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ABSTRACT 
 

This work presents an algorithm that uses backpropagating neural networks and their ability 

to find logistic regression coefficients as a useful tool that may outperform other 

conventional methods for finding the change-point of a data set. To seek this objective, we 

first demonstrate the capacity of a one-layered neural network to find logistic regression 

coefficients. Then, we add another layer to the network in order to determine if two-layer 

discriminants would allow us to approximate the change-point. We then develop an 

algorithm based on hidden layer coefficients of neural networks that allows us to assess 

change-points based on when a neural network switches from one “neuron” to another.
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RESUMEN 
 

Este trabajo presenta un algoritmo que utiliza redes neurales artificiales de retropropagación 

y su habilidad para encontrar coeficientes de regresión logística como herramienta útil que 

puede superar métodos convencionales para hallar el punto de cambio en un conjunto de 

datos. Para lograr este objetivo, primero se demuestra la capacidad que tiene una red neural 

de un nivel para encontrar coeficientes de regresión logística. Entonces, añadimos otro nivel 

adicional a la red neural para determinar si los dos discriminantes que ésta calculó nos 

aproximan al punto de cambio. Luego, se creó un algoritmo basado en coeficientes de un 

nivel escondido de la red que nos ayudará a encontrar los puntos de cambio basándonos en el 

momento en que la red se mueve de una neurona a otra. 
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1 INTRODUCTION 

 
 
A significant barrier in modeling data sets is the existence of fundamental changes in the 

behavior of the data.  For example, when modeling the probability of dying in an automobile 

accident based on age, the probability of dying in an automobile accident increases as the age 

of the person increases until the age of 23 when the probability decreases as age increases.  

Hence 23 would be the change-point of the data and it would be appropriate to use one model 

to describe the data when the age is less than 23 and another model to describe the data when 

the age is greater than 23.  Our research focuses on the use of artificial neural networks and 

their associated logistic regression coefficients to determine the existence and the location of 

a change-point.  

 

Two-layer backpropagating neural networks can be interpreted as finding various logistic 

regression equations in the first level and finding an appropriate balance between these in the 

second. Our intention is to associate sub-regions of the domain with neurons of the first layer 

of the neural network and thereby obtain a change-point for the population. 

 

1.1 Literature Review 
 
 
1.1.1 History of Artificial Neural Networks 
 

The first step toward artificial neural networks came in 1943 when Warren McCulloch, a 

neurophysiologist, and a young mathematician, Walter Pitts, wrote a paper on how neurons 
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might work [Alderman, 2000]. They modeled a simple neural network with electrical 

circuits.  

 

In 1949, Donald Hebb wrote the book “The Organization of Behavior” reinforcing the 

concept of neurons and how they work. It pointed out that neural pathways are strengthened 

each time that they are used.  

 

As computer technology became more complex in the 1950s, it became possible to begin 

modeling the rudiments of the theories concerning human thought. Nathanial Rochester from 

the IBM research laboratories led the first effort to simulate a neural network. Although a 

first attempt failed, subsequent attempts were successful. It was during this time that 

traditional computing began to flower and, as it did, the emphasis in computing left the 

neural research in the background.  

 

In 1956, the Dartmouth Summer Research Project on Artificial Intelligence provided a boost 

to both artificial intelligence and neural networks. One of the outcomes of this process was to 

stimulate research in both the intelligence side, AI, as it is known throughout the industry, 

and in the much lower level neural processing part of the brain.  

 

In the years following the Dartmouth Project, John von Neumann suggested imitating simple 

neuron functions by using telegraph relays or vacuum tubes. Also, Frank Rosenblatt, a neuro-

biologist of Cornell, began work on the Perceptron. He was intrigued with the operation of 
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the eye of a fly. Much of the processing which tells a fly to flee is done in its eye. The 

Perceptron, which resulted from this research, was built in hardware and is the oldest neural 

network still in use today [Fausett, 1994].  

 

In 1959, Bernard Widrow and Marcian Hoff of Stanford developed models they called 

ADALINE and MADALINE. These models were named for their use of Multiple ADAptive 

LINEar Elements. MADALINE was the first neural network to be applied to a real world 

problem. It is an adaptive filter which eliminates echoes on phone lines. This neural network 

is still in commercial use.  

 

John Hopfield of Caltech presented a paper to the national Academy of Sciences in 1982 

where he stated that artificial neural networks were not used only to model brains, but to 

create useful devices. With clarity and mathematical analysis, he showed how such networks 

could work and what they could do.  

 

By 1985 the American Institute of Physics began what has become an annual meeting - 

Neural Networks for Computing.  

 

The 1990 US Department of Defense Small Business Innovation Research Program named 

16 topics which specifically targeted neural networks with an additional 13 mentioning the 

possible use of neural networks.  
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Today, neural networks discussions are occurring everywhere. Their promise seems very 

bright as nature itself is the proof that this kind of thing works.  

 
 
1.1.2 Cumulative Sum to Find the Change-point 
 
 
A simple cumulative sum type has been often used to solve the change-point problem. A 

conditional test of no change against change is used and compared with a likelihood ratio 

test. The estimation of the change-point is also considered, using simple statistics, and the 

method is shown to be asymptotically equivalent to the maximum likelihood estimator in 

certain circumstances and almost equivalent in others.  

 

Suppose that there is a sequence of independent zero-one random variables and that 

there is a change in the distribution at some unknown point. More precisely we suppose that 

X1, ...,XT are independent random variables with 

 

0

1
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θ τ τ
θ τ
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The value of the parameter  τ  is known as the change-point. If T≤≤ τ1 , there has been a 

change in the sequence and if T=τ then there has been no change in the sequence [Hinkley, 

1970]. 

 

1.1.3 Minimum Message Length Method to Find the Change-point 
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The Minimum Message Length (MML) principle is an invariant Bayesian point estimation 

technique based on information theory [Smith, 1975]. MML selects regions from the 

parameter space which contain models that can justify themselves with high posterior 

probability mass.  

 

The MML method is especially useful when many change-points are being estimated and on 

large data sets.  

 

Previous work on coding change-point parameters in the MML framework has resulted in 

analytical approximations which treat the change-point as a continuous parameter or avoid 

stating them altogether [Pettitt, 1979]. These approaches work well in practice. However, 

change-points are realized as discrete parameters since they partition a data sample. 

 

1.1.4 Classification and Regression Trees 
 
 
Classification and Regression Trees (CART) analysis is a form of binary recursive 

partitioning. At each node, a review of all independent variables is made and for each 

independent variable, a review of all values at which the population can be divided is 

conducted. The population is then split into two sub-nodes based on which independent 

variable and which splitting point for that independent variable will allow two separate 

logistic models operating on the two subpopulations to successfully predict the dependent 

variable over the entire population. 
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This procedure can be recursively continued until the population is divided into sufficient 

subpopulations to allow accurate modeling on all of them. 

