
METHODS FOR SCALABLE LEVELS OF PARALLELISM IN
RADIX-2 FFTS FOR FPGA SYNTHESIS

By

Felipe Minotta Zapata

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

May, 2014

Approved by:

Manuel Jiménez, Ph.D. Date
Chairman, Graduate Committee

Gladys O. Ducoudray, Ph.D. Date
Member, Graduate Committee

Rogelio Palomera, Ph.D. Date
Member, Graduate Committee

Domingo Rodŕıguez, Ph.D. Date
Member, Graduate Committee

Ana C. Gonzalez, M.S. Date
Graduate Studies Representative

Pedro I. Rivera-Vega, Ph.D. Date
Department Chairperson

Abstract of Thesis Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science

METHODS FOR SCALABLE LEVELS OF PARALLELISM IN
RADIX-2 FFTS FOR FPGA SYNTHESIS

By

Felipe Minotta Zapata

May 2014

Chair: Dr. Manuel Jiménez
Department: Electrical and Computer Engineering Department

The Fast Fourier Transform (FFT) is the main block in many communication

systems and signal processing applications, as it allows the fast computation of the

discrete Fouier transform (DFT). The DFT, in turn, is used to obtain the spectrum

of any finite discrete signal. Hardware implementations of this operation are highly

regarded as they provide improved performance with respect to software-based im-

plementations. The purpose of this work was developing a consistent and scalable

procedure of generating the address patterns of permutation for any power-of-2 trans-

form size and any folding factor in FFT cores with addressing schemes. Our approach

was, mainly, based in 2β memory blocks, an address generator, and β radix-2 butter-

flies. The number β of butterflies determines the level of parallelism. The expected

high performance of this FFT core lies in the fact it does not need dedicated permu-

tation hardware between stages. Instead, the data flow is controlled by an address

generator. Using this scheme, the impact on consumed resources is significantly mit-

igated when the number of points of the core is increased. As a result, we obtained

a fully scalable FFT core including parallelism level, number of points, and numeric

format using this approach.

ii

Resumen de tesis presentado a la Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los

requerimientos para el grado de Maestŕıa en Ciencias

MÉTODOS PARA ESCALAR LOS NIVELES DE PARALELISMO EN
FFTS DE BASE 2 PARA SÍNTESIS EN FPGA

Por

Felipe Minotta Zapata

Mayo 2014

Consejero: Dr. Manuel Jiménez
Departamento: Ingenieŕıa Eléctrica y Computadoras

La Transformada Rápida de Fourier (FFT por sus siglas en inglés) es el bloque

principal en muchos sistemas de comunicación y aplicaciones de procesamiento de

señales, ya que permite la rapida computación de la Transformada Discreta de Fourier

(DFT por sus siglas en inglés). Por su parte, la DFT es usada para obtener el es-

pectro de cualquier señal discreta finita. Las implementaciones en hardware de esta

operación son altamente apreciadas debido a que proveen mayor rendimiento con

respecto a las implementaciones basadas en software. El propósito de este trabajo

fue el desarrollar un procedimiento consistente y escalable para generar los patrones

de direccionamiento de las permutaciones para cualquier tamaño de transformada

potencia de 2 y cualquier factor de plegado en núcleos FFT con esquemas de direc-

cionamiento. Nuestro diseño se basó, principalmente, en 2β bloques de memoria, un

generador de direcciones y β mariposas base 2. El número β de mariposas determina

el nivel de paralelismo. El alto rendimiento del núcleo radica en el hecho de que el

flujo de datos es controlado por un generador de direcciones, el cual mitiga el consumo

de recursos cuando se incrementa el número de puntos de la FFT. Como resultado,

se obtuvo una implementación de FFT enteramente escalable incluyendo el nivel de

paralelismo, número de puntos y formato numérico usando este enfoque.

iii

To my family, specially to my mother Patricia, my father Francisco, and little sis

Maria José, who have always given me their love, affection and support to keep

going.

iv

Acknowledgements

I would like to express my thanks to my advisor Professor Dr. Manuel Jiménez,

thank you for encouraging my research and for allowing me to grow as a student,

researcher, and professional. Also, thanks to my committee members, professor Dr.

Domingo Rodŕıguez, professor Dr. Rogelio Palomera, professor Dr. Gladys O. Duco-

dray, for serving as my committee and for taking part in the review of my work. I

would especially like to thank Sandy, the graduate academic counselor and friend,

who guided and helped me through this experience in a new university and country.

Last but not least, I want to thanks all my Puerto Rican and Colombian friends, who

have encourage and supported me to move forward during good and bad moments.

v

Table of Contents

Abstract in English . ii

Abstract in Spanish . iii

Dedicated to... iv

Acknowledgements . v

List of Tables . viii

List of Figures . ix

1 INTRODUCTION 1

2 THEORETICAL BACKGROUND 2

2.1 Discrete Fourier Transform (DFT) 2

2.2 The Fast Fourier Transform (FFT) 3

2.3 Pease FFT Factorization 5

3 PREVIOUS WORK 9

3.1 FFTs with address generation 9

3.2 FFTs with dedicated data permutation logic 14

3.3 Summary . 15

4 PROBLEM STATEMENT AND HYPOTHESIS 17

4.1 Problem Statement 17

4.2 Hypothesis . 17

5 OBJECTIVES . 18

5.1 General Objective 18

5.2 Specific Objectives 18

6 METHODOLOGY 19

6.1 System Blocks and FFT Architecture 19

vi

6.2 Number Representation Format 20

6.3 Arithmetic Unit Design 21

6.3.1 Complex Adder/Subtractor 22

6.3.2 Complex Multiplier 23

6.4 Memory Organization 24

6.5 Data Switch Design 26

6.5.1 Data Switch (Read) 26

6.5.2 Data Switch (Write) 28

6.6 Address Generation Schemes 29

6.6.1 Data Address Generator Design 31

6.6.2 Phase Factor Scheduler Design 34

7 RESULTS AND ANALYSIS 40

7.1 Core Validation 40

7.2 Timing Performance 41

7.3 Resource Consumption 44

7.4 Analysis and Comparisons 46

7.5 Limitations . 47

8 CONCLUSIONS . 49

9 CONTRIBUTIONS AND FUTURE WORK 50

Bibliography . 52

vii

List of Tables

3.1 Summary of reviewed works 16

viii

List of Figures

2.1 Graphical representation of the operation in Eqs. 2.10 and 2.11 . . . 5

2.2 Bitreversal and stride-2 permutations example for N = 8 6

2.3 8-point Pease FFT Architecture 7

2.4 8-point Pease FFT with horizontal folding 8

6.1 Basic Architecture . 20

6.2 (a) Single Precision Floating Point (b) Double Precision Floating Point
(c) Quadruple Precision Floating Point 21

6.3 Radix-2 Butterfly Structure 22

6.4 Complex Adder Architecture 23

6.5 Complex Multiplier Architecture 1 24

6.6 Complex Multiplier Architecture 2 25

6.7 Memory Access Process 25

6.8 (a) Bit Reversal Permutation. (b) Stride-2 Permutation. (c) Modified
stride-2 Permutation. 27

6.9 Data Switch (Read) 28

6.10 Bit-reversal Permutation 28

6.11 Stride-2 Permutation 29

6.12 Modified Stride-2 Permutation 29

6.13 (a) First Permutation. (b) Second Permutation. 30

6.14 Data Switch (Write) 30

6.15 Data Addressing Sequence with N = 16 and β = 1 32

6.16 Data Addressing Sequence with N = 32 and β = 2 33

6.17 Data Addressing Sequence with N = 32 and β = 4 34

6.18 How Stride-2 Permutation is calculated throughout the stages . . . 35

ix

6.19 How Modified Stride-2 Permutation is calculated throughout the stages 36

6.20 Phase Factor Scheduling for N = 32 and β = 1 37

6.21 Phase Factor Scheduling for N = 32 and β = 2 37

6.22 Phase Factor Scheduling for N = 32 and β = 4 38

6.23 Principal parameters behaviour of the phase factor scheduling for N = 32 38

7.1 Structure used to validate the simulation of the FFT 41

7.2 Mean Percentage Error of our core compared with MATLAB 42

7.3 Clock Cycles Comparison 43

7.4 Maximum Working Frequency Comparison 43

7.5 Slice LUTs Consumption Comparison 44

7.6 Slice Register Consumption Comparison 45

7.7 DSP48 Consumption Comparison 45

7.8 Memory Usage Comparison 46

7.9 Computation Time 48

x

Chapter 1

INTRODUCTION

The Fast Fourier Transform (FFT) is a fundamental tool in signal processing

and communication systems to obtain the frequency of signals. Hardware imple-

mentations of the FFT are highly regarded as they provide improved performance

characteristic with respect to software-based sequential implementations. Developing

an efficient hardware implementation represents a significant burden for hardware

engineers today despite feel that an FFT algorithm can be easily understood.

