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This thesis studies the construction of Khovanov homology for (3, k)-torus knots

by using combinatorial topology and skein theory, identifying common characteris-

tics of Khovanov Bracket for (3, k)-torus knots. The r-th homology, Hr, of the

complex C is calculated explicitly for r = 0, 1, 2k − 1 and 2k, it allows to obtain

some exponents of the variables q and t in the graded Poincaré polynomial of the

complex C, which is called the Khovanov bracket.
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En esta tesis se analiza la construcción de la homoloǵıa de Khovanov para

nudos toroidales (3, k) mediante el uso de la topoloǵıa combinatorial y teoŕıa de

skein, identificando caracteŕısticas comunes del bracket de Khovanov para nudos

toroidales (3, k). La r-ésima homoloǵıa, Hr, del complejo C se calcula de forma

expĺıcita para r = 0, 1, 2k − 1 y 2k, lo que permite obtener algunos exponentes de

las variables q y t en el polinomio de Poincaré del complejo C, el cual es llamado

Khovanov bracket.
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CHAPTER 1

INTRODUCTION

1.1 Justification

In knot theory some invariants have been introduced for the study and classi-

fication of knots. One of these is the Jones polynomial and strictly stronger than

this: the Khovanov homology, which is a categorification of the Jones polynomial.

Khovanov associates to each knot a chain complex of graded vector spaces whose

Euler characteristic is the Jones polynomial.

To compute the Khovanov bracket which is the graded Poincaré polynomial of

the complex, the states of a diagram of the knot are calculated, which are obtained

from the different complete smoothings for the diagram. Each state is a collection of

disjoint simple closed curves on the plane. The states are organized in the vertices

of a n−dimensional cube and graded vector spaces are associated to these to get the

chain groups. Finally, a differential is defined on the edges of the cube to construct

the homology.

Every knot in S3 is either a torus knot, a satellite knot or a hyperbolic knot. A

torus knot is a knot which can be embedded on the torus as a simple closed curve.

A satellite knot is a knot that contains an incompressible, non-boundary parallel

torus in its complement and a hyperbolic knot is a knot that has a complement that

is a hyperbolic 3-manifold.

Torus knots have a particular form in their projection with minimal number of

crossings, as a result the complete smooothings give similar and predictable states,

which give rise to a specific homology that can be determined.

1
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The (2, k)-torus knots are alternating and their homology is well known. It

occupies exactly two diagonals, [2].

Our interest is to analyze what is happening in the cube of smoothings and

through the maps on the edges to collapse the cube to a complex; the homology

derived from this chain complex and the common characteristics between types of

knots, such as torus knots and particularly (3, k)-torus knots.

1.2 Previous publications

From the Jones polynomial arises Khovanov homology, which categorifies the

Jones polynomial by constructing a chain complex of graded vector spaces such

that the homology of this chain complex, which is called the Khovanov homology,

is a knot invariant and the graded Euler characteristic of this complex is the Jones

polynomial. Hence M. Khovanov constructed a homological theory that generalizes

the Jones polynomial, it replaces polynomials with graded vector spaces to turn the

Jones polynomial into a homological object.

Dror Bar Natan [2] describes in a more accessible way the Khovanov bracket

and shows that this is strictly stronger than the Jones polynomial.

An interesting type of knots are torus knots, that is, knots that lie on an

unknotted torus, without crossing over or under themselves as they lie on the torus

[1]. To name a torus knot, differentiate two types of curves on a torus: meridian curve

and longitude curve. Depending on how many times the knot crosses these curves

will be called a (p, q)-torus knot for some pair of integers p and q. Mathematicians

such as Kunio Murasugi have worked with these type of knots. He proved that the

least number of crossings that occurs in any projection, for a (p, q)-torus knot is

exactly the minimum of p(q − 1), or q(p− 1), [7].
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1.3 Objectives

1.3.1 Main objective

• The main objective of this thesis is to find formulas for the Khovanov homology

and terms of the Khovanov bracket for (3, k)-torus knots, for integers k, relatively

prime and greater than 3.

1.3.2 Secondary objectives

• To analize the Khovanov homology and construction of Khovanov bracket and

Jones polynomial.

• To study the Khovanov Bracket for (3, k)-torus knots .

• To compute the Khovanov bracket and the Khovanov bracket module 2 for some

(3, k)-torus knots and compare them.

• To identify common characteristics of Khovanov Bracket for (3, k)-torus knots.

• To expose the calculation of Khovanov bracket for (3, k)-torus knots by considering

the projection with least number of crossings.



CHAPTER 2

PRELIMINARES

2.1 Knots

Definition 2.1. A knot is an embedding of S1 into in the 3-dimensional Euclidean

space R3 or in the 3-sphere S3. A link is an embedding of a disjoint union of n circles

into R3 or S3. A link of one component is a knot.

In order to visualize and manipulate knots and links, projections in R2 can

be made. The places where the knot or link crosses itself in the picture are called

crossings and a distinction is made between the strand that passes over and the

strand passing below drawing an interruption or discontinuity in the second one.

There are many projections of the same knot or link.

Figure 2–1: Hopf link, unknot and trefoil

A projection of a knot or link is called generic or regular if it has no triple

intersections, no tangencies and no cusps. In what follows it will be referred inter-

changeably to regular o generic projection as projection.

Figure 2–2: A triple intersection, a tangency and a cusp

4
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An oriented knot (link) is a knot (link) with an orientation defined, i.e.

choosing a direction to travel around it, placing directed arrows along the projection

of the knot (link) in the chosen direction.

Figure 2–3: An oriented knot

Suppose two projections are taken, whether or not they represent the same knot

or link is what it is wanted to know; it is expected that somehow one can get to the

other, or say they do not represent the same knot or link. This is a fundamental

problem in knot theory and it will be discussed in section (2.2)

2.1.1 Torus knots

There are many types of knots. In this thesis, torus knots are the focus point.

Intuitively speaking, a torus looks like the surface of a doughnut. Topologicaly,

a torus is a closed surface defined as the product: S1 × S1.

Definition 2.2. A torus knot is a knot that lies on an unknotted (standard) torus

in R3, without crossing over or under itself as it lies on the torus.

Figure 2–4: A trefoil on a torus

Definition 2.3. On a torus, a meridian curve is a closed curve that goes once

around the shorter way of the torus. A longitude curve is a closed curve that goes

once around the long way of the torus. A longitude curve intersects a meridian

exactly once.
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To describe a torus knot an associated ordered pair of nonnegative integers

(p, q), where p and q are relatively prime is used such that p represents how many

times the knot goes around the meridian, and q is the number of times the knot

goes around the longitude.

