS < 60

(5.3)

12. Throughout the experimentation, is done a comparison of the behavior of the

proposed QB-MUF algorithm with respect to two other scheduling approaches:

The Minimum Laxity First, denoted as Laxity, and the well known First In First

Out (FIFO) scheduling algorithm.

13. In order to provide a fair scenario for all the algorithms under evaluation, all

the algorithms will run under the same conditions, penalties, quality of service

definitions, including the urgency definition. In this order, the FIFO and laxity

algorithms will be generated by changing the values of the weighting factors

(W1, W2, W3) properly. The value for the weighting factors will change as

follows: For the QB-MUF algorithm,

W1 = 0.2, W2 = 0.45, W3 = 0.35 (5.4)

84

for the FIFO algorithm,

W1 = 1.0, W2 = 0.0, W3 = 0.0 (5.5)

and finally for the Laxity algorithm,

W1 = 0.0, W2 = 0.0, W3 = 1.0 (5.6)

14. Initially, in the scenarios for simulation, the faults found at a stage in each Job will

not be fixed during any of the following stages. However, this could be changed

for different scenarios.

5.2 Description of Variables

The name and description of those variables considered to be inputs in the

simulation are those already defined in the table 4–2. The results of the scenarios of

experimentation discussed in section 5.3 are presented by the three same graphical

representations described in chapter 4, sections 4.2.1, 4.2.2 and 4.2.3.

5.3 Scenarios of Experimentation

The following subsections explain the conditions established to run each exper-

iment. Each sub-section also describes the resulting behavior for each algorithm

under evaluation according to the graphics described in the sub-sections 4.2.1, 4.2.2

and 4.2.3. For the first experiment, a table with the whole set of variables and

its values is presented. Further experiments will show a table with only the most

relevant variables of the scenario together with those variables which suffer a change.

5.3.1 Experiment 1

Table 5–1 shows the set of values of those variables considered as inputs in

order to run the first experiment. Figures 5–2 and 5–3 correspond to the successful

85

Jobs vs the simulation time and to the mean waiting time only for successful Jobs,

respectively.

Table 5–1: Values of the variables considered to be inputs in order to run the
experiment 1

Variable Value
Number of Jobs (NJ) 1000

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 15.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 1000
SJfv = 200

Resource processing
rate (Rpr)

20 (size units / time units)

Multiply factor (MF) MF =





0.9 if QoS ≥ 80
1.1 if 60 ≥ QoS < 80
1.2 if QoS < 60

Fault threshold (FT) FT1 = SJfm = 1000

Quality of Service fac-
tor (QoSF)

QoSF =

{
100− [random() ∗ 10] if f1 = 0
80− [random() ∗ 21] if f1 = 1

Weighting factor for
Job relevance (W1)

W1 =





0.2 for QB −MUF algorithm
0.0 for Laxity algorithm
1.0 for FIFO algorithm

Weighting factor for
Job QoS (W2)

W2 =





0.45 for QB −MUF algorithm
0.0 for Laxity algorithm
0.0 for FIFO algorithm

Weighting factor for
Job laxity (W3)

W3 =





0.35 for QB −MUF algorithm
1.0 for Laxity algorithm
0.0 for FIFO algorithm

Modulator factor (K)
for the Laxity Factor
function

40

Number of Resource-
Sets (n)

two (2) per stage. The first one with one (1) resource
and the second one with two (2) resources.

Similarly to Experiments in chapter 5, Figure 5–2 shows a better behavior of the

QB-MUF algorithm in terms of successfully jobs delivered. Again, such improvement

is notorious during certain time of the simulation near the first 17,000 units of time.

86

Figure 5–2: Number of successful jobs vs. time in experiment 1

Figure 5–3: Mean waiting time for successful jobs in experiment 1

87

Moreover, the QB-MUF finish deliver the whole set of successfully jobs just after

almost the 51% of the time consumed by the others algorithms. Figure 5–3, shows

a better behavior of the QB-MUF algorithm in terms of waiting time for delivered

successful jobs.

5.3.2 Experiment 2

In this experiment the number of jobs was reduced from 1000 to 100. The

behavior of Figures 5–4 and 5–5 was similar to the behavior in experiment 1.

Table 5–2: Values of the variables considered as inputs in order to run experiment 2

Variable Value
Number of Jobs (NJ) 100

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 15.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 1000
SJfv = 200

Fault threshold (FT) FT1 = SJfm = 1000

Quality of Service fac-
tor (QoSF)

QoSF =

{
100− [random() ∗ 10] if f1 = 0
80− [random() ∗ 21] if f1 = 1

Modulator factor (K) 40
Number of Resource-
Sets (n)

two (2) per stage. The first one with one (1) resource
and the second one with two (2) resources.

