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ABSTRACT 

 

 

 

 

The wind energy industry has seen a substantial growth in several industrialized countries 

in recent years.  Traditionally, territories in northern Europe, with a low level of seismicity, have 

been the leaders in the use of this technology, but nowadays its growth has extended to other 

regions susceptible to earthquakes, such as the US, China, and India.  In order to improve the 

reliability of the system under these adverse conditions, there is a need to perform a detailed 

assessment of the seismic response of wind turbines.  This dissertation presents the development 

of a new analytical model for the seismic response of a three-bladed horizontal axis wind turbine.  

The proposed model allows assessment of the likelihood of yielding or buckling failure of the 

structure.  The proposed model involves a multi-body system with 16 degrees of freedom that 

account for flexibilities in the flap direction of the blades and the twisting and flexure motions of 

the tower.  The equations of motion of the rotor were developed based on Lagrange equations. 

They were subsequently coupled with the equations of motion of the tower which was modeled 

with beam elements.  The model considers aerodynamic and structural damping, as well as 

gyroscopic effects due to the rotational nature of the system.   The proposed model was applied 

to a specific example involving the Vestas V82 wind turbine.  This turbine was analyzed under 

several historical earthquake records using the three components of motion.  The analysis of the 

results revealed that in seismic regions some aspects of the tower design, specifically at the tower 

top end section, may be controlled by the combination of earthquake loads and mean steady wind 

loads rather than by the extreme wind load conditions. 
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RESUMEN 

 

Recientemente la industria de la energía eólica ha visto un crecimiento substancial en 

muchos países industrializados.  Históricamente, territorios con poca actividad sísmica ubicados 

al norte de Europa han sido los líderes en el uso de esta tecnología, pero ahora el mercado está 

creciendo en países con mayor actividad sísmica como los Estados Unidos, China e India.  Esta 

situación hace necesaria la evaluación de la respuesta sísmica de las turbinas eólicas con el fin de 

mejorar la confiabilidad de estos sistemas bajo estas condiciones adversas.  Esta disertación 

presenta el desarrollo de un nuevo modelo analítico para una turbina eólica de tres aspas en un 

eje horizontal.  El modelo propuesto permite la evaluación de su respuesta sísmica y la 

posibilidad de que sufra algún daño estructural por plasticidad o por pandeo local.  El modelo 

propuesto consiste de un sistema compuesto de múltiples cuerpos con 16 grados de libertad que 

considera la flexibilidad de las aspas en la dirección frontal y el movimiento torsional y de 

flexión de la torre.  Las ecuaciones de movimiento del rotor fueron derivadas mediante las 

ecuaciones de Lagrange y luego acopladas con las ecuaciones de movimiento de la torre 

modelada con tres elementos de vigas.  El modelo consideró el amortiguamiento aerodinámico y 

estructural, así como los efectos giroscópicos debido a la naturaleza rotacional del sistema.  El 

modelo fue evaluado en un ejemplo que incluye la turbina Vestas V82.  Esta turbina fue 

analizada bajo varios registros históricos de terremotos usando las tres componentes de 

movimiento.   Del análisis de resultados se desprende que, en lugares de alta sismicidad, algunos 

aspectos del diseño de la torre, específicamente el diseño de la sección superior de la torre, 

pueden estar controlados por la combinación de cargas de terremoto y de viento promedio 

constante en vez de por cargas de viento extremo. 
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CHAPTER 1: INTRODUCTION 
 

 

1.1 INTRODUCTION 
 

As prices of oil have increased in the last decade, new and reliable renewable energy 

technologies are emerging and becoming more popular.  Other factors such as the contribution to 

global warming of traditional fossil-fuel based plants add to the call for clean energy sources.  

One of the most promising and realistic solutions to this problem are the wind turbine generators.  

For instance, the US Department of Energy expects that the wind power generation will reach the 

20% of the national power capacity by 2030 (see DOE, 2008).  In this direction, continuous 

efforts have been made by the wind industry to develop bigger and higher wind turbines to reach 

more and faster winds.  A modern wind turbine can measure more than 100 m of blade rotor 

diameter, and 90 m height at the hub, generating more than 3 MW of power (see Malcolm and 

Hansen, 2006).  The feasibility of constructing wind turbines of this size (or larger) depends in 

part on how good the analytical models are able to predict the dynamic behavior of the system.  

Another important factor that has restricted the increase in size is the development of light 

materials with better strength to weight ratios for the construction of the blades.  The 

unsatisfactory structural properties of the materials employed in the blades are one of the reasons 

why the rotor-blade system has encountered many problems through the years, including 

catastrophic failures due to fatigue, buckling, and skin abrasion (e.g., Sutherland, 1999, Hermann 

et al., 2005, and GE, 2005).  There is abundant literature dealing with the structural behavior of 

the blades due to wind and cyclic loads (e.g., Eggers et al., 1996; Hermann et al., 2005; Malcolm 

and Laird, 2003; and Hansen, 1995).  A less studied aspect, probably due to the more complex 

dynamics, is the structural response of the complete system, including the tower, nacelle, and 
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blades under variable loads.  It is surprising that before 2003 little documented evidence was 

found in attention to the effects of strong ground motions on these structures.  What is even more 

surprising is that the principal standards used for wind turbine design did not provide any 

guidelines for seismic analysis until recent years.  This point was not adequately considered even 

when, due to the extreme rise of oil prices in the 70’s, hundreds of medium size wind turbines 

were installed in the US, which by 1987 were generating a total power capacity of 1600 MW, 

most of them in California, the highest risk seismic zone in the continental US (see Gasch and 

Twele, 2004).   

There are some reasons that could justify the apparent lack of interest in the seismic 

assessment of these structures.  One explanation is that researchers and practitioners during 

several decades, trying to make the wind power generation more feasible, were mostly focused in 

the reliability of the blades under wind pressure and cyclic fatigue loads.  For years, the blades 

have been the wind turbine component with the largest number of failures (see Sutherland, 

1999).  Another possible reason is that historically most of the development done by the wind 

industry has come from countries in northern Europe in regions where the earthquake risk is very 

low and thus seismic analysis is not usually considered (see Prowell et al., 2008a).  This situation 

probably has led to the idea that wind loads and fatigue cyclic loads are always the driving 

design loads on wind turbines and hence, the seismic analysis can be neglected (Alcalde, 2004).  

But this unverified conception is in need of a rigorous study to support it.  In the case of the 

blade design, this idea could be validated by the study of Hong (1984), which concluded that for 

constant rotor speed the response of a wind turbine blade was very stable under normal operating 

conditions and that the effect of wind turbulence on moment responses at the blade was greater 

than that of an earthquake.  He also concluded that turbulence was likely the main cause of 

fatigue failure of wind turbine blades.  However, the seismic assessment to other components of 
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the wind turbine, such as the tower sections, is still incomplete.  Therefore, this dissertation 

intends to derive an analytical model of a full horizontal axis wind turbine subjected to an 

earthquake ground motion at its base and use it to provide an understanding of the magnitude of 

the forces induced in the entire structure by a strong seismic event. 

 

1.2 COMPONENTS OF A WIND TURBINE 

To understand how an earthquake can affect a wind turbine, it is important to have a 

basic knowledge of the principal components of this type of mechanical system and their 

functions.  This section offers a brief description of a typical horizontal axis wind turbine 

(HAWT).  For detailed information the reader is advised to consult the books by Burton et al. 

(2001) and Gasch and Twele (2004). 

 

Fig. 1-1: Scheme of a typical wind turbine (from Energy Systeme Nord, n.d.) 
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The HAWT are complex systems composed of several mechanical, electrical, and structural 

parts.  These can be grouped into four principal components: the blades, the rotor hub, the 

nacelle, and the tower, as illustrated in Fig. 1-1.  The number of blades in large rotors varies from 

one to three, but nowadays three blades is the more common arrangement due to its symmetry 

and visual appearance.  The blades are typically constructed with composite materials containing 

glass or carbon fibers.  The ends or roots of the blades are attached to the rotor hub by means of 

steel studs and nuts. 

There are several types of rotor hubs depending on the degrees of freedom that they provide 

to the blades.  Figure 1-2 shows different hub designs and their respective relief of rotor shaft 

and blade roots.  The fixed rotor hub configuration is shown in Fig. 1-2.A.  This design does not 

allow any flapwise and pitch motion in the blade roots.  Therefore, the blade roots must be able 

to resist the bending moments caused by the wind.   The next type is known as active pitch 

control (Fig. 1-2.B) and it is one of the preferred rotor hub types (see Gasch and Twele, 2004).  It 

permits the rotation of the blades around the radial blade axis, thus changing the angle of attack 

of the blade profile depending on the velocity of the wind.  The pitch control helps to regulate 

the speed of the rotor in normal wind conditions.  Also, for extreme wind velocities, as it may 

occur during storms, the blade can be stalled eliminating the potentially destructive effects of the 

larger wind forces.  The flapping hinge rotor (Fig. 1-2.C) relieves each blade root of all bending 

moments in the flapwise or out-of-plane direction.  Figure 1-2.D shows another type of rotor hub 

known as the teetered hub.  It hinges the rotor hub and allows for small rotational motion of the 

blade system out of the plane of rotation.   This configuration reduces the out-of-plane bending at 

the root of the blades during operation.  Finally, there are hubs that combine pitching with 

teetering, thus gaining the benefits of both systems. 
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Fig. 1-2: Different hub designs: (A) fixed, (B) pitch and fixed, (C) flapped blades, and (D) teetered (from  

          Gasch and Twele, 2004) 

 

 

 

 

Fig. 1-3: Components inside the nacelle (from Fabricating & Metalworking Magazine, n.d.) 

(B) (A) (C) (D) 
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The nacelle is the machine room at the top of the tower that contains the gearbox system, the 

generator, and all the control systems of the turbine, as it can be observed in Fig. 1-3.  The 

nacelle also contains the low speed shaft to which the rotor hub is connected.  The low speed 

shaft transmits torque to the gearbox system and then to the generator.  In general, there are two 

types of generators: the synchronous generator and the induction generator.  The synchronous 

generator permits a variable speed in the rotor and a constant torque in the rotating components.  

On the other hand, the induction generator controls the rotor speed to an almost constant speed, 

but it produces a variable torque in the rotating parts. The nacelle is coupled to the tower by 

means of the yaw mechanism that permits directing the nacelle toward the wind.  The yaw 

mechanism consists of an inner gear and several electric motors engaged with pinions.  When the 

nacelle is directed toward the wind, the brake system is applied and the nacelle becomes 

completely fixed to the tower. 

The tower is typically constructed of steel, although reinforced concrete towers have been 

used in special applications.  The steel towers are erected by connecting two to four cylindrical 

sections with circular flanges until reaching the required height.  A tapering conical design is 

commonly used for tubular towers.  The length of each tower section ranges between 20 to 30 

meters, and the wall thickness in the upper section is about 10 mm (see GE, 2005).  The tower is 

anchored to the foundation system by means of a circular steel flange previously cased into the 

concrete foundation (GE, 2005).  If the bearing capacity of the soil is adequate, the use of a raft 

foundation is the common alternative, whereas pile foundations are used when the soil near the 

surface has poor bearing capacity.  Fig. 1-4 shows a picture of a first tower section being hoisted 

into position.  Notice in this figure the circular flange at the bottom of the tower that will be 

bolted to the foundation system. 
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Fig. 1-4: The first tower section is hoisted into position (from Billings Gazette, n.d.) 

 

 

1.3 LITERATURE REVIEW 
 

Design Standards 

There are several important standards that contain guidelines for the design of wind turbines.  

Among them, it is important to mention the contribution of the Germanischer Lloyd’s (GL) first 

publication written in 1986, and last edited in 2003 with periodic revisions: Guidelines for the 

Certification of Wind Turbines.  Other influential standards were published in The Netherlands 

(NEN 6096, Dutch Standard, 1988) and Denmark (DS 472, Danish Standard, 1992).  Perhaps the 



8 

 

 

most widely used standard, adopted currently by several nations, is the Wind Turbines - Part 1 

Design Requirements, with the number IEC 61400-1 from the International Electrotechnical 

Commission (2005).  This standard was first published in 1988 and has been continuously 

revised and updated since then. 

In general, the standards provide guidelines and procedures to determine the mean wind 

speed and gust speed and how they should be used in the structural design of the wind turbine 

components such as blades, tower, and foundations.  They also specify design load combinations 

for ultimate load and fatigue load analyses.  In addition, they discuss control and protection 

systems, electrical systems, and installation, operation, and maintenance.  The sources of loading 

typically taken into account for ultimate and fatigue analyses are: aerodynamic loads, 

gravitational loads, inertia loads (including centrifugal and gyroscopic effects), and operational 

loads due to the actions in the control system such as braking, yawing, pitching, generator 

disconnection, among others.   Although the standards in the past did not consider the effects of 

earthquakes in the turbines, recently, their latest revisions have incorporated simple processes for 

estimating seismic loading based on one degree of freedom models and site design response 

spectra.  In addition to these standards, there are municipal or national permit regulations based 

on codes for engineered structures or machines (i.e., building codes, electrical or mechanical 

codes) that consider the earthquake loads, and thus design of wind turbines must comply with 

these other applicable permit regulation.  However, the wind turbine designer should apply 

caution when using these permit regulation codes directly to wind turbines since normally they 

are based on seismic studies performed in buildings where inelastic behavior is regularly 

permitted in the engineered structures they regulate.  It is a guideline that to ensure reliable 
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operation for the design life of the turbine, inelastic behavior for wind turbines is not allowed 

(see Germanisher Lloyd, 2003). 

 

 

Technical Literature 

  Reports of failures of wind turbines during an earthquake are not found in the technical 

literature at the present day (see Prowell and Veers, 2009).  Certainly this is a good indicator that 

these structures are likely able to withstand the seismic motions and loads without catastrophic 

failure.  For years the seismic analysis in the design of large wind turbines has received little 

attention, probably due to the opinion (which could be realistic) that the wind load cases always 

drive the design parameters of the turbine (Alcalde, 2004).  This speculative idea can be partially 

supported by a study of Hong (1984), who compared the effects of wind turbulence and 

earthquake loads based on fatigue failure criteria for a wind turbine blade model, and found that 

the effects of wind turbulence are more detrimental than earthquake loads.  However, Hong 

based his study in the dynamics of just one blade and ignored the behavior of a multi-blade rotor 

as a whole unit and of the tower during an earthquake.   

Because the wind turbines are becoming larger, heavier, and more expensive, it is necessary 

that any design uncertainty can be reduced.  For this reason the idea of taking for granted that 

earthquake loads can be ignored in the design of wind turbines because the wind loads drive the 

design parameters needs of a rigorous supporting study.  For instance, the gyroscopic loads at the 

tower top end could be amplified by the flexibility of the tower and its fore-aft and twisting 

motions during an earthquake.  The consequences of these additional loads should be evaluated 

since there will be a demand increase in the supporting structure of any rotational part.  Narayana 
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(1999) commented about the induced effects of gyroscopic moments on a small scale tilt-up 

wind turbine when it tries to tilt up due to winds exceeding the rated conditions.  He states that in 

this situation, the dominant tilt-up rotation of the wind turbine in the vertical plane can cause a 

deviation in the horizontal plane due to gyroscopic effects.  Due to this deviation, the wind 

turbine may come back to its previous position as a consequence of the change in the apparent 

wind speed or change of wind direction, thus producing a detrimental oscillatory motion.  

Bourke et al. (2004) recommended undertaking a thorough research about the noxious effect of 

the gyroscopic loads on the gearbox and bearings of a wind turbine during fast yaw motions.  In 

their preliminary study, the equations to determine the reaction loads on these components were 

derived.  Although it was not accomplished, they proposed to evaluate possible solutions for 

diminishing the magnitudes of the reaction loads by changing the position of the centers of mass 

of different components in the rotor shaft.  

In spite of the lack of studies dealing with the dynamic behavior of an entire HAWT structure 

during seismic events, there are important contributions on the dynamic response of the turbines 

due to other loads such as wind fluctuations, ocean wave impacts in offshore wind farms, tower 

shadow excitation, or mass imbalance in the rotor.  All of them are of particular interest because 

they make use of analytical or numerical techniques to obtain the dynamic parameters such as 

natural frequencies and modes of the full system.  The most relevant contributions are 

summarized in the next paragraphs. 

One of the first studies dealing with the dynamic response of a wind turbine was carried out 

by Carne et al. (1982).  In their study, a finite element (FE) procedure was developed to model a 

Darrieus vertical axis wind turbine (VAWT) at the Sandia National Laboratories.  The 

researchers obtained the equations of motion of the system by considering special phenomena 
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that occur on rotating bodies such as geometric stiffening and centrifugal and Coriolis effects.  

These phenomena affected the stiffness and damping matrices, respectively.  The researchers 

neglected factors such as aeroelastic effects and structural damping because they considered 

them of less importance.  The FE model used consisted of beam elements and concentrated 

masses to model the blades and the structure.  The eigensystem obtained had a Hermetian form 

due to the skew-symmetry in the damping matrix coming from the Coriolis effect.  Instead of 

developing new software for the eigensolution of the equations of motion, the authors used the 

NASTRAN code (see NEi, 2010) and modified the stiffness and damping matrices to include the 

rotational effects.  The NASTRAN code condensed the matrices by applying techniques such as 

the Hessenberg and Guyan reductions to reduce the original model to sixty degrees of freedom.  

The model was compared with experimental results obtained at the Sandia 17-m research VAWT 

and excellent agreement was obtained between predicted and measured modal frequencies. 

Lobitz (1984), one of the co-authors of the preceding study, continued the research and 

included the aeroelastic effects but now in a full dynamic model of a HAWT.  The model took 

into account the flexibilities of the tower and blades in the flapwise and twisting directions.  The 

turbulent nature of the wind was modeled by stochastic wind increments affecting the 

aerodynamic load computation.  This author also used the NASTRAN computer code (NEi, 

2010) to develop the mass, stiffness, and damping matrices.  For the purpose of obtaining the 

matrices, a fixed coordinate system was used for the tower.  A rotational coordinate system that 

moved at the operational speed of the turbine about an axis fixed in space was used for the rotor.  

The origins of both coordinate systems were fixed at the initial hub location.  Rotational frame 

effects such as Coriolis and centrifugal forces were also included.  The aerodynamic loads were 

computed using interference factors predicted by PROP-PC, a previously developed computer 
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code (Tangler, 1987).  The final equations of motion were solved in the time domain using the 

implicit Newmark-Beta integrator.  To validate the model, a two-bladed teetered-hub HAWT 

was modeled with 5 nodes per blade and 5 nodes in the tower.  The model included lateral tower 

damping, yaw, and torsion springs and dampers to model the gearbox and generator.  The results 

showed good agreement (errors of 5%) between the analytical natural frequencies and the 

experimental measured data.  Somewhat larger discrepancies (errors about 10%) were found in 

the prediction of the frequencies of the symmetric flapwise bending mode and the symmetric 

edgewise mode.  Although it was not pursued in the paper, the author suggested fine-tuning the 

model for a more accurate prediction.  Of special interest was the fact that the frequency 

normalized by the rotor operational speed for the symmetric flapwise mode was very close to 4P 

(where P means per rotor revolution), which is an integer multiple of the rotor operational speed.  

Any periodic excitation originated by the revolving rotor, such as tower shadow effects, blade 

gravity loads or mass imbalance, for instance, could amplify the dynamic response of the blades.  

Two wind mean speeds of 20 and 27 mph in steady and turbulent conditions were analyzed in 

the model.  For steady wind conditions the response of the tower was found to be predominately 

governed by gravity loads exciting the cyclic cantilever edgewise bending mode of the blades, 

but when the stochastic wind turbulence was incorporated, the flapwise bending mode was the 

dominant one. 

Oscar and Paez (1988) used the model developed by Lobitz (1984) incorporating a finite 

element analysis to model an offshore support for a HAWT loaded by random waves.  The wind 

industry is very interested in exploring this type of construction since it has the advantage of 

producing continuous wind energy at the ocean without the visual impact that wind farms cause 

on land.  However, it has the disadvantage of being in a more hostile environment and it 
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demands a more complicated foundation system design.  A wind turbine exposed to the ocean 

will be additionally loaded by marine currents and waves on the support structure.  These loads 

could be considered somewhat similar to the seismic loads since both cause excitations in the 

tower base.  In general terms, the derivation and solution of the equations of motion were almost 

similar to those employed by Lobitz (1984), with the exception of the inclusion of the new 

submerged structural platform and the ocean wave loads.  The random wave loads were 

established as function of water particle velocities and accelerations acting perpendicular to the 

structural members and were correlated to the wind speed.  The parallel components were 

neglected.  These functions were incorporated into the Morison’s equation that includes the 

effect of drag due to water particle velocities and an inertia term due to water particle 

accelerations.  Point load time histories were integrated over the length of the submerged 

structural members and redistributed to the nodal points.  It must be pointed out that the wind 

turbine platform used by the authors was very stiff and the wave induced response was very 

small.  Therefore, no useful inferences could be done to predict the behavior of the turbine in the 

case of an earthquake. 

Malcolm (2002), Stol et al. (2002), and Bir and Stol (1999) examined the modal behavior of 

a HAWT using transformation techniques for the periodic terms in the equations of motion of the 

system.  Malcolm derived the equations for a 3-bladed wind turbine as a combination of the 

equations of motion of three subsystems: the tower, the hub, and the three blades.  He considered 

aerodynamic loads but neglected the structural damping.  The principal contribution of Malcolm 

was the use of the Coleman transformation to remove the periodic terms produced by the 

rotational motion of the blades.  The Coleman transformation was first used in the analysis of 

helicopter rotors moving at constant angular velocity.  This transformation changes the rotational 
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frame of reference of the blades in terms of a fixed one.  The technique requires to solve the 

eigenvalue problem of the stationary system and the use of a FE code (the author used ADAMS) 

to extract the stiffness contribution of the centrifugal forces.   

Bir and Stol (1999) and Stol et al. (2002) derived the equations of motion for a two-bladed 

HAWT.  The full model contained 7 degrees of freedom that allowed tower motion, nacelle yaw, 

hub teeter, and blade flap.  The authors considered the wind turbine as an assemblage of rigid 

bodies interconnected by springs, dampers, and pins.  Although, the authors considered it as a 

simple model, it retained the essential physics of a HAWT.  Due to the inertial asymmetry of a 

two-bladed rotor, time dependent terms appeared in the equations of motion, thus precluding the 

use of the Coleman transformation.  The author used the Floquet theory to transform the periodic 

terms into time invariant terms.  A complete explanation of the Floquet theory can be found in 

the book by Johnson (1994).  The essence of the Floquet theory is to convert the second-order 

equations of motion to a first-order state-space form composed by a state transition matrix 

multiplied by a state vector.  The state transition matrix, that contains periodic terms, is then 

decomposed into a periodic matrix and a matrix exponential of a constant matrix.  The solution 

of the eigenvalue problem, often referred to as Floquet modes or Floquet exponents, comes from 

the analysis of the exponential matrix.  The authors suggested that the computation of the state 

transition matrix will be overwhelming if the number of degrees of freedom exceeded about 50.   

In a previous paper, Stol and Balas (2001) used the same model to design a full-state feedback 

controller to control the blade pitch angle based on periodic control instead of constant gain. 

The dynamic response of the previous models was calculated by means of time domain 

analysis which usually leads to large computational efforts.  Although for some problems 

frequency domain analysis can be much faster than time domain simulations, due to the 
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nonlinearities caused by the rotation of the blades, the use of frequency domain methods is 

rigorously precluded.  Nevertheless, some authors have successfully implemented frequency 

domain techniques in the response of certain types of wind turbines.  Sorensen et al. (1995) 

developed a frequency domain model for a three or more bladed HAWT with flexible blades and 

tower, stiff hub (not teetering), fixed yaw motion, and constant rotor speed.  The tower, low 

shaft, and blades were modeled as beam structures in terms of stiffness, damping, and inertia 

quantities whereas the generator was modeled as an induction generator described in terms of 

damping and inertia quantities.  The equations of motion were solved using the modal 

decomposition technique in which several mode shape functions were assumed.  The model 

considered three mode shapes for the tower (two backward and one sideway), one tower torsion 

mode, one shaft torsion mode, one generator mode, and two modes per blades (one flapwise 

mode and one edgewise mode).  The structural azimuth-dependent variables contained in the 

equations of motion, i.e., masses, damping and stiffness, and the aerodynamic loads were 

decomposed into sums of harmonics in the constant angular frequency of the rotor.  Thus, the 

nonlinear relations in the equations of motion were transformed into linear relations between the 

amplitudes of the harmonics of the variables.  These equations were in turn transformed by 

means of the Fourier transform.  Two HAWT were evaluated using the frequency domain 

method and the results were compared with a well tested time domain code using similar models.  

Both methods showed to be in very good agreement, but the frequency domain method was 

several hundred times faster than the time domain code.   

Borg and Kirchhoff (1998) studied the effects of a mass imbalance in the rotor of a three-

bladed HAWT.  The authors considered that a perfectly balanced three or more bladed rotor can 

be modeled as a flat circular disk.  Thus, the rotor was modeled as a rigid disk with mass.  The 
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mass imbalance was considered by introducing a small eccentric lumped mass.  The system 

consisted of 2 degrees of freedom measuring the rotation of the reference blade (azimuth) and 

the rotation of the nacelle (yaw).  In spite of the simplicity of the model, a pair of coupled 

nonlinear differential equations was obtained.  As expected, the equations contains the 

centrifugal and gyroscopic terms affecting the stiffness and damping matrices, respectively.  For 

simplicity, the yaw motion was considered small.  The authors also considered the aerodynamic 

effects due to the wind.  The numerical solution of the equations was obtained by means of a 

perturbation technique and the Laplace transform.  The solution of the perturbation technique 

was related to the number of terms used in the power series of the perturbed parameter.  In their 

analysis the authors considered up to third order terms.  As a result, the steady-state solution 

predicted that 1P, 2P and 3P frequencies are caused by the mass imbalance.  The solution was 

applied to obtain the electrical power output from the turbine.  Since it is relatively easy to 

measure the output power of a turbine generator, the authors proposed to use the response of the 

generator to diagnose an unbalanced turbine and determine the value of the unbalanced mass and 

its position.  A practical solution to correct the mass imbalance (not explained here) was 

proposed in another paper by Borg and Kirchhoff (1997).  The authors validated the model with 

data from tests on a HAWT from the National Renewable Energy Laboratory (NREL).  They 

found that the contribution of the mass imbalance to the 1P component in the power fluctuation 

was the most influential.  It is therefore hypothesized that the majority of the 2P and 3P 

contributions present in field data result from an aerodynamic effect rather than from a mass 

imbalance effect. 

Although the study did not deal directly with wind turbines, Suárez et al. (1992) developed a 

FE based method to obtain the seismic response of rotating machines at grade level.  The paper 



17 

 

 

provided the development of the equations of motion considering base excitations including 

three translational motions and three rotational motions.  The developed equations of motion 

took into account the flexibility of the shaft.  The shaft was modeled as a series of FE that 

considered flexural and shear deformations.   The model could easily incorporate the use of a 

flexible pedestal in which the rotating machine is supported, thus resembling a HAWT.  One 

limitation of the model was the use of rigid disks to model the rotating mass lumped to the shaft.  

