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ABSTRACT 
  

 

 

This work approaches the multiple criteria simulation optimization problem in manufacturing in 

an iterative fashion. Such problem entails using an optimization strategy to manipulate the 

parameters of a simulation model to arrive to the best possible configurations in the presence of 

several performance measures in conflict. The system can be a real manufacturing setting or a 

computer simulation of it, albeit the latter is the emphasis of this work. Pareto Efficiency 

conditions are used in an iterative framework based on experimental design and pairwise 

comparison. In particular, this work improves upon the use of Data Envelopment Analysis to 

determine the efficient frontier as well as the use of a single-pass algorithm previously proposed 

by our research group. The results show a rapid convergence to a more precise characterization of 

the Pareto-efficient solutions. The algorithm is illustrated by a series of cases involving simulation 

of manufacturing systems as well as prototyping by 3D printing.  

  

  



 

 

iii 

 

 

RESUMEN 

 

Este trabajo se enfoca en la optimización de problemas  múltiple criterio a través de simulación en 

manufactura. Este tipo de  problemas implica la utilización de una estrategia de optimización para 

manipular los parámetros de un problema de simulación para llegar a las mejores configuraciones 

posibles en la presencia de varias medidas de desempeño en conflicto. El sistema puede ser los 

parámetros de una manufactura real o una simulación por computadora de esta, aunque la ultima 

es el énfasis de este trabajo. Las condiciones de Pareto son usadas en un marco iterativo basado en 

diseño experimental y comparación por pares. En particular este trabajo es una mejora sobre el uso 

del algoritmo basado en Análisis Envolvente de Datos para determinar la frontera eficiente 

previamente propuesto por nuestro grupo de investigación, así como del uso de un algoritmo de 

una sola iteración también propuesto anteriormente en nuestro grupo. Los resultados muestran una 

rápida convergencia a una caracterización más precisa de las soluciones Pareto eficientes. El 

algoritmo es ilustrado por una serie de casos que involucran la simulación de sistemas de 

manufactura, así como también la impresión de prototipos 3D. 
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1 Introduction 

  

The use of optimization is critical in manufacturing to approach three decision-making problems: 

design, control and improvement of processes and systems. The underlying optimization objective 

in all three can be casted as finding values for decision variables that most competitively meet 

several performance measures (PMs) or criteria simultaneously. Although the use of a single PM 

has been a popular approach to all three, decision models that involve multiple conflicting PMs 

simultaneously and explicitly more closely reflect manufacturing reality. These latter models fall 

in the realm of Multiple Criteria Optimization [1-4].  

Nowadays, it is a prevailing practice to rely on computer simulation to estimate the 

performance of manufacturing processes and systems. Computer simulation is, obviously, a lot 

more convenient than carrying out experiments with actual systems. With ever-increasing 

computing power, this practice will only become stronger in the future. The concatenation of 

computer simulation and the optimization objective described previously has resulted in the field 

known as Simulation-Optimization [5]. In a manufacturing context, Simulation Optimization is 

commonly applied to approach the decision-making problems of design, control or improvement 

of processes and systems. It follows then that –in this context- considering the simultaneous 

optimization of multiple criteria can contribute to make simulation-optimization closer to 

manufacturing reality. Therefore, it is of interest to study multiple criteria simulation optimization 

(MCSO) problems [6].  

Incorporating the ability to deal with multiple criteria in conflict greatly enhances simulation-

optimization. In order to fully exploit the power of a computer simulation model, however, it 
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becomes paramount that simulation optimization methods be capable to help decide upon the 

values of tens of variables at a time in a convenient manner. The contribution of these variables 

should be assessed not only in their linear contribution to the PMs of interest, but also at least in 

their quadratic contribution and their second order interactions to be more useful for decision 

making. Indeed, nonlinearity and interaction are more rules than exceptions in manufacturing [7-

8].  

This work presents a MCSO strategy that is capable to incorporate tens of variables at a time 

and uses their linear, quadratic and second-order interactions to approach design, control and 

improvement of manufacturing processes and systems [9]. The use of the strategy is demonstrated 

through the fine tuning of a theoretical simulated manufacturing line with 50 decision variables 

and 2 PMs in conflict. 

On the other hand MCO has been used widely in designing mechanical components and other 

engineering systems. Recent advances in 3D printing technologies bring a wide range of 

applications from fast prototyping to product manufacturing. New advances in additive 

manufacturing, such as breakthroughs in 3D printing, present an opportunity to contribute to 

recycling [10, 11]. Additive manufacturing could possibly be utilized to recycle waste material, 

such as PET water bottles, and deliver a new product or even better construct an innovative design 

that can be used to construct several products with different useful material. The Proposed strategy 

is illustrated for the development of a 3D printer prototype; specifically an interlocking device 

designed with two performance measures, max-load and minimize mass, with different conflicting 

optimization goals [12-14]. 
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1.1 Motivation  

 

The use of Simulation Optimization is critical in manufacturing problems; every day it is necessary 

to make decisions, hopefully in an optimal manner, to satisfy different design specifications or 

process performance. One of the primary advantages is that they are able to provide users with 

practical feedback when designing real world systems. This allows the user to determine the 

correctness and efficiency of a system. The user may explore different alternatives without actually 

physically building the systems. By this reason the use of simulation optimization methods to solve 

manufacturing problems has been increasing in recent years. However optimization techniques are 

normally developed to optimize a single criterion. On the other hand, in most applications two or 

more criteria are relevant. In the presence of conflict of multiple performance measures, making 

decisions falls in the realm of multiple criteria optimization. Efficient methods to deal with this 

decision making problem are highly desirable. In this thesis an iterative method is proposed to find 

the efficient frontier in Multiple Criteria problems.  
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1.2 Objective 

 

The objective of this thesis is to arrive to a framework of simulation optimization capable to handle 

realistic engineering problems. To this end, it is proposed that such framework be capable to handle 

multiple optimization criteria simultaneously as well as a tens of decision variables at a time. Three 

very important aspects of this framework is that (i) it does not require a large number of runs, (ii) 

it is transparent to the user, and (iii) it does not require any preference structure a priori.  

In addition, it is sought for this framework to be capable to characterize the entire Efficient 

Frontier of a discretized problem, as opposed to just the convex part of it afforded by previously 

used Banker-Charnes-Cooper Model Data Envelopment Analysis (DEA) model.  

 

1.3 Thesis Organization  

 

This thesis is structured as follows: in Chapter 2 is a review of the most relevant methods 

developed to approach optimize multiple criteria optimization problems, Chapter 3 shows the path 

to the MCSO strategy that can be traced back to a series of manufacturing papers of our research 

group, Chapter 4 shows the proposed method; and an illustrative example is presented to illustrate 

our approach in Chapter 5. Chapter 6 illustrates how a multiple criteria optimization problem of 

50 variables and 2PMs is approached with the proposed method, Chapter 7 a second case study 

was developed. This case study focuses on the design of a 3D printed prototype. As an important 

note, three refereed conference proceeding related to this thesis -in which this research is a 

coauthor- are included in the Appendix section. The first paper shows the best compromises 

between two criteria using Pareto Efficient conditions applied to injection molding. The second 

paper uses the proposed strategy to deal with tens of decisions variables in simulation, and forms 
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the basis of Chapter 6. The last paper is about the interlocking device proposed by our group but 

alternatively using desirabilty functions, which can be seen as a reference strategy with preferences 

defined a priori for this work. 
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2 Literature Review  
 

 
 

The advances in computing power over the last decade have opened up the possibility of 

optimizing complex simulation models. This development offers a big opportunity in simulation, 

this is an area of interest in the academic world as in practical settings, by this reason several 

strategies can be found in the literature as reviewed by Carson and Maria in 1997 and Fu in 2015 

[1, 2] . It is evident, however, that the vast majority has focused on the use of a single criterion 

optimization. Regarding multiple criteria simulation optimization, a recent review by Andradóttir 

in 2015 [3] evidences how Genetic Algorithms (GA) have become a popular to approach problems 

of this nature, as exemplified by Al-Aomar; Ding, Benyoucef and Xie. GAs are heuristic in nature, 

thus optimality cannot be guaranteed as a result. It is then understandable, then, that optimality 

certainty be a worthy objective [4-6].  