A typical FFT core is composed of processing elements and a resulting permuta-

tion blocks. The processing elements are arithmetic blocks and the number of them is

defined by the folding factor φ, which determine the level of parallelism in the imple-

mentation. The permutation block can be implemented with dedicated logic or with

an addressing scheme. This document presents a method to design the permutation

block when the folding factor is scaled in FFT cores implemented on FPGA using an

address generation scheme. Our effort was centered in the development of a general

addressing scheme that could perform the necessary permutations through the stages

regardless the number of points and folding factor.

The following Chapter presents the theoretical foundations of this work. Chapter

3 presents a considerable number of hardware implementations of FFTs. Problem

Statement and Objectives of this thesis are shown in Chapters 4 and 5 respectively.

Chapter 6 shows complete design in hardware of our FFT core, and the outcome of

our design including performance and consumed resources are presented in Chapter 7.

Finally, we present the contributions and the future work in the remaining Chapter.

1

Chapter 2

THEORETICAL BACKGROUND

This chapter presents the underlying concepts behind our work. In the first

part, we review the original Discrete Fourier Transform (DFT) formulation. Then,

we explain the Fast Fourier Transform (FFT) Cooley-Tukey formulation [1] and its

advantages. Afterwards, we explain why we chose the Pease factorization of the

FFT. And, how we can modify the Pease architecture to obtain a trade-off between

latency and hardware consumed resources. Finally, we explain why one would choose

addressing generation schemes over dedicated permutation logic.

2.1 Discrete Fourier Transform (DFT)

The DFT is an operator that takes a finite-length sequence, representing a signal

in the time domain, and transforms the signal to the frequency domain. The DFT of

an arbitrary discrete signal x[n], of length N , is given by

X[k] =
N−1∑
n=0

x[n]e−j2π
kn
N 0 ≤ k ≤ N − 1, (2.1)

where X[k] is the signal in the frequency domain. Commonly, the DFT definition is

also expressed by making the substitution

WN = e−j2π
kn
N , (2.2)

where the WN values are commonly named phase or twiddle factors. This substitution

allows us to represent the DFT as a matrix multiplication of the form:

X = WN × x (2.3)

2

3

where x is a column vector representing the signal in the time domain, X is a column

vector representing the signal in the frequency domain, and WN is a square matrix

whose elements are given by Equation 2.2. Thus, we can represent:

X =

X[0]

X[1]

X[2]

. . .

X[N − 1]

x =

x[0]

x[1]

x[2]

. . .

x[N − 1]

(2.4)

WN =
1√
N

1 1 1 . . . 1

1 WN W 2
N . . . WN−1

N

1 W 2
N W 4

N . . . W
2(N−1)
N

...
...

...
...

...

1 WN−1
N W

2(N−1)
N . . . W (N−1)(N−1)

(2.5)

2.2 The Fast Fourier Transform (FFT)

The algorithm for the DFT is considered computationally expensive as it requires

O(N2) operations. The development of the FFT algorithm by Cooley-Tukey in 1965

simplified the practical implementation of the DFT as it reduced the number of

operations to O(N log2N) [1]. The FFT formulations are based on the periodicity

and symmetry properties of the Twiddle Factors, i.e. the elements of WN in Equation

2.5, and the fact that an FFT of N points can be expressed as 2 FFTs of N
2

points.

The linearity property allows for expressing the DFT as two different summations,

one with the indexed even values and the other with indexed odd values, as shown

in equation 2.6 and 2.7.

X[k] =
1√
N

N/2−1∑
r=0

x[2r]W 2rk
N +

1√
N

N/2−1∑
r=0

x[2r + 1]W
(2r+1)k
N (2.6)

4

X[k] =
1√
N

N/2−1∑
r=0

x[2r](W 2
N)rk +W k

N

1√
N

N/2−1∑
r=0

x[2r + 1](W 2
N)rk (2.7)

Due to the symmetry in WN , we have that W 2
N = exp(−j 4π

N
) = WN/2. Therefore,

both summations correspond to two independent DFT implementations, the first one

with the indexed even input values and second one with the indexed odd input values,

as shown in Equation 2.8.

X[k] =
1√
N

N/2−1∑
r=0

x[2r]W rk
N/2 +W k

N

1√
N

N/2−1∑
r=0

x[2r + 1]W rk
N/2 (2.8)

According to the Equation 2.8, it can be observed that the term W k
N affecting

the second DFT corresponds to a shift in the time domain in one sample. Which

was expected, since the difference between a odd sample and a even sample is one.

Finally, Equation 2.8 can be rewritten as,

X[k] = F [k] +W k
NG[k], (2.9)

where F[k] and G[k] are the DFT of the even indexed and odd indexed samples of

signal x[n] respectively. Equation 2.9 suggests that the calculation of an N -point FFT

can be made making successive 2-points FFT partitions of the original input signal.

Each 2-point FFT is simple as it is only composed of a multiplication, an addition,

and a subtraction (Equation 2.10 and Equation 2.11) and is called a butterfly due to

its graphical representation (Figure 2.1). It only takes to combine the solution of all

2-point FFTs for several stages to obtain the complete FFT

X[0] = x[0] +W ∗ x[1] (2.10)

X[1] = x[0]−W ∗ x[1] (2.11)

5

+

-X

Figure 2.1 : Graphical representation of the operation in Eqs. 2.10 and 2.11

2.3 Pease FFT Factorization

After Cooley-Tukey [1], Pease [2], Korn and Lambiotte [3], and Stockham [4]

performed different factorizations to the original formulation of the FFT. The Pease

factorization is one of the most suitable for our purposes due to its repeating struc-

ture. For the development of the Pease algorithm, only two permutations are needed.

Figure 2.2 shows how the permutations are performed for N = 8. The first permu-

tation is a bit-reversal and is only performed at the beginning of the algorithm. This

permutation can be thought of as doing a mirror operation on the log2(N)-bit word

representing the index of every value of the signal. The second permutation is called

a Stride-2 permutation which is performed in the rest of the algorithm. A Stride-2

permutation separates the signal values into two groups one with even indexed values

and the other with odd indexed values.

Figure 2.3 shows the structure of an 8-point Pease FFT. The rectangles contain

operating elements forming the Butterflies. Figure 2.3 also shows the possibility of

doing a horizontal and/or vertical foldings. A horizontal folding consists on reducing

the number of columns, while a vertical folding applies the same process to the rows. If

the original structure were implemented, the latency of the core would be Tb log2(N),

where Tb is the latency of a single butterfly. If we do a complete horizontal folding,

we would have one column of butterflies and we would need a block to perform the

permutations, as shown in the Figure 2.4 . The permutation block controls the data

6

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

Bitreversal
Permutation

Stride-2
Permutation

Figure 2.2 : Bitreversal and stride-2 permutations example for N = 8

flow between the stages. A structure with these characteristics would have a latency

also depending on the number of points N and the vertical folding factor φ. This

factor consists in using one column of β (β = N/(2φ)) butterflies depending of the

level of parallelism desired for the design. Because each butterfly accepts two points

at the same time, the maximum number of β is N/2. This approach leads to an

increase in latency but uses less arithmetic hardware resources. For this reason, a

typical FFT core is implemented with a full horizontal folding and the vertical folding

factor is scaled depending on the desired parallelism level. This is very important

because it has a direct impact in the total latency and the consumed resources. For

small values of β, the latency is high and the consumed resources are low. On the

contrary, for large values of β, the latency is lower and the consumed resources are

higher.

To conclude the explanation, the permutation block is implemented using dedi-

cated permutation logic or through emulation with an addressing scheme. The for-

mer uses logic blocks to permute the data, which consumes a significant amount

7

+

-X

+

-X

+

-X

+

-X

+

-X

+

-X

+

-X

+

-X

+

-X

+

-X

+

-X

+

-X

Stage 1 Stage 2 Stage 3 Stage 4

Horizontal Folding

V
er

ti
ca

l
Fo

ld
in

g

Figure 2.3 : 8-point Pease FFT Architecture

of hardware resources for numerous points, while the latter indirectly performs the

permutations by addressing the data from multi-bank memories. This represents an

enhancement in design automation and implementation. Previous works using the

addressing scheme, which are presented in the Chapter 3, have shown that this is a

resource-efficient implementation, which is why our work is based on this approach.

8

+

-X

+

-X

+

-X

+

-X

PERMUTATION
BLOCK

Figure 2.4 : 8-point Pease FFT with horizontal folding

Chapter 3

PREVIOUS WORK

In this Chapter, a relevant hardware implementations of FFT documented in

recent literature are discussed. The approaches reviewed here can be classified in

two groups: FFT designs based on address generation schemes and dedicated permu-

tation logic. In the first group, data are stored in memories and a block generates

the addresses depending the permutation needed. In the second group, there is a

dedicated logic to control the data flow. In this Chapter, we make a review of the

works considered more relevant in this kind of approaches.

Section 3.1 summarizes the characteristics for address generation FFTs, followed

in Section 3.2 by a discussion of different dedicated permutation logic FFTs. The

Chapter concludes with a summary of the most important characteristics of the dis-

cussed methods.