 

1.2 Relevance of the Research Presented in This Dissertation 
 
 
CART uses logistic regression to subdivide a population along a grid where the grid consists 

of constant values for the independent variables. For example, if there are two risk factors of 

death, the following could be a tree obtained from CART: death, the following could be a tree obtained from CART: 

All people 

People with  People with  
Risk Factor 1  Risk Factor 1  

greater less than a 
Than or equal 

To a 
 

People with  People with  
Risk Factor 1  

less than a and Risk
Factor 2 greater than

Or equal to b 
 

People with  
Risk Factor 1  

greater than or  
equal to a and  

Risk Factor 2 < b 
 

People with  
Risk Factor 1  

greater than or  
equal to a and  

Risk Factor 2 greater
Than or equal to b 

 

Risk Factor 1<a? 

Risk Factor 2<b? Risk Factor 1<c? 

Risk Factor 1  
less than a and Risk 

Factor 2 < b 

  

Figure 1.1 Example of CART Tree Figure 1.1 Example of CART Tree 
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The gridlines for the separation are obtained based on success of the logistic model in 

successfully dividing the population associated with each node of the tree into two 

subpopulations.  It should be noted that risk factor 1<a is used in the first level of the tree and 

risk factor 1<c is used in the second level of the tree.  The basis for each division is which 

independent variable and which value for that independent variable will provide two 

subpopulations which when modeled with two distinct logistic models will provide the best 

overall predictability for the population.  In the tree above, if four separate logistic models 

are to be used on four subpopulations, the best results can be obtained through the divisions 

delineated by the bottom level of the tree obtained by CART 

 

Each neuron in a neural network can use the same equation as is used in logistic regression. 

Our research has found that neural networks of two layers can also subdivide populations 

based on the success of the logistic function in predicting the dependent variable. We have 

found initial success with a new methodology which is very similar to CART in terms of a 

subdivision based on logistic equations but allows partitions that are non-constant 

hyperplanes. CART restricts subdivisions to constant values of independent variables. 

 

1.3 Summary of Following Chapters 
 
 
Chapter 1 gives an introduction to this work’s objective and methodology. In addition, some 

of the research previously done is briefly discussed in the literature review section. 
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Then, chapter 2 gives a background on artificial networks definition, their purpose, 

functionality, different learning methods and a comparison between artificial neural networks 

and logistic regression. Also, examples of neural networks predicting output classes based on 

input characteristics are given in this chapter. 

 

The artificial neural network’s backpropagation algorithm is presented in Chapter 3.  

 

Chapter 4 contains definitions, examples and experiments related to discriminants and their 

role in pattern classification using artificial neural networks.  

 

The change-point problem methodology and experiments are discussed in chapter 5 and 

chapter 6, respectively. 

 

 Conclusions and future work are presented in chapter 7. 
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2 Theoretical Background 
 
 
2.1 What is an Artificial Neural Network? 
 

The following are some definitions of neural networks: 

• An interconnected assembly of simple processing elements, units or nodes, whose 
functionality is loosely based on the animal brain. The processing ability of the 
network is stored in the inter-unit connection strengths, or weights, obtained by a 
process of adaptation to, or learning from, a set of training patterns. 
www.inproteomics.com/nwglosno.html  

• A representation of a human brain similar in that both a brain and a neural network 
consist of input neurons gathering information from an external environment, 
synapses which interlace the input neurons' information in complex but fairly 
predictable patterns, and output neurons which turn the patterns of the synapses into 
actions made on the external environment. 
www.krl.caltech.edu/~charles/alife-game/glossary.html  

• A type of statistical computer program which classifies large and complex data sets 
by grouping cases together in a way similar to the human brain. 
www.audiencedialogue.org/gloss-stats.html  

• A computational method for optimizing for a desired property based on previous 
learning cycles (training). 
www.genpromag.com/Glossary~LETTER~N.html  

• A machine-learning technique that simulates a network of communicating nerve cells. 
www.nature.com/nrg/journal/v5/n4/glossary/nrg1315_glossary.html  

• A member of a class of software that is "trained" by presenting it examples of input 
and the corresponding desired output. For example, the input might be a magnetic 
anomaly and the required output the depth to the source of that anomally. 
www.geop.itu.edu.tr/~onur/seis/dic/gravmag.html  

 

As can be seen from the variety of definitions, artificial neural networks are a varied and 

diverse set of information processing tools. To the author’s knowledge, there is no 

mathematical definition for what makes up the family of functions and processes that are 

http://www.google.com/url?sa=X&start=0&oi=define&q=http://www.inproteomics.com/nwglosno.html&usg=__3JLmLh3H1TQhaf3TG6nBbj-CwG8=
http://www.google.com/url?sa=X&start=1&oi=define&q=http://www.krl.caltech.edu/%7Echarles/alife-game/glossary.html&usg=__NK8PVW77Erx2gs3jznV9BUoVBVI=
http://www.google.com/url?sa=X&start=2&oi=define&q=http://www.audiencedialogue.org/gloss-stats.html&usg=__-CnXhRKHLVzFW7DbzgWqV3mQyyQ=
http://www.google.com/url?sa=X&start=4&oi=define&q=http://www.genpromag.com/Glossary%7ELETTER%7EN.html&usg=__pZG2vqXVPtimxoCSEkmU4zfyk8c=
http://www.google.com/url?sa=X&start=5&oi=define&q=http://www.nature.com/nrg/journal/v5/n4/glossary/nrg1315_glossary.html&usg=__u_yZ82nBCQqHtok6sVkzak6j_i4=
http://www.google.com/url?sa=X&start=6&oi=define&q=http://www.geop.itu.edu.tr/%7Eonur/seis/dic/gravmag.html&usg=__i-v8slEwMnlAR3Zzzft1uX9Hv14=
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loosely labeled “neural networks.” To be classified as a neural network, there is generally an 

aspect of the process that replicates the behavior of biological neurons. They most frequently 

incorporate a “learning” or “training” process.  

 

In this process, known data is used to adjust coefficients of neural networks and if the 

training process is successful, the neural network will then operate as a function capable of 

replicating the actual output for all of the known inputs. While these are common 

characteristics of neural networks, they are not definitions. 

 

In our research, we use a feedforward backpropagating neural network. These do have a 

precise structure and a precise set of associated mathematical formulae. In sections 2.3 

through 2.5, we will present the structure of feedforward backpropagating neural networks 

and the associated mathematical formulae. We will also present in sections 2.3 through 2.5 

examples of input and output associated with feedforward backpropagating neural networks. 

In this section we simply wish to provide some background on neural networks. 

 

In order to learn by example neural networks generally need to be configured for a specific 

application, such as pattern recognition or data classification through a learning process. 

Similarly to biological systems, artificial neural networks’ learning process involves 

adjustments to the synaptic connections (or weights) that exist between the neurons.  

 

There are two major categories of artificial neural networks: 
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Fixed Networks in which the weights cannot be changed. In such networks, the weights are 

fixed according to the problem to solve. 