 The work of Mollaghasemi and Evans, falls into the category of iterative multiple criteria 

optimization. The proposed method is illustrated with an example involving the optimization of a 

manufacturing system. The simulation optimization algorithm developed in the research involves 

a progressive articulation of preferences through the use of an iterative method, although their 

approach favors the definition of a preference structure among PMs a priori. The decision maker 

provides some local information regarding his preferences over the multidimensional outcome 

space, which departs from the non-parametric point of view advocated in this work [7]. The works 

of Zakerifar, Biles, and Evans in 2011; Couckuyt, Deschrijver, and Dhaene in 2012; Dellino, 

Kleijnen, and Meloni in 2012, approach multiple criteria simulation optimization models using 

Kriging models with various degrees of success, adding evidence to the soundness of using 
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metamodeling strategies to support the determination of competitive solutions in the presence of 

conflicting PMs [8, 15, 16].  

Indeed, there seems to be a significant interest in the assessment of multiple criteria using 

simulation in different production applications such as planning and scheduling. In the paper by 

Duvivier, the authors developed an optimization model based on the hybridization of a classical 

hill-climber meta-heuristic with Promethee II multicriteria method. More specifically, a generic 

optimization and simulation framework, to quickly generate good compromises between 

conflicting objectives on scheduling nonpreemptable jobs, this case study describes the practical 

possibilities of three hybrid models within this framework. However, hybrid methods might 

provide some useful tools for addressing real-life problems in a small amount of time, but do not 

guarantee an optimal solution [17]. According to Mortazavi and Arshadi khamseh, simulation 

modeling is considered as efficient tool for modeling of retailer multiproduct inventory system. 

They proposed a surrogate model for a robust and multiobjective inventory system based on 

discrete simulation, design of experiments (DOE), and multiple attribute decision making 

(MADM). Due to the stochastic nature of the objective function, they employed principal 

component analysis (PCA) as statistical method to improve the MADM’S performance. PCA is 

applied for more realistic weighting of objective function values on their statistical influence on 

improvement the other objectives. The correct determination of the feasible solution set is a major 

challenge in engineering optimization problems. In order to construct the feasible solution set [18]. 

In the paper by Statnikov in 2009, the authors developed a method called PSI (Parameter Space 

investigation), this work made a contribution on the approximation of the feasible solution set. 

Other metaheuristic method is Particle Swam Optimization (PSO) an evolutionary algorithm to 

determine a Pareto set [19]. In the paper by Stöbener, the authors used this method to determine 
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parameters of intermolecular interaction potentials [20]. Derringer and Suich, developed a 

procedure that uses desirability functions.  This approach assigns a value from 0 to 1, according to 

how the response for a combination of design variables lies between the desirable limits.  One and 

two-sided desirability functions are used depending on whether the response is to be maximized, 

minimized or set to a specific target. As the response reaches the upper limit for the case of 

maximization, the desirability of the response function increases. The same happens when the 

response reaches the lower limit for the case of minimization or reaches the objective for the target 

goal case.  The method depends on the researchers own priorities and criteria for the response 

values, indicating the subjectivity associated with the procedure.  The solution strategy consists on 

expressing each objective (response variable) as individual desirability functions and the expected 

solution consists on maximizing the geometric mean of the desirability functions [21]. Martínez 

developed a simplex search method for experimental optimization with multiple objectives.  He 

presents a novel concept of maximizing the concordance of desirability functions of all responses.  

A multi-directional simplex method is proposed by the author, using Kendall’s coefficient of 

concordance W to provide statistical characterization of optimality in multi-objective setting.  The 

goal of the multi-directional statistical simplex algorithm is to construct a sequence of best vertices 

that converges to a maximizer of the concordance index W. To achieve this, the algorithm requires 

that the values of W for the best vertex be monotonically increasing [22]. Mart and Coello 

proposed an algorithm for dealing with nonlinear and unconstrained multi-objective optimization 

problems (MOPs). The proposed algorithm adopts a nonlinear simplex search scheme in order to 

obtain multiple approximations of the Pareto optimal set. The search is directed by a well 

distributed set of weighted vectors [23]. Each weighted vector defines a scalarization problem, 

which is solved by deforming a simplex according to the movements described by Nelder and 
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Mead’s in 1965 method. The simplex is constructed with a set of solutions, which minimize 

different scalarization problems defined by a set of neighbor-weighted vectors. The solutions 

found in the search are used to update a set of solutions considered to be the minima for each 

separate problem. In this way, the proposed algorithm collectively obtains multiple trade-offs 

among the different conflicting objectives, while maintaining a well distributed set of solutions 

along the Pareto front [24]. 

The evolutionary multi-objective optimization algorithms have demonstrated their ability 

in solving complicated multiple objective problems. Toscano and Coello presented a popular 

evolutionary algorithm is the genetic algorithm (GA)  that uses the principle of natural selection 

to evolve a set of solutions towards an optimal solution. Genetic algorithms (GA) are population-

based algorithms and they can efficiently handle non-linear problems with discontinuities and 

many local minima [25]. In the paper by Wright and Farmani in 2001, the authors used GA for 

simultaneous optimization of building construction, HVAC system size and the control strategy. 

  The most significant area of opportunity is the capability in iteratively dealing with tens of 

variables at a time, aided by saturated second-order regression models, using a Pareto-efficiency 

scheme of exact nature to approach multicriteria simulation optimization problems [26]. In many 

cases in the literature, the number of variables being investigated is less than a dozen, in fact, in 

most cases it is only three or four factors [27-31]. 

In addition, Chapter 7 of this thesis presents the use of multiple criteria optimization for the design 

of a 3D printing based prototype, which, up to the time of writing this thesis was a problem not 

approached in the literature to the best extent of our acknowledge. 
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3 Background 
 

 

The path to the MCSO strategy shown in this manuscript can be traced back to a series of 

manufacturing papers of our research group that have built upon each other as detailed next.  The 

first idea related to manufacturing simulation-optimization in our group is presented by Cabrera-

Ríos, where the design of a manufacturing cell was approached through discrete-event stochastic 

simulation and the maximization of profit as the sole PM. The optimization task was not iterative, 

thus the strategy in this work can be classified as a single-pass, single criterion, simulation 

optimization one [32].  

The second relevant work by Cabrera-Ríos, where design and process variables were 

included to meet multiple criteria modeled as a single composite objective function in the context 

of reactive polymer processing. The simulation type in this case relied on finite-element techniques, 

so it was continuous and deterministic in nature. Again the strategy was single-pass, single-

criterion, and simulation optimization [33].  

The next step was to include multiple PMs in parallel. Using continuous physics-based 

simulation. The cases under study were in the context of polymer processing ranging from in-mold 

coating, to compression molding and injection molding. In these cases, the strategy was single-

pass, multiple criteria, simulation optimization. An additional characteristic in these works was the 

use of Data Envelopment Analysis (DEA) to solve the associated multiple criteria optimization 

problem. The DEA model adopted for such means was based on linear optimization and could 

detect all solutions that were in the convex part of the Pareto-efficient frontier of the problem; 

however, solutions that were in the non-convex part escaped it. It was, thus, deemed necessary to 
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find an effective way to detect all solutions, those in the convex and in the nonconvex parts of the 

efficient frontier [34-37].  

The possibility to detect the entire set of solutions belonging to the efficient frontier came 

along in the shape of a full pairwise comparison scheme reported by Rodríguez-Yañez, where the 

improvement of an injection molding process was approached with a single-pass, multiple criteria, 

simulation optimization strategy [38].  

The first iterative simulation-optimization schemes in our group were reported for polymer 

injection molding (continuous simulation) and control/improvement of a painting line for 

automotive parts (discrete event simulation), respectively [39-40]. These were iterative, single-

criterion, simulation optimization schemes. An iterative algorithm capable to deal with multiple 

criteria using DEA was subsequently developed. This is, then, an iterative, multiple criteria, and 

simulation optimization scheme [39].  