3.1 FFTs with address generation

Johnson described an address generation scheme for decimation in time and

decimation in frequency for radix r FFTs [5]. The author explains how to generate

addresses using shifters and adders for both data and phase factors. The method

uses multi-bank memories, such that all data needed at a given butterfly could be

accessed at once. It uses conflict-free addressing by writing into the same locations

being read. The proposed addressing allowed to keep the data storage requirement

at N locations. This is a theoretical work, with no hardware implementation. From

9

10

the point of view of consumed resources, this design was suitable for large values of

N .

Wang, et al, designed and implemented a 64-point FFT to meet the requirements

of Wireless Local Area Network (WLAN) [6]. The design was based on the radix-2

decimation in frequency algorithm. The hardware required for complex multiplication

at the butterfly was reduced using a convenient factorization that allowed for using

only three real multipliers. The author uses a conflict-free memory addressing scheme

for minimum memory requirements. The design also took advantage of the property

of reusability of the phase factors so it only required storage for 11 of them. The

design was not scalable and the complete FFT calculation could be completed after

76 clock cycles at a maximum frequency of 31.69 MHz on an Altera’s Cyclone II

device.

Polychronakis, et al, presented a parallel addressing technique for radix-2 deci-

mation in frequency FFT architectures [7]. The processor used a single memory with

N/2 location, which stored two FFT elements at each address. Address generation

was specified to access data throughout the stages. However, there is no documen-

tation of how the twiddle factors were generated, and the numeric format used. An

example of a 256-point FFT with 12 bits real part and 12 bits imaginary were pro-

vided. The entire processor occupied 213 slices and 6 of 48 DSP48Es of a Xilinx

Virtex XC5VLX50T-3.

Gautam, et al, designed and implemented a scalable radix-2 FFT core for OFDM

applications [8]. The processor used conflict free in-place memory for intermediate

data storage. The address generator was scalable to support up to 213 points. The

twiddle factors were generated using CORDIC (CO-ordinate Rotational Digital Com-

puter). An 8-point FFT was implemented on a Xilinx Virtex-5 FPGA ”xc5vlx100t-

3-ff1136”. The authors reported a 200 MHz as a maximum allowed frequency for this

core.

11

Hongxia and Shitan presented an addressing scheme for twiddle factors in an

FFT with mixed-radix based on multi-bank memory [9]. The memory for twiddles

were improved using the quarter of the locations due to reusability. The design was

based on a look-up table to stores the twiddle factors by a maximum value of N and

the address generator was capable of addressing for values less than or equal of N .

However, since the lookup table is the same for any number of points, implementations

with a low number of points has a large memory consumption.

Chad, et al, presented a design method for a real-time decimation in frequency

radix-4 1024 point FFT processor [10]. The processor worked in fixed point and used

an overflow controller which controls dynamically shift of fix point operand according

to the result of the butterfly. The author also showed a method of address mapping

and generation with in-place memory addressing strategy. The twiddle factors were

generated and the complex multiplications for this operation were implemented using

a lifting scheme that allowed for using three real multipliers. The system was capable

of completing a radix-4 butterfly per clock cycle. The maximum supported frequency

was 127 MHz and execution time of 10.1µ.

Szedo, et al, proposed a 16-bit, 1024-point, radix-4 decimation in frequency,

radix-4 FFT core [11]. The system used two butterflies, the first one for the first

log4(N) − 1 ranks and a second one multiplication free for the last rank. The core

used 4 memory banks of four dual port block memories and took exactly 1024 clock

cycles to process data continuously. The maximum frequency was 100 MHz and

consumed 2593 logic slices, 12 multipliers and 22 block RAMs.

Ramesh, et al, evaluated the use of address generation algorithms for accelerating

the execution of DSP Kernels [12]. In their article they showed the implementation

of address generation units for accessing data in bit reversed order for FFTs and in

zig-zag order for Discrete Cosine Transform (DCT). To illustrate the algorithm, the

authors gave an example in which they implemented an 8-point FFT and the address

12

generation unit for twiddle factors was also developed. They completed the 8-point

FFT in 28 cycles. The address generation scheme produced a single data address

at a time. Using the proposed scheme they claimed to complete a N -point FFT in

N log2N cycles.

Jiang, et al, designed a radix-2 FFT algorithm to reduce the frequency of memory

accessed as well as multiplication operations [13]. This achievement was made by

reusing the phase factor during the calculation of the transform. The reduction of

the frequency of memory accessed was achieved using temporal registers to store the

twiddle factors while they are needed. The reduction of the multiplication operations

was accomplished taking advantage of several twiddle factors that are equal to 1.

With the proposed approach, the required memory accesses due to phase factors was

reduced to N/2− 1.

Tsai, et al, proposed an address generation scheme for multiple processing units

[14]. It specified an addressing scheme for data values but it did not account for

twiddles addressing. Fixed and mixed radix operations were possible. The method

completed calculations in N/2 log8N cycles and required 2N data locations for a size

N transform. The work did not describe any implementation on FPGA or ASIC.

Xiao, et al, proposed a method for designing the address generator with reduced

logic [15]. The address generator avoids the parity checkers an barrel shifters and is

primarily based on inverters, counters, and multiplexors. The system used the min-

imum memory requirements for in-place operation. As case study they synthesized

a 16-point FFT with 32 bit complex number using CMOS 0.18µm technology. For

a 65536-point FFT the maximum frequency supported by the address generator was

629 MHz.

Polo, et al, designed a scalable fixed point FFT core for FPGA synthesis [16].

Their approach exploited the structural regularity from the Kronecker formulation to

perform a complete folding of the transform. Algorithms for producing the address

13

sequences and phase factor scheduling were provided. The core was compared with

the one developed by Xilinx and the results show an improvement of nearly 40% in

slices, 6% in memory used, and 7% in latency.

Shome, et al, proposed an architectural design for a highly programmable radix-

2 Decimation-in-Frequency FFT processor [17]. The design supported FFT sizes

from 64 to 1024 points. The system used 5 different dual-port memories. The data

were stored in the first memory. The second and third memories were used for the

calculation of the FFT, and the fourth and fifth ones were used for the final data

reordering. The system described were only an Address Generation Block for the

data and phase factor. No results about consumed hardware resources and latency

were reported.

Yang, et al, implemented a memory based radix-2 Decimation-in-frequency FFT

processor with address generation [18]. The architecture used 4 single port memories

instead of two dual-port memories. The system performed an N-point FFT in log2N+

1 clock cycles. The twiddle factors were stored in a ROM but the addressing scheme

were not specified.

Wey, et al, proposed a radix-2 memory-based FFT design suitable for OFDM

applications which used an address generator approach to perform data permutation

[19]. The architecture used single port instead dual port memories for area saving.

The design achieved reduced resource consumption and required storage for N data

words using 24 bit width in fixed point. However, no address generation scheme was

specified for phase factors and they were stored in a ROM. The design was synthesized

to an ASIC and had a maximum operating frequency of 198 MHz and a latency of

55296 cycles for a 8192-point FFT.

Frias, et al, developed a 1024-point decimation in time radix4 FFT VHDL core

[20]. The developed core was implemented on a Xilinx Spartan-3 XC3S200 FPGA

by taking advantage of the FPGAs low cost. The FFT calculation was reported

14

to run in 7680 cycles with a 50MHz master clock. The processor worked in fixed

point. The computation time was 153.84µs. Although it had lower performance than

commercially available cores from Xilinx, it had the advantage of using fewer on-chip

resources, making it feasible to be implemented in lower cost FPGAs like Spartan-3.

Ayinala, et al, developed a scalable architecture for in-place Fast Fourier Trans-

form computation for real valued signals [21]. The proposed computation was based

on a modified radix-2 algorithm, which removed the redundant operations from the

flow graph. The architecture used two radix-2 butterflies to process four inputs in

parallel. Address generation was specified to access data throughout the stages but

there was no explanation of how the twiddle factors were generated. In the article,

they showed the latency for different number of points but they did not specify the

numeric format. The address generation was extended to support multiple processing

elements and it had 12 different addressing patterns depending on the stage.

3.2 FFTs with dedicated data permutation logic

Babionitakis, et al, presented an implementation of a 4096-point radix-4 complex

FFT on a Virtex II FPGA and a VLSI chip [22]. The input values of the architec-

ture were expressed in fixed point. The maximum frequency was 200MHz and the

throughput was of 4096/20.48µs for the FPGA. The VLSI implementation achieved a

throughput of 4096/3.89µs and a worst case post-route frequency of 604.5MHz using

a 0.13µm process.

Yang, et al, proposed an FFT processor suitable for MIMO-OFDM based SDR

systems [23]. Synthesized using a 0.13µm standard cell library, the design supported

64, 128, 512, 1024 and 2048 point transform lengths. The processor used mixed

radix algorithms which minimized the number of non-trivial multiplications. The

core supported computation of the transform on four channels simultaneously. The

design improved over a previous 4-channel radix-2 multiple delay commutator based

15

design both in memory and logic resource consumption, achieving 16.4% and 26.8%

reduction respectively.