 

Adaptive Networks which are able to change the weights within the neurons’ connections. 

This type of network is used throughout this research thesis work. 

 

The learning methods used for adaptive neural networks can be classified into two major 

categories: 

 

Supervised learning which incorporates an external source of information, so that each 

output unit is told what its desired response to input signals ought to be. Paradigms of 

supervised learning include error-correction learning, reinforcement learning and stochastic 

learning. 

 

An important issue concerning supervised learning is the problem of error convergence, or 

the minimization of error between the desired and computed unit values [Draper et al., 1998]. 

The aim is to determine a set of weights which minimizes the error.  

 

Unsupervised learning uses no external source of information and is based upon only local 

information. It self-organizes data presented to the network and detects their common 

collective properties.  
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The behavior of an ANN (Artificial Neural Network) depends on both the weights and the 

activation function (transfer function) that is specified. The activation function is the most 

common way to replicate the activation of a biological neuron.  This function typically falls 

into one of three categories: linear, threshold and sigmoid. 

 

Linear: the output activity is proportional to the total weighted output.  

 

Threshold: the output is set at one of two levels, depending on whether the total input is 

greater than or less than some threshold value. 

 

Sigmoid: the output varies continuously but not linearly as the input changes. Sigmoid have a 

greater resemblance to real neurons than do linear or threshold units. They are useful in that 

they can approximate a threshold function while providing differentiability and other useful 

mathematical properties. 

 

2.2 How Do Artificial Neural Networks Work? 
 

Henceforth, when we use the term neural network we will be referring to a feedforward 

backpropagating neural network as these are the neural networks used in our experiments. 

 

To make an artificial neural network perform a specific task, it should be decided how the 

units are connected to one another and the weights on the connections must be set 
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appropriately. These connections determine whether it is possible for one unit to influence 

another. The weights specify the strength of the influence. 

 

For example, teaching a network to perform a particular task can be achieved by: 

1. Presenting the network with training examples, which consist of a pattern of activities 

for the input units together with the desired or known output associated with this input.  This 

is most often done by finding actual data where the output for given inputs is known .  

However, it can also be done by prescribing a desired set of outputs with a corresponding set 

of inputs or vice versa. 

2. Determining how closely the actual output of the network matches the desired output.  

3. Changing the weight of each connection so that the network produces a better 

approximation of the desired output.  

 

As step 3 suggests, for a network to perform some task, we must adjust the weights of each 

unit in such a way that the error between the desired output and the actual output is reduced. 

This process requires that the neural network compute the error derivative of the weights. 

The backpropagation algorithm is the most widely used method for determining this 

derivative and the method used in this research work. 

 

The algorithm computes each derivative by first computing the rate at which the error 

changes as the activity level of a unit is changed. For output units, this is simply the 

difference between the actual and the desired output. In multiple layer networks, to compute 
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this rate for a hidden unit in the layer just before the output, all the weights between that 

hidden unit and the output units need to be identified. Next, those weights are multiplied by 

the rate of error change of those output units and then, those products are added. This sum 

equals the rate at which the error changes for the chosen hidden unit. After calculating the 

rates in the hidden layer just before the output layer, the rate can be computed similarly for 

other layers, moving from layer to layer in a direction opposite to the way activities 

propagate through the network. The error derivative of the weights is the product of the rate 

at which the error changes and the activity through the incoming connection. 

 

2.3 Single Layer Neural Networks 
 

A single layer neural network has one layer of connection weights. Its input is frequently a 

set of characteristics for an object and its output is frequently whether the object associated 

with the input belongs to a particular class 

 

In the typical single layer net, each output unit corresponds to a particular category to which 

an input vector may or may not belong. In addition, the weights of one output unit do not 

influence or affect the weights for other output units. 

 

In general, a neural network's goal is to find a function which receives a vector as an input 

and returns a boolean value. The input vector's components are, generally, features or traits 
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and the function's output tells that the object belongs (or not) to a certain class of objects or 

endpoints.  

 

The processing elements of neural networks are often sigmoid functions such as: 

 
1( )

1 xx
e

σ −=
+   (2.1) 

   

in which the function’s output approaches 1 if an object does belong to a certain class. 

Otherwise, the output approaches 0.  

 

Neural networks are most often used with relatively clean data where their purpose is to 

determine classification or to describe data which can be easily and clearly classified into 

different sets. Graphically, the sets or populations are separated by a noticeable gap.  

 

However, it is difficult to classify elements of different sets where the data is partially or 

completely mixed up. Graphically, no noticeable gap is shown between different sets of 

elements. Neural networks are often being used for “fuzzy data” sets as well where degree of 

belonging to a set is measured. This “fuzzy belonging” can be perceived as the probability 

that an item belongs to a certain set. When using neural networks with “fuzzy data”, it is 

often desirable that the output from the neural network not be a boolean value but rather a 

number between 0 and 1 that indicates the degree of belonging to a set. 
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Example: 

A possible goal for a single layer neural network would be to find a function that inputs a 

vector (x,y), where x and y are characteristics of a person and the output would be 0 if a 

person is sick and 1 if a person is healthy. 

 

To accomplish this goal, first, we need to gather known data in order to train the neural 

network. Let us assume that we sample 8 people, obtain the values for (x,y) for these 

individuals and determine whether they are healthy or not. We will assume that we obtained 

the following data: 

 

Healthy People (2.8, 1.8), (3.2, 3), (4.8, 4.2), (6.2, 5.1) 

Sick People: (1, 4.7), (1.8, 6.3), (4.2, 7.6), (5, 8.9) 

 

To visualize the goal of a single layer neural network, it helps to place these data on a grid: 
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Figure 2.1 Neural Network’s Goal – Example 1 
 

M = healthy individual 

O = not healthy individual 

 

As the neural network processes the data set, it will divide the x-y plane into regions where 

the healthy individuals can be distinguished from the non-healthy individuals. The neural 

network will identify the different regions by calculating a discriminant, which is a boundary 

that helps to classify the data into different groups. In this case, there are many possible 

discriminants, however we will design a neural network which uses the line x-y =-1 to divide 

our population. Observing the graph below, it should be clear that this line will divide the 

plane into healthy and sick regions that are consistent with our 8 known data points. 
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Figure 2.2 Neural Network’s Goal – Example 1 (Cont.) 
 

The following graph identifies which side of the discriminant is associated with healthy 

people. Our goal for the neural network we design will be to receive the characteristics (x, y) 

of a person and to return one if (x,y) are on the shaded side and zero if (x,y) are on the 

unshaded side. 

 

 

Figure 2.3 Neural Network’s Goal – Example 1 (Cont.) 
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The following neural network will do precisely that.  

 

 

(x,y) are inputted into the coefficient level and  ( )1 1
x

x y
y

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
 is output. This output 

x y−  is then sent to the activation function which is a threshold function that returns zero if 

the input is less than -1 and 1 if the input is greater than -1. Hence, the activation receives the 

input x y− and returns 0 if x y  and returns one if 1− <− 1x y− > − . As this was the goal for 

our neural network, we have now designed a neural network consistent with the geometric 

goals we outlined. 