The model works well for machines such as electric motors, generators or combustion turbines 

that have large core rigidities, which was the object of the authors’ study.  In the case of a 

HAWT, the flexibility of the blade rotor is significantly greater and therefore it is often 

considered in its dynamical analysis.  Nevertheless, the paper gives an insight into the 

development of the equations of motion using a variational approach and their solution in the 

time domain.  

In recent years, during the development and completion of this dissertation, a small number 

of studies related to wind turbine seismic analysis have appeared in the technical literature.  

Although not used at all in the development of the proposed model, they are relevant for future 

studies and deserve to be mentioned here.  They were also summarized in the review report of 

Prowell and Veers (2009) on the existing literature in the subject and they will be presented in 

the next paragraphs.  Additionally, the review report gives an introduction to seismic hazard as 

applied to wind turbine structures and describes the existing design methods.  The report 

concludes that until extensive seismic studies will be performed on wind turbines, seismic 

loading should be routinely considered as part of the required load combinations in regions with 

high seismic risk.  The authors recommended testing, both nondestructively and destructively, 
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wind turbines and documenting seismically induced damage to provide valuable data to validate 

and refine analytical modeling techniques. 

Taking a more general and complex approach than the adopted in this dissertation, but 

without considering the earthquake loads, Zhao et al. (2006) developed a multi-body model for a 

wind turbine.  They used cardanic joint beam elements to discretize the wind turbine rotor into a 

multi-rigid-body system consisting of rigid bodies, springs, and dampers.  They also considered 

the flexibility of the tower, the flapping motion of the blades, as well as their lag bending and 

torsion motions.  Aerodynamic damping was not introduced into the model and only the 

dynamics of the system in operation was examined.  Later on, Zhao and Maisser (2006) 

improved the previous multi-body model to include wind loads and earthquake loads.  Also, they 

considered the soil-structure interaction and evaluated the tower response, but assuming a rigid 

rotor (i.e., without flexible blades).  The response of a 1.5 MW wind turbine subjected to a wind 

mean velocity of 10.16 m/s and an earthquake record with a PGA of 0.06g was obtained.  It 

revealed that the induced earthquake loads and moments in the tower base were negligible.  

However, a complete understanding of the vulnerability of the structure under stronger 

earthquakes was not provided because the accelerogram they used contained a very low PGA. 

One of the most commonly used modeling software programs in the wind industry is known 

as GH Bladed developed by Garrad Hassan and Partners, Ltd (GH Bladed, 2010).  Recently, 

under demand for estimating the loading at seismically active sites, this software was upgraded 

with a seismic module containing two methods for simulating seismic loading (see, Witcher, 

2005).  One of the methods (similar to the one that was adopted in this dissertation) is based on 

the use of recorded acceleration time histories.  The second method uses an iterative procedure to 

produce an artificial acceleration record based in a specified design response spectrum.  Since 
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GH Bladed is a commercial software the author is more involved in presenting an overview of 

the capabilities of the program rather than giving a detailed derivation of the analytical model 

used.  However, the author presents some preliminary results for loading of a 2 MW wind 

turbine with a rotor diameter of 80 m and a tower of 60 m simultaneously subjected to 

earthquake and wind loads.  The author found that the base moment demand obtained by using 

analytic techniques in the time domain are in agreement (there are differences of 2.9%) with the 

results obtained by using the traditional simple design response spectrum method (frequency 

domain) for an operating turbine.  Another case was considered in which the turbine rotor was 

stationary and the turbine was subjected to earthquake and wind loads.  This scenario resulted in 

an increase of 79% in the moment demand for the time domain simulation than that from the 

frequency domain simulation.  The authors believed that this variation came from the difference 

in damping between the operating and the stationary state, which was not captured by the 

frequency domain simulation.  They also stated that by conducting the seismic analysis in the 

time domain, the correct aeroelastic interaction of the dynamic motion of the wind turbine with 

the wind loading acting on the blades can be modeled.  However, their study did not allow the 

reader to obtain clear conclusions about the importance or necessity of considering seismic loads 

in the design of wind turbines. 

In November 2005, researchers at the University of California, San Diego conducted a full-

scale test on a 65 kW turbine with the objective to obtain the lateral damping ratio of the 

structure.  The turbine was shaken perpendicular to the axis of the rotor (i.e., lateral tower motion 

only) with a seismic record containing a PGA of 0.15g.  The results, published by Prowell et al. 

(2008b), showed that the earthquake record predominantly excited the first mode of the structure. 

They also found that the first lateral mode had a damping ratio of less than 1%, which was much 
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smaller than the typical values encountered in buildings and therefore, smaller than the criteria in 

which building codes are based upon.  It is important to notice that the experiment was 

conducted with a stationary rotor and that aerodynamic damping was not evaluated.  The authors 

recognized the importance of these preliminary results as an initial step of a series of 

experiments for developing a mature understanding of the impact of earthquakes on wind 

turbines; however, further work in this subject is still required. 

 

 

1.4 SCOPE 
 

This study examined the dynamic response of the main elements that comprise typical three- 

bladed HAWT when their foundations were subjected to earthquake-induced ground motions.  

The first step consisted to derive the equations of motion for three-bladed horizontal axis wind 

turbines with tubular steel towers subjected to multi-component ground motions.  The dynamical 

system was simplified by considering constant rotor speed, deterministic mean wind conditions 

parallel to the rotor axis, and a fixed rotor hub.  The model accounted for the flexibility of the 

tower in bending, as well as twisting.  It was assumed that the tower was infinitely rigid in the 

axial direction.  In addition, the flexibility of the blades was considered only in the flapwise 

direction.  The main rotor shaft was considered rigid for bending and torsion deformations.  The 

soil-structure interaction was not being accounted for in the present study. 

The highly non-linear analytical model was analyzed in the time domain using a numerical 

method such as the Runge-Kutta integration scheme or any other available in the ordinary 

differential equations solvers of MATLAB.   
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The earthquake ground motion was represented by means of acceleration records from 

historical earthquakes.  The three components of the ground motion were considered in the 

study.  The accelerograms were selected among those historically used for seismic evaluation in 

Puerto Rico, such as El Centro and Taft records.  As supplement, the Castaic and GIC records 

obtained during the earthquakes of Northridge in 1994 and San Salvador in 1986, respectively, 

were used since recent studies reveal that they can also be comparable to expected earthquakes 

affecting the southwestern region of Puerto Rico. 

The study evaluated possible damages caused by the ground motions on the blade roots, 

tower section couplings, and tower base.  No attempt was made to analyze whether the turbine 

could work properly during the earthquake event (this is a very complicated problem that calls 

for an experimental study).  Moreover, the nonlinearities considered were limited to those that 

arose from the kinematic effects only.  In other words, no inelastic behavior of the structural 

system was considered. 

    

 

1.5 OBJECTIVES 
 

The goal of the dissertation is to study the seismic response of a full horizontal axis wind 

turbine, a topic that has been little addressed in the published literature.  More specific objectives 

are:  

a. To derive the equations of motion of a full HAWT accounting for flexibilities in 

the blades and tower, and for aeroelastic and gyroscopic effects.  
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b. To determine the seismic response under different earthquake scenarios using 

time-domain numerical methods. 

c. To evaluate the importance of considering non-linear terms in the equations of 

motion and see if they could be linearized without affecting the accuracy of the 

analysis. 

d. To provide an assessment for the likelihood of yielding or buckling failure of the 

tower or damage of the blades. 

    

 

1.6 METHODOLOGY 
 

The methodology followed to accomplish the objectives of this research can be summarized 

in the following steps: 

a. Develop the analytical model of an operating three bladed HAWT in terms of 

geometric and dynamic parameters.  Due to the complex dynamics of the 

problem, it is convenient to start with a simple HAWT model with rigid blades 

and flexible tower and gradually increase the complexity by adding more degrees 

of freedom to represent the blade flexibility. 

b. Obtain the drawings and specifications of at least one HAWT to get the required 

data and properties to build a realistic model.   

c. Write a computer code in MATLAB to obtain the response of the HAWT system 

to the three translational components of acceleration time histories of several 
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earthquakes typically used for seismic evaluation of civil structures in Puerto 

Rico.  

d. Assess the dynamic stability of the response of the operating, as well as the modal 

frequencies and mode shapes of a HAWT by evaluating the eigenvalue problem 

obtained from the Floquet theory. 

e. Perform a study to evaluate the contribution of different terms in the equations of 

motion and eventually propose modifications to reduce the complexity of the 

equations. 

f. Evaluate the stresses on different locations of the structure such as the tower base, 

blade root, and nacelle support to predict possible failures based on yield strength, 

ultimate strength or local buckling criteria.  

g. Propose remedial solutions if the HAWT appears to be vulnerable or susceptible 

to damage due to typical design earthquake loading. 
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CHAPTER 2: EQUATIONS OF MOTION OF THE WIND TURBINE 

MODEL 

 

 

 

 

 

 

 

 

 

2.1 INTRODUCTION 

 
The proposed HAWT is modeled as a three-rigid-hinged blades and hub system rotating 

at constant angular velocity  in a rigid shaft of negligible mass attached to a flexible tower as 

shown in Fig. 2-1.  The base of the tower has three translations (Xb, Yb, and Zb) referred to an 

inertial frame (X, Y, Z).  A translating (x, y, z) system of axes is fixed to the base of the tower.  In 

order to describe the translational motion of the center of mass of the rotor, a translating and 

rotating system of axes (x’, y’, z’) is attached to the tower top end with the z’-axis along the 

longitudinal direction of the shaft.  This set of axes moves with the rotor in the yawing and fore-

aft rotations but does not spin with the shaft.  Finally, other translating and rotating sets of axes 

(not shown in the figure) are fixed to the center of the hub and to the blade hinges to describe the 

rotational motion of the rotor and the flapping motion of each blade.  These sets of body axes 

rotate at the same absolute angular velocity than the rotor and are directed towards the principal 

axes of each body.  

Initially, the rotor axis is parallel to the base and the blades are placed in the vertical 

plane (i.e., no pre-cone angle is included).   The blade number 1 is initially oriented in the 

positive (horizontal) x’-axis, so blades number 2 and 3 are 120
o
 and 240

o
 counterclockwise from 
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the x’-axis, respectively.  All rotation angles, with the exception of the flapping angles of the 

blades, are considered positive following the right-hand rule.  The wind turbine is analyzed 

considering a steady operating state in which all generalized coordinates have zero initial values.  

Thus, the forthcoming solutions correspond to motions about an operating pre-stressed state of 

its components. 

To simplify the development of the model we will derive the equations of motion of the 

rotor and the tower in a separate fashion and finally bring them together.  The equations of 

motion of the rotor will be obtained using a variational formulation such as the Lagrange 

equations.  This formulation requires obtaining the kinetic and potential energy of the system and 

the virtual work of any non-conservative force.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-1: Wind turbine analytical model 

 
 

 

X 

Y 

Z 

 

z 

x 

x’ 

y’ 

x 

y 

z =  

b1 

 

hh 

Lb 

dh 

Rh 

z’ 

 

 

y 



26 

 

 

2.2 ROTOR KINETIC ENERGY 
 

The wind turbine rotor is modeled as a multi-body system composed of four rigid bodies: 

the hub and the three blades.  The hub has similar inertia properties than that of a thin circular 

disk and each blade is considered as a slender rod.  From the analytical model shown in Fig. 2-1, 

the kinetic energy of the rotor can be written as the sum of the energy denoted by Tt associated to 

the motion of the center of mass of each body plus the energy associated to the angular rotations 

of the bodies denoted by Tr.   

The first part of the kinetic energy Tt is made up of three components: one corresponding 

to the absolute translation of the complete rotor system, another associated to the product of the 

hub velocity and the linear momentum of the blades relative to the hub, and the last one 

corresponding to the motion of the centers of mass of the blades with respect to the center of the 

hub.  It can be expressed in matrix form as 

       (2-1) 

where mr is the total mass of the rotor (i.e., including the hub and the three blade masses) and mb 

is the mass of a blade.  The vector {vh} contains the absolute velocity components of the center 

of mass of the hub and can be defined as 

              (2-2) 

where the elements of the vectors {vb}, { r }, and {rh

} are defined, respectively, as 
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The distance dh is measured from the hub center of gravity to the tower center axis.  The skew-

symmetric matrix [] corresponds to the angular velocity components of the rotating system   

(x’, y’, z’) relative to the translating frame of reference (x, y, z) and is expressed as  
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The vectors {vbi}, with i from 1 to 3, required for the second and third term in equation (2-1), 

contain the relative velocity components of the center of mass of each blade as viewed by a 

rotating observer fixed in the hub.  They are defined as 

                                                                 bbihhibi rrv                                                   (2-5) 

where the position vectors {rh} and {rb} are defined as 
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where rh is the hub radius and Lb is the length of the blades.  The matrices [hi] and [bi] are also 

skew-symmetric matrices with forms similar to equation (2-4).  They contain the absolute body 

angular velocities at the blade hinges and at the blade centers of mass, respectively.   

Before proceeding with the definition of these angular velocities, it is necessary to 

mention an important characteristic of rotational motion in space.   When large rotations are 

present and contrary to problems involving planar motion, body angular velocities in three-

dimensional space cannot be defined as the time derivatives of rotations about any set of 

orthogonal axes since their integration does not correspond to the true orientation of a body in 
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space, (see Meirovitch, 1988).  To describe the orientation of the rotor correctly it is necessary to 

use a different set of three independent rotations.  One of the most used set consists of the 

Euler’s angles , , and  as shown in Fig. 2-2.  These rotations take place about a triad of axes 

that do not produce an orthogonal system of axes. 

 

 
Fig 2-2: Coordinate system used to describe motion of the rotor 

  

  

 Fig. 2-2 shows that the rotation  is measured about the X-axis, corresponding in Fig. 2-1 

to the angle between the rotor shaft and the x-z plane.  The rotation  is measured about the       

y-axis, and  is the rotation of the system about the z’-axis.  Thus, it can be shown that the time 

derivative vector   is perpendicular to   and  ; however, these last two vectors are not 

perpendicular to each other.  If a set of absolute body angular velocities referred to the body 
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principal axes (1, 2, 3) is needed,  we should sum the orthogonal projections of  , , and   onto 

each of the axes of the (1, 2, 3) system.  These expressions in terms of the Euler’s angles are: 
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In the evaluation of the equation (2-5), the angular velocities at the blade hinges and at 

the blade centers of mass are referred to its own set of principal body axes, so a coordinate 

transformation is required to express the angular velocities of blade 2 and blade 3 in terms of the 

azimuth angle  of blade 1, measured from the positive x’-axis.  This can be accomplished 

adding to the angle   the relative azimuth position of blades 2 and 3 with respect to blade 1.  

Also, it is necessary to include in [bi] the flapwise angular velocity of each blade in the 

corresponding velocity component.  The angular velocities expressions are defined as  
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where 1b
 , 2b

 , and 3b
  are the flapping angular velocities of the blade number 1, 2, and 3, 

respectively.  Once equations (2-6), (2-8), and (2-9) are substituted into equation (2-5) we obtain 

the relative velocity vector at the center of mass of each blade.  
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 Finally, once we know all the velocity vectors required in equation (2-1), the first part of 

the kinetic energy for the rotor can be expressed as 
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 Since the algebraic expressions are lengthy, the symbolic manipulations can be carried 

out using any computer software for mathematical manipulation such as Mathematica or Maple.  

We used here and henceforth the commercial software Maple. 

 The second part of the rotor kinetic energy Tr is made up of two parts that consider the 

contribution of the rotational energy of the hub and the rotational energy of the blades about their 

centers of mass.  Written in matrix form, the rotational kinetic energy can be expressed as  

         



3

12

1

2

1

i

bib

T

bihh

T

hr IIT           (2-12) 

where {h} and {bi} are, respectively, vectors of absolute body angular velocities of the hub 

and the blades about their principal axes.  The matrices [Ih] and [Ib] are the principal mass 

moment of inertia matrices for the hub and blades about their centers of mass, respectively.  

Since the hub is modeled as a thin circular disk and the blades are modeled as slender rods, the 

matrices take the following forms: 
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where the subscripts ―t‖ and ―a‖ stand for transverse and axial, respectively; and ―b‖ for blade.   

 The body angular velocity vector {bi} was previously defined in equation (2-9) and the 

vector {h} is equal to {h1}, which was defined in the first equation (2-8).  After substituting 

the first equation (2-8), and equations (2-9) and (2-13) into equation (2-12) the complete 

rotational part of the kinetic energy can be written in terms of the Euler’s angles as   
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2.3 ROTOR POTENTIAL ENERGY 
 

 The potential energy of the rotor system required in the variational formulation stems 

from the flexibility of the blades and the torsional stiffness of the tower.   The bending flexibility 

of the tower will be considered in a later section during the formulation of the equations of 

motion of the tower.  The flexibility of the system in the proposed model is introduced by means 

of flap hinges with torsion springs at the root of each blade and a torsion spring at the top end of 

the tower that affects the yawing motion of the rotor.  For the blades, the hinges allow the 
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flapwise motion of each blade independently.  Assuming that the three blades have the same 

flexural rigidity, the rotor potential energy can be simply written as 
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where kb and kt are the stiffness constants for the blades and tower, respectively.  If better data is 

not available, kb can be estimated from the beam theory as 
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where Eb and I are the modulus of elasticity for the blades and the equivalent moment of inertia 

about the blade flap axis, respectively.  This equation represents the required equivalent spring 

acting on one end of a rigid beam, such that the tip displaces the same amount than the free end 

of a cantilever beam when both are subjected to a same uniform load.  In a similar fashion, the 

tower torsion constant kt can be analytically obtained from the formula of the twisting angle.  

Due to the slight tapering conical design of the steel towers, the torsion stiffness can be obtained 

from the integral expression which results in 

1

6

)( 2

33
1



















 



t

bb

h

o

t
h

rGt

yGJ

dy
k

t

       (2-17) 

where G is the shear modulus, J(y) is the polar moment of inertia as function of height; ht, rb, and 

tb are the tower height, the base mean radius, and the tower thickness at the base, respectively.  

The constant  is the ratio between the upper and base radius.  To model the variable wall 

thickness on actual steel towers used in wind turbines, it is assumed that the wall thickness 

changes with respect to height at the same rate as the mean radius does. 
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2.4 AERODYNAMIC FORCES AND DAMPING 

 

 To account for the forces induced by the wind on the rotor and include some sort of 

aerodynamic damping on the system, a simplified model using steady and homogenous wind 

parallel to the z-axis is now considered.  The model uses the Betz theory (see Gasch and Tweele, 

2004) to obtain the forces on the blades.  The idealized model according to the Betz theory 

assumes that the rotor extracts the maximum possible kinetic energy of the wind neglecting 

frictional losses. 

The wind forces on the rotor can be divided into a circumferential component and an 

axial or thrust component as shown in Fig. 2-3.  The circumferential wind component gives to 

the rotor the torque and angular velocity necessary for the electric power generation.  As stated 

previously, an operating state with a constant angular velocity  in the rotor was assumed, and 

since the blades are considered very stiff in their edgewise direction, there is no need to 

introduce the aerodynamic circumferential force in the equations of motion.  On the other hand, 

the effects of the axial or thrust component of the wind should be studied since it can induce 

flapwise motion of the blades and its fluctuation can produce, as it will be shown shortly, 

aerodynamic damping on the system. 

 

 

Fig. 2-3: Distribution of circumferential forces pC and thrust forces pT  on the blade  

Blade 

r pT 
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A blade dimensioned according to Betz theory and operating at its design speed, has a 

thrust intensity pT that is directly proportional to the rotor radius r and to the square of the wind 

velocity v  (see Gasch and Twele, 2004).  It can be shown that the thrust intensity over a blade 

can be expressed as 
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where n is the number of blades, and a is the air density.  As it can be observed in Fig. 2-3, the 

force intensity pT has a trapezoidal distribution over the blade.  Its integration along the blade 

produces a concentrated force FT equal to 
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This force should be applied at the centroid xc of the force distribution (the trapezoid) which is 

measured from the blade hinge and it can be calculated as 
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where  is the ratio between the hub radius rh and the blade length Lb.  The moment caused on 

each blade hinge due to the thrust can be obtained as 

  22 23
329

81
b

a

cT Lv
n

xFM
bi









  


       (2-21) 

Obviously, the moment in each blade is constant as the wind velocity stays constant; therefore 

they also will be ignored in the equations of motion provided the blade displacements are 

measured from a position of steady operational equilibrium.  However, these moments should be 

considered if a stress evaluation of the blades is performed.  
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At this point we are interested in obtaining an expression for small variations of the 

apparent wind velocity when the tower and blades move back and forward during a strong 

ground motion.  If the blades operate at a high angle of attack, which is our assumption, the 

change in thrust intensity mainly results from the change in the apparent wind velocity (see 

Gasch and Twele, 2004).   Ignoring second order terms and the slight effect of the base motion of 

the tower, the increment in the thrust intensity due to the change in the relative wind velocity 

over each blade can be approximated to 
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The total force increment on the blade hinge can be obtained by integrating over the blade 

length, i.e., by solving the integral in equation (2-19) changing pT by pTi.  Consequently, the 

total moment increment about the blade hinge can be obtained by multiplying the force 

increment by the arm xc given by equation (2-20).  The simplified equations can be expressed as 
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21           (2-23) 

 zccM bibi


43           (2-24) 

where c1, c2, c3, and c4 are found to be aerodynamic damping constants and are defined as 
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 These aerodynamic damping forces and moments must be included appropriately into the 

equations of motion associated with the blade flapping rotations and with the wind turbine fore-

aft motion. 

 

2.5 LAGRANGE EQUATIONS 

 

 As stated before, the equations of motion for the rotor will be derived using a Lagrangian 

approach.  The Lagrange equation has the general form 

i

iii

Q
q

V

q

T

q

T

dt

d










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



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









                                          (2-29) 

where T is the kinetic energy, V is the potential energy, Qi is the generalized force components, 

and qi are the generalized coordinates. 

 For the first part of the kinetic energy in equation (2-11), Tt must be differentiated with 

respect to the generalized coordinates x, z, the Euler’s angles , , ,  the blade angles b1, b2, 

b3, and with respect to their respective velocity components.  Notice that by considering small 

rotations and assuming that the main shaft rotates at constant velocity, it is possible to relate the 

Euler’s angles to the cartesian rotations x’, y’, and the main shaft velocity  as 

        tyx   ;; ''                     

By considering that the angles of the blade flapwise rotation are small, the resulting expressions 

can be further simplified.  This assumption is consistent with the actual flexibility allowed in the 

blades design because if their backward motion exceeds a certain limit (usually a small angle), 

the blade tips may impact the tower.  Performing the derivatives results in the following 

expressions: 
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 In the case of the rotational kinetic energy in equation (2-14), Tr must be differentiated 

with respect to each one of the Euler’s angles , , , each blade rotation b1, b2, b3, and with 

respect to their time derivatives.  The derivatives of Tr required in the Lagrange equations for the 

rotor are 

   

       

       

        33
4

23
2

1

'3'3
4

'2'3
2

'1'

33
4

23
2

1

'''''

coscoscos

sinsinsin

sinsinsin

3322
2

3

bbbbbb

ybybybybybyb

bbbbbb

ybayyxbtaxbt
r

tItItI

tItItI

tItItI

IIIIIII
T

dt

d





















































   (2-41) 

    

       

   33
4

23
2

133
4

23
2

1'

sin

sinsincos

coscos
2

3

bb

bbbbbb

bbbbybt
r

tI

tItItI

tItIII
T

dt

d















































       (2-42) 

    '''' 33 yxbayxba
r IIII

T

dt

d



















          (2-43) 

     

    ''''

'''1

1

sinsin

coscossin

yyxbyb

xbybxbbb

b

r

tItI

tItItII
T

dt

d































        (2-44) 

     

         '''3
2

'3
2

'3
2

'3
2

'3
2

2

2

sinsincos

cossin

yyxbybxb

ybxbbb

b

r

tItItI

tItII
T

dt

d



































      (2-45) 

     

         '''3
4

'3
4

'3
4

'3
4

'3
4

3

3

sinsincos

cossin

yyxbybxb

ybxbbb

b

r

tItItI

tItII
T

dt

d



































    (2-46) 



41 

 

 

     

      '3'3
4

'2'3
2

'1'''

2

'

sinsin

sin3322
2

1

ybxbybxb

ybxbxbayxbta
r

tItI

tIIIIII
T






 










       (2-47) 

       

        3'3
4

2'3
2

1'

3'3
4

2'3
2

1'

sinsinsin

coscoscos

bybbybbyb

bxbbxbbxb
r

tItItI

tItItI
T





















       (2-48) 

0
321





















b

r

b

r

b

rr TTTT


            (2-49) 

 

The derivatives of the potential energy in equation (2-15) are very simple because they 

only apply for the blade rotations and the tower twisting angle.  They can be expressed as 
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Notice that the generalized force components Qi from the Lagrange equations that were 

obtained from differentiation with respect to the Euler’s angles, represent in each case 

generalized moments M, M, and M about the non-orthogonal set of axes.  These generalized 

moments must include any non-conservative moment due to loads such as damping forces or any 

external load not considered yet that are acting in the rotor.  In our case, we will ignore the 

structural damping for now, which means that we only need to consider the reaction moments at 
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the support between the nacelle and the tower.  However, these reaction moments will disappear 

when we couple the equations of the rotor with those of the tower.  Nevertheless, since the 

equations of motion of the rotor are based in non-orthogonal Euler’s angles and the equations of 

motion of the tower will be based in orthogonal coordinates, it is necessary to transform the 

moments about the Euler’s axes in terms of orthogonal axes.  The transformation is performed by 

noticing from Fig. 2-2 that the generalized moments M, M, and M represent the sum of the 

projections of the moments Mx’, My’, and Mz’ in the non-orthogonal set of axes (X, y, z’), (see 

Greenwood, 1988).  The specific transformation required can be obtained from the following 

equations:  
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2.6 EQUATIONS OF MOTION OF THE TOWER 

 

 

 Until now, the kinetic and potential energy obtained correspond to those associated with 

the rotor.  However, part of the kinetic and elastic energy contribution of the wind turbine also 

comes from the nacelle and the tower.  Instead of using a variational approach to model the 

tower, for convenience, we will use Newton’s Law and we will model the tower with elastic 

beam elements.  This component of the wind turbine resembles a conventional civil engineering 

structure and thus the form of the equations of motion is very well known (provided the system 

behaves in a linear elastic fashion).  This leads straightforward to their mass and stiffness 

matrices.   
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Fig. 2-4: Degrees of freedom for a tower beam element 

 

 

 Fig. 2-4 shows a typical beam element which consists of two nodes, each one with 4 

degrees of freedom (two translations and two rotations).  The vertical (axial) displacements of 

the tower nodes are neglected since the stiffness in the axial direction is much higher than the 

lateral directions and the base is fixed.  The element stiffness matrix is well known (see 

Chandrupatla and Belegundu, 1997) and thus its derivation is omitted here.  It has the form 
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where E, Ii and le are the modulus of elasticity, moment of inertia and length of the element, 

respectively.  The vector of nodal displacement associated with the stiffness matrix [ke] defined 

before is arranged as follows: 

   Txixizizii iiii
zzxxq

11 11          (2-56) 

The element lumped mass matrix has the form 
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where  and Ai are, respectively, the density and cross-sectional area of the beam element.  

