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ABSTRACT

This dissertation sheds some light on the dynamics and rheological properties of

compound multiphase drops in the creeping motion limit of the fluid phases from a

fundamental standpoint. A compound multiphase drop can exhibit a fully engulfing

configuration, as in the case of a drop encapsulating a smaller one, or a partly

engulfed configuration, in which a pair of drops in contact resemble a snowman. A

particular of the latter type that is under active research is the Janus drop due to

its anisotropic properties. The term Janus, which takes after the god of two faces of

Roman mythology, highlights that the drop consists of two parts of equal geometry

but of different properties (anisotropic). It is found that the dynamics of such Janus

drop in an external flow is similar to that of a spheroid of revolution. Interestingly,

the effective viscosity of Janus drops that corresponds to the minimum dissipation

energy has an analogous form to the expression derived by Taylor (1932) Proc. R.

Soc. A 138, 41–48 for a single-phase drop in a steady shear flow.
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RESUMEN

Esta disertación arroja algo de luz sobre la dinámica y las propiedades mecánicas

de gotas multifásicas compuestas en el ĺımite de movimiento rastrero desde un punto

de vista fundamental. Una gota multifásica compuesta puede exhibir una configu-

ración totalmente envolvente, como en el caso de una gota que encapsula otra más

pequeña, o una configuración envolvente parcial, en la cual un par de gotas en con-

tacto asemejan a un muñeco de nieve. Un particular de este último grupo que está

bajo investigación activa es la gota Janus debido a sus propiedades anisotrópicas.

El término Janus, que proviene del dios de dos caras de la mitoloǵıa romana, re-

salta que la gota se compone de dos partes de geometŕıa identica, pero de diferentes

propiedades (anisotrópica). Se ha encontrado que la dinámica de tales gotas Janus

en un flujo externo es similar a la de un esferoide de revolución. Interesantemente, la

viscosidad efectiva de las gotas Janus que corresponde a un mı́nimo de enerǵıa disi-

pativa tiene una forma análoga a la expresión derivada por Taylor (1932) Proc. R.

Soc. A 138, 41–48 para una gota de una sola fase en un flujo cortante estacionario.
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CHAPTER 1

INTRODUCTION

It may be somewhat surprising that several products (e.g. ointments, creams,

inks, cements, gels) and foods (e.g. mayonaise, ice cream) that we consume everyday

are complex fluids [1]. The simplest type of complex fluid, yet one of the most fre-

quent ones, consists of a dispersion of one phase into another, where the dispersed

phase can be a solid or a fluid. If the dispersed phase is a solid one, the complex

fluid is referred to as a colloidal dispersion. Only when the dispersed phase is a

fluid one it is denoted as an emulsion. The reader may imagine the emulsion to be

comprised by a collection of drops dispersed in a continuous fluid phase. Emulsions

are not limited to dispersions of drops of a single fluid phase. A more general type of

emulsion of engineering interest is the compound multiphase drop due to its high se-

lectivity to mass transport, which make them attractive for the micro-encapsulation

of cells [2], drug-delivery and food processing applications [3], purification of water

resources [4], micro-reactors [5], single-cell analysis [6] and direct-contact heat and

mass exchangers [7].

Despite the various uses of multiphase compound drops little is known from

both experimental and theoretical standpoints about how these drops affect the

rheological properties of the host fluid. In general one is concerned with changes

in the resistance of the complex fluid to flow—its viscosity. Compound multiphase

drops are more complicated to study because of the different morphologies that they

can adopt in comparison to traditional emulsions (spherical drops). Compound mul-

tiphase drops can exhibit a fully engulfing configuration (a small drop encapsulated

1



2

by another one) or a partial engulfing geometry [8]. The first to study the rheol-

ogy of compound drops with full engulfment are Davis & Brenner [9] and Stone

& Leal [10]. It appears that the corresponding analysis for compound drops with

partial engulfment have not been carried out previously; possibly due to the more

complex shape of the compound drop. In this dissertation the rheological study is

conducted on a simpler, yet representative member of this group—the Janus drop.

The term Janus, which takes after the god of two faces of Roman mythology, high-

lights that the drop consists of two parts of equal geometry but of distinct fluid

properties (i.e. density and viscosity). It will be shown that the sole presence of

the internal interface that bounds the fluids that comprise the Janus drop impart it

with anisotropic hydrodynamics, which is a feature entirely absent in encapsulated

drops. This finding is one of the major contributions of this dissertation. The anal-

ysis of the hydrodynamics and rheology of Janus drops is performed in the limit of

low-Reynolds-number flows (total absence of inertia effects) due to the small length

scales of Janus drops in practice. A brief outline of the chapters of this dissertation

is provided below.

Chapter 2 provides a brief introduction to low-Reynolds-number flows (fluid

motion in the total absence of inertia effects) and presents fundamental problems

that naturally arise in the subsequent chapters. The reader unfamiliar to the field of

fluid mechanics is strongly encouraged to carefully consider the problems addressed

in this introductory chapter. The problem of Stokes flow about a solid sphere is

solved to introduce the reader to the solution of fluid flow problems of axisymmetric

nature. It is demonstrated that a fluid drop that translates in quiescent fluid does

not deform in the absence of inertia effects. Lamb’s solution is introduced to solve

the 3D flows that arise in a linear shear flow. The chapter concludes with the cal-

culation of the effective viscosity of an emulsion, as an example of the calculation

of the viscosity of a dilute dispersion, which is carried later in this dissertation for
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a dispersion of Janus drops.

The hydrodynamic properties of a Janus drop under static and fluid flow con-

ditions are investigated in Chapter 3. The contents of this chapter were recently

published in the journal of Physics of Fluids: S. Shklyaev, A. O. Ivantsov, M. Dı́az-

Maldonado and U. M. Córdova-Figueroa, “Dynamics of a Janus drop in an external

flow”, Phys. Fluids, v. 25, 082105 (2013). The link to the mentioned article is

the following: http://dx.doi.org/10.1063/1.4817541. (Any of the authors can

include, reuse or modify the published article for a dissertation without formal per-

mission from the American Institute of Physics AIP; evidence of this statement can

be found in this link http://publishing.aip.org/authors/copyright-reuse.)

Under static conditions, the existence of a compound multiphase drop close to a

Janus one is discussed in terms of weak distortions to the ideal situation of a Janus

drop that consists of two hemispheres of equal radii. At conditions in which the

fluid phases are subject to motion, the hydrodynamic behavior of the Janus drop

in a streaming flow is explored. Interestingly, the magnitude of drag force on the

Janus drop is found to vary with the direction of the streaming flow. This is the

first indication that elucidates the hydrodynamic anisotropic properties of the Janus

drop. It is found that the Janus drop displays hydrodynamic properties of a solid of

revolution despite being comprised by fluid phases because of the no-penetrability

property of the internal interface. The chapter concludes with the analysis of the

dynamics of a Janus drop falling in a viscous fluid by the action of gravity, where

it is found that the drop exhibits a steady orientation as it falls that depends on

the density and viscosity of the pair of fluids that comprise the Janus drop. This

behavior has several important implications that are examined in the last chapter

of this dissertation.

In Chapter 4 the hydrodynamic properties of a Janus drop are studied in a

linear shear flow. This chapter is principally based on an article published in the

http://dx.doi.org/10.1063/1.4817541
http://publishing.aip.org/authors/copyright-reuse
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Journal of Fluid Mechanics: M. Dı́az-Maldonado and U. M. Córdova-Figueroa, “On

the anistropic response of a Janus drop to a viscous shearing fluid”, J. Fluid Mech.,

v. 770, R2 (2015). The contents of this article have been reprinted with permission

from Cambridge University Press; an electronic link to the online version of the

published article can be found here: http://dx.doi.org/10.1017/jfm.2015.148.

This chapter is an extension to the paper published in the Journal of Fluid Mechan-

ics this year. Linear shear flows can arise in the gap of fluid between a pair of parallel

plates that slide in opposite directions, and it is frequently encountered in various

industrial and technological applications. The problem is analyzed as a function of

the direction of the imposed flow and the velocity-gradient of the undisturbed flow

in a systematic manner. Once again, the hydrodynamic properties of the Janus drop

are found to be analogous to those of a solid of revolution; however, now there is

a dependence of the arrangement of the velocity-gradient of the undisturbed flow.

In the particular situation of a velocity-gradient parallel to the internal interface

of the Janus drop is found to behave as a single-phase drop. Thus, showing that

the behavior of a Janus drop is sensitive to its orientation in the linear shear flow

(anisotropic response to the flow). In order to fully characterize the hydrodynamic

properties of the Janus drop the grand resistance matrix for this system is generated,

which is of utter relevance to the analyses carried out in the next chapter.

In Chapter 5 the condition in which a Janus drop can exhibit a preferential

orientation in a linear shear flow is studied; this has potential applications in the

determination of the velocity to velocity-gradient ratio of a general ambient flow

(sensor type of application). The dynamics of a Janus drop in a linear shear flow

under ‘freely’ suspended conditions is also considered, where it is found that the ori-

entation of the Janus drop is periodic in time, and falls between that of a solid-sphere

and a disk under analogous conditions. The analysis of the cross-flow migration of

a Janus drop in a linear shear flow is carried out as well. From the results of this

http://dx.doi.org/10.1017/jfm.2015.148
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phenomenon it is inferred that a dispersion of multiphase drops in a Poiseuille flow

(pressure-driven flow) can exhibit a non-uniform spatial distribution, which is a first

indication that a dispersion of Janus drops can display inhomogeneous rheological

properties. The chapter concludes with the calculation of the effective viscosity of

a dilute dispersion of Janus drops in a linear shear flow. Interestingly, the analysis

reveals that the effective viscosity is analogous to that derived by Taylor [11] for a

dispersion of single-phase drops but with a viscosity equivalent to the average vis-

cosity of the pair of fluids that comprise the Janus drop. In contrast to the rheology

of double emulsions [10], non-Newtonian behavior is found (difference in the normal

stresses) for a Janus drop on account of its anisotropic hydrodynamic properties.

This work has been submitted for publication to the International Journal of Mul-

tiphase Flow.

This dissertation concludes with general remarks and future directions of re-

search in Chapter 6.



CHAPTER 2

LOW REYNOLDS NUMBER FLOWS

2.1 Introduction

It is common knowledge that the average skydiver reaches a terminal velocity of

about 56 m/s in nearly 12 s when the net drag force exerted by air evens out exactly

the weight of the diver [12]. If the skydiver where to fall in an atmosphere a billion

times more viscous than Earth’s atmosphere (with a suitable breathing equipment)

and all other conditions kept the same, the terminal velocity of free-fall would be

around 2 cm/s, and the diver would immediately reach his terminal velocity because

inertia is rapidly dissipated by the highly viscous atmosphere. This simple example

illustrates that the motion of an object in a fluid depends intrinsically on both

the rate and mechanism of momentum transfer. In the former case, for the first

couple of seconds of free-fall the predominant transport mechanism of momentum

is inertia, which is a convective type of momentum transport; it is not until the

skydiver has reached sufficient speed that there is an interplay between inertia and

viscous transport of momentum, which is a diffusive kind of momentum transfer and

represents the molecular level of resistance of the fluid to flow [13]. In the latter case,

the rate of viscous transport occurs so rapidly in comparison to convective transport

that the body reaches its terminal velocity in no appreciable time, which is just the

reflection of the absence of inertia effects ubiquitous in everyday experience.

The present dissertation focuses on the motions of particles in a fluid in the com-

plete absence of inertia effects of both the particle and fluid. (The term ‘particles’

used here extends to both solid and fluid objects.) To the general audience it may

6
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seem at first that this work is of limited applicability because of the derived notion

from a world influenced by inertia, which for us to perceive in flesh would need to be

exposed to extraneous worlds. Nonetheless, it is the world microorganisms have en-

dured and adapted to since the beginning of life [14], and it is also the environment

colloidal particles (about 1 µm in size) are subjected to. Without being aware, we

interact with colloidal dispersions everyday since these range from paints, cleaning

products, makeup, inks, ointments, cements, pharmaceuticals, foods, and biological

fluids such as blood [1]. Thus, it should not be surprising that the development of

the products that we use today and the creation of novel ones relies much on the

fundamental understanding of low Reynolds number flows. The success of a product

may ultimately depend on how well its flow-ability properties match the targeted

specifications for the intended application to guarantee customer satisfaction, and

in other cases of deeper significance, to save countless of lives.

The Reynolds number Re is a non-dimensional group that compares the char-

acteristic scales of viscous to convective transport of momentum in a fluid:

Re ≡ characteristic time over which viscous transport occurs

characteristic time over which convective transport occurs
=
L2/ν

L/U
, (2.1)

where L is the length scale of the particle (e.g. radius of a sphere), ν is the kinematic

viscosity of the surrounding fluid, and U is the representative magnitude of the fluid

velocity. The limit of low Reynolds number flow arises when the characteristic time

of viscous to convective transport of momentum is negligible: L2/ν ≪ L/U for

the Reynolds number to be vanishingly small. To those familiar with heat transfer

phenomena, can take advantage of the inherent analogy of the Péclet number, a

dimensionless group that weights the importance of conductive (a diffusive mech-

anism) to convective heat transport, with the Reynolds number. Note that for

colloidal particles the Reynolds number is intrinsically low because of the smallness

of the particles; it is not necessary to suspend colloidal particles in a highly viscous
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fluid for inertia effects to be negligible. The example of the skydiver above required

a fluid with unrealistic viscous properties because the size of a person is considerably

large for diffusive transport of momentum to overcome inertia effects.

The equations that govern the motion of a fluid at low Reynolds numbers are

(vector and tensor quantities are presented as boldsymbols from this point onward):

∇p = η∇2u, ∇ · u = 0, (2.2)

where ∇ and ∇2 = ∇ · ∇ are the gradient and Laplacian operators, respectively,

the centered dot denotes the scalar product of vectors, p is the pressure field, η is

the dynamic viscosity of the fluid, and u is the velocity vector field. Together, the

creeping flow and continuity equations are often referred to as the Stokes equations.

An interesting consequence of the continuity equation (∇ · u = 0) is that the pres-

sure field satisfies the Laplace equation ∇2p = 0 and the velocity vector field satisfies

the biharmonic equation ∇4u = 0 [13]. (It is quite straightforward to derive these

relations by application of the divergence and Laplacian operators to the creeping

flow equation.) The advantage of this property is that the velocity and pressure

fields can be obtained independently under certain conditions, as it will be shown

later in this chapter.

It is beyond the purpose of this introductory chapter to present the derivation

of the Stokes equations; the interested reader is referred to well-known textbooks

on transport phenomena and fluid mechanics [13, 15–20]. Nevertheless, it is worth

mentioning that the Stokes equations arise from momentum and mass balances over

a differential volume in the fluid under the assumptions of incompressible flows (con-

stant density) and Newtonian stress tensor. Several kinds of fluids, such as water

and gases flowing below the speed of sound, exhibit Newtonian properties: a rate

of strain independent viscosity, and a linear dependence of the viscous stress tensor

τ = 2 ηE with the rate-of-strain tensor E =
(

∇u+ (∇u)t
)

/2, where t denotes
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Figure 2–1: Plane Couette flow of a Newtonian fluid. The velocity field of this type of
flow is linear: ux = γ̇ y, where γ̇ = U/H is the rate of strain. The viscous stress tensor
τxy is equal to the applied force per unit area: τxy = Fx/A, where the area A is simply
the width times the length of the plate.

the transpose operator. This simply means that a Newtonian fluid confined between

two parallel plates sliding in opposite directions at a constant velocity U (a plane

Couette device) exhibit a linear velocity profile [13]. A sketch diagram is provided

in figure 2–1 for further clarification. Regardless of the applied sliding speed the

ratio of the applied stress (force per unit area) τxy to the rate of strain γ̇ remains

constant for a Newtonian fluid: τxy/γ̇ = η, and this constant corresponds to the

dynamic viscosity η of the fluid. In physical terms this signifies that a Newtonian

fluid dissipates mechanical energy proportionally to the applied rate of strain γ̇. In

addition, Newtonian fluids are isotropic (direction-independent behavior) such that

if the viscosity where to be measured in several types of apparatuses the fluid will

invariably exhibit the same viscosity. It is interesting to note that the mechanical

properties of colloidal dispersions can, under certain circumstances, exhibit devi-

ations from Newtonian behavior even if the host fluid is Newtonian [1, 21]. The

problems addressed in this dissertation categorize as one of such examples.

It is instructive to consider an overall view of the problem of a small particle

suspended in a plane Couette flow (also commonly referred to as a shear flow) shown

above to gain some insights of the properties of low Reynolds number flows. Ad-

ditionally, the material presented here provides a global picture of the fundamental

arguments and methodologies used in this dissertation for the convenience of the



10

general audience. If the particle is small enough such that L/H ≪ 1, here L de-

notes the characteristic length of the particle, one can safely neglect the effect of

walls of the apparatus; from the perspective of the particle, it is suspended in an

infinite unbounded fluid. In general, the particle may be placed at an arbitrary po-

sition in the fluid such that the velocity field that the particle is subjected to at long

distances (r →∞) is equal to the undisturbed velocity evaluated at the location of

the particle:

u∞ = γ̇(y + h) ex, (2.3)

where the term ‘undisturbed’ means without the presence of the particle, h defines

the vertical position of the particle in the fluid with respect to the set of Cartesian

axes shown in figure 2–1, and ex is the unit vector that points in the positive direction

of the x–axis. (The particle position along the x–axis is irrelevant because the flow

is fully developed: ∇xu
∞
x = 0.) Note that if the particle has been placed in the plane

of zero velocity (h = 0), one would recover the original expression for the velocity

field (u∞x = γ̇ y). On account of the linearity of the undisturbed velocity field, one

may rewrite it in the following equivalent form:

u∞ =
1

2
γ̇ (y ex + x ey) +

1

2
γ̇ (y ex − x ey) + U∞ ex, (2.4)

where U∞ = γ̇h is a uniform velocity field, as in the original expression above. Note

that the undisturbed flow has been broken down into its elemental components:

straining, rotational and uniform flows, respectively. Figure 2–2 depicts a sketch that

shows that the undisturbed flow local to the particle consists of these elementary

flows. As one may suspect, this result is a direct consequence of the linearity property

of the Stokes equations. In the scientific literature, extensive use of the linearity

property of Stokes flow is made to simplify the analysis of complicated flows [17,

19, 22–30]. The linearity property is also useful for constructing the full velocity

field about a particle in an ambient flow: the disturbance caused by the presence
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Figure 2–2: Decomposition of the undisturbed flow into its elementary constituents: (a)
straining flow γ̇/2 (y ex + x ey) with axis of strain (or elongation) at a diagonal arrange-
ment relative to the x–y axes, (b) rotational flow γ̇/2 (y ex − x ey) with axis of revolution
pointing into the page, and (c) a uniform flow (or streaming flow) U∞ ex. Note that the
velocity components of the straining and rotational flows that are normal to the direction
of the undisturbed flow cancel each other out identically.

of the particle plus the unperturbed velocity field far away via Lamb’s generalized

solution [31], as shown later in this introductory chapter when dealing with 3D

flow fields. Knowledge of the velocity field everywhere in the fluid it generally is a

necessary step towards the determination of the hydrodynamic force F , torque T

and stresslet S on the particle.

Knowledge of the force, torque and stresslet on the particle is of relevance to

develop dynamical equations of particle motion in a colloidal suspension, which in

turn, are useful for the determination of the effective viscosity of the suspension in

a linear shear flow. A colloidal dispersion can be treated, under certain conditions,

as an homogeneous fluid with effective mechanical properties; being the viscosity

the principal mechanical property of interest. As mentioned earlier, the viscosity of

a fluid is intrinsically associated with the rate of viscous dissipation. The presence

of particles moving in a colloidal dispersion (as a consequence of the imposed flow)

tend to increase the bulk rate of viscous dissipation, such that the effective viscosity

of the dispersion is greater than that of the host fluid. Therefore, to determine the

effective properties of a colloidal dispersion in a linear flow it is a fundamental step

to consider the force, torque and stresslet on the particle by each of the elemental

flows shown in figure 2–2—pure hydrodynamic problems. (These calculations are

simplified under the assumption that the particle remains stationary regardless of
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the applied flow.) This serves the purpose of characterizing the effect the imposed

flow has over the motion of the particle. Completion of the overall force and torque

balances on the particle naturally yields the dynamical equations of motion, as in

any classic problem of physics; the introductory problem of free-fall of the skydiver

categorizes as one of such problems. And the stresslet represents the additional

contribution to the bulk stress from the individual particles in the dispersion.

In principle the force is the manifestation of the overall rate of momentum

transferred from the fluid to the particle, and it is obtained by direct calculation of

the fluid stresses over the surface of the particle:

F =

∮

Sp

n · σ dSp, (2.5)

where n is the unit normal vector at any point on the particle surface, σ is the fluid

stress (force per unit area), and Sp is the surface area of the particle. The net torque

on the particle is given by the first moment of the surface tractions:

T =

∮

Sp

x× (n · σ) dSp, (2.6)

where x is the position vector relative to the origin of the particle, which for a particle

of arbitrary shape it may be calculated from any reference point. The stresslet is a

quantity the general audience may be less familiar with; it encompasses the shape

information of the particle, the distribution of the stresses at the particle surface,

and the long-ranged nature of the disturbance field caused by the particle [13, 31].

Nevertheless, it is a quantity of fundamental importance to the determination of the

bulk mechanical properties (or rheological properties) of colloidal dispersions. The

stresslet is a second-rank tensor that unfolds from the second moment of the surface

tractions:

S =

∮

Sp

x (n · σ) dSp. (2.7)
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These are the principal quantities of interest to study the dynamics and rheological

properties of colloidal dispersions. In principle, this dissertation is devoted to the

calculation of these quantities to gain insights on the behavior of a colloidal dis-

persion that consists of anisotropic particles. The subsequent chapters discuss this

topic in greater detail, and therefore, it is only mentioned here.

A useful method to analyze the response of particles to low Reynolds number

flows is the grand resistance matrix [31], because it summarizes the force, torque

and stresslet on a particle undergoing solid-body motions in a general linear flow in

an organized scheme:













F

T

S










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









, (2.8)

where (u−U∞) and (ω −Ω∞) are the particle solid-body motions of translation

and rotation, respectively, in a quiescent fluid, and E∞ is the rate-of-strain tensor of

the undisturbed flow. The grand resistance matrix consists of tensor quantities that

solely depend on the shape of the particle. The tilde on top a tensor here denotes its

transpose. The structure of the grand resistance matrix dictates that the resultant

force on the particle is the sum of the forces that arise from the solid-body motions

and the rate-of-strain of the undisturbed flow:

F = ηA · (U∞ − u) + η B̃ · (Ω∞ − ω) + η G̃ : E∞, (2.9)

where the double-dot denotes the product of tensors [18], A is a second-rank tensor

(with units of length L) commonly referred to as the translation tensor, B is the

coupling tensor (a second-rank tensor with units of L2), and G is the ‘shear-force’

tensor (a third-rank tensor with units of L2). It is worth mentioning that solids of

revolution (e.g. spheroidal particles) are characterized by zero coupling and ‘shear-

force’ tensors on account of the fore and aft symmetry of the particle. As one may
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suspect, the translation tensor is anisotropic for a spheroid; for example, a prolate

spheroid experiences less frictional resistances from the fluid when it translates along

its major axis (symmetry axis) in comparison to its minor axis. (The converse is

true for an oblate spheroid.) And a solid sphere displays an isotropic translation

tensor in agreement with the evident symmetry arguments; this is formally shown

later in this chapter.

Similarly, the torque on the particle is given by:

T = ηB · (U∞ − u) + ηC · (Ω∞ − ω) + η H̃ : E∞, (2.10)

where C is the rotation tensor (second-rank with units of L3), and H is the ‘shear-

torque’ tensor (third-rank tensor with units of L3). And, finally, the expression for

the stresslet on the particle is:

S = ηG · (U∞ − u) + ηH · (Ω∞ − ω) + ηM : E∞, (2.11)

where M is a fourth-rank tensor with units of L3.

The dynamical equations of particle motion in a general ambient flow under

freely suspended conditions are obtained by requiring the overall force and torque

to be zero (F = T = 0). Note that under freely suspended conditions there are no

forces other than hydrodynamic ones; exceptionally, buoyant forces do not enter

because it is implicit that the density of the particle and the fluid are equal to each

other in these conditions. The force and torque–free condition of the particle is just

a consequence of the absence of inertia in low Reynolds number flows. In general, a

system of coupled differential equations that describe the position and orientation

of the particle result from the force and torque–free conditions. This conveys the

necessary information to know the positions and orientations of the particles in

a colloidal dispersion. For particles of non-spherical shape the stresslet depends
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intrinsically on the particle orientation relative to the undisturbed flow; hence the

necessity of establishing dynamical equations for the particles in the dispersion.

So far, the linearity properties of low Reynolds number flows has been exposed

by introducing the classic problem of a particle subject to a linear shear flow. It

has been shown that a linear shear flow consists of a straining, rotating and uniform

flow components, and that each component has individual contributions to the net

force, torque and stresslet on the particle via the grand resistance matrix. Under

freely suspended conditions there are no other forces and torques other than hydro-

dynamic ones, and since there are no inertia effects at low Reynolds number the

resultant force and torque on the particle are zero. (This does not mean that the

elemental contributions of the flow to the force and torque are zero; just the overall

quantities.) And the importance of obtaining dynamical equations for the position

and orientation is due to the fact that the stresslet depends on the orientation of the

particle with respect to the undisturbed flow. As it will be shown in the subsequent

chapters, this leads to non-Newtonian mechanical properties of colloidal dispersions

that consists of anisotropic particles. This completes the overall and brief picture of

the field to the general audience.

The rest of this chapter is devoted to the presentation of the fundamental

problems considered in this dissertation. There are instances when the more general

problems addressed in the subsequent chapters reduce to classic fluid mechanics

problems, and therefore, it is appropriate to present them here in detail for the reader

to gain an insightful view of the physics before exploring the more involved problems

that await. In addition, the technical details of the solution to these fundamental

problems are thoroughly shown to those interested in learning useful methods for

solving fluid mechanics problems. Note that incorporation of these technical details

into the corresponding chapters could disrupt their original narrative, and therefore,

it is preferable to do so here. This chapter is organized as follows: in Section 2.2
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there are various examples concerned on the solution of axisymmetric flow problems

via the stream function—such as the classic problem of Stokes flow past a solid

sphere. Section 2.3 is entirely devoted to the solution of 3D flow problems, which

is of fundamental relevance to the understanding of the problems treated in the

subsequent chapters. The chapter concludes with the calculation of the effective

viscosity of a dilute dispersion of drops in a linear shear flow given in Section 2.4.

2.2 Axisymmetric flows

Axisymmetric flow problems are those that can be described fully by means of

two velocity components. Problems that fall into this category are either planar or

spherically symmetric. Of particular relevance to this dissertation, only the latter are

discussed since fluid flow is analyzed about bodies of spherical shape (e.g. droplets).

Fluid flow is spherically symmetric everywhere in the fluid if the flow only has

radial and azimuthal components (i.e. vr, vϑ with no dependence on the polar angle

φ) [13]. Note that spherically symmetric flows still have a 3D representation with

respect to a system of Cartesian coordinates; therefore, only one can categorize a flow

as spherically axisymmetric when expressed with respect to a system of spherical

coordinates.

An outline of the problems addressed here is provided as follows. In Section 2.2.1

the classic problem of Stokes flow past a solid sphere is solved. The effect of relaxing

the no-slip condition at the surface of the solid sphere is considered in Section 2.2.2.

The flow inside and about a fluid droplet in Stokes flow is realized in Section 2.2.3,

where it is demonstrated that there is no tendency of the fluid droplet to deform

from its spherical shape in the absence of inertia effects. In 2.2.4 the subject of

axisymmetric flows closes with the problem of elongational flow about a fluid droplet;

distortions to the shape of the droplet are not considered here since it lies outside

the scope of this dissertation.
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Figure 2–3: Solid sphere of radius a immersed in a streaming fluid of viscosity η.

2.2.1 Stokes flow past a solid sphere

The problem of Stokes flow past a stationary solid-sphere is a classic fluid

mechanics problem, and it is natural that it is considered first since it is used as

a basis to solve other related problems, such as, the problem of Stokes flow past a

fluid drop. The objective of this section is to show how to use the stream function

to determine the flow (pressure and velocity fields) about a solid sphere subject to

a uniform flow. Solution to the problem is finalized with the calculation of Stokes’

law for the drag force on the solid sphere.

Figure 2–3 illustrates a sketch model of a solid sphere of radius a immersed in

a viscous fluid undergoing an axisymmetric streaming flow u∞ = −u∞ ez far away

(Stokes flow problem). The index ‘0’ denotes the ambient fluid. It is not really

necessary to define an index for problems concerning a single fluid phase; however,

it is reasonable to introduce it prior to dealing with multiphase flow problems. In

mutiphase flow problems the convention to denote each fluid phase — with corre-

sponding pressure and velocity fields — with a superscript will be taken; since there

is only one fluid phase in this problem, it is omitted for clarity of the presentation.

The objective is to find the fluid velocity u and pressure p about the sphere. In
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unbounded problems the direction of gravity is irrelevant, and therefore, the analysis

can be carried out with respect to the dynamic pressure (the hydrostatic compo-

nent of the pressure balances identically the gravitational forces) [13]. It is assumed

that the solid sphere is subject to an incompressible flow and that the fluid is of

Newtonian character (the viscosity of the fluid is independent of the shear rate).

Under the mentioned conditions, the equations that govern fluid motion in the zero

Reynolds number limit (absence of inertia) are expressed with respect to a system

of spherical coordinates (r, ϑ, φ):

∇p = η∇2u, ∇ · u = 0, (2.12a)

ur = 0, uϑ = 0, at r = a, (2.12b)

u = −u∞ez, as r →∞, (2.12c)

where η is the viscosity of the ambient fluid. The surface of the sphere is impen-

etrable such that there cannot be fluid flow through it (ur = 0). In addition, the

fluid does not ‘slip’ about the surface of the sphere uϑ = 0 (fluids tend to match

the velocity of the solid tangent to its surface). The no-slip condition has been

verified to hold in a substantial number of experiments, and therefore, it is regarded

as a plausible assumption in most practical settings [13, 32]. Nevertheless, the pres-

ence of microscopic imperfections or defects at the surface of a solid may cause the

nearby fluid to undergo an apparent slip-velocity [33]. However, for the time being

we restrict our attention to scenarios where the no-slip condition remains valid. In

section 2.2.2 the problem of Stokes flow past a solid sphere with a slip surface is

considered.

It is straightforward to see that there is a uniform pressure far away from the

solid sphere by applying the creeping flow equation to the far field flow: ∇p∞ =

η∇2u∞ = 0 (because u∞ is a constant vector field). Clearly, p∞ must be a constant

for ∇p∞ = 0, and moreover, p∞ may be safely set to zero in unbounded problems
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like this one because it does not alter the flow nor the drag force on the solid

sphere. The latter statement holds even for bodies of arbitrary shape; it is well

known that a uniform pressure field imposes a zero net force about completely

submerged bodies [13]. For example, the spherical cap (which lacks fore and aft

symmetry) experiences a zero net force in a uniform pressure field; the reader may

refer to Appendix A.1, where it is shown that the force on the curved surface cancels

identically the force on its planar counterpart.

It is worthwhile to notice that the flow about the solid sphere is axisymmetric;

that is, uφ = 0 and ur and uϑ are independent φ everywhere. This can be deduced by

taking into account that the flow far away is solely described by two velocity compo-

nents (u∞ = −u∞ez = −u∞ cosϑer + u∞ sinϑeϑ) and that the body is spherically

symmetric. Under those conditions, there is no reason to have any dependence of ur

and uϑ on the polar angle (since u∞ is independent of φ) nor a flow in the φ-direction

(vφ = 0). The latter is the case since the solid sphere is not subject to rotational

motions (fixed). Hence, the necessary conditions for an axisymmetric flow are met.

The velocity components are related to the stream function ψ(r, ϑ) via the

expressions:

ur =
1

r2 sin ϑ

∂ψ

∂ϑ
, uϑ = − 1

r sinϑ

∂ψ

∂r
. (2.13)

Rewriting the governing equations and corresponding boundary conditions with re-

spect to the stream function yields a simpler boundary value problem:

E4ψ(r, ϑ) = 0, (2.14a)

ψ = 0,
∂ψ

∂r
= 0, at r = a, (2.14b)

ψ = −1
2
u∞ r2 sin2 ϑ, as r →∞. (2.14c)
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Note that the above boundary conditions were obtained by transforming the velocity

components with respect to the stream function. The reader interested in the steps

taken to carry out the transformation is referred to Appendix A.2.