The present work introduces an iterative MCSO strategy capable to detect both the convex 

and nonconvex parts of the efficient frontier through the adoption of the scheme reported by 

Rodríguez-Yañez, so it improves and replaces the use of DEA [38]. It also incorporates the 

possibility of analyzing tens of variables through an economic experimental design proposed by 

Méndez-Vázquez in 2014 which ensures the possibility of estimating full quadratic regression 

models, that is, regression models that include linear, quadratic and second-order interaction terms 

[9]. A collection of experimental designs with these capabilities was described by Méndez-

Vázquez [40] and can be found online in: 

http://yaileenmendez.wix.com/experimentaldesignlv 

 

 

http://yaileenmendez.wix.com/experimentaldesignlv
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3.1 Design Of Experiments (DOE) 

 

Design of experiments, referred to as DOE, is a systematic approach to understanding how process 

and product parameters affect response variables such as process ability, physical properties, or 

product performance [41]. In engineering, experimentation has an important role in simulation 

models. We can define an experiment as a test or series of tests in which purposeful changes are 

made to the controllable variables of a process or systems [41]. It allows us to observe and identify 

the reasons for change that may be observed in the performance measures. Figure 1 is a general 

diagram of a process or system. 

An example is the 3D printer process. The input is the interlocking device design (CAD), 

the three controllable factors are Cylinder Diameter, Cylinder depth and Thickness. The 

uncontrollable factors are ambient temperature and the force applied to assembly the interlocking 

device. The output is the 3D part and the response measures are max-load and minimize the mass.  

 

 

 

 

 

 

 

Figure 1. General Model of a Process or System 

 

 

 

 

 

Process or System Input Output 

 Controllable factor 

   𝑥1        𝑥2       𝑥3  

 

 

   𝑦1        𝑦2       𝑦3  

Uncontrollable factor 
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3.1.1 Response Surface Methodology 

 

 

Response surface methodology can be defined as a collection of statistical and mathematical 

techniques used for developing, improving, and optimizing processes; processes in which a 

response of interest is influenced by several variables. RSM has a significant application in the 

design, development and formulation of new products, as well as in the improvement of existing 

product design. It defines the effect of the independent variables, alone or in combination, [42].  

The objective of the methodology is to model a response variable as a function of design variables, 

performing an analysis to determine areas on the surface that provides optimal results according 

to the goal for the response: maximize, minimize or target.  When multiple design variables and 

multiple response variables are being considered, the optimal function includes more than one 

response; which means that the optimal combination values of design variables that satisfies one 

response do not necessarily provides optimality conditions for the other responses.   

 

3.1.2 Multiple Criteria Optimization 

 

 

The use of optimization is critical in manufacturing problems; every day it is necessary to make 

decisions, hopefully in an optimal manner, to satisfy different design specifications or process 

performance. Almost all optimization problems in real life involve more than one performance 

measures to be optimized and are usually in conflict with each other. When the optimization 

procedure involves more than one objective function it is not recommendable to optimize each one 

in a separate way, because each objective function may arrive to a different solution, which could 

be in conflict. 
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Multiple Criteria Optimization (MCO) is a useful tool to identify the best compromising 

solutions in the presence of multiple performance measures [43]. These best compromising 

solutions form a so-called Pareto-efficient frontier or non-dominated solutions. In this thesis, the 

solutions that form the Pareto-Efficient Frontier will be found through the direct application of the 

dominance cone formed by the linear convex combinations of the desired directions establishes a 

region of dominance, the solution is found when it originates an empty cone. This method was 

explored by Rodríguez-Yañez in 2012 and Camacho-Caceres in 2015, in manufacturing process 

and Biological applications [44, 45]. In Rodríguez-Yañez in 2014, the said full pairwise 

comparison scheme was developed to improve upon DEA’s constraint of finding only the convex 

portion of the efficient frontier. This full pairwise comparison finds the entire efficient frontier, 

both the convex and non-convex parts [37]. 

In Camacho- Caceres in 2015, an example of multiple criteria optimization with two 

conflicting performance measures (PMs) is shown in Figure 2. In this figure, a set of eight 

candidate points, characterized by their values on both performance measures are shown. The aim 

is to minimize F1 and F2 simultaneously. The problem is to find those candidate points that 

dominate all of the other points in both performance measures. Applying the dominance cone, this 

will result in a group of candidates in the Figure 2, the triangle points are the Pareto-Efficient 

solutions. Note that the general problem involves at least two performance measures to be 

optimized, where only the case with two performance measures has a convenient graphical 

representation. An MCO problem, however, can include as many dimensions (or performance 

measures) as necessary [45]. A general optimization problem with one performance measure is as 

follows: 
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Find 𝑥 to 

Minimize 𝑓𝑗  (𝑥)  𝑗 = 1,2, … , 𝐽                                                  (1) 

 

Here we want to find the values of the controllable variables 𝑥𝑘, (𝑘 =1, 2, ...,|𝐾| ) 

between all the possible solutions, which can be evaluated in the 𝐽 performance measures to 

result in values 𝑓𝑗(𝑥𝑘). That is the 𝑘𝑡ℎcombination of values for the decision variables evaluated 

in the 𝑗𝑡ℎ  objective function. The example in Figure 2 follows the discretization with 𝐽=2 

performance measures and |𝐾|=7 solutions. 

The MCO formulation under such discretization is, then as follows: 

Find 𝑥𝑘(𝑘 ∈ 𝐾) 𝑡𝑜  

Minimize 𝑓𝑗  (𝑥𝑘)  𝑗 = 1,2, … , 𝐽                                             (2) 

 

The solutions to (2) are, then, the Pareto-efficient solutions of the discretized MCO 

problem. Considering formulation (2), a particular combination 𝑥0 with evaluations 𝑓𝑗(𝑥0) will 

yield a Pareto-Efficient solution to (2) if and only if no other solution 𝑥ѱ exists that meets two 

conditions, from this point on called Pareto-optimality conditions: 

                                      𝑓𝑗(𝑥ѱ) ≤  𝑓𝑗(𝑥0) ∀𝑗            (Condition 1) 

                                     𝑓𝑗(𝑥ѱ) <  𝑓𝑗(𝑥0) 𝑖𝑛 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗                          (Condition 2) 

 

Conditions (1) and (2) imply that no other solution 𝑥ѱ dominates the solution under evaluation ,𝑥0, 

in all performance measures simultaneously. 
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Figure 2. Representation of a Multiple Criteria Optimization Problem with two 

Performance Measures 
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4 Proposed Method 
 

 

 

The proposed strategy integrates the use of experimental design, simulation and metamodelling 

techniques to solve multiple criteria simulation optimization problems. Figure 3 schematically 

shows the proposed method which is also described below.  

 The method begins with an experimental design (DOE) where a simulation is performed 

at each design point (1-2) and an initial incumbent solution is obtained (3). The incumbent solution 

here corresponds to the Pareto-efficient frontier that represents the set of best compromises 

between all performance measures in the experiment. With the simulated experiment, one 

metamodel per performance measure is obtained (4) and used to make predictions in the discretized 

experimental region (5). Using the Pareto analysis, potentially Pareto efficient points are detected 

(6-8). These predicted points are then simulated and joined with the incumbent solution to 

determine if a new Pareto efficient frontier has been found (9). If the Pareto-efficient frontier does 

not change, then the incumbent solution is reported and no more iterations are performed.  