Montaño, et al, designed an scalable floating point FFT core for Xilinxs FPGAs

[24]. The scalable parameters included size, word length and folding factor. The data

permutations were made using an array of switches. This permutation hardware did

not allow for sizes beyond 64 points when targeting a Xilinx Virtex IV device. Phase

factors scheduling had no re-use, thus requiring full tabulation and logic resources for

their storage instead of a ROM.

Chen, et al, proposed a permutation network for configurable and scalable FFT

processors [25]. It consisted of several independent RAM blocks and two interconnec-

tion networks, capable of operating in a pipeline fashion. The authors claimed their

method achieved a high level of parallelism, thus high throughput, for sizes rang-

ing from 2 to 8192 points, obtained by implementing various computational stages

and permutation networks together. The reported results regarding the performance

and logic consumption were not clear since the authors did not specify under which

parameters, procedures and technology the numbers were obtained.

3.3 Summary

Table 3.1 summarizes the works reviewed and their relevant aspects. None of

the reviewed works address an architecture with scalable folding factor which is the

main scope of this proposal. It can be seen that only one work deals with floating

point, twelve with fixed point, and five others do not specify number format. Our

approach is expected to work with any numeric format.

16

Table 3.1 : Summary of reviewed works

Author Number Format Scalable Address Generation Radix
Wang [6] Fixed Point No (64p) � 4 2

Polychronakis [7] Fixed Point No (256p) � 2
Gautam [8] Fixed Point Yes � 2
Hongxia [9] N/S Yes 4 Mixed
Chad [10] Fixed Point No (1024p) � 4
Szedo [11] Fixed Point No (1024p) � 4

Ramesh [12] Fixed Point Yes � 4 2
Jiang [13] N/S Yes � 2
Tsai [14] N/S Yes � 4 2q

Xiao [15] Fixed Point Yes � 2
Polo [16] Fixed Point Yes � 4 2

Shome [17] N/S Yes � 4 2
Yang [18] N/S Yes � 4 2
Wey [19] Fixed Point Yes � 2
Frias [20] Fixed Point No (1024p) � 4

Ayinala [21] N/S No � 2
Babionitakis [22] Fixed Point No (4096p) No 4

Yang [23] Fixed Point Yes No 2
Montaño [24] Floating Point Yes No 2

Chen [25] N/S Yes None 2

Legend: � :Data Address Generation 4 :Twiddle Address Generation

Chapter 4

PROBLEM STATEMENT AND HYPOTHESIS

4.1 Problem Statement

The problem addressed in this thesis is that of generating the address patterns

of permutations when the folding factor is scaled in FFT cores. To the best of our

knowledge, although there have been implementations for specific folding factors, no

generalized approaches have been reported. This generalized addressing mode allows

scaling the level of parallelism in a FFT processor, which directly impacts the latency

of the synthesized cores.

4.2 Hypothesis

Our work was proposed under the hypothesis that it is possible to develop a

general rule of addressing regardless the folding factor of the structure. Furthermore,

with this addressing, the latency is expected to decrease up to 2 times for every

parallelism level without impacting significantly the consumed hardware resources.

17

Chapter 5

OBJECTIVES

This section describes the objectives that have been formulated for the proposed

work.

5.1 General Objective

To develop a method to design the permutation block when the folding factor is

scaled in FFT cores based on an address generation scheme for FPGA implementa-

tion.

5.2 Specific Objectives

1. Determining which FFT algorithm offers best regularity for the general addressing

for the data flow and the phase factors.

2. Identifying a general rule governing the pattern of the address sequence for data

point and phase factor regardless the folding factor.

3. Designing and implementing an HDL model to test the functionality of the address-

ing sequence.

4. Analysing how architectural changes affect the latency and the hardware consumed

in the HDL model when the folding factor is scaled.

18

Chapter 6

METHODOLOGY

An FFT core might be designed for low latency or low hardware resources con-

sumed depending on the application. The two types of design objectives can be

achieved augmenting the level of parallelism for low latency, or reducing the level

for low hardware resources consumed. The methodology established in this work is

based on developing a scalable addressing scheme for both, data reordering and phase

factor scheduling. In order to succeed in this task, it is necessary to develop a general

addressing rule that can perform the two permutations through the stages regardless

the number of points and folding factor.

In this Chapter, we first give a brief introduction to the general architecture

of our core, including the main purpose of each block. In the latter sections, we

explain in detail the basic functioning of each block and the respective hardware

implementation.

6.1 System Blocks and FFT Architecture

As we explained in Chapter 2, the core is composed, mainly, of an arithmetic unit

and and permutation block. The former can be one or more butterflies depending

the folding factor. And the latter has a memory bank, a data addresser, and data

switches. Other blocks equally important are the phase factor scheduler and the

control unit. This approach can be classified as Radix-2 because it is based on a

Radix-2 butterflies. Also can be classified as a Burst I/O design as the user must

wait for the complete FFT calculation to finish before providing a new input signal.

19

20

Figure 6.1 shows the basic architecture of the core. The address generator is in charge

of generating the addressing patterns to the memory bank, which is the data to be

processed. The twiddle addresser generator produces the addressing patterns to the

Twiddle memory in order to provide the correct phase factor to each butterfly. The

read and write switches permutate the data while they are being read and written.

The processing units perform the arithmetic operations over the data to be processed.

Finally, the control unit generates the control signal to every block to ensure a correct

functioning.

Memory
Bank

Bank
Switch
(Read)

Bank
Switch
(Write)Address

Generator

Control Unit

Twiddle
ROM

Twiddle
Address

Generator

Processing
Units

Figure 6.1 : Basic Architecture

6.2 Number Representation Format

Our core is entirely based on Floating Point Arithmetic. The main advantage of

Floating Point arithmetic over fixed point is the dynamic range for accommodating

extremely large numbers and high precision for very small numbers. This helps

to alleviate the underflow and overflow problems often seen in fixed-point formats

[26]. Furthermore, this numeric format has constant bit-word size, which helps the

implementation. Floating point uses a sign-magnitude representation, where the

magnitude is obtained by the multiplication of a fractional and an exponential term.

21

The IEEE-754 is the most commonly used standard for Floating Point representation.

In theory, our core supports any floating point format, only limited by the FPGA

resources. Figure 6.2 shows an example of the quantities we can represent in our

core. Figure 6.2 a. shows a single precision floating point representation, the standard

specify 8 bits for the exponent and 23 bits for the mantissa. Figure 6.2 b. shows a

double precision floating point representation, which uses 11 bits for the exponent

and 52 bits for the fractional part. Figure 6.2 b. shows a quadruple precision floating

point representation, which offers results more reliably and accurately by minimising

overflow and round-off errors in intermediate calculations since it uses 15 bits for the

exponent and 112 bits for the mantissa.

S E M

SIGN
{1 Bit}

EXPONENT
(8 Bits)

MANTISSA
(23 Bits)

S E M

SIGN
{1 Bit}

EXPONENT
(11 Bits)

MANTISSA
(52 Bits)

S E M

SIGN
{1 Bit}

EXPONENT
(15 Bits)

MANTISSA
(112 Bits)

a)

b)

c)

Figure 6.2 : (a) Single Precision Floating Point (b) Double Precision Floating Point
(c) Quadruple Precision Floating Point

6.3 Arithmetic Unit Design

As explained earlier, the FFT calculation is performed around a basic arithmetic

unit called a Butterfly. This unit consists of a complex adder/subtractor, and a

complex multiplier. For the hardware implementation, floating point was used to

22

represent the numbers. Every unit was optimized to work is this numeric format.

Due to the complexity of the involved operations, the most efficient architecture to

implement the Butterfly is a pipeline architecture. The resulting butterfly had an

initial non-zero latency of 20 cycles, after which it was capable of producing a pair

of outputs per clock cycle. Figure 6.3 shows the architecture of the complex radix-2

butterfly.

Shift Register

Complex
Adder/

Subtractor

Complex
Multiplier

Complex
Adder/

Subtractor

Figure 6.3 : Radix-2 Butterfly Structure

6.3.1 Complex Adder/Subtractor

The addition/substraction of any two complex numbers Z1, Z2, where Z1 =

X1 + jY1 and Z2 = X2 + jY2, is performed as indicated by Equation 6.1. Thus a

Complex Adder/Subtractor requires two floating point adders, the first to add the

real part and the second to operate the imaginary part.

Z = Z1 + Z2 = (X1 +X2) + j(Y1 + Y2) (6.1)

Figure 6.4 shows the diagram of a complex adder. Also, in the Figure it can be

seen that the latency of the complex adder is the same as the floating point adder,

in our case to five cycles.

23

Floating Point
Adder/

Subtractor

Floating Point
Adder/

Subtractor

Figure 6.4 : Complex Adder Architecture

6.3.2 Complex Multiplier

The multiplication of any two complex numbers Z1, Z2, where Z1 = X1 + jY1

and Z2 = X2 + jY2, can be performed as indicated by Equations 6.2 and 6.3.