The advantage of the stream function formulation is that the fluid flow prob-

lem is now solved without directly dealing with the pressure field. Moreover, the

mathematical problem is reduced to the determination of a scalar function ψ(r, ϑ).

In the untransformed problem one has to solve two components of the creeping flow

equation, the equation of continuity and the Laplace equation for the pressure field

simultaneously; this is a daunting task even for this apparently simple problem.

The usual approach chosen by many authors is to determine a solution to the

Stokes flow problem past a sphere by proposing the form of the stream function to be

ψ(r, ϑ) = f(r) sin2 ϑ, and obtain an equidimensional equation of fourth order for f(r)

by application of E4ψ = 0. Then, the boundary conditions given in Equation (2.14)

are redefined for the scalar function f(r) and used to obtain a closed-form solution

for the stream function. The reader interested in following the classic procedure is

referred to [13]. Instead, the solution strategy presented here is to make use of the

generalized solution of the stream function for axisymmetric problems.

For axisymmetric flows, the generalized solution of the stream function is well

known [20]:

ψ(r, ϑ) =

∞
∑

n=2

[

Anr
n+2 +Bnr

n + Cnr
3−n +Dnr

1−n
]

In(ϑ), (2.15)

where In(ϑ) is the nth order Gegenbauer function of degree −1/2. For convenience

the first few Gegenbauer functions are shown below:

I0(ϑ) = 1, I1(ϑ) = − cos ϑ, (2.16)

I2(ϑ) =
1

2
sin2 ϑ, I3(ϑ) =

1

2
sin2 ϑ cosϑ. (2.17)
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(For linear flows, such as this one, higher orders of the Gegenbauer functions are

not needed.) The reader may find that the general solution provided by Deen [13]

initiates at order n = 1 and that some of the expressions of the Gegenbauer functions

differ from those presented here. Nonetheless, for the purposes of solving linear

axisymmetric flows both solutions are equivalent. Solutions in the range 0 ≤ n ≤ 1,

generally, have no physical relevance, as discussed by Happel & Brenner [20].

It is instructive to consider the far field condition first in unbounded problems

because it usually incurs in considerable simplifications of the generalized solution.

From the far field condition (2.14c) it is deduced that only the second order of

the Gegenbauer function I2(ϑ) = − sin2 ϑ/2 is needed to describe the flow about

the sphere. (The minus sign introduced in I2(ϑ) is incorporated as a matter of

convenience; it does not affect the final solution nor the direction of the flow.)

Consider that all other coefficients associated with higher orders of the Gegenbauer

function are unnecessary (An = Bn = Cn = Dn = 0 for n > 2). Moreover, for the

stream function to scale as r2 at distances far from the sphere (r →∞) the leading

coefficient A2 cannot be retained because it grows more rapidly than the far field.

Performing the mentioned simplifications on the generalized solution (2.15) yield

the stream function that describes the flow past the sphere:

ψ(r, ϑ) = −1
2

[

B2 r
2 + C2 r +D2 r

−1
]

sin2 ϑ. (2.18)

Note that now the number of unknown coefficients (B2, C2, D2) in the generalized

solution match identically the number of boundary conditions presented in Equa-

tion (2.14) — a fully determined system of independent equations is obtained.

From the far field condition it is easy to see that B2 = u∞ by noting that r−1

decays to zero and that the C2 term only grows linearly with position in the far

field limit (r ≫ a). Therefore the leading order of the stream function in the far

field limit is ψ = −B2 r
2 sin2 ϑ/2, and to match ψ∞ = −u∞ r2 sin2 ϑ/2 the coefficient
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Figure 2–4: The streamlines about the solid sphere.

B2 = u∞. Application of the no-penetration and no-slip conditions at the surface

of the sphere results in the following system of linear equations for the coefficients

C2, D2:

−a2 u∞ −
1

2
aC2 +

1

2
a−1D2 = 0, (2.19)

−1
2
a2 u∞ −

1

2
aC2 −

1

2
a−1D2 = 0, (2.20)

where the values of the coefficients that satisfy the set of linear equations are:

C2 = −
3

2
a u∞, D2 =

1

2
a3 u∞. (2.21)

With the obtained values the stream function that describes the flow about the solid

sphere reads:

ψ(r, ϑ) = −1
2

[

u∞ r2 − 3

2
a u∞ r +

1

2
a3 u∞ r−1

]

sin2 ϑ, (2.22)

where it is easy to see that the stream function satisfies the boundary value prob-

lem (2.14). An illustration of the streamlines of the disturbance flow caused by the

solid sphere is shown in figure 2–4.
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After some elementary steps the velocity components are obtained by substitu-

tion of the stream function into Equation (2.13):

ur(r, ϑ) = u∞

[

−1 + 3

2

(a

r

)

− 1

2

(a

r

)3
]

cosϑ, (2.23a)

uϑ(r, ϑ) = u∞

[

1− 3

4

(a

r

)

− 1

4

(a

r

)3
]

sinϑ. (2.23b)

It is readily seen that the velocity components satisfy the no-penetration and no-slip

tangent at the surface of the sphere (r = a), and that the undisturbed streaming

velocity u∞r,ϑ is recovered at distances far from the sphere (r ≫ a).

The drawback of the stream function formulation is that determination of the

pressure field p(r, ϑ) is a rather cumbersome task. Nonetheless, it can be found by

introducing the velocity components into either the radial or azimuthal component

of the creeping flow equation. It is convenient to choose the azimuthal component

of the creeping flow equation in order to determine that the integration constant

that arises for the pressure is zero:

p(r, ϑ) =
3

2

η u∞
a

(a

r

)2

cosϑ+ C (r), (2.24)

where the integration constant is formally a scalar function of position C (r) because

integration takes over the azimuthal dimension. The important observation is that

C (r) cannot be a function of position because the pressure is uniform far away

from the solid sphere: C (r) = p∞. The reader may verify that introduction of the

velocity field on the radial component of the creeping flow equation yields the same

expression for the pressure, as above, but with an integration constant that depends

on the azimuthal angle. Since the solution for the pressure field is unique and the

integration constant cannot be both a function of position and the azimuthal angle, it

is inferred that C can only take a constant value. Moreover, the integration constant

may be set to zero because the magnitude of the far field pressure is irrelevant for

the purposes of determining the flow and drag force on the solid sphere. Thus, the
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pressure field about the solid sphere reads:

p(r, ϑ) =
3

2

η u∞
a

(a

r

)2

cosϑ. (2.25)

From the form of the pressure field it is interpreted that the fluid encounters a

pressure build-up at the upstream face of the sphere and a region of low pressure at

the downstream face (in both regions the pressure ‘retards’ fluid motion).

It is of interest to calculate the net drag force imparted by the fluid on the

solid sphere. For example, in the problem of sedimentation of a solid sphere, the

gravitational force is balanced by the drag force to obtain the velocity of sphere.

The drag force is determined by integration of the fluid stresses that act normal to

the surface of the sphere:

F =

∮

Sp

n · σ dSp, (2.26)

where F is the force, Sp is the surface of the sphere, σ = −p δ+τ is the total stress

that consists of an isotropic contribution from the pressure and another from the

viscous properties of the fluid, which is known as the deviatoric (or viscous) stress

τ . For a Newtonian fluid the viscous stress tensor is given by:

τ = 2 ηΓ = η
(

∇u + (∇u)t
)

, (2.27)

where Γ is the rate-of-strain tensor, and here t denotes the transpose operator.

Owing to the spherical symmetry of the body, there can be no drag force

transversal to the direction of the undisturbed flow (i.e. Fx = Fy = 0) and therefore,

one only needs to calculate the z-component of the force:

Fz =ez ·

[

∮

(−p er + τrϑ eϑ) dS

]

, (2.28)

where τrϑ is the shear stress. Note that τrr has been omitted above because it is

well known that this component of the viscous stress vanishes at solid surfaces [13]

(which is a direct consequence of the no-slip and impenetrability conditions). The
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shear stress at the surface of the solid sphere (r = a) is calculated via [13]:

τrϑ = η

[

r
∂

∂r

(uϑ
r

)

+
1

r

(

∂ur
∂ϑ

)]

, (2.29)

where ∂ϑur = 0 at r = a because of the impenetrability condition ur(r = a, ϑ) = 0.

(Hence, no variations all over the surface of the sphere.) Therefore, the viscous shear

stress at contact reads:

τrϑ(r = a, ϑ) = η r∂r(uϑ/r) =
3

2

η u∞
a

sinϑ. (2.30)

Now that the non-vanishing components of the total stress (the pressure and the

viscous shear stress) have been found at the surface of the sphere, calculation of the

drag force proceeds by introducing ez (constant vector) into the surface integral and

performing the following elementary calculations:

Fz =−
∮

(

p cosϑ+ τrϑ sin ϑ
)

dS, (2.31)

=−
∫ 2π

0

∫ π

0

(

p cosϑ+ τrϑ sinϑ
)

a2 sinϑ dϑdφ,

=− 2πa2
∫ π

0

(

p cos ϑ+ τrϑ sinϑ
)

sinϑ dϑ,

=− 3π aη u∞

∫ π

0

(

cos2 ϑ+ sin2 ϑ
)

sin ϑ dϑ,

=− 3π aη u∞

∫ π

0

sin ϑ dϑ,

=− 6π aη u∞,

where the well-known Stokes’ law is obtained for the drag force on a solid sphere

subject to a streaming flow in the zero Reynolds limit. Note that the scalar products

ez · er = cosϑ and ez · eϑ = − sinϑ have been carried out to obtain Stokes’ law.
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Figure 2–5: Axisymmetric streaming flow u∞ of a viscous fluid (of viscosity η) about a
solid sphere of radius a subject to a ‘slip’ velocity vs at its surface.

2.2.2 Stokes flow past a solid sphere subject to a superficial ‘slip’ velocity

The objective of this section is to determine the pressure field p, the velocity

field u, and drag force F on a solid sphere with a ‘slip’ surface under the ac-

tion of an axisymmetric streaming flow u∞ = −u∞ ez. A schematic representation

of the system of interest is provided in figure 2–5 Currently, there is substantial

experimental evidence that shows the no-slip condition to break down when the

length scale of the particle (or channel in bounded flows) a scales with the ‘slipping’

length λ, or in terms of dimensionless groups, when the Knudsen number is finite

(Kn = λ/a ≥ 1) [34]. For gases, the ‘slipping’ length corresponds to the mean free

path of the molecules between collisions. Unfortunately, no unified molecular inter-

pretation of the ‘slipping’ length exists for liquids; because, the corresponding mean

free path is several orders of magnitude smaller than the ‘slipping’ length found in

experiments. Nevertheless, the ‘slip’ velocity for liquids can be still described by an

effective Knudsen number identical to that for gases. The reader interested in re-

viewing the experimental studies that demonstrate the occurrence of a ‘slip’ velocity

is referred to the selected number of publications [35–39].
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The most used phenomenological expression to describe the ‘slip’ velocity at

surfaces is that of Navier [40], where the ‘slip’ velocity is a function of the ‘slip’

length and the local shearing-rate at the surface of the solid:

vs = 2λ (δ − nn) · Γ · n, (2.32)

where vs is the ‘slip’ velocity at the surface of the solid (it is implied that the solid is

at rest), and Γjk = (∇juk +∇kuj) /2 is the rate-of-strain tensor. (The dot products

indicate that only the shearing component of the rate-of-strain tensor normal to

the surface of the solid is accountable for the observed ‘slip’ velocity.) Note that

in the limit of λ≪ 1 the no-slip condition is restored, and in the opposite extreme

(λ ≫ 1) the solid is characterized by a ‘perfect slip’ surface of negligible resistance

to the flow — analogous to an air–liquid interface. It will be shown in section 2.2.3

that the drag force on a sphere with a ‘perfect slip’ surface (λ ≫ 1) subject to a

uniform flow is identical to the drag force on a spherical bubble (or equivalently, a

drop of low viscosity compared to the ambient one).

A number of theoretical studies have examined fluid flow about solid surfaces

subject to the Navier ‘slip’ condition. Basset [41] was the first to obtain a solution

to the problem of Stokes flow about a ‘slip’ sphere. Lauga & Squires [34] studied the

Brownian motion of a probe particle near a ‘slip’ wall. Willmott [42] analyzed the

Stokes flow about a solid sphere with an inhomogeneous ‘slip’ at its surface. The

motion of a ‘slip’ sphere about a solid wall was investigated by Luo & Pozrikidis [43].

Swan & Khair derived Faxén-type expressions to characterize the hydrodynamics of

“slip–stick” spheres (only a fraction of the sphere ‘slips’). Subsequently, Ramachan-

dran & Khair [44] studied the dynamics and effective viscosity of a dilute suspension

of “slip–stick” spheres in linear flows.
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Here, it is proceed by following an analogous scheme to that of Stokes flow

past a solid sphere with the no-slip condition (section 2.2.1). First, a constitutive-

type expression for the ‘slip’ velocity in terms of the shear stress is derived for this

particular problem. Then, the governing equations of fluid motion are modified to

account for the Navier ‘slip’ at the surface of the sphere. Followed by introduction

of the stream function to obtain expressions for the velocity and pressure fields.

Calculations finalize with determination of the drag force imparted by the fluid on

the ‘slip’ sphere. For the sake of being concise, many of the expressions given in

section 2.2.1 are alluded.

It is advantageous to define the rate-of-strain tensor Γ with respect to the

viscous stress tensor τ via Equation (2.27), such that the Navier ‘slip’ velocity now

reads:

vs =
λ

η
(δ − nn) · τ · n. (2.33)

Performing the scalar products on the viscous stress tensor reveals that the ‘slip’

velocity depends only on the shear component of the stress at the surface of the

sphere:

vs =
λ

η
τrϑ eϑ at r = a. (2.34)

Note that the above expression for the ‘slip’ velocity indicates that it is tangent to

the surface of the sphere along the ϑ-axis (the axisymmetric character of the flow

implies no flows along the φ-axis). Moreover, it is easy to see that vsr = 0, as it

should, because of the orthogonality of the unit vectors (er · eϑ = 0). The ‘slip’

velocity is further simplified by introducing the definition of the shear stress given

in Equation (2.29) into the above expression:

vs = uϑ = λ r
∂

∂r

(uϑ
r

)

at r = a, (2.35)

where it has been noted that ∂ϑvr = 0 because of the no-penetration condition at

the surface of the ‘slip’ sphere (r = a).



29

The boundary value problem that describes the flow about the ‘slip’ sphere is

analogous to that of a solid sphere with the exception that now there is velocity

tangent to the surface of the sphere:

∇p = η∇2u, ∇ · u = 0, (2.36a)

ur = 0, uϑ = λ r
∂

∂r

(uϑ
r

)

, at r = a, (2.36b)

u = −u∞ez, as r →∞. (2.36c)

As in the problem of Stokes flow past a sphere, the problem is axisymmetric. The

existence of a ‘slip’ velocity at the surface of the sphere does not affect the axisym-

metric character of the external flow. (Nonetheless, an inhomogeneous distribution

of the ‘slip’ condition at the surface of the sphere would certainly break the symme-

try of the flow.) Therefore, the stream function is introduced to solve the fluid flow

problem:

E4ψ(r, ϑ) = 0, (2.37a)

ψ = 0,
1

r2
∂ψ

∂r
= λ

∂

∂r

[

1

r2
∂ψ

∂r

]

, at r = a, (2.37b)

ψ = −1
2
u∞ r2 sin2 ϑ, as r →∞. (2.37c)

Once again, the far field condition indicates that the second order Gegenbauer func-

tions are needed to describe the flow everywhere, such that the general form of the

stream function reads:

ψ(r, ϑ) = −1
2

[

B2 r
2 + C2 r +D2 r

−1
]

sin2 ϑ. (2.38)

To satisfy the far field condition, it is evident that B2 = u∞, which leaves C2 and

D2 to be determined by the set of algebraic equations that arise from the ‘slip’ and
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no-penetration conditions:

a−1u∞ + a−2C2 + a−4D2 = 0, (2.39a)

2a−1u∞(1 + λ/a) + a−2C2(1 + 2λ/a)− a−4D2(1 + 4λ/a) = 0. (2.39b)

Note that the algebraic expression that arises from the no-penetration condition

(2.39a) has been scaled by a factor of a−3 to match the units of its counterpart

(2.39b), and that λ/a is a non-dimensional quantity. The set of algebraic equations

for the unknown constants is linearly independent. Simultaneous solution of the

above set yields the following values for the coefficients:

C2 = −
3

2
a
1 + 2λ/a

1 + 3λ/a
u∞, D2 =

1

2
a3

1

1 + 3λ/a
u∞. (2.40)

As one may expect, it verifies that in the limit of λ/a→ 0 the values of the coeffi-

cients approach asymptotically those of the solid sphere with a no-slip surface (2.21).

The stream function for the solid sphere subject to a ‘slip’ velocity at its surface

reads:

ψ(r, ϑ) = −1
2
u∞

[

r2 − 3

2
a

(

1 + 2λ/a

1 + 3λ/a

)

r +
1

2
a3
(

1

1 + 3λ/a

)

r−1

]

sin2 ϑ. (2.41)

Figure 2–6 illustrates that the disturbanced flow caused by the presence of the ‘slip’

sphere is qualitatively similar to that of a solid sphere. Of course, this is the expected

result even for λ/a≫ 1; marked differences in the streamlines would be observed in

the λ/a ≫ 1 limit if the r term vanished instead of r−1. Then, the flow about the

‘slip’ sphere would be irrotational (or potential) in nature.

The corresponding velocity components are found to be equal to:

ur = −u∞
[

1− 3

2

1 + 2λ/a

1 + 3λ/a

(

a

r

)

+
1

2

1

1 + 3λ/a

(

a

r

)3
]

cosϑ, (2.42a)

uϑ = u∞

[

1− 3

4

1 + 2λ/a

1 + 3λ/a

(

a

r

)

− 1

4

1

1 + 3λ/a

(

a

r

)3
]

sinϑ. (2.42b)
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Figure 2–6: Streamlines about a solid sphere with a ‘slip’ length λ/a = 5.

Determination of the pressure field follows analogous arguments to those used for

the solid sphere with a no-slip surface:

p =
3

2

ηu∞
a

(

a

r

)2
1 + 2λ/a

1 + 3λ/a
cosϑ. (2.43)

Instead of carrying out the tedious task of integrating the normal stresses at the

surface of the sphere to calculate the drag force, the well known expression for the

drag force on a body subject to an axisymmetric flow is used [13, 31]:

Fz = 4πηC2 = −6πaηu∞
(

1 + 2λ/a

1 + 3λ/a

)

. (2.44)

As expected, in the limit λ/a≪ 1 the drag force approaches that of a no-slip sphere.

In the opposite extreme of λ/a ≫ 1 the surface of the sphere behaves as a ‘free’

streaming surface with a drag force equal to that of a spherical bubble (Section 2.2.3):

Fz = −4πaηu∞. (2.45)

Analogous to the solid sphere, the only non-vanishing component of the drag

force is the z-component (Fx = Fy = 0), which is clear from evident symmetry argu-

ments. There are no means for the fluid to impose a net force lateral to the direction

of the streaming velocity; an analysis of the lateral forces on the hemispherical do-

main of the sphere (z > 0) would reveal that the force on its counterpart is of equal
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magnitude but opposite in direction. In Section 2.3.1 it is demonstrated that the

drag force always acts in the direction of the undisturbed flow; this is because the

solid sphere offers an isotropic resistance to the streaming flow.

2.2.3 Stokes flow about a fluid drop or bubble

The objective of this section is to determine the flows inside and outside a

spherical drop (or bubble) subject to Stokes flow (zero inertia effects). The analysis

presented here will be useful to the understanding of the dynamics of multiphase

systems considered in this dissertation. From this point onward the expression

‘fluid sphere’ will be used to refer to both the drop and the bubble in a general

sense; wherever needed, the distinction between the two will be made.

An understanding of the motions of drops and bubbles is of broad relevance to

diverse areas of engineering and multi-disciplinary research. For example, heat and

mass transfer phenomena in multiphase systems (e.g. direct-contact exchangers) [7]

and liquid–liquid extraction processes [45] depend, intrinsically, on the motions of

the bubbles or drops in contact with the bulk phase. Heterogeneous systems com-

prised of a continuous fluid phase and a dispersed phase of another fluid (emulsions)

have been found to exhibit shear-dependent viscosity and viscoelasticity owing to

the individual motions and shape distortions of the dispersed phase [46, 47]. Also,

the stability of emulsions is affected to some extent by the motions of the dispersed

phase [48]. The phenomenological understanding of the influence of walls (or chan-

nels) over the motion of drops has been of importance to model the flow of complex

fluids (e.g. flow in blood vessels) [49]. Lastly, the use of Marangoni -driven flows

(from gradients in interfacial tension) has been explored for the processing of mate-

rials in space shuttles [50].

The problem of Stokes flow past a fluid sphere is a classic fluid mechanics

problem present in many texts [13, 16, 20, 31]. The original treatment of the subject

is by Hadamard [51] and Rybczynski [52], who independently analyzed the motion
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of a fluid sphere in a quiescent fluid at zero Reynolds number (absence of inertia

effects). It is important to point out that fluid flow problems concerning drops

(or bubbles) are free-surface problems that require the simultaneous solution of the

internal and outer flows along with the shape of the fluid–fluid interface. The criteria

for the determination of the shape of the fluid–fluid interface is that the jump in

the normal stresses must be zero there. Generally, no analytical progress can be

made to determine simultaneously the shape, and the internal and outer flows;

except in the limit of small deviations from the equilibrium shape. In those cases,

the distorted shape can be determined via a perturbation technique [53–56]. The

opposite extreme of substantial shape-distortions can also be treated analytically

via slender-body theory [57]. For intermediate deformations, one has to resort to

numerical calculations such as the boundary integral method [58].

Experimental observations have shown that fluid drops (or bubbles) adopt a

spherical shape in the absence of fluid motion to minimize their surface energy [11,

13, 59], and that a streaming flow has no tendency to distort the spherical shape in

the absence of inertia effects [53]. It turns out that the streaming flow produces no

jumps in the normal stresses across the fluid–fluid interface that would otherwise

deflect the interface until a balance is reached. Therefore, the analysis presented

here that considers the flows in and about a drop (or bubble) is analogous to that of

a solid sphere in the sense that the shape is ‘known’. In contrast to the problem of

Stokes flow past a solid sphere, the gravitational force is included in the governing

equations for reasons that will become apparent later. The analysis concludes by

showing that the jump in the normal stresses at the fluid–fluid interface is identically

zero for completeness.

Figure 2–7 depicts a diagram of a drop (or bubble) of density ρ1 suspended in a

viscous fluid of density ρ0 undergoing an axisymmetric streaming flow far away. The
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Figure 2–7: Axisymmetric uniform flow u∞ of a viscous ambient fluid ‘0’ about a fluid
sphere ‘1’ of radius a. The dynamic viscosity and density of each fluid phase is represented
by ηj and ρj, respectively, where j = 0, 1. The vector g denotes the gravitational field.

indexes ‘0’ and ‘1’ denote the ambient and internal fluids, respectively. Convention-

ally, it is assumed that gravity acts in the opposite sense of the z-axis (g = −g ez)

and that the fluid sphere is suspended in a denser ambient fluid (ρ1 < ρ0) such that

the sphere experiences a lift from the net buoyant force. The uniform flow far away

is just the manifestation of taking a reference frame moving with the fluid sphere:

u∞ = −u∞ez. It is assumed that the fluids are immiscible (no mixing of the fluid

phases) and Newtonian (the viscous properties remain constant regardless of the

local velocity gradients). The dynamic viscosity and density of the jth fluid phase

are denoted, respectively, by ηj and ρj; j = 0, 1. The assumption of incompressible

flow is assumed to hold on each fluid phase (Considering that the characteristic

velocity u∞ would have to be comparable with the velocity of sound for compress-

ibility to occur, it is highly unlikely that it would be an important factor in the

creeping motion limit.) Moreover, it is assumed that the fluid–fluid interface is free

of surfactant agents; the presence of surfactants in experiments have been shown

to result in discrepancies with the theory because of a reduction in the interfacial

velocity [60, 61].
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It is instructive to start the analysis under hydrostatic conditions
(

u(j) = 0
)

.

Since in this particular problem fluid motion arises from buoyancy effects, hydro-

static conditions can only occur in the absence of gravity g = 0; moreover, this

also implies that each fluid phase is characterized by a uniform pressure: p(1) = p̂,

p(0) = p∞. A balance of the normal stresses at the fluid–fluid interface dictates that:

σ(1)
nn − σ(0)

nn + pγ = 0, (2.46)

where pγ = −2H γ is the capillary pressure, H = −a−1 is the mean curvature for

a sphere, and γ is the interfacial tension of the fluid–fluid interface. Replacement of

the stress with that of a Newtonian fluid gives:

(

−p(1) + τ (1)nn

)

−
(

−p(0) + τ (0)nn

)

+
2γ

a
= 0. (2.47)

Since the viscous part of the stress tensor is identically zero under hydrostatic con-

ditions
(

τ
(j)
nn = 0

)

, the above expression simplifies to a balance of the internal and

outer pressure with the capillary pressure:

p̂− p∞ =
2γ

a
. (2.48)

This expression is commonly known in the literature as the Young-Laplace equa-

tion [13]; and it shows that a drop (or bubble) undertakes a spherical shape in the

absence of external flows.

Under conditions of fluid motion, the underlying physics of the fluid–fluid in-

terface require the velocity and stresses tangent to the interface to be continuous

from the outer to the inner fluid. The deflection of the interface from its equilib-

rium shape under hydrostatic conditions is determined by the jump in the normal

stresses at each point along the interface. It will be demonstrated that for a fluid

sphere under Stokes flow the jump in normal stresses is zero
(

σ
(1)
nn − σ(0)

nn = 0
)

in

the absence of inertia; that is, the flow does not distort the spherical shape of the
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drop (or bubble). The immiscibility of the fluids dictates that no flow can pene-

trate through the fluid–fluid interface. From these physical arguments, it is evident

that fluid motion must be analyzed in both the internal and ambient fluids. In the

limit of zero inertia, the flow of each fluid phase is governed by the Stokes equations

(shown with respect to spherical coordinates (r, ϑ, φ) for convenience):

∇p(j) = ηj∇2u(j) + ρj g, ∇ · u(j) = 0, (2.49a)

u(j)r = 0, [uϑ] = 0, [σr ϑ] = 0, at r = a, (2.49b)

u(0) = −u∞ez, as r →∞, (2.49c)

where p(j) and u(j) are the pressure and velocity fields, respectively, of the jth fluid

phase. The brackets denote a jump of the enclosed property from the outer to the

inner fluid (e.g. u
(1)
ϑ − u

(0)
ϑ = 0). Therefore, the velocity and stress tangent to the

fluid–fluid interface (uϑ and σr ϑ) are required to be continuous from one fluid phase

to the other. Again, ur = 0 defines the no-penetration condition for the fluid–fluid

interface in accordance with the immiscibility of the phases. Far away, the velocity

of the ambient fluid reduces to the undisturbed velocity.

Note that the boundary value problem for the bubble is much simpler than for

the fluid drop. One may obtain an expression for the drag force by analyzing the

outer flows alone. Owing to the smallness of the viscosity of a gaseous phase in

comparison to that of a liquid one, the shear stress imparted on the liquid by the

bubble is negligible (σ
(1)
r ϑ ≪ σ

(0)
r ϑ). Thus, the boundary conditions that describe the

outer flows simplify to ur = 0 and σ
(0)
r ϑ = 0 at the surface of the bubble (r = a).

Nonetheless, the solution for the bubble can also be obtained from the results of

the fluid sphere in the limit of η1 ≪ η0, which is the strategy followed here. It is

important to note that having a negligible shear stress on the liquid side of the fluid–

fluid interface is different from having a zero shear stress; this is the case because

the bubble still experiences a shear stress from the liquid side of the interface.
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From the experience gained by dealing with the previous problems, it is expected

that the flows inside and outside the fluid sphere are of axisymmetric character.

Therefore, the solution to the fluid flow problem can be formulated via the stream

function.

Nevertheless, the condition of the zero jump in the shear stress at the surface

of the fluid sphere deserves some attention prior to expressing the boundary value

problem with respect to the stream function. Substitution of the definition for the

shear stress of a Newtonian fluid in the zero jump condition for the shear stress

results in the following expressions:

σ
(1)
r ϑ − σ

(0)
r ϑ = 0, (2.50)

η1
∂

∂r

(

u
(1)
ϑ

r

)

− η0
∂

∂r

(

u
(0)
ϑ

r

)

= 0, (2.51)

where it has been noted that ∂ϑvr = 0 at r = a because of the no-penetration

condition, as in the problem of Stokes flow past a solid sphere. It is convenient

to introduce the viscosity ratio λ = η1/η0, and rewrite the velocity gradients with

respect to the stream function to obtain the sought condition:

λ
∂

∂r

(

1

r2
∂

∂r
ψ(1)

)

− ∂

∂r

(

1

r2
∂

∂r
ψ(0)

)

= 0. (2.52)

Redefining the boundary value problem with respect to the stream function yields

the following expressions:

E4ψ(j) = 0, (2.53)

ψ(j) = 0,

[

∂ψ

∂r

]

= 0, λ
∂

∂r

(

1

r2
∂

∂r
ψ(1)

)

− ∂

∂r

(

1

r2
∂

∂r
ψ(0)

)

= 0, at r = a, (2.54)

ψ(0) = −1
2
u∞ r2 sin2 ϑ, as r →∞, (2.55)



38

where, again, the brackets denote a jump across the fluid–fluid interface. Note that

to simplify the governing equations for the stream function, the analysis of the flow

is performed with respect to the dynamic pressure such that gravity does not appear.

As in the previous axisymmetric problems, Sections 2.2.1 and 2.2.2, it is ex-

pected that the the flows inside and outside the fluid sphere are described by a

stream function of the form:

ψ(1) = −1
2

[

A1 r
4 +B1 r

2 + C1 r +D1 r
−1

]

sin2 ϑ, (2.56)

ψ(0) = −1
2

[

A0 r
4 +B0 r

2 + C0 r +D0 r
−1

]

sin2 ϑ, (2.57)

where the subscript of the unknown coefficients denote the corresponding fluid phase.

It follows from basic reasoning and prior experience that the chosen form of the

stream function is appropriate to describe the outer flows; because, these must

reduce to the undisturbed flow far away, as in the former problems. However, it is

not so clear, at first, that the chosen form holds as well for the internal flows. The

deduction follows by noting that continuity of the tangent velocity at the fluid–fluid

interface dictates (implicitly) that the internal flows should have the same angular

variation over the surface of the fluid sphere; on the contrary, it would be impossible

to match the inner flows with the outer ones.

As in the previous problems it is evident that A0 = 0 for the stream function

to have the appropriate scaling with position far from the fluid sphere. In addition,

recall that C1 and D1 have been found to be associated with decaying flows (r−n),

which are clearly prohibited inside the fluid sphere for the internal flows to be finite,

specially near r = 0. Thus, the stream functions simplify to:

ψ(1) = −1
2

[

A1 r
4 +B1 r

2

]

sin2 ϑ, (2.58)

ψ(0) = −1
2

[

B0 r
2 + C0 r +D0 r

−1

]

sin2 ϑ. (2.59)
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Application of the far field condition to the outer flows sets B0 = u∞, which reduces

the problem to the determination of 4 unknowns with a set of 4 boundary conditions

(a set of linearly independent equations).

The following equations arise from the no-penetration condition:

a4A1 + a2B1 = 0, (2.60)

a2u∞ + aC0 + a−1D0 = 0. (2.61)

The zero jump in the tangent velocity and shear stress at the surface of the fluid

sphere gives the last pair of equations:

(

4a3A1 + 2aB1

)

−
(

2au∞ + C0 − a−2D0

)

= 0, (2.62)

λ
(

4a3A1 − 2aB1

)

−
(

−2au∞ − 2C0 + 4a−2D0

)

= 0. (2.63)

The latter expression has been multiplied by a factor of a3 to match the units of the

former one. Simultaneous solution of the set of equations yields the following values

for the coefficients:

C0 = au∞
2 + 3λ

2 + 2λ
, D0 = a3u∞

1

2 + 2λ
, (2.64)

A1 = a−2u∞
1

2 + 2λ
, B1 = −u∞

1

2 + 2λ
. (2.65)

Note that the coefficients that correspond to the ambient fluid reduce to those of a

solid sphere (2.21) in the limit the viscosity of the fluid sphere is large compared to

the ambient fluid (λ≫ 1). The coefficients of the inner fluid decay asymptotically

to zero with increasing values of λ until the inner phase exhibits solid-like behavior

(no inner flows).
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Figure 2–8: The flows in and about a fluid sphere with a viscosity ratio λ = 1/2.