Notice that the inertial effect associated to the rotational degrees of freedom is included as the 

mass moment of inertia of half of the beam segment about each end.  By defining a rotational 

inertia in this way one can avoid the cumbersome static condensation process required when null 

values of moment of inertia are used in correspondence with rotational degrees of freedom.  In 

our model, three beam elements of equal lengths are used to describe the tower.  

 After applying the boundary conditions in the base of the tower, the model of the tower 

has 12 degrees of freedom and the reduced global stiffness matrix can be expressed as 
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where the subscripts indicate the position (i.e., row and column number) of the stiffness constant 

in the element stiffness matrix shown in equation (2-55) and the superscripts within parentheses 

indicate the beam element considered starting from the top of the tower.   The vector of nodal 

displacements is arranged as 

   T
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The diagonal global mass matrix has the form: 
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where mn is the mass of the nacelle that must be added to the tower lumped mass only in the first 

node.  Finally, the undamped equations of motion for the tower still uncoupled with the rotor can 

be expressed in matrix form in the usual way as 

        bGGG aMqKqM          (2-61) 

where the vector of ground accelerations {ab} is defined as 

   T

bbbbbbb ZXZXZXa 000000         (2-62) 

 To couple the tower with the rotor it is necessary to combine the mass and stiffness terms 

of the equations of motion for the tower and the rotor associated to the generalized coordinates 

that both systems have in common.  The common generalized coordinates are located at the top 

of the tower and they are related as follows: 

1'11 ;; xxzzxx              (2-63) 

 

2.7 MAXIMUM STRESSES IN THE WIND TURBINE 

 

 Once the solutions of the equations of motion for the wind turbine system are obtained, 

the maximum displacements and rotations for different components of the system can be 

evaluated over the duration of the base excitation.  These displacements and rotations can be 

used to calculate the maximum internal loads and the maximum stresses at important locations in 

the wind turbine such as the blade roots, nacelle bedplate, tower base, and foundation (although 

this last component will not be covered here).   

In our wind turbine model the dynamic response is obtained from a steady operating state 

in which the initial values of the degrees of freedom before the ground motion starts are set to 
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zero.  It is important to notice that at the time of the stress evaluation, there are additional forces 

not present in the dynamic model that must be taken into account.  These forces were omitted in 

the dynamic model as consequence of the selection of the degrees of freedom or the assumption 

of high rigidity of several structural parts.  In our model, such forces are the wind thrust 

component, the wind circumferential component, and the gravity and centrifugal loads. 

 

2.7.1 Blades: Loads and Stresses 

 The roots of the blades are expected to be the most critical part because the moments and 

shear forces are greater there.  Initially, when the rotor is at rest, the blades have a small pre-cone 

angle , usually ranging from 5
o
 to 7

o
, (see Gasch and Twele, 2004) against the wind direction.  

This angle is diminished when the centrifugal loads in the blades and the wind thrust act over the 

operating rotor.  As it was mentioned before, in our model this angle was reduced to zero at the 

steady operating state.  Therefore, the actual bending moment in the flapping axis can be 

calculated by using the resultant rotation of the pre-cone angle and the blade rotation bi.  The 

bending moment can be obtained as  

    bibfbi kM          (2-64) 

Notice that the minus sign of bi arises from the selection of the forward rotation of the blades as 

the positive direction.  

 The circumferential component of the wind (parallel to the flapping axis) produces the 

torque required to generate electricity.  This torque can be evaluated from an aerodynamic 

analysis of the wind forces induced in the blades, but it can also be easily estimated from the 

output power W of the generator as 
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


W
T


        (2-65) 

where T is the total torque in the rotor and  is the overall efficiency of the turbine.  To obtain 

the edgewise bending moment on each blade, this torque must be divided by the number of 

blades in the rotor; three in our case.  Also the hub radius must be taken into account to transfer 

the bending moment to the blade root instead to the hub center.  Besides this moment, the 

vertical component of the blade weight also contributes to the bending moment along this axis.  

Assuming a prismatic blade, the weight can be concentrated at the middle of the blade length.  

Fig. 2-5 shows that the moment produced by the gravity force is cyclic and varies with the 

azimuth position of the blades.  This moment can be computed for the blades number 1 to 3 as 
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Thus, the total bending moment for each blade in the edgewise axis can be obtained from the 

equation 
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Again, the minus sign in the second term comes from the assumption that the weight 

component of blade number 1, measured from the positive x-axis, produces a bending moment in 

the opposite direction than the blade bending due to the wind circumferential component.   
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Fig. 2-5: Cyclic load on the blade due to weight 

 

  The resultant moment Mbi at the blade root can be evaluated as the vector addition of the 

flapping bending moment (Mbi)f  and the edgewise bending moment (Mbi)e, resulting on 

   22

ebifbibi MMM         (2-68) 

 If rb is the distance between the centroid of the blade cross-section to the upper surface of 

the blade, the bending stress can be expressed as 
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          (2-69) 

Normally the blade root section is tubular in shape so the values of rb and Ib are very easy to 

compute. 

 In addition to the bending stress, the blades are subjected to normal stresses produced by 

the axial forces due to centrifugal forces and the cyclic normal component of the blade weight.   

The centrifugal force in each blade can be computed as 
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while the normal component of the weight for each blade can be expressed as 
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Since the centrifugal force always produce tension in the blade and the normal component of the 

weight is fully reversed as the blade rotates, the resultant normal force in the blade Fbi can be 

computed for i = 1 to 3 as 

gicbi FFF         (2-72) 

 If the cross sectional area of the blade root Ab is known, the normal axial stress ai can be easily 

obtained from 
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F
        (2-73) 

 To conclude the internal forces analysis in the roots of the blades, the transversal shear 

forces due to the wind components in the edgewise and flapwise direction, as well as the blade 

weight transversal component must be calculated.   The flapwise shear component is identical to 

the thrust wind force FT evaluated by equation (2-19) if the blade was designed according to 

Betz.  In the case the Betz theory is not applied and the existing thrust coefficient cT of the blade 

is known, the thrust in each blade can be obtained from the following equation: 

                                                                 2

2

1
 vAc

n
F TT

a

T


                                                  (2-74) 

The new variable AT is the swept area of the rotor and the remaining variables were previously 

defined elsewhere. 

In the same manner, the circumferential wind component also produces shear in the blade 

root but this time in the edgewise direction of the blade.  This force can be analyzed by an 

aerodynamic study of the blade profile, but it can also be estimated from the actual power 

generated by the turbine.  Assuming a uniform distribution of the circumferential wind force 
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component over the entire blade, which is a consequence of designing the blade according to the 

Betz theory, the center of pressure of this force should be located at the middle of the blade 

length.  Therefore, this shear force can be evaluated as 
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where the torque T can be obtained from equation (2-65).   

Also in the blade edgewise direction, the weight of the blades produces shear at their 

roots.  The transversal component of the blade weight, shown in Fig. 2-5, must be subtracted 

from the shear Vc due to the wind.  The transversal component can be obtained from the 

following equations: 
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                                                 (2-76) 

The total shear force Vei in the edgewise direction can then be defined as  

                                                     3,2,1;  iVVV mbicei                                               (2-77) 

The resultant shear force Vbi on each blade root, obtained from the vector addition of the 

wind load FT from equation (2-19) or (2-74), plus the reaction force in the blade due its flapping 

motion and Vei, can be used to evaluate the maximum shear stresses in the blades.  For a hollow 

shaft (see Hibbeler, 2004), the maximum shear stress can be approximated to 

b

bi

i
A

V2
max

                                                         (2-78) 

 It is important to mention that the specific location and magnitude of the maximum 

normal stress and maximum shear stress depends on the rotor azimuth position and that, for the 

worse case situation, even the maximum normal stress and maximum shear stress certainly shall 
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occur at different places of the same cross-sectional area.  Obviously, there exists a location in 

the cross-sectional area where the combined state of stresses is critical.  In this particular place, 

the maximum principal stresses can be obtained and then evaluated by using a failure criterion in 

accordance with the composite materials used in the blades.  Nevertheless, finding the particular 

location by analytical methods can be very complicated, especially for tubular sections.  In this 

case, to solve this problem, it is recommended the use of finite element techniques; this topic, 

however, is beyond the scope of this dissertation.  Since long beams design are usually 

controlled by bending stresses rather than shear, for simplification, we will assume as the critical 

location the place where the maximum normal stress is present.  

 

2.7.2 Tower: Loads and Stresses 

When it comes to the evaluation of the different stresses in the tower during an 

earthquake, we can see in advance at least two critical locations that might be susceptible to 

damage.  They are the joint between the top of the tower and the nacelle bedplate, and the joint 

between the base of the tower and its foundation. 

The joint at the top of the tower receives the forces and moments that arise from two 

sources: one coming from the relative displacements and rotations between the nacelle and tower 

and the other from the thrust loads and moments induced by the wind in the z-direction of the 

rotor.  The first loads can be calculated by multiplying the global stiffness matrix in equation   

(2-58) by the particular degrees of freedom contributing to the development of the loads.  The 

second set of loads can be obtained from the thrust load expressed in equation (2-19) or (2-74).  

Combining both calculations the following equations are obtained: 
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                     (2-79) 

The stiffness constants k’s were previously defined in equation (2-55).  The subscript ―te‖ in 

each load stands for the tower ―top end‖.  

These forces and moments produce shear and bending stresses at the tower section.  To 

obtain the maximum shear stress, it is necessary to calculate the resultant shear force as 

     22

teztexteR FFF                                                (2-80) 

and since the tower cross-section geometry is similar to that of a blade root,  the use of equation 

(2-78) is also valid to obtain the maximum shear stress using the appropriate properties.  It 

follows that  

                                                                   
 

te

teR

te
A

F2
                                                          (2-81) 

where Ate is the cross-sectional area of the tower top end element.  The maximum shear (te)max 

can be obtained adding to this shear the contribution coming from the torsion in the tower.  It can 

be expressed as 

 
 

te

teyt

te

teR

te

te

tete
J

rk

A

F

J

Tr '

max

2 
                                     (2-82) 

The torsion stiffness kt was previously defined in equation (2-17), rte is the radius of the tower, 

and Jte is the polar moment of inertia of the tower top end section. 

To find the maximum normal stresses in the tower it is important to determine the 

maximum resultant moment.  This moment can be obtained from the vector addition of the 

components in the x’ and z’ axes.  For the x’ component it is necessary to include the (Mx)te term 
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and the moment caused by the weight of the rotor due to the eccentricity between the center of 

gravity of the rotor and the longitudinal axis of the tower.  Therefore, the resultant moment 

(MR)te can be obtained from the equation 

      22

tezhrtexteR MgdmMM                                     (2-83) 

The maximum normal bending stress (b)te is then obtained by 

 
 

te

teteR

teb
I

rM
                                                         (2-84) 

where Ite is the moment of inertia of the tower top end section.  In addition to this stress, there is 

another normal stress in this area due to the gravity load caused by the mass of the rotor mr and 

the mass of the nacelle mn.  Thus, the total normal stress which causes the maximum 

compression in the tower top end section can be computed as 

         
 

te

nr

tebte
A

gmm 
 

max
                                          (2-85) 

Another important location that requires the evaluation of stresses is the base of the 

tower.  The forces and moments in this area can be obtained as 
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                                          (2-86) 

In this case the subscript ―be‖ stands for the tower ―bottom end‖.  Using a similar approach to 

that followed for the stresses at the top of the tower, the maximum shear stress can be computed 

by equation (2-82) by changing the subscripts ―te‖ for ―be‖. 

                                             
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In the same manner, the maximum axial stress can be obtained by an expression similar to 

equation (2-85) but this time the mass of the tower mt must be included in the second term. 

              
 

be

tnr

bebbe
A

gmmm 
 

max
      (2-88) 

In the previous equation the bending stresses produced by P- effects can be included; however 

they were ignored because their contribution was negligible. 

 

2.7.3 Tower: Local Buckling 

A possible type of failure in the wind turbine is local buckling in the tower, especially if 

the ratio between the radius of the tower and the wall thickness is high.  This situation is more 

likely to occur at the base of the tower since the bending moments are larger there, but certainly 

can occur in any part of the tower especially if there are imperfections.   

The study of local buckling of perfectly cylindrical shells almost did not change since the 

investigations of Brazier (1927) and Donnell (1934) at the first half of the twentieth century.  

Given an ideal geometry, the critical strength of a cylinder shell in axial and bending loads can 

be obtained as 

    
  r

tE
cr

213 



        (2-89) 

where E is the modulus of elasticity of the material,  is its the Poisson ratio, and t and r are the 

thickness and radius of the cylinder, respectively.  The constant  is a correction factor to adjust 

the equation to different scenarios (e.g.,  = 1 for the pure axial case and increases as the bending 

moment increases).  Experiments on similar specimens tested in combined axial compression 

and bending indicate that using β = 1.4 gives results on the conservative side.   
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Using the values of Young’s modulus E = 200 GPa for mild steel, β = 1.4, and ν = 0.3 the 

previous equation reduces to 

                                                      Pain,10695.1 11

r

t
cr                                            (2-90) 

Fig. 2-6 shows the variation of the maximum stress to prevent local buckling as a function of the 

ratio between the cylinder radius and the wall thickness for a steel cylinder. 

 As it can be noticed from the figure, for steel with a yield strength of 355 MPa, failure by 

yielding occurs prior than buckling for r/t less than 477.  Although this value seems relatively 

high for the typical ratios adopted in wind turbine towers (which are around 100), the presence of 

imperfections, mainly those introduced by welding, reduces considerably the buckling capacity 

of the tower. 

 
Fig.2-6: Maximum stress to prevent local buckling vs. ratio between tower radius and wall thickness 

 

E = 200 GPa 

v = 0.3 
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To consider the detrimental effects of imperfections, some design codes recommend the 

use of formulas based on empirical results.  One of them, used by the European Convention for 

Constructional Steelwork (ECCS), (see Burton et al., 2001), proposes to apply a stress reduction 

coefficient B which is a function of r/t.   The coefficient can be computed for r/t < 212 as 

                 

t
r

B

01.01

6734.0
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
       (2-91) 

and for r/t > 212 as 
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       (2-92) 

The buckling strength ’cr is then given in terms of the yield strength y and the elastic critical 

buckling stress cr obtained from equation (2-89) with  = 1, as follows: 
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     (2-93) 

A plot of equation (2-93) as function of r/t is shown in Fig. 2-7.  It was generated for a 

steel tower with a yield strength value of 355 MPa.  Notice in this case that due to the 

imperfections in the tower construction, failure by local buckling always occurs prior than 

yielding.  The discontinuity shown in the figure at r/t = 212 is the result of changing the 

coefficient B at this value.    
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            Fig.2-7: Buckling strength in bending for thin-walled steel tower based on ECCS rules 

 

 

 

2.8 LINEARIZATION OF THE EQUATIONS OF MOTION 

  

From equations (2-30) to (2-49) it can be observed that the set of equations of motion for 

the wind turbine contains non-linear terms that arise especially from the presence of gyroscopic 

moments due to the rotational nature of the system and terms containing time-dependent 

coefficients that arise from the need to trace the position of each blade in space.  A dynamical 

E = 200 GPa 

v = 0.3 
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system having this last characteristic is called a non-autonomous system and the mathematical 

treatment is much more complicated than the analysis of an autonomous system.  In order to 

obtain a set of equations of motion that could be studied analytically and find the natural 

frequencies and modal shapes of the system, some authors (see Stol et al., 2002 and Malcolm, 

2002) linearized the system by excluding some gyroscopic terms that cross-couple the angular 

degrees of freedom.  The implications of neglecting those terms have not been documented by 

the previous authors and will be the subject of study in this dissertation when the complete non-

linear equations will be solved by a numerical method.  Meanwhile, the approximate linearized 

equations can be analyzed as a linear system of differential equations with periodic coefficients.  

The theoretical analysis of such type of systems has been widely studied in Analytical Dynamics 

and applied to the study of rotorcrafts.  It is frequently referred to as Floquet theory and its 

discussion and implementation will be presented in the next chapter. 

 Let us now consider the linearized equations of motion for free vibrations for the 16-

degrees-of-freedom turbine model.  They have the following form 

              0 uKutCutM        (2-94) 

where the vector of displacements and rotations {u} is defined as 

       T
xzxzxzybbb zxzxzxu 333322221111'321     (2-95) 

The symmetrical mass matrix and its entries are defined as 
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As previously stated, the mass matrix contains inertia terms that are periodic in time.  The 

non-symmetrical damping matrix and its entries are defined as 
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Notice that the matrix [C(t)] contains some gyroscopic terms which arise from the nature 

of the three dimensional motion of the rotor.  As it can be seen, they are time-dependent and also 

are proportional to the rotor speed .  Additionally, they cross-couple angular degrees of 

freedom thus meaning that a rotation of the system in one degree of freedom induces a moment 

in another angular degree of freedom.     

The symmetrical stiffness matrix is constant and its entries are defined as 
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To avoid repetition, the entries that follow the same arrangement than the tower global stiffness 

matrix presented in equation (2-58) were omitted.   
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CHAPTER 3: STABILITY ANALYSIS OF THE LINEAR WIND 

TURBINE MODEL  
 
 
 
 
 
 
 
 
 
 
 
3.1 INTRODUCTION 
 
 As previously discussed in Section 2.8, some researchers linearized the highly non-linear 

equations of motion by neglecting some gyroscopic terms that cross-couple the yawing velocity 

'y
  of the rotor with the fore-aft angular velocity 'x

  of the rotor or with the flapping angular 

velocity of the blades (see for instance, Stol et al., 2002 and Malcom, 2002).  In this way only the 

gyroscopic terms that cross-couple the constant azimuth velocity  of the blades remain.  The 

importance of the omitted gyroscopic terms was not examined by the previous authors and this 

will be studied in this dissertation.  Nevertheless, the resulting linearized and homogeneous 

equations of motion can be used to obtain an approximation of the natural frequencies of the 

system and verify its stability under different rotor speeds. 

 The linearized equations of motion for the steady operating state contain time-dependent 

periodic terms that stem from the cyclic position of the blades during their rotation.  Because of 

those terms the system is governed by a set of ordinary differential equations with periodic 

coefficients.  For this type of systems the conventional eigenvalue analysis is not applicable.   

The most significant tool for the analysis of the stability and response of this type of system is 
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known as the Floquet theory, named after the French mathematician Gaston Floquet (1847-

1920).   For the interested reader, Jordan and Smith (1983), Meirovitch (1988), and Johnson 

(1994), give excellent descriptions of the classical development of the Floquet theory.  For the 

sake of completeness and since this is a specialized topic, the next section summarizes the 

fundamental concepts of the theory.  Also for a better appreciation of the application of the 

Floquet theory, a few simple examples will be considered and finally applied to the specific wind 

turbine model used here. 

 

 

 

3.2 FLOQUET THEORY 
 

 The first step in the application of the Floquet theory is to transform the system of 

differential equations with periodic coefficients into a first-order system known as the state form: 

     xtAx           (3-1) 

where {x} is a state vector composed of 2n elements and [A(t)] is a time-periodic matrix with 

period T such that  

     TtAtA             (3-2) 

Let us now assume that we know a closed form solution of equation (3-1) and that it can 

be arranged in terms of a fundamental matrix [(t)] such that 

          0xttx                                                        (3-3) 

Based on the Floquet theorem (see Jordan and Smith, 1983), this fundamental matrix must 

satisfy two conditions: a) it can be resolved into a time periodic matrix and a matrix exponential 
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of a constant matrix and, b) the fundamental matrix is equal to the identity matrix for t = 0.   

Both conditions can be expressed as 

                    RtetPt                   (3-4) 

                     I )0(            (3-5) 

where      TtPtP  .  Since each column of the fundamental matrix [(t)], by definition, 

contains a linearly independent solution of equation (3-1), therefore, the fundamental matrix also 

satisfies the matrix equation  

        ttAt                (3-6) 

In view of equations (3-2) and (3-6) we can write 

              TttATtTtATt             (3-7) 

from which we realize that [(t+T)] is also a fundamental matrix of equation (3-1). Given that 

both [(t)] and [(t+T)] represent fundamental solutions of the system, there must exist a 

constant matrix [F], sometimes called Floquet transition matrix or monodromy matrix, such that 

                   FtTt           (3-8) 

Let us now evaluate equation (3-4) for t = 0 and for t = T.  The results obtained are  

       IP  00          (3-9) 

       RTeTPT         (3-10) 

Since [P(t)] is periodic, it follows that 

        ITPP 0       (3-11) 

and setting t = 0 in equation (3-8), using the fact that [(0)] = [I], and using the equation (3-10) 

with [P(T)] = [I] one obtains 
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          RTeTF          (3-12) 

and from this expression one can obtain that the matrix [R] is 

    T
T

R  ln
1

       (3-13) 

From equations (3-3) and (3-4) we can write           0xetPtx Rt  which permit us to 

conclude that, because [P(t)] is bounded, the stability of   tx  is then governed by the 

eigenvalues of [R].   The eigenvalues of [R], denoted as si (for i = 1 to 2n), are called the 

characteristic exponents associated with the periodic matrix [A(t)] and are obtained from the 

solution of the eigenvalue problem  

            SVVR          (3-14) 

where [S] is a diagonal matrix containing the characteristic exponents si and [V] is a matrix of 

eigenvectors that describes the mode shapes for the system.  In terms of the eigenvalues and 

eigenvectors, the matrix [R] can be expressed as 

      1
 VSVR        (3-15) 

Likewise, the eigenvalues of [F] or equivalently [(T)] are called the characteristic 

multipliers associated with the periodic matrix [A(t)] and are denoted as i.  They are obtained 

from the eigenvalue problem 

            VVT         (3-16) 

which can also be written as: 

           1
 VVT         (3-17) 

The matrix [] is a diagonal matrix that contains the characteristic multipliers i.  Note that the 

transition matrix [F] shares with [R] the same eigenvector matrix [V].  This can be shown by 



67 

 

 

using a property of exponential matrices (see Horn and Johnson, 1991), which states that if            

[R] = [V] [S] [V] 
−1

 and [S] is diagonal, then  

           1
 VeVe STRT        (3-18) 

Substituting equation (3-18) into equation (3-12) leads to  

          1
 VeVT ST       (3-19) 

Comparing this equation with equation (3-17) it is evident that the characteristic 

multipliers can be related to the characteristic exponents by 

Ts

i
ie        (3-20) 

This provides a convenient way to obtain the characteristic exponents si without requiring the 

prior evaluation of the matrix [R].  Since the characteristic multipliers i are, in general, complex 

numbers, the characteristic exponent si can be obtained from the expression (see Moretti, 1964) 

 
  ii

i

i

ii jkj
T

s 

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






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

























  2

Re

Im
tanln

1 1        (3-21) 

where 1j .  The real part i represents a quantity directly associated to the amount of 

damping in the system.  Although some authors call it modal damping coefficient or damping 

rate (e.g., Stol et al., 2002 and Bauchau and Nikishkov, 2001), it should not be confused with the 

usual modal damping ratio since the real part i is not dimentionless (it has units of [s
-1

]).  On the 

other hand, the imaginary part of the characteristic exponent is associated to the modal frequency 

i.  The indefinite integer k appears because there are unlimited branches in the logarithm of a 

complex number.  The integer multiple can be determined, as shown later on, by frequency 

identification of the time response of the system.   
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Hence, the system is exponentially stable if all the characteristic exponents si have 

negative real parts (i < 0), and exponentially unstable if at least one of the characteristic 

exponents has a positive real part (i > 0).  If the real part of a characteristic exponent is identical 

to zero, then the system has a purely periodic solution.  If a characteristic exponent contains only 

a negative real part, the system does not oscillate and it is said to be overdamped. 

 In the case of the wind turbine system, the identification of the dominant motion of the 

system can be figured out from the matrix of eigenvectors [V].  This matrix contains the actual 

mode shapes of the system for t = T (with T = 2/) which coincide with the initial blade 

configuration of the wind turbine, i.e., when the blade number 1 is directed along the positive   

x’-axis (see Fig. 2-1). 

In view of equation (3-12) and despite of the fact that it is usually impossible to obtain 

closed form expressions of [(t)], significant knowledge regarding the stability of the system can 

be obtained by evaluating the transition matrix [F] at the end of one period.  This is the reason 

why the most important step in the application of the Floquet theory reduces to the calculation of 

the transition matrix [F].   As a result, several techniques have been developed to obtain the 

transition matrix.  The classical approach is to calculate the transition matrix by solving equation 

(3-1) numerically (for instance, with a Runge-Kutta scheme) in sequence, using each time a 

specific set of initial conditions.  The sets of initial conditions correspond to the columns of the 

identity matrix [I] to satisfy the criteria in equation (3-5).  Subsequently, each set of equations, 

corresponding to the columns of the transition matrix, are evaluated for t = T.  That technique 

can be easily implemented in systems with few degrees of freedom, but the computational cost 

becomes overwhelming for systems with a large quantity of degrees of freedom.  For instance, 

Stol et al. (2002) recommend not to exceed 50 degrees of freedom.  Since the wind turbine 
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model used herein contains at the most 16 degrees of freedom, we will use for simplicity the 

classical approach to obtain the transition matrix.  

Nevertheless, to deal with systems with large number of degrees of freedom some 

researchers have proposed novel extensions to the Floquet theory.  For instance, Sinha (2005), 

worked out a computational procedure to obtain the transition matrix in terms of Chevysheb 

polynomials which are suitable for algebraic manipulation.  This procedure yields simpler forms 

of equations which in many cases can be integrated in closed form.  Other authors (e.g., Bauchau 

and Nikishkov, 2001) proposed an implicit Floquet analysis in which the stability of the system 

is obtained without the explicit computation of [F].  The method relies on the properties of the 

Arnoldi algorithm (Saad, 1981) which permits to extract the dominant eigenvalues of the system 

without computing the complete transition matrix during one period.  This results in significant 

computational savings.   

  

 

 

3.3 EXAMPLES OF THE FLOQUET THEORY 
 

Example 3-1  

Let us now examine a particular case of a simple system of differential equations for 

which a closed form solution of a fundamental matrix is already known.  For instance 

    0sincoscossin2 22

211





xttxtt

xxx




       (3-22) 

Obviously, the system contains periodic coefficients with a period of T = 2 .  Written in first-

order state form, the system can be expressed as 
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                                               
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It can be shown (see Jordan and Smith, 1983) that the explicit solutions of equation (3-15) are 

 

 ttax

taeax t

cossin2

sin2

22

211




      (3-24) 

where a1 and a2 are unknown constants that can be obtained from the initial conditions.  

Examining matrix   tA  in equation (3-23) it is evident that the period T is 2. 