In this experiment Figure 5–6 shows quality of service (QoS) vs order of ex-

ecution. Despite that the QB-MUF algorithm continues outperforming the other

two algorithms by giving a high priority to those jobs with higher quality of service,

Figure 5–6 shows that for this scenario some jobs with low quality of service are

served together with the service expected for jobs with high quality of service.

88

Figure 5–4: Number of successful jobs vs. time in experiment 2

Figure 5–5: Mean waiting time for successful jobs in experiment 2

89

Figure 5–6: Quality of service vs. execution order in experiment 2

90

5.3.3 Experiment 3

For this experiment, the arrival rate of the jobs was increased in order to gen-

erate a large queue in each stage of the framework.

Table 5–3: Values of the variables considered as inputs in order to run the experiment
3

Variable Value
Number of Jobs (NJ) 1000

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 10.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 1000
SJfv = 200

Fault threshold (FT) FT1 = SJfm = 1000

Quality of Service fac-
tor (QoSF)

QoSF =

{
100− [random() ∗ 10] if f1 = 0
80− [random() ∗ 21] if f1 = 1

Modulator factor (K) 40
Number of Resource-
Sets (n)

two (2) per stage. The first one with one (1) resource
and the second one with two (2) resources.

As in Experiments of chapter 4, with larger queues the space possible decisions

increase for all of the algorithms. The QB-MUF takes advantage of this, which can

be noticed by the increase of the gradient of the number of successful jobs delivered

in the beginning of the simulation to near the first 13500 units of time. Again, some

jobs with low quality of service are served together with jobs with high quality of

service with more frequency than in Experiments of chapter 4.

91

Figure 5–7: Number of successful jobs vs. time in experiment 3

Figure 5–8: Mean waiting time for successful jobs in experiment 3

92

Figure 5–9: Quality of service vs. execution order in experiment 3

93

5.3.4 Experiment 4

In this experiment the number of jobs was reduced from 1000 to 100, but the

arrival rate of the jobs was the same as in experiment 3.

Table 5–4: Values of the variables considered as inputs in order to run the experiment
4

Variable Value
Number of Jobs (NJ) 100

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 10.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 1000
SJfv = 200

Fault threshold (FT) FT1 = SJfm = 1000

Quality of Service fac-
tor (QoSF)

QoSF =

{
100− [random() ∗ 10] if f1 = 0
80− [random() ∗ 21] if f1 = 1

Modulator factor (K) 40
Number of Resource-
Sets (n)

two (2) per stage. The first one with one (1) resource
and the second one with two (2) resources.

Figure 5–10: Number of successful jobs vs. time in experiment 4

94

Figure 5–11: Mean waiting time for successful jobs in experiment 4

Figure 5–12: Quality of service vs. execution order in experiment 4

95

5.3.5 Experiment 5

In this Experiment the number of Resources in each ResourceSet is increased

by 1 . The arrival rate of the jobs was the same that in Experiments 3 and 4.

Table 5–5: Values of the variables considered as inputs in order to run Experiment
5

Variable Value
Number of Jobs (NJ) 1000

Arrival rate of Jobs
AJ = negative exponential function
AJfm = 10.5
AJfv = n/a

Size of the Jobs (SJ)
SJ = normal distribution function
SJfm = 1000
SJfv = 200

Fault threshold (FT) FT1 = SJfm = 1000

Quality of Service fac-
tor (QoSF)

QoSF =

{
100− [random() ∗ 10] if f1 = 0
80− [random() ∗ 21] if f1 = 1

Modulator factor (K) 40
Number of Resource-
Sets (n)

two (2) per stage. The first one with two (2) resources
and the second one with three (3) resources.

96

Figure 5–13: Number of successful jobs vs. time in experiment 5

Figure 5–14: Mean waiting time for successful jobs in experiment 5

97

Figure 5–15: Quality of service vs. execution order in experiment 5

98

5.4 Summary of Results

The same metrics observed in chapter 4, the number of successfully jobs de-

livered and the mean waiting time of successful delivered jobs, were observed for

the experiments in this chapter. Additionally, a new criteria for selecting the best

next stage for a job was implemented in the framework. This new criteria take into

account the performance of each ResourceSet as well as the QoS of queued jobs in

each ResourceSet.

Similar to the results in chapter 4, simulations under chapter 5 conditions show

a reduction of waiting processing time of the QB-MUF over laxity and FIFO ap-

proaches, but this time the difference observed was more notorious, up to 4 times

the mean waiting time of the QB-MUF algorithm.

After inducing changes in simulation parameters such reducing the number of

generated jobs from 1000 to 100, difference between the mean waiting time of the

QB-MUF algorithm and the other algorithms presents a significant reduction and

the advantage of the QB-MUF algorithm noticed in the graphic of successful jobs

on simulation time is less notorious, similarly as occurred in chapter 4 simulations.