 

It should be noted that for mathematical reasons, it is convenient that the activation function 

switches from 0 to 1 when the input is 0. Hence, the single layer neural networks that we use 

in our experiments would have input <x,y,1>. The row vector with which it would be 

multiplied would be (1 -1 1)  and the output before the activation function would be x-y+1.  

This would be input into the activation function would activate when this quantity is greater 
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than zero. Thus, activation would occur when x-y+1 > 0 which is the same as x-y > -1 

indicated in our above example. 

 

Normally, healthy and sick people are intermingled and a clean division such as that 

presented in this example is impossible. In that case, an optimal discriminant is sought that 

will best allow prediction of the dependent variable based on the independent variables 

entered into the neural network. 

 

2.4 Logistic Regression and Maximum Likelihood Equations 
 

Logistic regression has the same intuitive goal as a single layer neural network. However, the 

formulation of the problem is very different. Assuming there is a dependent variable x and a 

dependent variable  and a set of known data points (x,y) associated with these 

data, the goal of logistic regression is to find the ‘a’ and ‘b’ values that best fit the known 

data points using the logistic equation: 

,0 1y y≤ ≤

( )

(( )
1

a x b

a x b

ey x
e

π
− +

− += =
+ )   (2.2) 

 

Logistic regression finds ‘a’ and ‘b’ using maximum likelihood equations. If ,( )i ix y  

represents the ith  known data point, the likelihood of outcome y given data x is a conditional 

probability and it is given by the formula: 
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Likelihood of iy  given ix = ( , )x y
i i

ζ  = ) [1-   (2.3) 
i

x(π i
y

i
y

i
x −1)](π

Since the observations are assumed to be independent, the likelihood function is obtained as 

the product of the terms given in equation 2.3 over the n known data points. If we let 

 , the likelihood function will depend on the parameters of 
a
b

β ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
β  and is defined as 

 

1

( ) ( , )
n

i

l x
i i

β ζ
=

= ∏ y   (2.4) 

 

The principle of maximum likelihood states that we use as our estimate of β  the value that 

maximizes the expression in equation 2.4. However, it is mathematically easier to work with 

the log of equation 2.4 [Hosmer et al., 1989]. This expression, the log likelihood, is defined 

as: 

)]}(1ln[)1()](ln[{)](ln[)(
1 i

x
i

y
i

x
i

ylL
n

i
ππββ −−+== ∑

=

  (2.5) 

To find the value of β  that maximizes )(βL we differentiate it with respect to and . 

Then, we set the resulting expressions equal to zero. These equations are as follows: 

0
β

1
β

∑
=

=−
n

i i
x

i
y

1
0)]([ π   (2.6) 

and 
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.0)]([
1

=−∑
= i

x
i

y
i

x
n

i
π  (2.7) 

 

On the other hand, the goal for the neural network is to find the values of ‘a’ and ‘b’ that best 

fit the data for equation 2.1 using the steepest descent method. That is: 

1k k
Ea a
a

α+
∂

= −
∂    .8) (2

1k k
Eb b
b

α+
∂

= −
∂   (2.9) 

where E= .5(real-output)². The coefficient α  is a real, positive number between zero and one 

and is referred to as the learning coefficient. It may be changed after a course of iterations in 

order to reduce the error. 

 

Then, another update is done to a and b values providing some smoothing, so that the impact 

of a given iteration would be balanced by the changes of previous iterations. This is done by 

using the “smoothing” parameter μ  , which is a positive real number between zero and one. 

The results for a and b right after the k+1 iteration would be: 

 

))(1()(
1

1
1

−

−
+ ∂

∂
−−+

∂
∂

−+=
k

k

k

k
kk a

E
a
E

aa αμαμ  (2.10) 

 
))(1()(

1

1
1

−

−
+ ∂

∂
−−+

∂
∂

−+=
k

k

k

k
kk b

E
b
Ebb αμαμ

  (2.11) 



 
 
 
 

 24

 

The goal for logistic regression and a single layer neural network are precisely the same 

although their respective techniques differ. This fact can be observed, if we substitute 

 

( )a x bu e− +=
r r

  (2.12) 

into both logistic regression and sigmoid function equations. 

 

2.5 Neural Networks with Two Hidden Layers 
 

To understand how neural networks with two hidden layers work, let us consider the 

following situation where we have graphed mangoes and other fruit based on their 

characteristics (x,y). Our goal is to design a neural network that can distinguish between 

mangoes and other fruit. 
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Figure 2.4 Two-Layered Neural Network’s Goal - Sample Population 
 

In this situation we can see that two lines are needed to separate the two distinct objects 

contained in the graph. 

 

 

Figure 2.5 Discriminants Found By Two-Layered Network 
 

Our goal is to design a function that will receive (x,y) and will return 1 if this (x,y)  is in the 

mango region and will otherwise return 0. The following neural network will accomplish this 

goal: 
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1 0 0 0 0

1( )
1 xs ig m o id x

e
σ −≡ =

+
 which emulates a threshold function similar to that shown 

above except it is activated for input greater than zero and deactivated for input less than zero. 

To see how this neural network accomplishes our goal, we will enter a representative point 

from each region.  

 

Leftmost Region: 

Let us input (x,y)=(1,3) into the neural network. Remember that the output from our sigmoid 

is approximately zero for negative numbers and approximately 1 for positive numbers not 

close to zero. The following reflects the processing of the neural network:  
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Hence, the neural network would correctly identify that a point in the leftmost region should 

not be classified as a mango. 

 

Central Region: 

Let us input (x,y)=(2,2) into the neural network. The following reflects the processing of the 

neural network: 

( )
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Hence, the neural network would correctly identify that a point in the central region should 

be classified as a mango. 

 

Rightmost Region: 

Let us input (x,y)=(6,1) into the neural network. The following reflects the processing of the 

neural network: 

 

 

( )

1
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1
1 6 1 2 0
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Hence, the neural network would correctly identify that a point in the rightmost region 

should not be classified as a mango. 

 

Generalization: 
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In general, the first hidden layer will produce two expressions of the form ax+by+c. These 

are then passed into the activation function which outputs 0 for (x,y)  on one side of the line 

and outputs 1 for points on the other side of the line. These two outputs from the first hidden 

layer (we often refer to them as output from the two neurons of the first hidden layer) will 

then be passed into the second hidden layer. The second hidden layer will use a linear 

combination of the outputs from the 2 neurons in the first hidden layer to determine if both 

neurons of the first hidden layer are activated, one of the first layer neurons is activated, or 

none of the first layer neurons is activated. By selecting the coefficients of the second hidden 

layer well, the neural network can select which scenarios will trigger the activation function 

associated with the second hidden layer. In this way, the second layer can classify an object 

based on which neurons of the first layer are activated or not activated. 