The specific fundamental matrix [(t)] for the system that satisfy the criterion         

[(0)] = [I] can be constructed finding two sets of constants a1 and a2.  By equating the equations 

(3-24) to the columns of [I] the sets of constants are found to be a1 = 1, a2 = 0 and a1 = 2, a2 = 1, 

respectively.  Substitution of these sets of constants in equation (3-24) leads to:  

                                                            
 













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tt

tee
t

tt

cossin20

sin22
      (3-25) 

Therefore, recalling equation (3-12), the Floquet transition matrix can be obtained by evaluation 

of the fundamental matrix for t = T = 2, which is 

       






 


10

22 22  ee
T       (3-26) 

The characteristic multipliers i are obtained from the eigenvalue problem defined in 

equation (3-16):      iii VVT   where  iV  is the i
 th

 eigenvector.  The eigenvalues i that 

form the diagonal matrix [] can be obtained from the characteristic determinant of [(T)] set 

equal to zero: 

0
10

22
det

22
















  ee
      (3-27) 

After expansion, the characteristic equation becomes 
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  01 222    ee       (3-28) 

with real solutions 1 = 1 and 2 = e
2

 .  The matrix [] is then arranged as 

                                                                      









20

01

e
        (3-29) 

The characteristic exponents s1 and s2 are obtained from equation (3-21) resulting in:  

  01ln1

1  Ts  and   1ln 21

2   eTs .  In this case the calculation is simple because 1 and 

2 are real numbers.  Since the first characteristic exponent s1 is equal to zero, this indicates that 

exists a purely periodic solution for the system, in this case with period T = 2.  Notice from 

inspection of equation (3-24) that this actually occurs when a1 = 0.  The other characteristic 

exponent is an asymptotically unstable solution because it has a positive real part. 

 

Example 3-2 

 The following example consists in a single pendulum with a harmonic motion of its 

support as shown in Fig. 3-1. 

 
Fig.3-1: Pendulum with oscillatory motion in the support  

 

L 

u 

mg 

 



72 

 

 

Considering small rotations, it can be shown that the equation of motion for the 

pendulum whose support will be assumed to have a harmonic motion of the form u = A cos t is 

0cos
2












  t

L

A

L

g         (3-30) 

As it can be observed, this equation contains a periodic coefficient acting as a sort of stiffness 

coefficient with period T = 2/.  The equation of motion can be written in a first-order state 

form as 
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         (3-31) 

where x1 =  and x2 =  .  In the notation of equation (3-1) matrix [A(t)] is 

  
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gtA       (3-32) 

It is not the intention of this example to verify if explicit solutions exist for the Floquet 

transition matrix for this or other more complex systems; as it was mentioned before, in general, 

they do not exist.  So we will directly use a numerical integration technique to evaluate equation 

(3-31) using the required sets of initial conditions.  To accomplish this, the computer software 

MATLAB will be used.  MATLAB includes a computational package that solves ordinary 

differential equations named ode45 that is based on a one-step Runge-Kutta solver of order 4 or 

5.  In case that ode45 fails or is too inefficient (as it usually happens with the so called stiff 

problems) we can use the higher order solver ode15s.  A specific description of this solver is 

presented in the next section.   In this example we will use the following values: A = 0.153 m,    

L = 0.305 m,  = 2 rad/s, and g = 9.81 m/s
2
.  The first column of the transition matrix is 

obtained from the numerical integration of equation (3-31) for Tt 0  with initial conditions 
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x1(0) = 1 and x2(0) = 0.  The second column is obtained in a similar fashion but now using the set 

of initial conditions x1(0) = 0 and x2(0) = 1.  In both cases the solution must be evaluated at time  

t = T.  The complete transition matrix is then given by 

        






 


7252.05112.3

1350.07252.0
TF          (3-33) 

The characteristic multipliers are obtained from the determinant of equation (3-33) set equal to 

zero, hence: 

   
6885.07252.0

6885.07252.0

2

1

j

j








      (3-34) 

The characteristic exponents are obtained from equation (3-21) 

      
7594.00

7594.00

2

1

js

js




           (3-35) 

The zero real part in the exponents implies that all modes are undamped.  The imaginary part 

indicates one of the possible modal frequencies.  It should be kept in mind that by adding integer 

multiples of 2π/T to the value 0.7594 rad/s one could obtain the true frequency.  If the support of 

the pendulum is stationary, the natural frequency is L
g  = 5.671 rad/s.   

 

Example 3-3  

Let us now consider a system with two degrees of freedom in order to examine its 

stability and mode shapes.  The system, shown in Fig. 3-2, consists of two sprung masses in 

which one of them is attached to a viscous damper.  Also, the mass of this car is harmonically 

changing in time with a frequency . 
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Fig.3-2: Two degrees of freedom system with periodic mass used in example 3-3 

 

Considering the free vibration of the system, the equations of motion are 
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Note that the system is periodic and non-classically damped.  The equations written in first-order 

state form are 
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where x1 = u1,  x2 = u2, x3 = 1u , and x4 = 2u .  The periodic matrix [A(t)] is then defined as 
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 With the objective to study the effect of changing the amount of damping present in the 

system, let us examine several scenarios.  The first one ignores the damping (i.e., c1 = 0).  

Following the same steps to construct the Floquet matrix than in the previous example and using 

k2 

m2 

c1 

 

m1(2-cost) 
k1 
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the following values for the properties of the system: m1 = 50 kg, m2 = 50 kg,  = 6.0 rad/s,                  

k1 = 1000 N/m and k2 = 1000 N/m, the two pairs of characteristic exponents are obtained:  

        0307.00,;515.20, 4321 jssjss        (3-39) 

As expected, the zero real parts indicate that the system is undamped.  The following vectors 

(and their complex conjugates, not shown) represent the corresponding mode shapes.  Note that 

the velocity components of the state-vector (the last two rows) were removed. 
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The components in each vector represent the amplitude and phase angle contribution from each 

generalized coordinate.  As it can be noticed from the first eigenvector, this mode describes a 

phased motion since both angles are the same.  On the other hand, the second mode is an out-of-

phase motion since the phase angles are 180
o
 apart.  

As a second case, let us assume that a small damping is present by assigning a damper 

coefficient c2 = 40 N-s/m.  The following complex conjugate pairs represent the new 

characteristic exponents: 

                  0373.01207.0,;5146.21101.0, 4321 jssjss        (3-41) 

Notice that the real part  of the characteristic exponent, which is related to a modal damping 

ratio, has a negative value meaning the system is stable.  The corresponding eigenvectors, 

complemented by their complex conjugates (c.c.) are: 

                                         c.c.,
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Comparing this case with the undamped one, we can see that the small amount of damping 

mostly affects the phase of the eigenvectors while the amplitude remains almost the same.  As it 

will be further discussed on Section 3.5, the addition of damping makes the system less 

synchronized.   

 To conclude this example, let us now examine the same system but now considering a 

larger damping coefficient of c2 = 400 N-s/m.  The Floquet analysis now leads to the following 

characteristic exponents: 

         6990.09434.0,;4888.23653.1, 4321 jssjss       (3-43) 

with the following eigenvectors: 
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As it can be observed, there is now a change in the amplitude and phase of both eigenvectors 

associated to the high value of the damping.  Let us take a look to the first eigenvalue for which 

the value of the real part is  < -1.   The first impression coming from an erroneous comparison 

with a single degree-of-freedom problem is to assume that this mode is overdamped.   Certainly 

this is not the situation here for two reasons; firstly, because the characteristic exponent contains 

an imaginary part with a probable frequency of 2.4888 rad/s.  In addition, it is recalled that here 

 ii sRe  is not an equivalent modal damping ratio but rather a quantity that is a measure of 

the amount of damping.  A further examination of the free vibration response of the system 

indicates that the two car masses have an oscillatory motion with a highly decaying rate 

indicating the system is still underdamped.   
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3.4 SOLVING ORDINARY DIFFERENTIAL EQUATIONS USING 
MATLAB 
 
 
 The MATLAB software can solve ordinary differential equations with initial values by 

means of a series of files called ode suite solvers.  MATLAB has several solvers but the most 

frequently employed are the ode23 and ode45 functions based on the Runge-Kutta algorithm.  

These solvers are suitable for problems that exhibit a small or a mild degree of stiffness.  If the 

problem is stiff, it is recommended to use other solvers such as the ode23s or ode15s that are 

based on more sophisticated numerical algorithms. 

 Before using any ode solver, MATLAB requires to transform the differential equations 

into a first order system.  This system of equations must be coded in a type of subprogram that 

must be invoked from the principal or main M-file program.  This type of subprogram is known 

as a function M-file and can be created following the structure function ydot = 

filename (t,y).  The function file will accept as input a time t and a solution y and return 

as output the values for the derivatives ydot.  The variable t is a scalar time input whereas y 

and ydot are column vectors. 

 As stated before, to solve the equations of motion, it is necessary to call the function file 

from the main program written in another M-file.  The command structure required for the ode45 

(and any other ode solver) is the following: 

       [t,y] = ode45(‘filename’, tspan, yo, options) 

The filename must be the same used in the function file and must be enclosed in apostrophes 

(‘’) or preceded by the @ symbol.  The tspan is a time vector that can be constructed in two 

ways: the first one, giving the initial and end time values, or giving additionally a constant time 
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increment.  In the first one, the solver can change the time increment discretionally in each 

iteration to produce an optimum solution in terms of computational effort.  In the second way, 

the solution can be obtained in specific time increments.  The vector yo contains the initial 

conditions of the system.  The input argument options is an optional structure that can be used 

to set several solver features such as the relative and absolute error tolerance of the solution.  For 

the interested reader, these and many other features of the argument are described in detail by 

typing helpwin odefile in the MATLAB command window. 

 

 

3.5 WIND TURBINE SPECIFICATIONS AND STABILITY ANALYSIS 
  

In order to present an example of a seismic analysis of a wind turbine, the model 

identified as Vestas V82 MK-II is considered.  This particular wind turbine was selected mainly 

because this model will be used in the first wind farm planned to be erected in Puerto Rico and 

some of its plans and drawings are available to the public domain from the local Environmental 

Protection Board known as Junta de Calidad Ambiental (DIA-F WindMar, 2007), as well as 

from the General Specifications from the Vestas Wind Systems A/S (2004).   The Vestas V82 

MK-II is a large pitch-regulated upwind turbine with active yaw and a three-blade rotor.  The 

model number 82 comes from the diameter of the rotor in meters.  Its generator is rated at 1.65 

MW at a rotor speed of 14.4 rpm.   The blades are attached to a spherical hub and are constructed 

of fiberglass reinforced epoxy and carbon fibers following the geometry of the wing profiles 

series FFA-W3 and NACA 63.4.  The tower is formed by three bolted sections constructed of 

welded S355 steel plates and it can reach heights of 70 to 80 m.  The physical and mechanical 
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properties of this wind turbine used for the seismic analysis are given in the Table 3-1.  It is 

important to mention that some of the properties such as the moments of inertia and stiffness 

coefficients are roughly estimated from the available data.  For instance, the actual blades used in 

the wind turbine are constructed using the NACA 63.4 series with variable cord between the 

blade tip to its center and the FFA-W3 series from the blade root to its center.  In addition, the 

blade is gradually twisted starting at the tip at 0
o
 and ending at 20

o
 in the root.  Due to this 

complex geometry, the blade stiffness constant kb is approximated by equation (2-16) by 

assuming a blade with a constant profile and not twisted.  Although this was not attempted here, 

a more accurate value of the blade stiffness can be obtained by a 3-D finite element analysis of 

the actual blade.  The sectional moment of inertia required was obtained by using the cross-

section of the airfoil FFA-W3-301, shown in Fig. 3-3, rotated at 20
o
 from the rotor plane.  An 

average cord value of 1.71 m and a wall thickness of 0.12 m were used.  To model the tower, 

three elements of equal length were used.  The average cross-sectional areas and moments of 

inertia were computed at the middle section of each element.  The torsion stiffness constant kt 

was evaluated according to equation (2-17). 

     

Fig. 3-3: FFA-W3-301 profile coordinates (from Fuglsang et al., 1998) 
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Table 3-1: Physical and mechanical properties used in the wind turbine model 

________________________________________________________________ 

Rotor mass, mr     = 43000 kg 

   Blade mass, mb     = 8600 kg 

   Nacelle mass, mn     = 52000 kg 

   Tower to hub distance, dh    = 3.45 m 

   Blade length, Lb     = 40 m 

   Hub radius, rh     = 1 m 

   Blade root radius, rb    = 0.96 m 

   Blade root wall thickness, tb    = 0.12 m 

Blade moment of inertia, Ib   = 1.15 x 10
6
 kg

.
m

2 

   Hub transverse moment of inertia, It  = 4300 kg
.
m

2
 

   Hub axial moment of inertia, Ia   = 8600 kg
.
m

2 

   Blade sectional moment of inertia, I   = 5.96 x 10
-3

 m
4 

   Blade modulus of elasticity, Eb   = 4.4 x 10
10

 N/m
2 

   Tower height, ht     = 76 m  

Tower base mean radius, rbe   = 1.99 m 

   Tower base wall thickness, tbe   = 2.5 x 10
-2

 m 

   Tower top end mean radius, rte      = 1.15 m  

Tower top end thickness, tt e   = 1.1 x 10
-2

 m 

Steel density, ρ     = 8900 kg/m
3 

Steel modulus of elasticity, E   = 2.07 x 10
11

 N/m
2 

Steel shear modulus, G    = 7.9 x 10
10

 N/m
2 

   Steel Poisson’s ratio, ν    = 0.3 

Air density, ρa     = 1.225 kg/m
3 

   Average wind speed, v∞     = 13 m/s 

   Maximum wind speed, (v∞)max   = 42.5 m/s 

Hub height, hh     = 77 m 

Thrust coefficient at average wind speed, cT  = 0.438 

Thrust coefficient at maximum wind speed, cT = 0.158 

Generator output power, W     = 1.65 x 10
6
 W 

   Overall efficiency, η    = 0.92 

   Blade coning angle, δ    = 4
o 

   Steel yield strength, σy    = 3.55 x 10
6
 N/m

2
 

Number of blades, n    = 3 pieces 

Rotor operating angular velocity,    = 14.4 rpm 

Blade stiffness coefficient, kb     = 2.62 x 10
7
 N

.
m/rad 

Tower torsion stiffness coefficient, kt  = 3.90 x 10
8
 N

.
m/rad 

Aerodynamics damping constant, c1  = 6.80 x 10
5
 N

.
s/rad 

               c2  = 2.49 x 10
4
 N

.
s/m 

               c3  = 1.79 x 10
7
 N

.
m

.
s/rad 

               c4  = 6.56 x 10
5
 N

.
m

.
s/m 

Tower element length, le    = 25.33 m 

________________________________________________________________ 



81 

 

 

Table 3-1: (Cont.) Physical and mechanical properties used in the wind turbine model 

     __________________________________________________________________ 

 

Tower element areas,  A1    = 0.108 m
2 

          A2    = 0.178 m
2 

         A3    = 0.264 m
2 

Tower sectional moment of inertia,  I1    = 8.83 x 10
-2

 m
4 

                  I2  = 0.215 m
4 

                  I3  = 0.443 m
4 

__________________________________________________________________ 

       

 The wind turbine analysis requires transforming the linearized matrix equations of 

motion into a first-order state form in a similar fashion as in the examples of the Floquet theory 

shown previously.  The state equation is  

     qtAq         (3-45) 

The state vector is       TTT
uuq  with  u  defined as in equation (2-95). Since the system 

originally has 16 degrees of freedom, the time periodic matrix [A(t)] becomes a 32 by 32 matrix 

defined as 

   











 CMKM

I
tA

11

0
      (3-46) 

The mass, damping and stiffness matrices were defined in equations (2-96) to (2-98).   

The Floquet analysis yielded fifteen pairs of complex conjugates and two real 

characteristic exponents as shown in Table 3-2.  The absence of a positive real part in each one 

of the characteristic exponents implies that this wind turbine is stable at the operating speed of 

14.4 rpm.  All modes, excluding the corresponding to s2, are noticeably damped.   An interesting 

situation occurs with the exponent s2 that shows an almost zero real part (-0.0001), meaning that 

the damping associated to this mode is very small.  This happens because, as it can be shown, 

this mode is predominantly a lateral tower mode without yaw motion.  Recall that the model 

developed in the previous chapter lacks (up to now) any sort of structural damping, and that the 
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only damping present comes from the aerodynamic effect on the blades.  The aerodynamic 

damping acts in the system only if a fore-aft movement exists in the rotor or in the blades, which 

is actually missing in this lateral mode.  Also, since there is not yaw motion of the rotor in this 

mode, the gyroscopic effects cannot induce frontal motion in the tower.   

Table 3-2: Characteristic exponents of the wind turbine model 

_________________________________________ 

    s1 =  -0.0188 ± j0.6782 

    s2 = -0.0001 ± j0.4453 

    s3 = -0.0056 ± j0.4519 

    s4 = -0.1866 ± j0.6650 

    s5 = -0.0100 ± j0.0544 

    s6 = -0.0283 ± j0.0606 

    s7 = -0.1228 ± j0.1539 

    s8 = -0.1577 ± j0.3849 

    s9 = -0.5896 ± j0.3120 

    s10 = -1.7812 ± j0.3806 

    s11 = -1.8490 ± j0.2440 

    s12 = -2.0641 ± j0.2166 

    s13 = -2.2406 ± j0.4851 

    s14 = -4.8970 

    s15 = -5.1442 ± j0.5319 

    s16 = -5.7737 ± j0.2814 

     s17 = -5.3323 

_________________________________________ 

 

As it can be observed, there are two characteristic exponents that do not contain 

imaginary parts (they are s14 and s17).  This means that these modes are actually overdamped 

modes precluding any oscillation and hence a modal frequency.  These two ―modes‖ are 

predominantly combined modes associated to large displacements of the blades in combination 

with large twisting motion of the tower in which aerodynamic damping and gyroscopic moments 

play a principal role.  
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The rest of the characteristic exponents are complex numbers.  As previously mentioned, 

the imaginary part of each characteristic exponent indicates just one branch of a possible modal 

frequency but the true frequency must be found by adding to this value an integer multiple of 

2/T.  To determine the specific modal frequency, a time response of the turbine should be 

obtained by applying initial conditions associated to that frequency and later on analyzing the 

response time history with the Fourier transform.  The information required for the initial 

conditions is obtained from the eigenvectors.   

It is important to mention that, in general, a damped system does not have a specific 

mode shape since its motion is asynchronous.  Synchronous motion occurs only if the system is 

undamped or if the damping is classical or proportional.  In these cases, the phases between the 

components of the eigenvector are aligned (i.e., they are each other entirely in-phase or out-of-

phase by 180
o
).  In asynchronous systems, such as the one examined in Example 3-3, the phases 

of the eigenvector components deviate more or less from this condition depending on the 

proportion of the damping present in the system.   

When one attemp to define the mode shapes of the system from complex eigenvectors, it 

is incorrect to use only the real part or only the module of the components of the eigenvector 

associated to the displacement vector and ignore the velocity vector (recall that the eigenvector is 

a 2n-dimensional state-vector).  Since the general dynamical system was solved in the state 

space, the mode shapes demand a plot in the state space rather than in the configuration space.  

Bhaskar (1999) suggests two graphical ways of representing the mode shapes from complex 

eigenvectors.  The first alternative is to plot a diagram that includes the real part of both the 

displacements and velocities of the generalized coordinates.  In this method the displacements 

are represented in the traditional way by drawing nodes resembling the deformed shape, whereas 
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the velocity are represented by arrows located in the nodes, whose sizes are proportional to the 

magnitude of the velocities.  Although this method is mathematically correct, it is not frequently 

used because the graphical visualization of displacements and velocities in the same plot does 

not reveal much about the deformed shape of the system.  

The second alternative suggested by Bhaskar is an attempt to improve the drawbacks of 

the previous method and make it comparable to the conventional way of visualization of the 

mode shapes.   The method consists in scaling only the half part of the eigenvector associated to 

the displacements such that the sum of the squares of the real parts will be maximal.  This 

method is known as the optimum mode shape since it generates the best approximation to a 

synchronous mode shape.  The first step consists in finding the phase angle  in where the 

modules of the generalized coordinates of the eigenvector would be projected.  This is 

accomplished by solving   from the following expression: 

          
 

 






n

i

ii

n

i

ii

V

V

1

2

1

2

2cos

2sin

2tan





         (3-47) 

where iV  is the module of each of the elements of the eigenvector and i is the actual phase 

angle of each element.  Equation (3-47) contains four solutions in the range of 0    2.  It can 

be shown that two of the solutions correspond to the line in which the maximum level of 

synchronicity is achieved and the other two solutions correspond to the least level of 

synchronicity.  These lines are separated by a phase angle of 90
o
.  By inspection of the phasors 

(i.e., the complex elements of the eigenvectors expressed as a magnitude and a phase angle) one 

can easily identify the optimum angle but mathematically it must satisfy the following condition:   
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  02cos
1

2




n

i

iiV        (3-48) 

Otherwise, the angle will be a minimum.  Hence, the maximum angle will be found adding or 

subtracting 90
o
 to it.  The last step consists in projecting each phasor to the line at angle   by  

       iii VP cos        (3-49) 

where Pi is the projection of each phasor.  These projections can be normalized (for instance, 

such that the maximum entry will be 1) and subsequently they can be used as initial conditions to 

excite the corresponding mode shape of the system.  The identification of the true modal 

frequency, which remains undefined in the Floquet analysis, can be obtained by analyzing the 

response of the system to these initial conditions.  Also, the normalized projections will help in 

the graphical visualization of the different mode shapes of the system.   

Returning to the wind turbine analysis, the mode shapes associated to the corresponding 

characteristic exponents can be identified from the eigenvectors Vi shown in Table 3-3.  The first 

column associated to each characteristic exponent si represents the original eigenvector in phasor 

form (for sake of compactness, again the velocity components of the state vector were removed, 

as well as the complex conjugates eigenvectors).  The vector at the right of each () symbol 

represents the optimum mode shape after applying equations (3-47) to (3-49) and then 

normalizing it as explained before.  An approximated graphical representation of each optimum 

mode in ascending order is presented in Fig. 3-4.  

 For instance, the mode shape corresponding to s2 is one of several lateral modes of the 

tower (after the frequency identification was completed, this proved to be the first tower lateral 

mode).  The entries of this optimum eigenvector, which are represented by V2 in Table 3-3, show 

that the amplitudes significantly correspond to tower displacements along x-direction.  At the 
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same time the rotor maintains its original vertical configuration.  After plotting the time response 

of one of the degrees of freedom of interest, let say x1, and applying the Fourier transform of this 

response time history, we were able to easily identify the modal frequency for this eigenvector.  

In this case the modal frequency was found to be   = 1.96 rad/s, which implied that the integer 

in equation (3-21) was k = 1. 

We will examine now the eigenvector corresponding to s4 by applying the same 

methodology.  Notice from Table 3-3 that the optimum eigenvector contains amplitudes 

affecting the tower motion in the fore-aft z-direction and a symmetric rotor flap motion out of 

phase with respect to the tower motion.  After performing the frequency identification, the modal 

frequency resulted to be  = 2.18 rad/s, making the eigenvector associated with s4 the first tower 

fore-aft mode of the system. 

As it can be noticed in both previous examples, the modal frequencies were very similar.  

This occurred because the tower has equivalent properties in both x and z directions.  The small 

discrepancy between them derived from the fact that the flapping of the blades in the fore-aft 

motion increased the system stiffness whereas the lateral motion did not.  Table 3-4 provides a 

short description of the other mode shapes of the operating turbine. 

Notice from Table 3-2 that there are several modes heavily damped, specifically those 

associated with the characteristic exponents s10 to s17.  Some of them are underdamped modes 

since their characteristic exponents have imaginary parts; the exceptions are the modes 

corresponding to s14 and s17, which are overdamped modes.  By plotting the optimum mode 

shape we can observe that these heavily damped modes contain considerably larger flap rotations 

of the blades or larger twisting rotations of the tower in comparison with the other modes.  

Although these modes require the flexural motion of the tower in a lesser scale, they can be 



87 

 

 

described as rotor/blades modes or tower twisting modes or a combination of both.  The higher 

values of the damping are basically product of the aerodynamic effects influencing the blades 

and the rotor.  In view of this fact we can anticipate that it is very unlikely that there could be 

resonance problems with these modes during a strong and long seismic motion.   

It was mentioned earlier that heavily damped modes are very asynchronous in nature and 

the optimum mode shapes are less representative of the actual motion.  As a consequence some 

difficulties come up while trying to establish their modal frequencies.  The entries of the optimal 

mode shapes, which are used as initial conditions, were inaccurate and originated the excitation 

of multiple modes instead of a single mode.  Moreover, the Fourier transform of a heavily 

damped response did not show a well defined peak which made the frequency identification 

harder.  To solve the first problem, the use of the real part of the complete eigenvector (i.e., 

including displacements and velocities) as initial conditions for the free vibration response was 

required.  Nevertheless, the second problem remained and the Fourier analysis was not the 

appropriate tool to identify the modal frequency.  In this case, when the frequency was obtained 

by the Fourier spectrum, it was not possible to associate this value with any integer multiple of k 

as required by the Floquet theory in equation (3-21).  Since by definition k must be an integer, 

when this situation occurred all frequencies were finally adjusted to the corresponding nearest 

integer.   This situation which arises in heavily damped systems should be a matter of future 

investigation.    

As expected, due to the gyroscopic effects and since the mass center of the system does 

not coincide with the stiffness center as observed from a top view, the modes that produce larger 

yaw or twisting rotations of the rotor about the vertical axis were strongly coupled with the tower 

motion in the z-direction and the x-direction.  These combined mode situations can be found on 
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several ocassions in Fig. 3-4 (for instance, in the modes with the characteristic exponents s9, s11, 

s14, s15, and s17).  In these cases, the oscillatory motion of the tower never occurs purely in a 

vertical plane; rather if it could be observed from a top view of the turbine, its motion will 

resemble more an elliptical shape.   