Z = (X1 + jY1)× (X2 + jY2)

Re{Z} = X1 × (X2 + Y2)− Y2 × (X1 + Y1)

Im{Z} = X1 × (X2 + Y2)−X2 × (X1 − Y1)
(6.2)

Re{Z} = X1 ×X2 − Y1 × Y2

Im{Z} = X1 × Y2 + Y1 ×X2

(6.3)

The result shown in Equation 6.2 requires three multipliers and five adders. And

the result shown in Equation 6.3 requires four multipliers and two adders. Figure

6.5 and 6.6 show the two different architectures. Since our floating point adder

consumes approximately twice more resources and has the half of the latency of the

multiplier, we chose the first architecture because the second consumes 13/8 times

more resources and it spends 5 cycles less than the first one.

24

Floating Point
Multiplier

Floating Point
Multiplier

Floating Point
Multiplier

Floating Point
Multiplier

Floating Point
Adder/

Subtractor

Floating Point
Adder/

Subtractor

Figure 6.5 : Complex Multiplier Architecture 1

6.4 Memory Organization

Two different memory units were needed in this implementation. The first stores

the signal in the time domain, the intermediate data during calculation, and the signal

in the frequency domain. The second stores the phase factors.

Since every butterfly needed two different values at the same time, the data

memory in our design consisted of a bank of 2β memory blocks. For simplicity, the

signal in the time domain was first stored in the same order it was produced. Since

our implementation was intended to use an ”in place” strategy [5], every memory had

N/(2β) locations. The memory access process using this strategy consisted on first

fetching the data, processing them, and then writing them into the same locations.

This process is depicted in Figure 6.7 . Since the write and read operation may

25

Floating Point
Multiplier

Floating Point
Multiplier

Floating Point
Adder/

Subtractor

Floating Point
Adder/

Subtractor

Floating Point
Adder/

Subtractor

Floating Point
Multiplier

Floating Point
Adder/

Subtractor

Floating Point
Adder/

Subtractor

Figure 6.6 : Complex Multiplier Architecture 2

overlap, every memory unit had two different address ports to allow for this operations

to be performed simultaneously.

IDLE

IDLE

IDLE

IDLERead Process 1 Read Process 1

Write Process 1 Write Process 1

Tb

Tb

N
2f

N
2f

Tb: Butterfly latency

Figure 6.7 : Memory Access Process

The phase factor memory size is different depending on the folding factor. As

every butterfly needs a different phase factor, when the structure is completely folded,

26

a single port memory is used. When the structure is not completely folded, a dual-

port memory is used to minimize the memory usage. Regarding to the memory usage,

we took advantage of the periodicity and symmetry properties of the phase factor.

Therefore, only N/4 numbers were stored instead of N/2 as an FFT implementation

normally requires [16]. Hence, the phase factor required for a FFT of N points was,

WN = e−2πjk/N 0 ≤ k ≤ N/4− 1, (6.4)

and the other N/4 number needed were obtained using Equation 6.5

W
k+N/4
N = Im{W k

N} − jRe{W k
N} (6.5)

6.5 Data Switch Design

The main task of the data switches was to route the data between the memories

and the arithmetic units. The data address generator is in charge of generating the

correct addresses, but the data is not always in the order required by the arithmetic

units. The Read Switch reorders the data as required by the arithmetic units. The

Write Switch reorders the data in such a way that all the points to be fetched in the

next stage be in different memories.

6.5.1 Data Switch (Read)

The Read Data Switch is located between the memory bank and the butterflies.

This block partly contributed to performing the permutation between the stages,

specifically, when data were being read. The behaviour described here is consistent for

any folding factor. Figure 6.8 shows the three different permutations to be performed

during calculation when four butterflies are used. Figure 6.8 a. shows the one which

is performed in the first stage and is called a bit reversal permutation. Figure 6.8 b.

and c show the ones which are performed in the rest of the stages in the first and

27

second half, respectively. These are called stride-2 and modified stride-2 permutation,

respectively.

(a) (b) (c)

Figure 6.8 : (a) Bit Reversal Permutation. (b) Stride-2 Permutation. (c) Modified
stride-2 Permutation.

In hardware, this switch is implemented as an array of multiplexers like that

shown in Figure 6.9 . As can be seen in the Figure, this block has 2β− 1 data inputs

and outputs, allowing to make any permutation over the data.

To perform the permutations, every multiplexer must choose the correct input.

The three different sequences are generated with bitwise operations over a normal or-

dered sequence, like circular shifting and simple logical operations. Figures 6.10 , 6.11

, and 6.12 show how to perform the Bit-reversal permutation, Stride-2 Permutation,

and Modified Stride-2 Permutation, respectively. A bit-reversal sequence is obtained

reversing the binary representation of a normally ordered sequence. A Stride-2 per-

mutation is obtained making a left circular shifting in one position. And a Modified

Stride-2 Permutation is obtained making a left circular shift by one position too, but

negating the least significant bit.

28

Figure 6.9 : Data Switch (Read)

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

S2 S1 S0
000

001

010

011

100

101

110

111

S2S1S0
Input Output

Figure 6.10 : Bit-reversal Permutation

6.5.2 Data Switch (Write)

The Write Data Switch is the one located between the butterflies and the memory

bank. This block also partially contributes to performing of the permutation between

29

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

S2 S1 S0
00 0

00 1

01 0

01 1

10 0

10 1

11 0

11 1

S2S1 S0

Input Output

Figure 6.11 : Stride-2 Permutation

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

S2 S1 S0
00 0

00 1

01 0

01 1

10 0

10 1

11 0

11 1

S2S1 S0
10 0

10 1

11 0

11 1

00 0

00 1

01 0

01 1

S2S1 S0
Input Output

Figure 6.12 : Modified Stride-2 Permutation

stages, specifically, when data are being written. Figure 6.13 shows the two different

permutations that need to be performed during the calculation. Figure 6.13 a. shows

the one performed on the even indexed butterflies of every stage. Figure 6.13 b shows

the one which is performed in the odd indexed butterflies of every stage.

Since every output can have only two values, it is no necessary to include all

input values in the multiplexers, just 2. Figure 6.14 shows the basic architecture of

this Data Switch.

6.6 Address Generation Schemes

A scalable folding of a Pease structure requires two major considerations: the

ability of folding the data permutation completely or partially and the ability of

30

(a) (b)

Figure 6.13 : (a) First Permutation. (b) Second Permutation.

Figure 6.14 : Data Switch (Write)

producing the correct phase factor schedule at each stage. These task were performed

by two address generators which are explained next.

31

6.6.1 Data Address Generator Design

The Data Address Generator is one of the most important blocks in this work

and is the one that has the highest complexity. First at all, this block had to per-

form Bit-reversal permutation in the first stage and Stride-2 permutation in the next

stages. Also, the design had to be scalable to support different sizes and any folding

factor. Furthermore, these permutations had to be performed assuring the minimum

requirements of memory. The only way to guarantee this requirement was by writing

into the same locations being read.

Since 2β memories were needed, the same number of simultaneous addresses had

to be generated. Nonetheless, for any folding factor there were only two different se-

quences. Therefore, the hardware implementation only required two different address

generator blocks.

In the work developed by Polo, et al, the first access and the data arrangement

depended on the number of butterflies [16]. For example, with one 1 butterfly, the

data in the two memories had to be arranged in stride-2 organization and the data

was accessed in normal order. With two butterflies, the data in the four memories had

to be arranged in stride-4 organization and the data was accessed in normal order.

To introduce regularity to the system, we proposed to arrange the data in normal

order in all cases and the first access to each memory made it in bit-reversal order.

Thus, the first permutation needed was performed automatically and the first access

was always the same.

Figures 6.15 to 6.17 show the addressing sequences for different numbers of

butterflies and transform sizes. These sequences were obtained running a core emu-

lation in MATLAB. By analysing these sequences, it can be seen that the addressing

of the even indexed memories are obtained making a Stride-2 Permutation of the

previous sequence and of the odd indexed memories are obtained making a modified

Stride-2 Permutation of the previous sequence. This addressing sequence applied for

32

any number of butterflies and any power-of-2 transform size. Following the last state-

ments, we can formally express mathematically the address patterns, that is, for an

N -point FFT with vertical folding factor φ the addressing sequences can be expressed

as:

Xi+1 = L
2φ
2

2 Xi X0 = R2log2(φ)

0

1

2

...

φ− 1

0 ≤ i ≤ log2(N)− 1 (6.6)

Yi+1 =

 ø Iφ
2

Iφ
2

ø

L2φ
2

2 Yi Y0 = R2log2(φ)

0

1

2

...

φ− 1

0 ≤ i ≤ log2(N)− 1 (6.7)

where Xi is the addressing sequence of the even indexed memories, Yi is the addressing

sequence of the odd indexed memories, i is the stage identifier, and Lnmn and R2n is

a stride permutation and a bit-reversal operation respectively [27].