For example, the trefoil knot in figure (2–4) goes three times meridionally

around the torus and twice longitudinally, so that p = 3, q = 2, hence the tre-

foil knot is called a (3, 2)− torus knot.

Theorem 1. A (p, q)− torus knot is equivalent to a (q, p)− torus knot, [1].

A (p, q) torus knot has one projection with p(q− 1) crossings and another with

q(p − 1) crossings. Murasugi [7] proved that the least number of crossings that

occurs in any projection, for a (p, q) torus knot is exactly the minimum of p(q − 1),

or q(p− 1).

2.2 Equivalence of knots

Definition 2.4. Let f, g : X −→ Y be continuous functions. A continuous function

F : X × [0, 1] −→ Y such that F (x, 0) = f (x) and F (x, 1) = g (x) for all x ∈ X is

called an isotopy if F |X×{t} is a homeomorphism for all t ∈ [0, 1].

Definition 2.5. Let f, g : Y −→ X be embeddings of Y into X. f and g are ambient

isotopic if there is an isotopy F : X × [0, 1] −→ Y such that F (x, 0) = x for all

x ∈ X and F (f (y) , 1) = g (y) for all y ∈ Y.

Definition 2.6. Two knots f, g : S1 −→ R3 are equivalent if they are ambient

isotopic.

Definition 2.7. A planar isotopy of a knot projection is a continuous deformation

of the projection.

Then, two knots are equivalent if it is possible deform one to the other by

ambient or planar isotopy.
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2.3 Reidemeister Moves

Suppose two projections of equivalent knots, then ambient or planar isotopy

have to exist. However finding such isotopy can be difficult. In 1927, Kurt Reide-

meister proved that the existence of an ambient isotopy between knots projections

is equivalent to the existence of a sequence of moves, called Reidemeister moves.

These are three types of Reidemeister moves:

Figure 2–5: Type I Reidemeister move

Figure 2–6: Type II Reidemeister move

Figure 2–7: Type III Reidemeister move

Definition 2.8. Two projections are regularly isotopic if one can be obtained from

the other by a sequence of Reidemeister moves of type II and III or ambient isotopic

by a sequence of Reidemeister moves type I, II and III.

Theorem 2. Two knots are equivalent if and only if there is a finite sequence of

planar isotopies and Reidemeister moves taking a knot projection of one to a knot

projection of the other.

See [8]
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2.4 Knot invariants

As there are many projections for the same knot it is useful to find properties

associated to given knot such that they do not depend on the projection.

Definition 2.9. A knot invariant is a property of a knot that does not change under

ambient isotopy.

Hence, if two knots have different values for any knot invariant they are not

equivalent. A consequence of this definition and the Reidemeister’s theorem is that

to prove a given property of a knot is a knot invariant is sufficient to show that it is

invariant under the three types of Reidemeister moves and planar isotopy.

An invariant can be a mathematical entity such as a numerical value, a poly-

nomial or an algebraic group.

2.5 Polynomial invariants

Associating polynomials to each knot is a useful and interesting way to study

knots. Polynomials invariants are computed from a projection but any two projec-

tions of the same knot generate the same polynomial.

2.5.1 Jones polynomial

In 1984, V. Jones was working with operator algebras and he discovered a

Laurent polynomial with integer coefficients, i.e. a finite polynomial expression that

can have both positive and negative powers of the indeterminate.

Let L be an oriented knot projection with n crossings labeled from 1 to n in

some arbitrary way, let X be the set of crossings, let n+, n− be the number of right

handed (positive) and left handed (negative) crossings in X , respectively, as in figure

(2–8). So n = n+ + n−.

+1 −1
Figure 2–8: Possitive and negative crossings
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Each crossing can be smoothed in two different ways, either by 0− smoothing

or 1− smoothing according to figure (2–9).

Figure 2–9: Smoothings for a crossing

The Kauffman bracket is a function that maps L to an element of the ring of

Laurent polynomials with integers coeficients in an indeterminate q, 〈L〉 ∈ Z [q, q−1],

which satisfies:

1. 〈 〉 = 1

2. 〈L t 〉 = (q + q−1)〈L〉

3. 〈 〉 = 〈 〉 − q 〈 〉

From these axioms, the unormalized Jones Polynomial is

Ĵ (L) = (−1)n− qn+−2n− 〈L〉

and the Jones polynomials is

J (L) :=
Ĵ (L)

q + q−1
.

Each vertex α of the n−dimensional cube {0, 1}X , corresponds to a complete

smoothing Sα of L, where all the crossings are smoothed and according to α the

result is a union of planar cycles. This complete smoothing is called a state of L.

This cube is formed by the 2n smoothings and each of the smoothings can be indexed

by a word of n zeros and ones.

Each union Sα of k cycles is replaced by a term of the form

(−1)r qr
(
q + q−1

)k
,
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where r is the height of the smoothing, that is, the number of 1 smoothings used. The

Jones polynomial is the sum of the resulting terms over all α ∈ {0, 1}X multiplied

by the normalization term (−1)n− qn+−2n− . An example of the computation of the

Jones polynomial of the trefoil knot is shown bellow.

S100

q (q + q−1)

S110

q2 (q + q−1)
2

S000

(q + q−1)
2

S010

q (q + q−1)

S101

q2 (q + q−1)
2

S111

q3 (q + q−1)
3

S001

q (q + q−1)

S011

q2 (q + q−1)
2

−3q (q + q−1)(q + q−1)
2

+3q2 (q + q−1)
2 −q3 (q + q−1)

3

= q−2 + 1 + q2 − q6 q + q3 + q5 − q9 J ( ) = q2 + q6 − q8

+

+

+

+

· (−1)n− qn+−2n−

n+ = 3, n− = 0

· (q + q−1)
−1

2.6 Khovanov homology

M. Khovanov developed a categorification of the Jones polynomial, which as-

sociates to each knot a chain complex of graded vector spaces whose graded Euler

characteristic is the Jones polynomial.

Definition 2.10. A graded vector space is a vector space W together with a decom-

position W =
⊕
m∈Z

Wm, with homogeneous components {Wm}.

Definition 2.11. Let W be a graded vector space, the graded dimension of W is the

power series dimW :=
∑
m

qm dimWm.
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Definition 2.12. A chain complex C is a sequence of homomorphisms of abelian

groups with differential maps dr, ... → Cr dr−→ Cr+1
..., such that dr+1 ◦ dr = 0 for

each r ∈ Z.

Note that Im(di) ⊆ ker (di+1) .

Definition 2.13. Let ·{l} be the “degree shift” operation on graded vector spaces.

That is, if W =
⊕
m∈Z

Wm is a graded vector space, we set W{l}m := Wm−l, so that

q dimW{l} = qlq dimW.