 

 

 
Table 3-3: Eigenvectors of the wind turbine model 

______________________________________________________________________ 
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Table 3-3: (Cont.) Eigenvectors of the wind turbine model 
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Table 3-3: (Cont.) Eigenvectors of the wind turbine model 
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Fig. 3-4: Optimum mode shapes in ascending order 

s1 

 = 14.27 rad/s 

T = 0.44 s 
k = 9 

 

 

s4 

 = 2.18 rad/s 
T = 2.88 s 

k = 1 

 
 

s11 

 = 3.26 rad/s 

T = 1.93 s 
k = 2 

 

 

s10 

 = 1.89 rad/s 

T = 3.32 s 
k = 1 

 

 

s16 

 = 38.03 rad/s 
T = 0.17 s 

k = 25 

 
 

s12 

 = 1.73 rad/s 

T = 3.63 s 
k = 1 

 

 

s2 

 = 1.96 rad/s 

T = 3.21 s 
k = 1 

 

 

s13 

 = 14.07 rad/s 
T = 0.45 s 

k = 9 

 
 

s3 

 = 35.18 rad/s 
T = 0.18 s 

k = 23 
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Fig. 3-4: (Cont.) Optimum mode shapes in ascending order 

s14 

 = 0  

Overdamped  
k = 0 

 

 

s17 

 = 0 

Overdamped 
k = 0 

 

 

s8 

 = 80.42 rad/s 

T = 0.08 s 
k = 53 

 

 

s15 

 = 48.85 rad/s 

T = 0.13 s 
k = 32 

 

 

s9 

 = 77.32 rad/s 

T = 0.08 s 

k = 51 
 

 

s5 

 = 96.70 rad/s 

T = 0.06 s 
k = 64 

 

 
 

s6 

 = 96.72 rad/s 
T = 0.06 s 

k = 64 

 
 

s7 

 = 68.10 rad/s 
T = 0.09 s 

k = 45 
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Table 3-4: Frequency identification and mode shapes description 

 

Characteristic  

exponent 
k 

Frequency 

 (rad/s) 

Period 

T (s) 
Mode Shape Description 

s1 9 14.27 0.44 Tower lateral 

s2 1 1.96 3.21 Tower lateral  

s3 23 35.18 0.18 Tower lateral 

s4 1 2.18 2.88 Tower fore-aft 

s5 64 96.70 0.06 Tower lateral 

s6 64 96.70 0.06 Tower fore-aft  

s7 45 68.10 0.09 Tower lateral 

s8 53 80.42 0.08 Tower lateral  

s9 51 77.32 0.08 Tower fore-aft 

s10 1 1.89 3.32 Tower fore-aft coupled with symmetric rotor flap 

s11 2 3.26 1.93 Combined with asymmetric rotor flap 

s12 1 1.73 3.63 Tower fore-aft with asymmetric rotor flap 

s13 9 14.07 0.45 Tower fore-aft 

s14 0 0 -- Tower twisting with asymmetric rotor flap   

s15 32 48.85 0.13 Combined with asymmetric rotor flap 

s16 25 38.03 0.17 Combined with asymmetric rotor flap 

s17 0 0 -- Tower fore-aft 
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CHAPTER 4: SEISMIC ANALYSIS OF THE WIND TURBINE 

MODEL  
 

 

 

 

 

 

4.1 INTRODUCTION 
 

 

 In the present chapter the behavior of the Vestas V82 wind turbine is studied under the 

effects of several strong motions acting at the base of the structure.  Since this type of turbine 

could be erected in the southern region of Puerto Rico and there is a lack of recorded data of 

strong earthquakes occurred in the island, the use of earthquakes traditionally recommended for 

Puerto Rico such as the El Centro record of 1940 or Kern County record of 1952 has been 

selected to perform the seismic analysis.  As a supplementary study to investigate near-fault 

effects in the turbine two records obtained from the Northridge earthquake in 1994 and the San 

Salvador earthquake in 1986 will be also considered.  All ground motion accelerograms used 

here are the latest corrected records obtained from the PEER Strong Motion Database (from The 

Pacific Earthquake Engineering Research Center, at the University of California at Berkeley). 

Initially, the linearized equations of motion used in Chapter 3 are considered.  

Subsequently, the original non-linearized set of equations is taken into account.  This gives us 

the opportunity to evaluate the contribution of the non-linear gyroscopic terms, frequently 

neglected for mathematical convenience.  The goal is to determine whether these terms can be 

ignored from the equations without affecting the accuracy of the calculated response. 
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4.2 SELECTED EARTHQUAKES 

 
 

The first ground motion record to be used in the evaluation of the turbine is that from the 

Kent County earthquake that occurred in California on July 21, 1952 with a moment magnitude 

of 7.4.  Housner conducted a study in 1980 (see Martínez et al., 2001), in which he compared the 

size and distance of the active faults in Puerto Rico with others around the world.  He 

recommended the S69E horizontal component of the earthquake recorded at the Taft Lincoln 

School station because it contained the expected characteristics of an earthquake that could hit 

the island.  This recommendation was officially implemented in the Puerto Rico Building Code 

of 1987 and the use of the record was mandatory to evaluate the seismic performance of 

structures until the main revision of the code in 1999.  The accelerograms of the three 

components of the Taft record is displayed in Fig. 4-1 and the Fourier (amplitude) spectrum of 

the S69E component is shown in the upper plot of Fig. 4-2.  The second plot shown in Fig. 4-2 

corresponds to the Fourier spectrum of the last part of the N21E record (it will be required later 

in Section 4.4).  From these figures one can observe that its peak ground acceleration is 0.178g 

and its first three dominant frequencies are 11.37 rad/s, 14.26 rad/s, and 18.66 rad/s.  On the 

other hand, the N21E horizontal component has a peak ground acceleration of 0.156g and the 

peak ground acceleration of the vertical component is of 0.109g.  The total duration of the event 

was of 54 seconds. 
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Fig. 4-1: Kern County earthquake acceleration time histories 
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Fig. 4-2: Kern County earthquake frequency spectrum (S69E and N21E Taft components) 

 

For many years the record of the El Centro earthquake has also been used to evaluate the 

performance of different structures in Puerto Rico.  This earthquake occurred in Imperial Valley, 

California on May 19, 1940.  The earthquake, with a magnitude of 7.1 in the Richter scale, was 

recorded in the El Centro station, which subsequently became the best well known name for the 

event.  The accelerogram for the three components is shown in Fig. 4-3.  The peak ground 

acceleration is 0.307g.  The dominant frequency of this record is 7.54 rad/s as it can be observed 
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from the Fourier spectrum presented in Fig. 4-4.  The peak ground acceleration for the E-W 

horizontal component is 0.215g and the maximum vertical acceleration is 0.205g.  The data used 

herein was sampled at intervals of 0.01 seconds.  The total duration of the earthquake was 

approximately 40 seconds.   

 
Fig. 4-3: El Centro earthquake acceleration time histories 
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In addition to the two previous historical earthquake records commonly used for seismic 

evaluation in Puerto Rico, two more earthquake records will be employed that exhibit rupture 

directivity and near-fault effects.  In a study conducted by Martínez et al. (2001), they point out 

that the seismicity of the southwestern region of Puerto Rico has incremented since 1987 due to 

the motion of, until then, inactive in-land strike-slip faults found in the area.  Since similar wind 

turbines than the one analyzed in this work will be installed about 20 km from these faults, it is 

relevant to consider how near-fault earthquake records, as well as records showing rupture 

directivity effects could affect wind turbine structures.  Martínez et al. proposed that the records 

of the Northridge earthquake of 1994 registered at the Castaic-Old Ridge Route station and the 

San Salvador earthquake of 1986 recorded by the Geotechnical Investigation Center (GIC) 

station can be used as expected earthquakes for the southwestern region of Puerto Rico. 

 

Fig. 4-4: El Centro earthquake frequency spectrum (N-S component) 
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The Northridge earthquake occurred on January 17, 1994 in Los Angeles, California with 

a moment magnitude of 6.7.  The earthquake signal recorded by the Castaic station, shown in 

Fig. 4-5, is located at 23 km of the fault rupture; it shows a peak ground acceleration of 0.57g in 

the N-S component and a dominant frequency of 7.73 rad/s, shown in Fig. 4-6.  The total 

duration of the record is approximately 40 seconds sampled at equal intervals of 0.02 seconds.   

This record provides a strong directivity component in the direction of the fault rupture.  It is 

expected that an off-shore fault rupture at the west part of Puerto Rico will have similar 

characteristics to this earthquake (see Morales, 2006). 

The San Salvador earthquake occurred on October 10, 1986 in San Salvador, El Salvador.  

The GIC station located at a distance of 4 km from the epicenter recorded the relatively small 

magnitude earthquake with a moment magnitude of 5.4 but with a high horizontal peak ground 

acceleration of 0.87g in the N-S component as shown in Fig 4-7.  The Fourier spectrum in      

Fig. 4-8 shows a dominant frequency content of 9.05 rad/s.  The total duration of the record is of 

only 9 seconds sampled at intervals of 0.005 seconds. 
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Fig. 4-5: Northridge earthquake acceleration time histories 
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Fig. 4-6: Northridge earthquake frequency spectrum (N-S component) 
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Fig. 4-7: San Salvador earthquake acceleration time histories 

 

 

 

 

 

 

 



104 

 

 

 

 
Fig. 4-8: San Salvador earthquake frequency spectrum (N-S component) 

 

  

 

4.3 SEISMIC ANALYSIS SOLUTION USING MATLAB 
 

In the previous chapter we have considered the free vibration of the operating wind 

turbine.  It can be shown, in view of equations (2-30) to (2-54) and equations (2-61) and (2-62), 

that the equations of motion of the turbine subjected to three base linear accelerations bX , bY  and 

bZ  can be expressed in the following form: 

                             bzebyebxe ZrMYrMXrMuKutCutM                  (4-1) 
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The mass matrix [Me] is a diagonal matrix defined as 

 

 



























































0000000000000000

000000000000000

0000000000000000

000000000000000

0000000000000000

000000000000000

0000000000000000

000000000000000

000000000000000

000000000000000

0000000000000000

000000000000000

000000000000000

000000000000000

000000000000000

000000000000000

oo

mm

kk

ii

de

gg

ee

de

cg

bg

ag

e

m

m

m

m

m

m

m

m

m

m

m

M

 

    (4-2) 

where the entries were defined previously in equation (2-96). The vectors of influence 

coefficients are defined as: 

                                      

   
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r

r
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
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

                         (4-3) 

To solve the problem using the MATLAB ode functions, the system must be transformed 

into the first order equations in the state space as follows: 

                                                bzbybx ZrtBYrtBXrtBqtAq           (4-4) 

where the state vector is       TTT
uuq  with  u  as defined in equation (2-95) and the 

matrices [A(t)] and [B(t)] are defined as: 
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The general form of the MATLAB ode suite solvers applied to a system of differential 

equations was described in Section 3.4.   As it has been shown in the previous chapter, the 

solution of a system of homogeneous equations, such as the case of a free vibration system, is a 

quite straightforward task.  For the case of forced vibration, the application of the ode solvers is 

simple if the forcing function can be described by a mathematical expression.  A more 

complicated situation occurs when the forcing function consists of discrete input data such as the 

case described by equation (4-4), in which the earthquake ground accelerations appear in the 

equations of motion of the turbine.  Now, in terms of MATLAB programming, the main problem 

consists on how to incorporate each ground acceleration record inside the function file defined 

earlier.  The problem can be conveniently solved by including an interpolation solver called 

interp1 into the original function file that contained the differential equations.  The 

interp1 solver is essentially a function to interpolate one-dimensional data at intermediate 

points, but for our application its main advantage is that it also provides a way to convert the 

discrete data into a sort of time-dependent function.  Also, the possibility of interpolating the 

earthquake record at time intervals smaller than the original sampling time can be useful if a 

more precise solution is required. 

 The basic structure of the command interp1 can be written as Xb = 

interp1(tx,Xg,t), where Xb is the desired result, i.e. the function Xg interpolated at the 

time t.  The vector tx specifies the points (instants of time) at which the data Xg is given.  In 

the problem considered here, Xg will be one of the components of the original earthquake record 
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and tx the vector of instants of time associated with the record, usually spaced at time intervals 

of 0.01 seconds.  The scalar t is the specific time at which the new acceleration Xb is computed.  

When the earthquake data is loaded into the main program and stored in the vector Xg, this 

vector must be transferred to the function M-file that contains the differential equations by means 

of the global command.   This command allows the main program and the function file to 

share the variables assigned in global, for instance Xg.  As mentioned before, the function file 

contains the interpolation command in which Xg is given as input, so the exact base acceleration 

at the specific required time is then calculated inside the function M-file step by step as needed 

by the ode solver.  Since for the present application the three base acceleration time histories are 

acting simultaneously, this procedure is repeated for each component.  

 

 

4.4 SEISMIC ANALYSIS WITH HISTORICAL EARTHQUAKES 

  

The seismic analysis of the wind turbine will be performed using first the linearized set of 

equations of motion and the traditionally recommended earthquake records used in Puerto Rico 

such as the Taft and El Centro records.  The seismic analysis considering the near-fault 

earthquake records will be considered later on.  It is important to mention that for the seismic 

analysis of the wind turbine the horizontal component with the greatest peak ground acceleration 

for both earthquakes was assigned to the z-axis of the wind turbine (i.e., the frontal turbine 

direction).  This direction was selected to study the occurrence of a potentially critical situation, 

namely the blade tip colliding with the tower.   
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4.4.1 Response to the Taft record 

The three components of the Taft record were considered as the input to the equations of 

motion (4-4).  The response in terms of some important generalized coordinates is plotted in the 

figures shown in the next pages.  Fig. 4-9 shows the blade flap angle response of each of the 

three blades of the system for the duration of the event.  The maximum flap angle obtained was 

0.00464 radians or 0.27
o
 which produces a blade tip displacement of 0.19 m and thus precluding 

any possibility of a blade hitting the tower.  In conformity with the specifications of the turbine, 

a clearance of approximately 1.9 m exists between the tower and the blade tip at their closest 

position.  Note that the behavior of the three blades is very similar in both phase and amplitude 

suggesting that a symmetrical rotor mode is excited.   

The tower motion in the fore-aft direction, shown in Fig. 4-11, is out of phase with 

respect to the blade flap motion, meaning that probably the mode associated to the characteristic 

exponent s4 is governing the response (see Section 3.5).  To confirm this hypothesis a frequency 

analysis of the motion of the blades was performed.  Fig. 4-10 shows the frequency (or Fourier) 

spectrum of the blade 1, which is representative of the other two blades. The graph reveals a 

clear dominant frequency at 2.32 rad/s that is very close to the frequency obtained for s4, the first 

fore-aft tower mode of the turbine (the fourth mode overall shown in Fig. 3-4).  There is a slight 

difference between the frequency obtained from the Fourier spectrum (2.32 rad/s) and the 

corresponding modal frequency (2.18 rad/s) found by the Floquet analysis.  The reason for this 

small variation is that this last frequency was adjusted so the constant k in equation (3-14) was an 

integer number as required by the Floquet theory.  In this case and henceforth, the seismic 

response of the system will be characterized in terms of the modal frequencies obtained by the 

Floquet theory and summarized in Table 3-4.   
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Fig. 4-9: Blade flap angle response, Taft record  
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 Fig. 4-10: Frequency spectrum of flap angle blade 1, Taft record 

 

The fore-aft motion of the tower during the total duration of the earthquake is shown in 

Fig. 4-11.  The figure illustrates mostly an in-phase motion of the coordinates z1, z2 and z3.  The 

response clearly presents a dominant frequency, but the signals also have higher frequency 

content, albeit of lesser importance.  These frequencies can be identified from the frequency 

spectrum of the coordinate z2 shown in Fig. 4-12.  The dominant frequency is at 2.18 rad/s which 

correspond to the first fore-aft mode.  There is a small contribution of the second fore-aft tower 

mode with a frequency of 14.07 rad/s.  The maximum displacement of the tower occurred at its 

top end with a value of 0.095 m.   
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 Fig. 4-11: Tower fore-aft response, Taft record 
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 Fig. 4-12: Frequency spectrum of coordinate z2, Taft record 

 
 

We investigate next the lateral motion response of the wind turbine.  Fig. 4-13 presents 

the displacements of the nodal coordinates for the lateral motion of the tower.  At first glance, 

the three displacement traces display signs of instability at the end of the record.  This type of 

behavior can also indicate the onset of a resonant condition.  To investigate the potential 

occurrence of resonance or instability, an examination of the frequency content of the last part of 

the N21E Taft record was performed using a Fourier analysis.  This is shown in the second plot 

of Fig. 4-2.  The figure revealed that the dominant frequencies in that interval were in the range 

of 0.98 to 1.95 rad/s.  The latter value is tuned to the frequency of the first lateral tower mode, 

namely 1.96 rad/s.  This means that during the last part of the earthquake, the system 
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experienced temporarily some resonance situations.  Because this occurs near the end of the 

excitation, it does not pose a problem to the structure: the response after the end of the 

earthquake record corresponds to a decaying free vibration.  

Returning to the lateral response of the tower, the maximum displacement occurs at the 

top end (coordinate x1) with a value of 0.23 m.  As can be observed, the maximum displacement 

in the lateral direction is larger (138% larger) than in the fore-aft direction, even when the 

strongest record is applied in the last direction.   This happens mainly because the system is 

undamped in the lateral direction, as it was anticipated by the Floquet analysis previously 

performed.  It is recalled that thus far no structural damping was introduced in the model and that 

only the damping associated to aerodynamic effects was considered.  The aerodynamic damping 

is present in the system if there is a change in the relative wind speed with respect to the blades.  

This change in the apparent wind speed can be originated by the fore-aft motion of the tower, the 

twisting motion of the tower, as well as the flapping motion of the blades; however, all of these 

motions are missing in this lateral mode. 

There are two dominant frequencies of the system in the lateral direction and they can be 

observed in the Fourier spectrum presented in Fig. 4-14.  They correspond to the first lateral 

tower mode and the second lateral tower mode with frequencies of 1.96 rad/s and 14.27 rad/s, 

respectively; the first mode being the most significant.   
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Fig. 4-13: Lateral tower response, Taft record 
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4-14: Frequency spectrum of coordinate x2 , Taft record  

 

 

4.4.2 Response to the El Centro record 

The response of the wind turbine using the El Centro record as input will be evaluated 

next.  This record has a greater PGA than the Taft record, thus larger displacements are expected 

in this case.  Fig. 4-15 shows the time variation of the flap angle of the blades for the total 

duration of the record.  Similar to the previous case, the motion of the blades is governed by the 

fore-aft motion of the tower at a frequency of 2.18 rad/s.  The maximum rotation of the blade is 

of 0.011 radians (0.61
o
), roughly twice the value obtained with the Taft record.  However, this 

rotation produced a tip displacement of 0.44 m which is still within a safety zone in terms of 

blade-tower collision.  
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Fig. 4-15: Blade flap angle response, El Centro record 
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The seismic response of the tower fore-aft motion is shown in Fig. 4-16.  The figure 

shows clearly a dominant motion of the first fore-aft mode and a small contribution of a higher 

mode associated to the second fore-aft tower mode.  As it can be observed, the larger 

displacement occurred at the tower top end with a value of 0.21 m.  The frequency spectrum of 

the coordinate z2 at the middle of the tower is shown in Fig. 4-17.  It reveals that there are mainly 

two frequencies present in the response, the dominant frequency at 1.96 rad/s and a second less 

important frequency at 14.07 rad/s.   

The lateral motion of the tower displayed in Fig. 4-18 shows larger displacements (about 

0.48 m at the tower top end) than for the frontal motion.  As expected, they are greater because 

the there are no means to dissipate energy in this direction.  The motion along the height of the 

tower is in-phase showing a clear dominant frequency corresponding to the first lateral tower 

mode, but it can be observed that higher frequencies are also present, especially in the motion of 

the middle and bottom coordinates of the tower (see Fig. 4-18).  The frequency spectrum of the 

coordinate x2 at the middle of the tower is shown in Fig. 4-19.  The spectrum indicates that the 

dominant frequency is 1.96 rad/s and there is another important frequency at 14.27 rad/s.  This 

frequency corresponds to the second lateral tower mode.  
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Fig. 4-16: Tower fore-aft response, El Centro record  

 



119 

 

 

 

 Fig. 4-17: Frequency spectrum of coordinate z2, El Centro record 
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 Fig. 4-18: Lateral tower response, El Centro record 
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 Fig. 4-19: Frequency spectrum of coordinate x2, El Centro record 

 

 

4.5 STRUCTURAL DAMPING IN THE SYSTEM 
 

Since the lateral motion of the wind turbine is practically undamped and it seems to 

display signs of resonance, one may argue about the validity of the results when structural 

damping is not included.  To address this issue a more realistic scenario will be considered here 

by introducing means to dissipate energy into the model.  This can be accomplished by assigning 

modal damping ratios to all the vibration modes of the structure.  To obtain the structural 

damping matrix we begin solving the eigenvalue problem for the linear model of the wind 

turbine with the rotor in the parked position (i.e.,  = 0) and ignoring the aerodynamic damping 
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effects by assuming the air density a = 0.  Since the rotor of the turbine is stationary, all the 

periodic terms in the mass matrix and the gyroscopic matrix vanish.  Note that both the resultant 

mass matrix in equation (2-96) and the stiffness matrix in equation (2-98) have elements outside 

their main diagonals maintaining the system statically and dynamically coupled.  Hence, since 

periodicity is not present, a conventional eigenanalysis of the system can be performed.  The 

modal analysis is a convenient method to define a diagonal damping matrix with modal damping 

ratios and then obtain the physical structural damping matrix [Cs].  It can be shown that this 

process can be achieved by employing the following equation which comes directly from the 

application of the modal analysis method: 

                                                   MCMC
T

ds                                                    (4-6) 

where [] is the matrix of eigenvectors normalized with respect to the mass matrix and [Cd] is a 

diagonal matrix known as the modal damping matrix with the diagonal entries equal to 2ii.  A 

modal damping ratio i = 0.01 to all the modes, can be used which is a common value 

recommended for bolted-steel structures such as those found in the tower (see Burton et al., 

2001, Prowell et al., 2008b).   

Table 4-1 shows the natural frequencies obtained for the Vestas V82 turbine with the 

rotor stopped in the initial configuration (i.e., blade 1 in the horizontal position), as well as their 

related corresponding operational modal frequency. We can notice that the values for the 

majority of the natural frequencies i obtained from the non-operating turbine do not differ 

significantly from those obtained previously from the Floquet analysis.  Inspecting the 

eigenvectors one conclude that also the mode shapes of the parked turbine, especially those 

related to the tower modes, are very similar to the optimum mode shapes of the operating 
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turbine, suggesting that the operating rotor in this case does not change noticeably the response 

of the non-operating turbine.  However, there are some differences in the shape and order of 

appearance of some modes, especially those associated to the rotor modes.  The first mode 

obtained still corresponds to a front-aft mode comparable to the first mode of the operating 

turbine.  The second mode is a lateral mode similar to the third mode in the operating turbine.  

The third and fourth modes correspond essentially to rotor modes, but none of them resemble the 

rotor modes obtained previously for the operating turbine.  This is reasonable because the 

operating rotor is affected by damping and dynamic loads not present in the stationary rotor, such 

as gyroscopic moments and aerodynamic damping.  Also in the operational wind turbine we 

obtained two overdamped modes that obviously do not appear here.  The rest of the higher 

modes (from 9 to 16) can be described as tower modes oscillating at relatively high frequencies.  

At these frequencies the contribution of the rotor dynamics is insignificant, so there are no 

apparent differences between having a parked rotor or an operating one.  All these mode shapes 

and frequencies match one by one with those obtained for the operating turbine.  For comparison 

purposes, the eigenvectors of all modes were normalized such as the maximum entries were 1 

and the results are given in Table 4-2.  

To complete the process of incorporating structural damping to the system, the total 

damping matrix must be computed by adding the matrix [Cs] to the previous damping matrix of 

the operating turbine [C].  Although the modal damping matrix [Cd] is diagonal, the damping 

matrix [Cs] is full, i.e., it contained values in all its elements.  For the sake of compactness the 

numerical results are omitted here. 
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Table 4-1: Natural frequencies in [rad/s] of the wind turbine with a parked rotor  

Natural Frequency 

 (Stationary Rotor) 

Associated Frequency  

(Operational Rotor) 

1 1.73 s12 

2 1.96 s2 

3 2.27 -- 

4 2.36 -- 

5 2.94 s4 

6 14.14 s13 

7 14.24 s1 

8 33.56 -- 

9 35.00 s3 

10 37.12 -- 

11 56.94 -- 

12 68.07 s7 

13 77.70 s9 

14 80.67 s8 

15 96.59 s6 

16 96.71 s5 

    

                       
           Table 4-2: Mode shapes of the wind turbine model with a parked rotor 

             ___________________________________________________________ 
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  Table 4-2: (Cont.) Mode shapes of the wind turbine model with a parked rotor 
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4.6 SEISMIC RESPONSE OF THE WIND TURBINE WITH         
STRUCTURAL DAMPING 
 
  

The structural damping matrix obtained from equation (4-6) was incorporated in the 

global damping matrix.  The equations of motion in state form expressed in equation (4-4) were 

evaluated again for the same two earthquake records to assess the reduction of the lateral 

displacements and inspect the situation of resonance or instability in the lateral direction.  Figs. 

4-20 to 4-22 show the displacement and rotation response of the damped turbine using the Taft 

record as input.  Notice that in this scenario trailing zeros were added at the end of the Taft 

record to observe the behavior of the wind turbine after the earthquake ended.   

The corresponding response for the El Centro record is shown in Figs. 4-23 to 4-25.  As it 

can be observed in all the figures, the amplitude of the response slightly decreased when 

structural damping was present, except for the lateral response.  The maximum displacements of 

the system with and without structural damping are summarized in Table 4-3.  The use of 1% of 

modal damping ratio produced displacement reductions of up to 41% in the lateral direction.   

In the case of the Taft record, the lateral response still showed an increment in amplitude 

between the 35 to 50 seconds time interval followed by a small decay after the end of the 

earthquake.  A log decrement analysis of the free vibration part revealed a damping ratio of 0.01, 

the same value used as modal ratios.  A similar analysis but for the free vibration motion in the 

fore-aft direction revealed a higher damping ratio of 0.11 which is mainly a consequence of the 

aerodynamic damping.  As we mentioned before, the turbine was in resonance during the last 

seconds of the Taft record because the first lateral modal frequency of the wind turbine coincided 
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with one of the dominant frequencies at the end part of the record.  The amplitude did not 

increase more because it was restricted by the upper bound obtained by the structural damping 

and because the excitation vanished.  Nevertheless, even with the inclusion of structural 

damping, the tower lateral displacements are two times greater than the frontal tower 

displacements and the duration of the free vibration of the tower is considerable.  A possible 

corrective measure to increase the lateral damping is to cover the interior and/or the exterior 

walls of the tower with a damping material (i.e., an engineered elastomeric material).  Another 

possible solution is to place tuned mass dampers inside the tower. 
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Fig. 4-20: Blade flap angle damped response, Taft record 
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Fig. 4-21: Tower fore-aft damped response, Taft record 
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Fig. 4-22: Lateral tower damped response, Taft record 
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Fig. 4-23: Blade flap angle damped response, El Centro record 
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Fig. 4-24: Tower fore-aft damped response, El Centro record 
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Fig. 4-25: Lateral tower damped response, El Centro record 

 



134 

 

 

 

Table 4-3: Maximum displacements of the wind turbine with and w/o structural damping 

 

Coordinate 
Taft Record El Centro Record 

w/o damping with damping % diff. w/o damping with damping % diff. 