Otherwise the incumbent solution is updated and the newly-simulated points are added to the set 

available points and a new iteration begins with the constructions of new metamodels (4). The 

method can be understood following the ensuing notation: 

Constants 

n  Number of simulation runs in the initial experimental design (DOE) 

L  Number of decision variables 

J Number of criteria or Performance Measures (PMs)  
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Indices 

j Criterion or PM (i=1,2,3,...,J) 

k  Iteration counter 

l Decision variable (l=1,2,3,...,L) 

Metamodels 

𝑦𝑗[𝑘] Metamodel for the jth criterion at the kth iteration  

Variables 

𝐺𝑙 Number of discrete points for the lth decision variable for prediction purposes 

𝑛𝑘 Total number of sampling points for metamodel prediction at the kth iteration  

Matrices 

𝐷0 Initial DOE with n simulation runs  

𝐷𝑘 Set of additional simulation runs generated at the kth iteration 

𝐷𝑘
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒  Set of total simulation runs available at the end of the kth iteration 

𝐼0 Set of initial incumbent Pareto-efficient solutions (simulation runs) 

𝐼𝑘  Set of incumbent Pareto-efficient solutions (simulation runs) at the kth iteration 

𝐶𝑘
𝐼  Set of candidate solutions (simulation runs) to be evaluated for Pareto-

optimality at the kth iteration 

 

 
𝑃𝑘 Set of solutions predicted by the metamodels at the kth iteration 

𝑃𝑘
𝐸 Set of Pareto-efficient solutions predicted by the metamodels at the kth iteration 

The method, then, is as follows: 

 

 

Initialization 

 

 Set counter k = 0  

 Initial DOE: Perform a first design of experiments 𝐷0 with n simulation runs considering 

all decision variables (L variables) and all criteria (J Criteria). Each controllable variable 
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and performance measure must be scaled to fall between -1 and 1 to avoid dimensionality 

problems.  

 Select incumbent: Analyze 𝐷0 to determine which of its points are Pareto Efficient. 𝐼0 now 

contains the Pareto Efficient points of 𝐷0.  

A Pareto efficient solution will be found when, in the full pairwise comparison with the 

rest of the solutions, there is no other solution that dominates it in all PMs 

simultaneously.  

 Set 𝐷0
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 =  𝐷0 

 

Main Iteration 

 Update counter: k= k+1 

 Use 𝐷𝑘−1
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒  to fit all J metamodels, 𝑦𝑗 [k]. (For a brief description of metamodeling, see 

Appendix B) 

 Use metamodels to predict the values of all J objective functions using a grid of 𝑛𝑘= [𝐺1 

× 𝐺2 × …× 𝐺𝑙 × …𝐺𝐿] points, where 𝐺𝑙 is the number of equidistant discrete points for 

the 𝑙𝑡ℎ variable. This implies choosing a discretization size ∆  to form such grid. If a 

complete enumeration on the 𝑛𝑘 points is impossible, then a statistical sample on this grid 

must be used, with the consequence of loosing certainty on the optimality of the final 

efficient frontier, as discussed in the next section of this manuscript. Store these points in 

a matrix 𝑃𝑘 with dimensions [𝑛𝑘 × (L+J)]. 

 Analyze 𝑃𝑘 to determine which of its points are Pareto Efficient. Store the efficient points 

in Pk
E. 

 Simulate all points in Pk
E. Store the simulated results in a matrix D𝑘 . 

 Set 𝐶𝑘
𝐼
 =𝐼𝐾−1 ∪ 𝐷𝑘   

Analyze Ck
I  to determine which of the points are Pareto Efficient. Store the efficient points 

in Ik.   
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Termination 

Evaluate the stopping Criteria. If  Ik =  Ik−1 , then terminate the algorithm and present the 

incumbent solution Ik . Otherwise, update Dk
available  =Dk−1 ∪ Dk  and reiterate. 



21 

 

 

 

 

Figure 3. Proposed Multicriteria Simulation Optimization Method 
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5 Illustrative Example 
 

 
 

In order to illustrate our approach, let us consider the case study where 𝑓1  
(𝑥) and 𝑓2 (𝑥) are our 

performance measures and 𝑥 is our controllable variable. An example of performance measures in 

conflict in a minimization problem with two objectives in conflict is shown in Figure 4. 

Minimize 𝒇𝟏  
(𝒙) = √𝒙 + 𝟏 and Minimize 𝒇𝟐 (𝒙) = 𝒙𝟐 − 𝟒𝒙 + 𝟓 

Statement of the problem 
Find 𝑥 to 

To:  min  𝑓1  
(𝒙) = √𝑥 + 1 

       min  𝑓2 (𝒙) = 𝑥2 − 4𝑥 + 5         St. 0≤ 𝒙 ≤ 4 
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Figure 4. Performance Measures in Conflict 
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Step 1: Initial DOE: Run (n=5) a first design of experiments 𝐷0 with n simulation runs considering 

all variables (I =1) and all objectives (J=2), where D stands for Design. The initial experimental 

design is shown in Figure 5. Each controllable variable and performance measure must be scaled 

to fall between -1 and 1 to avoid dimensionality problems. The linear transformation is shown in 

Figure 6 

 

 

Figure 5. Initial Experimental Design   𝐃𝟎 
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Figure 6. Linear Transformation 𝒚 = 𝒎𝒙 + 𝒃 

 

Step 2: Select incumbent:  Considering the optimization criterion in the formulation min  𝑓1  
(𝒙) =

√𝑥 + 1 and min  𝑓2 (𝒙) = 𝑥2 − 4𝑥 + 5.  Analyze 𝐷0 to determine which of its points are Pareto 

Efficient. 𝐼0  now contains the Pareto Efficient points of 𝐷0 . 𝐼  stands for incumbent. Pareto 

Efficient frontier is shown in Figure 7. 

-1.000

-0.500

0.000

0.500

1.000

1.500

-1.000 -0.500 0.000 0.500 1.000 1.500

F2
-(

M
in

im
iz

e

F1 -(Minimize)

D0

min

min



25 

 

 

         

-1 .5 -1 .0 -0 .5 0 .0 0 .5 1 .0 1 .5

-1 .5

-1 .0

-0 .5

0 .0

0 .5

1 .0

1 .5

P a re to  E ff ic ie n t F ro n t ie r  I0

F 1 - (M in im iz e )

F
2

-(
M

in
im

iz
e

)

D o m in a t e d  S e t

N o n  D o m in a t e d  S e t

m in

m in

 

Figure 7. Pareto Efficient Solution    𝐈𝟎 

 

Step 3: Set 𝐷0
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 =  𝐷0 Set of all simulated points that are available at the beginning of 

the iteration. The set of all simulated points is shown in Figure 8. 

            

Figure 8. Set of all Simulated Points 𝐃𝟎
𝐚𝐯𝐚𝐢𝐥𝐚𝐛𝐥𝐞 =  𝐃𝟎 
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Step 4: Update counter k= k+1 

Step 5: Obtain metamodels using the available points, use 𝐷0
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒  to fit all J metamodels, 

𝑦𝑗 [1].  

 

Iteration Quadratic Regression ( Metamodels) 

k=1 

𝒇𝟏  
(𝒙)*= -0.1878𝒙𝟐+ 0.9896𝒙 + 0.1884                                     (1) 

 

𝒇𝟐 (𝒙)*= 2𝒙𝟐-1                                                                                    (2)  

 

Step 6: Predicted points using the metamodel generated in the previous step. Predicted points 

in iteration k=1 is shown in Figure 9. 
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Figure 9. Predicted Points in the k=1 
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Step 7: Analyze P1 to determine which of its points are Pareto Efficient. Store the Efficient 

points in P1
E(where P stands for predicted and E stands for Efficient) is shown in Figure 10. 
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Figure 10. Set of Predicted Efficient Points at the k=1 Iteration 
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Step 8: Simulate all points inP1
E. Store the simulated results in a matrix𝐷1. Predicted points in k=1 

is shown in Figure 11. 
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Figure 11. Simulated Points that are Potentially Efficient (D1) 
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Step 9: Set 𝐶1
𝐼
 =𝐼0 ∪ 𝐷1 , where stands for candidates and I for incumbent. The set of candidate 

points are shown in Figure 12. 
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Figure 12. Set of Candidate Points 𝑪𝟏
𝑰  to the Incumbent Solution in the k=1 
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Step 10: Analyze C1
I  to determine which of the points are Pareto Efficient. Store the efficient 

points in Ik. Incumbent Solutions is shown in Figure 13. 
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                    Figure 13. Incumbent Solution (I1) in the k=1 Iteration 
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Step 11: Evaluating the stopping Criteria if  I1 = I0 , if True, then terminate the algorithm, and 

report the best solution. Incumbent solutions are shown in Figure 14. 
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                   Figure 14. Incumbent Solution (I2) in the k=2 Iteration 