In all the simulated scenarios, the graphic of successful jobs on simulation time

shows that the whole set of successfully finished jobs where completely served in less

time by the QB-MUF algorithm than by the other algorithms. The reason is the

additional use of the new next stage selection criteria described above.

The induction of heterogeneous and faster ResourceSets in the simulation sce-

narios, produces a special behavior in the graphics of QoS related to the order of

exit of Jobs. Such Figures show that for this scenarios, some jobs with low quality

of service are served together with the service expected for jobs with high quality of

service. The reason is basically that heterogeneous sets of resources with higher pro-

cessing rates may produce variable size waiting queues in resources letting sometimes

that a ResoruceSet serves first a job with low quality of service.

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

The design and development of a framework that implements a distributed dy-

namic scheduling methodology based on quality of service, has been discussed in this

thesis. Such framework includes mechanisms to take into account contingency and

priority fluctuations. It also includes the implementation of the QB-MUF algorithm,

inside each local scheduler, which gives high priority to jobs with low probability

of failure according to suitable failure probabilities calculated for jobs on particular

application environments.

To address the issue of giving high priority to jobs with low probability of

failing, a new urgency criteria equation is introduced which accounts for relevance,

laxity and probability of failures of incoming jobs. The probability of failure of a job

is estimated according to the occurrence of faults in a job, because of the presence

of faults or the combination of some of these faults can eventually lead to errors,

depending on their severity.

To deal with the priority fluctuation of jobs, the local schedulers uses the new

urgency criteria definition and maintains a sorted local waiting job queue, constantly

updated to detect priority fluctuations in time.

To deal with resource contingencies (unexpected unavailable resources), each

local scheduler manages a list of active and free resources where jobs are sent. This

list is constantly maintained by the same resources through communication messages

indicating their state.

99

100

SimJava was used to implement the first version of the proposed dynamic

scheduling framework. The components of the framework architecture together

with their behavior were mapped into entities of the SimJava class Sim entity.

Also, a main program which encases the logic to build the representation of a

whole scheduling environment was implemented. This framework supports differ-

ent scheduling algorithms including FIFO and a laxity based algorithm besides the

proposed QB-MUF. Another feature of the implemented framework is the possibil-

ity of implementing other scheduling methodologies by implementing the abstract

class LocalScheduler but restricted to use the job characteristics pre-defined on

the framework.

To our knowledge, this is the first time that the mapping of job meta-data prop-

erties into quality of service metrics is considered in the decision making process of

a dynamic scheduling strategy.

6.1 Conclusions

• The simulation results indicate that a dynamic scheduling algorithm may be

sensitive to different parameters including internal job properties indicating its

quality.

• The definition of QoS metrics based on intrinsic properties of jobs opens an

opportunity to job scheduling strategies that improves the number of successful

finished jobs in a workflow.

• It has been demonstrated that the inclusion of a second dynamic factor, based

on QoS, in the existing MUF, and the combination of this QoS with a laxity

factor, provide a good mechanism to generate a balanced scheduling for quality

and deadline fulfillment.

101

• The implementation of the QB-MUF algorithm and the definition of quality of

service metrics provides indeed a framework to enable dynamic scheduling.

6.2 Future Work

Along with the research process, interesting new questions and visions of im-

provement for the framework were exposed. These visions and questions can be

drawn as future research work as follows:

• One focus of this research was the quality of service of a job from the perspective of

its internal properties. An interesting question is how this methodology interacts

with other different quality of service methodologies which are based on external

requirements of jobs.

• Most dynamic scheduling strategies for distributed environments include a global

or central scheduler. Another interesting exercise may be to divide the global

scheduler into small autonomous entities and then distribute them in the whole

space of the environment.

• To maintain a fair scenario for experimentation, some functions required for the

proposed strategy, such as the penalty, were used for and considered as side

effects on the evaluation of the other algorithms. A good exercise would consist

on focusing on those penalization functions, and observe and isolate the effects of

generating and scheduling with only penalty functions based on quality of service

as considered for this research.

• An interesting proposal includes the generation of a tool module to analyze and

predict deadlocks generated by potential failures on a workflow.

• Actually, the values for constants such Modulator factor (K) and Multiply factor

(MF) were defined empirically and tuned with base on the observation of the

102

simulations behavior. A good supplementary component will consist on develop

an add-on component capable to suggest possible initial values for the K and MF

factors, according to particular parameters and expected behavior of a scheduling

problem.

• Last but not least is the improvement of a graphic interface for the framework to

facilitate the realization of friendly simulations.