Definition 2.14. Likewise, let ·[s] be the “height shift” operation on chain com-

plexes. That is, if C is a chain complex ... → Cr dr−→ Cr+1
...of vector spaces (we

call r the “height” of a piece Cr of that complex)and if C =C [s], then Cr = Cr−s(with

all differentials shifted accordingly).

Definition 2.15. The homology of a chain complex is the set of modules, Hr (C)

given by Hr (C) = ker dr/Im (dr−1).

Definition 2.16. The graded Euler characteristic Xq (C) of a chain complex C is

the alternating sum of the graded dimensions of its homology groups.

2.6.1 Computing the Khovanov homology

Let L be an oriented knot projection and let X , n, n+ and n−be as in the

previous section.

Let V be a graded vector space and let v+, v− be its basis elements, whose

degrees are +1 and −1 respectively, then q dimV = q+q−1. Each vertex α ∈ {0, 1}X

will be associated to the graded vector space Vα (L) := V ⊗k {r} , where k is the

number of cycles in Sα and r is the height |α| =
∑
i

αi of α.

Then, the rth chain group JLKr where 0 ≤ r ≤ n, is the direct sum of all vector

spaces at height r: JLKr := ⊕α:r=|α|Vα (L) .

Now, with the differential that will be defined bellow, the sequence of spaces

C (L) := JLK [−n−] {n+ − 2n−}will be a chain complex.
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2.6.2 Maps on the cube

The edges of the n−dimensional cube {0, 1}X will be identified by sequences in

{0, 1, ∗}X with just one ∗, where the tail of such an edge is found by setting ∗ −→ 0

and the head by setting ∗ −→ 1. The height |ξ| of an edge ξ is the height of its

tail, and hence if the maps on the edges are called dξ, then the maps with the same

height are collapsed in dr :=
∑
|ξ|=r

(−1)ξ dξ.

For any edge dξ, the smoothing at the tail of ξ differs from the smoothing at the

head of ξ by just a little: either two of the circles merge into one or one of the cycles

splits in two. So for any ξ, let dξ be the identity on the tensor factors corresponding

to the cycles that do not participate. The definition of ξ is completed by using two

linear maps: m : V ⊗ V −→ V and ∆ : V −→ V ⊗ V

m :

 v+ ⊗ v− 7−→ v− v+ ⊗ v+ 7−→ v+

v− ⊗ v+ 7−→ v− v− ⊗ v− 7−→ 0

∆ :

 v+ 7−→ v+ ⊗ v− + v− ⊗ v+

v− 7−→ v− ⊗ v−
Now, the sequence of spaces C (L) := JLK [−n−] {n+ − 2n−} with the differential

explained above is a chain complex, the graded Euler characteristic of C, Xq (C) by

definition, is the alternating sum of the graded dimensions of its homology groups,

and, if the degree of the differential d is 0 and all chain groups are finite dimensional,

it is also equal to the alternating sum of the graded dimensions of the chain groups.

Because of the explanation above, the following can be stated:

Theorem 3. The graded Euler characteristic of C (L) is the unnormalized Jones

polynomial of L:

Xq (C (L)) = Ĵ (L) .

2.6.3 The homology

Theorem 4. The sequences JLK and C (L) are chain complexes.
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LetHr(L) be the r-th homology of the complex C (L). It is a graded vector space

depending on the link projection L. Let Kh (L) be the graded Poincaré polynomial

of the complex C (L)in the variable t:

Kh (L) :=
∑
r

trq dimHr (L) .

Theorem 5. The graded dimensions of the homology groups Hr (L) are knot invari-

ants, and hence Kh (L), a polynomial in the variables t and q, is a knot invariant

that specializes to the unnormalized Jones polynomial at t = −1.

The proofs of these theorems can be read in [5].

To demonstrate the calculation of Khovanov homology, consider the trefoil knot

bellow.

S100

V {1}

S110

V ⊗2 {2}
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CHAPTER 3

KHOVANOV BRACKET FOR (3, k)-TORUS

KNOTS

To expose the calculation of Khovanov bracket for a (3, k)-torus knot, k > 3,

consider a projection with the least number of crossings.

Because of Murasugi [7], the least number of crossings for a (3, k)-torus knot is

the minimum of 3 (k − 1) or 2k, that is, 2k, since k > 3.

According to the definition of a torus knot and [6], a (3, k)-torus knot is a (k, 3)-

torus knot, it goes k times meridionally around the torus and 3 times longitudinally.

If a projection is drawn, a piece of the strand which passes under is going to cross 2

pieces of the strand that go above it. Since there are k pieces of strand going under

the number of crossings in the projection will be 2k. See an example in figure (3–1).

Definition 3.1. In a projection with number of crossings 2k of a (3, k)-torus knot,

the k crossings in the center of the knot will be called inner crossings and the k

crossings in the outside of the knot will be called outer crossings.

Figure 3–1: Projection of a (3, 4)-torus knot

14
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First of all, the projection will be oriented arbitrarily by choosing a direction

that remains constant throughout the projection; based on this, the 2k crossings of

the knot will be labeled right handed (possitive) or left handed(negative) to find n+

and n−. Hence, n+ = 2k and n− = 0.

Figure 3–2: Oriented (3, k)-Torus knot

Since T (3, k) has 2k crossings, it has 22k states. The states with height 0 and 2k

will be shown, that is, the states with all 2k crossings 0−smoothed or 1−smoothed,

respectively. Cycles that appear in each state are enumerated to later organize each

piece of the differential maps according to the cycles it interacts with.

S00...00 S11...11

Figure 3–3: States of height 0 and 2k

There are 2k states with height 1.

S10...0 S010...0

· · ·
S0...010 S0...01

Figure 3–4: States of height 1
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The portion of the cube with states with height 0 and 1 is in the following

figure.

S0...0 V
⊗3 {0}

S0...01

V ⊗2 {1}

d
0...0∗

S0...010

V ⊗2 {1}

d
0...0∗0

S0...0100

V ⊗2 {1}

d0...0∗00

...

S0010...0

V ⊗2 {1}d00∗0...0

S010...0

V ⊗2 {1}

d0∗0.
..0

S10...0

V ⊗2 {1}

d∗0
...0

The vertex in the cube with state S00...0 has 3 cycles and its height is 0, hence

it is associated to the graded vector space V ⊗3 {0} . Therefore the 0-chain group is

JT (3, k)K0 = V ⊗3 {0}.

Each of the 2k vertices of the states S10...0, S010...0, S0010...0, S00010...0, S0...010...0,...

have 2 cycles and the height of each one is 1, then, the graded vector spaces associated

are V ⊗2 {1} . Therefore the 1st- chain group JT (3, k)K1 is

V ⊗2 {1} ⊕ V ⊗2 {1} ⊕ V ⊗2 {1} ⊕ ...⊕ V ⊗2 {1} .