ST1
M0

M1

0

0

4

4

2

2

6

6

1

1

5

5

3

3

7

7

ST2
M0

M1

0

4

2

6

1

5

3

7

4

0

6

2

5

1

7

3

ST3
M0

M1

0

6

1

7

4

2

5

3

2

4

3

5

6

0

7

1

ST4
M0

M1

0

7

4

3

2

5

6

1

1

6

5

2

3

4

7

0

Figure 6.15 : Data Addressing Sequence with N = 16 and β = 1

33

ST1

M0

M1

0

0

4

4

2

2

6

6

1

1

5

5

3

3

7

7

ST2

M0

M1

0

4

2

6

1

5

3

7

4

0

6

2

5

1

7

3

ST3

M0

M1

0

6

1

7

4

2

5

3

2

4

3

5

6

0

7

1

ST4

M0

M1

0

7

4

3

2

5

6

1

1

6

5

2

3

4

7

0

M2

M3

0

7

4

3

2

5

6

1

1

6

5

2

3

4

7

0

M2

M3

0 4 2 6 1 5 3 7

M2

M3

M2

M3

0 4 2 6 1 5 3 7

ST5

M0

M1 3 1 2 0 7 5 6 4

M2

M3

0 4 2 6 1 5 3 7

0 2 1 3 4 6 5 7

4 6 5 7 0 2 1 3

6 7 2 3 4 5 0 1

0 2 1 3 4 6 5 7

0 2 1 3 4 6 5 7

3 1 2 0 7 5 6 4

Figure 6.16 : Data Addressing Sequence with N = 32 and β = 2

The hardware implementation of this block consisted mainly of a single counter

in normal order and two units which modify the counter values. There were two units

due to it was needed one for the even indexed memories and another one for the odd

indexed memories. The even indexed memories were addressed performing Stride-2

permutations only. Thus, the Stride-2 permutation was calculated throughout the

stages just making a left circular shift over the previous sequence. An example of

how to generate the entire sequence is shown in Figure 6.18 . Similarly, the odd

indexed memories were addressed performing Modified Stride-2 permutation. This

Permutation was calculated throughout the stages by making a left circular shift

and negating the least significant bit over the previous sequence. An example of

34

ST1

M0 M1 M2 M3 M4 M5 M6 M7

ST2

M0 M1

0 2

1 3

2 0

3 1

M2 M3 M4 M5 M6 M7

ST3

M0 M1 M2 M3 M4 M5 M6 M7

ST4

M0 M1 M2 M3 M4 M5 M6 M7

M0 M1 M2 M3 M4 M5 M6 M7

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0 2

1 3

2 0

3 1

0 2

1 3

2 0

3 1

0 2

1 3

2 0

3 1

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

3

1

2

0

3

1

2

0

3

1

2

0

3

1

2

0

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

ST5

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

Figure 6.17 : Data Addressing Sequence with N = 32 and β = 4

how to generate all the sequence is shown in Figure 6.19 . The Figures also show

a decimal representation and a decimal Bit-reversal representation. Since it was

easier to calculate the decimal representation, this was the one actually implemented.

Nevertheless, the addresses actually needed a Decimal Bit-Reversal representation.

Therefore, all the Address Generator outputs were bit-reversed to produce the correct

values.

6.6.2 Phase Factor Scheduler Design

The first step to calculate the addresses was to calculate the phase factor matrices

for different transform sizes and recognize the pattern they follow throughout the

stages. After the analysis, it was established that the sequence needed for a single

butterfly was similar to that in Figure 6.20 . Therefore, for the implementation with

35

0

1

2

3

4

5

6

7

0

0

1

1

0

1

0

1

1

1

1

1

0

0

1

1

0

1

0

1

0

0

0

0

0

2

4

6

1

3

5

7

0

0

1

1

0

1

0

1

1

1

1

1

0

0

1

1

0

1

0

1

0

0

0

0

0

4

1

5

2

6

3

7

0

0

1

1

0

1

0

1

1

1

1

1

0

0

1

1

0

1

0

1

0

0

0

0

0

4

2

3

1

5

3

7

0

2

1

3

4

6

5

7

0

1

4

5

2

3

6

7

BN
S2 S1 S0

Binary Equivalent BN
S1 S0 S2

Binary Equivalent BN
S0 S2 S1

Binary Equivalent

N: Decimal Normal Representation
B: Decimal Bit-Reversal Representation

Figure 6.18 : How Stride-2 Permutation is calculated throughout the stages

more butterflies, the address sequences must be the ones shown in the Figure 6.21

and 6.22 . It should be noted that the addresses shown in Figures 6.20 to 6.22

are supposed to be memories of N/2 locations, but we had established that the phase

factor memories were of N/4 locations. This is done because the Most Significant

Bit is for applying the Equation 6.5, and in this way generate other N/4 twiddle

Numbers.

Analysing the sequences in Figures 6.20 to 6.22 , it can be seen that there are

three main parameters: the step S, the frequency F , and the init value I. The step

refers to the amount to be added for obtain the next number. The frequency refers

to how often this step has to be added. And the init value is the first number in the

sequence. For the calculation of this init values, we can see it as another sequence.

These main parameters behave as shown in Figure 6.23 . From the Figure it can

be seen that the frequency always starts at N/(2β) or φ, decreases dividing by two

until the value is one and stays in there until the calculation is over. The step always

starts at N/2 and, decreases dividing into two until the value is equals to the number

of butterflies and stays in that way until the calculation is over. And finally, the

36

0

1

2

3

4

5

6

7

0

0

1

1

0

1

0

1

1

1

1

1

0

0

1

1

0

1

0

1

0

0

0

0

1

3

5

7

0

2

4

6

0

0

1

1

0

1

0

1

0

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

3

7

2

6

1

5

0

4

1

1

0

0

0

1

0

1

0

0

0

0

1

1

0

0

0

1

0

1

1

1

1

1

0

4

2

3

1

5

3

7

4

6

5

7

0

2

1

3

6

7

2

3

4

5

0

1

BN
S2 S1 S0

Binary Equivalent BN
S1 S0 S2

Binary Equivalent BN
S0 S2 S1

Binary Equivalent

7

6

5

4

3

2

1

0

7

3

5

1

6

2

4

0

BN
S2 S1 S0

Binary Equivalent

6

4

2

0

7

5

3

1

1

1

1

1

0

0

0

0

3

1

2

0

7

5

6

4

BN
S1 S0 S2

Binary Equivalent

4

0

5

1

6

2

7

3

1

0

5

4

3

2

7

6

BN Binary Equivalent

1

1

0

0

1

0

1

0

0

0

0

0

1

1

0

0

1

0

1

0

1

1

1

1

1

1

0

0

1

0

1

0

1

1

0

0

1

0

1

0

1

1

1

1

0

0

0

0

S0 S2

1

0

1

0

1

0

1

0

0

0

1

1

0

0

1

1

S1

N: Decimal Normal Representation
B: Decimal Bit-Reversal Representation

Figure 6.19 : How Modified Stride-2 Permutation is calculated throughout the stages

initial value variable, which represents the frequency and the step at the same time

of the sequence of init values, starts always at N/4, decreases dividing by two until

the value is zero. In the hardware implementation, for simplicity the variables use

the same counter due to their similarity.

From the explanation given above, we designed the algorithm 1 that generates

the twiddles pattern for an implementation of size N and β number of butterflies.

37

0 0 0 0 0 0 00 0 0 0 0 0 0 00

0 0 0 0 0 0 00 8 8 8 8 8 8 88

0 0 0 0 4 4 44 8 8 8 8 12 12 1212

0 0 2 2 4 4 66 8 8 10 10 12 12 1414

0 1 2 3 4 5 76 8 9 10 11 12 13 1514

Stage

1

2

3

4

5

Twiddle Address

Figure 6.20 : Phase Factor Scheduling for N = 32 and β = 1

0

0

0

0

0

0 0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0 0

0 8

8

8

8

8

8 8

8

0

0

0

0

4

4 4

4 8 8

8 8

12

12 12

12

0

0

2

2

4

4 6

6 8

8

10

10

12

12 14

14

0

1

2

3

4

5 7

6 8

9

10

11

12

13 15

14

Stage

1

2

3

4

5

Twiddle Address

Figure 6.21 : Phase Factor Scheduling for N = 32 and β = 2

In this Algorithm, T is the Twiddle Address, F is the parameter frequency, S

is the parameter step, and I is the init value. The variable i represent the current

stage, and j and k are counter variables to initialize the j-sequence per stage and to

generate the addresses at the stage respectively. Finally, R is a temporary variable to

store previous values of T . The algorithm generates the addresses in the same order

as they appear in Figures 6.20 to 6.22 , row per row.