APPENDICES

APPENDIX A

GUIDELINES FOR THE FRAMEWORK

SOFTWARE

A.1 Introduction

The Quality of service based scheduling framework was defined over SimJava.

SimJava is a discrete event, process oriented simulation package for Java.

The approach to simulating systems adopted by our framework is inherited

from SimJava. Each system is considered to be a set of interacting entities as they

are referred to in SimJava. These entities communicate with each other by passing

events. The simulation time progresses on the basis of these events.

A.2 Getting started

A.2.1 A first example

Throughout this guideline a small example will serve to demonstrate in practice

the functionality of the framework. The system presented in the example will be a

simplified model of a digital printing workflow.

The actual model consists of a Source of jobs, a Global Scheduler, a Router, a

stage of Artifact recognition process, a second Router, a stage of Riping process and

a End Stage, see Figure A–1. The following is a brief description of the functionality

of each of the components mentioned above:

Source: It is in charge of generating new Jobs with the characterization required

for each specific problem. Such characterization includes the size of the job, the

104

105

elapsed time between the arrival of new jobs and the faults contained in each new

Job.

Global Scheduler : The Global Scheduler work as a whole central entity executing

tasks as resource manager also. Playing as Global Scheduler uses the information

gathered while playing as Resource Manager to select the optimal next set of

resources (ResourceSet) available for any job that requires the execution of a

process. Playing as Resource Manager, maintains on line the information of the

best ResourceSet during any time of the simulation and in any stage of The

Framework.

Router : Its function consist of transferring a Job between the Global Scheduler and

the first Stage, between two consecutive Stages of the Framework or between the

last Stage of the Framework and the End Stage of the Framework. To perform

the redirection of the job toward the correct next Stage, the Router uses the name

of the port which was previously stamped in the job either by the previous stage

or by the Global Scheduler.

ResourceSet : It works as a whole entity capable of receiving a Job, processing

and sending it to the next step through a Router. Furthermore, the ResourceSet

must inform the Global Scheduler about changes in the work load caused by the

processing of each Job, as well as to receive information of the best next stage to

set it up in the dispatcher of the current ResourceSet. A ResourceSet is composed

of one Local Scheduler, one Dispatcher and one or more homogeneous Resources.

End Stage: It does not perform any process on the Job The End Stage receives

each Job and makes a report with the information of the process of the Job in

the whole Framework.

106

Figure A–1: The simplified digital printing model

A.3 Specifying components’ behavior

To define a framework component, it was necessary subclass the SimJava class

Sim entity. The subclass implements the component’s desired behavior. This be-

havior is provided by means of the body() method which must be overridden in the

subclass.

Now that the framework components for the simulation are already known, if it

is desired to make changes in the scheduling algorithm or in the properties of jobs,

it is necessary to perform some of the following steps:

• If a change in the scheduling algorithm is desired, the it is necessary to sub-

class the framework’s class LocalScheduler, overwriting the body of the class, the

quality of service function and the weighting factors, W1, W2 and W3.

107

• If a change in the properties in the Jobs generated by the source is desired, it is

necessary to overwrite the functions that defines the presence of a fault in a job

in the class Resource.

A.4 Setting up the simulation

After perform the required changes in the source of the framework, it is possible

to proceed to setup the simulation itself. To define the simulation’s main() method

it is necessary to create one further class. The name given to this class should

be representative of the system being simulated. In general, a simple SimJava

simulation requires four steps:

1. Initialize Sim system.

2. Make an instance for each entity.

3. Link the entities.

4. Run the simulation.

The following figure presents an example of the code of the main class of the simu-

lation created for the simple digital printing model:

public static void main(String[] args) {

int intUniqueResourceIdTemp = 0;

Sim_system.initialise(); // Initialise Sim_system

//Primero Se crea el source (solo uno)

source = new Source("Source", 10.5, NUM_JOBS); // Add the source

//se crea el stage final

objFinalStage = new EndStage(strNombreStageFinal);

//Luego se crea el Global Scheduler (solo uno)

objGlobalScheduler = new GlobalScheduler("GlobalScheduler");

//Se enlazan los puertos del source y del Global Scheduler (son fijos)

Sim_system.link_ports("Source", "Out", "GlobalScheduler", "GlobalIn");

108

//Se se definen ordenadamente los stages y un router antecesor para

//c/uno de ellos.