Therefore, the edges identified with sequences of height 0 are m maps and

they are collapsed in d0. If the state reached by the edge has an inner crossing

1−smoothed, the edge will be a m23 map, but if the state reached by the edge has

an outer crossing 1−smoothed, the edge will be a m12. These are for example:
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d∗0...0 : S0...0 → S10...0

m23 ⊗ Id1 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2

d0...0∗ : S0...0 → S0...01

m12 ⊗ Id3 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2

Since cycles and tensor factors associated in states are labeled, then subscripts

in m and ∆ maps to denote labeled tensor factor which map is acting on are used.

Therefore, the m12 map means the extension of m on the tensor factors V1 and V2

and it results in Vmin{1,2} = V1.

A basis for V ⊗3 is

{v+ ⊗ v+ ⊗ v+, v+ ⊗ v+ ⊗ v−, v+ ⊗ v− ⊗ v+, v− ⊗ v+ ⊗ v+,

v+ ⊗ v− ⊗ v−, v− ⊗ v− ⊗ v+, v− ⊗ v+ ⊗ v−, v− ⊗ v− ⊗ v−}

Notice that v− ⊗ v− ⊗ v− ∈ ker d0, furthermore , m12 (v− ⊗ v− ⊗ v+) = 0 but

m23 (v− ⊗ v− ⊗ v+) = v−⊗v− andm23 (v+ ⊗ v− ⊗ v−) = 0 butm12 (v+ ⊗ v− ⊗ v−) =

v− ⊗ v−.

Then, v− ⊗ v− ⊗ v+ ⊕ v+ ⊗ v− ⊗ v− − v− ⊗ v+ ⊗ v− ∈ ker d0, furthermore,

H0 = ker d0 = 〈v− ⊗ v− ⊗ v−, v− ⊗ v− ⊗ v+ ⊕ v+ ⊗ v− ⊗ v− − v− ⊗ v+ ⊗ v−〉 ∼= Z⊕Z

Since v−⊗ v−⊗ v− has degree −3, v−⊗ v−⊗ v+⊕ v+⊗ v−⊗ v−− v−⊗ v+⊗ v−

has degree −1 and the shifting n+ − 2n− = 2k, the grade for the first Z is 2k − 3

and the grade for the second Z is 2k − 1, the first term of Khovanov bracket is

q2k−3t0 + q2k−1t0 = q2k−3 + q2k−1.

Now, d0 evaluated in the elements of the basis is, respectively:

(v+ ⊗ v+, ...2k × ..., v+ ⊗ v+)

(v+ ⊗ v−, ...2k × ..., v+ ⊗ v−)

(v+ ⊗ v−, ...k × ..., v− ⊗ v+, ...k × ..., v− ⊗ v+)

(v− ⊗ v+, ...2k × ..., v− ⊗ v+)

(0, ...k × ..., 0, v− ⊗ v−, ...k × ..., v− ⊗ v−)
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(v− ⊗ v−, ...k × ..., v− ⊗ v−, 0, ...k × ..., 0)

(v− ⊗ v−, ...2k × ..., v− ⊗ v−)

Where 2k × and k × mean how many times the element written before them

is repeated. For example (0, ...k × ..., 0, v− ⊗ v−, ...k × ..., v− ⊗ v−) means the first

k components of this element are 0 and the last k components are v− ⊗ v−.

Then,

Im d0 = 〈(v+ ⊗ v+, ...2k × ..., v+ ⊗ v+) ,

(v− ⊗ v−, ...2k × ..., v− ⊗ v−) ,

(v+ ⊗ v−, ...2k × ..., v+ ⊗ v−) ,

(v− ⊗ v+, ...2k × ..., v− ⊗ v+) ,

(v− ⊗ v+, ...k × ..., v− ⊗ v+, v+ ⊗ v−, ...k × ..., v+ ⊗ v−) ,

(v− ⊗ v−, ...k × ..., v− ⊗ v−, 0, ...k × ..., 0)〉

There are
(2k)!

2! (n− 2)!
= k (2k − 1) states or vertices of height 2.

The states in which the 1−smoothed crossings are two inner crossings are

k!

2! (k − 2)!
=
k (k − 1)

2
and they have 3 cycles, then, the graded vector space asso-

ciated to each one is V ⊗3 {2}.

The states in which the 1−smoothed crossings are one of the inner crossings

and one of the outer crossings are k2 and they have 1 cycle, then, the graded vector

space associated to each one is V {2}.

The states in which the 1−smoothed crossings are two outer crossings are

k!

2! (k − 2)!
=
k (k − 1)

2
and they have 3 cycles, then, the graded vector space asso-

ciated to each one is V ⊗3 {2}.
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S110...2k−2 ×...0

· · ·
S0...2k−2 ×...011

· · ·
S10...k−1 ×...010...k−1 ×...0

Figure 3–5: States of height 2

Without loss of generality, states of height 2 will be organized such that the first

states will be the states in which the 1−smoothed crossings are two inner crossings,

then the states in which the 1−smoothed crossings are one of the inner crossings

and one of the outer crossings and last the states in which the 1−smoothed crossings

are two outer crossings.

The portion of the cube with the states with height 1 and 2 will be shown. The

first
k (k − 1)

2
states of height 2 have 3 cycles, the following k2 states have 1 cycle

and the last
k (k − 1)

2
states have 3 cycles.
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S10...2k−1 ×...0

V ⊗2 {1}

S010...2k−2 ×...0

V ⊗2 {1}

...

S0...2k−2 ×...010

V ⊗2 {1}

S0...2k−1 ×...01

V ⊗2 {1}

S110...2k−2 ×...0

V ⊗3 {2}
S1010...2k−3 ×...0

V ⊗3 {2}
...

S0110...2k−3 ×...0

V ⊗3 {2}
...

S0...k−2 ×...0110...k ×...0

V ⊗3 {2}
S10...k−1 ×...010...k−1 ×...0

V {2}
S10...k ×...010...k−2 ×...0

V {2}
...

S10...2k−3 ×...010

V {2}

S10...2k−2 ×...01 V {2}

S010...k−2 ×...010...k−1 ×...0

V {2}
...

S0...k ×...0110...k−2 ×...0

V ⊗3 {2}
...