 

2.6 Double Layer Neural Networks and the Change-point 
 
 
2.6.1 Interpretation of the First Hidden Layer 
 
 
As we have seen in the previous subsection, the first hidden layer of the neural network will 

produce 2 lines. In the previous section, the two lines were parallel producing three regions. 

However, in general, two neurons in the first hidden layer will produce four regions in the xy 

plane (see the example below). 
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Figure 2.6 Regions Created by Neurons on First Hidden Layer 
 
 
We consider 1δ  and 2δ  to be the outputs from the two neurons in the first hidden layer. If the 

activation function associated with the neuron is a threshold function or a very steep sigmoid, 

1δ  and 2δ  will be approximately equal to zero on one side of the neuron associated line and 

approximately equal to one on the other side. If Line 1 is associated with 1δ  and line 2 is 

associated with 2δ , the output ( 1δ , 2δ ) will be distributed as follows: 
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Figure 2.7 Example of Output from Two Neurons in First Hidden Layer 
 
 
If the activation function associated with the neuron is a moderately inclined sigmoid, 1δ  and 

2δ  will be less than 0.5 on one side of the neuron associated line and greater than 0.5 on the 

other side. The general trend noted in the above diagram will remain the same, however the 

values will gradually rise from 0 to 1 instead of jumping immediately upon reaching the 

neuron associated line. 
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2.6.2 Interpretation of the Second Hidden Layer 
 
 
The second layer of the neural network will accept as inputs the values of 1δ  and 2δ  that 

were calculated within the first layer and that were used to divide the x-y plane into four 

regions.  

 

Now, the network will assign weights ( 1 jb ) to the values of 1δ  and 2δ . The linear 

combination of 11 1 12 2 13b b bδ δ+ +  is then input into the activation function associated with the 

second hidden layer. 

 

We then divide all (x,y) into two classes: those (x,y) where the first neuron contributes more 

to the final output of the second activation function. I.e., |||| 212111 δδ bb > and those points 

where the second neuron contributes more to the second activation function, |||| 212111 δδ bb < . 

The border between these two regions where 11 1 12 2b bδ δ=  will be a candidate to define 

where the nature of the population undergoes a fundamental change. 

 

If one neuron has a greater impact than the other for the entire domain, then this technique 

will not divide the population into two parts. This may mean that there is no significant 

change-point in the population or that another technique to find the change-point is necessary. 

When the activation function is a threshold function, the diagram shows that the set of points 

where 11 1 12 2b bδ δ= can form a region. However, our research uses sigmoid functions of the 
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form 
*

1( ) , 0
1 c o n s t xx c o n s t

e
σ −=

+
≠ . In this case, unless 11 0b =  and  the set of 

points where 

12 0b =

11 1 12 2b bδ δ=  will not form a region but a curve.  

 

It should also be noted that our experiments are done with moderately inclined sigmoids so 

that the values of 1δ  and 2δ  gradually rise from zero to one and are not the threshold 

portrayed in parts of this section.  

 

2.7 Notes on Obtaining the Coefficients 
 
 
This section did not show how to find the coefficients that will make a neural network 

function. It simply showed how a neural network will correctly work if the coefficients 

associated with its neurons are well chosen. In chapter 4, we will demonstrate how the 

coefficients that will make a neural network function may be obtained. 

 

3 Multi-layer Neural Networks and the Backpropagation 
Algorithm 

 

 

3.1 Overview of the Training Process 
 
 
In the previous section, we showed that a neural network receives as input certain 

characteristics of an object and outputs the whether an object belongs to a certain class.  In 
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the examples of the previous sections, the inputs were characteristics of fruits and the output 

was whether the fruit was a mango. It is worth mentioning that if the output is not boolean, it 

can be used to represent the probability that an object belongs to a class.  

 

To accomplish this assessment, the input is passed through hidden layers of the neural 

network that contain coefficients and activation functions. If these coefficients and activation 

functions are well chosen and there are sufficient neurons and hidden layers in the neural 

network, the expectation is that the neural network will output an accurate probability that 

the object associated with the given inputs belongs to the class associated with the output.  

 

To obtain an overview of how this is done, let us consider a neural network that receives two 

inputs (x,y) and a single output z . The inputs (x,y) represent characteristics of an object. The 

output z is equal to zero if the object associated with the input is not a member of the output 

class and is equal to one if the object associated with the input is a member. Output between 

0 and 1 is considered to represent probability that an object belongs to the output class. We 

will assume that the neural network has two hidden layers with coefficients aij in the first 

hidden layer and bj in the second hidden layer. Hence, the purpose of the training process is 

to find the optimal set of values of aij in the first hidden layer and bj in the second hidden 

layer that will allow the neural network to receive characteristics (x,y) and determine whether 

they represent a member of the class associated with the output z. A precise outline of the 

mathematics will follow in the next section. This section is simply to provide an overview of 

the training algorithm. 
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Let’s suppose that we have two data points with which to train our neural network: 

(x,y) = (3,2)  for an object not in the class.  I.e., (3,2,0) is the data point. 

(x,y) = (5,3)  for an object in the class.  I.e., (5,3,1) is the data point. 

Our goal is to train the neural network to output 0 when the input is (3,2) and to output 1 

when the input is (5,3). As there are no data for other points, the output with other inputs will 

not be a factor in our training process. In order to train our neural network we perform the 

following steps.   

 

Step 1: Initialize aij  and bj to random values between 0 and 1. 

 

Step 2: Enter the first data point (3,2,0) and obtain the output from the neural network (in this 

case we assume that the output from the neural network is 0.3 while the actual output should 

be 0): 

 

)()( jij ba
(3,2) 0.3

Neural Network 

    

Step 3. Find the partial derivatives of the error with respect to all hidden coefficients. 
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If P = Desired Output, then the error (using the l-2 norm) ( 21
2

)E P z= −  = 

( )21 0 0.3 0.045
2

− =  

The mathematics will be presented in the following section. However, we will now assume 

that the calculations for 
ij

E
a

∂
∂

 and 
j

E
b

∂
∂

 for all coefficients in the first and second hidden 

layers of the net have been obtained. 

 

Step 4: Update the coefficients using a steepest descent approach so that each coefficient is 

slightly altered to diminish the size of the error.  

ij ij
ij

Ea a
a

α ∂
= −

∂  

j j
j

Eb b
b

α ∂
= −

∂  

The coefficient α  is positive and is referred to as the learning coefficient. We generally 

started with .05α = and reduced its value over the course of our iterations.  

 

Step 5: Repeats steps 2 through 4 with each of the remaining data points in the training set.  

In our case there is only one more training point. 

 

Step 2 – Second Iteration 
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)()( jij ba
(5,3) 0.4

Neural Network 

    

Step 3 – Second Iteration 

 

Find the partial derivatives of the error with respect to all hidden coefficients 

P = Desired Output, then the error ( )21
2

E P z= −  = ( )21 1 0.4 0.18
2

− =  

. 