Blades 

Flap 

Angle 

b1 [rad] 0.004 0.003 25.0 0.009 0.009 0 

b2  [rad] 0.005 0.004 20.0 0.011 0.010 9.1 

b3 [rad] 0.004 0.004 0 0.010 0.009 10.0 

        

Tower Twist ’
y [rad] 0.001 0.001 0 0.002 0.002 0 

        

Tower 

Flexure 

Angle 

x1 [rad] 0.003 0.003 0 0.006 0.006 0 

z1 [rad] 0.006 0.005 16.7 0.016 0.011 31.3 

        

Tower 

Fore-aft 

Displacement 

z1 [m] 0.095 0.092 3.2 0.214 0.205 4.2 

z2 [m] 0.041 0.040 2.4 0.100 0.097 3.0 

z3 [m] 0.010 0.010 0 0.029 0.028 3.4 

        

Tower 

Lateral 

Displacement 

x1 [m] 0.227 0.194 14.5 0.481 0.368 23.5 

x2 [m] 0.105 0.086 18.1 0.261 0.167 36.0 

x3 [m] 0.029 0.021 27.6 0.083 0.049 41.0 

 

 

4.7 SEISMIC RESPONSE USING EARTHQUAKE RECORDS WITH 
DIRECTIVITY AND NEAR-FAULT EFFECTS 
 

 

Now that the structural damping in the system has been included, we will consider the 

seismic response of the wind turbine using the remaining two records that show directivity and 

near-fault effects.  Figs. 4-26 to 4-28 show the response of the principal degrees of freedom of 

the turbine using as input the Northridge earthquake record.   The maximum blade rotation is 

0.010 radians causing a blade tip displacement of 0.4 m.  As mentioned before, there is a 

clearance of 1.9 m between the blade tip and the tower, and thus blade-tower collision is not 

occurring.  The maximum displacement at the upper end of the tower in the fore-aft direction is 

0.22 m. The maximum lateral displacement at the top end of the tower is 0.26 m.  The lateral 
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motion of the tower still exhibits larger displacements due to the small structural damping in this 

direction, but they are much closer than the displacement obtained with the previous two records 

(El Centro and Taft).  This is a direct consequence of the strong directivity component that 

exhibits the Castaic record.  As it can be observed from the figures, there are two dominant 

modes of vibration in each direction.  In the response of the tower in the fore-aft direction there 

is a dominant motion that corresponds to the first frontal tower mode, as well as the second 

frontal tower mode.  The same situation is repeated in the lateral direction but the higher mode is 

more perceptible now.   

Figs. 4-29 to 4-31 show the response of the wind turbine under the action of the San 

Salvador earthquake.  The maximum blade flap rotation is of 0.0119 radians (there is no blade tip 

and tower collision).  The maximum fore-aft displacement of the top end of the tower is 0.25 m 

and the maximum lateral displacement is also 0.25 m.  Even though this is a small magnitude 

earthquake and some of the maximum displacements produced in the wind turbine are smaller 

than those for the previous records we found greater stresses in the wind turbine due to the high 

PGA.  These results will be shown later in Section 4.9.  It is pertinent to observe the instant when 

the turbine felt the PGA of the record at 1.5 seconds.  As can be observed, this is not the instant 

of the greatest displacement in the structure but the relative displacements or drift of the tower 

top end z1 with respect to the subsequent lower tower node z2 are the largest.  Due to the fact that 

the wind turbine is essentially a flexible structure with a relatively long first natural period, the 

strong acceleration of the earthquake is not transmitted instantaneously to the nacelle.  Instead, it 

produces a small frontal relative displacement of the lower and middle tower section and a 

backward relative motion of the nacelle.  This means that, in terms of absolute motion, the 

nacelle tends to stay stationary while the two lower sections of the tower are moving with the 

ground.  Certainly this situation will adversely stress the tower especially in the top section.   
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The dominant excitation mode in the fore-aft tower direction is once again the first 

frontal mode whereas the dominant mode in the lateral direction is the first lateral mode with 

small traces of the second lateral mode. 

 
Fig. 4-26: Blade flap angle damped response, Northridge earthquake 
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Fig. 4-27: Tower fore-aft damped response, Northridge earthquake 
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Fig. 4-28: Lateral tower damped response, Northridge earthquake 
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Fig. 4-29: Blade flap angle damped response, San Salvador earthquake 
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Fig. 4-30: Tower fore-aft damped response, San Salvador earthquake  
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Fig. 4-31:  Lateral tower damped response, San Salvador earthquake  
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4.8 SEISMIC RESPONSE OF THE NON-LINEAR WIND TURBINE 
MODEL 
 
  

One of the objectives of this dissertation is to evaluate the importance of the non-linear 

terms in the equations of motion of the wind turbine and determine if they can be neglected 

without affecting the accuracy of the dynamic response.  As it was demonstrated in a previous 

chapter, all the non-linear terms arise from the dynamics of the rotor.  The non-linear terms can 

be observed in equations (2-32) to (2-48) and represent gyroscopic terms than cross-couple the 

angular velocity 1x
  and 'y

  with the angular velocity of a blade  or between them.  An 

exception to this is the appearance of two non-linear terms multiplying moments of inertia 

quantities.  After some mathematical manipulation, the non-linear equations of motion can be 

arranged in matrix form as: 

          
              

         bzebyebxe

yyxy

ZrMYrMXrM

uKutDtCutM







 ''1' ,,,, 
        (4-7) 

Almost all the matrices in equation (4-7) were previously defined; however the periodic 

mass matrix   ', ytM  changed sligtly.  Basically this matrix is the same than that in equation 

(2-96) with the exception of the term mhh that is now replaced by the non-linear term: 

                 2

''2

3

1

2
33

24

1

2

3
ybayh

L

hbebthrhh IIdrmlAIIdmm b                (4-8) 

The new non-linear gyroscopic matrix   ''1 ,,, yyxtD   is defined as: 
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    (4-9) 

                                 

  
    

    

     
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 To solve the problem using the MATLAB ode functions, the equations of motion must be 

transformed in a set of first order equations in the state space: 

                                                bzbybx ZrtBYrtBXrtBqtAq         (4-10) 

The matrices [A(t)] and [B(t)] are now defined as: 
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'
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1

'

1

'

,

0

,,,,

0


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   (4-11) 

The results obtained from the seismic analysis of the Vestas V82 wind turbine considering 

the non-linear terms showed that the response of the structure was the same as in the linear case 

up to an order of 10
-5

.  Therefore, for a structural analysis these terms can be neglected without 

affecting the accuracy of the results.  This result was expected since the nominal speed of the 

rotor used here was very small (14.4 rpm = 1.51 rad/s), which is the standard on wind turbines of 

this size.  Also the angular deformations at the top of the tower when the system was subjected to 

all the earthquake motions were very small, as well as the twisting angle, thus reducing even 

more the contribution of the non-linear gyroscopic terms to the dynamic behavior of the 

structure.  Nevertheless, for faster rotors such as those found in smaller wind turbines, the non-

linear terms might have a more important contribution to the response and thus they should be 

studied. 

 

 

4.9 STRUCTURAL ANALYSIS OF THE WIND TURBINE MODEL 
 
  

Until now we examined the dynamic behavior of the wind turbine during earthquake 

events, but we still need to assess if the structure can resist the demand imposed by the ground 

motions without suffering structural damages.  There are several reasons why the wind turbines 

must be in operational condition after an earthquake.  One reason is that after the earthquake 

there is a need to maintain the supply of electrical power.  Moreover, the economic investment in 
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their construction and installation is very high.  In Section 2.7 we derived formulas to calculate 

the maximum stresses on critical locations of the turbine where different components are 

connected together, such as the blade roots with the hub, the nacelle with the tower, and the 

tower with the foundation.  These equations were developed for an elastic analysis in the cross-

sectional area of the structural element and do not consider the particular characteristics of the 

connection between the two components.  Thus, the evaluation of the stresses in flanges, holes, 

bolts or welds, as well as the stress concentrations factors was not considered here.    

In Sections 4.4, 4.6, and 4.7, during the application of the acceleration records, we found 

that the earthquakes excited predominantly two vibration modes in each direction.  The second 

mode has a shape that could help to increase the internal loads in the connections between the 

middle and the two remaining tower sections.  Although not derived previously, it is necessary to 

carry out an analysis of the stresses in the connections of these sections.  To obtain the forces and 

moments in the connections, the rows of the stiffness matrix [K] associated to them must be 

multiplied by the vector of generalized coordinates.  Additionally the static moment and shear 

force induced by the wind pressure acting on the rotor must be included.  Finally, the sum of 

these forces and moments are used to obtain the stresses in those regions. 

 Table 4-4 summarizes the maximum stresses in each blade root and in the tower obtained 

for the four earthquake records.  The first two columns on each record correspond to maximum 

tension and maximum compressive normal stresses in the structure.  The third column shows the 

maximum shear stresses.  Table 4-5 contains the estimated strength properties for the typical 

fiberglass used in the construction of the blades and the steel S355 used in the tower.  Also, the 

critical stress for local buckling in the tower based on Fig. 2-7 is presented for different ratios 

between the tower radius and the wall thickness encountered at different heights of the tower.   
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In terms of strength capacity, the relatively small stresses in the blade roots revealed that 

their structural integrity was not at risk during the strong ground motion events.  Actually, the 

design of the blades is usually controlled by fatigue loads in which the allowable stresses must be 

kept below the endurance limit to have a lifetime of 20 years.  It is relevant to mention that other 

areas of the blade could be susceptible to damage but the simplified model of a prismatic beam 

used here and the unavailability of the specific dimensions of the actual blade profile did not 

allow us for a more detailed assessment of its structural integrity. 

On the other hand, the induced stresses in the tower were larger than the blades, since the 

actual tower design is usually controlled by yielding or local buckling instead of fatigue.  The 

local buckling of the tower is a very dangerous condition because if the tower buckles, in 

addition to the tower damage, probably a collision between the blades and the tower may occur.   

As it can be observed in Table 4-5, the critical buckling capacity for the tower varies from 263 

MPa at the top to 279 MPa at the base and the yield strength of the steel S355 is 355 MPa.  In 

terms of tension and shear stresses the tower performed well for all the records employed.  Also, 

none of the records considered produced compressive stresses that exceeded the local buckling 

strength at any place of the tower.  It can be observed from Table 4-4 that the base and top 

sections of the tower were the places where larger compressive stresses were found.  Since the 

tower radius to wall-thickness ratio was larger at the top end, the factor of safety (FS) against 

local buckling was smaller there.  The worst condition occurred with the San Salvador record, 

which still reflects a satisfactory margin of safety with a FS = 2.77.  In Section 4-7 we mentioned 

that although the San Salvador record had the lower magnitude among the earthquakes 

considered it contained a very high PGA of 0.87g, which was a sign of a near-fault effect.  The 

strong impulsive signal in the tower base in combination with the large concentrated mass at the 

top end and the flexibility of the tower, especially at the tower top section, produced a large drift 
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or relative displacement between the tower nodes z1 and z2.  Therefore, as can be observed in 

Table 4-4, the stresses at the tower top section were larger than the stressed produced by the 

other records.   

 

 

Table 4-4: Maximum stresses in the wind turbine in [MPa] 

 Taft Record El Centro Record Castaic Record S. Salvador GIC Rec. 

 t c  t c  t c  t c  

Blade #1 8.61 7.47 0.36 8.71 7.58 0.37 8.67 7.54 0.37 8.63 7.50 0.37 

Blade #2 8.67 7.52 0.37 8.81 7.68 0.37 8.77 7.66 0.37 8.93 7.81 0.38 

Blade #3 8.60 7.46 0.36 8.67 7.55 0.37 8.72 7.58 0.37 8.59 7.48 0.36 

Tower-top 29.01 52.46 9.35 43.47 66.92 12.09 53.36 76.81 16.37 71.51 94.96 18.01 

Tower-51 m 41.82 58.42 5.21 47.79 64.39 8.19 47.66 64.26 10.14 46.75 63.35 11.24 

Tower-25 m 52.47 66.82 3.47 56.41 70.75 4.85 56.68 71.03 5.20 55.51 69.85 7.58 

Tower-base 59.98 73.79 2.32 79.33 93.14 3.54 80.91 94.72 4.08 81.90 95.71 4.24 

 

 

 

Table 4-5: Strength properties of the materials in [MPa] 

Material cr (buckling)  y u (tens.) u (comp.) y u 

Blades (Fiber glass) - - 860 - 900 720 - - 

Tower  

(Steel S355) 

Top  r/t =104.5 263 355 510 510 ~ 206 ~ 408 

51 m r/t = 91.1 271 355 510 510 ~ 206 ~ 408 

25 m r/t = 84.2 276 355 510 510 ~ 206 ~ 408 

Base r/t = 79.6 279 355 510 510 ~ 206 ~ 408 
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Finally, it is interesting to check if the stresses induced in the operating wind turbine by a 

strong earthquake are greater that those obtained when only the extreme wind speed is reached.  

According to the manufacturer, the extreme wind speed for which the wind turbine is designed is 

of 42.5 m/s applied during 10 minutes (General Specification, 2004).  Normally this situation is 

avoided since the turbine has control means to stop the rotor before reaching the extreme wind 

speed.  The actual cut-off wind speed is of 20 m/s.  However, let us examine here the worse case 

in where a wind gust reaches the extreme speed and the rotor is still in operation.  Table 4-6 

contains the results of the stresses induced in the blade roots and the tower sections considering a 

constant extreme wind load.  In addition, the stresses from the steady wind condition are also 

included for comparative purposes. As expected, the turbine could withstand the extreme wind 

without suffering structural damage.  The larger stresses took place at the middle section of the 

tower at 25.33 m height.  The security factor against local buckling in this zone was FS = 1.1 

which, although safe, it was quite low.  The zero value in the tension stress obtained at the tower 

top end implies that the whole cross-sectional area undergoes only compressive stresses.  

Comparing the extreme wind scenario with the operational wind turbine under the action of the 

studied earthquakes in Table 4-4 we see that almost the entire tower design was governed by the 

extreme wind loads.  However, the tower top end was subjected to larger stresses from the 

selected earthquakes than the obtained from the extreme wind.  In view of this, we can conclude 

that in seismic zone regions some aspects of the wind turbine design, in particular the design of 

the tower top end section, can be controlled by the combination of earthquake loads plus steady 

wind loads instead of extreme wind loads alone. 
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Table 4-6: Stresses induced in the wind turbine in [MPa] during extreme and steady wind speeds  

 
Extreme wind speed Steady wind speed 

 t c    t c    

Blade root #1 24.38 23.25 0.90 8.52 7.38 0.36 

Blade root #2 24.38 23.25 0.90 8.52 7.38 0.36 

Blade root #3 24.38 23.25 0.90 8.52 7.38 0.36 

       

Tower top end 0 23.37 23.23 14.88 38.33 6.02 

Tower @ 50.66 m 218.28 234.88 13.09 39.78 56.38 3.39 

Tower @ 25.33 m 240.78 255.13 8.46 51.36 65.71 2.20 

Tower bottom end 216.95 230.76 5.91 47.69 61.50 1.53 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS  

 

 

 

 

 

 

 

5.1 CONCLUSIONS 
 
 

This dissertation presented the development of a dynamical model of a three-bladed 

horizontal axis wind turbine subjected to three base acceleration components due to an 

earthquake while it is in operation at a constant rotor speed.  The equations of the rotor were 

developed by the Lagrange equations and they were coupled with the tower equations described 

by beam finite elements.  The system was modeled using 16 degrees of freedom (i.e., 3 for the 

blade flap angles, 1 for the tower twist angle, and 12 for the tower lateral deflection).  The 

flexibility of the blades was accounted by means of torsion springs placed at the blade root in the 

flapwise direction while it was assumed infinitely rigid in the edgewise direction.  The rotor 

main shaft was also assumed infinitely rigid.  Aerodynamic effects were included for a steady 

wind speed in accordance to the manufacturer wind speed and air density design conditions.  The 

aerodynamic loads on the blades were considered by using the actual blade parameters obtained 

from the manufacturer.  However, the equations were also derived for blades dimensioned 

according to Betz theory.  The aerodynamic damping constants were obtained by assuming the 

blades are dimensioned just following the Betz theory. 
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The equations of motion contained periodic and non-linear terms as consequence of the 

rotational nature of the blades and the induced gyroscopic effects.  The importance of the non-

linear gyroscopic terms that appeared in the equations of motion was evaluated.  Due to their 

negligible contribution to the response they were subsequently eliminated, which allowed for the 

linearization of the system.   

As an example, the seismic response of the Vestas V82 wind turbine was studied using a 

specially developed MATLAB code that makes use of the numerical ode solvers.  This turbine 

was selected among others because it is expected to be the first type of large wind turbine erected 

in Puerto Rico.  To evaluate the dynamic stability of the operational turbine, the Floquet theory 

was applied since the traditional eigenanalysis is not applicable to periodic systems.  Ignoring 

structural damping, the Floquet analysis revealed that the system was stable.  Also the Floquet 

theory, in conjunction with the Fourier transform, permitted us to identify the modal frequencies, 

as well as the vibration modes of the system in operation.   It was observed that the modes 

associated with large blade flap motions were highly damped and, in some instances, 

overdamped due to the large aerodynamic damping.  On the other hand, the modes associated 

with the lateral motion of the turbine were more susceptible to larger displacements since the 

aerodynamic damping was negligible in this direction.  In general, the contribution of the 

gyroscopic terms was small to a large extent to the slow rotational speed of the rotor and the 

small tower yaw and flexure rotations generated at the top end of the tower.  

The three components of selected historical earthquake records were used to evaluate the 

seismic response of the wind turbine.  The component with the largest peak ground acceleration 

was always applied in the direction of the rotor axis.  These records were selected among those 

traditionally used for seismic evaluation in Puerto Rico for many years, such as the El Centro 
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and Taft records, due to the lack of strong motion accelerograms recorded in the island.  Other 

records containing directivity and near-fault effects such as the 1994 Northridge-Castaic and the 

1986 San Salvador-GIC records were also considered.   

In general, the earthquake records considered excited the first tower mode in both 

directions but there are small traces of excitation of the second tower mode, especially in the 

lateral direction.  With all ground motion records the response of the flap angles of the blades 

was very small, thus precluding a collision between the tip of the blades and the tower.   

On the other hand, as consequence of the undamped situation of the lateral motion of the 

tower, signs of resonant conditions appeared at the end of the application of the Taft record.  The 

addition of structural damping to the system was required to examine a more realistic scenario.   

Using the modal analysis technique for the same turbine but with a stationary rotor in the initial 

configuration, a damping matrix was generated using a 1% damping ratios for all the modes.  

The use of structural damping to the system diminished somewhat the response, up to 27.6 % of 

the original values for the lateral motion.  Therefore the addition of artificial sources of damping 

such as the covering of the tower wall with elastomeric materials or placing tuned mass dampers 

in the structure can be useful to attenuate possible resonance problems. 

One of the important goals of this research was to evaluate the structural capacity of the 

wind turbine to sustain a strong earthquake.  Some critical locations, as allowed by the model, 

were evaluated such as the blade roots, the top end of the tower, and the base of the tower, as 

well as the connection between tower sections.   With all the earthquake records, the blade roots 

demonstrated to be safe because the actual stresses in the roots were very small in comparison to 

their ultimate strength.  The tower sections were considerably more stressed than the blades, 

particularly the top and bottom ends of the tower.  Based on the present study we can conclude 
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that the tower was safe against local buckling and yielding during all the strong ground motions 

considered.  

It also was confirmed that the stresses induced in the tower by the extreme wind loads 

were in general larger than those produced by the earthquake loads in combination with the 

steady average wind loads, with the exception of the tower top end, which resulted to be more 

stressed by the seismic loads.  In view of this, we can conclude that in seismic regions some 

aspects of the wind turbine design, in particular the tower sections, can be controlled by the 

earthquake loads in combination with steady wind loads instead of the extreme wind loads alone.  

Therefore, it is justified that seismic analyses must be performed in those wind turbines that will 

be designed for and installed in high seismic prone regions. 

It is important to mention that the present conclusions in this chapter were based on the 

analysis of a particular wind turbine subjected to specific earthquakes.  Moreover, some 

important characteristics and properties of the physical wind turbine model used here were 

estimated from the small information available to the public.  Therefore, they cannot be 

considered of general applicability to other wind turbines.  To establish more general conclusions 

a parametric study with several turbines under a large variety of seismic records must be 

performed.  Nevertheless the analytical and numerical tools required to execute such kind of 

studies were developed here.   
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5.2 RECOMMENDATIONS 
 
 

Some recommendations to consider for future research works are presented here.  There 

are many modifications that can be done to the wind turbine model to enhance the accuracy of 

the response, but all of them increase noticeably the difficulty of the derivation of the equations 

of motion, as well as the computational effort to obtain their solution.  An important 

modification is to utilize beam elements to model the blades.  In the model developed, the blade 

was assumed to be rigid with a spring hinge at the root.  Also the blade flap stiffness was 

evaluated using a prismatic wing profile based on the average cord of the actual blade.  Certainly 

this is a rough approximation of the actual situation.   Simultaneously to the development of the 

beam element for the blade, more realistic aerodynamic damping constants can be calculated for 

each element making unnecessary the use of the idealized Betz theory.  The implementation of 

these enhancements will convert the actual approximate model in a more versatile finite element 

model in which the user can select the number of degrees of freedoms and vary the sections of 

the blades the way they want.   

In the meantime, maintaining the actual quantity of degrees of freedoms, a better 

approximation of the torsion spring of the blade can be made by analyzing the actual blade with 

variable section and including the twisting of the profile in any commercial finite element 

software.  This can be done applying a uniform distributed load and increasing its intensity to the 

point of find out a relation between the moment at the root and the equivalent angle to reach the 

displaced tip. 
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Another recommendation is to provide rotational degrees of freedom and a lumped mass 

at the base of the tower.  This will enable us to analyze rotational phenomena in soil-structure 

interaction, as well as the more recent conception of off-shore wind turbines with floating 

foundations. 

To reduce the lateral displacements of the wind turbine and the possibility of damage in 

the structure due to a resonant condition it will be interesting to study the benefits of placing 

tuned mass dampers or elastomeric materials in the tower. 

Finally, to further validate the model and the results of the present dissertation, an 

experimental physical model subjected to controlled base motions will be extremely useful. 

 

 

 

 

 

 

 

 

 

 



156 

 

 

REFERENCES 

 

1. Alcalde, R. (2004), ―Producción de Energía Mediante Molinos de Viento – Energía 

Eólica‖, Personal interview during seminar by General Electric International in the 

CIAPR on February 17, 2004. 

2. Bauchau, O. A. and Nikishkov, Y. G. (2001), ―An Implicit Floquet Analysis for 

Rotorcraft Stability Evaluation‖, Journal of the American Helicopter Society, Vol. 46, 

pp. 200-209. 

3. Bhaskar, A. (1999), ―Mode Shapes During Asynchronous Motion and Non-

Proportionality Indices‖, Journal of Sound and Vibration. Vol. 224(1), pp. 1-16. 

4. Billings Gazette (n.d.), from: http://www.billingsgazette.com/topic/?q=wind%20 

turbines&t=&l= 25&d= &d1=&d2=&f=html&s=&sd=asc. 

5. Bir, G. S. and Stol, K. (1999), ―Operating Modes of a Teetered-Rotor Wind Turbine‖, 

National Renewable Energy Laboratory, NREL/CP-500-25983, Golden, Colorado. 

6. Borg, J. P. and Kirchhoff, R. H. (1997), ―The Effects of Static and Dynamic 

Imbalance on a Horizontal Axis Wind Turbine‖, Journal of Solar Energy Engineering, 

ASME, Vol. 119, pp. 261-262. 

7. Borg, J. P. and Kirchhoff, R. H. (1998), ―Mass and Aerodynamic Imbalance of a 

Horizontal Axis Wind Turbine‖, Journal of Solar Energy Engineering, ASME, Vol. 

120, pp. 66-74. 

8. Bourke, J. W., Sánchez, M., Martínez, L., Fabré, C., and Rodríguez, T. (2004), 

―Gyroscopic Effect in Windmill Generators‖, Technical Report, Department of 

Applied Mechanics, ISPJAE, Cuba. 



157 

 

 

9. Brazier, L. G. (1927), ―Of the Flexure of Thin Cylindrical Shells and Other Thin 

Sections‖, Proceedings of the Royal Society of London, Ser. A, Vol. 116, p. 104. 

10. Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E. (2001), ―Wind Energy 

Handbook‖, John Wiley & Son, LTD, England. 

11. Carne, T. G., Lobitz, D. W., Nord, A. R., and Watson, R. A. (1982), ―Finite Element 

Analysis and Modal Testing of a Rotating Wind Turbine‖, Sandia National 

Laboratories, SAND82-0345, Albuquerque, Nuevo Mexico. 

12. Chandrupatla, T. R. and Belegundu, A. D. (1997), ―Introduction to Finite Elements in 

Engineering‖, Second Edition, Prentice Hall, New Jersey. 

13. Danish Standards (1992), ―DS 472: Loads and Safety of Wind Turbine Construction‖, 

Denmark. 

14. DIA-F WindMar, (2007), ―Parque de Energía Eólica WindMar Renewable Energy‖, 

http://www.gobierno.pr/JCA/DocumentosAmbientales/2007/Final/Default.htm?Page=

4 

15. DOE (2008), ―20% Wind Energy by 2030: Increasing Wind Energy’s Contribution to 

U.S. Electrical Supply‖, Report of the U.S. Department of Energy, DOE/GO-102008-

2567, July.   

16. Donnell, L. H. (1934), ―A New Theory for Buckling of Thin Cylinder Under Axial 

Compressive and Bending‖, Transactions, ASME, Vol. 56, p. 795. 

17. Dutch Standard (1988), ―Safety Regulations for Wind Generators‖. NEN 6096, The 

Netherlands. 

18. Eggers, A. J., Ashley, H., Rock, S. M., Chaney, K., and Digumarthi, R. (1996), 

―Effects of the Blade Bending on Aerodynamic Control of Fluctuating Loads on 



158 

 

 

Teetered HAWT Rotors‖, Journal of Solar Energy Engineering, ASME, Vol. 118, pp. 

239-245. 

19. Energy Systeme Nord (n.d.), from: http://ec.europa.eu/research/energy/nn/nn_rt/nn_rt 

_wind/images/wind_en_1370.gif 

20. Fabricating & Metalworking Magazine (n.d.), from: http://www.fandmmag.com/web/ 

online/Metal-Cutting/BLOWING-IN-THE-WIND—MACHININGOPORTUNITIES 

/4$3707 

21. Fuglsang, P., Antoniou, I., Dahl, K. S., and Madsen, H. A. (1998), ―Wind Tunnel 

Tests of the FFA-W3-241, FFA-W3-301 and NACA 63-430 Airfoils‖ Report Riso-R-

1041(EN), Riso National Laboratory, Roskilde. 

22. Gasch, R. and Twele, J. (2004), ―Wind Power Plants, Fundamentals, Design, 

Construction and Operation‖ James & James, London, UK. 

23. GE (2005), ―1.5 MW Wind Turbine – Reference Material‖, GE Wind Energy Internal 

Training Course, Rev. L. 

24. General Specification from the Vestas Wind Systems A/S (2004), ―General 

Specification V82-1.65 MW MK II, NM82/1650 Vers. 2‖, Technical Sales Document 

TDS 4000258-01 EN. http://www.energymaine.com/brwind/brdocs/Appendix2_ 

V82%20%20General%20 Specification.pdf 

25. Germanischer Lloyd (2003), ―Guideline for the Certification of Wind Turbines‖, 

Hamburg, Germany. 

26. GH Bladed (2010), ―Wind Turbine Design Software‖ from http://www.gl-

garradhassan.com/en/software/GHBladed.php. 



159 

 

 

27. Greenwood, D. T. (1988), ―Principles of Dynamics‖, Second Edition, Prentice Hall, 

New Jersey. 

28. Hansen, A. C. (1995), ―Aerodynamic Damping of Blade Flap Motions at High Angles 

of Attack‖, Journal of Solar Energy Engineering, ASME, Vol. 117, pp. 194-199. 