S0...2k−2 ×...011

V ⊗3 {2}

Therefore, the maps in the edges of height 1 collapsed in d1 are ∆ maps in cases

of either two inner crossings or two outer crossings are 1-smoothed and m maps in

the other case. These are:
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d1∗0...2k−2 ×...0 : S10...2k−1 ×...0 → S110...2k−2 ×...0

−∆23 ⊗ Id1 : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V3

d∗10...2k−2 ×...0 : S010...2k−2 ×...0 → S110...2k−2 ×...0

∆23 ⊗ Id1 : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V3

d10∗0...2k−3 ×...0 : S10...2k−1 ×...0 → S1010...2k−3 ×...0

−∆23 ⊗ Id1 : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V3

d∗010...2k−3 ×...0 : S0010...2k−3 ×...0 → S1010...2k−3 ×...0

∆23 ⊗ Id1 : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V3

...

d10...k−1 ×...0∗0...k−1 ×...0 : S10...2k−1 ×...0 → S10...k−1 ×...010...k−1 ×...0

−m12 : V1 ⊗ V2 → V1

d∗0...k−1 ×...010...k−1 ×...0 : S0...k ×...010...k−1 ×...0 → S10...k−1 ×...010...k−1 ×...0

m13 : V1 ⊗ V3 → V1

...

d10...2k−2 ×...0∗ : S10...2k−1 ×...0 → S10...2k−2 ×...01

−m12 : V1 ⊗ V2 → V1

d∗0...2k−2 ×...01 : S0...2k−1 ×...01 → S10...2k−2 ×...01

m13 : V1 ⊗ V2 → V1

...

d0...k ×...010...k−2 ×...0∗ : S0...k ×...010...k−1 ...0 → S0...k ×...010...k−2 ×...01

−∆13 ⊗ Id2 : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V3

d0...k ×...0∗0...k−2 ×...01 : S0...2k−1 ×...01 → S0...k ×...010...k−2 ×...01

∆13 ⊗ Id2 : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V3

...
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d0...2k−2 ×...01∗ : S0...2k−2 ×...010 → S0...2k−2 ×...011

−∆13 ⊗ Id2 : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V3

d0...2k−2 ×...0∗1 : S0...2k−1 ×...01 → S0...2k−2 ×...011

∆13 ⊗ Id2 : V1 ⊗ V2 → V1 ⊗ V2 ⊗ V3

Notice that if ∆ ((x, 0, ...2k − 1 × ..., 0)) = ∆ ((y, 0, ...2k − 1 × ..., 0)) , where

x, y ∈ {v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v−} , then x = y, but ifm ((x, 0, ...2k − 1 × ..., 0)) =

m ((y, 0, ...2k − 1 × ..., 0)) , then x = y or x = v+⊗v− and y = v−⊗v+ or conversely,

or x = v−⊗ v− and y = 0 or conversely. Also, each state of height 2 is reached by 2

maps of height 1, one of these is positive and the other is negative.

To obtain the kernel of d1 the following are considered:

The elements in which each state is the same element basis element are in the

kernel of d1, these are,

(v+ ⊗ v+, ...2k × ..., v+ ⊗ v+) ,

(v+ ⊗ v−, ...2k × ..., v+ ⊗ v−) ,

(v− ⊗ v+, ...2k × ..., v− ⊗ v+) ,

(v− ⊗ v−, ...2k × ..., v− ⊗ v−) .

Since the first
k (k − 1)

2
states of height 2 are just reach by two ∆ edges which

tails are two of the k first states of height 1 and these states are combined between

them, then the k first elements of JT (3, k)K1 have to be evaluated in the same basis

element to be in the kernel of d1.

As the states of 1 cycle of height 2 are just reached by one m edge which tail

is one of the k first elements of height 1 and one m edge which tail is one of the k

last elements of height 1, then they can be evaluated in the same basis element or
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v+⊗ v− and v−⊗ v+ or conversely or v−⊗ v− and 0 or conversely to be in the kernel

of d1.

Due to the last
k (k − 1)

2
states of height 2 are just reach by two ∆ edges which

tails are two of the k last states of height 1 and these states are combined between

them, then the k last elements of JT (3, k)K1 have to be evaluated in the same basis

element to be in the kernel of d1.

Because of these considerations it is held that

ker d1 = 〈(v+ ⊗ v+, ...2k × ..., v+ ⊗ v+) ,

(v− ⊗ v−, ...2k × ..., v− ⊗ v−) ,

(v+ ⊗ v−, ...2k × ..., v+ ⊗ v−) ,

(v− ⊗ v+, ...2k × ..., v− ⊗ v+) ,

(v− ⊗ v+, ...k × ..., v− ⊗ v+, v+ ⊗ v−, ...k × ..., v+ ⊗ v−) ,

(v− ⊗ v−, ...k × ..., v− ⊗ v−, 0, ...k × ..., 0)〉

Hence H1 = ker d1/Im d0 = {0{ .

Now the portion of the cube with the states with height 2k and 2k − 1 will be

shown.
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S1...2k ×...1

V {2k}

S01...2k−1 ×...1

V ⊗2 {2k − 1}

d∗1...2k−1 ×...1

S101...2k−2 ×...1

V ⊗2 {2k − 1}
d
1∗1...2k−2 ×...1

S1101...2k−3 ×...1

V ⊗2 {2k − 1} d11∗1...2k−3 ×...1

...

S1...2k−3 ×...1011

V ⊗2 {2k − 1}

d1...2k−3
×...1∗1

1

S1...2k−2 ×...101

V ⊗2 {2k − 1}

d1...2
k−2

×...1
∗1

S1...2k−1 ×...10

V ⊗2 {2k − 1}

d1..
.2k
−1
×..
.1∗

The vertex in the cube with the state S1...1 has 1 cycle and its height is 2k,

hence it is associated to the graded vector space V {2k} . Therefore the 2k- chain

group is JT (3, k)K2k = V {2k}.

Each of the vertices of the states with height 2k − 1 have 2 cycles, then, the

graded vector space associated are V ⊗2 {2k − 1} . Therefore,

JT (3, k)K2k−1 = V ⊗2 {2k − 1} ⊕ V ⊗2 {2k − 1} ⊕ ...⊕ V ⊗2 {2k − 1} .

S01...2k−1 ×...1

· · ·
S1...2k−1 ×...10

Figure 3–6: States of height 2k − 1
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The edges identified with sequences of height 2k − 1 are m maps and they are

collapsed in d2k−1, these are

d∗1...2k−1 ×...1 : S01...2k−1 ×...1 → S1...2k ×...1

m12 : V1 ⊗ V2 → V1

d1∗1...2k−2 ×...1 : S101...2k−2 ×...1 → S1...2k ×...1

−m12 : V1 ⊗ V2 → V1

...

d1...2k−2 ×...1∗1 : S1...2k−2 ×...101 → S1...2k ×...1

m13 : V1 ⊗ V3 → V1

d1...2k−1 ×...1∗ : S1...2k−1 ×...10 → S1...2k ×...1

−m13 : V1 ⊗ V3 → V1

Notice that d2k−1 (v+ ⊗ v+, 0, ..., 0) = v+ and d2k−1 (v+ ⊗ v−, 0, ..., 0) = v−, then

Imd2k−1 = V. Hence H2k = ker d2k/Imd2k−1 = V/V = {0{ .