38

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0 0

0

8

8

8

8

8

8 8

8

0

0

0

0

4

4

4

4

8

8

8

8

12

12

12

12

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

0

1

2

3

4

5

7

6

8

9

10

11

12

13

15

14

Stage

1

2

3

4

5

Twiddle Address

Figure 6.22 : Phase Factor Scheduling for N = 32 and β = 4

St F S I

1 16 16 8

2 8 8 4

3 4 4 2

4 2 2 1

5 1 1 0

St F S I

1 8 16 8

2 4 8 4

3 2 4 2

4 1 2 1

5 1 2 0

St F S I

1 4 16 8

2 2 8 4

3 1 4 2

4 1 4 1

5 1 4 0

Legend

St: Stage F: Frequency S: Step I: Init Value

Figure 6.23 : Principal parameters behaviour of the phase factor scheduling for
N = 32

39

Algorithm 1 Twiddle Address

1: T = 0
2: R = 0
3: F = N/(2β)
4: S = N/2
5: I = N/2
6: for i = 1 to log2N do
7: R = 0
8: for j = 0 to β − 1 do
9: T = R
10: if j + 1 is divisible by I and T + I < N/2 then
11: R = T + I
12: end if
13: for k = 2 to N/(2β) do
14: if k − 1 is divisible by F then
15: T = T + S
16: end if
17: end for
18: end for
19: I = I/2
20: if F > 1 then
21: F = F/2
22: end if
23: if S > β then
24: S = S/2
25: end if
26: end for

Chapter 7

RESULTS AND ANALYSIS

This chapter describes the procedure followed to validate the design and also

shows the results obtained after completing the implementation of the proposed ad-

dress generation scheme. The target hardware was a Xilinx SP605 Evaluation Plat-

form. This specific board is based on a XC6SLX45T-3 FPGA, which is a Spartan-6

family device. Resource consumption results are referenced for this specific chip.

7.1 Core Validation

The address generation schemes first went through a high level verification. At

this point, a MATLAB program served to validate the correctness of the strategy

by implementing the same dataflow that would be then applied to the hardware

version. After the hardware design was completed in VHDL, another program in

MATLAB was written with the purpose of generating random test data. These

data were generated using the MATLAB function rand, which generates uniformly

distributed pseudorandom numbers. The data were then applied to the design by

means of a VHDL testbench and the output values obtained after simulating the

testbench were exported into MATLAB, where they were converted into a suitable

format, for comparison with the reference FFT. Figure 7.1 illustrates the process

described above. After completing this procedure, we obtained the Mean Percent

Error of different implementations applying the formula:

MPE = 100× 1

N

N∑
i=1

|gi − yi|
yi

(7.1)

40

41

where N is number of points, gi is data generated by MATLAB, and yi is data gen-

erated by our FFT core. This procedure was done for power of two transform sizes

between 24 and 214 points, using one-Butterfly, two-Butterfly, and four-Butterfly ver-

sion, and using single precision floating point format. Figure 7.2 illustrates the mean

absolute error of our core compared with the FFT calculated with MATLAB. The

Figure shows that there is a minimum percent error of 1.5× 10−5 on an FFT core of

16 points and a maximum percent error of 4.5× 10−5 for an FFT 16384 points. That

information means an incrementing percent error while the number of points is in-

creased. This is caused by two reasons: MATLAB used double precision floating point

format, and rounding errors produced by the large number of operations involved in

the calculation. These results confirm that our scalable FFT core implemented using

address generation scheme works as expected.

Random Data
Generator
(Matlab)

Module
Testbench

(VHDL)

FFT Core
(VHDL)

Validation
(Matlab)

Random Data

Expected Results (Text File)

Output
 (Text File)

In
p

u
t

Si
g

n
al

s

O
u

tp
u

t Sig
n

als

FFT
(Matlab)

Random Data

Figure 7.1 : Structure used to validate the simulation of the FFT

7.2 Timing Performance

Figure 7.3 present the calculation times, measured in clock cycles for the dif-

ferent FFT cores, implemented using address generation schemes. In general, when

42

Figure 7.2 : Mean Percentage Error of our core compared with MATLAB

applying the developed strategy, the clock cycles required to complete the operation

is a well defined function of the transform size N and the number of butterflies being

used. This is, for a given transform of size N , number of butterflies β and a butterfly

latency Tb, the cycles required to complete the calculation would be:

Cycles =

(
N

2β
+ Tb

)
× (log2N) (7.2)

The maximum working frequency that the core can operate for different trans-

form sizes is also provided in Figure 7.4 .

In order to provide a comparisons reference for the latencies of the Xilinx FFT

Radix-2 Burst I/O core v8.0 were also included. Although the Xilinx FFT core

supports various FFT architectures, a Radix-2 Burst I/O was chosen because it falls

into the same category as the cores designed in this work. Latencies for Xilinx Core

were extracted from Xilinx Core Generator.

43

Figure 7.3 : Clock Cycles Comparison

Figure 7.4 : Maximum Working Frequency Comparison

44

7.3 Resource Consumption

Figure 7.6 show the slice register consumed by the different implementations,

starting with the one-butterfly to the four-butterfly version, Figure 7.5 present the

slice LUTs used, Figure 7.7 show the DSP48 Blocks used, and finally, Figure 7.8

show the Memory usage in terms of RAM blocks. The number of slices reflects the

amount of logical resources spent, Flip-Flops are contained within the slices and give

information on how much resource is spent in sequential logic specifically, the number

of DSP48 blocks represents the amount of special arithmetic units from the FPGA

dedicated to implement the butterfly, and the total memory reflects the resources

spent to store both data and phase factors. The XC6SLX45T has 54576 slice registers,

27288 Slice LUTs, and 56 DSP48 blocks.

Figure 7.5 : Slice LUTs Consumption Comparison

45

Figure 7.6 : Slice Register Consumption Comparison

Figure 7.7 : DSP48 Consumption Comparison

46

Figure 7.8 : Memory Usage Comparison

7.4 Analysis and Comparisons

Giving another look to the Figures, the timing performance of our core against

Xilinx’s, the latency in our implementation is around 39% better with one butterfly,

64% with two butterflies and 76% with four butterflies. On the other hand, the

maximum frequency in our design is around 42% worst with one butterfly, 58% with

two butterflies and 58% with four butterflies. Analysing these results, we can establish

that our core is in average better regarding the computation time. The computation

time is calculated with the formula T = L/F , where F is the frequency and L is the

latency.

Regarding the consumed resources, we can observe from Figure 7.8 that the most

heavily affected resource would be the memory, at its usage increases in proportion

with the transform size. However, using our addressing scheme did not affect the

consumption of memory resources. Figure 7.8 highlights this fact by showing that

for increasing levels of parallelism the memory requirements are unaffected. Moreover,

47

for a specific input size and phase factor precision, the data bus and address bus width

increased proportionally to log2(N), therefore, the system blocks manipulating these

buses will not grow aggressively. The one-butterfly version has a lower slice register

consumption, almost the same slice LUTs used, and the same DSP48 consumed than

the FFT Xilinx Core. However, the two-butterfly and four-butterfly version have a

higher slice register, slice LUTs and DSP48 consumption. This is the price we have

to pay to obtain a low latency.

Although in this research we did not perform an experiment to quantify the im-

pact in energy consumption, we can infer that the strategy used favors this parameter.

The base of this conjecture is that the addressing strategy reduced the computation

time and the consumed resources with respect to the Xilinx Core. Therefore, we

could expect a reduction in the energy consumption. Performing an experiment for

verifying this assumption is left as future work.

Figure 7.9 shows the computation times of the core implemented with one-

butterfly to the four-butterfly version against the number of points. The single but-

terfly version has a computation time close to the FFT Xilinx Core but worst, while

the two-butterfly and four-butterfly version have a much better computation time to

the FFT Xilinx Core.

7.5 Limitations

In the target Xilinx FPGA, the number of butterflies that can be implemented

is limited by the number of DSP48 blocks available on chip. If this happened to be

an inconvenient, the arithmetic hardware could be implemented using a mixture of

slices and DSP48 blocks. This will give more room to implement more butterflies

though at the expense of higher logic consumption.

On the other hand, the general rule governing the pattern of the address sequence

for data point and phase factor regardless the folding factor do not satisfies higher

48

Figure 7.9 : Computation Time

radix implementation. Also, this addressing is only applicable to Decimation In Time

(DIT) Pease Architectures.

Chapter 8

CONCLUSIONS

This thesis presents a method to design the permutation block when the fold-

ing factor is scaled in FFT cores based on an address generation scheme for FPGA

implementation. The address generator approach described in this work is an ef-

fective alternative to achieve a scalable folding of the Pease FFT structure. For a

given butterfly configuration, the impact of scaling the transform size mostly affects

memory usage, causing low impact on the logical consumed resources. The approach

is complete in the sense that it takes into account the address sequences required to

access data points as well as twiddle factors.

49

Chapter 9

CONTRIBUTIONS AND FUTURE WORK

The contributions that this project makes to this area include the following:

1. A general formula to generate the address patterns regardless the number of point,

folding factor, and numeric format using addressing schemes.

2. Algorithm and hardware to reproduce the phase factor address sequence for the

Pease FFT radix-2 factorization.

3. A general expression relating the cycle count to the transform size and number of

butterflies.

4. The detailed behaviour of the read and write switches regardless of the number of

points and folding factor.

5. A scalable hardware implementation of the address generator including number of

points and folding factor.