//Se define el primer Stage

intStageNumber =1;

//Se agrega una entrada a la lista de stages (Stage list) del

//Global Scheduler

objGlobalScheduler.addHashMapStage();

//Se define el primer router

strNombreRouter = "Router"+intStageNumber;

objRouterStage1 = new RouterQBMUF(strNombreRouter, 0);

//Se conecta el Global scheduler con el router 1

Sim_system.link_ports("GlobalScheduler","GlobalOut",

strNombreRouter,strNombrePuertoEntradaRouter);

//**************************************

//****Set de Recursos 1 - Stage 1*******

//Se define el primer Set de Recursos (ResourceSet) para dicho stage

intResourceNumber = 1;

strNombreResourceSet = "ResourceSet"+intStageNumber+"_"+intResourceNumber;

objResourceSet1_1 = new ResourceSet(strNombreResourceSet,

intResourceNumber, intStageNumber);

//Se crean dos recursos dentro del Resource Set

intUniqueResourceIdTemp = objResourceSet1_1.addNewResource();

intUniqueResourceIdTemp = objResourceSet1_1.addNewResource();

//Se aade un nuevo puerto al router

strNombrePuerto = objRouterStage1.addNewPort();

//se conecta el router a travs del puerto creado con el ResourceSet creado

Sim_system.link_ports(strNombreRouter, strNombrePuerto,

strNombreResourceSet,"ResourceSetIn");

//Se crea un ResourceSetInfo con la informacin del ResourceSet creado

intUniqueIDRSNumber = objResourceSet1_1.get_id(); objRSInfo = new

ResourceSetInfo(intStageNumber,intResourceNumber,

strNombrePuerto, intUniqueIDRSNumber);

//Se agrega una entrada al hashtable del stage 1 con el ResourceSetinfo

objGlobalScheduler.addResourceSetInfo(objRSInfo);

objRSInfo = null;

109

//**

//******Set de Recursos 2 - Stage 1 ********

//Se define el segundo Set de Recursos (ResourceSet) para dicho stage

intResourceNumber = 2;

strNombreResourceSet = "ResourceSet"+intStageNumber+"_"+intResourceNumber;

objResourceSet1_2 = new ResourceSet(strNombreResourceSet,

intResourceNumber, intStageNumber);

//Se crean tres recursos dentro del Resource Set 2

intUniqueResourceIdTemp = objResourceSet1_2.addNewResource();

intUniqueResourceIdTemp = objResourceSet1_2.addNewResource();

intUniqueResourceIdTemp = objResourceSet1_2.addNewResource();

//Se aade un nuevo puerto al router

strNombrePuerto = objRouterStage1.addNewPort();

//se conecta el router a travs del puerto creado con el ResourceSet creado

Sim_system.link_ports(strNombreRouter, strNombrePuerto,

strNombreResourceSet,"ResourceSetIn");

//Se crea un ResourceSetInfo con la informacin del ResourceSet creado

intUniqueIDRSNumber = objResourceSet1_2.get_id();

objRSInfo = new ResourceSetInfo(intStageNumber,

intResourceNumber,strNombrePuerto, intUniqueIDRSNumber);

//Se agrega una entrada al hashtable del stage 1 con el ResourceSetinfo

objGlobalScheduler.addResourceSetInfo(objRSInfo);

objRSInfo = null;

//*******************************Stage2 ****************

//Se define el Segundo Stage

intStageNumber =2;

//Se agrega una entrada a la lista de stages (Stage list) del Global Scheduler

objGlobalScheduler.addHashMapStage();

//Se define el segundo router

strNombreRouter = "Router"+intStageNumber;

objRouterStage2 = new RouterQBMUF(strNombreRouter, 0);

//**

//**Se conecta la salida de los stages anteriores con el nuevo router

//**

objResourceSet1_1.connectToRouter(strNombreRouter,

strNombrePuertoEntradaRouter);

110

objResourceSet1_2.connectToRouter(strNombreRouter,

\strNombrePuertoEntradaRouter);

//**************************************

//****Set de Recursos 1 - Stage 2*******

//Se define el primer Set de Recursos (ResourceSet) para dicho stage

intResourceNumber = 1;

strNombreResourceSet = "ResourceSet"+intStageNumber+"_"+intResourceNumber;

objResourceSet2_1 = new ResourceSet(strNombreResourceSet,

intResourceNumber, intStageNumber);

//Se crean 3 recursos dentro del Resource Set

intUniqueResourceIdTemp = objResourceSet2_1.addNewResource();

intUniqueResourceIdTemp = objResourceSet2_1.addNewResource();

intUniqueResourceIdTemp = objResourceSet2_1.addNewResource();

//Se aade un nuevo puerto al router

strNombrePuerto = objRouterStage2.addNewPort();

//se conecta el router a travs del puerto creado con el ResourceSet creado

Sim_system.link_ports(strNombreRouter, strNombrePuerto,

strNombreResourceSet,"ResourceSetIn");