The stream functions that solve the boundary value problem for the inner and

outer fluids are found to be:

ψ(1)(r, ϑ) = −1
2

[

a−2u∞
1

2 + 2λ
r4 − u∞

1

2 + 2λ
r2
]

sin2 ϑ, (2.66)

ψ(0)(r, ϑ) = −1
2

[

u∞r
2 − au∞

2 + 3λ

2 + 2λ
r + a3u∞

λ

2 + 2λ
r−1

]

sin2 ϑ. (2.67)

An illustration of the streamlines for the flows inside and outside the fluid sphere are

provided in figure 2–8. As one may imagine, the inner flows exhibit a toroidal-type

structure, and the outer flows are qualitatively similar to those of a solid sphere.

The velocity components of the inner fluid read:

u(1)r = u∞
1

2 + 2λ

[

1−
(

r

a

)2
]

cosϑ, (2.68a)

u
(1)
ϑ = −u∞

1

2 + 2λ

[

1− 2

(

r

a

)2
]

sinϑ. (2.68b)

And those of the outer fluid read:

u(0)r = −u∞
[

1− 2 + 3λ

2 + 2λ

(

a

r

)

+
λ

2 + 2λ

(

a

r

)3
]

cosϑ, (2.69a)

u
(0)
ϑ = u∞

[

1− 2 + 3λ

4 + 4λ

(

a

r

)

− λ

4 + 4λ

(

a

r

)3
]

sinϑ. (2.69b)



41

The reader may check that the velocity fields satisfy the no-penetration condition
(

u
(j)
r = 0

)

and the zero jump condition for the velocity ([uϑ] = 0) at the fluid–fluid

interface (r = a); and that the outer flow reduces to the undisturbed flow at large

distances compared to the size of the fluid sphere (r/a→∞). It is interesting to

note that the outer flows about a spherical bubble (λ≪ 1) are identical to those of

a solid sphere with a ‘perfect slip’ surface (2.42); thus, it unfolds from this finding

that the surface of ‘perfect slip’ sphere acts as a freely streaming surface. In the

opposite exterme (λ≫ 1) the velocity of the outer fluid reduces to that about a

solid sphere (2.23), and the internal one vanishes to zero.

The inner and outer pressure fields are obtained by substitution of the corre-

sponding velocity components into the azimuthal component of the Stokes equation:

p(1) = −η0u∞
a

5λ

1 + λ

(

r

a

)

cosϑ− ρ1gr cosϑ+ p̂, (2.70)

p(0) =
η0u∞
a

(

a

r

)2
2 + 3λ

2 + 2λ
cosϑ− ρ0gr cosϑ+ p∞. (2.71)

Note that the corresponding pressure fields under hydrostatic conditions have been

superimposed to recover the equilibrium condition (2.48) in the absence of fluid

motion. Additionaly, it is important to notice that the dynamic part of the pressure

has been defined with respect to the viscosity of the ambient fluid, which will be

useful when the jump in the normal stresses at the fluid–fluid interface is evaluated.

For the purposes of calculating the net hydrodynamic force and showing that

there is a zero jump in the normal stresses at the interface, it is necessary to deter-

mine the viscous stress tensor of the internal and outer fluids. The viscous stress

tensor of the inner fluid is presented in terms of the non-vanishing components:

τ (1)r r =− η0u∞
a

4λ

2 + 2λ

(

r

a

)

cos ϑ, (2.72)

τ
(1)
r ϑ =

η0u∞
a

λ

2 + 2λ

[(

a

r

)

+ 2

(

r

a

)]

sin ϑ. (2.73)
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And those of the outer fluid are given by:

τ (0)r r =− η0u∞
a

[

4 + 6λ

2 + 2λ

(

a

r

)2

− 6λ

2 + 2λ

(

a

r

)4
]

cosϑ, (2.74)

τ
(0)
r ϑ =

η0u∞
a

[

−
(

a

r

)

+
2 + 3λ

2 + 2λ

(

a

r

)2

+
2λ

2 + 2λ

(

a

r

)4
]

sinϑ. (2.75)

Note that the appearance of r−1 in the shear component of the stress in the internal

fluid is just a manifestation of using spherical coordinates to express the stress tensor;

the reader can easily verify that the stresses at the center of the fluid sphere vanish

identically via:
∮

n · σ(1) dS = 0 as r → 0.

Evaluation of the components of the viscous stress tensor at the surface of the

drop (or bubble) yields the sought expressions for each fluid phase:

τ (1)r r = −η0u∞
a

4λ

2 + 2λ
cosϑ, τ

(1)
r ϑ =

η0u∞
a

3λ

2 + 2λ
sinϑ, (2.76)

τ (0)r r = −η0u∞
a

4

2 + 2λ
cosϑ, τ

(0)
r ϑ =

η0u∞
a

3λ

2 + 2λ
sinϑ. (2.77)

It is evident, from the above equations, that the condition of zero jump in the shear

stresses at the fluid–fluid interface has been satisfied appropriately. Note that in

the extreme situation of a drop with a viscosity much greater than the viscosity of

the ambient fluid (λ≫ 1), the normal and shear components of the stress reduce

to that of a solid sphere. Thus, the solution to the problem of Stokes flow past a

solid sphere is recovered in this extreme case. Although the viscous stresses of the

internal fluid remain finite when λ ≫ 1 (because of the [σr ϑ] = 0 condition), the

internal velocity decays to zero
(

u(1) = 0
)

and η1 → ∞, which is akin of a solid

body.

The net hydrodynamic force is given by the integral of the fluid stresses at the

outer surface of the fluid sphere:

F =

∮

(

n · σ(0)
)

dS. (2.78)
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On account of the axisymmetric character of the flow and the spherical shape of the

drop (or bubble), Fz is the only meaningful component of the force (i.e. Fx = Fy = 0):

Fz =

∮

[

(

− p(0) + τ (0)r r

)

cosϑ+ τ
(0)
r ϑ sinϑ

]

dS. (2.79)

After some elementary steps (analogous to those shown for the solid sphere in Sec-

tion 2.2.1) the net hydrodynamic force on the fluid sphere is found to be:

Fz = −2πaη0u∞
(

2 + 3λ

1 + λ

)

+
4

3
πa3ρ0g, (2.80)

where the latter term corresponds to the bouyant force on the fluid sphere. Conse-

quently, the drag force on the fluid sphere is given by:

Fz = −2πaη0u∞
(

2 + 3λ

1 + λ

)

, (2.81)

where for a bubble (λ≪ 1) it simplifies to Fz = −4πaη0u∞, in agreement with the

previous remark that the drag force on a ‘perfect slip’ sphere reduces to that of a

spherical bubble.

The overall force balance is completed by inclusion of the gravitational force

for a zero net force on the fluid sphere (there are no other forces acting on the fluid

sphere other than the viscous, buoyant and gravitational forces):

ΣjFj = −2πaη0u∞
(

2 + 3λ

1 + λ

)

+
4

3
πa3 (ρ0 − ρ1) g = 0. (2.82)

Arrangement of the overall force balance for the terminal velocity of the fluid sphere

results in the well known Hadamard-Rybczynski equation [13]:

u∞ =
2a2 (ρ0 − ρ1) g

3η0

(

1 + λ

2 + 3λ

)

. (2.83)

As one may expect, the velocity of sedimentation of a solid sphere is obtained in the

limit of λ≫ 1.
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Now that the velocity and stress fields are known inside and outside the fluid

sphere, it is instructive to check if there is a jump in the normal stresses at the

fluid–fluid interface (r = a):

σ(1)
nn − σ(0)

nn + pγ = 0, (2.84)

(

−p(1) + τ (1)r r

)

−
(

−p(0) + τ (0)r r

)

+ pγ = 0. (2.85)

After some algebraic manipulations the above expression can be written as:

[

3

2

η0u∞
a

(

2 + 3λ

1 + λ

)

− (ρ0 − ρ1) ag
]

cos ϑ+ (p∞ − p̂+ pγ) = 0, (2.86)

where the bracketed and parenthetical terms correspond to the dynamic and hydro-

static parts of the normal stresses, respectively. It is readily seen that the parenthet-

ical term is equivalent to the Young-Laplace equation (2.48), and hence, vanishes

to zero. Notably, the bracketed term becomes identical to the overall force balance

on the fluid sphere (2.82) via multiplication of a factor of −4πa2/3. As a conse-

quence of the zero net force on the fluid sphere, the bracketed term vanishes as well.

Thus, it ensues from this analysis that there is no jump in the normal stresses at

the fluid–fluid interface for a fluid drop subject to Stokes flow.

2.2.4 Axisymmetric elongational flow about a fluid sphere

Elongational flows arise by the action of velocity gradients in the principal direc-

tion of the imposed flow. A simple way to understand the behavior of elongational

flows is to imagine a slender mass of fluid being streched (or compressed) by the

action of a velocity gradient down the length of the mass of fluid. Elongational flows

are known to occur in four-roller mills, turbulent flows, blood vessels, cross-slots,

contractions, and bifurcations [62–64]. Elongational flows have found applications in

polymer science by providing new pathways towards the synthesis of polymers with

chemical properties that respond to mechanical stimuli [65]. For many mammals,
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the compression mechanics of joints (e.g. knees) is greatly influenced by the elon-

gational flows that occur within them [66]. An important aspect elongational flows

to the rheology of suspensions is that emulsions (a dispersion of drops in another

fluid) can exhibit non-Newtonian and visco-elastic behavior despite that the con-

stituent fluids are Newtonian [47]. The elongational flow gives rise to an unbalance

in the stresses normal to the surface of the drops that induce them to undertake a

spheroidal shape.

The purpose of the this section is to analyze the flows in and about a fluid

sphere of radius a centered in an axisymmetric elongational flow u∞ = E∞
· x,

where x is the position vector, E∞ = −γ̇ (exex + eyey − 2ezez) is the rate-of-strain

tensor of the undisturbed flow and the constant γ̇ is the shearing rate. (The analysis

of the flow of a fluid sphere in a general straining flow is considered in Section 2.3.5.)

The undisturbed rate-of-strain tensor for an axisymmetric elongational flow can be

alternatively represented as a diagonal matrix of zero trace:

E∞ = −γ̇













1 · ·

· 1 ·

· · −2













, (2.87)

where the dots represents zero values in those elements of the tensor. Carrying out

the dot product results in an expression for the far field velocity u∞ expressed with

respect to Cartesian coordinates:

u∞ = −γ̇ (xex + yey − 2zez) . (2.88)

A pictorial representation of an axisymmetric elongational flow is provided in fig-

ure 2–9, in which the shown arrows indicate the direction of the flow for γ̇ > 0;

this type of flow is known as a uniaxial elongational flow. It is readily seen from

the figure that the fluid approaches from far away along the x–y plane and exits

in the direction parallel to the z–axis (the reader is to understand that the flow
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Figure 2–9: Streamlines of a uniaxial elongational flow. The flow acts in the direction
pointed by the arrows.

has rotational symmety about the z–axis). For γ̇ < 0 a biaxial elongational flow is

obtained with the flow in the opposite sense. From here on the analysis of the flow

inside and outside the fluid sphere is carried out.

The boundary value problem that describes the motion of the fluid phases that

comprise the fluid sphere ‘1’ and the ambient fluid ‘0’ are defined with respect to

the stream function ψ(r, ϑ) (a detailed derivation of the governing equations for a

fluid sphere with respect to the stream function can be found in Section 2.2.3):

E4ψ(j) = 0, (2.89)

ψ(j) = 0,

[

∂ψ

∂r

]

= 0, λ
∂

∂r

(

1

r2
∂

∂r
ψ(1)

)

− ∂

∂r

(

1

r2
∂

∂r
ψ(0)

)

= 0, at r = a, (2.90)

ψ(0) = ψ∞, as r →∞, (2.91)

where j = 0, 1, λ = η1/η0 is the viscosity ratio of the inner to the outer fluid

phase, and ψ∞ denotes the stream function of the undisturbed flow. Note that the

conditions of no-penetration and no-slip tangent at the surface of the fluid sphere

are taken to describe the inner and outer flows.
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The stream function of the far field is derived by transforming the undisturbed

flow u∞ with respect to spherical coordinates:

u∞ = r γ̇
(

3 cos2 ϑ− 1
)

er − 3 r γ̇ sinϑ cos ϑeϑ, (2.92)

where er and eϑ are unit vectors that point in the radial and azimuthal directions,

respectively. The finding that the direction of the unperturbed flow is solely defined

by these two vectors and that there is no dependence in the polar angle φ confirms

that the flow is of axisymmetric character. By means of Equation (2.13), the stream

function far away is found to be given by:

ψ∞ = r3γ̇ sin2 ϑ cosϑ. (2.93)

Note that the form of the far field flow suggests that the Gegenbauer function of order

n = 3, I3(ϑ) = sin2 ϑ cosϑ/2, describes the flow inside and outside the fluid sphere.

Therefore, the stream function form of the inner and outer flows, respectively, is

deduced from the generalized solution (2.15):

ψ(1)(r, ϑ) =
[

A1r
5 +B1r

3
]

I3(ϑ), (2.94)

ψ(0)(r, ϑ) =
[

B0r
3 + C0 +D0r

−2
]

I3(ϑ), (2.95)

where radially decaying terms have been omitted in the expression for ψ(1), and A0

is clearly zero because ψ(0) cannot grow faster than the undisturbed flow ψ∞ in the

radial dimension.

It is easy to see that the far field condition requires that B0 = 2γ̇ for the stream

function of the ambient ψ(0) to match the flow as r →∞.
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Application of the remaining boundary conditions to each fluid phase yields the

following system of algebraic equations for the unknown constants:

a5A1 + a3B1 = 0, (2.96)

2a3γ̇+ C0 + a−2D0 = 0, (2.97)

5a4A1 + 3a2B1 − 6a2γ̇+ 2a−3D0 = 0, (2.98)

aλA1 − a−6D0 = 0. (2.99)

After some algebraic manipulations, it is found that:

A1 =
3

1 + λ
a−2γ̇, B1 = −

3

1 + λ
γ̇, (2.100)

B0 = 2 γ̇, C0 = −
2 + 5λ

1 + λ
a3γ̇, D0 =

3λ

1 + λ
a5γ̇. (2.101)

Thus, the stream functions for the corresponding inner and outer fluids are given

by:

ψ(1)(r, ϑ) =
3

2 + 2λ
a3γ̇

[

(

r

a

)5

−
(

r

a

)3
]

sin2 ϑ cosϑ, (2.102)

ψ(0)(r, ϑ) = a3γ̇

[

(

r

a

)3

−
(

2 + 5λ

2 + 2λ

)

+
3λ

2 + 2λ

(

a

r

)2
]

sin2 ϑ cosϑ. (2.103)

Note that in the limit of a highly viscous drop (λ≫ 1) the stream function of the

ambient fluid reduces to that of a solid sphere in an elongational flow; the reader

may compare the resulting expression with that provided by Deen [13].
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The velocity components of the flows inside and outside the drop are recovered

by means of Equation (2.13):

u
(1)
ϑ = − 3

2 (1 + λ)
a γ̇

[

5

(

r

a

)3

− 3

(

r

a

)

]

sinϑ cos ϑ, (2.104a)

u(1)r =
3

2 (1 + λ)
a γ̇

[

(

r

a

)3

−
(

r

a

)

]

(

3 cos2 ϑ− 1
)

, (2.104b)

u
(0)
ϑ = −3 a γ̇

[

(

r

a

)

− λ

1 + λ

(

a

r

)4
]

sinϑ cosϑ, (2.104c)

u(0)r = a γ̇

[

(

r

a

)

− 2 + 5λ

2 (1 + λ)

(

a

r

)2

+
3λ

2 (1 + λ)

(

a

r

)4
]

(

3 cos2 ϑ− 1
)

, (2.104d)

where it is evident that the rigid body limit is reached when the viscosity of the

drop is large compared to the ambient viscosity (λ≫ 1); that is, u(1) → 0 and u(0)

reduces to that of solid sphere in an elongational flow [13]. An interesting feature

of the inner flows is that there is no flow through the x–y plane at z = 0. The

expressions for the pressure fields of the fluid phases are obtained by introducing

the velocity components into the creeping motion equation followed by integration

of the pressure gradient:

p(1) = η1 γ̇

(

21

2 (1 + λ)

)(

r

a

)2
(

3 cos2 ϑ− 1
)

, (2.105a)

p(0) = −η0 γ̇
(

2 + 5λ

1 + λ

)(

a

r

)3
(

3 cos2 ϑ− 1
)

. (2.105b)

Note that the pressure far from the fluid sphere p∞ is an arbitrary constant that

has been set to zero for simplicity.

Figure 2–10 illustrates the streamlines of the flows that occur inside and outside

the fluid sphere. It is interesting to see that the inner flows are characterized by two

counter-rotating toroidal-like vortices, and that the undisturbed flow is recovered

quite rapidly in comparison with the streamlines for a fluid sphere in a uniform flow

(figure 2–8). The principal reason for this finding is that the disturbance to the
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Figure 2–10: Streamlines in and about the fluid sphere in an elongational flow.

imposed flow caused by a fluid sphere in a streaming flow decays as 1/r, whereas,

in a straining flow it decays as 1/r2.

From the symmetry of the imposed flow, it is clear that there is a zero net force

on the fluid sphere (F = 0). One can easily imagine that the force imposed by the

flow on any hemispherical section of the fluid sphere is cancelled by its counterpart

at r = a. (Note that the orientation of the hemispherical domain with the flow is

irrelevant.) By analogous symmetry arguments, the net torque on the fluid sphere is

identically zero (T = 0). In Section 2.3.5 stronger arguments are given to elucidate

that the fluid drop is both force and torque–free in a general straining flow.

2.3 3D flows

This section concerns methods of solution to full 3D problems. The ‘velocity’

dyad and ‘pressure’ vector are introduced in Section 2.3.1 to derive closed-form

expressions for the force, torque and stresslet on bodies of spherical shape subject

to low Reynolds number flows. The disturbance field caused by the presence of the

solid sphere and its relation with the Oseen tensor is presented in Section 2.3.2. In

Section 2.3.3, the analogous calculation of the force, torque and stresslet is carried

out for a fluid drop in a uniform flow. The stresslet of a solid sphere and fluid drop

in a generalized straining flow is calculated in Sections 2.3.4 and 2.3.5, respectively.
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The classic problem of finding the circulation and exterior flows of a fluid drop under

the action of a uniform shear flow is solved with Lamb’s solution in Section 2.3.6.

The series of problems culminates with the calculation of the effective viscosity of a

dilute dispersion of drops in a linear shear flow of a Newtonian fluid in Section 2.4.

2.3.1 Hydrodynamic resistance tensor of a solid sphere in Stokes flow

The principal objective is to show that a solid sphere has an isotropic resistance

tensor to a uniform flow. The resistance tensor A (which has units of length)

depends only on the shape of the body and relates the drag force F to the viscosity

of the ambient fluid η and the undisturbed velocity u∞ via the linear relationship:

F = ηA·u∞. In principle the properties of the creeping flow equations furnishes the

linear relationship that exist between these quantities and it can be equally applied

to bodies of arbitrary shape [20]. Additionally, it is shown that the solid sphere

is torque–free, followed by the calculation of the stresslet, which is a measure of

the long-range effect of a body to the stress in a fluid. The latter has important

implications on the effective viscosity of a dispersion of spheres in a fluid subject to

a uniform shear flow, such that the bulk viscous properties of the dispersion exceed

that of the host fluid [67]. To this end it necessary to revisit the problem of Stokes

flow but in an arbitrary direction relative to the set of axes centered on the body.

(That is, the uniform flow does not act along any of the axes affixed to the particle.)

The solution is formulated by introduction of the ‘pressure’ vector P (x) and the

‘velocity’ dyad V (x). The symbol x denotes the position vector of magnitude r

and direction given by the radial unit vector er of a spherical coordinate system

centered on the solid sphere. The ‘pressure’ vector is related to the fluid pressure

via p = ηP (x) · u∞, and similarly, the relation of the ‘velocity’ dyad with the

fluid velocity is u = V (x) · u∞; note that P (x) has units of a−1 and V (x) is a

non-dimensional second-rank tensor.
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Introducing the above definitions for the pressure and the fluid velocity into

the Stokes equations yields the boundary value problem for the ‘pressure’ vector

and ‘velocity’ dyad:

[

∇P (x)−∇2V (x)
]

· u∞ = 0, (2.106a)

[∇ · V (x)] · u∞ = 0, (2.106b)

[V (x)] · u∞ = 0 at r = a, (2.106c)

[V (x)− δ] · u∞ = 0 as r →∞, (2.106d)

where δ is the identity tensor. Note that the velocity u∞ is an arbitrary vector,

and hence, only the bracketed terms are required to be identically zero. Thus, the

boundary value problem now reads:

∇P (x) = ∇2V (x), ∇ · V (x) = 0, (2.107a)

V (x) = 0 at r = a, (2.107b)

V (x) = δ as r →∞. (2.107c)

The boundary conditions define that the flow normal to the surface of the solid

sphere vanishes because the fluid cannot penetrate the surface of the solid, and far

from the sphere the velocity reduces to the undisturbed velocity. To arrive at the

above expressions it has been noted that u∞ is a constant, arbitrary vector that can

be extracted out from the differential operators. It is important to mention that

this formulation is not restricted to a solid body of spherical shape. Brenner [68–

73] extensively used this formulation to develop a theory for the hydrodynamic

resistance of arbitrarily shaped bodies subject to fluid flow in the creeping motion

limit. For instance, the formulation has been central to studies concerned with the

dynamical and rheological behavior of colloidal suspensions [74].
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It is key to point out at this early stage of the solution formulation that the

creeping flow equation can be interpreted as a partial differential equation of sec-

ond order with the pressure gradient acting as an inhomogeneous term. This is a

consequence of the pressure satisfying the equation of Laplace ∇2p = 0, which is

a well-known feature of low Reynolds number flows [13]. Therefore, one may take

advantage of the linearity property to break down the ‘velocity’ dyad V (x) into ho-

mogeneous and particular terms: V (x) = V h(x) + V p(x). Therefore, the creeping

flow equation now consists of two parts:

∇2V h(x) = 0 (2.108)

∇2V p(x) = ∇P (x). (2.109)

Later, it will be shown that the particular solution V p(x) is exclusively associated

with the fluid pressure, as it should, and that the continuity equation cannot be

satisfied by the homogeneous solution V h(x) alone.

The solution to the problem of Stokes flow past a solid sphere follows by deduc-

tion of the appropriate form of P (x). Since the formulation is independent of the

direction of motion, the obtained solution to the axisymmetric problem provided

in section 2.2.2 can be used to guess the right form of the general problem. By

noting that for axisymmetric flow p ∼ r−2 cosϑ, and that cosϑ = x · u∞ because

u∞ = ez, the pressure may be written as p = ηP (x) · u∞ = [f(r)x] · u∞, where

f(r) is a scalar function. The bracketed expression corresponds to the ‘pressure’

vector P (x) = f(r)x.

It is instructive to calculate the gradient of the pressure ∇P (x) in order to

guess the structure of the ‘velocity’ dyad. Index notation is adopted from here on
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to operate over the field variables:

∇P (x) =
∂

∂xi
Pj, (2.110)

=
∂

∂xi
(f(r) xj) ,

=f(r) δi j +
1

r
f ′(r) xixj ,

=f(r) δ +
1

r
f ′(r)xx,

where the replacement of ∂xj/∂xi with the identity tensor δi j has taken place. The

chain rule has been used to differentiate f(r):

∂

∂xi
f(r) =

(

∂r

∂xi

)

∂

∂r
f(r), (2.111)

and it has been noted that ∂r/∂xi = xi/r (this relation is obtained by differentiating

x · x = x2i = r2, which is simply the equation for a sphere of radius r).

Since it is simpler to deal with the homogeneous part of the ‘velocity’ dyad first,

it is assumed that it has the same form as the pressure gradient:

V h(x) = h(r) δ + g(r)xx, (2.112)

where h(r) and g(r) are scalar functions that must satisfy the homogenous part of

the creeping flow equation; that is, ∇2V h(x) = 0. By recalling that ∇2 = ∇ · ∇,

the gradient of the ‘velocity’ dyad is calculated first to then determine its Laplacian,

as shown below:

∇V h(x) =
∂

∂xi
V h
j k (2.113)

=
∂

∂xi

(

h(r) δj k

)

+
∂

∂xi

(

g(r) xjxk

)

,

=
1

r
h′(r) xi δj k + g(r)

(

δi jxk + xjδi k

)

+
1

r
g′(r) xixjxk.
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The Laplacian of V h(x) unfolds from elementary operations (steps not shown for

the sake of being concise):

=
∂

∂xi

[

∂

∂xi
h(r) δj k

]

+
∂

∂xi

[

g(r)
(

δi j xk + xjδi k

)]

+
∂

∂xi

[

1

r
g′(r) xixjxk

]

, (2.114)

where the first bracketed term simply becomes ∇2h(r)δj k, the Laplacian operator

in spherical coordinates is used here for convenience, the second bracketed term

yields 2 g(r) δj k + 2 g′(r)/r xjxk, and the third one gives
(

g′′(r) + 4 g′(r)/r
)

xjxk.

The following properties have been used in order to arrive at the final expressions:

x2i = r2, δi i = 3, xkδk j = xj , and δi jδi k = δj k. Therefore, the expression for the

Laplacian of V h(x) now reads:

∇2V h(x) =
(

∇2h(r) + 2 g(r)
)

δ +
(

g′′(r) +
6

r
g′(r)

)

xx = 0. (2.115)

The finding that the governing equations are expressed solely with respect to

the scalar functions is an indication that the assumed form for P (x) and V (x) is

correct. In order for ∇2V h(x) = 0, the scalar functions h(r) and g(r) must satisfy:

g′′(r) +
6

r
g′(r) = 0, (2.116)

h′′(r) +
2

r
h′(r) + 2g(r) = 0, (2.117)

where the resulting ordinary differential equations are equidimensional equations

with general solution rn and r−n. Given that the undisturbed flow must be recovered

at large distances from the solid sphere, the scalar functions must consist of the

decaying terms. On account of the linearity of the above set of differential equations,

it is useful to determine first the homogeneous solutions by substitution of g(r) =

h(r) = r−n to obtain the corresponding algebraic expressions:

n(n− 5) r−n−2 = 0, (2.118)

n(n− 1) r−n−2 = 0, (2.119)
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where it is straightforward to see that g(r) = Br−5 and that h(r) = Cr−1 + D,

where the latter constant is retained to satisfy the far field velocity. Substitution

of the newly acquired expression for g(r) into the complete differential equation for

h(r) yields the following algebraic equation by assuming that the particular solution

is also equidimensional hp(r) = E r−n:

n(n− 1)E r−n−2 = −2B r−5, (2.120)

where a particular solution exists if n = 3 and E = −B/3, such that now the

complete expression of h(r) = −B/3 r−3 + Cr−1 +D.

An attempt to satisfy the continuity equation with the homogeneous part of

the ‘velocity’ dyad (i.e. ∇·V h(x) = 0) is made in order to demonstrate that it is

impossible to achieve that in this particular problem. Application of the divergence

operator to the homogeneous part of the ‘velocity’ dyad results in an ordinary differ-

ential equation that cannot be solved by non-trivial solutions of the scalar functions

h(r) and g(r):

∇·V h(x) =
∂

∂xi

(

h(r) δj k

)

δi j +
∂

∂xi

(

g(r) xjxk

)

δi j, (2.121)

=

(

1

r
h′(r) + rg′(r) + 4g(r)

)

x. (2.122)

Once more, x is an arbitrary vector such that the ordinary differential equation

must be identically zero for the ‘velocity’ dyad to satisfy the continuity equation.

Substitution of the corresponding scalar functions reveal that Equation (2.122) can-

not be satisfied for non-zero values of the constant C. Note that C = 0 corresponds

to the trivial solution u = 0 everywhere, and that is a contradiction since motion of

the solid sphere in a quiescent fluid creates a disturbance that decays as r−1. This

is an indication that the ‘velocity’ dyad requires an inhomogeneous component; the

connection of this term with the ‘pressure’ vector will become evident later on.
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The homogeneous contribution of the ‘velocity’ dyad V h(x) suggests that its in-

homogeneous counterpart must be of the form V p(x) = p(r)xx because∇2V p(x) =

2p(r) δ+(p′′(r) + 6p′(r)/r) xx has the same structure as ∇P = f(r) δ+f ′(r)/rxx.

On the contrary, the Laplacian of a scalar function times the identity tensor as for

h(r) δ results in∇2h(r) δ, which lacks the xx dependence of∇P . And consequently,

there is only one suitable choice for the inhomogeneous term of the ‘velocity’ dyad.

Operating the divergence operator to the full ‘velocity’ dyad results in the

following characteristic equation for p(r):

∇·
(

V h(x) + V p(x)
)

=
(

rp′(r) + 4p(r)− Cr−3
)

x = 0, (2.123)

where the terms of h(r) and g(r) that cancel each other out have been omitted for

clarity. As one may expect, the divergence of the full ‘velocity’ dyad results in a

non-homogeneous equidimensional equation with particular solution p(r) = Cr−3.

With the obtained particular solution the full ‘velocity’ dyad now reads:

V (x) =
(

− 1

3
Br−3 + Cr−1 +D

)

δ +
(

Br−5 + Cr−3
)

xx. (2.124)

One may be inclined to apply the boundary conditions given by Equations (2.107b)

and (2.107c) in order to determine the unknown constants B, C and D; nevertheless,

it is a good practice to check for consistency of the scalar functions of the ‘velocity’

dyad with that of the ‘pressure’ vector. Note that the ‘velocity’ dyad has been fully

determined by solely guessing the right form of the ‘pressure’ vector P (x) = f(r)x

without a formal expression for the scalar function f(r). Of course, it is a trivial

matter to deduce the expression of f(r) from the solution to the axisymmetric

problem; however, there is little gain in doing so for the purposes of delineating a

rigorous method of solution that may be applied to other problems where the form

of f(r) is not known in advanced.
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The characteristic equation for f(r) unfolds from application of ∇2P (x) = 0

(obtained by elementary operations):

∇2P (x) =
(

f ′′(r) +
4

r
f ′(r)

)

x = 0, (2.125)

which is another form of an equidimensional differential equation with solution

f(r) = Ar−3. The gradient of the ‘pressure’ vector now reads:

∇P (x) = Ar−3 δ − 3Ar−5 xx. (2.126)

Substitution of the ‘pressure’ gradient and the Laplacian of the ‘velocity’ dyad

into the creeping flow equation defined in (2.107a) reveals that the scalar functions

p(r) and f(r) are related by a factor of two; that is, C = A/2. But more importantly,

it is found that the components of ∇2V (x) and ∇P (x) are consistent. Partly, this

is because ∇2P (x) is a consequence of satisfying ∇ · V (x) = 0. This property

could have been used earlier but, it has been postponed until now for the sake of

providing a thorough analysis.

Application of the pertaining boundary conditions allows for the determination

of the constants:

A = −3
2
a, B =

3

4
a3, (2.127)

C = −3
4
a, D = 1, (2.128)

such that now the scalar functions read:

h(r) = 1− 3

4
a r−1 − 1

4
a3 r−3, (2.129)

g(r) =
3

4
a3 r−5, p(r) = −3

4
a r−3. (2.130)

For the purposes of testing the correctness of the ‘velocity’ dyad and ‘pressure’

vector, it is convenient to express them with respect to the unit normal vector
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(er = x̂ = r−1x):

P (x̂) =− 3

2
a−1

(

a

r

)2

x̂, (2.131a)

V (x̂) =

[

1− 3

4

(

a

r

)

− 1

4

(

a

r

)3
]

δ +

[

−3
4

(

a

r

)

+
3

4

(

a

r

)3
]

x̂x̂. (2.131b)

The reader can effortlessly verify that the velocity and pressure fields for an axisym-

metric streaming flow past a solid sphere, Equations (2.23) and (2.25), are recovered

via u = V · u∞ and p = ηP · u∞, where u∞ = −u∞ez.