Step 4 – Second Iteration 

Update the coefficients.  

ij ij
ij

Ea a
a

α ∂
= −

∂  

j j
j

Eb b
b

α ∂
= −

∂  

Step 6: Repeat steps 2 through 5 until the Error is ~0 for all data points or until the sum of the 

errors over all data points ceases to diminish with successive iterations. 

 

It is worth noting that we used some smoothing features when updating parameters so that 

the impact of each given update was smoothed with previous updates. However, the general 

format for our training algorithm was as indicated in this section. 
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3.2 Mathematical Formulation for Updating Coefficients 
 
 

The following is the diagram for the simple two-layer neural network with sigmoidal 

activation functions, two inputs and one output that we used for our experiments with multi-

layer neural networks. 

 

 
Figure 3.1 Simple Two-Layered Neural Network 

 
 

(x,y) = Input, 
z = Output , 

P = Desired Output, 

( 21
2

)E P z= −  and 

1( )
1 xs ig m o id x

e
σ −≡ =

+
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For multi layered networks, we must propagate the error back from the output node. The 

algorithm starts moving from layer to layer in a direction opposite to the way activities 

propagate through the network (from input to output). 

 

Using the chain rule, we can expand the error of a hidden unit in terms of its posterior nodes: 

 

1) Solving for 
1 j

E
b

∂
∂

 

 

1 1j j

E E z
b z b

∂ ∂ ∂
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The error derivative of the weights is the product of the rate at which the error changes and 

the activity through the incoming connection. 

 

2) Solving for k
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With the derivative of the error with respect to all of the hidden nodes of the neural network 

calculated, the training algorithm defined in the previous subsection of this chapter was used 

to continue updating coefficients until convergence at an optimal set of values for the 

coefficients of the neural network was achieved.  

 

3.3 Applying Neural Networks 
 
 
In a previous chapter, we demonstrated how backpropagating neural networks can be used to 

identify objects. In this chapter we demonstrated how to train neural networks to identify 
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3)i

objects. Normally, if we were going to use neural networks of this kind, we would first train 

them with known data and then apply the trained neural network with fixed coefficients to 

unknown data.  

 

Our application however is a bit different. We are not interested in the capability of neural 

networks to classify data. In the process of training a neural network, coefficients will be 

obtained for all of the hidden layers. The outputs from the first hidden layer are 

1 2(i i ia x a y aδ σ= + + , i = 1,2 and the output from the second hidden layer is 

11 1 12 2 13(z b b b *1)σ δ δ= + + . We refer to 1 2(i i ia x a y a 3)iδ σ= + +  as neurons. After training a 

neural network, each point (x,y) in the domain will activate one of the two neurons more 

strongly than the other with respect to its effect on the output z. This is determined by 

observing whether 11 1b δ or 12 2b δ is greater for a given point (x,y). The reasoning behind this 

conclusion is that 11 1 12 2 13( *z b b b 1)σ δ δ= + + . Hence if 11 1b δ is greater than 12 2b δ  then the 

first neuron is effecting the output z more strongly than the second and we will associate that 

data point (x,y) with the first neuron. Alternatively, if 11 1b δ is less than 12 2b δ  then the first 

neuron is affecting the output z less strongly than the second and we will associate that data 

point (x,y) with the second neuron. In this way, each point of the domain will be associated 

with a neuron of the neural network and the domain can be divided into sub-regions based on 

associations with neurons of the trained neural network. 

 

 Our goal is to see if these divisions provide insight into the change-point problem. 
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4 Single Layer Artificial Neural Network and Logistic 
Regression 

 
 
4.1 CART, Logistic Regression and Single Layer Neural Networks 
 
 
The CART Method uses the logistic model to divide populations into two subpopulations by 

dividing the population along a constant value of one of the independent variables. Our goal 

in this section is to verify that our single layer neural networks will achieve the same goals as 

logistic models. It should be noted, that a single layer neural network is far less efficient than 

logistic regression in achieving the same goal. However, the neurons of a single layer neural 

network can be incorporated into a double layer neural network and for that reason they 

interest us. 

 

Artificial neural networks are algorithms that can be used to perform nonlinear statistical 

modeling and provide a new alternative to logistic regression, the most commonly used 

method for developing predictive models. 

 

Compared to logistic regression, artificial neural networks require less formal statistical 

training. They have the ability to implicitly detect complex nonlinear relationships between 
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dependent and independent variables and to detect all possible interactions between predictor 

variables. In addition, multiple algorithms can be used with artificial neural networks.  

 

Despite the differences between the two, both methods share the same goal, as it was 

discussed in chapter 2. 

Table 4-1 Logistic Regression vs. Artificial Neural Networks 
Logistic Regression Artificial Neural Networks 
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If we multiply the logistic regression equation by
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β
β , the formulas are the same. 

Thus, analyzing the same population of data with these two methods, should yield the same  
 
results. 
 
 

Table 4-2 Logistic Regression vs. Artificial Neural Networks (Cont.) 
Logistic Regression Neural Networks 
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4.2 Experiment Using Logistic Regression to Obtain Learning Parameters 
for Neural Networks 

 
 
4.2.1 Methodology 
 

The objective of the experiment was to use the fact that logistic regression is a much more 

precise solution for coefficients of 1 level neural networks in order to obtain parameters that 

will optimize the performance of a single layer neural network programmed in C code. We 

will then use these as starting parameters for our neural networks of two layers. 

 

In this experiment, one hundred data pairs (xi, yi) were generated.  The independent variable x 

was uniformly distributed from zero to six. The dependent variable y had probability of 

P(y=1|x) equal to 0 for x<3 and P(y=1|x) equal to .5+(x/12) for .  3x ≥

 

This procedure was repeated five times to generate five data sets with 100 elements in each 

one. Logistic regression was performed on each data set to obtain the optimal values of a and 

b. these values were then compared with neural networks that used a variety of different 

learning parameters.  

 

4.2.2 Results 
 
 
Table 4-3 shows that the results obtained by logistic regression where the maximum 

likelihood equations were used to find a and b in 
( )

(1

a x b

a x b

ey
e

− +

− +=
+ )  and neural networks 
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with parameters of .5α =  and 1μ = (learning and smoothing parameters; see chapter 2, 

equations 2.8, 2.9, 2.10, 2,11).were used with 100,000 repetitions of the training algorithm to 

find the same parameters. As was expected, the results were very similar.  

 

Table 4-3 Comparison Between the Performance of Logistic Regression and a 
Single Layered Neural Network. 