6. A fully scalable FFT core including number of points, folding factor and numeric

format.

The following future directions were identified that could further improve the

current state of the presented work:

1. To explore the applicability to higher radix algorithms, since this can reduce the

number of stages required to complete calculation of some transform sizes. To

achieve this goal, it would be necessary to study the resulting data and twiddle

address patterns and then evaluate the complexity and feasibility of the implemen-

tation.

50

51

2. Modify the architecture to obtain a continuous flow FFT core based on the developed

strategy.

3. Study the requirements needed to implement a structure that allows a non power-

of-two points FFT.

4. Exploit the phase factor range to develop a simpler butterfly.

5. Perform an experiment that study the impact in the energy consumption using this

strategy .

Bibliography

[1] J.W. Cooley and J.W. Tukey. An Algorithm for the Machine Calculation of
Complex Fourier Series. Mathematics Computation, 19:297–301, 1965.

[2] Marshall C. Pease. An Adaptation of the Fast Fourier Transform for Parallel
Processing. J. ACM, 15(2):252–264, April 1968.

[3] D. G. Korn and J. J. Lambiotte. Computing the Fast Fourier Transform on a
Vector Computer. Mathematics of Computation, 33:977–992, 1979.

[4] Thomas G. Stockham, Jr. High-Speed Convolution and Correlation. In Pro-
ceedings of the April 26-28, 1966, Spring joint computer conference, AFIPS ’66
(Spring), pages 229–233, 1966.

[5] L. G. Johnson. Conflict Free Memory Addressing for Dedicated FFT Hard-
ware. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing., 39(5):312–316, 1992.

[6] Bingrui Wang, Qihui Zhang, Tianyong Ao, and Mingju Huang. Design of
Pipelined FFT Processor Based on FPGA. In Second International Conference
on Computer Modeling and Simulation, 2010. ICCMS ’10., volume 4, pages 432–
435, 2010.

[7] N. Polychronakis, D. Reisis, E. Tsilis, and I. Zokas. Conflict free, parallel memory
access for radix-2 FFT processors. In 2012 19th IEEE International Conference
on Electronics, Circuits and Systems (ICECS), pages 973–976, 2012.

[8] V. Gautam, K.C. Ray, and P. Haddow. Hardware efficient design of Variable
Length FFT Processor. In 2011 IEEE 14th International Symposium on Design
and Diagnostics of Electronic Circuits Systems (DDECS), pages 309–312, 2011.

[9] Liu Hongxia and Huang Shitan. High Performance Algorithm for Twiddle Factor
of Variable-size FFT Processor and its Implementation. In 2012 International
Conference on Industrial Control and Electronics Engineering (ICICEE), pages
1078–1081, 2012.

[10] Chu Chad, Zhang Qin, Xie Yingke, and Han Chengde. Design of a High Per-
formance FFT Processor Based on FPGA. In Design Automation Conference,

52

2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific, volume 2,
pages 920–923 Vol. 2, 2005.

[11] G. Szedo, V. Yang, and C. Dick. High-Performance FFT Processing Using Recon-
figurable Logic. In Conference Record of the Thirty-Fifth Asilomar Conference
on Signals, Systems and Computers, 2001., volume 2, pages 1353–1356 vol.2,
2001.

[12] K.M. Ramesh and D.S. Sumam. Comprehensive Address Generator for Digital
Signal Processing. In 2009 International Conference on Industrial and Informa-
tion Systems (ICIIS)., pages 325–330, 2009.

[13] Yingtao Jiang, Ting Zhou, Yiyan Tang, and Yuke Wang. Twiddle-Factor-Based
FFT Algorithm with Reduced Memory Access. In Parallel and Distributed Pro-
cessing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-
ROM, pages 8 pp–, 2002.

[14] Pei-Yun Tsai and Chung-Yi Lin. A Generalized Conflict-Free Memory Ad-
dressing Scheme for Continuous-Flow Parallel-Processing FFT Processors With
Rescheduling. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems., 19(12):2290–2302, 2011.

[15] Xin Xiao, E. Oruklu, and J. Saniie. An Efficient FFT Engine With Reduced
Addressing Logic. IEEE Transactions on Circuits and Systems II: Express Briefs,
55(11):1149–1153, 2008.

[16] A. Polo, M. Jimenez, D. Marquez, and D. Rodriguez. An Address Genera-
tor Approach to the Hardware Implementation of a Scalable Pease FFT Core.
In 2012 IEEE 55th International Midwest Symposium on Circuits and Systems
(MWSCAS), pages 832–835, 2012.

[17] S.K. Shome, A. Ahesh, D.K. Gupta, and S. Vadali. Architectural Design of a
Highly Programmable Radix-2 FFT Processor with Efficient Addressing Logic.
In 2012 International Conference on Devices, Circuits and Systems (ICDCS),
pages 516–521, 2012.

[18] Yao-Xian Yang, Jin-Fu Li, Hsiang-Ning Liu, and Chin-Long Wey. Design of
Cost-Efficient Memory-Based FFT Processors Using Single-Port Memories. In
2007 IEEE International SOC Conference., pages 29–32, 2007.

[19] Chin-Long Wey, Shin-Yo Lin, and Wei-Chien Tang. Efficient Memory-Based
FFT Processors for OFDM Applications. In 2007 IEEE International Conference
on Electro/Information Technology, pages 345–350, 2007.

53

[20] J.A. Vite-Frias, Rd.J. Romero-Troncoso, and A. Ordaz-Moreno. VHDL Core for
1024-Point Radix-4 FFT Computation. In International Conference on Recon-
figurable Computing and FPGAs, 2005. ReConFig 2005., pages 4 pp.–24, 2005.

[21] M. Ayinala, Yingjie Lao, and K.K. Parhi. An in-place fft architecture for real-
valued signals. Circuits and Systems II: Express Briefs, IEEE Transactions on,
60(10):652–656, Oct 2013.

[22] K. Babionitakis, K. Manolopoulos, K. Nakos, D. Reisis, N. Vlassopoulos, and
V. A. Chouliaras. A High Performance VLSI FFT Architecture. In ICECS
’06. 13th IEEE International Conference on Electronics, Circuits and Systems,
2006., pages 810–813, 2006.

[23] Gijung Yang and Yunho Jung. Scalable FFT Processor for MIMO-OFDM Based
SDR Systems. In 2010 5th IEEE International Symposium on Wireless Pervasive
Computing (ISWPC)., pages 517–521, 2010.

[24] V. Montaño and M. Jimenez. Design and Implementation of a Scalable Floating-
point FFT IP Core for; Xilinx FPGAs. In 2010 53rd IEEE International Midwest
Symposium on Circuits and Systems (MWSCAS), pages 533–536, 2010.

[25] Shuai Chen, Jialin Chen, Kanwen Wang, Wei Cao, and Lingli Wang. A Permu-
tation Network for Configurable and Scalable FFT Processors. In 2011 IEEE
9th International Conference on ASIC (ASICON), pages 787–790, 2011.

[26] N. Shirazi, A. Walters, and P. Athanas. Quantitative analysis of floating point
arithmetic on fpga based custom computing machines. In FPGAs for Custom
Computing Machines, 1995. Proceedings. IEEE Symposium on, pages 155–162,
Apr 1995.

[27] J.R Johnson, R.W. Johnson, D. Rodriguez, and R. Tolimieri. A Methodology
for Designing, Modifying, and Implementing Fourier Transform Algorithms on
Various Architectures. Circuits Systems Signal Process, 9(4):450–500, 1990.

54

	Cover Page
	Abstract in English
	Abstract in Spanish
	Dedicated to...
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	 1 INTRODUCTION
	 2 THEORETICAL BACKGROUND
	2.1 Discrete Fourier Transform (DFT)
	2.2 The Fast Fourier Transform (FFT)
	2.3 Pease FFT Factorization

	 3 PREVIOUS WORK
	3.1 FFTs with address generation
	3.2 FFTs with dedicated data permutation logic
	3.3 Summary

	 4 PROBLEM STATEMENT AND HYPOTHESIS
	4.1 Problem Statement
	4.2 Hypothesis

	 5 OBJECTIVES
	5.1 General Objective
	5.2 Specific Objectives

	 6 METHODOLOGY
	6.1 System Blocks and FFT Architecture
	6.2 Number Representation Format
	6.3 Arithmetic Unit Design
	6.3.1 Complex Adder/Subtractor
	6.3.2 Complex Multiplier

	6.4 Memory Organization
	6.5 Data Switch Design
	6.5.1 Data Switch (Read)
	6.5.2 Data Switch (Write)

	6.6 Address Generation Schemes
	6.6.1 Data Address Generator Design
	6.6.2 Phase Factor Scheduler Design

	 7 RESULTS AND ANALYSIS
	7.1 Core Validation
	7.2 Timing Performance
	7.3 Resource Consumption
	7.4 Analysis and Comparisons
	7.5 Limitations

	 8 CONCLUSIONS
	 9 CONTRIBUTIONS AND FUTURE WORK
	Bibliography