The Stokes law for the drag force on the solid sphere can be obtained from

calculation of the net fluid stresses at its surface:

F =

∮

Sp

n · σ dSp. (2.132)

To obtain an expression for the force with respect to the ‘pressure’ vector and

‘velocity’ dyad, it is useful to express the stress tensor in the following form:

σ = −δ p+ η
[

∇u+ (∇u)t
]

, (2.133)

where, again, t denotes the transpose operator. Introduction of the definitions of

the ‘pressure’ vector (p = ηP (x) · u∞) and ‘velocity’ dyad (u = V (x) · u∞) into

Equation (2.133) yields the following expression for the stress tensor:

σ = η
[

− δP (x) +∇V (x) + (∇V (x))t
]

· u∞, (2.134)

where the above bracketed expression corresponds to the ‘stress’ triad:

Π(x) = −δP (x) +∇V (x) + (∇V (x))t . (2.135)

In analogy with the stress tensor σ, the ‘stress’ triad Π is also a symmetric ten-

sor [20].
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For a solid sphere subject to Stokes flow, the ‘stress’ triad Π(x) reads:

Πi j k =− f(r) δi j xk +
h′(r)

r

(

xi δj k + xj δi k

)

+
G′(r)

r

(

xi xj xk + xj xi xk

)

+

(2.136)

G(r)
[(

δi j xk + δj i xk

)

+
(

xi δj k + xj δi k

)]

,

where, we have defined G(r) = g(r) + p(r) for clarity of the presentation. Note

that Equation (2.136) is a general expression that applies to other problems that

involve bodies of spherical shape (such as, drops and bubbles) under the influence

of a uniform flow. For the purposes of calculating the drag force, it is convenient to

rewrite first the ‘stress’ triad with respect to the unit position vector Π(x̂) via the

replacement x = r x̂:

Πi j k =− rf(r) δi j x̂k + h′(r)
(

x̂i δj k + x̂j δi k

)

+G′(r)
(

x̂i x̂j x̂k + x̂j x̂i x̂k

)

+

(2.137)

rG(r)
[(

δi j x̂k + δj i x̂k

)

+
(

x̂i δj k + x̂j δi k

)]

.

Then, to obtain the stresses normal to the surface of the solid sphere, the dot product

is carried out x̂ ·Π(x̂) (note that the unit vector x̂ is normal to the surface of the

sphere):

x̂i Πi j k =
[

h′(r)+ rG(r)
]

δj k+
[

− rf(r)+h′(r)+2r2G′(r)+3rG(r)
]

x̂j x̂k. (2.138)

Evaluation of x̂ ·Π(x̂) at the surface of the sphere (r = a) reveals that

x̂ ·Π(x̂) =
3

2
a−1 δ. (2.139)

By noting that η
(

x̂ ·Π(x̂)
)

· u∞ is equivalent to n · σ, it is replaced into the

expression for the drag force on the solid sphere to obtain:

F = η

[

∮

Sp

x̂ · Π(x̂) dSp

]

· u∞, (2.140)
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where the bracketed expression is known as the resistance tensor of the solid sphere

to an external uniform flow (a 2nd rank tensor proportional to a):

A =

∮

Sp

x̂ · Π(x̂) dSp. (2.141)

After carrying out the surface integral, the classic expression for the hydrodynamic

resistance of a solid sphere to a streaming flow is obtained:

A = 6πa δ, (2.142)

where the appearance of the identity tensor indicates that the resistance of the solid

sphere is isotropic (independent of the direction of the imposed flow). It is important

to mention that A depends only on the shape of the body; it is independent of the

properties of the surrounding fluid and strength of the external flow (provided that

Re ≪ 1). (For an arbitrarily shaped body A scales with the characteristic length

of the body L; the reader is referred to [20, 31]).

Stokes’ law for the drag force on the solid sphere simplifies to the dot product

of the resistance tensor A with the velocity of the undisturbed flow u∞:

F = 6πaη δ · u∞ = 6πaηu∞, (2.143)

where it is evident that the generalized expression above is consistent with Equa-

tion (2.31). Owing to the isotropic character of the hydrodynamic resistance of the

solid sphere to the external flow, the force is found to act in the direction of the

undisturbed velocity; that is, there are no forces lateral to the flow acting on the

body. This is a consequence of the spherical symmetry of the particle, for other

axisymmetric bodies (for example, spheroids) there can be a force lateral to the

direction of the streaming flow that depends on the relative orientation of the body

with the flow [20]. Such bodies exhibit a migration lateral to the streamlines of the
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undisturbed flow. For example, those bodies move sideways to a vertical gravita-

tional field while undergoing sedimentation.

It is straightforward to see that the torque imparted by the streaming fluid on

the solid sphere is identically zero (evident from purely geometrical deductions) by

calculating the first moment of the normal stresses at the surface of the sphere:

T =

∮

Sp

x× (n · σ) dSp, (2.144)

where, once more, the normal stresses can be expressed in terms of the ‘stress’ triad

to obtain:

T = η

[

∮

Sp

x× (x̂ ·Π(x̂)) dSp

]

· u∞, (2.145)

where the bracketed term is the coupling tensor (of rank 2):

B =

∮

Sp

x× (x̂ ·Π(x̂)) dSp, (2.146)

where for the solid sphere it vanishes identically:

B = 6πa2 x× δ = 0, (2.147)

because of the identity x × δ = xiδjlǫijk = 0, which is clearly zero becuase of the

combined symmetry of the identity tensor and the anti-symmetry of the permutation

symbol ǫijk = −ǫjik. Therefore, it is found that a uniform flow imposes a zero torque

on the solid sphere:

T = 6πa2ηB · u∞ = 0. (2.148)

It is important to point out that the coupling tensor is, in general, not zero spe-

cially for bodies with broken fore and aft symmetry. Note also that the coupling

tensor can vary from point to point on the body; unlike the resistance tensor A,

which remains invariant regardless of the reference point used for calculation. For-

tunately, the coupling tensor at an arbitrary point in the body can be determined

from knowledge of the translation tensor and the coupling tensor at a some other
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location of reference, in an analogous manner to how the solid body motion at one

point is related to that at any other point. This analysis lies outside the scope of

this dissertation; nonetheless, the interested reader is referred to the classic book by

Happel & Brenner [20].

Another quantity of interest to the field of microhydrodynamics is the stresslet

(also known as the hydrodynamic dipole), which is determined by the second mo-

ment of the normal stresses [13, 31]:

S =

∮

Sp

(n · σ)x dSp, (2.149)

where, once more, we can express the normal stresses with respect to the ‘stress’

triad to find that the stresslet is identically zero for a solid sphere subject to a

uniform flow:

S =
3

2
a−1ηu∞ ·

[

∮

Sp

δ x dSp

]

, (2.150)

=
3

2
a−1ηu∞

[

∮

Sp

x dSp

]

= 0, (2.151)

because of the identity
∮

Sp
x dSp = 0 (see the appendix given by Deen [13]). The

stresslet for symmetric solid bodies (such as spheroidal particles) is usually associ-

ated with the straining motion of the ambient fluid. The shape of the body must

at least lack fore and aft symmetry to generate a stresslet in a uniform flow; clas-

sic examples are the spherical cap [75] and the aggregate of spheres of different

radii [76]. In Section 2.3.4 a closed-form expression for the stresslet of a solid sphere

in a general straining flow is derived.

It is well known that the viscous properties of a colloidal dispersion (a solid or

liquid phase dispersed in a continous phase, such as a collection of small particles

dispersed in a liquid phase) is influenced by the presence of the dispersed phase [21,

31]. That is, the viscous properties exhibited the dispersion are greater than those
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of the host fluid, which gives rise to the concept of an effective viscosity. For a dilute

dispersion of non-interacting particles the effective viscosity is readily determined

by an average of the stresslets over all the particles that comprise the colloidal

dispersion [13].

From the above result, the effective viscosity of a dilute dispersion of solid

spheres exclusively subject to translation (or streaming flows) is zero. That is, the

viscous properties of the dispersion are solely determined by the viscosity of the

suspending fluid.

2.3.2 Singularity solutions of Stokes flow for a translating solid sphere

The velocity disturbances caused by the motion of a body can, in general, be

described by a distribution of singular solutions to the Stokes flow equations [13, 31].

In this section, we use the results from the problem of Stokes flow past a solid sphere

(Section 2.3.1) to determine the singular solutions that describe the disturbances

caused by a solid sphere that translates.

The problem of a solid sphere that translates with a constant velocity U in a

viscous, quiescent fluid at zero Reynolds number is considered here. In this limit,

the problem of translation of the solid sphere in a fluid at rest is analogous to the

problem of Stokes flow past a stationary sphere (just an interchange of the reference

of motion). Now, the fluid is at rest far from the solid sphere, and the fluid in

contact with the solid sphere moves with the velocity of the particle because of the

no-slip and no-penetration conditions.

Thus, the governing equations read:

[

∇P (x)−∇2V (x)
]

·U = 0, (2.152a)

[∇ · V (x)] ·U = 0, (2.152b)

[V (x)− δ] ·U = 0 at r = a, (2.152c)

[V (x)] ·U = 0 as r →∞. (2.152d)
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By following an analogous procedure to that shown in section 2.3.1, one finds the

following expressions for the ‘pressure’ vector and ‘velocity’ dyad (the reader may

refer to Happel & Brenner [20]):

P (x) =
3

2
a r−3 x, (2.153a)

V (x) =
3

4
a
(

r−1 δ + r−3 xx
)

+
1

4
a3
(

r−3 δ − 3r−5 xx
)

. (2.153b)

The first parenthetical expression of the ‘velocity’ dyad is known as the Oseen ten-

sor [31]:

J(x) = r−1 δ + r−3 xx, (2.154)

which characterizes the disturbance field caused by a point-force (a sphere of zero

volume); Deen [13] presents a simple approach to obtain the point-force solution from

the disturbance velocity caused by a solid sphere of zero volume. It is interesting to

note that the second parenthetical expression of the velocity dyad is proportional to

the Laplacian of J(x), where it reads:

∇2J(x) = 2 r−3 δ − 6 r−5 xx, (2.155)

such that V (x) may be written with respect to the Oseen tensor:

V (x) =
3

4
a
(

J(x) +
a2

6
∇2J(x)

)

. (2.156)

Note also that a2/6∇2J(x) is a degenerate quadrupole, and like the point-force, it

is a singular solution to the Stokes flow equations. The fundamental observation

is that the disturbance flow-field caused by the translation of a solid sphere can

be represented by the superposition of a point-force and a degenerate quadrupole.

An useful application of the singular solutions to the Stokes flow equations is that

these can be superimposed to characterize the disturbance field caused by bodies of

other geometries (e.g. ellipsoidal particles). The interested reader is referred to the

book of Kim and Karrila [31]. Additionally, the reader is referred to contribution of
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Chwang &Wu [26], they introduced singular solutions to characterize the circulation

flows of drops and bubbles in linear fields.

The disturbance velocity field u(x) caused by the motion of the sphere can be

expressed as well with respect to the Oseen tensor by the relation u(x) = U ·V (x)

(note that V (x) is a symmetric tensor in this particular problem such that the scalar

product yields the same result regardless of the side it is applied on):

u(x) = 6πaηU ·

[

(

1 +
a2

6
∇2
)J(x)

8πη

]

, (2.157)

where the quantity J(x)/8π η is also known as the Oseen-Burgers tensor [13]. An

important aspect of this result is that the force on the solid sphere (F = −6πaηU) is

obtained without direct calculation via integration of the fluid stresses at the surface

of the sphere. Note that the disturbance field caused by a stationary sphere in a

uniform flow are also described by the above singularities due to the reversibility

property of Stokes flow (just the sense the force acts is reversed).

2.3.3 Hydrodynamic resistance tensor of a fluid drop in Stokes flow

The main objective of this section is to derive a closed-form expression for the

hydrodynamic resistance tensor of a fluid drop of radius a to a uniform flow. The

resistance tensor A (which has units of length) relates the undisturbed velocity u∞

and the viscosity of the ambient fluid η0 to the hydrodynamic force F on the drop

via the linear relationship F = η0A · u∞. For the sake of completeness, it is shown

that a fluid drop subject to Stokes flow is torque–free with a zero stresslet in a

uniform flow. In order to achieve this it is necessary to find a solution to the Stokes

flow problem in an arbitrary direction relative to the set of axes centered on the fluid

drop. Thus, the analysis presented here is a generalization to the problem of Stokes

flow (axisymmetric flow) about a fluid drop given in Section 2.2.3. For the sake of

brevity, the notations and assumptions used in the axisymmetric counterpart of this

problem are preserved; the exception, of course, being the axisymmetric character
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of the flow everywhere. To that end, the ‘pressure’ vector and ‘velocity’ dyad are

introduced for each fluid phase (j = 0, 1), which are related to the pressure and

velocity fields in the usual manner:

p(j)(x) = ηjP
(j)(x) · u∞, (2.158)

u(j)(x) = V (j)(x) · u∞. (2.159)

As in the problem of a solid sphere in a 3D streaming flow, the governing equations

are written with respect to the ‘pressure’ vector and ‘velocity’ dyad:

∇P (j)(x) = ∇2V (j)(x), ∇ · V (j)(x) = 0, (2.160)

x · V (j)(x) = 0, [V (x)] = 0, λx ·Π(1)(x)− x ·Π(0)(x) = 0, at r = a, (2.161)

V (x) = δ, as r →∞, (2.162)

where the viscosity ratio of the internal to the ambient fluid is denoted by λ = η1/η0

(as in the axisymmetric problem), Π(j)(x) is the ‘stress’ triad of the jth fluid phase,

and, again, the brackets denotes a jump in the specified field from the outer to the

inner fluid. The above set of boundary conditions specify the flow normal to the

surface of the fluid sphere to vanish, and a zero jump in the velocity and stresses

tangent to the surface of the sphere. The ‘velocity’ dyad reduces to the identity

tensor far from the sphere (which is analogous to the recovery of the undisturbed

flow far from the fluid drop).

A key aspect from the axisymmetric problem can be exploited here to further

simplify the ‘velocity’ dyad for the ambient fluid. Since the flow about the fluid

sphere is found to reduce to that of a solid sphere when λ ≫ 1, one can propose

that V (0)(x) consists of the ‘velocity’ dyad of a solid sphere V s(x) plus a correction

Ṽ (x):

V (0)(x) = V s(x) + Ṽ (x). (2.163)
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The advantage of doing so is that V s(x) automatically satisfies the far field con-

dition. For the formulation to work, it is evident that the correction must vanish
(

Ṽ (x) = 0
)

in the limit λ≫ 1. The reader may verify that such a construction is

possible for the axisymmetric problem.

As in the 3D flow problem for the solid sphere, the linearity of Stokes equations

allows the decomposition of the ‘velocity’ dyads into homogenuous and particular

terms, such that the solution to the creeping flow equation simplifies to:

∇2V
(j)
h (x) = 0, (2.164)

∇2V (j)
p (x) =∇P (j). (2.165)

Note that it follows from above that Ṽ (x) can also be decomposed into homogeneous

and particular parts:

∇2Ṽ h(x) = 0, (2.166)

∇2Ṽ p(x) =∇P̃ . (2.167)

In similarity with the 3D problem for a solid sphere, the following forms are as-

sumed for the ‘pressure’ vectors and ‘velocity’ dyads (the reader may verify from

the axisymmetric problem for the fluid sphere that the proposed forms work):

P (j) = fj(r)x, (2.168)

V
(j)
h = hj(r) δ + gj(r)xx, V (j)

p =
1

2
fj(r)xx. (2.169)

Note that the analysis performed on the solid sphere showed that the particular

term of the ‘velocity’ dyad is intrinsically related to fs(r). This becomes clear from

the observation that the homogeneous functions alone (hs(r) and gs(r)) could not

satisfy ∇ · V s(x) = 0 without the inclusion of the particular function ps(r), which

turned out to be equal to fs(r)/2. The closure point here is that fs(r) satisfies the

Laplace equation for the ‘pressure’ vector (∇2P s(x) = 0) and that this equation is
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a direct consequence of requiring ∇·V s(x) = 0. Thus, it is only natural that fs(r)

appears in the particular component of the ‘velocity’ dyad V p(x). Note that this

finding is a consequence of the Stokes equations, and therefore, it holds equally for

the internal and outer flows of the fluid drop.

The scalar functions of the outer flows are further broken down to:

f0(r) = fs(r) + f̃(r), (2.170)

h0(r) = hs(r) + h̃(r), g0(r) = gs(r) + g̃(r), (2.171)

where,

hs(r) =

[

1− 3

4

(

a

r

)

− 1

4

(

a

r

)3
]

, (2.172)

fs(r) = −
3

2
a−1r−3, gs(r) =

3

4
a3r−5. (2.173)

In similarity with the problem of a solid sphere, the scalar functions satisfy the fol-

lowing system of ordinary differential equations (where the set arises from requiring

∇2P (j)(x) = 0 and ∇2V
(j)
h (x) = 0):

f ′′
j (r) +

4

r
f ′
j(r) = 0, (2.174)

g′′j (r) +
6

r
g′j(r) = 0, h′′j (r) +

2

r
h′j(r) + 2gj(r) = 0. (2.175)

It is easy to see that the above equations are equidimensional with solutions of the

form of rn and r−n for internal and decaying flows, respectively. The scalar functions

that describe the internal flows are found to be:

h1(r) = −
1

3
B1r

2 + C1, (2.176)

f1(r) = A1, g1(r) = B1, (2.177)
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and those of the ambient flow:

h̃(r) = −1
3
B̃r−3 + C̃r−1, (2.178)

f̃(r) = Ãr−1, g̃(r) = B̃r−5. (2.179)

From application of the continuity equation it is found that:

A1 = −
5

3
B1, Ã = 2C̃. (2.180)

Thus, the ‘velocity’ dyads can now be expressed with respect to a set of 4 coefficients

that must be determined from 4 independent boundary conditions (the problem is

reduced to the determination of a group of constants in analogy with the stream

function formulation):

V (1)(x) =

[

−1
3
B1r

2 + C1

]

δ +
1

6
B1xx, (2.181)

V (0)(x) = V s(x) +

[

−1
3
B̃r−3 + C̃r−1

]

δ +
[

B̃r−5 + C̃r−3
]

xx. (2.182)

Note that V s(x) vanishes identically at the surface of the sphere and reduces to the

far field at large distances from the sphere. It will be shown later that it is only

needed when considering the jump in shear stresses at the surface of the sphere.

Application of the no-penetration condition
(

x · V (j)(x) = 0
)

yields the first

pair of equations:

−1
6
a2B1 + C1 = 0, (2.183)

2

3
a−3B̃ + 2a−1C̃ = 0. (2.184)
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Requiring a zero jump in the velocity and stresses tangent to the surface of the fluid

sphere result in the last pair of equations:

(

−1
3
a2B1 + C1

)

−
(

−1
3
a−3B̃ + a−1C̃

)

= 0, (2.185)

λ

(

−1
2
aB1

)

−
(

3

2
a−1 + 2a−4B̃

)

= 0, (2.186)

where Equation (2.138) has been used to calculate the shear stresses at the surface

of the fluid sphere; note that the referenced function G(r) in (2.138) corresponds

to the expression that accompanies the xx term in the ‘velocity’ dyad. It is also

important to realize that the expressions that accompany δ in the ‘velocity’ and

‘stress’ tensors act tangent to the surface of the sphere (which is easy to see by

considering that the dot product of any tangent vector t to the surface of the sphere

satisfies t · x = 0).

Solution of the above system of equations results in the sought expressions for

the coefficients of the inner and outer flows:

A1 =
5

1 + λ
a−2, B1 = −

3

1 + λ
a−2, C1 = −

1

2 (1 + λ)
, (2.187)

Ã =
1

2 (1 + λ)
a, B̃ = − 3

4 (1 + λ)
a3, C̃ =

1

4 (1 + λ)
a. (2.188)

Therefore, the corresponding scalar functions of the internal fluid become:

h1(r) = −
1

2 (1 + λ)

[

1− 2

(

r

a

)2
]

, (2.189a)

f1(r) =
5

1 + λ
a−2, g1(r) = −

3

1 + λ
a−2, (2.189b)

ambient fluid are:

h̃(r) =
1

4 (1 + λ)

[

(

a

r

)

+

(

a

r

)3
]

, (2.190a)

f̃(r) =
1

2 (1 + λ)
a r−3, g̃(r) = − 3

4 (1 + λ)
a3 r−5, (2.190b)
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Therefore, the ‘velocity’ dyad of the internal and ambient can now be expressed

as:

V (1)(x) =− 1

2 (1 + λ)

[

1− 2

(

r

a

)2
]

δ − 1

2 (1 + λ)

(

r

a

)2

xx, (2.191)

V (0)(x) =

[

1− 2 + 3λ

4 (1 + λ)

(

a

r

)

− λ

4 (1 + λ)

(

a

r

)3
]

δ (2.192)

+

(

3λ

4 (1 + λ)
a r−3 − 2 + 3λ

4 (1 + λ)
a3 r−5

)

xx,

where it is easy to see that V (0)(x) = V s(x) as λ→∞ in accordance to the afore-

mentioned expectations. Note that the ‘velocity’ dyad of the internal fluid V (1)(x̂)

vanishes to zero as λ → ∞, which indicates that the internal phase behaves as a

solid phase in this limit. The reader can easily verify that the velocity fields for

a fluid sphere subject to an axisymmetric uniform flow, given in Equations (2.68)

and (2.69), are recovered via u(j) = V (j)
· u∞, where the undisturbed flow is given

by u∞ = −u∞ez. As in the problem of the solid sphere, the ‘velocity’ dyads are

independent of the direction of the undisturbed flow u∞, and therefore, the corre-

sponding velocity fields are always recovered regardless of the arrangement of the

flow with respect to the reference frame on the body. This is one of the benefits of

solving fluid flow problems with this formulation.

The ‘pressure’ vectors that develop inside and outside the fluid sphere are:

P (1)(x̂) = 5a−1 1

1 + λ

(

r

a

)

x̂, (2.193)

P (0)(x̂) = −3
2
a−1

(

a

r

)2

x̂+
1

2
a−1 1

1 + λ

(

a

r

)2

x̂, (2.194)

where, the latter term of P (0)(x̂) corresponds to P̃ (x̂). The ‘pressure’ vector of the

outer fluid can be rewritten in the more familiar manner:

P (0)(x̂) = −a−1

(

2 + 3λ

2 + 2λ

)(

a

r

)2

x̂. (2.195)
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It is straightforward to notice that the above expression for the ‘pressure’ vector

is consistent with the pressure field given in Equation (2.71) for an axisymmetric

streaming flow via p(0) = η0P · u∞. (Note that setting the gravitational field and

the pressure far away in (2.71) to zero yields identical expressions.) Analogous

arguments hold for P (1)(x̂) as well.

By following a procedure analogous to that of a solid sphere (Section 2.3.1) for

the determination of the drag force F on the fluid sphere, one finds that F is always

parallel to the flow:

F = 2πaη0

(

2 + 3λ

2 + 2λ

)

u∞. (2.196)

Note that in the extremes of λ ≪ 1 (negligible internal viscosity) and λ ≫ 1

(rigid-body limit), the drag force reduces to that on a bubble and a solid sphere,

respectively, in agreement with the findings of Section 2.2.3. From the above ex-

pression for the force, it follows that the hydrodynamic resistance of the fluid drop

to a uniform flow is isotropic:

A = 2πa

(

2 + 3λ

2 + 2λ

)

δ, (2.197)

where the presence of the identity tensor δ confirms that the fluid drop offers an

isotropic resistance to a uniform flow. By following a procedure analogous to that

done in Section 2.3.1 for the calculation of the torque on a solid sphere in Stokes

flow, it can be found that the drop is also torque–free (T = 0), which agrees well

with one’s intuition since there are no means for a uniform flow to impose a net

torque on a spherical body with an isotropic resistance to the flow. (An example of

a spherical body with an anisotropic resistance to a uniform flow is the ‘slip–stick’

sphere [77].) By following analogous arguments to those used for the solid sphere it

can be found that the stresslet of the fluid drop to the uniform flow is identically

zero, where again, is a consequence of the isotropic resistance of the body to the

external flow.
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On regard to the continuity of the normal stresses σnn at the fluid–fluid interface

(r = a), it is expected that there is no jump from one fluid phase to the other; the

interested reader may add the gravitational term to the ‘pressure’ vector to obtain

a result analogous to that found in the axisymmetric problem (Section 2.2.3). The

normal stresses associated with fluid motion are evenly matched by those exerted by

gravity at every point along the fluid–fluid interface for a zero jump in the normal

stresses.

The disturbance to the flow (uD(x) = u(x)− u∞) caused by the presence of the

fluid sphere can be readily derived from the ‘velocity’ dyad of the ambient fluid. By

noting that the Oseen tensor J(x) appears in the ‘velocity’ dyad of the ambient flow,

an expression for the disturbance is obtained after some algebraic manipulations:

V D(x) = V (0)(x)− δ = −3
4
a

(

2 + 3λ

3 + 3λ
+ a2

λ

6 + 6λ
∇2

)

J(x), (2.198)

where, in analogy with the problem of Stokes flow past a solid sphere, the disturbaced

caused by the fluid sphere is described by a point-force and a degenerate quadrupole.

Note that in the limit of a highly viscous drop (λ ≫ 1) the singularities for a solid

sphere are recovered.

2.3.4 Stresslet of a solid sphere in a general straining flow

In this section a closed-form expression for the stresslet of a solid sphere in

a general straining flow is derived. The stresslet captures the distribution of the

stresses at the surface of the body and the long-range disturbance effects in the

fluid [13]. The stresslet is a quantity of primary importance for the fundamen-

tal understanding of the bulk viscous properties of colloidal suspensions under the

influence of a uniform shear flow (which ubiquitous type of flow found in both na-

ture and industrial applications). To this end, a solution to the Stokes equations is

sought when the solid sphere is subject to a general straining flow u∞ = E∞
· x,

where E∞ is the rate-of-strain tensor of the undisturbed flow. The analysis that
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follows only relies on the symmetry of the rate-of-strain tensor (E∞
kl = E∞

lk ) and

the zero trace constraint E∞
kk = 0 [13, 31] to derive an expression for the stresslet.

(The traceless rate-of-strain tensor is a direct consequence of satisfying continuity of

mass.) The problem considered in Section 2.2.4 corresponds to the particular case

of an axisymmetric elongational flow, in which the stream function was conveniently

used to analyze the flow. In this section one has to resort to the determination of

the ‘velocity’ dyad and the ‘pressure’ vector to derive an exact expression for the

stresslet on the solid sphere. For the sake of completeness, it is shown that the solid

sphere is both force and torque–free in a general straining flow.

The boundary value problem of concern is presented with respect to the pressure

p(x) and velocity u(x) fields about the solid sphere:

∇p(x) = η∇2u(x), ∇ · u(x) = 0, (2.199)

n · u(x) = 0, t · u(x) = 0, at r = a, (2.200)

u(x) = E∞
· x, as r →∞, (2.201)

where n and t are the unit normal and tangent vectors to the surface of the sphere,

respectively. Basically, there is no flow through the solid sphere, and no relative

motion between the fluid and the solid at its surface. (The usual no-penetration

and no-slip conditions at the surface of the solid.) The velocity field u(x) must

reduce to the undisturbed velocity (u∞ = E∞
·x) at distances far from the sphere.

It is worth mentioning that for this particular problem it is far more convenient

to deal directly with the pressure and velocity fields rather than with the ‘pressure’

vector and ‘velocity’ dyad. This is understood by recalling that for the problem

of Stokes flow past a solid sphere (Section 2.3.1) u∞ is a constant vector that can

be easily extracted from the gradient and Laplacian operators such that analogous

governing equations can be obtained for the ‘pressure’ vector and ‘velocity’ dyad.

In this problem, however, the undisturbed velocity is not a constant vector with a
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zero gradient, but a vector field characterized by a uniform gradient, which arises

from the imposed rate of strain (∇u∞ = E∞). Hence, unlike the Stokes problem,

the governing equations for the ‘pressure’ vector and ‘velocity’ dyad would be com-

plicated with the appearance of terms containing ∇u∞; defeating the purpose of

introducing them in the first place.

Despite the inherent complications of a flow with a non-zero velocity gradient,

the form of the pressure and velocity fields is not expected to differ from that of

Stokes flow (the assumed forms are principally based on the geometry of the body):

p(x) = η
[

f(r)x
]

·E∞
· x, (2.202)

u(x) =

[

h(r) δ +G(r)xx

]

·E∞
· x, (2.203)

where f(r), G(r) and h(r) are scalar functions that are determined from application

of the governing equations and boundary conditions to the pressure and velocity

fields. It is noteworthy that the above bracketed expressions correspond to the

‘pressure’ vector P (x) and ‘velocity’ dyad V (x), respectively.

As in the problem of Stokes flow, the pressure field is treated as an inhomo-

geneous term in the Stokes equations by separating the velocity field u(x) into

homogeneous uh(x) and particular components up(x), such that solution to the

creeping motion equation is achieved in two steps:

∇2uh(x) = 0, (2.204)

η∇2up(x) =∇p(x), (2.205)

where,

uh(x) =

[

h(r) δ + g(r)xx

]

·E∞
· x, (2.206)

up(x) = [P(r)xx ] ·E∞
· x, (2.207)
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which implies that G(r) = g(r)+P(r) in Equation (2.203). It will become apparent

that the scalar function P(r) is directly related to the pressure field p(x) later on.

The solution methodology to determine p(x) and u(x) is concisely summarized

here. First, an ordinary differential equation for f(r) is obtained by requiring the

pressure field to satisfy ∇2p(x) = 0 everywhere in the fluid. This is followed by the

solution of ∇2uh(x) = 0 that leads to a pair of ordinary differential equations for

h(r) and g(r). Then, p(r) is determined by solution of η∇2up(x) = ∇p(x). The

equation of continuity ∇·u(x) = 0 is applied to verify the solutions, and only then,

the pertaining boundary conditions are imposed. The analysis of the flow concludes

by showing that p(x) and u(x) reduces to those obtained by the stream function for

an axisymmetric elongational flow (consider Equations (2.105) and (2.104) in the

limit of λ→∞). An important aspect of the solution is that it applies to any kind

of straining motion with the structure of the flow contained in the rate-of-strain

tensor.

Throughout the analysis that follows tensors are dealt with via index notation

for convenience. Operating the gradient to the pressure field results in the following

expression:

∂p

∂xj
= η

[

2f(r) δj k +
1

r
f ′(r) xjxk

]

E∞
kl xl, (2.208)

where the replacement of xk E
∞
kl δlj = δjk Ekl xl has been carried out on account of

the symmetry of the rate-of-strain tensor (E∞
kl = E∞

lk ). It is interesting to see that

the brackted expression is analogous to the ‘pressure’ gradient found for the Stokes

flow problem past a solid sphere (2.110). The Laplace equation for the pressure field

(∇2p(x) = 0) is obtained by application of the divergence operator to the above

equation and requiring it to vanish everywhere in the fluid:

∇2p = η

[

f ′′(r) +
6

r
f ′(r)

]

xk E
∞
kl xl = 0, (2.209)
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where it is important to mention that the property δjkE
∞
kl δlj = E∞

jj = 0 has been

used to arrive to the above equation (in addition to other elementary identities that

were introduced in Section 2.3.1). By noting that the term outside the brackets is

just an arbitrary scalar quantity, the Laplace equation yields an ordinary differential

equation for the function f(r). The ordinary differential equation is identified to be

of equidimensional character with general solutions rn and r−n. The only meaningful

solution to the problem at hand is the decaying one since the pressure field vanishes

at distances far from the solid sphere (which is a consequence of imposing a linear

flow: ∇p∞ = ∇2u∞ = 0.) Carrying out the substitution f(r) = r−n yields a simple

algebraic equation for n:

n(n− 5) r−n−2 = 0, (2.210)

where, again, r−n−2 is just an arbitrary constant, such that the algebraic equation

is satisfied identically for n = 5 (the n = 0 solution is not needed in view of

the mentioned arguments). Therefore, it is found that f(r) = Ar−5, where A is

a constant to be determined later from the boundary conditions. Unfortunately,

it cannot be found at this point because the pressure is not known at any other

location — such as the surface of the solid sphere — except far from the sphere. For

the time being, that concludes the analysis for the pressure field.

In order to find an expression for ∇2uh(x) = 0, it is necessary to calculate first

the velocity gradient ∇uh(x) (which will also be useful to determine the force and

stresslet on the solid sphere):

∂uj
∂xi

=

[

1

r
h′(r) xi δjk + g(r) (δij xk + xj δik) +

1

r
g′(r) xi xj xk

]

E∞
kl xl + (2.211)

(

h(r) δjk + g(r) xj xk

)

E∞
kl δli.

Note that the bracketed expression is identical to the ‘velocity’ dyad of the Stokes

flow problem for a solid sphere (2.113); the additional terms found here arise from
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the velocity gradient of the undisturbed flow, those enclosed by parenthesis, which

are clearly absent in the Stokes flow problem because there is a uniform velocity

field far away from the particle.