//Se asigna este puerto como mejor puerto inicial en los

//resourceSets del stage anterior

//*****esta parte debe ser automatizada al unirlo con la interfaz grfica

objResourceSet1_1.setNextportNameonDisp(strNombrePuerto);

objResourceSet1_2.setNextportNameonDisp(strNombrePuerto);

//Se crea un ResourceSetInfo con la informacin del ResourceSet creado

intUniqueIDRSNumber = objResourceSet2_1.get_id();

objRSInfo = new ResourceSetInfo(intStageNumber,intResourceNumber,

strNombrePuerto, intUniqueIDRSNumber);

//Se agrega una entrada al hashtable del stage 1 con el ResourceSetinfo

objGlobalScheduler.addResourceSetInfo(objRSInfo);

objRSInfo = null;

//**

//******Set de Recursos 2 - Stage 2 ********

//Se define el primer Set de Recursos (ResourceSet) para dicho stage

intResourceNumber = 2;

strNombreResourceSet = "ResourceSet"+intStageNumber+"_"+intResourceNumber;

objResourceSet2_2 = new ResourceSet(strNombreResourceSet,

intResourceNumber, intStageNumber);

111

//Se crean dos recursos dentro del Resource Set

intUniqueResourceIdTemp = objResourceSet2_2.addNewResource();

intUniqueResourceIdTemp = objResourceSet2_2.addNewResource();

//Se aade un nuevo puerto al router

strNombrePuerto = objRouterStage2.addNewPort();

//se conecta el router a travs del puerto creado con el ResourceSet creado

Sim_system.link_ports(strNombreRouter, strNombrePuerto,

strNombreResourceSet,"ResourceSetIn");

//Se crea un ResourceSetInfo con la informacin del ResourceSet creado

intUniqueIDRSNumber = objResourceSet2_2.get_id();

objRSInfo = new ResourceSetInfo(intStageNumber,intResourceNumber,

strNombrePuerto, intUniqueIDRSNumber);

//Se agrega una entrada al hashtable del stage 1 con el ResourceSetinfo

objGlobalScheduler.addResourceSetInfo(objRSInfo);

objRSInfo = null;

//**********************************

//*******Se supone que es el stage final asi que se manda a conectar cada

//*******set de recursos con el stage final

//**********************************

objResourceSet2_1.connectToRouter(strNombreStageFinal,

strNombrePuertoEntradaStageFinal);

objResourceSet2_2.connectToRouter(strNombreStageFinal,

strNombrePuertoEntradaStageFinal);

//Genero la lista de puertos iniciales en el Global Scheduler

objGlobalScheduler.setBestNextStages();

Sim_system.set_trace_detail(true, false, false);

Sim_system.set_termination_condition(Sim_system.EVENTS_COMPLETED,

strNombreStageFinal, QB_MUFTags.IND_REDIRECT, NUM_JOBS, false);

Sim_system.run();

}

REFERENCE LIST

[1] M. Pinedo. Scheduling - Theory, Algorithms and Systems. Prentice Hall, 2002.

[2] U. Al-Turki, C. Fedjki, and A. Andijani. Tabu search for a class of single-

machine scheduling problems. Computers & Operations Research, pages 1223–

1230, 2001.

[3] A. Agnetis, A. Alfieri, and G. Nicosia. A heuristic approach to batching and

scheduling a single machine to minimize setup costs. Computers & Industrial

Engineering, pages 793–802, 2004.

[4] H. Tamaki, T. Komori, and S. Abe. A heuristic approach to parallel machine

scheduling with earliness and tardiness penalties. 7th IEEE International Con-

ference on Emerging Technologies and Factory Automation, pages 1367–1370,

1999.

[5] Z.L. Chen and W.L. Powell. Solving parallel machine scheduling problems by

column generation. INFORMS Journal on computing, pages 78–94, 1999.

[6] D.B. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for

shop scheduling problems. SIAM Journal of Computing, pages 617–632, 1994.

[7] L. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk. Better approxi-

mation guarantees for job shop scheduling. 8th ACM-SIAM Symposium on

Discrete Algorithms(SODA), pages 599–608, 1997.

[8] S. Sevastianov and G. Woeginger. Makespan minimization in open shops :

A polynomial time approximation scheme. Mathematical Programming, pages

82(191–198), 1998.

112

113

[9] M. Sviridenko, K. Jansen, and R. Solis-Oba. Makespan minimization in job

shops: A polynomial time approximation scheme. 31st Annual ACM Sympo-

sium on Theory of Computing, pages 394–399, 1999.

[10] S. Yang and D. Wang. Constraint satisfaction adaptive neural network and

heuristics combined approaches for generalized job-shop scheduling. IEEE

Transactions on Neural Networks, pages 474–486, 2000.

[11] S.E. Elmaghraby. On the optimal release time of jobs with random processing

times, with extensions to other criteria. International Journal of Production

Economics, pages 103–113, 2001.