29. Hermann, T. M., Mamarthupatti, D., and Locke, J. E. (2005), ―Postbuckling Analysis 

of a Wind Turbine Blade Substructure‖, Journal of Solar Energy Engineering, ASME, 

Vol. 127, pp. 544-552, and Erratum Vol. 128, p. 262. 

30. Hibbeler, R. C. (2004), ―Mechanics of Materials‖, Sixth Edition, Prentice Hall, New 

Jersey.  

31. Hong, R. C. (1984), ―Response of a Wind Turbine Blade to Seismic and Turbulent 

Wind Excitations‖ Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 

179 pages. 

32. Horn, R. A. and Johnson, C. R. (1991), ―Topics in Matrix Analysis‖, Cambridge 

University Press.  

33. International Electrotechnical Commission (2005), ―IEC 61400-1: Wind Turbines- 

Part 1: Design Requirements‖, Geneva, Switzerland. 

34. Johnson, W. (1994), ―Helicopter Theory‖, Dover Publications, Inc., New York. 

35. Jordan, D. W. and Smith, P. (1983), ―Nonlinear Ordinary Differential Equations‖, 

Oxford University Press, New York. 

36. Lobitz, D. W. (1984), ―A NASTRAN-Based Computer Program For Structural 

Dynamic Analysis of Horizontal Axis Wind Turbines‖, Proceedings of the Horizontal 

Axis Wind Turbine Technology Workshop, Department of Energy and NASA-Lewis, 

Cleveland. 



160 

 

 

37. Malcolm, D. J. (2002), ―Modal Response of 3-Bladed Wind Turbines‖, Journal of 

Solar Energy Engineering, ASME, Vol. 124, pp. 372-377. 

38. Malcolm, D. J. and Laird, D. L. (2003), ―Modeling of Blades as Equivalent Beams 

for Aeroelastic Analysis‖, Proceedings of the AIAA Wind Energy Symposium, Paper 

Nr. 0870, Reno, Nevada. 

39. Martínez, J. A., Irizarry, J., and Portela, G. (2001), ―Espectros de Diseño para las 

Ciudades Principales de Puerto Rico Basado en Registros de Aceleración Mundiales‖ 

Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil,   

Vol. 1, No. 1, pp. 21-31. 

40. Meirovitch, L. (1988), ―Methods of Analytical Dynamics‖, Reissued Series, 

McGraw-Hill. 

41. Morales, J. C. (2006), ―Dynamic Properties and Seismic Response of the Cable 

Structures and Towers of the Arecibo Observatory‖, PhD dissertation, University of 

Puerto Rico, Mayagüez Campus. 

42. Moretti, G. (1964), ―Function of a Complex Variable‖, Prentice Hall. 

43. Narayana, M. (1999), ―Catastrophic Failure due to Gyroscopic Effect of Small Scale 

Tilt up Horizontal Axis Wind Turbines‖, DEWI Magazine, Nr. 15, pp. 80-85. 

44. NEi (2010), NASTRAN, from: http://www.nenastran.com/nei-nastran.php. 

45. Oscar, D. S. and Paez, T. L. (1988), ―Analysis of Wind Turbines on Offshore Support 

Structures Excited by Random Wind and Random Waves‖, Sandia National 

Laboratories, SAND87-1689, Albuquerque, New Mexico. 



161 

 

 

46. Prowell, I. and Veers, P. (2009), ―Assessment of Wind Turbine Seismic Risk:  

Existing Literature and Simple Study of Tower Moment Demand‖ Sandia National 

Laboratories, SAND2009-1100, Albuquerque, New Mexico. 

47. Prowell, I., Veletzos, M., and Elgamal, A. (2008a), ―Full Scale Testing for 

Investigation of Wind Turbine Seismic Response‖, Unpublished. 

48. Prowell, I., Veletzos, M., and Elgamal, A. (2008b), ―Shake Table Test of a 65kW 

Wind Turbine and Computational Simulation‖, 14
th

 World Conference on Earthquake 

Engineering, Beijing, China.  

49. Saad, Y. (1981), ―Krylov Subspace Methods for Solving Large Unsymmetric Linear 

Systems‖, Mathematics of Computation, Vol. 37, pp. 105-126. 

50. Sinha, S. C. (2005), ―Analysis and Control of Nonlinear Dynamical Systems with 

Periodic Coefficients‖, Proceedings of the Workshop on Nonlinear Phenomena 

Modeling and Their Applications, 2-4 May, 2005, Sao Paulo, Brazil. 

51. Sorensen, P., Larsen, G. C., and Christensen, C. J.  (1995), ―A Complex Domain 

Model of Wind Turbine Structures‖, Journal of Solar Energy Engineering, ASME, 

Vol. 117, pp. 311-317. 

52. Stol, K. and Balas, M. (2001), ―Full-State Feedback Control of a Variable-Speed 

Wind Turbine:  A Comparison of Periodic and Constant Gains‖, Journal of Solar 

Energy Engineering, ASME, Vol. 123, pp. 319-326. 

53. Stol, K., Balas, M., and Bir, G. (2002), ―Floquet Modal Analysis of a Teetered-Rotor 

Wind Turbine‖, Journal of Solar Energy Engineering, ASME, Vol. 124, pp. 364-371. 



162 

 

 

54. Suárez, L. E., Singh, M. P., and Rohanimanesh, M. S. (1992), ―Seismic Response of 

Rotating Machines‖, Earthquake Engineering and Structural Dynamics, Vol. 21, pp. 

21-36. 

55. Sutherland, H. J. (1999), ―On the Fatigue Analysis of Wind Turbines‖, Sandia 

National Laboratories, SAND99-0089, Albuquerque, Nuevo Mexico. 

56. Tangler, J. L. (1987), ―A Horizontal Axis Wind Turbine Performance Prediction 

Code for Personal Computers‖, Solar Energy Research Institute, Golden, Colorado. 

57. Witcher, D. (2005), ―Seismic Analysis of Wind Turbines in the Time Domain‖, Wind 

Energy, Vol. 8, pp. 81-91. 

58. Zhao, X. and Maisser, P. (2006), ―Seismic Response Analysis of Wind Turbine 

Towers Including Soil-structure Interaction‖, Proceedings of the Institution of 

Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 220, pp. 53-61.  

59. Zhao, X., Maisser, P., and Wu, J. (2006), ―A New Multibody Modelling 

Methodology for Wind Turbine Structures Using a Cardanic Joint Beam Element‖, 

Renewable Energy, Vol. 32, pp. 532-546. 

 



163 

 

 

APPENDIX: NUMERICAL PROGRAMS 

 

 

 

 

 

 

 

 

 

 

%-----------------------------HAWTSeismicAnalysis.m-------------------------- 

% Is the main program to evaluate the seismic response of the operating wind 

% turbine model in combination with the function program SeismicHAWT.m. It 

% calculates the structural damping matrix from the non-operational turbine.  

% Also it calculate the forces and stresses at the blade roots, tower top 

% end, tower union sections, tower base. 

%----------------------------------------------------------------------------

clc 

clear all 

close all 

 

global Xg Yg Zg N tf Cs 

 

%-----------------------Physical & Mechanical Properties--------------------- 

 

mr = 43000;                         % Rotor mass [kg] 

mb = 8600;                          % Blade mass [kg] 

mn = 52000;                         % Nacelle mass [kg] 

mt = 125000;                        % Tower mass [kg] 

At = 5281;                          % Rotor swept area [m^2] 

dh = 3.45;                          % Tower to hub distance [m] 

Lb = 40;                            % Blade length [m] 

rh = 1;                             % Hub radius [m] 

rb = 0.96;                          % Blade root radius [m] 

tb = 0.12;                          % Blade root wall thickness [m] 

Ib = 1.15e6;                        % Blade moment of inertia [kg.m^2] 

Ia = 8600;                          % Hub axial moment of inertia [kg.m^2] 

It = 4300;                          % Hub transverse moment of inertia 

[kg.m^2] 

I = 5.96e-3;                        % Blade sectional moment of inertia [m^4] 

Eb = 4.4e10;                        % Blade modulus of elasticity [N/m^2] 

ht = 76;                            % Tower height [m] 

hh = 77;                            % Hub height [m] 

rbe = 1.99;                         % Tower base end radius [m] 

tbe = 2.5e-2;                       % Tower base end wall thickness [m] 

rte = 1.15;                         % Tower top end radius [m] 

tte = 1.1e-2;                       % Tower top end wall thickness [m] 

rm = 1.43;                          % Tower upper middle section radius [m] 

tm = 1.57e-2;                       % Tower upper middle wall thickness [m] 

rl = 1.71;                          % Tower lower middle section radius [m] 

tl = 2.03e-2;                       % Tower upper middle wall thickness [m] 

rho = 8900;                         % Steel density [kg/m^3] 
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E = 2.07e11;                        % Steel modulus of elasticity [N/m^2] 

G = 7.9e10;                         % Steel shear modulus [N/m^2] 

v = 0.3;                            % Steel Poisson's ratio 

rhoa = 0.0;                         % Vaccum density [kg/m^3] 

Rhoa = 1.225;                       % Air density [kg/m^3] 

%ct = 0.438;                         % Thrust coefficient 

ct = 0.158; 

%va = 13;                            % Average wind speed [m/s] 

va = 42.5; 

W = 1.65e6;                         % Output power [W] 

eta = 0.92;                         % Overall efficiency 

Omega = 0.0;                        % Rotor stationary angular velocity 

[rad/s] 

omega = 1.51;                       % Rotor operating angular velocity 

[rad/s] 

kb = 2.62e7;                        % Blade stiffness coefficient [N.m/rad] 

kt = 3.90e8;                        % Tower torsional stiffness coefficient 

[N.m/rad] 

c1 = 6.80e5;                        % Aerodyamic damping constant [N.s/rad] 

c2 = 2.49e4;                        % Aerodyamic damping constant [N.s/m] 

c3 = 1.79e7;                        % Aerodyamic damping constant [N.m.s/rad] 

c4 = 6.56e5;                        % Aerodyamic damping constant [N.m.s/m] 

le = 25.33;                         % Tower element length [m] 

A1 = 0.108;                         % Tower element area [m^2] 

A2 = 0.178;                         % Tower element area [m^2] 

A3 = 0.264;                         % Tower element area [m^2] 

I1 = 8.83e-2;                       % Tower sectional moment of inertia [m^4] 

I2 = 0.215;                         % Tower sectional moment of inertia [m^4] 

I3 = 0.443;                         % Tower sectional moment of inertia [m^4] 

g = 9.81;                           % Acceleration of gravity [m/s^2] 

t = 0.0;                            % Original Parked rotor  

zi = 0.01;                          % Modal damping ratio 

delta = 0.07;                       % Precone angle [rad] 

 

%---------------------------------Mass Matrix-------------------------------- 

 

M = zeros(16,16); 

M(1,1) = 1/4*mb*Lb^2+Ib; 

M(1,4) = -(1/2*mb*(rh+Lb/2)*Lb+Ib)*cos(Omega*t); 

M(1,7) = 1/2*mb*Lb; 

M(1,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*sin(Omega*t); 

M(2,4) = -(1/2*mb*(rh+Lb/2)*Lb+Ib)*cos(Omega*t+2*pi/3); 

M(2,7) = 1/2*mb*Lb; 

M(2,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*sin(Omega*t+2*pi/3); 

M(3,4) = -(1/2*mb*(rh+Lb/2)*Lb+Ib)*cos(Omega*t+4*pi/3); 

M(3,7) = 1/2*mb*Lb; 

M(3,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*sin(Omega*t+4*pi/3); 

M(4,4) = mr*dh^2+3/2*mb*(rh+Lb/2)^2+It+3/2*Ib; 

M(4,5) = mr*dh; 

M(5,5) = mr+mn+1/2*rho*A1*le; 

M(6,6) = 1/24*rho*A1*le^3; 

M(8,8) = mr*dh^2+3/2*mb*(rh+Lb/2)^2+It+3/2*Ib+1/24*rho*A1*le^3; 

M(9,9) = 1/2*rho*(A1+A2)*le; 

M(10,10) = 1/24*rho*(A1+A2)*le^3; 

M(13,13) = 1/2*rho*(A2+A3)*le; 
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M(14,14) = 1/24*rho*(A2+A3)*le^3; 

M(2,2) = M(1,1); 

M(3,3) = M(1,1); 

M(4,1) = M(1,4); 

M(4,2) = M(2,4); 

M(4,3) = M(3,4); 

M(5,4) = M(4,5); 

M(8,1) = M(1,8); 

M(8,2) = M(2,8); 

M(8,3) = M(3,8); 

M(7,1) = M(1,7); 

M(7,2) = M(2,7); 

M(7,3) = M(3,7); 

M(7,7) = M(5,5); 

M(11,11) = M(9,9); 

M(12,12) = M(10,10); 

M(15,15) = M(13,13); 

M(16,16) = M(14,14); 

 

%-------------------------------Stiffness Matrix----------------------------- 

 

K = zeros(16,16); 

K(1,1) = kb; 

K(2,2) = K(1,1); 

K(3,3) = K(1,1); 

K(4,4) = kt; 

K(5,5) = 12*E*I1/le^3; 

K(5,6) = 6*E*I1/le^2; 

K(5,9) = -12*E*I1/le^3; 

K(5,10) = 6*E*I1/le^2; 

K(6,6) = 4*E*I1/le; 

K(6,9) = -6*E*I1/le^2; 

K(6,10) = 2*E*I1/le; 

K(7,7) = 12*E*I1/le^3; 

K(7,8) = 6*E*I1/le^2; 

K(7,11) = -12*E*I1/le^3; 

K(7,12) = 6*E*I1/le^2; 

K(8,8) = 4*E*I1/le; 

K(8,11) = -6*E*I1/le^2; 

K(8,12) = 2*E*I1/le; 

K(9,9) = 12*E*(I1+I2)/le^3; 

K(9,10) = 6*E*(I2-I1)/le^2; 

K(9,13) = -12*E*I2/le^3; 

K(9,14) = 6*E*I2/le^2; 

K(10,10) = 4*E*(I1+I2)/le; 

K(10,13) = -6*E*I2/le^2; 

K(10,14) = 2*E*I2/le; 

K(11,11) = 12*E*(I1+I2)/le^3; 

K(11,12) = 6*E*(I2-I1)/le^2; 

K(11,15) = -12*E*I2/le^3; 

K(11,16) = 6*E*I2/le^2; 

K(12,12) = 4*E*(I1+I2)/le; 

K(12,15) = -6*E*I2/le^2; 

K(12,16) = 2*E*I2/le; 

K(13,13) = 12*E*(I2+I3)/le^3; 
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K(13,14) = 6*E*(I3-I2)/le^2; 

K(14,14) = 4*E*(I2+I3)/le; 

K(15,15) = 12*E*(I2+I3)/le^3; 

K(15,16) = 6*E*(I3-I2)/le^2; 

K(16,16) = 4*E*(I2+I3)/le; 

K(6,5) = K(5,6); 

K(8,7) = K(7,8); 

K(9,5) = K(5,9); 

K(9,6) = K(6,9); 

K(10,5) = K(5,10); 

K(10,6) = K(6,10); 

K(10,9) = K(9,10); 

K(11,7) = K(7,11); 

K(11,8) = K(8,11); 

K(12,7) = K(7,12); 

K(12,8) = K(8,12); 

K(12,11) = K(11,12); 

K(13,9) = K(9,13); 

K(13,10) = K(10,13); 

K(14,9) = K(9,14); 

K(14,10) = K(10,14); 

K(14,13) = K(13,14); 

K(15,11) = K(11,15); 

K(15,12) = K(12,15); 

K(16,11) = K(11,16); 

K(16,12) = K(12,16); 

K(16,15) = K(15,16); 

 

%-------------------Calculate the eigenvalues and eigenvectors--------------- 

 

[Phi, lambda] = eig(K,M); 

alf = 1./sqrt(diag(Phi'*M*Phi)); 

Phi = Phi*diag(alf); 

omegan = sqrt(diag(lambda)); 

[omegan,id] = sort(omegan); 

Phi = Phi(:,id); 

 

disp('***The natural frequencies [rad/s] are:'); omegan; 

disp('***The normalized vibration modes are:'); Phi; 

 

%------------------------Calculate modal damping matrix---------------------- 

 

Cd = diag(2*zi*omegan); 

Cs = M*Phi*Cd*Phi'*M; 

 

%----------------------------Load earthquake data---------------------------- 

 

load(['ElCentroNS.dat']) 

load(['ElCentroUp.dat']) 

load(['ElCentroEW.dat']) 

load(['TaftS69E.dat']) 

load(['TaftN21E.dat']) 

load(['TaftUp.dat']) 

load(['NorthridgeNS.dat']) 

load(['NorthridgeEW.dat']) 



167 

 

 

load(['NorthridgeUP.dat']) 

load(['SanSalvadorNS.dat']) 

load(['SanSalvadorEW.dat']) 

load(['SanSalvadorUP.dat']) 

%[nr,nc] = size(ElCentroNS); 

%[nr,nc] = size(TaftS69E); 

%[nr,nc] = size(NorthridgeNS); 

%[nr,nc] = size(SanSalvadorNS); 

%N = nr*nc; 

N = 4000; 

Xg(1:N) = zeros(1,N)'; 

Yg(1:N) = zeros(1,N)'; 

Zg(1:N) = zeros(1,N)'; 

 

%Xg(1:N) = g*ElCentroEW'; 

%Yg(1:N) = g*ElCentroUp'; 

%Zg(1:N) = g*ElCentroNS'; 

 

%Xg(1:N) = g*TaftN21E'; 

%Yg(1:N) = g*TaftUp'; 

%Zg(1:N) = g*TaftS69E'; 

 

%Xg(1:N) = g*NorthridgeEW'; 

%Yg(1:N) = g*NorthridgeUP'; 

%Zg(1:N) = g*NorthridgeNS'; 

 

%Xg(1:N) = g*SanSalvadorEW'; 

%Yg(1:N) = g*SanSalvadorUP'; 

%Zg(1:N) = g*SanSalvadorNS'; 

%------------------------------State equation solver------------------------- 

 

dt = 0.01; % actual record time increment 

tf = (N-1)*dt; 

n = 32;% Number of state equations 

ti = 0.01; % solver time increment 

tspan = (0:ti:tf);  

xo = diag(zeros(n));% Initial conditions 

options = odeset('RelTol',1e-6,'AbsTol',1e-6); 

[t,x] = ode45('SeismicHAWT',tspan,xo,options); 

 

%---------------------------------Response plots----------------------------- 

 

figure; 

subplot(3,1,1); 

plot(t,x(:,1)); grid on;   

xlabel('Time[sec]'); ylabel('Blade 1 [rad]') 

subplot(3,1,2); 

plot(t,x(:,2)); grid on;  

xlabel('Time[sec]'); ylabel('Blade 2 [rad]') 

subplot(3,1,3); 

plot(t,x(:,3)); grid on;  

xlabel('Time[sec]'); ylabel('Blade 3 [rad]') 

 

figure; 

subplot(3,1,1); 
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plot(t,x(:,7)); grid on; 

xlabel('Time[sec]'); ylabel('Displacement z_{1} [m]') 

subplot(3,1,2); 

plot(t,x(:,11)); grid on; 

xlabel('Time[sec]'); ylabel('Displacement z_{2} [m]') 

subplot(3,1,3) 

plot(t,x(:,15)); grid on;  

xlabel('Time[sec]'); ylabel('Displacement z_{3} [m]') 

 

figure; 

subplot(3,1,1); 

plot(t,x(:,5)); grid on; 

xlabel('Time[sec]'); ylabel('Displacement x_{1} [m]') 

subplot(3,1,2); 

plot(t,x(:,9)); grid on; 

xlabel('Time[sec]'); ylabel('Displacement x_{2} [m]') 

subplot(3,1,3) 

plot(t,x(:,13)); grid on;  

xlabel('Time[sec]'); ylabel('Displacement x_{3} [m]') 

 

%figure; plot(t,x(:,4)); grid on;  

%xlabel('Time[sec]'); ylabel('Tower Twist Angle [rad]') 

 

%figure; plot(t,x(:,8)); grid on;  

%xlabel('Time[sec]'); ylabel('Tower Top End Angle [rad]') 

 

%--------------------Calculate the discrete Fourier transform---------------- 

 

%T = N*dt; 

%dw = 2*3.14159/T; 

%w = 0:dw:(N*dt/ti-1)*dw; 

 

%FB1 = dt*fft(x(:,1)); 

%FFT = dt*fft(x(:,11)); 

%FLT = dt*fft(x(:,9)); 

%FTT = dt*fft(x(:,4)); 

 

%figure; plot(w,abs(FB1));grid on; 

%xlabel('Frequency [rad/s]'); ylabel('Amplitude') 

 

%figure; plot(w,abs(FFT));grid on; 

%xlabel('Frequency [rad/s]'); ylabel('Amplitude') 

 

%figure; plot(w,abs(FLT));grid on; 

%xlabel('Frequency [rad/s]'); ylabel('Amplitude') 

 

%figure; plot(w,abs(FTT));grid on; 

%xlabel('Frequency [rad/s]'); ylabel('Amplitude') 

 

%A = [w',abs(FFT)]; 

 

%----------------------------Calculate the Stresses-------------------------- 

 

F = K*(x(:,1:16))';  
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%----------------------------------Blade Roots------------------------------- 

 

%Ft = 1/3*(8/9*Rhoa/2*va^2)*pi*(2*rh*Lb+Lb^2);  %Betz blade 

Ft = 1/3*(1/2*Rhoa*ct*va^2*At);                 %Actual blade 

alfa = rh/Lb; 

xc = 1/3*(2*alfa+2)/(2*alfa+1)*Lb; 

 

%Mb1f = kb*delta-F(1,:); 

%Mb2f = kb*delta-F(2,:); 

%Mb3f = kb*delta-F(3,:); 

Mb1f = Ft*xc-F(1,:); 

Mb2f = Ft*xc-F(2,:); 

Mb3f = Ft*xc-F(3,:); 

 

T = W/omega/eta; 

 

Mmb1 = mb*g*Lb/2*cos(omega*t); 

Mmb2 = mb*g*Lb/2*cos(omega*t+2*pi/3); 

Mmb3 = mb*g*Lb/2*cos(omega*t+4*pi/3); 

 

Mb1e = Mmb1'-T/3/(2*rh/Lb+1); 

Mb2e = Mmb2'-T/3/(2*rh/Lb+1); 

Mb3e = Mmb3'-T/3/(2*rh/Lb+1); 

 

Mb1 = sqrt(Mb1f.^2+Mb1e.^2); 

Mb2 = sqrt(Mb2f.^2+Mb2e.^2); 

Mb3 = sqrt(Mb3f.^2+Mb3e.^2); 

 

sb1 = Mb1*rb/pi/rb^3/tb; 

sb2 = Mb2*rb/pi/rb^3/tb; 

sb3 = Mb3*rb/pi/rb^3/tb; 

%----------------------------------------- 

Fc = mb*(rh+Lb/2)*omega^2; 

 

Fg1 = mb*g*sin(omega*t); 

Fg2 = mb*g*sin(omega*t+2*pi/3); 

Fg3 = mb*g*sin(omega*t+4*pi/3); 

 

Fb1 = Fc-Fg1'; 

Fb2 = Fc-Fg2'; 

Fb3 = Fc-Fg3'; 

 

sa1 = Fb1/2/pi/rb/tb; 

sa2 = Fb2/2/pi/rb/tb; 

sa3 = Fb3/2/pi/rb/tb; 

%----------------------------------------- 

Sb1T = sb1+sa1; 

Sb2T = sb2+sa2; 

Sb3T = sb3+sa3; 

Sb1C = -sb1+sa1; 

Sb2C = -sb2+sa2; 

Sb3C = -sb3+sa3; 

disp('***The max tension stress in blade 1 [Mpa] is:'); max(Sb1T)/10^6 

disp('***The max tension stress in blade 2 [Mpa] is:'); max(Sb2T)/10^6 

disp('***The max tension stress in blade 3 [Mpa] is:'); max(Sb3T)/10^6 
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disp('***The max compressive stress in blade 1 [Mpa] is:'); min(Sb1C)/10^6 

disp('***The max compressive stress in blade 2 [Mpa] is:'); min(Sb2C)/10^6 

disp('***The max compressive stress in blade 3 [Mpa] is:'); min(Sb3C)/10^6 

%----------------------------------------- 

Vc = T/3/(rh+Lb/2); 

 

Vmb1 = mb*g*cos(omega*t); 

Vmb2 = mb*g*cos(omega*t+2*pi/3); 

Vmb3 = mb*g*cos(omega*t+4*pi/3); 

 

Ve1 = Vc-Vmb1'; 

Ve2 = Vc-Vmb2'; 

Ve3 = Vc-Vmb3'; 

 

Vi1 = 2*kb/Lb*(x(:,1))'; 

Vi2 = 2*kb/Lb*(x(:,2))'; 

Vi3 = 2*kb/Lb*(x(:,3))'; 

 

Vt1 = Vi1-Ft; 

Vt2 = Vi2-Ft; 

Vt3 = Vi3-Ft; 

 

Vb1 = sqrt(Ve1.^2+Vt1.^2); 

Vb2 = sqrt(Ve2.^2+Vt2.^2); 

Vb3 = sqrt(Ve3.^2+Vt3.^2); 

%------------------------------------------ 

tau1 = 2*Vb1/2/pi/rb/tb; 

tau2 = 2*Vb2/2/pi/rb/tb; 

tau3 = 2*Vb3/2/pi/rb/tb; 

disp('***The max shear stress in blade 1 [Mpa] is:'); max(abs(tau1))/10^6 

disp('***The max shear stress in blade 2 [Mpa] is:'); max(abs(tau2))/10^6 

disp('***The max shear stress in blade 3 [Mpa] is:'); max(abs(tau3))/10^6 

 

%--------------------------------Tower Top End------------------------------- 

 

Fxte = F(5,:); 

Fzte = F(7,:)-3*Ft; 

Mzte = F(6,:); 

Mxte = F(8,:)-3*Ft*(hh-ht); 

Tte = F(4,:); 

 

Mrte = sqrt((Mxte+mr*g*dh).^2+Mzte.^2); 

Sbte = Mrte*rte/pi/rte^3/tte; 

SbtemaxT = Sbte-(mr+mn)*g/2/pi/rte/tte; 

SbtemaxC = -Sbte-(mr+mn)*g/2/pi/rte/tte; 

disp('***The max tension stress in tower top end section in [Mpa] is:'); 

max(SbtemaxT)/10^6 

disp('***The max compressive stress in tower top end section in [Mpa] is:'); 

min(SbtemaxC)/10^6 

 

Frte = sqrt(Fxte.^2+Fzte.^2); 

taute = 2*Frte/2/pi/rte/tte; 

tautemax = taute+abs(Tte)*rte/2/pi/rte^3/tte; 

disp('***The max shear stress in tower top end section in [Mpa] is:'); 

max(tautemax)/10^6 
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%---------------------------Tower Upper Middle Section----------------------- 

 

Fxm = F(9,:); 

Fzm = F(11,:)-3*Ft; 

Mzm = F(10,:); 

Mxm = F(12,:)-3*Ft*(hh-2*ht/3); 

 

Mrm = sqrt((Mxm+mr*g*dh).^2+Mzm.^2); 

Sbm = Mrm*rm/pi/rm^3/tm; 

SbmmaxT = Sbm-(mr+mn+rho*A1*le)*g/2/pi/rm/tm; 

SbmmaxC = -Sbm-(mr+mn+rho*A1*le)*g/2/pi/rm/tm; 

disp('***The max tension stress in tower middle section in [Mpa] is:'); 

max(SbmmaxT)/10^6 

disp('***The max compressive stress in tower middle section in [Mpa] is:'); 

min(SbmmaxC)/10^6 

 

Frm = sqrt(Fxm.^2+Fzm.^2); 

taum = 2*Frm/2/pi/rm/tm; 

taummax = taum+abs(Tte)*rm/2/pi/rm^3/tm; 

disp('***The max shear stress in tower middle section in [Mpa] is:'); 

max(taummax)/10^6 

 

%--------------------------Tower Lower Middle Section------------------------ 

 

Fxl = F(13,:); 

Fzl = F(15,:)-3*Ft; 

Mzl = F(14,:); 

Mxl = F(16,:)-3*Ft*(hh-ht/3); 

 

Mrl = sqrt((Mxl+mr*g*dh).^2+Mzl.^2); 

Sbl = Mrl*rl/pi/rl^3/tl; 

SblmaxT = Sbl-(mr+mn+rho*(A1+A2)*le)*g/2/pi/rl/tl; 

SblmaxC = -Sbl-(mr+mn+rho*(A1+A2)*le)*g/2/pi/rl/tl; 

disp('***The max tension stress in tower lower middle section in [Mpa] is:'); 

max(SblmaxT)/10^6 

disp('***The max compressive stress in tower lower middle section in [Mpa] 

is:'); min(SblmaxC)/10^6 

 

Frl = sqrt(Fxl.^2+Fzl.^2); 

taul = 2*Frl/2/pi/rl/tl; 

taulmax = taul+abs(Tte)*rl/2/pi/rl^3/tl; 

disp('***The max shear stress in tower lower middle section in [Mpa] is:'); 

max(taulmax)/10^6 

 

%------------------------------Tower Bottom End------------------------------ 

 

k13 = -12*E*I3/le^3; 

k23 = -6*E*I3/le^2; 

k14 = -k23; 

k24 = 2*E*I3/le; 

k57 = k13; 

k67 = k23; 

k58 = -k23; 

k68 = k24; 
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Fxbe = (k13*x(:,13)+k23*x(:,14))'; 

Mzbe = (k14*x(:,13)+k24*x(:,14))'; 

Fzbe = (k57*x(:,15)+k67*x(:,16))'-3*Ft; 

Mxbe = (k58*x(:,15)+k68*x(:,16))'-3*Ft*hh; 

 

Mrbe = sqrt((Mxbe+mr*g*dh).^2+Mzbe.^2); 

Sbbe = Mrbe*rbe/pi/rbe^3/tbe; 

SbbemaxT = Sbbe-(mr+mn+mt)*g/2/pi/rbe/tbe; 

SbbemaxC = -Sbbe-(mr+mn+mt)*g/2/pi/rbe/tbe; 

disp('***The max tension stress in tower bottom end in [Mpa] is:'); 

max(SbbemaxT)/10^6 

disp('***The max compressive stress in tower bottom end in [Mpa] is:'); 

min(SbbemaxC)/10^6 

 

Frbe = sqrt(Fxbe.^2+Fzbe.^2); 

taube = 2*Frbe/2/pi/rbe/tbe; 

taubemax = taube+abs(Tte)*rbe/2/pi/rbe^3/tbe; 

disp('***The max shear stress in tower bottom end in [Mpa] is:'); 

max(taubemax)/10^6 
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%----------------------------------SeismicHAWT.m----------------------------- 

% This code is a function subprogram required by HAWTSeismicAnalysis.m to 

% evaluate the seismic response of the wind turbine. It contains the 

% equations of motion in first order state form. Also permits the 

% interpolation of the acceleration records of the earthquakes if needed. 