The Laplacian of uh(x) is obtained by application of the divergence to Equa-

tion (2.211); with some patience it is found that

∇2uhjk =

[(

h′′(r) +
4

r
h′(r) + 4g(r)

)

δjk +

(

g′′(r) +
8

r
g′(r)

)

xj xk

]

E∞
kl xl = 0.

(2.212)

Analogous elementary properties to those used in Section 2.3.1 were used to arrive

to the above equation. Since δjk and xj xk are arbitrary tensors, ∇2uh(x) = 0 only

if the parenthetical expressions vanish identically to zero. Therefore, the problem

of requiring ∇2uh(x) = 0 is reduced to the solution of a set of ordinary differential

equations for the functions h(r) and g(r):

g′′(r) +
8

r
g′(r) = 0, (2.213)

h′′(r) +
4

r
h′(r) + 4g(r) = 0, (2.214)

where both differential equations are of equidimensional form with general solutions

rn and r−n. It is advantageous to determine first the homogeneous solutions to the

above set of equations. Substitution of g(r) = h(r) = r−n results in the correspond-

ing algebraic expressions given below:

n(n− 7) r−n−2 = 0, (2.215)

n(n− 3) r−n−2 = 0, (2.216)

where it is easy to see that there are solutions for n = 7 and n = 3, respectively, such

that g(r) = Br−7 and h(r) = Cr−3 +D. The constant D ensures that the velocity

field reduces to the unperturbed flow far away from the particle. By assuming that

the particular solution is also of equidimensional form hp(r) = E r−n, the following
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algebraic equation results from the complete differential equation for h(r):

n(n− 3) E r−n−2 = −4B r−7, (2.217)

where there is a solution if n = 5 and E = −2B/5. Hence, the final expressions for

the scalar functions are:

f(r) = Ar−5, g(r) = B r−7, (2.218)

h(r) = −2
5
B r−5 + C r−3 +D. (2.219)

From here on the particular form of the velocity field up(x) is considered. Note

that the form of the pressure gradient expressed by Equation (2.208) confirms that

upjk = P(r) xj xk E
∞
kl xl is a consistent expression for the particular velocity field.

(The reader may recall that this form of the velocity field is analogous to that of

the Stokes flow problem.) Substitution of the obtained pressure gradient (2.208)

and the Laplacian of up(x), which is easily deduced from Equation (2.212), into the

creeping flow equation (2.199) results in the expression shown below:

η

[

2f(r)δjk +
1

r
f ′(r)xjxk

]

E∞
kl xl = η

[

4P(r)δjk +

(

P
′′(r) +

8

r
P

′(r)

)

xjxk

]

E∞
kl xl,

(2.220)

where the solution to the algebraic part of the above equation is

P(r) =
1

2
f(r) =

1

2
Ar−5. (2.221)

The reader may verify with ease that ∇2p(x) = 0 (2.209) is recovered by the sub-

stitution of P(r) = f(r)/2 into the differential part of Equation (2.220). It is

interesting that the same proportionality between P(r) and f(r) has also been

found in the problems of Stokes flow about a solid sphere and a fluid drop, which

suggests that the dependence of the fluid flow about the particle with the pressure is
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principally a geometrical one. This concludes the demonstration that the particular

part of the velocity field is intrinsically related to the pressure.

Although the imposition of ∇2p(x) = 0 to the pressure field indirectly satisfies

the equation of continuity (∇ · u(x) = 0), it is instructive to verify that the complete

expression of u(x) =

[

h(r)δ + G(r)xx

]

· E∞
· x agrees with the conservation of

mass requirement. Moroever, there are currently four unknown constants for a

total of three boundary conditions for the velocity field that have not been used;

this indicates that one additional relation is needed in order to determine the flow

about the solid sphere. The equation of continuity is obtained by application of the

divergence operator to the velocity field:

∂uj
∂xj

=

[

1

r
h′(r) + rg′(r) + 5g(r) + rP ′(r) + 5P(r)

]

xk E
∞
kl xl = 0, (2.222)

where after some elementary operations it is found that terms associated with the

constants B and D cancel out with h′(r)/r+ rg′(r) + 5g(r), and those proportional

to A vanish with P ′(r) + 5P(r) leaving −3C r−4 unbalanced. Thus, it follows that

C must be equal to zero for ∇ · u(x) = 0.

Application of the pertaining boundary conditions reveals that the values of the

constants are:

A = −5 a3, B =
5

2
a5, D = 1, (2.223)

such that the scalar functions now read:

f(r) = −5 a3 r−5, g(r) =
5

2
a5 r−7, (2.224)

h(r) = 1−
(

a

r

)5

. (2.225)
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The pressure and velocity fields can now be expressed as:

p(x) = η
[

− 5 a3 r−5x
]

·E∞
· x, (2.226)

u(x) =

[(

1−
(

a

r

)5
)

δ +
5

2

(

− a3 r−5 + a5 r−7

)

xx

]

·E∞
· x, (2.227)

where it is notable that the bracketed expressions correspond to the ‘pressure’ vector

P (x) and ‘velocity’ dyad V (x) for a solid sphere in a general elongational flow.

Now that both the pressure and velocity fields have been found, it is possible to

determine the net force F , torque T and stresslet S on the particle exerted by the

elongational flow. The shear-force tensor G and shear-torque tensor H , which relate

the imposed rate-of-strain E∞ with the respective force and torque on the particle,

are determined for completeness.

The net force on the solid sphere imparted by the elongational flow can be

shown to be identically zero by integration of the fluid stress at the surface of the

particle:

F =

∮

Sp

n · σ dSp, (2.228)

where the normal stress at the surface of the particle is found to be (the efforts to

arrive to the sought expression are reduced by noting that h(a) = G(a) = 0):

niσij = η a−1

[

a h′(a)δjk +

(

− f(a) + h′(a)/a+ 2aG(a)

)

xj xk

]

E∞
kl xl, (2.229)

where the parenthetical (or position dyad) expression vanishes at the surface of the

particle such that the above equation simplifies to n ·σ = 5 η a−1E∞
·x. Therefore,

the force on the particle may be conveniently expressed as:

F = 5 η a−1

[

∮

Sp

x dSp

]

·E∞, (2.230)
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where the symmetry property of the rate-of-strain tensor has been used. It follows

from the surface integral of the position vector x that the force on the particle is

identically zero.

The torque on the particle is given by the first moment of the fluid stress at its

surface (r = a):

T =

∮

Sp

x× (n · σ) dSp, (2.231)

= 5 η a−1

[

∮

Sp

x× x dSp

]

·E∞,

where it is clear from the above that the resultant torque on the particle is zero

because of the identity x × x = 0. This is the expected result on account of the

symmetry of the elongational flow and the spherical geometry of the particle.

The stresslet is given by the second moment of the fluid stress at the surface of

the particle:

S =

∮

Sp

x (n · σ) dSp, (2.232)

= 5 η a−1

[

∮

Sp

xx dSp

]

·E∞,

where the well-known result for the stresslet on a solid particle in an elongational

flow follows by substitution of the integral identity
(∮

xx dSp = 4πa4/3 δ
)

[13]:

S =
20

3
πηa3E∞. (2.233)

This result for the stresslet is more general than that given in [13] because it is not

tied to any particular case of straining flow (e.g. axisymmetric elongational flow).

The interesting finding is that the stresslet on the solid sphere is the same regardless

of the apparatus used to generate the straining flow (provided that the effect of the

boundaries of the device are negligible). It is important to point out that the second

moment of the surface tractions actually yields the hydrodynamic dipole, which in
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general can be broken down into symmetric and antisymmetric parts; the symmetric

part of the hydrodynamic dipole corresponds to the stresslet and the antisymmetric

one is the rotlet (a quantity associated with the torque) [31]. Being the straining

flow inherently irrotational it follows immediately that the hydrodynamic dipole

only consists of its symmetric component—the stresslet.

In the context of hydrodynamic resistances, there is a third-rank tensor G (the

shear-force tensor) that relates the hydrodynamic force F on the body with the

undisturbed rate-of-strain tensor E∞ [31, 70]:

F = ηG : E∞. (2.234)

For the solid sphere it is straightforward to see that the force on the particle can be

rewritten in the following manner by means of Equations (2.230) and (2.229):

F = η

[

∮

Sp

5 a−1δ x dSp

]

: E∞, (2.235)

where from Equation (2.234) it unfolds that the bracketed quantity corresponds to

the shear-force tensor G. From the integral identity of the position vector x (and

the above findings) one can deduce automatically that the shear-force is a third-rank

tensor of zeros (G = 0) for the net force to vanish at the surface of the sphere.

The shear-torque H is a third-rank tensor that relates the torque on the body

with the undisturbed rate-of-strain tensor [31, 70]:

T = ηH : E∞, (2.236)

where by following an analogous procedure for the derivation of the shear-force it is

found that the torque can be expressed in the following form:

T = η

[

∮

Sp

5 a−1 (x× δ x) dSp

]

: E∞, (2.237)
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where it is evident that the shear-torque is a third-rank tensor of zeros (H = 0)

because of the integral identity of the position vector x and because x× δ = 0 (a

second-rank tensor).

For the stresslet Sij one can deduce from the above that there is a fourth-rank

identity tensor δikδjl that relates the undisturbed rate-of-strain tensor E∞
kl with the

stresslet on the solid sphere [31].

From the above results of the force, torque and stresslet on the solid sphere in

a rate-of-strain flow, one can propose the singularities that describe the disturbance

velocity field uD(x) caused by the impeding effect that the particle inflicts on the

flow:

uD(x) = −a5 r−5E∞
· x+

5

2

(

−a3 r−5 + a5 r−7
)

E∞ : xxx, (2.238)

where the second term has been re-expressed with respect to the double-dot prod-

uct for reasons that will become apparent soon. Note that the so-called singularity

solutions of Stokes flow for a solid sphere in a rate-of-strain field can be obtained al-

ternatively via a multipole expansion [31], however, the approach adopted here relies

on the existing analogy with the singularities of the Stokes problem (Section 2.3.2)

with those associated to a rate-of-strain field. It can be deduced from the above

results of zero force and torque on the solid sphere, that higher order singularities

than those related to the disturbances caused by the solid sphere in a uniform flow

are needed. (The reader may recall from Section 2.3.2 that a point-force and a

degenerate quadrupole completely define the disturbances caused by a solid sphere

in a uniform velocity field.) Therefore, the disturbance field may be expressed in

terms of higher-order derivatives of the Oseen tensor Jjk = r−1δjk + r−3xjxk. Since

the disturbance velocity field is a vectorial quantity and the rate-of-strain is a sec-

ond order-tensor it is natural to explore singularities of the form: E∞
ji∇iJjk and

E∞
ji∇2

l (∇iJjk), where ∇iJjk and ∇2
l (∇iJjk) are the gradient and Laplacian of the
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gradient of the Oseen tensor, respectively. (From the rules of indicial notation for

tensors, it is seen that l is a dummy index.) Note that the double-dot product of the

rate-of-strain tensor with the Oseen tensor derivatives result in a vectorial quantity,

which suggests that at least the dimensionality of the chosen terms is appropriate to

describe the disturbance velocity field. Another argument that supports this choice

is the analogy with the Stokes flow problem, in the sense that it is the Oseen tensor

and its Laplacian that fully describe the disturbance field that consists of first-order

spherical harmonics; only that now, it is the gradient of the Oseen tensor and the

corresponding Laplacian that are chosen to define the second-order disturbances in

a straining field. A generalization to this analogy for the singularities of Stokes flow

in a perturbed nth-order ambient flow by a solid sphere is available in [31].

It is quite useful to present here expressions for the gradient and Laplacian of

the gradient of the Oseen tensor (equivalent expressions can be found in [31]):

∇iJjk = r−3 (δijxk + xjδik − xiδjk)− 3 r−5xixjxk, (2.239)

∇2
l (∇iJjk) = − 6 r−5 (δjkxi + δijxk + δikxj) + 5 · 6 r−7xixjxk. (2.240)

Note that with the exception of the expression proportional to r−3 in the gradient

of the Oseen tensor all the other decaying terms above have matching powers of r−n

with the disturbance field uD(x) (Equation 2.238). Nonetheless, it turns out that

after carrying out the double-dot product with the rate-of-strain tensor
(

E∞
ji∇iJjk

)

the parenthetical expression proportional to r−3 vanishes identically due to the sym-

metry of the rate-of-strain field
(

E∞
ij = E∞

ji

)

such that only the terms that match the

decaying terms in uD(x) remain. The expressions that result from the double-dot

products are shown below for convenience:

E∞
ji∇iJjk =− 3 r−5E∞

ji xixjxk, (2.241)

E∞
ji∇2

l (∇iJjk) =− 2 · 6 r−5E∞
kjxj + 5 · 6 r−7E∞

ji xixjxk, (2.242)
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where the appearing factor of two is, again, a consequence of the symmetry of the

rate-of-strain field. After some elementary algebraic operations one can express

uD(x) in terms of the above singularities to obtain the sought result:

uD(x) =
20

3
πηa3E∞ :

(

1 +
a2

10
∇2

)

∇J(x)

8πη
, (2.243)

where it is found that the disturbance field of a solid sphere in a rate-of-strain field

consists of the stresslet (Equation 2.233) and degenerate octupole. The appearance

of only these singularities confirms the result that the solid sphere is both force and

torque–free in a rate-of-strain field. This closes the analysis of the flow of a solid

sphere in a general straining flow.

2.3.5 The stresslet produced by a fluid drop in a general straining flow

A closed-form expression is derived here for the stresslet of a fluid drop subject

to a general straining flow u∞ = E∞
·x, where E∞ is the unperturbed rate-of-strain

tensor, and x is the position vector with respect to a set of axes centered on the

drop. The only assumptions made here regarding E∞ are that it must be symmetric
(

E∞
jk = E∞

kj

)

and traceless (E∞
kk = 0); the former condition is a direct consequence

of the definition of the rate-of-strain tensor [13], and the latter is necessary for the

undisturbed flow to satisfy conservation of mass. The flow is analyzed in the limit of

zero distortions such that the drop retains its spherical shape; the general conditions

to meet this criteria can be found in § 2.2.3. Due to the similarities of the analysis

with the problem of Stokes flow about a fluid drop (Section 2.3.3) and the analogous

problem of a general straining flow past a solid sphere (Section 2.3.4) the exposition

is limited to the problem statement, governing equations and main results to keep

the presentation as concise as possible.
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The governing equations of fluid motion in the creeping flow limit (no inertia

effects) consists of the Stokes equations for each fluid phase (j = 0, 1):

∇p(j)(x) = ηj∇2u(j)(x), ∇ · u(j)(x) = 0, (2.244a)

u(j)r = 0, [n · u(x)] = 0, [n · σ(x)] = 0, at r = a, (2.244b)

u(0)(x) = E∞
· x, as r →∞, (2.244c)

where p(j)(x) and u(j)(x) are the velocity and pressure fields of the jth fluid phase.

The stress tensor is assumed to be of Newtonian character for all the fluid phases:

σ(j)(x) = −p(j)(x) δ + ηj

(

∇u(j)(x) +
(

∇u(j)(x)
)t
)

, where superscript t here de-

notes the transpose operator, and ηj is the corresponding dynamic viscosity. The

usual boundary conditions at the fluid–fluid interface are imposed. There can be no

flow normal to the surface of the drop, and there can be no jumps in the velocity

and surface tractions from one fluid phase to another. The brackets here denote a

jump in the enclosed quantity from the inner (j = 1) to the exterior fluid phase

(ambient fluid, j = 0).

In similarity with the aforementioned problems, a suitable form for the pressure

p(j)(x) and velocity u(j)(x) fields are proposed for each fluid phase:

p(j)(x) = ηjP
(j)(x) ·E∞

· x, (2.245)

u(j)(x) = V (j)(x) ·E∞
· x, (2.246)

where the ‘pressure’ vector P (j)(x) and ‘velocity’ dyad V (j)(x) have the familiar

forms:

P (j)(x) = ηjfj(r)x, (2.247)

V (j)(x) = hj(r)δ + gj(r)xx+
1

2
fj(r)xx, (2.248)

where fj(r), gj(r) and hj(r) are scalar functions of the radial position r of each fluid

phase. Note that the last term of the ‘velocity’ dyad is coupled to the fluid pressure,
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and ensures that the flow everywhere satisfies conservation of mass. The form of the

coupling of the ‘velocity’ dyad in this problem is just a consequence of the spherical

geometry of the body, as discussed in whole in § 2.3.1 and § 2.3.3. By following

an analogous procedure to that presented in the referenced sections it can be found

that the scalar functions associated with the ambient flow are given by:

h0(r) =

[

1− λ

1 + λ

(

a

r

)5
]

, (2.249)

g0(r) =
5λ

2 (1 + λ)
a5r−7, f0(r) = −

2 + 5λ

1 + λ
a3r−5, (2.250)

and those of the internal flows are:

h1(r) = −
3

2 (1 + λ)

[

1− 5

3

(

r

a

)2
]

, (2.251)

g1(r) = −
25

4 (1 + λ)
a−2, f1(r) =

21

2 (1 + λ)
a−2. (2.252)

It follows upon substitution of the scalar functions that the velocity fields of each

fluid phase are given by the following expressions:

u(0)(x) =

[

1− λ

1 + λ

(

a

r

)5
]

E∞
· x (2.253a)

+

(

− 2 + 5λ

2 (1 + λ)
a3r−5 +

5λ

2 (1 + λ)
a5r−7

)

xx ·E∞
· x,

u(1)(x) =− 3

2 (1 + λ)

[

1− 5

3

(

r

a

)2
]

E∞
· x− 1

1 + λ
a−2 xx ·E∞

· x, (2.253b)

and the pressure fields are simply given by:

p(0)(x) =− η0
2 + 5λ

1 + λ
a3r−5 x ·E∞

· x, (2.254a)

p(1)(x) = η1
21

2 (1 + λ)
a−2 x ·E∞

· x. (2.254b)

Note that the velocity and pressure fields of the ambient flow reduce to those on

solid sphere in the limit of λ → ∞, as one may intuitively expect. On similar

grounds, the velocity and pressure fields for the internal flows decay to zero because
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the internal phase behaves as a solid one. The reader is encouraged to verify that

the pressure and velocity fields above reduce to those defined in Equation (2.104) for

an elongational flow E∞ = −γ̇ (exex + eyey − 2ezez). (It will prove to be useful to

express the components of the position vector x with respect to spherical coordinates

(r, ϑ, φ) to carry out the proof.)

Due to the similarities of this problem with that of a solid sphere in a straining

flow, it is conspicuous that the drop is both force and torque–free in a general rate-

of-strain field, such that it is not necessary to calculate the surface tractions and

their first moment over the outer surface of the drop to demonstrate these claims.

For the sake of completeness, nonetheless, the proof is carried out by showing that

the disturbance field of the fluid drop in a rate-of-strain field is solely defined by a

stresslet and degenerate octupole. (The absence of a point-force and rotlet in the

disturbance field is sufficient evidence to convince oneself that the straining flow does

not impose forces and couples on the fluid drop.) By following a similar procedure

to that conducted for the calculation of the disturbance field of a solid sphere in

terms of Stokes flow singularities, the corresponding disturbance field for the fluid

drop is found:

uD(x) =
4

3
πη0a

3 2 + 5λ

1 + λ
E∞ :

(

1 +
a2λ

2 (2 + 5λ)
∇2

)

∇J(x)

8πη0
, (2.255)

where it is seen that it consists of the mentioned singularities (stresslet and degen-

erate octupole) [31]. (Note that there is a typographical mistake for the disturbance

field in the cited reference.) In the limit of a drop that exhibits solid-like behav-

ior (λ→∞) the disturbance field for a particle of spherical shape is recovered, as

it should. It is interesting that the ambient flow about a bubble (λ → 0) is only

perturbed by a stresslet, where one can attribute this to the negligible resistance

the bubble imparts on the surrounding fluid to flow. Despite the negligible viscosity

of the bubble it seems that it cannot fully relax the local rate-of-strain such that
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a stresslet field is still observed. Nevertheless, it is noteworthy that the stresslet

generated by the bubble is about an order of magnitude less than that of a solid

sphere. Note that under realistic conditions the drop (or bubble) deforms in an at-

tempt to even out the difference in the normal stresses at its surface, and therefore,

it is expected that the theory overestimates the actual stresslet. Nevertheless, it is

of relevance to mention that the theoretical analysis carried out by Schowalter et

al. [46] on the drop shape by the rate-of-strain field revealed that within the limit

of small distortions the stresslet remains unchanged. (The authors made no direct

statements regarding the stresslet, however it is quite obvious from their results.)

At least for bubbles subject to substantial deformations the stresslet vanishes [54];

supporting the notion that under large deformations the local rate-of-strain can be

relaxed considerably.

2.3.6 The interior and exterior flows of a fluid drop in a shearing flow

Shear flows develop wherever there is a velocity gradient transversal to the

principal direction of the flow. In practice, shear flows are very common and fairly

easy to generate. For example, a shear flow can be produced in a fluid bounded by

infinitely long walls moving parallel to each other with a relative velocity (sliding

parallel plates) [13], by the counter-rotation of two concentric cylinders in a thin gap

of fluid (Couette flow) [49], in a cone and plate rheometer [1], and also in between

co-rotating eddys of turbulent flows [78] to mention a few typical examples. It

is relevant to point out that in a Couettle flow the spacing between the concentric

cylinders must be small enough to ensure a linear shear flow; otherwise, the resulting

flow is characterized by non-uniform velocity gradients.

In this section closed-form expressions are arrived for the flows that develop

within and about a fluid drop subject to a uniform shear flow in the absence of

inertia. The first to solve this problem for a non-deformable spherical drop was

Taylor [11] with a procedure analogous to the one presented here with the exception
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Figure 2–11: A neutrally buoyant fluid sphere of radius a suspended in a viscous fluid
that undergoes a uniform shear flow. The index (j) denotes the fluid phase of dynamic
viscosity η̃j .

that the flow is analyzed with respect to a spherical coordinate system in this study.

The secondary purpose is to provide arguments that indicate that the resultant

force and torque on the fluid drop imparted by the applied shear flow are identically

zero. For the purposes of showing the latter, it suffices to consider the situation

of a non-deformable spherical drop. (It is clear that the symmetry of the imposed

flow deforms the drop into a symmetric shape that does not experience force-related

distortions [56].) Studies concerned with the calculation of the drop shape in a linear

shear flow can be found here [46, 47, 55, 59, 79, 80]. Despite the simplicity of this

study, the analysis and results presented here are fundamental for the understanding

of some of the problems addressed in the chapters that follow.

Figure 2–11 provides a schematic of a neutrally buoyant drop suspended in a

viscous fluid undergoing a uniform shearing motion. The undisturbed far away from

the fluid drop for this type of flow is simply given by:

u∞ = E∞
· x+Ω∞

× x = γ̇ y ex, (2.256)

where γ̇ is the imposed shear rate (or the gradient) of the imposed flow, the second-

rank tensor E∞ = 1/2 γ̇ (exey + eyex) is the rate-of-strain tensor and the vector
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Figure 2–12: Constituents of the uniform shear flow u∞ = γ̇y ex: (a) Straining flow with
its axis of strain (elongation) arranged at a diagonal with the x–y axes 1/2 γ̇ (yex + xey).
(b) The solid-body rotation 1/2 γ̇ (yex − xey) of the fluid with axis of rotation into the
page from the perspective of the observer (clockwise rotation).

Ω∞ = −1/2 γ̇ez is the angular velocity of the undisturbed flow, and the vector

x = (x ex + y ey + z ez) defines the position of any point in space with respect to the

set of axes centered on the fluid drop. A sketch that shows that the shear flow can be

broken down into a straining plus a rotational flow is provided in figure 2–12. Note

that the linearity of the limit of zero Reynolds number permits this decomposition

of the flow.

The equations that govern the fluid flow of the phases (Stokes equations) with

the pertaining boundary conditions are presented in spherical coordinates (r, ϑ, φ)

to take advantage of the shape of the drop (shown in non-dimensional form):

∇p(j) = ηj∇2u(j), ∇ · u(j) = 0, (2.257a)

u(j)r = 0, [n · u] = 0, [n · σ] = 0, at r = 1, (2.257b)

u(0) = u∞, as r →∞, (2.257c)

where n is the unit normal vector at the surface of the drop (which conventionally

points outward from the inner to the ambient fluid), and the brackets denote a jump

in the enclosed quantity. Note that the boundary conditions ensure the tangent

components of the fluid velocity and stresses to be continuous at the fluid–fluid



94

interface. (As discussed in Section 2.2.3 the shape of the drop is obtained when the

normal component of the stress is continuous; however this calculation lies outside

the scope of this work.) The following scales have been used to non-dimensionlize

length, fluid velocity and stress: a, γ̇a, and η̃0γ̇, respectively. From here on all

quantities are presented in non-dimensional form for simplicity.

It is instructive to start by showing that the undisturbed flow u∞ satisfies the

Stokes equations (2.257). Index notation is used here to represent tensors since

demonstrations follow more naturally. For convenience the representation of the

undisturbed flow in index notation is shown below:

u∞i = E∞
ij xj + Ω∞

j xkǫjki, (2.258)

where ǫjki is the permutation symbol [13]. It is straightforward to see that continuity

of mass (∇ · u∞ = 0) is satisfied by the undisturbed flow, as shown in the next steps:

∇iu
∞
i =E∞

ij

∂xj
∂xi

+ Ω∞
j

∂xk
∂xi

ǫjki,

=E∞
ij δji + Ω∞

j δkiǫjki,

=Eii + Ω∞
j ǫjii,

=0,

where it seen that continuity of mass is satisfied because the rate-of-strain tensor

is traceless (Eii = 0) and because the permutation symbol is zero if an index is

repeated (ǫjii = 0). This result agrees with one’s intuition since there are no means

for a uniform shear flow (or any other flows) under steady state conditions to change

the amount of fluid contained in an arbitrary control volume. In particular to this

problem, the rate-of-strain tensor of the undisturbed flow E∞
ij consists of solely off-

diagonal terms such that the constraint Eii = 0 is satisfied automatically. Note that

the identity property of the gradient of the position vector (i.e. ∂xi/∂xj = δij) has

been used in the above steps [13].
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It can also be shown that the undisturbed flow u∞ satisfies the creeping flow

equation ∇p∞ = η0∇2u∞, where p∞ is the undisturbed pressure field. So far,

nothing has been mentioned about the pressure far away from the drop since it is

implicit that it is a constant quantity. This can be demonstrated via calculation of

the velocity gradient ∇u∞, and since it is also required for the calculation of the

Laplacian of u∞ (i.e. ∇2u∞ = ∇ ·∇u∞) it is seen in more detail prior to showing

that u∞ obeys the creeping flow equation. The steps required to determine the

velocity gradient of the undisturbed flow are presented below:

∇lu
∞
i =E∞

ij

∂xj
∂xl

+ Ωj
∂xk
∂xl

,

=E∞
ij δjl + Ω∞

j δklǫjki,

=E∞
il + Ω∞

j ǫjli.

Note that even though there is a contribution from the rotational field to the velocity

gradient ∇u∞, it can be easily shown that it does not appear in the rate-of-strain

of the flow Γ∞ = 1/2
(

∇u∞ + (∇u∞)t
)

:

Γ∞
il =

1

2

[

∇iu
∞
l +∇lu

∞
i

]

, (2.259)

=
1

2

[

E∞
il + E∞

li + Ωj (ǫjli + ǫjil)

]

, (2.260)

= E∞
il , (2.261)

because of the symmetric and anti-symmetric properties of the applied rate-of-strain

(E∞
il = E∞

li ) and the rotational flow (ǫjli = −ǫjil); hence the rate-of-strain of the

flow is due to the applied rate of strain. It is straightforward to see from the above

analysis that∇2u∞i = ∇l (∇lu
∞
i ) = ∇l

(

E∞
il + Ω∞

j ǫjli
)

= 0 because both E∞
il and Ω∞

j

are constant quantities independent of position. This implies that the undisturbed

pressure field must be uniform for the creeping flow equation to be satisfied.
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Here it is briefly shown that the undisturbed vorticity (a measure of the local

spin of the fluid) is just a consequence of the solid-body rotation of the fluid with

no contribution from the local rate of strain since this type of flow is irrotational.

The vorticity of the undisturbed flow is calculated as follows (w∞ = ∇× u∞):

w∞
n = ∇lu

∞
i ǫnli = E∞

ij

∂xj
∂xl

ǫnli + Ω∞
j

∂xk
∂xl

ǫjkiǫnli,

= E∞
ij δjlǫnli + Ω∞

j δklǫjkiǫnli,

= E∞
il ǫnli + Ω∞

j δklǫjkiǫnli,

where it is evident that E∞
il ǫnli = 0 because of the combined symmetry of the rate-of-

strain tensor E∞
il = E∞

li and the asymmetry of the permutation symbol ǫnli = −ǫnil.

The last term, associated with the rotational flow, can be simplifed by means of the

well known property of the permutation symbol ǫjkiǫnli = (δjnδkl − δjlδkn), as shown

below:

w∞
n = Ω∞

j δkl (δjnδkl − δjlδkn) ,

= Ω∞
j (δjnδkk − δjn) ,

= 2Ω∞
j δjn,

= 2Ω∞
n .

Note that the identity δkk = 3 has been used to derive at the well-known relation of

the vorticity with the angular velocity [13]: w∞ = 2Ω∞.

The solution to the equations of fluid motion in the limit of zero Reynolds

number (absence of inertia) is given by Lamb [31], in which the velocity field of the

jth fluid phase u(j) is expressed as an infinite series of spherical harmonics:

u(j) =

∞
∑

n=−∞

[

(n + 3) r2∇p(j)n

2ηj(n+ 1)(2n+ 3)
− nx p

(j)
n

ηj(n+ 1)(2n+ 3)

]

+

∞
∑

n=−∞

[

∇Φ(j)
n + r∇χ(j)

n × er

]

,

(2.262)
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where p
(j)
n , Φ

(j)
n and χ

(j)
n are nth order spherical harmonics associated with the fluid

pressure, potential flows, and swirling flows, respectively:

p(j)n = rn
n
∑

m=0

P (m)
n (θ)

(

a(j)nm cosmφ+ ã(j)nm sinmφ
)

, (2.263)

Φ(j)
n = rn

n
∑

m=0

P (m)
n (θ)

(

b(j)nm cosmφ+ b̃(j)nm sinmφ
)

, (2.264)

χ(j)
n = rn

n
∑

m=0

P (m)
n (θ)

(

c(j)nm cosmφ + c̃(j)nm sinmφ
)

, (2.265)

where θ = cosϑ, P
(m)
n (θ) is the nth order associated Legendre polynomial of mode

m, and that the coefficients are constants to be determined from the boundary con-

ditions of the Stokes equations (Equation 2.257). The properties of the associated

Legendre polynomials and recursive formulas (which are quite useful for the numer-

ical implementation of the Legendre functions in a programming language such as

Fortran) are a standard subject of mathematical handbooks [81, 82]. Note that the

above spherical harmonics pn,Φn, χn are associated with flows that develop inside

drops and those imposed far away. To describe disturbance flows—such as those that

arise by the presence of a solid sphere that is held at a fixed position in space—the

following decaying harmonics are needed:

p
(j)
−n−1 = r−n−1

n
∑

m=0

P (m)
n (θ)

(

A(j)
nm cosmφ+ Ã(j)

nm sinmφ
)

, (2.266)

Φ
(j)
−n−1 = r−n−1

n
∑

m=0

P (m)
n (θ)

(

B(j)
nm cosmφ+ B̃(j)

nm sinmφ
)

, (2.267)

χ
(j)
−n−1 = r−n−1

n
∑

m=0

P (m)
n (θ)

(

C(j)
nm cosmφ+ C̃(j)

nm sinmφ
)

. (2.268)

Note that both growing and decaying spherical harmonics are functions that satisfy

intrinsically the Laplace equation: ∇2pn = ∇2Φn = ∇2χn = 0. (The Laplacian

operator in spherical coordinates can be found elsewhere, for instance, it can be

found in the Appendix provided by Deen [13]).