 

Summary  

 

In the illustrative example presented in this work, one controllable variable and two performance 

measures were analyzed. With the proposed method, the efficient frontier was found. This work 

presents a simple method that quickly converges to the Pareto Set a solution with a small number 

of iteration of the algorithm. 
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6 Case Study I: Production Line with 50 Workstations 

  

This section illustrates how a multicriteria optimization problem of 50 variables and 2 PMs is 

approached with the proposed method. Consider a fictitious production line with 50 workstations 

in series simulated with the software package Simio [46, 47]. The simulation is run for 8 hours per 

day with 10 replicates. The simulation model have an interarrival entity time that follows an 

exponential distribution with a mean equal to 3 minutes. The simulation parameters of interest 

were the mean process time on each of the workstations (WSi). The process time of each 

workstation was assumed to follow a normal distribution with a mean that varied in three levels 

and a constant standard deviation of 0.25 minutes.  Figure 15 shows the ranges of values to be 

explored for the process time of each workstation. It is further assumed that the nominal process 

time can be chosen by a particular user, so the problem at hand involves deciding upon the nominal 

process time for each of the fifty workstations. This theoretical problem was presented by Méndez-

Vázquez, where it was treated with the iterative single criterion simulation optimization described 

by Villarreal-Marroquín [39, 40]. 
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Figure 15. Range of Values for the Workstations’ Mean Process Time in Simulation 

Model 

 

 

The PMs of interest were the system time (F1) defined as the period of time elapsed since 

a raw part to be processed enters the system until it exits as a finished product, and the average 

utilization of all workstations (F2). The first one is to be minimized while the second one is to be 

maximized. 

  The proposed method begins with the initialization phase where an initial experimental 

design (D0) is simulated using the simulation model described previously. The experimental design 

used for this case is a D-optimal design generated using the statistical software JMP. The 

experimental design in this case is for 50 variables at three levels each, and has 1327 runs. The 

number of runs corresponds to the minimum number of necessary runs to estimate a second order 

model [9]. 

The natural variables and the simulated values of the PMs are coded using a linear 

transformation to make them fall in the range of [-1,1] to avoid dimensionality problems. With 

these coded values the efficient frontier was found, using a MATLAB code available in our group 

to carry out the full pairwise comparison [45]. The found efficient frontier represents the initial 
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incumbent solution (I0) as shown in Figure 16.  Do notice that, for representation purposes, both 

PMs are shown as minimization cases. Indeed, any maximization case can be turned into an 

equivalent minimization cases through a suitable linear transformation. 

With I0 at hand, the iterative phase of the algorithm begins. To generate predictions within the 

experimental region one second order regression metamodel per PM was constructed using D0. 

Each metamodel consisted of 1326 terms. Firstly a discretization of the experimental region was 

performed with an increment (Δ1) of 0.25 units in the natural values and sampled using 30,000 

uniformly distributed data points.  

  Predictions were then obtained, using the metamodels, in these 30,000 points for both PMs. 

In turn, these predicted solutions were evaluated to determine the Pareto-efficient ones. Do notices 

that the number of Pareto Efficient Solutions is expected to be considerably less than the original 

number of solutions under analysis. The Pareto Efficient Solutions at this point are predictions so 

an actual simulation must be carried out at these attractive points. With these new points, the 

incumbent solution I0 must be revised for Pareto-efficiency.  When the comparison was carried 

out, 3 new points added to the efficient frontier and 12 points of the incumbent solution I0 were 

now dominated points in Table 1. Consequently, these dominated solutions were deleted from the 

new incumbent solution I1 as shown in Figure 16. The points of the candidate set D1 are added to 

the available points D0, and the second iteration of the algorithm ensued.  
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Table 1. Incumbent Solutions of the Pairwise Comparison for the Initial Stage of the 

Algorithm 

 

Incumbent (I0)  Incumbent (I1) - Δ1 

Point 
System Time 

(minutes) 

Average 

Utilization (%) 

 
Point 

System Time 

(minutes) 

Average 

Utilization (%) 

66 329.944 46.466  965 313.848 38.032 

72 335.054 47.602  5825 325.217 48.561 

344 322.083 42.055  23109 316.355 48.261 

436 329.739 46.257  28268 336.119 51.604 

445 323.619 43.759     

525 334.712 46.719     

557 326.754 44.973     

590 329.829 46.401     

871 336.216 48.137     

965 313.848 38.032     

1022 316.439 40.973     

1034 341.130 49.730     

1059 338.449 48.448     

   

 

   

Incumbent (I2) - Δ1  Incumbent (I3) - Δ1 

Point 
System Time 

(minutes) 

Average 

Utilization (%) 

 
Point 

System Time 

(minutes) 

Average 

Utilization (%) 

965 313.848 38.032  965 313.848 38.032 

5825 325.217 48.561  5825 325.217 48.561 

23109 316.355 48.261  23109 316.355 48.261 

28268 336.119 51.604  24070 337.002 52.649 

11236 329.648 48.755  9046 333.239 51.593 

24070 337.002 52.649  18682 326.349 49.596 

29313 330.588 49.543  27619 332.566 50.531 

29786 328.028 48.700     
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Figure 16. Pairwise Comparison for the Incumbent Solutions (I1-I2-I3) with a 

Discretization of Δ1 

 

  The second iteration follows the same structure as before, with the creation of a new set of 

potential solutions D2. These combinations were then simulated and compared with the incumbent 

solution I1 using Pareto conditions as shown in Figure 16. Four new point are added to the efficient 

frontier to obtain a new efficient frontier (I2) as shown in Table 1. The candidate set of solutions 

D2 were then added to the available points to calculate the new metamodels in a new iteration. 

In the third iteration, the simulated values of the new set of potential solution D3 were obtained 

and compared with the incumbent solution I2. As a result 3 new points are added to the efficient 

frontier and 3 points see Table 1. The new incumbent solution I3 as shown in Figure 16. The points 

of the candidate set of solutions D3 were added to the available points.    
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  One more iteration was necessary to bring the method to a stop. It must be recalled at this 

point that the method stops only when no modifications are introduced in the current efficient 

frontier. The solutions for the initialization and each of the iterations are shown in Figure 17. The 

seven solutions identified by the method represent the best possible tradeoffs between cycle time 

and average machine utilization. Each of these solutions contain the prescriptive values at which 

each of the 50 workstations must be set.  

  When looking into the progression of the method in its two PMs as shown in Figure 17, it 

can be appreciated how the method effectively explored beyond the initial experimental 

(simulation) samples. It is also clear that the efficient frontier –achieved with a discretization 

increment Δ1 = 0.250 -would benefit from a finer exploration in that zone. A refinement stage was 

then performed using progressively decreasing discretization increments: first by choosing Δ2 = 

0.125 and running the algorithm to an automatic stop, then by choosing Δ3 = 0.0625 and running 

the algorithm to an automatic stop.  

 

Figure 17. Each of the Incumbent Frontiers (I0-I3) of the Problem under Study 
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  When an increment of Δ2 = 0.125 was used for the discretization of the experimental 

region, 30,000 data points were chosen for sampling using a uniform distribution. Following the 

same structure of the iteration phase previously described, predictions at these points were 

obtained for both PMs with metamodels constructed using the available points when the first stage 

of the method ends. These predictions were then evaluated using the Pareto conditions and 

simulations of these potential candidate solutions D4 were obtained. When the comparison of D4 

with the incumbent solution I3 was performed as shown in Figure 17, 1 new point was added to 

the efficient frontier and 1 point was left out as part of the dominated solutions see Table 2. The 

candidate set of solutions D4 were then added to the available points for the construction of 

metamodels of the next iteration.  