Coefficients ‘a’ and 
‘b’ Found Using 
Logistic Regression 

Coefficients ‘a’ and 
‘b’ Found Using 
Neural Networks 

0.772733,0.162439 0.738468,0.156479 
0.676728,0.076428 0.670548,0.079042 
0.687248,0.021124 0.681357,0.021162 
0.806840,0.090810 0.806483,0.090825 
0.657486,0.002503 0.643200,0.010918 

 
 
Table 4-4 shows that the results obtained by logistic regression where the maximum 

likelihood equations were used to find a and b in
( )

( )1

a x b

a x b

ey
e

− +

− +=
+

 and neural networks 

with the initial value of .1α =  which then was reduced by 10 percent for every 10000 

iterations. A constant value of .8μ = was used. This was then run until no discernible 

difference was detected between successive iterations on the entire data set. With this 

methodology, the results were almost identical.  
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Table 4-4 Second Comparison Between the Performance of Logistic Regression 
and a Single Layered Neural Network. 

Coefficients ‘a’ and 
‘b’ Found Using 
Logistic Regression 

Coefficients ‘a’ and 
‘b’ Found Using 
Neural Networks 

0.772733,0.162439 0.7727314,0.162521 
0.676728,0.076428 0.676032,0.076512 
0.687248,0.021124 0.687427,0.021436 
0.806840,0.090810 0.806941,0.090803 
0.657486,0.002503 0.657512,0.002494 

 
 
4.2.3 Conclusion 
 

In conclusion, the neurons of a neural network do in fact replicate the work of logistic 

regression, if the training of the neural networks is well done. Logistic regression will obtain 

these coefficients much more efficiently and precisely. However, while not efficient, these 

neurons will replicate the performance of logistic regression. CART consists of separate 

logistic regression models along a grid of subdivisions of the population. Hence, when we 

proceed with two-layer neural networks, the neurons of the first layer will replicate a layer of 

logistic regression models. 

 

It remains to be seen whether the second level will be able to use the first level to find a 

change-point. 

 

5 The Change-point Problem and Discriminants 
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5.1 Introduction to Discriminants 
 
 
A discriminant is a boundary of a mathematical model that allows us to classify data into 

groups (e.g. healthy vs. not healthy). ‘Discriminant’ simply means that it has the ability to 

discriminate between two classes or sets of data [Fausett, 1994]. There are linear and non-

linear discriminants. 

 

Linear discriminants are widely used today in many application domains, including the 

modeling of various types of biological data. This type of discriminants can be obtained 

using artificial networks with supervised learning, which is used very frequently in 

traditional statistics and computer sciences. Also, they are widely used currently in many 

application domains, including the modeling of various types of biological or medical data. 

 

For example, if we analyze a dataset of people and each single datum represents a person, 

each person (datum) has characteristics that can determine whether that person is healthy or 

not. That would be: 

 

Person_1 = {characteristic_1, characteristic_2, …, characteristic_N} 

 

Applying simple classification rules to the Person_1 datum could be done by comparing each 

characteristic with a particular value in the artificial neural network training set. 
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If characteristic_1 < pre-set value for characteristic_1 in training set and 

characteristic_2 < pre-set value for characteristic_2 in training set and 

. 

. 

. 

characteristic_N< pre-set value for characteristic_N in training set 

then, Person_1 is healthy. 

Alternatively, Person_1 is not healthy. 

 

The limitation of CART is that it requires that the discriminant occur at constant values for 

independent variables as was indicated in the above example. 

 

Realistically, classification problems usually have too many characteristics that affect each 

single datum for so simple a scheme to accurately achieve a change-point. A more realistic 

approach is to use characteristics in order to find a hyper-plane such that: 

 

 If datum (Person_1) lies one side of the hyperplane, then the person is healthy. 

 If datum (Person_1) lies on the other side of the hyperplane, then the person is not healthy. 
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5.2 Preliminary Experiment - Discriminants with Logistic Regression, One-
Layer Neural Networks and Two-Layer Neural Networks 
 
 
To capture the shortcomings of Logistic Regression and neural networks with one hidden 

layer, a simple set of data with two risk factors. If either risk factor 1 or risk factor 2 is 

greater than 4, then the risk of death is equal to 1. Otherwise the risk is equal to 0. This is a 

case where the risk and not at risk groups are clearly separated and hence a clear cut and well 

defined discriminant exists. The question is what techniques will find it. 

 

Figure 5.1 Simple Death Data - Obvious Case 
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.  

Figure 5.2 Risk from Logistic and Single Layer Neural Network 
 
 
Figure 5.2 presents the contour lines of constant risk for single layer neural networks and 

logistic regression. A single-layer neural network and logistic regression produced the same 

results, hence only one is presented. If we consider a risk of 50 percent as the discriminant 

that separates the two populations, it is clear that neither a single layer neural network nor 

logistic regression have captured the nature of the risk. 
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Figure 5.3 Risk from Neural Network 
 
 
 
Figure 5.3 presents the contour lines of constant risk for a double layer neural network. 

In contrast to logistic regression behavior and a single layer neural network, the double layer 

neural network adapts itself to the population’s nature. The contours show how the net 

outputs the region in which an individual has 50% of living or dying. Obviously, it is 

providing a model that fits the data far better than the logistic regression’s model. 
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Figure 5.4 Simple Death Data – Blended Data 
 
 
As it is unrealistic to expect data so clearly separated, Figure 5.4 represents a population that 

has the same general propensities as the last data set. However, the individuals that will 

survive are blended with the individuals that will die due to the risk factors. 
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Figure 5.5 Risk from Neural Network 
 
 
Figure 5.5 shows the contours of constant risk that a double layer neural network produced 

with this blended death data. It can be seen in this case that that data was not blended enough 

and correspondingly, the neural network found a different discriminant for the population. It 

is hence worth noting that the artificial neural network reacts to each datum as it processes it. 

In this case, the net is detecting a discriminant at risk factor 1= 4.5 (line that crosses risk 

factor 1 axis at 4.5) and also, it is detecting a discriminant at risk factor 2 = 4.5 (line that 

crosses risk factor 2 axis at 4.5). In addition, it is reacting to the data by treating as outliers 

those surviving individuals that are blended with those that will die. Hence, sparse data can 
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be very problematic with neural networks as it will react strongly to outliers. As sparse data 

is a problem with any modeling technique, this is not surprising but worthy of attention. 

 

6 The Change-point Problem – New Research with Fuzzy 
Data 

 
 
6.1 Introduction 
 

When seeking to model a population, it is often found that there are in fact two distinct 

populations with distinct behaviors. Trying to model such populations with a single model is 

difficult; therefore, we need to separate those populations and model them separately.  

 

Because of this, the change-point problem consists of finding a transfer point in which the 

population undergoes a significant change. Once the change-point has been identified, the 

two subpopulations can be modeled separately with whatever modeling scheme is deemed 

appropriate.  