98

As one may suspect, growing harmonics will be used to describe the internal

flows of the drop and the undisturbed flow far away, and decaying ones for the dis-

turbance flows that develop in the surrounding fluid due to the hindrance that the

presence of the drop imposes on the applied flow u∞. To this end, it is convenient

to first express the undisturbed flow with respect to spherical coordinates for the

purposes of guessing the order n and mode m of the spherical harmonics that char-

acterize the internal and ambient flows. It is a straightforward procedure to find the

velocity components of the undisturbed flow u∞ = y ex (non-dimensional form) by

expressing both y and ex with respect to spherical coordinates (the reader may find

useful the Appendix given by Deen [13]):

u∞r =
1

2
r sin2 ϑ sin 2φ, (2.269a)

u∞ϑ =
1

2
r (sinϑ cos ϑ) sin 2φ, u∞φ =

1

2
r sin ϑ cos 2φ− 1

2
r sinϑ, (2.269b)

where it will become apparent soon that 1/2 r sin ϑ corresponds to the solid-body

rotation (Ω∞
× x) of the undisturbed flow, and that the remaining terms derive from

the straining motions (E∞
· x). It is noteworthy that even though the undisturbed

flow is unidirectional with respect to Cartesian coordinates (u∞x = y, u∞y = u∞z = 0),

three velocity components are needed in a spherical coordinate system; this finding

and the dependence of the velocity components on the polar angle φ elucidates

that the flow far away is not axisymmetric but inherently 3D. The order and mode

of the spherical harmonics that describe the undisturbed flow can be deduced by

recalling that straining flows are irrotational and that there is a uniform pressure

field p∞ far away; the latter can be conventionally set to zero (as discussed in

Section 2.2.1) without affecting the results, but more importantly, this implies that

no spherical harmonics related to the pressure are needed to define the undisturbed

flow (i.e. p∞n = 0). Irrotational flows are characterized by a zero vorticity w and it

is evident that the only candidate that fits this description is Φ∞
n because potential
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flows are irrotational in nature [13]: w∞ = ∇×∇Φ∞
n = 0 (this result agrees with

the elementary analysis of the undisturbed flow prior to showing Lamb’s solution).

From these arguments one can deduce that n = 2 and m = 2 spherical harmonics

describe the straining motions of the undisturbed flow:

Φ∞
2 =

1

12
r2P

(2)
2 (θ) sin 2φ, (2.270)

where P
(2)
2 (ϑ) = 3 sin2 ϑ and the prefactor

(

B̃∞
22 = 1/12

)

can be easily found from

the calculation of the radial component of Lambs’s solution and setting it equal to

that of the undisturbed flow. The reader may verify that the velocity components of

the undisturbed flow (Equation 2.269) can be recovered (with the exception of the

rotational field) from Lamb’s solution by substitution of Φ∞
2 spherical harmonic.

By following an analogous analysis, one can deduce from the rotational compo-

nent of the flow u∞φ = 1/2 r sin ϑ that m = 0 and n = 1 spherical harmonics meet

the sought form:

χ∞
1 =

1

2
r cos ϑ, (2.271)

which is quite obvious that m = 0 because there is no φ–dependence on the rotional

component of the flow u∞φ , and the appearance of sin ϑ suggests that n = 1. (There

are no other spherical harmonics χ∞
n that can result in the same expression because

of the orthogonality property of the spherical harmonics.) At this point it is useful

to take advantage of the linearity property of Stokes flow to analyze separately the

straining and rotational motions of the applied flow. Due to the simplicity of a

pure rotational field it is considered first, since it turns out that the undisturbed

rotational flow satisfies the Stokes equations and boundary conditions for each fluid

phase: u(j) = u∞ = Ω∞
×x. Note that this velocity field is continuous everywhere

such that there is no jump in the fluid velocity accross the interface of the drop with

the ambient fluid. The last requirement, which stipulates that the fluid stresses

must be continuous at the interface is satisfied automatically because the rotational
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field does not generate fluid stresses [13], which it is easy to see this from the rate-

of-strain tensor (which is the same for all fluid phases): Ejk = (∇juk +∇kuj) /2 =

Ωl (ǫjkl + ǫkjl) /2 = Ωl (ǫjkl − ǫjkl) /2 = 0. Then, it follows that the flow is stress–free

everywhere because of the Newtonian character of the fluids (the index that denotes

the fluid phases has been omitted to avoid confusion with the indicial notation for

tensors): σjk = −pδjk + 2ηEjk = 0, which is derived from the finding that Ejk = 0

and p = 0 everywhere. Formally speaking, the pressure is uniform p = p∞ such that

there can no jump in the fluid stress across the fluid–fluid interface for the rotational

contribution of the undisturbed flow. Thus, all the fluid phases simply undergo a

solid-body rotation with the same angular velocity of the undisturbed rotational

velocity regardless of the viscosity of the fluid phases.

In contrast to the rotational component to the flow, there are flow disturbances

caused by the presence of the fluid drop because it cannot fully relax the local rate

of strain. Therefore, decaying harmonics are needed to define the ambient flow in

addition to those that describe the undisturbed flow. Note that the ambient flow

must reduce to the unperturbed flow at distances far from the drop, such that it

is natural to include them because the ambient flow must satisfy the boundary

conditions at the surface of the drop and at infinity. Thus, the velocity field of the

ambient fluid is proposed to consist of the following decaying spherical harmonics

plus the undisturbed flow:

u(0) =
1

2
xp

(0)
−3 +∇Φ

(0)
−3 + u∞, (2.272)

where the prefactor of 1/2 is obtained by setting n = −3 for the decaying harmonics,

p
(0)
−3 = Ã0r

−3P
(2)
2 (θ) sin 2φ, (2.273)

and

Φ
(0)
−3 = B̃0r

−3P
(2)
2 (θ) sin 2φ. (2.274)
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Note that the subscripts on the constants correspond to the fluid index instead of

the order and mode of the spherical harmonics to simplify the notations. It follows,

in an analogous manner, that the internal flows consist of spherical harmonics that

grow with the radial dimension of order n = 2 and mode m = 2:

u(1) =
5

2 · 3 · 7r
2
∇p

(1)
2 −

2

3 · 7xp
(1)
2 +∇Φ

(1)
2 , (2.275)

where the prefactors arise by setting the specified order n into Lamb’s solution,

p
(1)
2 = Ã1r

2P
(2)
2 (θ) sin 2φ, (2.276)

and

Φ
(1)
2 = B̃1r

2P
(2)
2 (θ) sin 2φ. (2.277)

From this point onward it is just a matter of generating the system of algebraic

equations for the unknown coefficients that result from application of the boundary

conditions to the velocity fields u(j). The condition of zero flows normal to the

surface of the drop
(

er · u
(j) = 0

)

results in the following pair of algebraic equations

(in non-dimensional form):

1

7
Ã1 + 2B̃1 = 0, (2.278)

3

2
Ã0 − 9B̃0 +

1

2
= 0. (2.279)

The requirement of having a zero jump in the velocity tangent to the surface of the

drop (δ − xx) ·
(

u(1) − u(0)
)

= 0 yields an additional algebraic equation:

5

7
Ã1 + 6B̃1 = 6B̃0 +

1

2
, (2.280)

where both the azimuthal and polar components of the velocity result in equivalent

algebraic expressions for the coefficients (linearly dependent). Application of the

zero jump in the shear stresses provides the final equation. Once more, the azimuthal

and polar components of the shear stress normal to the surface of the drop (τrϑ and



102

τrφ) give out equivalent expressions such that only τrϑ is shown here for the jth fluid

phase at the surface of the drop:

τrϑ = ηj r
∂

∂r

(

u
(j)
ϑ

r

)

, (2.281)

where to arrive at the above expression it has been noted that ∂u
(j)
r /∂ϑ = 0 because

of the no-penetration condition at r = 1. Evaluation of the zero jump in the shear

stresses (δ − xx) ·
(

τ (1) − τ (0)
)

= 0 at r = 1 lends the final equation:

1

7
λÃ1 + 3B̃0 = 0, (2.282)

where the scaling of the viscosity with that of the ambient results in the following

dimensionless parameters: λ = η1 = η̃1/η̃0 and η1 = 1. The above system of

algebraic equations is linearly independent, and results in the following values for

the coefficients of the spherical harmonics of the internal and exterior flows:

Ã1 =
7

4

1

1 + λ
, B̃1 = −

1

8

1

1 + λ
, (2.283)

Ã0 = −
1

6

(

2 + 5λ

1 + λ

)

, B̃0 = −
1

12

λ

1 + λ
. (2.284)

Therefore, the velocity components of the ambient fluid are given by the following

expressions (in non-dimensional form):

u(0)r =
1

2

[

r − 2 + 5λ

2 (1 + λ)
r−2 +

3λ

2 (1 + λ)
r−4

]

sin2 ϑ sin 2φ, (2.285a)

u
(0)
ϑ =

1

2

[

r − λ

1 + λ
r−4

]

(sin ϑ cosϑ) sin 2φ, (2.285b)

u
(0)
φ =

1

2

[

r − λ

1 + λ
r−4

]

sin ϑ cos 2φ− 1

2
r sin ϑ. (2.285c)
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It is easy to see that the velocity components of the undisturbed flow are recovered

as r →∞. The velocity components of the interior flows are presented below:

u(1)r =
3

4 (1 + λ)
r
(

r2 − 1
)

sin2 ϑ sin 2φ, (2.286a)

u
(1)
ϑ =

[

5

4 (1 + λ)
r3 − 3

4 (1 + λ)
r

]

(sin ϑ cosϑ) sin 2φ, (2.286b)

u
(1)
φ =

[

5

4 (1 + λ)
r3 − 3

4 (1 + λ)
r

]

sin ϑ cos 2φ− 1

2
r sin ϑ. (2.286c)

The reader is instigated to check that the velocity fields and shear stresses are

continuous at the drop surface (r = 1), as established by the boundary conditions

for the fluid–fluid interface. Another enriching exercise is to verify that the velocity

fields of a fluid drop in a general straining flow (Equation 2.253) with the rate-of-

strain tensor and rotational field of this problem reduce to the above velocity fields.

As one may expect from previous problems, the interior flows in the limit of λ→∞

vanish identically to zero because of the solid-like behavior of the internal phase in

this limit.

A sketch of the velocity field both inside and outside the drop is provided in

figure 2–13. The observed circulation flow within the drop is just the result of

applying a solid-body rotation in the −z–direction to the straining velocity field. It

is noteworthy that the flow near the outer surface of the drop is characterized by

the sweeping motion of the fluid, and that it has a similar profile to that of a rigid

sphere under ‘freely’ suspended conditions.

Given that the velocity fields have been obtained, one may proceed to calculate

the resultant force F and torque T on the fluid drop by direct means. However, the

inherent symmetry of the velocity fields indicate that the resultant force and torque

on the drop are both zero. Note that the solid-body rotation of the fluid phases is

stress–free such that there can be no torque from this component of the fluid flow,

and clearly, the straining flow cannot produce a net torque about a spherical body.



104

Figure 2–13: The velocity field of a fluid drop subject to a linear shear flow. The shown
field corresponds to the velocity field at the x–y plane.

Similar arguments support that the resultant force on the fluid drop is identically

zero.

It has been shown that the velocity fields of the drop and ambient fluid are

characterized by the same mode m of the spherical harmonics of the undisturbed

flow, and that the interior and exterior flows retain the symmetric character of the

applied flow. This is a direct consequence of the governing equations being linear and

the symmetric shape of the immersed body. In fact, one may use Lamb’s solution to

determine the velocity fields for the axisymmetric problems considered in Section 2.2

to find that only m = 0 spherical harmonics are necessary to solve the boundary

value problem. Note that for more complex problems the same rule of thumb holds,

however, a series of spherical harmonics of growing orders n may be needed, as it

will be found in the subsequent chapters of this dissertation.

2.4 Effective viscosity of a dilute dispersion of drops in linear flows

The calculation of the effective viscosity of a dilute dispersion in a steady shear

flow is a fundamental topic covered in several textbooks [1, 13, 20, 21, 31, 67, 83].

Nonetheless, it is included here to make the chapter self-contained, and to provide

the reader an overall picture of the material contained in the chapters that follow.

The study of the mechanical properties of a dispersed phase, which may be a fluid or
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solid one, in a continuous fluid phase is an active area of research of central impor-

tance to industrial, technological and biological applications. Typical examples of

such heterogeneous systems are cements, paints, inks, ointments, foods, pharmaceu-

ticals, bio-lubricants and blood [1]. When the characteristic size of the constituents

of the dispersed phase is small compared to the length scale of the imposed flow

(such as the spacing of walls in a plane Couette flow), the dispersion can be treated

as a homogeneous fluid with effective properties [21], and one is usually concerned

with changes in the effective viscosity with the applied shear rate γ̇.

In general, the effective viscosity of a dispersion depends on numerous param-

eters such as the nature of the continuous fluid phase (e.g. Non-Newtonian proper-

ties), the size, shape and spacing of individual particles, flow-induced deformations,

electrostatic interactions, thermal fluctuations in the fluid (Brownian motion), the

volume fraction occupied by the particles, fluid and particle inertia, hydrodynamic

interactions, and the dynamics of the particles in the imposed flow [20, 21, 47, 54, 84–

87]. (Here the term ‘particles’ has been used to denote the dispersed phase in a gen-

eral way; nonetheless, by no means it is meant that the dispersed phase is limited to

a solid one.) Einstein was the first to obtain an expression for the effective viscosity

of a dispersion of solid spheres in a steady shear flow under dilute conditions [88].

Then, Jeffery extended Einstein’s result to a dispersion of spheroidal particles under

the hypothesis that the particles adopt closed-orbits that correspond to the min-

imum energy of dissipation under the influence of weak inertia effects [89]. It is

important to mention that such assumption was needed since at vanishing Reynolds

number the theory did not predict any tendency of the spheroids to adopt any

preferential orbit; in fact, the particles were found to exhibit an infinite number of

closed-orbits that depend solely on the initial orientation of the particle, namely

the arrangement of the axis of revolution of the spheroid relative to the direction

of the undisturbed flow. The effective viscosity of dumb-bell shaped particles have
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been studied in the absence of inertia by Nir & Acrivos [76], and later on by Harper

& Chang, who incorporated weak inertia effects to demonstrate (in opposition to

Jeffery’s hypothesis) that fluid inertia induces an orbit-drift towards the maximum

energy of dissipation [90]. The effect of weak Brownian motion on the effective vis-

cosity of a dilute suspension of spheroidal particles in a steady shear flow has been

considered by several authors [85, 91, 92]. (Recently, Einarsson et al. [93] considered

both particle and fluid inertia on the motions of spheroidal particles in a steady shear

flow; however, the authors did not reported the effective viscosity of the dispersion.)

Taylor extended Einstein’s result to a dilute dispersion of drops in a steady shear

flow in the limit of non-deformable fluid–fluid interfaces [11]. Subsequently, Schowal-

ter et al. [46] determined the leading correction of the drop shape to the effective

viscosity to find that shape distortions lead to non-Newtonian behavior of the dis-

persion in a steady shear flow (i.e. non-zero normal stresses). Analogous calculations

were performed for double emulsions (concentric drops dispersed in another fluid) by

Stone & Leal [10]. Visco-elastic behavior has also been found in dilute dispersions

of drops in oscillating shear flows, also known as small amplitude oscillating shear

flows (SAOS) [54, 80]. (The analysis of particle motions in time-dependent flows

are outside the scope of this dissertation.) Interestingly, a dispersion of spheroidal

particles subject to weak Brownian motions can also exhibit visco-elastic behavior

in oscillating shear flows [94]. Beyond the infinite dilution limit (φ→ 0), Batchelor

demonstrated a quadratic contribution in the volume fraction φ to the effective vis-

cosity of a dispersion of solid spheres that interact hydrodynamically via pair-wise

interactions [95], and a similar contribution to the effective viscosity in a dispersion

of non-interacting solid spheres subject to Brownian motions [96].

Following Batchelor the bulk stress of a dilute dispersion involves an average of

the stress over the volume of the system V (the suspended particles plus the contin-

uous fluid phase) such that an analogous constitutive equation for the bulk stress
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〈Σij〉 can be written with respect to the bulk rate-of-strain 〈Eij〉 in an analogous

form to that of an ordinary Newtonian fluid [97]:

〈Σij〉 = −Peff δij + 2 ηeff〈Eij〉, (2.287)

where Peff is the effective pressure, ηeff is the effective viscosity of the dispersion,

and the corresponding volume averages of the bulk stress and rate-of-strain tensors

are simply given by:

〈Σij〉 =
1

V

∫

V

σij dV, 〈Eij〉 =
1

V

∫

V

Eij dV. (2.288)

Rewritting the bulk stress into separate contributions of the continuous fluid phase

and the particles yields the following expression:

〈Σij〉 =
1

V

∫

V−ΣnVn

(−p δij + 2η0Eij) dV +Σn

∫

Vn

σij dV, (2.289)

where the stress of a Newtonian fluid has been introduced above for the continuous

fluid phase, the sum is over all the particles in the suspension, and Vn is the volume

of the nth particle. From above, it follows immediately that the effective pressure is

simply the isotropic contribution of the stress of the continuous fluid phase:

Peff =
1

V

∫

V−ΣnVn

p dV. (2.290)

The volume integral of rate-of-strain field may be further broken down into:

η0

∫

V−ΣnVn

2Eij dV = η0

∫

V

2Eij dV − η0Σn

∫

Vn

2Eij dV, (2.291)

= 2 η0 〈Eij〉 − η0Σn

∮

Sp

(niuj + njui) dSp, (2.292)

where ni is the unit normal vector at the surface of the particle. (The surface integral

above may be derived effortlessly for a spherical particle, in particular since the result

applies to other shapes, by expressing the rate-of-strain tensor of a Newtonian fluid
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as 2Eij = ∇iuj+∇jui, followed by the differential relation∇iuj+∇jui = ni∂uj/∂r+

nj∂ui/∂r, and integration in spherical coordinates with dV = r2 sinϑ dr dϑ dφ.)

It is far more convenient to rewrite the integral of the stress over the volume

of the particle of Equation (2.288) as a surface integral by the aid of the divergence

theorem for tensors and the following relation:

∫

Vn

σij dV =

∫

Vn

∇k (σki xj) dV −
∫

Vn

(∇kσki) xj dV, (2.293)

where the latter term vanishes identically if the particles are force–free. Application

of the divergence theorem for tensors to the above expression demonstrates that the

volume integral reduces to the hydrodynamic dipole of the particle [13, 31]:

∫

Vn

σij dV =

∮

Sp

nk σki xj dSp. (2.294)

By substitution of the above results into the expression for the bulk stress (Equa-

tion 2.288) one finds the constitutive equation of the bulk stress with the volume-

averaged rate-of-strain field of the dispersion:

〈Σij〉 = −Peff δij+2 η0 〈Eij〉+
1

V
Σn

∮

Sp

[nk σki xj − η0 (niuj + njui)] dSp, (2.295)

where the latter term corresponds to the particle contribution to the bulk stress and

accounts for the additional viscous dissipation due to the presence of the particles

in the dispersion. If the dispersion has a uniform size distribution of non-interacting

isotropic particles (valid in the dilute limit) the bulk stress simplifies to:

〈Σij〉 = −Peff δij + 2 η0 〈Eij〉+
N

V

∮

Sp

[nk σki xj − η0 (niuj + njui)] dSp, (2.296)

where N is the total number of particles in the dispersion. The major implication is

that knowing the contribution to the stress of a single particle suffices to arrive at a

closed-form expression for the constitutive equation for the bulk stress, and hence,

the effective viscosity of the dispersion.
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If the dispersion consists of non-deformable drops subjected to a steady shear

flow of a Newtonian fluid, the particle contribution to the bulk stress just arises from

the hydrodynamic dipole of the particle, which is obvious in view of the symmetry

of the shear flow. This is the case because there can be no contribution to the bulk

stress associated with the integral of the superficial velocities on an isotropic particle

in a linear shear flow. The reader may verify this claim for a spherical drop by direct

means via substitution of the ambient flow u(0)(x) defined in Equation (2.253) into

the corresponding expression above, followed by the demonstration that both surface

integrals:
∮

Sp
xE∞

·x dSp and
∮

Sp
xxx·E∞

·x dSp become exactly zero. In a similar

manner, the solid-body rotation of the ambient also does not contribute either, as

shown in the steps below:

∮

Sp

r−1 (xlui + xiul) dSp =

∮

Sp

r−1
(

xlxkΩ
∞
j ǫjki + xixkΩ

∞
j ǫjkl

)

dSp, (2.297)

=
4

3
πa3

(

δlkΩ
∞
j ǫjki + δikΩ

∞
j ǫjkl

)

= 0, (2.298)

where the integral identity of the dyad of the position vector has been used to arrive

at the sought result, which is quite evident from the properties of the permutation

symbol. Henceforth, the constituve equation for the bulk stress of a dilute dispersion

of drops is:

〈Σij〉 = −Peff δij + 2 η0

(

1 +
2 + 5λ

2 (1 + λ)
φ

)

〈Eij〉, (2.299)

where the volume fraction is given by

φ =
4
3
πa3

V
. (2.300)

To derive the final expression for the bulk stress of the dispersion it has been noted

that for a dilute dispersion the volume-averaged rate-of-strain is nearly equal to

the undisturbed rate-of-strain 〈Eij〉 = E∞
ij [13], and that the hydrodynamic dipole

reduces to the stresslet of a single drop, as defined in Equation (2.255). An exact
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expression for the effective viscosity unfolds by making use of the analogy of the

present constitutive equation with that of a Newtonian fluid:

ηeff = η0

(

1 +
2 + 5λ

2 (1 + λ)
φ

)

, (2.301)

where it is seen that Einstein’s result for a dispersion of solid spheres is recovered

in the limit λ→∞, as pointed out first by Taylor [11].



CHAPTER 3

DYNAMICS OF A JANUS DROP IN A

UNIFORM FLOW1

3.1 Abstract

The motion of a Janus drop under a uniform external flow is considered. First,

we analyze the equilibrium shape of a Janus-like drop in a motionless ambient fluid,

i.e., the special case of a nearly spherical compound drop with a nearly flat internal

interface. This configuration is realizable when the liquids comprising the drop

have close interfacial tensions with the ambient fluid, but a small interfacial tension

between each other. Then, we consider the flow past a perfect Janus drop composed

of two hemispherical domains each occupied by a different fluid. For the sake of

simplicity, all the interfaces are assumed nondeformable. The problem is solved

both analytically, by means of the Lamb expansion, and numerically. The relation

between the flow velocity and the force imposed on the drop, which is a generalization

of the classical Hadamard–Rybczynski formula, is found. A torque is also imposed

on the drop in the general case. The stable regime of motion of a torque-free drop

is found to be axisymmetric, with the less viscous fluid at the upstream face. For

this particular configuration, the deformation of the internal interface is also found

1 This chapter is a reproduction of the article: S. Shklyaev, A. O. Ivantsov, M. Dı́az-Maldonado
and U. M. Córdova-Figueroa, “Dynamics of a Janus drop in an external flow”, Phys. Fluids, v.
25, 082105 (2013). This reprint complies with the copyright terms of the American Institute of
Physics. The link to the online article is the following: http://dx.doi.org/10.1063/1.4817541
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employing a perturbation technique, whereas the distortion of the drop surface can

be safely neglected.

3.2 Introduction

The importance and perspectives of Janus particles were predicted by de Gennes

in his Nobel lecture [98] more than twenty years ago. Last decade has witnessed a

boom in the study of multicompartmental particles and their simplest representative,

a Janus particle. Potential applications of these particles range from useful blocks

in the design of modern (smart) materials to sensors or self-propelling particles

(motors). For this reason many groups are elaborating the experimental methods of

Janus particle synthesis, see the surveys in Refs. [99] and [100].

One of such techniques provides the main application of Janus drops[101–103]

being very promising because both particle size and compartment can be precisely

controlled. This approach includes a microfluidic generation of a Janus drop usu-

ally by means of a two-step method: a sequence of two Y-junctions with opposite

wettabilities (e.g., hydrophilic and hydrophobic) of the boundaries. One-step pro-

duction of Janus drops is discussed in Reference [104]; creation of drops containing

three liquids is described in Reference [105]. Usually the liquids comprising the

Janus drop contain a dispersed monomer, and further polymerization (by means of

heating, ultraviolet radiation, etc.) of the monomer produces a Janus particle.

Another important application of Janus drops is creating amphiphilic particles,

e.g., by adsorption of nanoparticles (or polymers, surfactant molecules) of different

chemical or physical functionalities at the drop surface. Such Janus drops or particles

made of these drops can then be collected at the interface [106, 107]. This allows

emulsion stabilization and can be used in other applications.

Despite the considerable progress in the synthesis and manipulation of Janus

drops, their dynamics is hardly studied, especially theoretically. Janus drop gen-

eration in a Y-junction (or a pair of junctions) is a challenging problem from a
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computational point of view, because of moving curved interfaces and contact lines,

intermolecular interactions of liquids with hydrophilic or hydrophobic solid walls,

etc. However, even the simplest problems, such as dynamics of a single Janus drop

in a uniform or shear flow, have not been addressed yet, although such data are

important to control the behavior of a Janus drop or their ensemble. Moreover, to

the best of our knowledge, the corresponding experiments have also been absent so

far.

The velocity of a microfluidic flow is rather small and therefore the problem can

be solved within the Stokes approximation. A considerable progress is achieved in

this field and the main techniques are described in classical books [20, 31]. The

general formalism in application to the solid particles implies finding the resis-

tance/mobility tensors (see Reference [72] and references therein). In other words,

one has to express the force, torque, and stress tensor applied to a particle via the

velocity, angular velocity, and shear rate of the flow in the absence of the particle or

vice versa. Such a relation for a stick-slip particle, consisting of two patches, slip and

no-slip ones, was calculated by Swan and Khair [77]. Using the boundary integral

formulation, the authors derived a Faxén-type formula. In particular, they showed

the coupling between a force and rotation and demonstrated that the particle can

migrate parallel to the velocity gradient in a one-dimensional shear flow. A similar,

though less general, problem – a particle with nonuniform slip at the surface in a

uniform flow – was considered independently by Willmott [42].

Even for a single-fluid drop such a formalism fails [108]. For instance, there is

no means to couple the torque exerted on a drop with the difference between the

angular velocities of the drop and the ambient. Indeed, a rotational motion of a

drop, which is described by a velocity field, can hardly be associated with a single

angular velocity. Moreover, the torque is created by a nonuniform force, which, in

turn, generates a flow inside the drop; therefore, in contrast to a solid particle, the
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external influence on a drop cannot be characterized by a single vector quantity

(the torque), the whole distribution of the force over the drop is needed. On the

other hand, a drop in an external flow has an additional degree of freedom; the

interface can deform and the position of the interface should be found along with

the flow velocity. Such a coupling, generally speaking, makes the problem nonlinear

even within the Stokes approximation. The only exception is the case of a weakly

deformable drop (the large surface tension suppresses the interface distortion), where

the flow velocity can be found for an unperturbed spherical interface and then the

interface distortion is calculated.

The dynamics of a single-fluid drop in a uniform [51, 52] or shear/extensional[55,

56, 108] flow is a classical problem. Recent progress in microfluidics has aroused a

great interest in compound drops and their ensembles. Several simple types of com-

pound drops were analyzed in a uniform external flow: (i) a thin-layer patch of one

liquid on a nearly spherical drop of a different liquid [109, 110], (ii) a gas-liquid drop

with gas phase partially engulfed by a motionless liquid film [111], (iii) concentric

[112] or (iv) eccentric [113] spheres (see also the survey on compound drops in Ref-

erence [7]). The behavior of a concentric double emulsion drop in an extensional

flow was investigated in Reference [10]; combining a perturbation technique and a

boundary element method, the authors studied both small and finite distortions of

the interfaces. This analysis allows calculating the bulk viscosity of dilute A-type

multiple emulsion (a single internal drop for each external one) [10]. However, the

analysis of compound drops in external flows lacks in study of such an important

object as Janus drops. The present paper aims to generalize Refs. [51] and [52] to a

Janus drop, a compound drop which comprises two hemispherical liquid domains.

The paper is organized as follows: We state the problem in Section 3.3 which

consists of two subsections. In Section 3.3.1 the existence of a compound drop close

to Janus one is discussed in terms of a weak distortion from the combination of
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two perfect hemispheres. In Section 3.3.2 the problem of the Stokes flow past a

Janus drop is formulated. The axisymmetric problem is analyzed in Section 3.4;

the case, when the external flow is parallel to the internal interface, is studied in

Section 3.5. We demonstrate that the velocity field (and hence the force and torque

imposed on a drop) for arbitrary orientation between the internal interface and the

flow can be represented as a superposition of the velocities for these two particular

problems. Then, in Section 3.6, we study two different situations: fixed orientation

of the drop with respect to the flow (Section 3.6.1) and dynamics of a torque-free

drop (Section 3.6.2). Small deflections of the interfaces are found for the latter case

in Section 3.6.3. Concluding remarks are presented in Section 3.7.

3.3 Problem formulation

3.3.1 Shape of equilibrium drop

Prior to analyzing the flow past a Janus drop, let us briefly discuss the condi-

tions under which a compound drop is close to a perfect Janus drop – a combination

of two hemispheres. In other words, we are interested in the situation, where (i) the

internal interface is almost flat and (ii) the sum of contact angles α1 + α2 is close

to π, see figure 3–1(a). This analysis is in a close connection with the recent paper,

Reference [114] (see also Reference [7]), but we present some additional important

information for the particular case of a “half-and-half” drop. It is intuitively clear

that the surface tensions have to be related as follows γ̃01 ≈ γ̃02 ≫ γ̃12, where γ̃ij is

the surface tension at the interface between ith and jth fluids; i = 0 corresponds to

the ambient. (Henceforth tildes are prescribed to the dimensional characteristics.)

It should be emphasized that typically the first inequality, γ̃01 ≈ γ̃02, ensures the

second one, γ̃01 ≫ γ̃12.

In dimensionless form the problem is governed by the two ratios of the surface

tension,

γ01 =
γ̃01

γ̃12

, γ02 =
γ̃02

γ̃12

. (3.1)
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Figure 3–1: Model sketches: (a) Equilibrium Janus-like drop with contact angles α1,2; the
dashed line is the symmetry axis. The radius a0 and angle θ0 for the internal interface
are introduced in the similar manner as a1,2 and θ1,2, respectively; (b) A Janus drop in an
external flow −U l. The angle β indicates the drop orientation with respect to the flow:
β = 0 corresponds to the internal interface normal to the external flow (axisymmetric
problem, Section 3.4), whereas β = π/2 corresponds to the internal interface parallel to
the external flow (Section 3.5).

From the computational point of view it is more convenient to deal with the

mean interfacial tension at the external surface of the drop γ = (γ01 + γ02)/2 and

the difference of the interfacial tensions, [γ] = γ02 − γ01. Within this subsection

we assume γ02 ≥ γ01 or [γ] ≥ 0, which for the static problem can be achieved by

numbering the liquids.

The base state of the compound drop in a motionless liquid is the following: the

pressure in each fluid is uniform, whereas the interfaces are spherical segments [7].

For the general case, the shape of the half-and-half compound drop is determined
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Figure 3–2: Variation of the contact angle α1 (the solid line, left axis) and the curvature
of the internal interface a−1

0 (the dotted line, right axis) with the difference of the sur-
face tensions [γ] for γ = 100. The dashed lines correspond to the asymptotic formulas,
Equation (3.3). Vertical dashed-dotted lines indicate the values of [γ] for which the drop
shapes are shown.

by the following relations:

γ01

a1
=

γ02

a2
− 1

a0
, (3.2a)

γ01 cos ϑ1 = γ02 cos ϑ2 − cos ϑ0, (3.2b)

γ01 sin ϑ1 = γ02 sin ϑ2 − sinϑ0, (3.2c)

a0 sin θ0 = a1 sin θ1 = a2 sin θ2, (3.2d)

V1,2 ∓ V0 = 2, (3.2e)

V1,2 = a31,2
(

2∓ 2 cosϑ1,2 ∓ cosϑ1,2 sin
2 ϑ1,2

)

, (3.2f)

V0 = a30
(

2− 2 cosϑ0 − cosϑ0 sin
2 ϑ0
)

, (3.2g)

representing the balance of pressures, two projections of the tangential forces im-

posed on the triple line, obvious geometric constraint, and fixed volumes (2π/3 by

the appropriate choice of the lengthscale) of each liquid, respectively. Here ϑ0 (a0) is

the analog of ϑ1,2 (a1,2) for the internal interface which is not shown in figure 3–1(a).

In fact, one out of these conditions is not independent; e.g., Equation (3.2c) can be

derived combining Equations (3.2a) and (3.2d).
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For a drop close to Janus one, the above mentioned mean surface tension is

large, whereas the difference of surface tensions is small. Expanding the variables

which appear in Equation (3.2) with respect to both small γ−1 and [γ], one can

readily derive

α1,2 =
π

2
+

1

2γ
∓ [γ], a−1

0 =
4

3
[γ]. (3.3)

These approximate formulas are compared with the numerical results in figure 3–2

for different [γ] and γ = 100. The shapes of the drops are also shown in this figure.

It is clear that for [γ] < 0.2, Equation (3.3) works well, and the drop can be treated

as a perfect Janus one with high accuracy.