%---------------------------------------------------------------------------- 

 

 

function xdot=SeismicHAWT(t,x) 

global Xg Yg Zg N tf Cs 

%-------------------------Physical & Mechanical Properties------------------- 

 

mr = 43000;                         % Rotor mass [kg] 

mb = 8600;                          % Blade mass [kg] 

mn = 52000;                         % Nacelle mass [kg] 

dh = 3.45;                          % Tower to hub distance [m] 

Lb = 40;                            % Blade length [m] 

rh = 1;                             % Hub radius [m] 

rb = 0.96;                          % Blade root radius [m] 

tb = 0.12;                          % Blade root wall thickness [m] 

Ib = 1.15e6;                        % Blade moment of inertia [kg.m^2] 

Ia = 8600;                          % Hub axial moment of inertia [kg.m^2] 

It = 4300;                          % Hub transverse moment of inertia 

[kg.m^2] 

I = 5.96e-3;                        % Blade sectional moment of inertia [m^4] 

Eb = 4.4e10;                        % Blade modulus of elasticity [N/m^2] 

ht = 76;                            % Tower height [m] 

rbe = 1.99;                         % Tower base end radius [m] 

tbe = 2.5e-2;                       % Tower base end wall thickness [m] 

rte = 1.15;                         % Tower top end radius [m] 

tte = 1.1e-2;                       % Tower top end wall thickness [m] 

rho = 8900;                         % Steel density [kg/m^3] 

E = 2.07e11;                        % Steel modulus of elasticity [N/m^2] 

G = 7.9e10;                         % Steel shear modulus [N/m^2] 

v = 0.3;                            % Steel Poisson's ratio 

rhoa = 1.225;                       % Air density [kg/m^3] 

%va = 13;                            % Average wind speed [m/s] 

va = 42.5; 

W = 1.65e6;                         % Output power [W] 

eta = 0.92;                         % Overall efficiency 

Omega = 1.51;                       % Rotor operating angular velocity 

[rad/s] 

kb = 2.62e7;                        % Blade stiffness coefficient [N.m/rad] 

kt = 3.90e8;                        % Tower torsional stiffness coefficient 

[N.m/rad] 

c1 = 6.80e5;                        % Aerodyamic damping constant [N.s/rad] 

c2 = 2.49e4;                        % Aerodyamic damping constant [N.s/m] 

c3 = 1.79e7;                        % Aerodyamic damping constant [N.m.s/rad] 

c4 = 6.56e5;                        % Aerodyamic damping constant [N.m.s/m] 

le = 25.33;                         % Tower element length [m] 

A1 = 0.108;                         % Tower element area [m^2] 

A2 = 0.178;                         % Tower element area [m^2] 

A3 = 0.264;                         % Tower element area [m^2] 

I1 = 8.83e-2;                       % Tower sectional moment of inertia [m^4] 

I2 = 0.215;                         % Tower sectional moment of inertia [m^4] 
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I3 = 0.443;                         % Tower sectional moment of inertia [m^4] 

g = 9.81;                           % Acceleration of gravity [m/s^2] 

 

 

%----------------------------------Mass Matrix------------------------------- 

 

M = zeros(16,16); 

M(1,1) = 1/4*mb*Lb^2+Ib; 

M(1,4) = -(1/2*mb*(rh+Lb/2)*Lb+Ib)*cos(Omega*t); 

M(1,7) = 1/2*mb*Lb; 

M(1,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*sin(Omega*t); 

M(2,4) = -(1/2*mb*(rh+Lb/2)*Lb+Ib)*cos(Omega*t+2*pi/3); 

M(2,7) = 1/2*mb*Lb; 

M(2,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*sin(Omega*t+2*pi/3); 

M(3,4) = -(1/2*mb*(rh+Lb/2)*Lb+Ib)*cos(Omega*t+4*pi/3); 

M(3,7) = 1/2*mb*Lb; 

M(3,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*sin(Omega*t+4*pi/3); 

M(4,4) = mr*dh^2+3/2*mb*(rh+Lb/2)^2+It+3/2*Ib; 

M(4,5) = mr*dh; 

M(5,5) = mr+mn+1/2*rho*A1*le; 

M(6,6) = 1/24*rho*A1*le^3; 

M(8,8) = mr*dh^2+3/2*mb*(rh+Lb/2)^2+It+3/2*Ib+1/24*rho*A1*le^3; 

M(9,9) = 1/2*rho*(A1+A2)*le; 

M(10,10) = 1/24*rho*(A1+A2)*le^3; 

M(13,13) = 1/2*rho*(A2+A3)*le; 

M(14,14) = 1/24*rho*(A2+A3)*le^3; 

M(2,2) = M(1,1); 

M(3,3) = M(1,1); 

M(4,1) = M(1,4); 

M(4,2) = M(2,4); 

M(4,3) = M(3,4); 

M(5,4) = M(4,5); 

M(8,1) = M(1,8); 

M(8,2) = M(2,8); 

M(8,3) = M(3,8); 

M(7,1) = M(1,7); 

M(7,2) = M(2,7); 

M(7,3) = M(3,7); 

M(7,7) = M(5,5); 

M(11,11) = M(9,9); 

M(12,12) = M(10,10); 

M(15,15) = M(13,13); 

M(16,16) = M(14,14); 

 

Me = zeros(16,16); 

Me(1,1) = M(1,7); 

Me(2,2) = M(2,7); 

Me(3,3) = M(3,7); 

Me(4,4) = M(4,5); 

Me(5,5) = M(5,5); 

Me(7,7) = M(7,7); 

Me(8,8) = M(4,5); 

Me(9,9) = M(9,9); 

Me(11,11) = M(11,11); 

Me(13,13) = M(13,13); 
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Me(15,15) = M(15,15); 

 

%----------------------------------Damping Matrix---------------------------- 

 

C = zeros(16,16); 

C(1,1) = c3; 

C(1,4) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*sin(Omega*t); 

C(1,7) = c4; 

C(1,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*cos(Omega*t); 

C(2,2) = c3; 

C(2,4) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*sin(Omega*t+2*pi/3); 

C(2,7) = c4; 

C(2,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*cos(Omega*t+2*pi/3); 

C(3,3) = c3; 

C(3,4) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*sin(Omega*t+4*pi/3); 

C(3,7) = c4; 

C(3,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*cos(Omega*t+4*pi/3); 

C(4,8) = -(3*mb*(rh+Lb/2)^2+Ia+3*Ib)*Omega; 

C(7,1) = c1; 

C(7,2) = c1; 

C(7,3) = c1; 

C(7,7) = 3*c2; 

C(4,1) = C(1,4); 

C(4,2) = C(2,4); 

C(4,3) = C(3,4); 

C(8,1) = C(1,8); 

C(8,2) = C(2,8); 

C(8,3) = C(3,8); 

C(8,4) = -C(4,8); 

C = C+Cs; 

 

%--------------------------------Stiffness Matrix---------------------------- 

 

K = zeros(16,16); 

K(1,1) = kb; 

K(2,2) = K(1,1); 

K(3,3) = K(1,1); 

K(4,4) = kt; 

K(5,5) = 12*E*I1/le^3; 

K(5,6) = 6*E*I1/le^2; 

K(5,9) = -12*E*I1/le^3; 

K(5,10) = 6*E*I1/le^2; 

K(6,6) = 4*E*I1/le; 

K(6,9) = -6*E*I1/le^2; 

K(6,10) = 2*E*I1/le; 

K(7,7) = 12*E*I1/le^3; 

K(7,8) = 6*E*I1/le^2; 

K(7,11) = -12*E*I1/le^3; 

K(7,12) = 6*E*I1/le^2; 

K(8,8) = 4*E*I1/le; 

K(8,11) = -6*E*I1/le^2; 

K(8,12) = 2*E*I1/le; 

K(9,9) = 12*E*(I1+I2)/le^3; 

K(9,10) = 6*E*(I2-I1)/le^2; 

K(9,13) = -12*E*I2/le^3; 
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K(9,14) = 6*E*I2/le^2; 

K(10,10) = 4*E*(I1+I2)/le; 

K(10,13) = -6*E*I2/le^2; 

K(10,14) = 2*E*I2/le; 

K(11,11) = 12*E*(I1+I2)/le^3; 

K(11,12) = 6*E*(I2-I1)/le^2; 

K(11,15) = -12*E*I2/le^3; 

K(11,16) = 6*E*I2/le^2; 

K(12,12) = 4*E*(I1+I2)/le; 

K(12,15) = -6*E*I2/le^2; 

K(12,16) = 2*E*I2/le; 

K(13,13) = 12*E*(I2+I3)/le^3; 

K(13,14) = 6*E*(I3-I2)/le^2; 

K(14,14) = 4*E*(I2+I3)/le; 

K(15,15) = 12*E*(I2+I3)/le^3; 

K(15,16) = 6*E*(I3-I2)/le^2; 

K(16,16) = 4*E*(I2+I3)/le; 

K(6,5) = K(5,6); 

K(8,7) = K(7,8); 

K(9,5) = K(5,9); 

K(9,6) = K(6,9); 

K(10,5) = K(5,10); 

K(10,6) = K(6,10); 

K(10,9) = K(9,10); 

K(11,7) = K(7,11); 

K(11,8) = K(8,11); 

K(12,7) = K(7,12); 

K(12,8) = K(8,12); 

K(12,11) = K(11,12); 

K(13,9) = K(9,13); 

K(13,10) = K(10,13); 

K(14,9) = K(9,14); 

K(14,10) = K(10,14); 

K(14,13) = K(13,14); 

K(15,11) = K(11,15); 

K(15,12) = K(12,15); 

K(16,11) = K(11,16); 

K(16,12) = K(12,16); 

K(16,15) = K(15,16); 

 

 

rx = [0;0;0;1;1;0;0;0;1;0;0;0;1;0;0;0]; 

ry = [0;0;0;0;0;0;0;-1;0;0;0;0;0;0;0;0]; 

rz = [1;1;1;0;0;0;1;0;0;0;1;0;0;0;1;0]; 

 

A = [zeros(16) eye(16);-(inv(M))*K -(inv(M))*C]; 

B = [zeros(16);-(inv(M))*Me]; 

 

 

%------------------------Interpolation of earthquake data-------------------- 

 

Dt = 0.01; % Actual record time increment 

tx = (0:Dt:tf); 

ty = tx; 

tz = tx; 
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Xb = interp1(tx,Xg,t); 

Yb = interp1(ty,Yg,t); 

Zb = interp1(tz,Zg,t); 

 

%--------------------------------State Equation------------------------------ 

 

xdot = 

A*[x(1);x(2);x(3);x(4);x(5);x(6);x(7);x(8);x(9);x(10);x(11);x(12);x(13);x(14)

;x(15);x(16);x(17);x(18);x(19);x(20)... 

  

;x(21);x(22);x(23);x(24);x(25);x(26);x(27);x(28);x(29);x(30);x(31);x(32)]+(B*

rx*Xb)+(B*ry*Yb)+(B*rz*Zb); 
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%----------------------------------Floquet.m--------------------------------- 

% Main program to calculate the Floquet matrix and obtain the eigenvalues and 

% eigenvectors of the free vibration operating wind turbine. It needs the 

% function program HAWT.m to run.  Also evaluates for each eigenvector the 

% optimum modal shape and normalizes it so the maximum entry will be 1.  

%---------------------------------------------------------------------------- 

 

clc 

clear all 

close all 

 

n = 32                              % Number of state equations 

Omega = 1.51; 

T = 2*pi/Omega;                     % Period [sec] 

dt = 0.01; 

%tspan = (0:dt:T);  

tspan = [0 T]; 

xo = eye(n);                        % Initial conditions 

options = odeset('RelTol',1e-6,'AbsTol',1e-6); 

 

for i = 1:n 

[t,x] = ode45('HAWT',tspan,xo(:,i),options); 

%[t,x] = ode45('HAWT',tspan,xo(:,i)); 

[nr,nc] = size(t); 

    for j = 1:n 

    Phi(j,i)= x(nr,j); 

    end 

end 

 

[V, lambda] = eig(Phi); 

S = 1/T*log(diag(lambda)); 

Vabs = abs(V(1:n/2,:)); 

Vangle = angle(V(1:n/2,:)); 

%disp ('*** The Floquet transition matrix is:'); Phi 

%disp ('*** The characteristic multipliers are:'); lambda 

%disp ('*** The eigenvectors are:'); V 

disp ('*** The characteristic exponent are:'); S 

disp ('*** The module of V are:'); Vabs 

disp ('*** The phase angle of V are:'); Vangle*180/pi 

 

aa = abs(V(1:n/2,:)); 

bb = angle(V(1:n/2,:)); 

SS = sum(aa.^2.*sin(2*bb)); 

CC = sum(aa.^2.*cos(2*bb)); 

theta = 1/2*atan(SS./CC); 

thetan = pi/180*[-0.0395,0.0395,-0.0010,0.0010,0.0128,-0.0128,4.2968,-

4.2968,0.0992,-0.0992,-1.1527,1.1527,... 

        -0.3453,0.3453,1.3917,-1.3917,-0.5040,0.5040,-28.8368,28.8368,-

13.9532,13.9532,1.5969,-1.5969,7.4711,-7.4711,0,... 

         40.9089,-40.9089,-19.0323,19.0323,0]; 

for i = 1:n 

    maxp(i) = sum(aa(:,i).^2.*cos(2*(bb(:,i)-theta(:,i)))); 

    P(:,i) = Vabs(:,i).*cos(Vangle(:,i)-thetan(:,i)); 

    Pnorm(:,i) = P(:,i)./max(abs(P(:,i))); 

end 
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disp ('*** The optimal mode shape phase angle'); theta*180/pi 

disp ('*** Condition for maximum synchronous motion'); maxp 
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%-------------------------------------HAWT.m--------------------------------- 

% This is a function subprogram required by the frogram Floquet.m to run.  It 

% contains the equations of motion of the wind turbine to perform an 

% operating free vibration analysis ignoring structural damping and including 

% aerodynamic damping. 

%---------------------------------------------------------------------------- 

 

function xdot=HAWT(t,x) 

 

%------------------------Physical & Mechanical Properties-------------------- 

 

mr = 43000;                         % Rotor mass [kg] 

mb = 8600;                          % Blade mass [kg] 

mn = 52000;                         % Nacelle mass [kg] 

dh = 3.45;                          % Tower to hub distance [m] 

Lb = 40;                            % Blade length [m] 

rh = 1;                             % Hub radius [m] 

rb = 0.96;                          % Blade root radius [m] 

tb = 0.12;                          % Blade root wall thickness [m] 

Ib = 1.15e6;                        % Blade moment of inertia [kg.m^2] 

Ia = 8600;                          % Hub axial moment of inertia [kg.m^2] 

It = 4300;                          % Hub transverse moment of inertia 

[kg.m^2] 

I = 5.96e-3;                        % Blade sectional moment of inertia [m^4] 

Eb = 4.4e10;                        % Blade modulus of elasticity [N/m^2] 

ht = 76;                            % Tower height [m] 

rbe = 1.99;                         % Tower base end radius [m] 

tbe = 2.5e-2;                       % Tower base end wall thickness [m] 

rte = 1.15;                         % Tower top end radius [m] 

tte = 1.1e-2;                       % Tower top end wall thickness [m] 

rho = 8900;                         % Steel density [kg/m^3] 

E = 2.07e11;                        % Steel modulus of elasticity [N/m^2] 

G = 7.9e10;                         % Steel shear modulus [N/m^2] 

v = 0.3;                            % Steel Poisson's ratio 

rhoa = 1.225;                       % Air density [kg/m^3] 

va = 13;                            % Average wind speed [m/s] 

W = 1.65e6;                         % Output power [W] 

eta = 0.92;                         % Overall efficiency 

Omega = 1.51;                       % Rotor operating angular velocity 

[rad/s] 

kb = 2.62e7;                        % Blade stiffness coefficient [N.m/rad] 

kt = 3.90e8;                        % Tower torsional stiffness coefficient 

[N.m/rad] 

c1 = 6.80e5;                        % Aerodyamic damping constant [N.s/rad] 

c2 = 2.49e4;                        % Aerodyamic damping constant [N.s/m] 

c3 = 1.79e7;                        % Aerodyamic damping constant [N.m.s/rad] 

c4 = 6.56e5;                        % Aerodyamic damping constant [N.m.s/m] 

le = 25.33;                         % Tower element length [m] 

A1 = 0.108;                         % Tower element area [m^2] 

A2 = 0.178;                         % Tower element area [m^2] 

A3 = 0.264;                         % Tower element area [m^2] 

I1 = 8.83e-2;                       % Tower sectional moment of inertia [m^4] 

I2 = 0.215;                         % Tower sectional moment of inertia [m^4] 

I3 = 0.443;                         % Tower sectional moment of inertia [m^4] 
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%----------------------------------Mass Matrix------------------------------- 

 

M = zeros(16,16); 

M(1,1) = 1/4*mb*Lb^2+Ib; 

M(1,4) = -(1/2*mb*(rh+Lb/2)*Lb+Ib)*cos(Omega*t); 

M(1,7) = 1/2*mb*Lb; 

M(1,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*sin(Omega*t); 

M(2,4) = -(1/2*mb*(rh+Lb/2)*Lb+Ib)*cos(Omega*t+2*pi/3); 

M(2,7) = 1/2*mb*Lb; 

M(2,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*sin(Omega*t+2*pi/3); 

M(3,4) = -(1/2*mb*(rh+Lb/2)*Lb+Ib)*cos(Omega*t+4*pi/3); 

M(3,7) = 1/2*mb*Lb; 

M(3,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*sin(Omega*t+4*pi/3); 

M(4,4) = mr*dh^2+3/2*mb*(rh+Lb/2)^2+It+3/2*Ib; 

M(4,5) = mr*dh; 

M(5,5) = mr+mn+1/2*rho*A1*le; 

M(6,6) = 1/24*rho*A1*le^3; 

M(8,8) = mr*dh^2+3/2*mb*(rh+Lb/2)^2+It+3/2*Ib+1/24*rho*A1*le^3; 

M(9,9) = 1/2*rho*(A1+A2)*le; 

M(10,10) = 1/24*rho*(A1+A2)*le^3; 

M(13,13) = 1/2*rho*(A2+A3)*le; 

M(14,14) = 1/24*rho*(A2+A3)*le^3; 

M(2,2) = M(1,1); 

M(3,3) = M(1,1); 

M(4,1) = M(1,4); 

M(4,2) = M(2,4); 

M(4,3) = M(3,4); 

M(5,4) = M(4,5); 

M(8,1) = M(1,8); 

M(8,2) = M(2,8); 

M(8,3) = M(3,8); 

M(7,1) = M(1,7); 

M(7,2) = M(2,7); 

M(7,3) = M(3,7); 

M(7,7) = M(5,5); 

M(11,11) = M(9,9); 

M(12,12) = M(10,10); 

M(15,15) = M(13,13); 

M(16,16) = M(14,14); 

 

%---------------------------------Damping Matrix----------------------------- 

 

C = zeros(16,16); 

C(1,1) = c3; 

C(1,4) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*sin(Omega*t); 

C(1,7) = c4; 

C(1,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*cos(Omega*t); 

C(2,2) = c3; 

C(2,4) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*sin(Omega*t+2*pi/3); 

C(2,7) = c4; 

C(2,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*cos(Omega*t+2*pi/3); 

C(3,3) = c3; 

C(3,4) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*sin(Omega*t+4*pi/3); 

C(3,7) = c4; 
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C(3,8) = (1/2*mb*(rh+Lb/2)*Lb+Ib)*Omega*cos(Omega*t+4*pi/3); 

C(4,8) = -(3*mb*(rh+Lb/2)^2+Ia+3*Ib)*Omega; 

C(7,1) = c1; 

C(7,2) = c1; 

C(7,3) = c1; 

C(7,7) = 3*c2; 

C(4,1) = C(1,4); 

C(4,2) = C(2,4); 

C(4,3) = C(3,4); 

C(8,1) = C(1,8); 

C(8,2) = C(2,8); 

C(8,3) = C(3,8); 

C(8,4) = -C(4,8); 

 

%-------------------------------Stiffness Matrix----------------------------- 

 

K = zeros(16,16); 

K(1,1) = kb; 

K(2,2) = K(1,1); 

K(3,3) = K(1,1); 

K(4,4) = kt; 

K(5,5) = 12*E*I1/le^3; 

K(5,6) = 6*E*I1/le^2; 

K(5,9) = -12*E*I1/le^3; 

K(5,10) = 6*E*I1/le^2; 

K(6,6) = 4*E*I1/le; 

K(6,9) = -6*E*I1/le^2; 

K(6,10) = 2*E*I1/le; 

K(7,7) = 12*E*I1/le^3; 

K(7,8) = 6*E*I1/le^2; 

K(7,11) = -12*E*I1/le^3; 

K(7,12) = 6*E*I1/le^2; 

K(8,8) = 4*E*I1/le; 

K(8,11) = -6*E*I1/le^2; 

K(8,12) = 2*E*I1/le; 

K(9,9) = 12*E*(I1+I2)/le^3; 

K(9,10) = 6*E*(I2-I1)/le^2; 

K(9,13) = -12*E*I2/le^3; 

K(9,14) = 6*E*I2/le^2; 

K(10,10) = 4*E*(I1+I2)/le; 

K(10,13) = -6*E*I2/le^2; 

K(10,14) = 2*E*I2/le; 

K(11,11) = 12*E*(I1+I2)/le^3; 

K(11,12) = 6*E*(I2-I1)/le^2; 

K(11,15) = -12*E*I2/le^3; 

K(11,16) = 6*E*I2/le^2; 

K(12,12) = 4*E*(I1+I2)/le; 

K(12,15) = -6*E*I2/le^2; 

K(12,16) = 2*E*I2/le; 

K(13,13) = 12*E*(I2+I3)/le^3; 

K(13,14) = 6*E*(I3-I2)/le^2; 

K(14,14) = 4*E*(I2+I3)/le; 

K(15,15) = 12*E*(I2+I3)/le^3; 

K(15,16) = 6*E*(I3-I2)/le^2; 

K(16,16) = 4*E*(I2+I3)/le; 
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K(6,5) = K(5,6); 

K(8,7) = K(7,8); 

K(9,5) = K(5,9); 

K(9,6) = K(6,9); 

K(10,5) = K(5,10); 

K(10,6) = K(6,10); 

K(10,9) = K(9,10); 

K(11,7) = K(7,11); 

K(11,8) = K(8,11); 

K(12,7) = K(7,12); 

K(12,8) = K(8,12); 

K(12,11) = K(11,12); 

K(13,9) = K(9,13); 

K(13,10) = K(10,13); 

K(14,9) = K(9,14); 

K(14,10) = K(10,14); 

K(14,13) = K(13,14); 

K(15,11) = K(11,15); 

K(15,12) = K(12,15); 

K(16,11) = K(11,16); 

K(16,12) = K(12,16); 

K(16,15) = K(15,16); 

 

%----------------------------------State Equation---------------------------- 

 

 

 

A = [zeros(16) eye(16);-(inv(M))*K -(inv(M))*C]; 

 

xdot = 

A*[x(1);x(2);x(3);x(4);x(5);x(6);x(7);x(8);x(9);x(10);x(11);x(12);x(13);x(14)

;x(15);x(16);x(17);x(18);x(19);x(20)... 

  ;x(21);x(22);x(23);x(24);x(25);x(26);x(27);x(28);x(29);x(30);x(31);x(32)]; 

 