Also,

ker d2k−1 = 〈(v− ⊗ v−, 0, ...2k − 1 × ..., 0) , (0, v− ⊗ v−, 0, ...2k − 2 × ..., 0) , ,

(0, 0, v− ⊗ v−, 0, ...2k − 3 × ..., 0) , ..., (0, ...2k − 1 × ..., 0, v− ⊗ v−) ,

(v+ ⊗ v− + v− ⊗ v+, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 2 × ..., 0) ,

(v+ ⊗ v− + v− ⊗ v+, 0, 0, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 4 × ..., 0) ,

(v+ ⊗ v− + v− ⊗ v+, 0, 0, 0, 0, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 6 × ..., 0),

..., (v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 2 × ..., 0, v+ ⊗ v− + v− ⊗ v+) ,

(0, v+ ⊗ v− + v− ⊗ v+, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 3 × ..., 0) ,

(0, v+ ⊗ v− + v− ⊗ v+, 0, 0, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 5 × ..., 0) ,
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... (0, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 4 × ..., 0, v+ ⊗ v− + v− ⊗ v+, 0) ,

(v+ ⊗ v+, v+ ⊗ v+, 0, ...2k − 2 × ..., 0) ,

(v+ ⊗ v+, 0, 0, v+ ⊗ v+, 0, ...2k − 4 × ..., 0) ,

... (v+ ⊗ v+, 0, ...2k − 2 × ..., 0, v+ ⊗ v+) ,

(0, v+ ⊗ v+, v+ ⊗ v+, 0, ...2k − 3 × ..., 0) ,

(0, v+ ⊗ v+, 0, 0, v+ ⊗ v+, 0, ...2k − 5 × ..., 0) ,

... (0, v+ ⊗ v+, 0, ...2k − 4 × ..., 0, v+ ⊗ v+, 0) ,

(v+ ⊗ v−, v+ ⊗ v−, 0, ...2k − 2 × ..., 0) ,

(v+ ⊗ v−, 0, 0, v+ ⊗ v−, 0, ...2k − 4 × ..., 0) ,

... (v+ ⊗ v−, 0, ...2k − 2 × ..., 0, v+ ⊗ v−) ,

(0, v+ ⊗ v−, v+ ⊗ v−, 0, ...2k − 3 × ..., 0) ,

(0, v+ ⊗ v−, 0, 0, v+ ⊗ v−, 0, ...2k − 5 × ..., 0) ,

... (0, v+ ⊗ v−, 0, ...2k − 4 × ..., 0, v+ ⊗ v−, 0)〉

Now the portion of the cube with the states with height 2k− 1 and 2k− 2 will

be shown.



27

S01...2k−1 ×...1

V ⊗2 {2k − 1}

S101...2k−2 ×...1

V ⊗2 {2k − 1}

...

S1...2k−2 ×...101

V ⊗2 {2k − 1}

S1...2k−1 ×...10

V ⊗2 {2k − 1}

S001...2k−2 ×...1

V ⊗3 {2k − 2}
S0101...2k−3 ×...1

V ⊗3 {2k − 2}
S01101...2k−4 ×...1

V ⊗3 {2k − 2}
S01...k−1 ×101...k−1 ×...1

V {2k − 2}

...
S01...2k−2 ×...10

V {2k − 2}
S1001...2k−3 ×...1

V ⊗3 {2k − 2}
S10101...2k−4 ×...1

V ⊗3 {2k − 2}

...
S101...2k−3 ×...10

V ⊗3 {2k − 2}

...
S1...2k−3 ×...1010

V ⊗3 {2k − 2}
S1...2k−2 ×...00

V ⊗3 {2k − 2}

The edges identified with sequences of height 2k−2 are collapsed in d2k−2, these

are

d0∗1...2k−2 ×...1 : S001...2k−2 ×...1 → S01...2k−1 ×...1
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m23 ⊗ Id1 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2

d01∗1...2k−3 ×...1 : S0101...2k−3 ×...1 → S01...2k−1 ×...1

−m23 ⊗ Id1 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2

d011∗1...2k−4 ×...1 : S01101...2k−4 ×...1 → S01...2k−1 ×...1

m23 ⊗ Id1 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2
...

d01...k−1 ×...1∗1...k−1 ×...1 : S01...k−1 ×...101...k−1 ×...1 → S01...2k−1 ×...1

−∆12 : V1 → V1 ⊗ V2

d01...k ×...1∗1...k−2 ×...1 : S01...k ×...101...k−2 ×...1 → S01...2k−1 ×...1

m23 ⊗ Id1 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2
...

d01...2k−2 ×...1∗ : S01...2k−2 ×...10 → S01...2k−1 ×...1

∆12 : V1 → V1 ⊗ V2

d∗01...2k−2 ×...1 : S001...2k−2 ×...1 → S101...2k−2 ×...1

m13 ⊗ Id2 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2

d10∗1...2k−3 ×...1 : S1001...2k−3 ×...1 → S101...2k−3 ×...1

−m13 ⊗ Id2 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2

d101∗1...2k−4 ×...1 : S10101...2k−4 ×...1 → S101...2k−2 ×...1

m13 ⊗ Id2 : V1 ⊗ V2 ⊗ V3 → V1 ⊗ V2
...
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These are
(2k)!

2! (2k − 2)!
= k (2k − 1) states of height 2k − 2, the states in which

the 0−smoothed crossings are two of the inner crossings or two of the outer crossings

have 3 cycles. Then the graded vector spaces associated to each one is V ⊗3 {2k − 2} .

The edges which tail is on one of these states are m maps.

The states in which the 0−smoothed crossings are adjacent crossings (one of

these is inner and the other one is outer) have 1 cycle. Then the graded vector

spaces associated to each one is V {2k − 2} . The edges which tail is on one of these

states are ∆ maps.

The states in which the 0−smoothed crossings are not adjacent crossings (one

of these is inner and the other one is outer) have 3 cycles. Then the graded vector

spaces associated to each one is V ⊗3 {2k − 2} . The edges which tail is on one of

these states are m maps.

S001...2k−2 ×...1

· · ·
S01...2k−4 ×...1011

· · ·
S01...2k−2 ×...10

· · ·
S1...2k−2 ×...100

Figure 3–7: States of height 2k − 2

Each state of height 2k − 1 is reached by 2k − 1 edges of which 2k − 3 are m

maps and 2 are ∆ maps, like was explained above, hence, it is enough to study the

behavior of edges that reach the first state of height 2k − 1.