In fact so large value of γ is not needed, even for γ = 5, the calculations

performed are in a good agreement with the analytical solution, Equation (3.3), and

only slightly differ from those shown in figure 3–2. It is worth noting that the solid

line in figure 3–2 agrees well with the following formula

cosα1 = [γ], α2 ≈ π− α1,

valid at large γ and finite [γ] < 1. (This relation can be derived by equating

the tangential forces exerted on the drop interface at the triple line.) In order

to calculate a0 within the same approximation, a transcendent equation should be

solved numerically; this solution agrees well with the dotted line in figure 3–2.

Thus, a real compound drop is close to the Janus one in a wide parameter range.

3.3.2 Stokes flow

Let us now consider dynamics of a Janus drop in an external uniform flow −Ul,

see figure 3–1(b). For simplicity, it is assumed that each internal fluid occupies a

hemispherical domain of radius a and that all interfaces are nondeformable. (This

restriction will be relaxed in Section 3.6.3.) Therefore, below we deal with a perfect

Janus drop; for Janus-like drop, described by Equation (3.3), the corrections to the

flow are proportional to small [γ] and γ−1 and can be calculated by means of a
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perturbation technique. These cumbersome calculations lie outside the scope of the

current work.

Keeping in mind numerous applications of Janus drops in microfluidics, we

analyze the problem in the framework of the Stokes approximation, thus seeking

for the creeping flow only. In order to guarantee these conditions, one has to set

both the capillary number Ca12 = η̃U/γ̃12 and the Reynolds number Re = Uaρ̃/η̃

small [115]. Here ρ̃ and η̃ are the typical (for instance, the mean values) density

and dynamic viscosity of the system, respectively; the minimum value of the surface

tension enters Ca12 in order to ensure all the interfaces being nondeformable. We do

not present the formal expansion in powers of Ca12, just mentioning that the small

O(Ca12) interface deformations induced by the flow are slaved. These deformations

can be found from the balance of normal stresses, see Section 3.6.3, whereas the

O(1) flow is calculated for the nondeformable interfaces without taking the normal

stresses into account [115].

We introduce spherical coordinates r, ϑ, φ [see figure 3–1(b)], which are coupled

to the Cartesian coordinates in the usual way. The x-axis is chosen in such a manner

that the external flow (or vector l) is parallel to the x−z plane and lx ≥ 0 (lx vanishes

for the axisymmetric problem, see Section 3.4); the y-axis is directed so as to make

the coordinate system a right-handed one. The boundary value problem governing

the drop dynamics reads:

∇ · v(j) = 0, −∇p(j) + ηj∇2v(j) = 0, (3.4a)

v(j)n = 0, [vτ ] = [σnτ ] = 0 at r = 1, (3.4b)

v(1,2)n = 0, [vτ ] = [σnτ ] = 0 at ϑ =
π

2
, (3.4c)

v(0) = −l at r ≫ 1. (3.4d)

Here j is each of the numbers 0, 1, 2; j = 0 is again prescribed to the ambient,

see figure 3–1(b), whereas in contrast to Section 3.3.1 for the internal fluids the
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inequality η̃1 ≤ η̃2 holds true. (Thus, the choice of the first and second fluids in

Section 3.3.1 can differ from that in the rest of the paper.) The vectors n and τ are,

respectively, normal and tangential to the corresponding interface. (For the general

case τ -component of the velocity is a two-dimensional vector field.) The stress tensor

is Newtonian: σ
(j)
lk = ηj

(

∇lv
(j)
k +∇kv

(j)
l

)

− p(j)δlk. The brackets denote a jump in

the corresponding characteristics across the interface; the direction of this jump will

be specified, wherever needed. Later on we will not use the brackets in formulas for

any other purposes. All the remaining notations are conventional.

The problem is written in the dimensionless form with U , a, η̃0U/a used as

the scales for the velocity, length, and pressure, respectively. Therefore, η0 = 1 in

Equations (3.4), whereas η1,2 = η̃1,2/η̃0 are the dimensionless parameters of the prob-

lem. The third dimensionless parameter defines the unit vector l = (sinβ, 0, cosβ),

0 ≤ β ≤ π, which indicates the mutual orientation of the drop and the external

flow. Two limiting orientations, β = 0 (or β = π) and β = π/2 are analyzed in

Sections 3.4 and 3.5, respectively. Due to linearity of the problem, the solution for

any intermediate case can be represented as a combination of these two cases.

The objective is to calculate the flows past and inside the drop, the force F

imposed on the drop (in units of η̃0aU)

F =

∮

σ · ndS, (3.5)

and the torque T (nondimensionalized by means of η̃0a
2U)

T =

∮

r × (σ · n)dS, (3.6)

where the integrations are performed over the drop surface, r = 1.

Two practically important situations are possible: (i) the fixed drop, which can

neither move nor rotate under external force and torque and (ii) the torque-free

drop, which is oriented so that the total torque vanishes. In other words, β is kept
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fixed for case (i) and β = βeq has to be calculated for case (ii). It is intuitively clear

that for case (ii) βeq is either zero or π and the former value, βeq = 0, corresponds

to the stable state. Let us imagine an occasional increase in β from zero value to the

situation sketched in figure 3–1(b). It enhances the area of the more viscous fluid

on the left-hand side of the drop, whereas on the right-hand side the area of the

less viscous fluid increases. Therefore, the viscous drag on the former part becomes

larger and an overall torque inhibits the initial turn. In contrast, for β = π the

resulting torque increases the initial perturbation. A more rigorous analysis of the

situation is carried out in Section 3.6.2.

3.4 Axisymmetric flow

3.4.1 Vector potential formulation

For β = 0 the problem becomes two-dimensional and therefore the vector po-

tential ψ can be introduced:

v = ∇× {ψ(r, ϑ)eφ} (3.7)

or, in components,

vr =
1

r sinϑ
∂ϑ (sinϑψ) , vϑ = −1

r
∂r(rψ).

It is worth noting that ψ is coupled with the conventional Stokes streamfunction

[20] ψc (associated with the flow streamlines) according to the relation

ψc = r sinϑψ. (3.8)
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In terms of the vector potential, the boundary value problem, Equation (3.4),

is rewritten as follows:

D2ψ(j) = 0, (3.9a)

ψ(j) = 0, [∂rψ] =
[

η∂2rψ
]

= 0 at r = 1, (3.9b)

ψ(1,2) = 0, [∂ϑψ] =
[

η∂2ϑψ
]

= 0 at ϑ =
π

2
, (3.9c)

ψ(0) = −r
2
sinϑ at r ≫ 1. (3.9d)

The operator D is introduced by the following relation:

Df = ∇2f − 1

r2 sin2 ϑ
f

for any f(r, ϑ).

We represent the vector potentials of the ambient as follows:

ψ(0) =

∞
∑

n=1

AnP
(1)
n (θ)

rn+1

(

1− r2
)

+ ψS , ψS =
1

4

(

3− 1

r2
− 2r

)

sinϑ, (3.10)

where θ = cosϑ, ψS corresponds to the flow past a solid sphere, and P
(1)
n is the

associate Legendre polynomial:

P (1)
n (θ) =

√
1− θ2dPn(θ)

dθ
,

i.e., in the notations of Reference [82] we use Pn1 = −P 1
n as the associate Legendre

polynomials.

Inside the drop the vector potentials are given by:

ψ(1,2) = η2,1

∞
∑

n=1

{BnTn(θ)± CnrRn(θ)} r2n+1 +
∞
∑

n=1

DnP
(1)
2n (θ)r2n

(

1− r2
)

,(3.11)

Tn =
P

(1)
2n+1(θ)

P
(1)
2n+1(0)

− P
(1)
2n−1(θ)

P
(1)
2n−1(0)

, Rn =
P

(1)
2n+2(θ)

Q2n+2(0)
− P

(1)
2n (θ)

Q2n(0)
, (3.12)

where Qn = θP ′
n − n(n+ 1)Pn and therefore Q2n(0) = −2n(2n+ 1)P2n(0).
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The vector potential given by Equation (3.10) solves the biharmonic equation,

Equation (3.9a), ensures both vanishing ψ(0) at r = 1 and correct asymptotics far

from the drop, whereas ψ(1,2) given by Equation (3.11) satisfy Equation (3.9a) and

the boundary conditions at ϑ = π/2.

Substituting this ansatz for ψ(j) into the remaining boundary conditions at

r = 1 and cutting the series at 2Nth spherical harmonics, one arrives at a set of

5N linear algebraic equations for 5N coefficients: An (1 ≤ n ≤ 2N) and Bn, Cn, Dn

(1 ≤ n ≤ N). This set of equations is solved numerically. In order to guarantee

the convergence, N is chosen from 60 to 120 depending on η1 and η2; more terms

should be retained for the case η2 ≫ 1 ≫ η1 (or η̃2 ≫ η̃0 ≫ η̃1). An example

of such a system is provided by a toy Janus “drop” which comprises a solid and

a gaseous hemispheres. It is worth noting that in most microfluidic applications

the viscosities of all three fluids are relatively close. Therefore, the limiting case

η2 ≫ 1 ≫ η1 seems to be unimportant from practical point of view. Involving the

higher order Legendre polynomials inevitably leads to additional care about round-

off errors, hence the number of digits in computations has to be increased. Finally,

it should be noted that the series for the stress tensor converges nonuniformly, but

no singularities take place for the motionless triple line.

For the axisymmetric case the force given by Equation (3.5) has the only com-

ponent Fz = 2π(3− 4A1), which agrees with the classical expression by Payne and

Pell [116]. (Fz is directed against the z-axis; here and below we omit the sign of the

force.) The overall torque, Equation (3.6), vanishes in view of the obvious symmetry

arguments.

3.4.2 The limiting case η1 = η2

First we stress that even in the limiting case of equal internal viscosities η1 =

η2 = η {here and below η = (η1 + η2)/2 is the mean viscosity of the drop}, the

problem does not reduce to an uniform flow past a drop studied by Hadamard [51]
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Figure 3–3: The force Fz/(2π) (in units η̃0aU) imposed on the Janus drop. Panel (a):
Variation of Fz/(2π) with η for η1 = η2 = η. The solid line represents numerical results;
the dashed line shows the Hadamard–Rybczynski formula, Equation (3.13). Panel (b):
Variation of Fz/(2π) with [η]/(2η) = (η2−η1)/(η1+η2) for various mean viscosities of the
drop η = (η1 + η2)/2; results of DNS (ANSYS Fluent) are shown by the dots.

and Rybczynski [52]. Indeed, the nondeformable interface inside the drop prohibits

the motion found in the cited papers. Thus, right away, one can expect that a Janus

drop is intermediate between a single-fluid drop and a solid particle in terms of

hydrodynamic resistances. Mathematically, the problem is simplified in the limiting

case η1 = η2, because the coefficientsDn and A2n vanish to ensure that the solution is

even in θ or, in other words, to guarantee the symmetry properties ψ(r, ϑ) = ψ(r,π−

ϑ). Particularly, this shows that both velocity components vanish at the internal

interface. Calculations of the force acting on the drop are shown in figure 3–3(a),

and these are compared against the Hadamard–Rybczynski formula:

Fz = 2π
2 + 3η

1 + η
. (3.13)

As can be seen from the figure, for any given η, the force imposed on the drop lies

in between the force on a rigid particle Fz = 6π, and the force given by Hadamard–

Rybczynski formula, Equation (3.13). It is also clear, that the force Fz grows from

4π (low viscosity drop) to 6π (high viscosity drop), as η ranges from zero to infinity.

(In these two limiting cases, the internal interface produces negligible effect.) It
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should be mentioned that similar results, the force varying between the Hadamard-

Rybczynski formula to the Stokes one, were also found in a number of systems, such

as compound drops [110, 112] and drop motion in presence of surfactants [117].

3.4.3 Different internal viscosities

For different viscosities η1 and η2 it is useful to present the results in terms

of the mean drop viscosity η and the viscosity difference, [η] = η2 − η1. Keeping

in mind that [η] ≤ 2η for any η, one can conclude that the weighted viscosity

difference [η]/(2η) is more convenient for presentation purposes. It is easy to show

that η1,2 = η{1∓ [η]/(2η)}. The results of calculations for nonzero [η] are presented

in figure 3–3(b). As one can see from this figure, the force slightly depends on

the redistribution of this “average” viscosity between the internal fluids. Indeed,

at [η] ≤ η the variation of the force does not exceed 1%. Recalling that in most

microfluidic applications the viscosity contrast inside the drop is rather small, one

can conclude that figure 3–3(a) provides a good approximation of the force imposed

on the drop.

With further increase in [η] the force becomes smaller. Note, that the case

η2 ≫ η1 (2η ≈ [η]) should be thought of as a combination of two liquids with a large

difference in the viscosities rather than a liquid-gas pair. In the latter case there is

no means to sustain a Janus drop. The force diminution is especially pronounced

for the extremal situation η2 ≫ 1≫ η1, which, as we stated above, is not practically

important.

The flow inside and outside the drop is demonstrated in figure 3–4; keeping in

mind the axial symmetry, one concludes that a couple of toroidal vortices appear

inside the drop. It should be noticed that the ϑ-component (longitudinal) velocity

at the drop surface is nonnegative; thus, both liquids are co-rotating; the vorticities

(or the vector potentials) are of the same sign in both hemispheres. Such a system

of vortices ensures a correct velocity matching at the drop surface, but it leads to
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Figure 3–4: The isolines of the velocity potential ψ for axisymmetric flow, η2 = 1.5, η1 =
0.5 (a) and η2 = 0.7, η1 = 0.3 (b). The step between the isolines is 0.05 for the external
flow and 0.005 inside the drop.

counter-propagating flows at the internal interface, which is obviously impossible.

In order to prevent such an effect, an additional vortex appears in a less viscous

liquid near the internal interface. Its boundary is plotted by the unclosed streamline

adjacent to the internal interface. The intensity of this counterflow is rather small

and the streamlines cannot be shown on the scale of figure 3–4. It is evident, that for

the limiting case [η] = 0 the additional vortex is not needed because the longitudinal

components of the velocity are zero at the internal interface.

It is readily seen that the intensity of the flow in the drop is much smaller

than in the surrounding fluid; the step between the isolines is ten times smaller in

the former case. This effect is mainly caused by the above-mentioned additional

hindrance to the flow in the drop owing to the internal interface. Another evident

result is that the flow is more intensive in the first (less viscous) liquid.

As we have noted above, the convergence of the series, Equations (3.10) and

(3.11), for the vector potentials is rather slow. In order to confirm the results

independently, we also perform direct numerical simulations (DNS) by means of

ANSYS Fluent software. To that end we solved the problem inside a spherical

domain r = 20 with a space-uniform velocity kept fixed at the external boundary

of the domain. Nonuniform tetrahedral mesh comprising 52 000 cells is used with a
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refinement near the drop interface. We use Body Force Weighted scheme for pressure

spatial discretization and Third-Order MUSCL scheme for the momentum equation.

ANSYS Fluent offers the Volume-of-fluid (VOF) method for modeling two or more

immiscible fluids by solving a single set of momentum equations and tracking the

volume fraction of each fluid over the domain. However, this model is inconvenient

for nondeformable interfaces. Therefore, we use the simplified approach, when,

similarly to the conventional Level set method, the transient layer is introduced

near the interfaces, but the equation for level set function is not solved, which

keeps the interfaces fixed. In order to satisfy the boundary conditions, additional

source terms are added, which prevent the fluid motion across the interfaces. The

Reynolds number Re0 = Ua/η̃0 in computations is chosen 0.1. The results of DNS

are presented in figure 3–3(b) and they are in a good agreement with the analytical

approach. The difference of the results becomes more pronounced in the above-

mentioned case η2 ≫ 1 ≫ η1 ([η] ≈ 2η ≫ 1), which is the most complicated from

computational point of view but practically unimportant.

It is also clear that no separate analysis is needed for β = π; this limiting case

corresponds to the opposite direction of the external flow, which, in view of linearity,

only changes the sign of the force keeping its absolute value fixed.

3.5 External flow, parallel to the internal interface (β = π/2)

In the case β = π/2 the second (more viscous) fluid is assumed to be situated

at z < 0, i.e., the flow directed oppositely to the x-axis has to produce the torque

parallel to the y-axis. (The replacement of fluids 1 and 2 only changes the sign of

the torque.) For this particular case the calculations are more complicated because

of the three-dimensional structure of the velocity fields. To that end we implement

the Lamb representation of the velocity, see also Reference [20] and [31]:

v(j) = ∇×
(

rχ(j)
)

+∇Φ(j) +∇−2
(

∇p̄(j)
)

+ v(j)
∞ , (3.14)
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where ∇−2 is the inverse of the Laplace operator, p̄(j) = p(j)/ηj, v
(0)
∞ = −l far from

the drop. From the computational point of view, it is convenient to choose v
(1,2)
∞ = 0

at the drop surface, i.e., v
(0)
∞ is the Stokes flow past a solid sphere of unit radius.

The components of this field are given by:

v(0)∞r = −L(r) sinϑ cos φ, v(0)∞ϑ −M(r)θ cos φ, v
(0)
φ =M(r) sinφ, (3.15)

L(r) = 1− 3

2r
+

1

2r3
, M(r) = 1− 3

4r
− 1

4r3
. (3.16)

Scalar Lamb’s functions χ, Φ, and p solve Laplace’s equation. The series for these

functions as well as for the velocity fields are given in Appendix B.1.

3.5.1 Small viscosity difference

For arbitrary [η], calculations are massive but in the limiting case of small [η]/η

(recall, [η] = η2 − η1) a certain simplification is possible. Indeed, for equal internal

viscosities the problem is reduced to that solved by Hadamard [51] and Rybczynski

[52]. The corresponding solution reads:

v(1,2)r = V (1,2)
r ≡ µ(1− r2) sinϑ cosφ, (3.17a)

v
(1,2)
ϑ = V

(1,2)
ϑ ≡ µ(1− 2r2) cosϑ cosφ, (3.17b)

v
(1,2)
φ = V

(1,2)
φ ≡ −µ(1− 2r2) sinφ, (3.17c)

v(0)r = V (0)
r ≡ −

(

1 +
α

r
+
ν

r3

)

sin ϑ cosφ, (3.17d)

v
(0)
ϑ = V

(0)
ϑ ≡ −

(

1 +
α

2r
− ν

2r3

)

cos ϑ cosφ, (3.17e)

v
(0)
φ = V

(0)
φ ≡

(

1 +
α

2r
− ν

2r3

)

sin φ, (3.17f)

µ =
1

2(1 + η)
, α = − 2 + 3η

2(1 + η)
, ν =

η

2(1 + η)
.

In this case the x-component of the force is given by the classical expression, Equa-

tion (3.13), and there is no torque applied to the drop.

At small [η]/η the velocity fields V (j), Equation (3.17), should be supplemented

by the O([η]/η)-correction u(j). Such a correction obviously solves the boundary
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Figure 3–5: Variation of the rescaled torque Tyη/(8π[η]) (in units η̃0a
2U) acting on the

Janus drop for small [η]/(2η) = (η2 − η1)/(η1 + η2) with the mean viscosity of internal
fluids η = (η1 + η2)/2.

value problem similar to Equations (3.4) with the replacement of the shear stress

balance at r = 1 by

∂r
ηu

(1,2)
ϑ − u(0)ϑ

r
= ±η∂r

Vϑ
r
, ∂r

ηu
(1,2)
φ − u(0)φ

r
= ±η∂r

Vφ
r
, (3.18)

where the upper (lower) sign is prescribed to the interface between the ambient and

the first (second) fluid. The first correction obeys an additional symmetry condition:

{

u(0,1)r , u
(0,1)
ϑ , u

(0,1)
φ

}

ϑ
=
{

−u(0,2)r , u
(0,2)
ϑ ,−u(0,2)φ

}

π−ϑ
, (3.19)

so that the meridional components of the velocity coincide in both internal fluids,

whereas the radial and azimuthal components are opposite. This symmetry prop-

erty simplifies the analysis to a great extent, although numerical summation is still

needed; the details of calculations are presented in Appendix B.2. It ensues from

the analysis presented there, that the force does not have O([η]/η) correction but

the torque does. This correction is presented in figure 3–5.

It can be readily seen from the figure that the torque is maximum for a certain

value of η and it tends to zero in two opposite limits of small and large η. Again,
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Figure 3–6: Variation of the torque Ty/(8π) (in units η̃0a
2U) (a) and the force Fx/(2π)

(in units η̃0aU) (b) imposed on the Janus drop with [η]/(2η) = (η2 − η1)/(η1 + η2) for
different mean viscosities η of the drop. Results of DNS (ANSYS Fluent) are shown as
dots.

the former case should be thought of as a water-like drop in an oil rather than

a bubble in a liquid, because two gases cannot form an internal interface. The

reason for vanishing Ty in this case is clear, the viscous stress is almost zero at

the drop surface. The pressure field, which produces a force directed to the drop

center, clearly does not create a torque. Mathematically this vanishing stems from

the factor η in the right-hand side of Equation (3.18). In the latter case, for large

η, the right-hand side of Equation (3.18) remains finite despite the large factor η

because the velocities of the internal fluids are small, see Equation (3.17). Moreover,

u(j) is inversely proportional to η, even for the ambient, in order to ensure the

balance of shear stresses. Therefore, e.g., ∂r(u
(1)
ϑ /r) is equal to ∂r(V

(1)
ϑ /r) at r = 1,

whereas the O([η]/η) correction to the stress produced by the surrounding fluid can

be disregarded. (The correction to the velocity in the ambient can then be found

from the velocity continuity at r = 1.) In both limiting cases of small and large

η, the asymptotics η and η−1 agree well with the numerical values presented in

figure 3–5.
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3.5.2 Finite viscosity difference

For arbitrary value of [η]/η, the full three-dimensional representation of the

velocities given in Appendix B.1 is used. The results of calculations are presented in

figure 3–6. At small [η]/η the torque agrees well with the results shown in figure 3–5.

For η = 0.1, the coincidence is good even for [η]/(2η) close to unity. With increase

in the mean viscosity of the drop the domain of applicability of the results for small

[η]/(2η) shrinks; the nonlinear corrections augment the total torque. As one can

expect, the convergence of the series becomes worse with increase in the viscosity

contrast; again this effect is especially pronounced for larger η.

In figure 3–6(b) the force exerted on the Janus drop is depicted. According to

the analysis at small [η], the correction to Equation (3.13) is quadratic in terms of

[η]. Moreover, at small and moderate mean viscosity of the drop the force is almost

independent of the viscosity contrast; for example, at η = 1, the force variation

remains within 10%, whereas the weighted viscosity difference [η]/(2η) increases

from zero to its maximal value, unity.

We also perform the DNS in 3D case, the results are presented in figure 3–6(b);

the forces obtained within two approaches agree well; similarly to the axisymmetric

case the discrepancy grows as [η]/(2η) tends to unity, the reader may compare with

figure 3–3(b).

3.6 Dynamics of the Janus drop

3.6.1 The force for the arbitrary β (fixed drop)

Below, on the ground of Sections 3.4 and 3.5 we address the dynamics of a

Janus drop, starting with the simplest case, where both the position and orientation

of the drop (the angle β) are fixed by certain external force and torque. Analysis

of the more realistic situation, motion of a freely rotating drop under a prescribed

external force, is postponed to Section 3.6.2.
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Figure 3–7: Force acting on a fixed Janus drop for η = (η1 + η2)/2 = 1. (a) Variation
of the angle δ between the external flow and force on the drop with cosβ for different
[η]/(2η), see Equation (3.20); (b) Variation of the maximum angle δc in radian (the solid
line, right axis) and the value of βc for which δ reaches its maximum (the dashed line, left
axis) with the weighted viscosity difference [η]/(2η), see Equation (3.21).

It is clearly seen from figures 3–3(b) and 3–6(b), that the analogs of the Hadamard–

Rybczynski force for two orientations of the Janus drop depend on the viscosities

η1 and η2 in a qualitatively similar manner. However, they do not coincide exactly,

which means that the force applied to a fixed drop is not parallel to the flow. (It

should be emphasized that for a half-and-half stick-slip sphere,[42, 77] the force

is always parallel to the velocity.) The simple calculation shows that the angle δ

between the vector −l and the total force F is given by

cos δ =
Fx + (Fz − Fx) cos

2 β
√

F 2
x + (F 2

z − F 2
x ) cos

2 β
. (3.20)

With increase in β from zero to π, this angle reaches its maximum value δc at

β = βc, where

cos δc =
2
√
FxFz

Fx + Fz
, cos2 βc =

Fx

Fx + Fz
. (3.21)

An example of calculations are presented in figure 3–7. One can readily see that the

angle between the force and the velocity does not exceed 0.065 rad or 3.7 degrees.

Another important feature is that the angle is mainly determined by the mean

viscosity η; the variation of δ with the weighted viscosity difference is almost absent

at [η]/(2η) < 0.75.
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3.6.2 Stable regime for a freely rotating drop

Now we proceed with the more realistic situation of the drop moving by the

action of an external force without imposing a torque. In this situation the drop

should be torque-free, i.e., it is oriented in such a way that the internal interface is

perpendicular to the external flow. One has only to choose between two opposite

possibilities, βeq = 0 and βeq = π. As stated above, simple physical intuition dictates

that the former state is stable. In fact, calculations performed in Section 3.5 allows

presenting more rigorous arguments. Indeed, let us imagine that the drop with the

equilibrium angle βeq = 0 occasionally gets a small gain in β. Therefore, in addition

to the axisymmetric flow there appears a small 3D component with the velocity

proportional to U sinβ. Since, similarly to the situation shown in figure 3–6(b),

z > 0 corresponds to the first (less viscous) fluid, the y-component of the torque is

positive. Thus the viscous torque rotates the drop back trying to decrease the initial

distortion. In the opposite case, βeq = π, the first (less viscous) fluid is situated

at z < 0, i.e., the y-component of the torque is negative and it increases the initial

perturbation of the angle.

A more subtle situation takes place for the sedimentation of the Janus drop

under the action of gravity; an example of Janus drop motion under gravity can be

found in Reference [118]. Dealing with the sedimentation, we assume the dimension-

less mean drop density ρ = (ρ̃1 + ρ̃2)/(2ρ̃0) larger than unity. If, oppositely to the

viscosity difference—η1 < η2—the first fluid is more dense, the terminate state re-

mains the same, with the less viscous fluid at the upstream half. At the opposite ratio

of the densities, ρ̃1 < ρ̃2, there appears a competition between the viscous and gravi-

tational torques. Since both torques are proportional to sinβ, nontrivial equilibrium

states are impossible and either βeq = 0 or βeq = π in the stable state. The former

situation occurs, when the viscosity “wins,” i.e., η̃0Ũa
2Ty > (3/8)[ρ]ρ̃0gaV/2, where
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Ũ = mg/(η̃0aFz) is the velocity of the drop sedimentation, V and m = (ρ̃1+ ρ̃2)V/2

are the volume and mass of the drop, respectively; [ρ] = (ρ̃2 − ρ̃1)/ρ̃0.

Thus, βeq = 0 corresponds to the stable sedimentation under the condition

Ty >
3

16
Fz

[ρ]

ρ
, (3.22)

otherwise, the opposite regime with βeq = π is stable.

In the opposite case of rising drop (ρ < 1), only the sign in the right-hand side

of Equation (3.22) should be changed, because in this case the two torques compete

for ρ̃1 > ρ̃2.

3.6.3 Deformation of the internal interface

In the previous analysis, we have neglected the deformations of the interfaces

by assuming the surface tension (or inverse capillary numbers) asymptotically large.

In this subsection, small deformations of the interfaces are calculated by means of a

perturbation technique. To that end we calculate the pressure field via the Stokes

equation with already known ψ(j) (and hence v(j)) and take into account the normal

stress balance conditions [115].

As demonstrated in Section 3.3.1, two fluids (1 and 2) form a Janus drop sus-

pended in a third fluid (0), when γ̃01 ≈ γ̃02 ≫ γ̃12. It means that the external

surface of the drop remains almost nondeformable, whereas the internal interface

can be distorted more easily. Mathematically, the ratio of these deformation is pro-

portional to small γ−1 = 2γ̃12/(γ̃01 + γ̃02); therefore, only the deformation of the

internal interface is studied below. Recall that for finite γ−1 the drop is not perfect

Janus one even without any flow, see Equation (3.3). The analysis is restricted to

the axisymmetric case, which shown to be more relevant from a physical point of

view, see Section 3.6.2.
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The internal interface is determined by the equation z = ζ(r), where the func-

tion ζ(r) has to be found from the balance of normal stresses:

[p− σϑϑ] = −Ca−1
12 ∆ζ, at ϑ =

π

2
; (3.23)

∆ =
1

r

d

dr

(

r
d

dr

)

,

where [f ] = (f2 − f1)z=0. Recall that the capillary number is small, Ca12 =

η̃0U/γ̃12 ≪ 1. The interface deformation ζ is of order Ca12, which justifies the

calculation based on the unperturbed interfaces and velocity fields.

Equation (3.23) has to be supplemented by the conditions

ζ = 0 at r = 1, (3.24)
∫ 1

0

ζrdr = 0. (3.25)

The former condition, Equation (3.24), guarantees that the triple line remains un-

perturbed because of the strong inequality γ̃12 ≪ γ̃01 ≈ γ̃02. (In fact, the triple line

displacement is proportional to both Ca12 and γ−1, thus vanishing in the order of

approximation used here.) The latter condition, Equation (3.25), fixes the volumes

of each internal fluid.

The pressure fields corresponding to the vector potentials of internal fluids given

by Equation (3.11) have the following forms:

p(1,2) = −2η1η2
∞
∑

n=1

2n(4n+ 1)Bn
P2n−1(θ)

P
(1)
2n−1(0)

r2n−1

−2η1,2
∞
∑

n=1

(2n+ 1)(4n+ 3)

{

Dn ±
η2,1Cn

Q2n(0)

}

P2n(θ)r
2n + p

(1,2)
0 ,(3.26)

whereas the normal viscous stress is given by

σ
(1,2)
ϑϑ

(

ϑ =
π

2

)

= −2η1,2
∞
∑

n=1

2n(2n+ 1)DnP2n(0)r
2n−2

{

2n− r2(2n+ 2)
}

. (3.27)
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Figure 3–8: Deformation of the internal interface by the flow. (a): Profiles ζ(r) at η =
(η1+η2)/2 = 1 and [η] = η2−η1 = 0, 1.6, 2 (dotted, solid, and dashed lines, respectively).
(b): Variation of maximum and minimum value of ζ with [η]/(2η) for different η.

It is worth noting that the series terms in the pressure field do not contain contri-

butions independent of r, whereas σϑϑ does contain a constant proportional to [η].

However, the latter constant just renormalizes the difference [p0] = p
(2)
0 − p

(1)
0 and

for brevity it is neglected below. (Recall that the absolute value of the pressure is

obviously unimportant for incompressible liquids, only the pressure difference plays

a role.)

Solution to Equation (3.23) is given by

ζ = Ca12

{

∞
∑

n=1

Zn

(2n+ 2)2
+

[p0]

4
r2 + ζ0

}

, (3.28)

Zn = −2η1η2
4n+ 3

n
Cn − 2[η](2n+ 1)(2n+ 3)P2n(0) {(2n+ 1)Dn + (2n+ 2)Dn+1} .

The two constants, [p0] and ζ0, which appear in the solution, are determined by

Equations (3.24) and (3.25). A simple calculation leads to

ζ = Ca12

∞
∑

n=1

Zn

(2n+ 2)2

(

2
n+ 1

n+ 2
r2 − n

n+ 2
− r2n+2

)

.

The shapes of the interface for η = 1 are demonstrated in figure 3–8(a); the deforma-

tions shown in this figure are typical within the whole range of η1,2. The maximum

deflection (the interface is distorted in the direction of the first liquid) occurs at the
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center r = 0 and the minimum one (the distortion is in the direction of the second

liquid) takes place at a certain r = rm. This structure of the interface deformation

can be expected from the Hadamard–Rybczynski flow; indeed, near the drop surface

the ϑ-component of the velocity is positive and therefore ζ < 0 near the triple line.

In contrast, at the center of the drop, the flow has the opposite direction and ζ is

positive there. Although the internal interface changes the Hadamard–Rybczynski

flow in the way discussed in Section 3.4, the interface deformation still follows this

flow.

Variation of maximum and minimum values of the interface distortion are shown

in figure 3–8(b). With increase in η the deformation becomes larger, but this effect is

caused by nondimensionalization only. Indeed, a more appropriate way of introduc-

ing capillary number, which characterizes the deformation of the internal interface, is

the scaling of γ̃12 with the internal viscosities, for example, (η̃1+η̃2)U/γ̃12 = 2Ca12η.

It means that the deformation at fixed 2Ca12η is larger for smaller η and it is more

pronounced for a less viscous drop, as one intuitively expects.