 

Figure 18. Pairwise Comparison for the Incumbent Solutions (I4-I5) with a 

Discretization of Δ2 

 

  In the second iteration using the increment of Δ2 for the discretization, predictions with 

these new metamodels were performed and evaluated using the Pareto conditions to obtain the 

potential candidate set of solution D5. Then the simulated values of D5 were obtained and compared 

with the incumbent solution I4 as shown in Figure 18. As the result of this comparison 2 new 
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points were added to the efficient frontier and 1 point was found dominated and consequently 

deleted of the new incumbent solution I5 see Table 2. The candidate set of solutions D5 were added 

to the available points and metamodels for the next iteration were constructed.  

  In the second iteration using the increment of Δ2 for the discretization, predictions with 

these new metamodels were performed and evaluated using the Pareto conditions to obtain the 

potential candidate set of solution D5. Then the simulated values of D5 were obtained and compared 

with the incumbent solution I4 as shown in Figure 18. As the result of this comparison 2 new points 

were added to the efficient frontier and 1 pot was found dominated and consequently deleted of 

the new incumbent solution I5 see Table 2. The candidate set of solutions D5 were added to the 

available points and metamodels for the next iteration were constructed.  

Table 2. Incumbent Solutions of the Pairwise Comparison for the Refinement Stage 

of the Algorithm using an Increment of Δ2 = 0.125 Minutes 

 

Incumbent (I4) - Δ2  Incumbent (I5) - Δ2 

Point 
System Time 

(minutes) 

Average 

Utilization (%) 

 
Point 

System Time 

(minutes) 

Average 

Utilization (%) 

965 313.848 38.032  965 313.848 38.032 

5825 325.217 48.561  5825 325.217 48.561 

23109 316.355 48.261  23109 316.355 48.261 

24070 337.002 52.649  24070 337.002 52.649 

9046 333.239 51.593  9046 333.239 51.593 

18682 326.349 49.596  18682 326.349 49.596 

23553 330.786 50.928  21 327.693 50.752 

    10959 329.814 51.237 
 

  The method iterates until no changes occurs in the efficient frontier. When the simulated 

values of the potential candidate solutions were compared with the incumbent I5, no new points 

were added to the efficient frontier and consequently the algorithm stopped.  
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  In the second step of the refinement stage, a reduction in the increment size for the 

discretization of the experimental region was applied. Using the available data at this point, a 

metamodel was constructed for each PM and the algorithm was run with an increment of Δ3 = 

0.0625 units of the natural values for the discretization. The discretized region was sampled with 

30,000 data points using a uniform distribution. The second step in the refinement stage followed 

the same structure previously described.  

  With the metamodels constructed with the available data, predictions were made in the 

30,000 sampled data points, and a comparison using the Pareto conditions was made. Simulations 

in the resultant potential candidate set of solutions D6 were obtained and compared with the 

incumbent solution I5 as shown in Figure 18. As a result of this comparison 2 new points were 

added to the efficient frontier and 1 of the existing points were now part of the dominated solutions 

see Table 3. The incumbent solution was updated (I6) and the candidate set of solutions D6 were 

added to the available points. Metamodels for the next iteration were constructed.  

 

Figure 19. Pairwise Comparison for the Incumbent Solutions (I6-I7) with a 

Discretization of Δ3 
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  For the second iteration using Δ3, prediction in the sampled points were made and the 

potential candidate solutions D7 were identified. Simulations of the potential set of solutions were 

obtained and compared with the incumbent solution I6 as shown in Figure 19. In this iteration, 1 

new point was added to the existing efficient frontier and 2 were deleted, resulting in a new 

incumbent solution I7 see Table 3. The potential candidate solutions D7 were added to the available 

points and metamodels for each PM were constructed.  

 In the third iteration, the potential candidate solutions D8 were obtained from the Pareto 

analysis of the predictions in the discretized sampled points.  When a comparison of the simulated 

values of D8 with the incumbent solution I7 was performed no new points were added to the 

efficient frontier resulting in an automatic stop.  

 

Table 3. Incumbent Solutions of the Pairwise Comparison for the Refinement Stage 

of the Algorithm using an Increment of Δ3 = 0.0625 Minutes 

 

Incumbent (I6) - Δ3  Incumbent (I7) - Δ3 

Point 
System Time 

(minutes) 

Average 

Utilization (%) 

 
Point 

System Time 

(minutes) 

Average 

Utilization (%) 

965 313.848 38.032  965 313.848 38.032 

5825 325.217 48.561  5825 325.217 48.561 

23109 316.355 48.261  23109 316.355 48.261 

24070 337.002 52.649  24070 337.002 52.649 

9046 333.239 51.593  9046 333.239 51.593 

18682 326.349 49.596  18682 326.349 49.596 

10959 329.814 51.237  10959 329.814 51.237 

10003 327.078 51.152  16825 335.984 52.080 

17652 352.776 52.851     

 

The refinement stage resulted in a more precise efficient frontier, as it can be appreciated in Figure 

20. It is, indeed, recommended that a similar strategy be followed for the potential practitioners: 
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(1) run the algorithm to find a coarse efficient frontier with an aggressively sized discretization 

increment, to then (2) run the algorithm with finely-sized increments to refine the results.  

 This work presents a simple method that quickly converges to a solution with a small number 

of iteration of the algorithm. The method stops automatically when no more changes are found in 

the efficient frontier. The magnitude and number of the increments for the discretization of the 

experimental region are defined by the user.  With the proposed method the efficient frontier was 

found for a case of 50 controllable variables considering two performance measures. 

 

 

Figure 20. Each of the Incumbent Frontiers for each Discretization step (Δ1-Δ2-Δ3) 

of the Problem under Study 

 

Summary 

In the case study presented in this work, initially the potential sampling for the intended 

experimental region was very large: 350, that is, 50 independent variables at three levels. For the 

initialization of the algorithm an optimal experimental design was used to deal with this situation. 
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However for the predictions, the use of a sample of 30,000 points was necessary to alleviate the 

computational effort, rendering the method heuristic. 

Results 

This thesis presents an iterative multiple criteria simulation optimization strategy capable to handle 

tens of variables at a time. In its current state, the method is an improvement over single-pass 

methods as well as the use of Data Envelopment Analysis models as previously proposed by our 

group. Manufacturing decisions regarding design, control and improvement of processes and 

systems can greatly benefit from using the proposed optimization strategy from the point of view 

of its capabilities -multicriteria, multifactorial- as well as its frugality in terms of the number of 

simulation runs. Future work includes assessing the method's runtime as relevant information for 

those cases where decision times are short.  
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7 Case Study II: 3D Printing Prototype 
 

This case study focuses on the design and optimization of an interlocking device to meet multiple 

needs, in a household item starting from water bottles. This design must incorporate interlocking 

devices because it is desired that the final product can be assembled without the use of an external 

fastener. We want to be able to reassemble an existing 3D object and reconfigure it for alternative 

designs, we emphasize not only the complicated 3D interlocking device requirements, but also the 

geometrical and dimensional requirements on the single parts. When optimizing designs with 

polymers, many criteria could be of interest.  However, many of them can be in conflict, therefore 

multiple criteria optimization is explored, and employed by necessity. In the case of the design of 

the interlocking prototype, which will be evaluated in this work, it is desired to maximize its load 

strength and minimize the required manufacturing material. 

 

7.1 Experimental Design and Response Surface Methodology 

 

Experimental design and response surface methodologies were used to solve the underlying 

problem. The most widely used designs for optimization problems are central composite, Box–

Behnken, D-optimal and full factorial. These optimization designs allow obtaining experimental 

data, which are then fitted in a polynomial model of multiple linear regressions with the purpose 

of characterizing a response surface [48]. Important restrictions are considered: running cost and 

time to selected the design of experiments. Box Behnken (BBD) design technique was selected to 

execute the experimental design. In comparison with central composite design, Box Behnken uses 
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less runs than the central composite design with three factors Cylinder Diameter (𝑥1), Cylinder 

depth (𝑥2) and Thickness (𝑥3) see Table 4. It also avoids design corners [41- 48].  

Table 4. Response-Surface Designs Most Commonly used for Optimization 

 

Design Type of 

factors 

Factors Number of runs  

Central composite  

design (CCD) 

 

Numerical 

Categorical 

5 2k+2k+Cp 

Box Behnken (BBD) 

 

Numerical 

Categorical 

3 2k (k-1)+Cp 

Full Factorial design  

 

Numerical 

Categorical 

3 3k 

D-Optimal Numerical 

Categorical 

Different for each model. 