Now, d2k−2 evaluated in some elements of the basis is:

d2k−2 (v+ ⊗ v+ ⊗ v+, 0, 0, ..., 0) = (v+ ⊗ v+,−v+ ⊗ v+, 0, ...2k − 2 × ..., 0)

d2k−2 (v+ ⊗ v+ ⊗ v−, 0, 0, ..., 0) = (v+ ⊗ v−,−v− ⊗ v+, 0, ...2k − 2 × ..., 0)

d2k−2 (v+ ⊗ v− ⊗ v+, 0, 0, ..., 0) = (v+ ⊗ v−,−v+ ⊗ v−, 0, ...2k − 2 × ..., 0)

d2k−2 (v− ⊗ v+ ⊗ v+, 0, 0, ..., 0) = (v− ⊗ v+,−v− ⊗ v+, 0, ...2k − 2 × ..., 0)
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d2k−2 (v+ ⊗ v− ⊗ v−, 0, 0, ..., 0) = (0,−v− ⊗ v−, 0, ...2k − 2 × ..., 0)

d2k−2 (v− ⊗ v+ ⊗ v−, 0, 0, ..., 0) = (v− ⊗ v−, 0, ...2k − 1 × ..., 0)

d2k−2 (v− ⊗ v− ⊗ v+, 0, 0, ..., 0) = (v− ⊗ v−,−v− ⊗ v−, 0, ...2k − 2 × ..., 0)

d2k−2 (v− ⊗ v− ⊗ v−, 0, 0, ..., 0) = (0, ...2k × ..., 0)

d2k−2 (0, v+ ⊗ v+ ⊗ v+, 0, ..., 0) = (−v+ ⊗ v+, 0, v+ ⊗ v+, 0, ...2k − 3 × ..., 0)

d2k−2 (0, v+ ⊗ v+ ⊗ v−, 0, ..., 0) = (−v+ ⊗ v−, 0, v+ ⊗ v−, 0, ...2k − 3 × ..., 0)

d2k−2 (0, v+ ⊗ v− ⊗ v+, 0, ..., 0) = (−v+ ⊗ v−, 0, v− ⊗ v+, 0, ...2k − 3 × ..., 0)

d2k−2 (0, v− ⊗ v+ ⊗ v+, 0, ..., 0) = (−v− ⊗ v+, 0, v− ⊗ v+, 0, ...2k − 3 × ..., 0)

d2k−2 (0, v+ ⊗ v− ⊗ v−, 0, ..., 0) = (0, 0, v− ⊗ v−, 0, ...2k − 3 × ..., 0)

d2k−2 (0, v− ⊗ v+ ⊗ v−, 0, ..., 0) = (−v− ⊗ v−, 0, v− ⊗ v−, 0, ...2k − 3 × ..., 0)

d2k−2 (0, v− ⊗ v− ⊗ v+, 0, ..., 0) = (−v− ⊗ v−, 0, ...2k − 3 × ..., 0)

d2k−2 (0, v− ⊗ v− ⊗ v−, 0, ..., 0) = (0, ...2k × ..., 0)

d2k−2 (0, 0, v+ ⊗ v+ ⊗ v+, 0, ..., 0) = (v+ ⊗ v+, 0, 0, v+ ⊗ v+, 0, ...2k − 4 × ..., 0)

d2k−2 (0, 0, v+ ⊗ v+ ⊗ v−, 0, ..., 0) = (v+ ⊗ v−, 0, 0, v+ ⊗ v−, 0, ...2k − 4 × ..., 0)

d2k−2 (0, 0, v+ ⊗ v− ⊗ v+, 0, ..., 0) = (v+ ⊗ v−, 0, 0, v− ⊗ v+, 0, ...2k − 4 × ..., 0)

d2k−2 (0, 0, v− ⊗ v+ ⊗ v+, 0, ..., 0) = (v− ⊗ v+, 0, 0, v− ⊗ v+, 0, ...2k − 4 × ..., 0)

d2k−2 (0, 0, v+ ⊗ v− ⊗ v−, 0, ..., 0) = (0, 0, 0, v− ⊗ v−, 0, ...2k − 4 × ..., 0)

d2k−2 (0, 0, v− ⊗ v+ ⊗ v−, 0, ..., 0) = (v− ⊗ v−, 0, 0, v− ⊗ v−, 0, ...2k − 4 × ..., 0)

d2k−2 (0, 0, v− ⊗ v− ⊗ v+, 0, ..., 0) = (v− ⊗ v−, 0, ...2k − 1 × ..., 0)

d2k−2 (0, 0, v− ⊗ v− ⊗ v−, 0, ..., 0) = (0, ...2k × ..., 0)

Then,

Imd2k−2 = 〈(v− ⊗ v−, 0, ...2k − 1 × ..., 0) , (0, v− ⊗ v−, 0, ...2k − 2 × ..., 0) , ,

(0, 0, v− ⊗ v−, 0, ...2k − 3 × ..., 0) , ..., (0, ...2k − 1 × ..., 0, v− ⊗ v−) ,

(v+ ⊗ v− + v− ⊗ v+, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 2 × ..., 0) ,

(v+ ⊗ v− + v− ⊗ v+, 0, 0, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 4 × ..., 0) ,

(v+ ⊗ v− + v− ⊗ v+, 0, 0, 0, 0, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 6 × ..., 0),

..., (v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 2 × ..., 0, v+ ⊗ v− + v− ⊗ v+) ,
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(0, v+ ⊗ v− + v− ⊗ v+, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 3 × ..., 0) ,

(0, v+ ⊗ v− + v− ⊗ v+, 0, 0, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 5 × ..., 0) ,

... (0, v+ ⊗ v− + v− ⊗ v+, 0, ...2k − 4 × ..., 0, v+ ⊗ v− + v− ⊗ v+, 0) ,

(v+ ⊗ v+, v+ ⊗ v+, 0, ...2k − 2 × ..., 0) ,

(v+ ⊗ v+, 0, 0, v+ ⊗ v+, 0, ...2k − 4 × ..., 0) ,

... (v+ ⊗ v+, 0, ...2k − 2 × ..., 0, v+ ⊗ v+) ,

(0, v+ ⊗ v+, v+ ⊗ v+, 0, ...2k − 3 × ..., 0) ,

(0, v+ ⊗ v+, 0, 0, v+ ⊗ v+, 0, ...2k − 5 × ..., 0) ,

... (0, v+ ⊗ v+, 0, ...2k − 4 × ..., 0, v+ ⊗ v+, 0) ,

(v+ ⊗ v−, v+ ⊗ v−, 0, ...2k − 2 × ..., 0) ,

(v+ ⊗ v−, 0, 0, v+ ⊗ v−, 0, ...2k − 4 × ..., 0) ,

... (v+ ⊗ v−, 0, ...2k − 2 × ..., 0, v+ ⊗ v−) ,

(0, v+ ⊗ v−, v+ ⊗ v−, 0, ...2k − 3 × ..., 0) ,

(0, v+ ⊗ v−, 0, 0, v+ ⊗ v−, 0, ...2k − 5 × ..., 0) ,

... (0, v+ ⊗ v−, 0, ...2k − 4 × ..., 0, v+ ⊗ v−, 0)〉

= ker d2k−1

Hence, H2k−1 = ker d2k−1/Imd2k−2 = {0{



CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this work, part of Khovanov homology for (3, k)-torus knot was calculated

for k > 3, by analizing the states of the cube of smoothings and the differentials on

the edges to build the chain complex.