[12] D. Golenko-Ginzburg and A. Gonik. Optimal job-shop scheduling with random

operations and cost objectives. International Journal of Production Economics,

pages 147–157, 2002.

[13] S. Nakasuka and T. Yoshida. New framework for dynamic scheduling of produc-

tion systems. International Workshop on Industrial Applications of Machine

Intelligence and Vision, pages 253–258, 1989.

[14] D.L. Levine, C.D. Gill, and D.C. Schmidt. Dynamic scheduling strategies for

avionics mission computing. Proceedings The 17th AIAA/IEEE/SAE Digital

Avionics Systems Conference, 1:C15/1–C15/8, 1998.

[15] D.B. Stewart and P.K. Khosla. Real-time scheduling of sensor-based control

systems. Proceedings 8th IEEE Workshop on Real-Time Operating Systems,

pages 144–150, 1991.

[16] A. Sulistio, G. Poduvaly, R. Buyya, and CH. Tham. Constructing a grid sim-

ulation with differentiated network service using gridsim. Proceedings of The

6th International Conference on Internet Computing (ICOMP’05), 2005.

114

[17] F. Howell and R. McNab. simjava: a discrete event simulation package for

java with applications in computer systems modelling. Proceedings of the First

International Conference on Web-based Modelling and Simulation, Jan 1998.

[18] E.M. Goldratt. The Goal. The North River Press, MA 1984.

[19] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infras-

tructure. Morgan-Kaufmann, 1999.

[20] F. Berman, G. Fox, and T. Hey. Grid Computing: Making the Global Infras-

tructure a Reality. John Wiley & Sons, 2003.

[21] F. Berman and R. Wolski. Scheduling from perspective of the application.

Proceedings of the Symposium on High Performance Distributed Computing,

1996.

[22] J.M. Schopf. Ten actions when superscheduling. Technical Report WD8.5,

Scheduling Working Group, 2001.

[23] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and S. Vad-

hiyar. Numerical libraries and the grid. Proceedings of Supercomputing 01,

2001.

[24] M. Baker, R. Buyya, and D. Laforenza. Grids and grid technologies for wide-

area distributed computing. Intl. Journal of Software: Practice and Experience,

2002.

[25] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,

S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring,

A. Su, and D. Zagorodnov. Adaptive computing on the grid using apples. IEEE

Transactions on Parallel and Distributed Systems (TPDS), 14(4):369–382, 2003.

115

[26] R. Buyya, D. Abramson, and J. Giddy. A computational economy for grid

and its implementation in the nimrod/g resource broker. Future Generation

Computer Systems, Elsevier Science, 2002.

[27] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The apples parameter

sweep template: Userlevel middleware for the grid. Proceedings of Supercom-

puting 00, 2000.

[28] G. Shao, R. Wolski, and F. Berman. Master/slave computing on the grid.

Proceedings of Heterogeneous computing Workshop, 2000.

[29] J.B. Weissman. Prophet: Automated scheduling of spmd programs in worksta-

tion networks. Comcurrency: Practice and Experience, 11(6), 1999.

[30] J.B. Weissman. Gallop: The benefits of wide-area computing for parallel pro-

cessing. Journal of Parallel and Distributed Computing, 54(2):183–205, 1998.

[31] M. Sirbu and D. Marinescu. A scheduling expert advisor for heterogeneous

environments. In Proc. Heterogeneous Computing Workshop, pages pp. 74–87,

1997.

[32] H. Topcuoglu, S. Hariri, W. Furmanski, J. Valiente, I. Ra, D. Kim, Y. Kim,

X. Bing, and B. Ye. The software architecture of a virtual distributed comput-

ing environment. Proceedings of the High-Performance Distributed Computing

Conf., pages pp.40–49, 1997.

[33] J. Gehring and A. Reinefeld. Mars: A framework for minimizing the job ex-

ecution time in a metacomputing environment. Future Generation Computer

Systems, 12(1):87–99, 1996.

[34] I. Foster, Geisler, W. Nickless, W. Smith, and S. Tuecke. Software infras-

tructure for the i-way metacomputing experiment. Concurrency: Practice and

Experience, 1998.

116

[35] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan.

Dome: Parallel programming in a heterogeneous multi-user environment. Tech-

nical Report CMU-CS-95-137, Carnegie Mellon University, Pittsburg, 1995.

[36] P. Au, J. darlington, M. Ghanem, Y. Guo, H. To, and J. Yang. Coordinating

heterogeneous parallel computation. Proceedings of the 1996 Euro-Par Conf.,

pages pp. 601–614, 1996.