Irregular experimental 

domains 

Select subset of all 

possible combinations 

 

Box Behnken design is an independent design in that it does not contain an embedded 

factorial or fractional factorial design. In this design the treatment combinations are at the 

midpoints of the edges of the process space and at the center as shown in Figure 21. 

 

 

 

 

 

            

Figure 21. A Box-Behnken Design for Three Factors 
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7.2 3D Printers 

 

 

3D printers employ an additive manufacturing process whereby products are built on a layer-by-

layer basis, through a series of across- sectional [49]. All 3D printers also use 3D CAD software 

that measures thousands of cross-sections of each product to determine exactly how each layer is 

to be constructed [10,11]. The 3D machine dispenses a thin layer of liquid resin and uses a 

computer-controlled ultraviolet laser to harden each layer in the specified cross-section pattern. At 

the end of the process, excess soft resin is cleaned away through use of a chemical bath. 3D printers 

can produce simple small objects, such as a gear, in less than one hour. They can also develop 

products with free-moving parts that do not have to be assembled [12]. However, 3D printing has 

an intrinsic limitation: a 3D printer cannot directly print an object whose size is greater than the 

printer’s working volume. This practical limitation has been pointed out recently by Luo L. et al 

[13], who proposed a solution to partition a given 3D object into parts for 3D printing and then 

assemble the printed parts together to reconstruct the object. The initial interlocking prototypes 

described in this case study were done on a 3D printer Replicator 2 (Makerbot) that uses 

Polylactide (PLA) material.  

 

7.3 Interlocking Device 

 

 

Interlocking devices can be designed to be held by internal or external constraints. Such devices 

held by external constraints are called Topological Interlocking materials which are designed in a 

peculiar shape in order to create coupling while an external force is applied. On the other hand, 

interlocking devices are those that require internal structural constraints to couple the unit elements 

[14]. These internal constraints can produce stress concentrations on the material which will 
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diminish structural integrity [50]. Although this is what is known about interlocking structures, 

this project aims to elucidate the structural performance by optimizing the geometry. Another 

disadvantage of such structure is the manufacturability given that interlocking elements requires 

high precision machining tools and labor consumption to create them [50]. However, using 3D 

printing labor can be eliminated while achieving manufacturing precision.  

The interlocking matrix provides several structural advantages over other types of structure 

such as resistance to fracture propagation, elimination of binding agent and creation of structure 

with different materials [14, 50]. The design was motivated by the puzzle coupling, which provide 

internal constrains on the planar axis, designed by César A. Rivera Collazo. Furthermore, it was 

modified to provide orthogonal constraint too. The planar movement is limited by 6 cylindrical 

shapes while the orthogonal constrain is provided by domes on each of the device faces. The 

hexagonal shape of the device will balance the planar stresses applied to the structure. This 

interlocking structure, if optimized, will not necessarily be affected by the material strength but by 

the interlock friction. Furthermore, tribology analysis will be needed to understand the structure 

mechanics. This work will study empirically the performance of the structure, but will require 

further validation of the physical models. The variation on the dimensional parameters to study 

structural performance makes this topological material a perfect fit for the optimization study using 

Box Behnken design (BBD) and Pareto Efficient Frontier. The parameters to optimize were 

maximum load and structural weight given that it is often needed to have a low material 

consumption and structural integrity.  
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7.4 Case Study: 3D Printer Prototype  

 

 

In order to obtain a design that can satisfy both the criteria of minimum mass and max-load, as a 

first step a design of experiments was carried out to evaluate three separate factors that were 

initially considered to have a possible effect on the results of the criteria of interest. Figure 22 is 

a representation of the interlocking prototype with its inputs representing the three controllable 

variables that are initially considered. To carry out the experimental design, a Box-Behnken design 

was chosen to analyze the three controllable factors. Once the experimental design was executed 

and the respective data was collected, the next step was to identify a model that fit adequately to 

each response based on the information gathered during experimentation. Finally we applied the 

proposed method to determine suitable parameters for each factor that would maximize the load 

and minimize the mass response. Figure 23 presents a general representation of the procedure 

followed to accomplish the analysis and optimization presented in this work. Each phase is 

described in further detail in the following sub-sections of this case study. 

 

              

                   Figure 22. Interlocking Device Controllable Variables  
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Figure 23. Interlocking Device Design System Representation 

 

 

  Flexural tests were carried out to determine the max load in (lbf) using the Universal 

Testing Instruments Machine / 5940 Series Single Column Table Top Systems for Low-Force 

Mechanical Testing / INSTRON. To evaluate the max load, a distributed load was applied as 

shown in Figure 24 and Figure 25. 

 

                              

Figure 24. Interlocking Device Flexural Test 
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Figure 25. Interlocking Device Max Load 

 

 

 

 After the max load was measured, the interlocking device was weighted to know the mass 

in (g) of this, as shown in Figure 26. 

 

Figure 26. Iterlocking Device Mass 
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  The proposed method begins with the initialization phase where an initial experimental 

design (D0) as shown in Table 5. The experimental design used for this case is a Box Behnken 

design generated using the statistical software Minitab as shown in Figure 27and Figure 28. The 

experimental design in this case is for 3 variables at three levels each, and has 16 runs.  

  The natural variables and the experimental values of the PMs are coded using a linear 

transformation to make them fall in the range of [-1, 1] to avoid dimensionality problems as shown 

in Figure 29. With these coded values the efficient frontier was found, using a MATLAB code 

available in our group to carry out the full pairwise comparison [45]. The found efficient frontier 

represents the initial incumbent solution (I0) as shown in Figure 30.  Do notice that, for 

representation purposes, both PMs are shown as minimization cases. Indeed, any maximization 

case can be turned into an equivalent minimization cases through a suitable linear transformation. 
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                    Table 5. Initial Design Box-Behnken (Original Units) 

 

Original Units 

  
Controllable Variables (CV) 

Performance 
Measure (PM) 

Test Thickness(in) 
Cylinder 
diameter 

(in) 

Cylinder 
depth 

(in) 
mass (g) 

Max Load 
(lbf) 

T1 0.092 0.018 0.345 14.449 1.155 

T2 0.23 0.018 0.345 14.545 12.558 

T3 0.092 0.041 0.345 14.488 84.699 

T4 0.23 0.041 0.345 14.978 66.053 

T5 0.092 0.03 0.23 11.22 33.560 

T6 0.23 0.03 0.23 11.542 57.421 

T7 0.092 0.03 0.46 11.449 49.308 

T8 0.23 0.03 0.46 17.919 83.722 

T9 0.161 0.018 0.23 11.374 6.480 

T10 0.161 0.041 0.23 11.435 28.560 

T11 0.161 0.018 0.46 17.648 33.508 

T12 0.161 0.041 0.46 17.856 147.733 

T13 0.161 0.03 0.345 14.679 45.427 

T14 0.161 0.03 0.345 14.225 10.461 

T15 0.161 0.03 0.345 14.592 13.110 

T16 0.161 0.041 0.46 17.569 104.412 
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Figure 27. Initial DOE-Controllable Variables (CV) 
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Figure 28. Performance Measures (PM) 
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a)                                                                            b) 

Figure 29. Linear Transformation in the Range [-1, 1], a) Controllable Variables 

(CV) and b) Performance Measures (PM) 
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a)                                                                           b) 

Figure 30. Initial Pairwise Comparison for the Incumbent Solution (I0), a) 

Controllable Variables (CV) and b) Performance Measures (PM) 
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With I0 at hand, the iterative phase of the algorithm begins. To generate predictions within 

the experimental region one second order regression metamodel per PM was constructed using D0.  