 

The most common techniques for obtaining change-points are sequential searches or Monte 

Carlo sampling techniques based on a maximization of the maximum likelihood equations 

[James et al., 1987]. 
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→ →

6.2 Methodology 
 
 
6.2.1 Algorithm to Find the Change-point. 
 

To find the change-point a simple two-layer neural network with input (x,y) and output z was 

created with two “neurons”  in the first layer and one “neuron” in the second layer. 
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Figure 6.1 Two-Layered Network - Algorithm to Find Change-Point 

 
 
The experiment was to determine if the coefficients associated with the hidden layers of the 

neural network would contain the information where a fundamental change results in the data 

set. Our hypothesis is that the population can be divided into two subpopulations: The first is 

the set of (x,y) where the magnitude of 11 1b δ  is greater than the magnitude of 12 2b δ  and the 

second subpopulation is the set of (x,y) where the magnitude of 11 1b δ  is less than the 

magnitude of 12 2b δ . The change-point will be the boundary of these two populations where 
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the magnitude of 11 1b δ  is equal to the magnitude of 12 2b δ . However, if one neuron has 

a greater impact than the other for the entire domain, then this technique will not divide the 

population into two parts.  Probably, this means that there is no significant change-point in 

the population or that another technique is needed to find the change-point. 

 
 
6.2.2 Data Sets to be Tested 
 

For this preliminary set of experiments we created functions z = f(x,y) above the region (x, 

y)∈[0,4]×[0,4] . 

 

The functions f are all continuous and fuzzy however they all have a well defined change-

point where the nature of the function changes.  

 

Data set 1: The function z=f(x,y) is defined by 

 

 

 

 

Data set 2: The function z=f(x,y) is defined by 
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Data set 3: The function z=f(x,y) is defined by 

 

 

 

Data set 4: The function z=f(x,y) is defined by 

 

 

 

Data set 5: The function z=f(x,y) is defined by 
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d1= distance from (x,y) to the line y = -2x 

d2= distance from (x,y) to the line x+y = 2 

d3= distance from (x,y) to the line y = -0.5x+6. 

 

Data set 6: The function z=f(x,y) is defined by 

 

 

d1= distance from (x,y) to the line y = -2x 

d2= distance from (x,y) to the line x+y = 2 

d3= distance from (x,y) to the line y = -0.5x+6. 

 

By comparing the actual change-point where the neural network switches from one primary 

activation function to another primary activation function, we can determine the capability of 

neural networks to obtain change-points. 
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From each of these six datasets, 10,000 points in the region (x, y)∈[0,4]×[0,4] were generated 

and used to train the neural network. In order to model these datasets, the neural network 

may switch from one primary activation function to another primary activation function. By 

observing where these changes in the primary activation function occur, we hope to obtain 

insight into the change-point problem. 

 

6.3 Results 
 
 
6.3.1 Data Set 1 
 
 
The visualization of data set one is as follows: 
 
 

 
 

Figure 6.2 Data Set 1 
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The following diagram indicates where the neural networks switched from activation 

function 1 to activation function 2. The shaded region indicates where  is the strongest 

indicator of z and the white region is where 

1∂

2∂ is the strongest indicator of z.  

 
 

 
 

Figure 6.3 Change-point of Data Set 1 
 

 
It is clear from observing the two populations that the neural network clearly identifies the 

change-point. 

 

6.3.2 Data Set 2 
 
 
The visualization of data set two is as follows: 
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Figure 6.4 Data Set 2 

 

The following diagram indicates where the neural networks switched from activation 

function 1 to activation function 2. The shaded region indicates where  is the strongest 

indicator of z and the white region is where 

1∂

2∂ is the strongest indicator of z.  
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Figure 6.5 Change-point of Data Set 2 

It is clear from observing the two populations that the neural network clearly identifies the 

change-point. 

 

6.3.3 Data Set 3 
 
 
The visualization of data set three is as follows: 
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Figure 6.6 Data Set 3 
 

 

The following diagram indicates where the neural networks switched from activation 

function 1 to activation function 2. The shaded region indicates where  is the strongest 

indicator of z and the white region is where 

1∂

2∂ is the strongest indicator of z.  
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Figure 6.7 Change-point of Data Set 3 

 

It is clear from observing the two populations that the neural network clearly identifies the 

change-point.  

 

6.3.4 Data Set 4 
 
 
The visualization of data set four is as follows: 
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Figure 6.8 Data Set 4 

 

The following diagram indicates where the neural networks switched from activation 

function 1 to activation function 2. The shaded region indicates where  is the strongest 

indicator of z and the white region is where 

1∂

2∂ is the strongest indicator of z.  
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Figure 6.9 Change-point of Data Set 4 

 

It is clear from observing the two populations that the neural network clearly identifies the 

change-point. 

 

6.3.5 Data Set 5 
 
 
The visualization of data set five is as follows: 

 

Figure 6.10 Data Set 5 

 

The following diagram indicates where the neural networks switched from activation 

function 1 to activation function 2. The shaded region indicates where  is the strongest 

indicator of z and the white region is where 

1∂

2∂ is the strongest indicator of z.  
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Figure 6.11 Change-point of Data Set 5 

 

It is clear from observing the two populations that the neural network clearly identifies the 

change-point. 

 

6.3.6 Data Set 6 
 
 
The visualization of data set six is as follows: 
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Figure 6.12 Data Set 6 

 

The following diagram indicates where the neural networks switched from activation 

function 1 to activation function 2. The shaded region indicates where  is the strongest 

indicator of z and the white region is where 

1∂

2∂ is the strongest indicator of z.  
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Figure 6.13 Change-point of Data Set 6 

 

It is clear from observing the two populations that the neural network clearly identifies the 

change-point. 

  

6.3.7 Conclusion and Summary 
 
 
For all of these data sets, the neural networks captured the change-point of the population 

precisely and without difficulty.  

 

The change-points of the data sets were not complicated. However, it is an important first 

step in our research to have verified the capabilities of neural networks to find change-points 

in a simple setting. 

 



 
 
 
 

 70

7 Conclusions and Future Work 
 

Simulations with two variables have verified the effectiveness of backpropagating neural 

networks to quickly approximate change-points in simple simulations involving 3 variables. 

 

The artificial neural network does quite well finding the change-point with a wide variety of 

simulated populations. However, the network is very sensitive as it reacts to each and every 

individual data point that may be outlier. Hence, sparse data can be problematic. 

 

The neurons of neural networks may provide clues as to how to stratify populations as a 

function of multiple variables. If an ideal stratification can be found, then logistic regression 

can be applied to each subpopulation. Thus, we may be able to achieve the versatility of 

neural networks coupled with the precision and interpretability of logistic regression. CART 

achieves this, however, only along a grid. 

 

Each neuron in a neural network can use the same equation as is used in CART. But, CART 

restricts subdivisions to constant values of independent variables. Our initial research has 

found that neural networks of two layers can also subdivide populations based on the success 

of the logistic function in a manner similar to CART. However non constant partitions can be 

obtained with our method.  
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Future work with our new change-point algorithm will be to use the same two level neural 

networks with more challenging change-points. After this, the following step would be to 

expand to three level neural networks and discontinuous change-points using the same basic 

principle that where the neural network switches from one “neuron” to another can be linked 

to a change-point of a population. 
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