[37] D. B. Jackson, Q. Snell, and M. J. Clement. Core algorithms of the maui

scheduler. Lecture Notes in Computer Science, 2221:87–102, 2001.

[38] P. Keyani, N. Sample, and G. Wiederhold. Scheduling under uncertainty: Plan-

ning for the ubiquitous grid. Technical report, Stanford Database Group, 2002.

[39] F. Berman. The grads project: Software support for high-level grid application

development. International Journal of high Performance Computing Applica-

tions, 15(4):327–344, 2001.

[40] A. Kohkhar, V. Prasanna, M. Shaaban, and C. Wang. Heterogeneous comput-

ing: Challenges and opportunities. IEEE Computer, 26(6), 1993.

[41] KB. Hamidzadeh, D. Lilja, and Y. Arif. Dynamic scheduling techniques for

heterogeneous computing systems. Concurrency: Practice and Experience,

7(7):633–652, 1995.

[42] H. Siegel, J. Antonio, R. Metzger, M. Tan, and Y.A. Li. Heterogeneous comput-

ing. Parallel and Distributed Computing Handbook. New York: McGraw-Hill,

1996.

[43] D.B. Stewart, D.E. Schmitz, and P.K. Khosla. Implementing real-time robotic

systems using CHIMERA II. Proceedings of The IEEE International Confer-

ence on Robotics and Automation, pages 598–603, 1990.

117

[44] D.B. Stewart and P.K. Khosla. Real-time scheduling of dynamically reconfig-

urable systems. IEEE International Conference on Systems Engineering, pages

139–142, 1991.

[45] V. Kalogeraki, P.M. Melliar-Smith, and L.E. Moser. Dynamic scheduling of dis-

tributed method invocations. Proceedings of The 21st IEEE Real-Time Systems

Symposium, pages 57–66, 2000.

[46] L. He, S.A. Jarvis, D.P. Spooner, and G.R. Nudd. Dynamic scheduling of

parallel real-time jobs by modeling spare capabilities in heterogeneous clusters.

Proceedings of The IEEE International Conference on Cluster Computing, 2003.

[47] B. Zolfaghari. A dynamic scheduling algorithm with minimum context switches

for spacecraft avionics systems. Proceedings of IEEE Aerospace Conference,

pages 2618 – 2624, 2004.

[48] C. Hartmann and R. Vilzmann. Urgency based scheduling for user-individual

qos in cellular mimo-systems. ITG Workshop on Smart Antennas, pages 257–

260, 2004.

[49] Yiping Yuan., Tao Yu., Feng Xiong., and Minlun Fang. Qos-based dynamic

scheduling for manufacturing grid workflow. Ninth International Conference

on Computer Supported Cooperative Work in Design, pages 1123– 1128, 2005.

[50] A. Mittal, G. Manimaran, and C.S.R. Murthy. Integrated dynamic scheduling

of hard and qos degradable real-time tasks in multiprocessor systems. Fifth

International Conference on Real-Time Computing Systems and Applications,

pages 127–136, 1998.

[51] H. J. Santos-Villalobos. Style-dependent artifact recognition for digital variable

data printing. Master’s thesis, University of Puerto Rico, Mayaguez Campus,

July 2005.

118

[52] G. A. Chaparro-Baquero. Statistical correlation between job creators and print

failures. Technical report, HP Labs, 2004.

[53] L. Bautista and D. Rodŕıguez. Web-based data processing for hydro-ecological

applications. Fourth LACCEI International Latin American and Caribbean,

Conference for Engineering and Technology, June 2006.

BIOGRAPHICAL SKETCH

WILSON E. LOZANO-ROLÓN

Was born on February 18th, 1977, in Cúcuta, Norte de Santander, Colombia.

Wilson is the son of David Lozano and Marydilia Rolón. In November 2000, he

received his B.S. degree in computer engineering from the Universidad Industrial

de Santander, Bucaramanga Campus. Prior to beginning his Masters program in

computer engineering, he worked in various areas related to information technology.

He acted as web developer, support engineer for technical applications, web system

administrator, and part time professor.

In 2004 he left Colombia and starts the M.S. studies in computer engineering at

the University of Puerto Rico, Mayagüez campus. He worked as research assistant in

the PDC laboratory under the supervision of Dr. Wilson Rivera. Wilson Lozano did

his research in dynamic scheduling applied to digital publishing and grid computing.

119

A FRAMEWORK FOR DYNAMIC SCHEDULING BASED ON
QUALITY OF SERVICE METRICS

Wilson Ernesto Lozano Rolón
(787) 464-1864
Department of Electrical and Computer Engineering
Chair: Wilson Rivera
Degree: Master of Science
Graduation Date: July 10 2006

This is the general Audience Abstract.

Use the file: GeneralAudienceAbstract.tex