Predictions were then obtained in these 125 points for both PMs as shown in Figure 31.  In turn, 

these predicted solutions were evaluated to determine the Pareto-efficient ones as shown in Figure 

32. The solutions found represent potentially efficient at this point, so an experimentation is carried 

out at these attractive points, as shown in Figure 33. With these new points, the incumbent solution 

I0 must be revised for Pareto-efficiency.  When the comparison was carried out, 3 new points added 

to the efficient frontier and 4 points of the incumbent solution I0 were now dominated points as 

shown in Figure 34 Consequently, these dominated solutions were deleted from the new 

incumbent solution I1 as shown in Figure 35.The points of the candidate set D1 are added to the 

available points D0, and the second iteration of the algorithm ensued.
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a)                                                                           b) 

Figure 31. Initial Predicted Points (P1) a) Controllable Variables (CV) and        

b) Performance Measures (PM) 
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a)                                                                           b) 

Figure 32. Predicted Points that are Pareto Efficient (P1E) in the k=1 a) 

Controllable Variables (CV) and b) Performance Measures (PM) 
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a)                                                                           b) 

Figure 33. Set of Simulated points that are Potentially Efficient (D1) a) Controllable 

Variables (CV) and b) Performance Measures (PM) 
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a)                                                                           b) 

Figure 34. Initial Pairwise Comparison I0 ∪ D1 a) Controllable Variables (CV) and 

b) Performance Measures (PM) 
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Figure 35. Pairwise Comparison for the Incumbent Solution (I1) 
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  The second iteration follows the same structure as before, with the creation of a new set of 

potential solutions D2. These combinations were then simulated and compared with the incumbent 

solution I1 using the Pareto conditions.  No more points were added to the Efficient Frontier. 

  The three solutions identified by the method represent the best possible tradeoffs between 

mass and Load as shown in Figure 36. 
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a)                                                                           b) 

Figure 36. Each of the Incumbent Frontiers (I0-I1-I2) of the Problem under Study. a) 

Controllable Variables (CV) and b) Performance Measures (PM) 

                    

Table 6. Pareto Efficient Frontier 

 

 Pareto Efficient Frontier 

 

Position Thickness(in) 

Cylinder 

diameter 

(in) 

Cylinder 

depth (in) 
mass (g) 

Max Load 

(lbf) 

T12 0.0920 0.041 0.2300 11.2716 139.597 

T2-8 0.2300 0.041 0.2300 11.0938 44.333 

T2-9 0.161 0.041 0.460 17.856 147.733 
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Summary  

 

With the proposed method the efficient frontier was found for a case of 3 controllable variables 

considering two performance measure. We reiterate that this work present a simple method that 

quickly converges to the Pareto frontier with a small number of iterations. The method stops 

automatically when no more changes are found in the efficient frontier. 

Results 

 

This work proposes a formal optimization strategy for several measures performances in conflict. 

Preliminary results supporting the use of our optimization strategy is feasible effective and 

efficient to arrive the best possible solution in few iterations. We can generate 3D parts that are 

structurally strongly connected by 3D interlocking through the coordinated used of a 3D printer, 

an initial interlocking device design and the proposed optimization algorithm.  A total of 24 

assemblies (168 interlocking devices) were tested using our proposed strategy. If this project had 

been approached with a full factorial design, it would have required a total of 27 assemblies. This 

shows how efficient the strategy is in terms of number of runs, especially considering that it is 

solving a multiple criteria optimization problem experimentally.  

            

Figure 37. Best Possible Tradeoffs between Mass and Load  

Interlocking Devices Design, T12, T2-8, T2-9 
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8 Conclusion  
 

This work proposes a formal simulation optimization strategy for several measures performances 

in conflict. The results support the use of our strategy as feasible, effective and efficient to arrive 

the best possible solution in relatively few iterations. The strategy shows a rapid convergence to 

attractive solutions with a modest number of runs and it is capable to handle tens of variables at a 

time. This accounts to its ability to approach realistic engineering problems, where the 

simultaneous consideration of multiple conflicting objectives and tens of decision variables is 

more the rule than the exception. 

            In addition, being that the proposed strategy is focused on optimization results with 

frugality, the case study presented here related to the optimization of the design of an interlocking 

device shows its potential for truly experimental work. This capability is very important when 

considering rapid prototyping, as well as additive manufacturing projects such as those involving 

3D printing. Indeed, in this 3D printing problem, the proposed strategy showed multicriteria 

improvement with less experimental runs that it would require for simple exploration with a full 

factorial experimental design.  

           In its current state, the method is an improvement over single-pass methods as well as the 

use of Data Envelopment Analysis models as previously proposed by our group. Manufacturing 

decisions regarding design, control and improvement of processes and systems can greatly benefit 

from using the proposed optimization strategy from the point of view of its capabilities -

multicriteria, multifactorial- as well as its frugality in terms of the number of simulation runs.  
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9 Future Work 
 

Future work along this line of research should focus on improving the enumeration embedded in 

the prediction stage, as it might be possible to cut on the number of solutions to be explored –even 

if it is inexpensive at this point-, as well as to maintain global optimality considerations when a 

large number of decision variables is at hand. Furthermore, when using the strategy to approach 

truly experimental projects, it should be investigated how to incorporate the analysis of 

experimental variability to the optimization problem.  
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Appendix A 
 

 

Table 7. Strategy Time for the Case Study I and Case Study II  

 

       

 

 

 

 

 

 

Step 1 1327 runs – 30 min

Step 2 5 min

Step 3 15 min

Step 4 10 min

Step 5 3 min

Step 6 : 15 min

Step 7 : 5min

Step 8 : 10 min

Iteration 1 : 93 min

Iteration 2 : 53 min

Iteration 3 : 53 min

Iteration 4 : 53 min

Iteration 5 : 53 min

Iteration 6 : 53 min

Iteration 7 : 53 min

3 h 33 min

7 h 48 min

Strategy Time=

Total Time

Phase I: 

Initialization

Phase II: 

Main 

Iteration 

Phase III: 

Termination

Case Study I:  Production Line with 50 

Workstations
Step 1 15 runs – 38 h 75 min

Step 2 5 min

Step 3 15 min

Step 4 10 min

Step 5 3 min

Step 6 15 min

Step 7 8 runs 16hrs

Step 8 10 min

Iteration 1 3353  min

Iteration 2
38 min

1 h 8 min 

55 h 38 minTotal Time

Case Study II:  3D Printing Prototype

Phase I: 

Initialization

Phase II: 

Main 

Iteration 

Phase III: 

Termination

Strategy Time=
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Appendix B 
 

 

Metamodeling  

In this work, the use of second-order regression metamodels is recommended due to their 

capability to succinctly represent –precisely- these three effects previously discussed.   A second-

order regression metamodel is a quadratic expression that relates a response or dependent variable, 

𝑦, to 𝐿 independent variables each represented by 𝑥𝑖 as follows: 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 +

𝐿

𝑖=1

∑ 𝛽𝑖𝑖𝑥𝑖
2 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜀

𝐿

𝑗=𝑖+1

𝐿−1

𝑖=1

𝐿

𝑖=1

                                                  (3) 

where the 𝛽 coefficients in this expression are the metamodel’s parameters to be estimated, with 

𝛽0  representing an intercept to the 𝑦 −axis, 𝛽𝑖  and 𝛽𝑖𝑖  the linear and quadratic effect of each 

independent variable respectively, and 𝛽𝑖𝑗 the interaction between a pair of distinct independent 

variables. 𝜀 is a residual assumed to be a random variable following a normal distribution with a 

mean of 0 and a constant variance, 𝜎2. Following equation (3), the number of parameters needed 

to fully specify a second-order regression metamodel is given by the expression: 

𝑃𝑎𝑟 = 1 + 2𝐿 + (
𝐿
2

)           (4) 

To fit a second-order regression metamodel, a DOE of choice must then provide at least 

𝑃𝑎𝑟 degrees of freedom, and be capable to estimate all parameters (𝑃𝑎𝑟). With this choice, a DOE 

matrix, 𝐗 , containing 𝑃𝑎𝑟 + 1  independent runs (rows) and 𝑃𝑎𝑟  columns, together with a 𝐘 

column vector containing the 𝑃𝑎𝑟 + 1 responses, will allow estimating the parameters of a second-

order regression metamodel through the equation: 

β̂ = (X𝑡X)−1X𝑡Y            (5) 

 

 

 