A minimal projection was used with all positive crossings, to study the different

states obtained from 0−smooth or 1−smooth specific crossings of the knot. Part of

the cube of smoothing is shown explicitly for height 0, 1, 2, 2k − 2, 2k − 1, 2k and

the differentials of height 0, 1, 2k−2, 2k−1. This makes it possible to compute H0,

H1, H2k, H2k−1 and the exponents of the variable q in the Khovanov bracket.

The result was the trivial r-th homology where r = 1, 2k, 2k−1, andH0 ∼= Z⊕Z.

The degree of each Z depends on the minimal number of crossings of the knot and

the shifting that come from the grade of the generators of the kernel of d0, which are,

−3 and −1. Therefore the Khovanov bracket for a T (3, k) starts with q2k−3 + q2k−1.

4.2 Future work

For future work, it is proposed:

• To find formulas for the r-th homology where r = 2, 3, 4, ..., 2k − 3.

• To analyze the repeated block of the matrix of the Khovanov bracket shown in

Appendix A for each (3, k)-torus knot.

• To find a formula for the Khovanov bracket mod 2 for (3, k)-torus knots using the

construction of the cube of smoothings. In the tables of Appendix A it can be
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observed the common characteristics of the terms mod 2 in t2, t3, and the periodic

appearance.

• To extend the formulas of the Khovanov bracket of (3, k)-torus knots to (p, q)-torus

knots, where p, q are relatively prime.



APPENDIX A

TABLES OF KHOVANOV BRACKET FOR

(3, k)-TORUS KNOTS

The following tables show information about the Khovanov bracket and Kho-

vanov bracket mod 2. The data organized was obtained from Wolfram Mathematica

by loading the KnotTheory´ package which can be obtained from [9].

Let L be a torus knot, Kh(L) is the Khovanov bracket of L and Kh (L) (mod2)

is the Khovanov bracket mod 2. Let T (3, k) be the (3, k)-torus knot. −1 means

there is torsion 2.

T (3, 4)

Kh (T (3, 4)) = q5 + q7 + q9t2 + q13t3 + q11t4 + q13t4 + q15t5 + q17t5

Kh (T (3, 4)) (mod2)−Kh (T (3, 4)) = q11t2 + q11t3

t0 t1 t2 t3 t4 t5

q5 1

q7 1

q9 1

q11 −1 −1 1

q13 1 1

q15 1

q17 1

Table A–1: Khovanov bracket for T (3, 4)
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T (3, 5)

Kh (T (3, 5)) = q7 + q9 + q11t2 + q15t3 + q13t4 + q15t4 + q17t5 + q19t5 + q17t6 + q21t7

Kh (T (3, 5)) (mod2)−Kh (T (3, 5)) = q13t2 + q13t3 + q19t6 + q19t7

t0 t1 t2 t3 t4 t5 t6 t7

q7 1

q9 1

q11 1

q13 −1 −1 1

q15 1 1

q17 1 1

q19 1 −1 −1

q21 1

Table A–2: Khovanov bracket for T (3, 5)
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T (3, 7)

Kh (T (3, 7)) = q11 + q13 + q15t2 + q19t3 + q17t4 + q19t4 + q21t5 + q23t5 + q21t6 +

q25t7 + q23t8 + q25t8 + q27t9 + q29t9

Kh (T (3, 7)) (mod2)−Kh (T (3, 7)) = q17t2 + q17t3 + q23t6 + q23t7

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

q11 1

q13 1

q15 1

q17 −1 −1 1

q19 1 1

q21 1 1

q23 1 −1 −1 1

q25 1 1

q27 1

q29 1

Table A–3: Khovanov bracket for T (3, 7)
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T (3, 8)

Kh (T (3, 8)) = q13 + q15 + q17t2 + q21t3 + q19t4 + q21t4 + q23t5 + q25t5 + q23t6 +

q27t7 + q25t8 + q27t8 + q29t9 + q31t9 + q29t10 + q33t11

Kh (T (3, 8)) (mod2)−Kh (T (3, 8)) = q19t2 + q19t3 + q25t6 + q25t7 + q31t10 + q31t11

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

q13 1

q15 1

q17 1

q19 −1 −1 1

q21 1 1

q23 1 1

q25 1 −1 −1 1

q27 1 1

q29 1 1

q31 1 −1 −1

q33 1

Table A–4: Khovanov bracket for T (3, 8)
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T (3, 10)

Kh (T (3, 10)) = q17 + q19 + q21t2 + q25t3 + q23t4 + q25t4 + q27t5 + q29t5 + q27t6 +

q31t7 + q29t8 + q31t8 + q33t9 + q35t9 + q33t10 + q37t11 + q35t12 + q37t12 + q39t13 + q41t13

Kh (T (3, 10)) (mod2)−Kh (T (3, 10)) = q23t2 + q23t3 + q29t6 + q29t7 + q35t10 + q35t11

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

q17 1

q19 1

q21 1

q23 −1 −1 1

q25 1 1

q27 1 1

q29 1 −1 −1 1

q31 1 1

q33 1 1

q35 1 −1 −1 1

q37 1 1

q39 1

q41 1

Table A–5: Khovanov bracket for T (3, 10)
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Some common characteristics in the tables of Khovanov bracket for T (3, k)-

torus knots can be observed. First, the ones proved in this thesis:

• The first two numbers in the t0 column are 1’s and they appear in q2k−3 and q2k−1

rows.

• The t1 column do not have any number because H1 = 0.

• The t2k, t2k−1, t2k−2 columns do not appear in the tables because Hr = 0 with

r = 2k, 2k − 1, 2k − 2.

And a few others for future work:

• The repeated block in table (A–10), which suggests that a formula can be obtained

for Hr, with r = 3, 4, ..., 2k − 3.

1 1

1 −1 −1 1

1 1

Table A–10: Repeated block

• The first two numbers in the t2 column are 1, −1 and suggest that can be a formula

for H2.

• The terms mod 2 seem to have a periodic appearance in t2, t3, t6, t7, t10, t11, t14,

t15, ...
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