Increasing the viscosity contrast [η] at fixed η, one can readily see the decrease

in the interface deformation. Indeed, with growth of [η], the typical flow velocity in

the first liquid v1 grows, whereas v2 decays. In spite of the flow intensification, the

pressure difference proportional to η2v2−η1v1 shrinks, which makes the deformation

smaller.

3.7 Concluding remarks

The motion of a Janus drop in an external uniform flow is addressed. Starting

with the equilibrium configuration, we first find the shape of a nearly Janus drop in

the absence of the flow. To that end the limiting case of small [γ] = (γ̃02− γ̃01)/γ̃12

and γ−1 = 2γ̃12/(γ̃01 + γ̃02) is analyzed. The former condition means that the

difference of the surface tensions at the drop surface is small in comparison with

the surface tension at the internal interface γ̃12. The latter condition means that
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γ̃12 is small with respect to the surface tension at the drop surface. Under these

conditions both internal fluids occupy almost hemispherical domains.

Then, the Stokes flow past the perfect Janus drop is studied. At a small capillary

number, the interfaces are assumed nondeformable due to the flow. Two generic

cases, when the internal interface is (i) perpendicular to the external flow (β =

0, axisymmetric flow) and (ii) parallel to the flow (β = π/2, three-dimensional

problem) are analyzed. It is shown that for any other value of β the velocity field

can be represented as a superposition of the two above-mentioned solutions.

For β = 0 the vector potential of the velocity is introduced; it is presented

by Equations (3.10) and (3.11) with the coefficients determined numerically. It is

important that even for the equal internal viscosities, the problem is not reduced

to the Hadamard–Rybczynski solution [51, 52]. Indeed, the internal interface, with

zero normal velocity there, provides an additional hindrance. Therefore, as shown

in figure 3–3(a) the total force imposed on the Janus drop is larger than that for a

single-fluid drop but less than for a solid sphere.

A small distortion of the internal interface is also found for this particular

configuration. (The deformation of the drop surface is less by the factor γ−1.) The

interface follows the Hadamard–Rybczynski flow, the deflection is directed to the

first (less viscous) liquid in the center and to the second (more viscous) liquid near

the triple line.

For β 6= 0, the Lamb expansion of the velocity is used, see Equation (3.14)

and Appendix B.1. In this case, there also appears a torque [see figure 3–6(a)],

which tries to turn the freely rotating drop in such a way that β = 0. The stable

configuration corresponds to the less viscous fluid situated at the upstream face of

the drop.

We also confirm the results of analytical method by direct numerical computa-

tions for rather small Reynolds number, ANSYS Fluent is used to that end. This
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numerical approach can be applied to relax some of the model restrictions, such as

hemispherical domains occupied by the internal fluids. In fact, we do not expect

qualitative difference in dynamics of such a realistic Janus drop. However, some im-

portant aspects needed for the experiments and/or technologies (such as the stable

configuration, intensity of the flow inside the Janus drop, etc.) can be computed.

In contrast to a single-fluid drop, for a Janus one the imposed torque and the

angular velocity of drop rotation can be coupled. Indeed, the Janus drop has an

additional internal interface, where the normal velocity can be prescribed which

corresponds to the drop rotation around the axis belonging to the internal interface.

On the other hand, if the torque is normal to the internal interface, the Janus drop is

similar to the single-fluid one. Therefore, a Janus particle is an object intermediate

between a simple drop and a solid particle, for which the “external forcing” (the

velocity, angular velocity, and shear rate of the ambient far from the particle) and

the “response” (force, torque, and stress applied to the particle) are coupled via the

mobility tensor. From practical point of view, it is important to study a Janus drop

behavior under a uniform shear. We expect that dynamics of a Janus drop under this

condition has a certain similarity to the stick-slip sphere [42, 44, 77]. The generic

feature is that the spherical body with a broken fore-and-aft symmetry behaves in

an external flow like a spheroid or other body of revolution; hence dynamics similar

to that found in Reference [89] is expected.

We have completely disregarded mixing processes in the analysis, which can be

important in view of large contrast in the surface tensions, the surface tension at

the internal interface, γ̃12, is smaller than the others, γ̃01 and γ̃02. On the one hand,

generally speaking, small surface tension does not necessarily results in mixing; if

the liquids have complex and different structures of molecules, the pair of internal

fluids still can be immiscible. On the other hand, the flow inside the drop is shown

to be of small intensity, especially near the internal interface, where the stagnant
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zone develops. Hence, the role of advection in a mixing is negligible, whereas another

candidate, the molecular diffusion, is rather small. The typical values of the Schmidt

number, the ratio of the characteristic times of mass and momentum diffusion is at

least about 100 for most of liquid mixtures. Therefore, having been created, Janus

drop has enough time to relax the momentum and, consequently, approach the stable

state, before the mixing produces a valuable effect. Thus, the mixing in a forced

Janus drop has to be studied only for the stable configuration.



CHAPTER 4

THE ANISOTROPIC RESPONSE OF A JANUS

DROP TO A SHEARING FLUID1

4.1 Abstract

The force and couple that result from the shearing motion of a viscous, un-

bounded fluid on a Janus drop are the subjects of this investigation. A pair of

immiscible, viscous fluids comprise the Janus drop and render it with a ‘perfect’

shape: spherical with a flat, internal interface, in which each constituent fluid is

bounded by a hemispherical domain of equal radius. The effect of the arrangement

of the internal interface (drop orientation) relative to the unidirectional shear flow

is explored within the Stokes regime. Projection of the external flow into a reference

frame centered on the drop simplifies the analysis to three cases: (i) a shear flow

with a velocity gradient parallel to the internal interface, (ii) a hyperbolic flow, and

(iii) two shear flows with a velocity gradient normal to the internal interface. De-

pending on the viscosity of the internal fluids, the Janus drop behaves as a simple

fluid drop or as a solid body with broken fore and aft symmetry. The resultant

couple arises from both the straining and swirling motions of the external flow in

analogy with bodies of revolution. Owing to the anisotropic resistance of the Janus

1 Part of this chapter is a reproduction of the published article: M. Dı́az-Maldonado and
U. M. Córdova-Figueroa, “On the anistropic response of a Janus drop to a viscous shearing
fluid”, J. Fluid Mech., v. 770, R2 (2015). The contents of the cited article have been reprinted
with permission from Cambridge University Press. A link to the online article is provided here:
http://dx.doi.org/10.1017/jfm.2015.148
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drop, it is inferred that the drop can migrate lateral to the streamlines of the undis-

turbed shear flow. The grand resistance matrix is reported for a Janus drop with

similar internal viscosities.

4.2 Introduction

Compound multiphase drops arise in diverse processes of engineering inter-

est such as direct-contact heat exchangers, melting of ice particles falling in the

atmosphere, rapid evaporation of liquids at superheated conditions, explosions of

multicomponent fuel drops, and in several other settings [7]. Typically, a pair of

fluid phases immersed in a host fluid constitute the compound multiphase drop,

where one of the phases may engulf completely or partially its counterpart [8]. A

limiting configuration of actual interest for the fabrication of anisotropic particles

arises when two drops (of similar interfacial tension) undergo partial engulfment,

leading to the formation of a compound drop of nearly spherical shape and almost

flat, internal interface [114]. This particular object is usually referred to as a Janus

drop — named after the Roman god. The Janus drop is considered to be ‘perfect’

when the constituent fluid phases are bounded each by a hemispherical domain of

equal radii, or equivalently when the drop exhibits a flat, internal interface [119],

where the latter is referred to as ‘the internal interface’ from this point onward for

brevity.

This study aims to characterize the hydrodynamic response (forces and couples)

of a ‘perfect’ Janus drop by the shearing motion of a viscous unbounded fluid (which

is an ubiquitous flow type), and consider how this response is affected by the drop

orientation (a factor absent in single-phase drops). A schematic representation of a

Janus drop of arbitrary orientation in a simple shear flow is provided in figure 4–1.

The Janus drop plus the suspending fluid constitute a system of three phases; and

the dynamic viscosity of the jth fluid phase is denoted by η̃j . The orientation of
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Figure 4–1: A ‘perfect’ Janus drop subject to a unidirectional shear flow. The vector d

is parallel to the axis of symmetry of the Janus drop and points towards the less viscous
fluid.

the Janus drop is defined by the unit vector d, which is normal to the internal in-

terface. This study reveals that the anisotropic properties of the Janus drop arise

from the presence of the internal interface; the viscosity of the constituent fluids is

of secondary importance.

Previous theoretical studies have considered the dynamics of compound mul-

tiphase drops in streaming axisymmetric flows [112, 113], and in Marangoni-driven

flows [120, 121]. Fluid motion is usually analysed in the limit of non-deformable

interfaces with the exception of the contributions of Chervenivanova & Zapryanov

[122] and Voung & Sadhal [123]. The latter study reveals little dependence of the

drag force with shape distortions, which justifies the neglect of interface deforma-

tions of prior studies. Stone & Leal [10] studied the deformation and breakup of

concentric drops in linear flows. Recently, Shardt et al. [124] studied the dynamics

of a Janus drop in a simple shear flow, however, within the restriction of a two-

dimensional (2D) flow everywhere.

It is intriguing to note that cross-flow migration of compound multiphase drops

appears to be a fairly unexplored problem despite important implications in mixing

phenomena and viscosity of a suspension. For example, in mixing processes, drops

are subject to lateral migration owing to shape distortions associated with hydro-

dynamic interactions. Lateral migration tends to align, for instance, a pair of drops
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initially separated by some finite distance [45]. If in addition the drops are rising

due to the action of buoyancy, the trailing drop may catch up to the leading one

and ultimately, experience coalescence. A noteworthy effect of cross-flow migration

in a colloidal suspension is that the flow properties become inhomogeneous because

of the non-uniform spatial-distribution of the dispersed phase [84, 125]. A classic

example of this latter phenomenon is observed when an initially uniform dispersion

of neutrally buoyant spheres is subject to a bounded Poiseuille flow (pressure-driven

flow in a circular duct). In the presence of weak inertia, the disperse phase tends

to form a rim about midway the centerline and the walls of the duct [126]. It is

noteworthy that a suspension of neutrally buoyant spheres in a simple shear flow

experiences ‘shear-thicknening’ under the influence of weak inertia [127]. (The in-

terested reader may refer to the work of Haddadi & Morris [128] for a recent view of

the issue of inertial effects on suspension rheology.) Interestingly, a Janus drop can

display cross-flow migration in a streaming flow because of the anisotropic resistance

imparted by the internal interface [119]. From the perspective of hydrodynamic re-

sistances, the Janus drop behaves as a body of revolution (e.g. spheroid), such that

the drag force is generally not parallel to the flow. The key finding is that cross-flow

migration can occur without the influence of interface deformations associated with

wall interactions or non-uniform velocity gradients, which are needed to induce the

migration of single-phase drops. The reader interested in the subjet of lateral mi-

gration of simple drops is referred to the review of Leal [84].

The outline of the article is presented here. The problem statement is formu-

lated in Section 4.3, where for an arbitrary drop orientation the external shear flow

is broken down into flows with a velocity gradient normal and parallel to the internal

interface. The equations that govern fluid motion are presented in Section 4.4, and

solved in the creeping motion limit in Section 4.5. The influence of the viscosity
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of the three fluid phases is incorporated into the analysis for completeness. In Sec-

tion 4.5.1, it is shown that the Janus drop behaves as a single-phase drop under

the action of a shear flow with a velocity gradient parallel to the internal interface.

The force imposed on the Janus drop by a plane hyperbolic flow are analysed in

Section 4.5.2. It is found that the equilibrium orientation of the Janus drop in a

hyperbolic flow occurs when the internal interface is aligned with the axis of strain

or compression. The Janus drop is expected to respond with a couple that restores

this particular arrangement under an external perturbation. In Section 4.5.3 the

force and couple imposed by a shear flow with a velocity gradient normal to the

internal interface of the Janus drop are studied. It is found that the resultant cou-

ple unfolds from both the straining and rotating components of the shear flow in

similarity with bodies of revolution. From a practical point of view, knowledge of

the behaviour of a Janus drop in a shear flow is a first step in understanding its

dynamics in experiments (e.g. Poiseuille flows or microfluidic settings). Along this

line of thought, the migration velocity of a Janus drop lateral to a streaming flow

is presented in Section 4.5.4. Concluding remarks are given in Section 4.7, where

the conditions for the occurrence of the cross-flow migration of a Janus drop in a

shear flow are briefly discussed. In the Section 4.6 the grand resistance matrix is

reported on account of their potential relevance to experimenters. Since Janus drops

typically comprise fluids of similar viscosity in microfluidic settings [129] (η̃1 ≈ η̃2),

the results are narrowed down to this limit of practical interest. Interestingly, the

coupling tensor, which characterizes the torque on a body in a streaming flow and

the force in a rotational flow, is found to be identically zero at the center of hydro-

dynamic reaction of the Janus drop. Additionally, at the center of hydrodynamic

reaction it is found that the shear-force vanishes, and therefore, the dynamics of a

‘freely’ suspended Janus drop in a shear flow are identical to those of a symmetric
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spheroid of revolution [89]. In other words, a ‘freely’ suspended Janus drop trans-

lates with the local streaming velocity of the undisturbed flow and its orientation

undergoes a periodic-orbit identical to that of a spheroid. The stresslet produced

by a Janus drop with η̃1 ≈ η̃2 in an elongational flow (axisymmetric) reduces to

the stresslet produced by a single-phase drop. For transversal straining flows the

stresslet is found to be intermediate to that of a single-phase drop and a solid sphere.

The stresslet of a Janus drop subject to a shear flow with a velocity gradient parallel

to the internal interface is identical to that of a single-phase drop.

4.3 Problem statement

Figure 4–1 depicts a neutrally buoyant Janus drop immersed in a viscous shear-

ing fluid, which is denoted by ‘0’. The Janus drop comprises two internal fluids

denoted by ‘1’ and ‘2’. The dynamic viscosity of each fluid phase (j = 0, 1, 2) is

defined by η̃j ; conventionally, it is assumed that η̃1 ≤ η̃2. The principal objective of

this investigation is to calculate the force and couple on a Janus drop centerd in a

simple shear flow with zero mean velocity:

u∞ =
1

2
G (E∞

· x′ + e′
z × x′) = Gx′e′

z, (4.1)

where G is a constant shear rate, E∞ is the rate-of-strain tensor of the undisturbed

flow, and x′ = (x′, y′, z′) is a set of space-fixed Cartesian coordinates, with cor-

responding unit vectors (e′
x, e

′
y, e

′
z), that ensure a unidirectional flow. The drop

orientation effect is considered by projecting u∞ into a reference frame centerd and

affixed to the Janus drop x = (x, y, z) via the transformation x′ = Ax, where

the transformation matrix A parametrizes the drop orientation from a coincident

arrangement of both sets of axes:

A =













cosα 0 − sinα

− sinα sin β cos β − cosα sin β

sinα cos β sin β cosα cos β













, (4.2)
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where α and β are the corresponding Euler angles that define the drop orientation.

Projection of u∞ into x results in a superposition of flows, which are categorized

with respect to the arrangement of the velocity gradient relative to the internal

interface. Flows with a velocity gradient normal and parallel to the internal interface

are denoted by v and w, respectively. Note that the use of the transformation

matrix formulation shows the relevance of the drop orientation with regard to its

resistance to the external flow, however, the appearance of the Euler angles in the

resulting flows hinders somewhat their presentation. In order to circumvent this,

the transformation is carried out equivalently in terms of fundamental operations

(expressions are written in non-dimensional form):

v⊥ = δ · u∞ = xez, (4.3a)

v‖ =−
1

2
E∞

· x+
1

2
ez × x = −zex, (4.3b)

vxz =− P · u∞
· P = xex − zez, (4.3c)

w = u∞
× ex = xey, (4.3d)

where δ is the identity tensor, the unit dyad P = −ekel, and the subscripts ⊥ and

‖ emphasize that the principal direction of the shear flow is normal and parallel to

the internal interface, respectively. Note that v‖ simply results from a reflection of

the straining part of the flow, that vxz is a permutation of u∞ into a hyperbolic

flow, and that w is obtained via arrangement of the whole velocity field into a plane

parallel to the internal interface. An illustration of the relation between the flows

orthogonal to the internal interface is provided in figure 4–2 for further clarification.

Arrangement of the straining axis of vxz at a diagonal with the internal interface

plus a rotational field yields either v‖ or v⊥ depending on the direction of the

arrangement, as depicted in figure 4–2a and 4–2b, respectively.
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Figure 4–2: Transformation of vxz into v‖ and v⊥. (a) Alignment of the straining axis
(dot-dashed line) of vxz at a −45◦ angle from its horizontal arrangement, plus a rotational
field yields v‖. (b) Alignment of the straining axis at a 45◦ angle from its horizontal
position, plus a rotational field results in v⊥.

4.4 Governing equations

As a first step in exploring the behaviour of a Janus drop in a simple shear

flow, fluid motion is analysed in the absence of inertia and in the limit of non-

deformable interfaces. In terms of dimensionless groups, fluid motion is charac-

terized by both a negligible Reynolds number, Re = a2G/ν0 ≪ 1, and capillary

number, Ca = a η0G/γ ≪ 1, where a is the radius of the Janus drop, ν0 and η0

are the kinematic and dynamic viscosity of the ambient, respectively, and γ is the

interfacial tension of the internal fluids (the limiting interfacial tension in practice,

for instance see the work of Torza & Mason [8]).

The governing equations are written in non-dimensionalized form by adopting

the following scales for length, fluid velocity and pressure: a, aG and η̃0G, respec-

tively. Under the aforementioned assumptions, fluid flow is described by the Stokes



149

equations, which are conveniently presented in spherical coordinates (r, ϑ, φ):

∇ · u(j) = 0, −∇p(j) + ηj∇2u(j) = 0, (4.4a)

n · u(j) = 0, [u] = [n·σ] = 0, at r = 1, (4.4b)

n · u(1,2) = 0, [u] = [n·σ] = 0, at ϑ = π/2, (4.4c)

u(0) = u∞ as r →∞, (4.4d)

where n is the unit normal vector at interfaces, which is directed outward at ev-

ery point on the outer surface and, analogously, at the internal interface it points

from fluid ‘2’ to fluid ‘1’. The fields u(j) and p(j) denote the respective velocity and

pressure of the jth fluid phase of viscosity ηj = η̃j/η̃0. All fluids are incompressible

and Newtonian, σ
(j)
lk = −p(j) δlk + ηj

(

∇l u
(j)
k +∇k u

(j)
l

)

, where δlk is the Kronecker

delta. At interfaces un = 0 because fluids are immiscible. The brackets specify a

jump of the fluid velocity and stresses at interfaces. At r = 1 this jump is directed

from the internal to the ambient fluid and at ϑ = π/2 it is directed from fluid ‘2’ to

fluid ‘1’. Far away from the drop, the flow reduces to the undisturbed velocity u∞

(any of the flows presented in Section 4.3).

Continuity of the normal stress at interfaces only enters at the leading order

of the expansion in the Ca ≪ 1 limit. One may venture on determining the small

shape distortions via a perturbation technique, however it is expected that it will

only bring a correction of O(Ca) to the fluid forces. Note that under the considered

conditions — unbounded and linear flow — deflection of interfaces are expected to

be point-symmetric, as for single-phase drops (the reader may refer to the survey

of Rallison [56]), and therefore, have zero influence whatsoever on the behaviour of

multiphase drops. For example, the results of Stone & Leal [10] indicate that a con-

centric multiphase drop undergoes point-symmetric deformations in an unbounded,

linear flow. In fact, that finding is not limited to concentric drops since Shklyaev

et al. [119] also found point-symmetric distortions on a Janus drop in a uniform
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external flow. For the purposes of exploring the dynamics and behaviour of a Janus

drop in a shear flow, there is little gain — on account of the aforementioned argu-

ments — in determining the small deflections to the internal interface. Nevertheless,

accounting for shape distortions is certainly rewarding in studies concerned with the

conditions for drop breakup, coalescence, and rheology of a suspension [9, 47, 48, 53–

56, 59, 79, 80, 130–136].

The force F on the drop is obtained by integrating the stresses at its surface

(r = 1):

F =

∮

n · σ dS, (4.5)

where S is the area of the outer surface, and the couple (or torque) T is calculated

by:

T =

∮

x× (σ · n) dS. (4.6)

The following scales render non-dimensional F and T : a2η̃0G/2 and a
3η̃0G/2, respec-

tively, which guarantee that T reduces to that of a solid sphere when η1 = η2 ≫ 1.

Variation of F and T with the viscosity of the fluids is presented in terms of the drop

mean viscosity η = (η2 + η1)/2 and viscosity contrast ∆η/2η = (η2 − η1) / (η2 + η1).

The viscosity contrast quantifies the deviation of the Janus drop from one with

equal viscosity (η1 = η2). The limit of ∆η/2η ≪ 1 may be of particular interest to

experimenters because of the similar viscosities of the constituent fluids in practice

[8, 129], nonetheless, solutions are sought in the full range (0, 1) for completeness.

(Outside that domain there are no physical solutions.) In the limit of ∆η/2η → 1

and η ≫ 1 the Janus drop is composed by a fluid of negligible and another of very

high viscosity, however, this limit may not be of much relevance in practice.

4.5 Solution

Shear flow past a body is, inherently, a three-dimensional (3D) problem. For ex-

ample, the disturbances caused by a fixed solid-sphere result in a three-dimensional

flow. For a Janus drop subject to a simple shear flow the motion of the fluid phases
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can be described via Lamb’s generalized solution [31] (in non-dimensionalized form):

u(j) =

∞
∑

n=−∞

[

(n+ 3) r2∇p̄(j)n

2(n+ 1)(2n+ 3)
− nx p̄

(j)
n

(n + 1)(2n+ 3)

]

+

∞
∑

n=−∞

[

∇Φ(j)
n + r∇χ(j)

n × er

]

,

(4.7)

where the spherical harmonics that describe the pressure field have been scaled with

the viscosity of the corresponding fluid phase p̄
(j)
n = p

(j)
n /ηj, Φ

(j)
n defines potential

flows, and χ
(j)
n characterizes swirling flows in each fluid phase. The the following

spherical harmonics characterize the flow of the suspending fluid:

p̄(0)n =
2(−2n+ 1)

(n + 1)
EnP

(1)
n (θ)r−n−1 cosφ, (4.8a)

Φ(0)
n =− En

(n+ 1)
P (1)
n (θ)r−n−1 cosφ, (4.8b)

χ(0)
n =−HnP

(1)
n (θ)r−n−1 sinφ, (4.8c)

with corresponding series coefficients En, Hn, and P
(1)
n (θ) is the first associated

Legendre polynomial of order n with θ = cosϑ. Analogously the internal flows

are described by:

p̄(1,2)n =−
{

2(4n+ 1)

(2n− 1)
B(1,2)

n

P
(1)
2n−1(θ)

P
(1)
2n−1(0)

+ η2,1
2(2n+ 1)(4n+ 3)

(2n+ 3)
Dn

P
(1)
2n (θ)

Q2n(0)
r

}

r2n−1 cosφ,

(4.9a)

Φ(1,2)
n =−

{

B
(1,2)
n

(2n+ 1)

P
(1)
2n+1(θ)

P
(1)
2n+1(0)

+ η2,1Dn

P
(1)
2n+2(θ)

Q2n+2(0)
r

}

r2n+1 cosφ + (4.9b)

{

FnP
(1)
2n−1 − η2,1Gn

P
(1)
2n (θ)

Q2n(0)
r

}

r2n−1 cosφ,

χ(1,2)
n =

{

A(1,2)
n P

(1)
2n r

2n − η2,1Gn

P
(1)
2n−1(θ)

P ′
2n−1(0)

r2n−1

}

sin φ, (4.9c)
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with series coefficients B
(1,2)
n , A

(1,2)
n , Dn, Fn, Gn, and Q2n(0) = −2n(2n + 1)P2n(0).

The tangent no-slip condition at the internal interface imposes the following con-

straint:

B(2)
n −B(1)

n =
2n(2n− 1)(2n+ 1)

2(4n+ 1)
Q2n(0) (A

(2)
n −A(1)

n ). (4.10)

Although the obtained solution is exact, the series coefficients require numerical

determination. Truncation of the expansion up to order N and matching of the

velocity fields at the surface of the drop (r = 1) results in a (10N × 10N) system of

linear equations for the unknown coefficients, which is solved with the linear algebra

package (lapack). The truncation order is increased systematically until convergence

is achieved.

4.5.1 Shear flow with a velocity gradient parallel to the internal interface

It is straightforward to show that w = xey results in F = T = 0, which is

realized by noting that the Janus drop behaves as a single-phase drop. The partic-

ular, yet instructive, situation of a Janus drop with η1 = η2 reveals that the flows of

a single-phase drop [11] satisfy the boundary value problem, and consequently, the

forces and couples are identically zero. It is simple to see from the interior flows of

a single-phase drop given in Equation (2.286) that there are no flows normal to the

x–y plane (u
(j)
ϑ = 0 at ϑ = π/2) on account of the innate symmetry of the shear flow;

hence, the no-penetration condition is satisfied automatically for a Janus drop when

the internal interface lies along the x–y plane as in this scenario. Evidently, the fluid

stresses are continuous across the internal interface since the interior flows satisfy

the Stokes equations over the volume of the sphere such that the boundary value

problem is fully described by the velocity fields of a single-phase drop. Note that the

situation is not so different for a Janus drop with different internal viscosities. As

in the former case, the internal interface creates a system of velocity gradients that

preserves the symmetric character of the flow, which guarantees that F = T = 0. It

is expected that this result holds for a Janus drop with volume ratios of the internal
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fluids other than 1:1 despite the fact that the internal flows will differ from that of

a single-phase drop.

The symmetry arguments for a Janus drop formed by a pair of hemispherical

domains still hold. Continuity of the velocity at interfaces requires all fluids to

undergo a solid body rotation: u
(j)
r,ϑ = u∞r,ϑ = 0; u

(j)
φ = u∞φ = 1/2 r sinϑ. (It is

evident that the velocity fields satisfy the boundary value problem for a Janus drop

with an arbitrary volume ratio.) This pure rotational motion generates zero fluid

stresses everywhere, and hence the force and couple on the drop are identically zero

(F = T = 0). Obtaining the velocity fields that arise from the straining component

of the shear flow is a formidable problem (aside from the obvious situation of a

Janus drop with internal volume ratios of 1:1). Nonetheless, it is plausible to expect

that the spherical harmonics that solve the fluid flow problem retain the symmetric

character of the undisturbed flow (i.e. F = T = 0), and the unnecessary spherical

harmonics — those associated with a force and a couple — vanish to zero. This

simple result is a feature of Lamb’s general solution for a spherical body (the reader

is referred to Chapter 4 of Kim & Karrila [31]). The principal observation is that all

fluids simply undergo a solid-body rotation and the straining field cannot impose a

net force or torque in this particular arrangement.

4.5.2 Plane hyperbolic flow with a velocity gradient normal to the in-
ternal interface

The force and couple imposed by the hyperbolic flow, vxz = xex − zez, on the

Janus drop are considered. An illustration of the flow about the Janus drop is shown

in figure 4–2a.

Results show that F = T = 0 for a Janus drop with η1 = η2. Once again, an

analogous behavior of the flow fields of a Janus drop with those of a single-phase drop

exists, such that the boundary value problem is satisfied identically. Although the

velocity fields of the single-phase drop given in Equation (2.104) correspond to the
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Figure 4–3: Variation of the force Fz (in units of a2η̃0G) with the viscosity contrast at
constant values of η when the Janus drop is subject to vxz (a). The force Fx (in units
of a2η̃0G) on the Janus drop under the action of v‖ with increasing viscosity contrast at
constant values of η (b).

scenario of a pure elongational flow, the same symmetry arguments that support that

there are no flows normal to the internal interface hold because a pure elongational

flow simply consists of a superposition of the 2D straining flow considered here plus

another one acting in the y–z plane. Note that even for a Janus drop of different

internal viscosities Fx = 0 and T = 0 due to the symmetry of the flow. And thus,

the underlying observation is that in this flow-to-drop arrangement there are no

means of the flow to induce drop rotation, and that the natural tendency of the

Janus drop is to have its axis of symmetry aligned with any of the principal axes

of the flow. Results indicate that the axisymmetric part of the flow imposes a force

Fz that grows monotonically with ∆η/2η, as shown by figure 4–3a. Initially, the

force is of O(∆η/2η), which is best shown by the plot with η = 1, where deviation

from linearity is less than 10% up to ∆η/2η = 0.55. At greater values of ∆η/2η

the force grows quadratically because of a higher order system of velocity gradients.

In the dual limit of ∆η/2η → 1 and η ≫ 1 the numerical results indicate that

the force Fz scales as η2/η1 ≫ 1. An interpretation of this result follows from

the observation that the force on the drop solely arises from the deviatoric stresses

of the most viscous fluid. (Evidently, from the perspective of the ambient fluid
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the hemispherical domain of the less viscous fluid acts as a perfect ‘slip’ surface of

zero resistance to fluid flow.) It is reasonable to expect that the velocity of the

most viscous fluid decays as η−1
2 , and hence, the length scale L/a over the velocity

gradient changes must be of O(η1/η2)≪ 1 in order to account for the divergence of

the net force. Consequently, the force must satisfy the scaling: Fz/a
2η̃0G ∼ a/L. It

is interesting to note that the force required to maintain fixed a ‘slip–stick’ sphere

(under analogous conditions) scales with the ‘slipping’ length λ/a ≫ 1 (which is

readily inferred from the results of Ramachandran & Khair [44]). By regarding

the Janus drop as a model for a ‘slip–stick’ sphere — which is likely to be valid

exclusively in this extreme case — the length L/a can be interpreted as an inverse

‘slipping’ length. Although the scaling of the force with a/L are arrived from an

analysis that considers the most viscous fluid, continuity of the surface tractions at

the outer surface of the drop dictates that the velocity of the ambient much change

over the same length-scale L/a since u(0) ∼ 1.

The non-monotonic dependence of the force Fz with the mean viscosity η is

clearly depicted by the plots. For finite values of ∆η/2η the force Fz decays with

decreasing η (on account of the small viscous stresses) and with increasing η (a solid-

like limiting behaviour). It is interesting to note that the net force reported here is

the manifestation of the center of hydrodynamic reaction xcr being displaced from

the flow stagnation point. In fact, it is found that the Janus drop experiences a zero

net force when xcr coincides with the flow stagnation-point of a general straining

flow. Positioning the flow stagnation point at xcr results in a streaming plus a

straining flow with respect to the set of coordinates x centered on the Janus drop.

Summation of the forces of both contributions results in a zero net force. The main

result is that the shear-force tensor vanishes at the center of hydrodynamic reaction

xcr; a formal prove of this result is provided in Section 4.6.
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4.5.3 Shear flows with a velocity gradient normal to the internal inter-
face

The forces and couples exerted by the shear flows, v‖ = −zex and v⊥ = xez,

are considered here. Figure 4–2 shows how the shear flows are broken down into

straining and rotating constituents.

In view of the innate symmetry of the shear flows, it is evident that F = 0 when

η1 = η2. Particularly for v⊥ the force is always zero (F = 0) regardless of ∆η/2η;

there can be no net force in the z direction, and also because the x component of the

straining and rotating fields of v⊥ are equal in magnitude but opposite in direction,

as shown in figure 4–2b. Figure 4–3b depicts the effect of ∆η/2η on the force Fx

when the Janus drop is subject to v‖, and it is notable that the effect is analogous

to that found in a hyperbolic flow (figure 4–3a). It is important to point out that

the appearance of a force is just the manifestation of xcr being displaced from the

centerline of the shear flow (in the coincident situation F = 0 because of the zero

coupling and shear-force tensors).

Figure 4–4 shows variation of the resultant couple Ty (in units of a3η̃0G) with

the mean viscosity (η = η1 = η2). The solid-line depicts Ty owing to v⊥, and the

dashed-line shows its counterpart v‖. It is readily seen that the couple in v⊥ is of

greater magnitude than v‖ except in the extreme cases η ≪ 1 (negligible viscous

stresses) and η ≫ 1 (solid-like limit), where the Janus drop behaves as an isotropic

body and the direction of the shear flow becomes irrelevant. It is obvious that

the pressure does not contributes to the resultant couple because it is the isotropic

component of the fluid stress. Only the viscous contribution of the stress results in

a couple on the drop, and this one vanishes identically as the mean drop viscosity

approaches zero (η ≪ 1). (The outer surface of the Janus drop can be regarded

as a perfect ‘slip’ surface in this extreme case.) Note that even though the couple

vanishes in this limit, the internal flows of the Janus drop differ from those of a
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Figure 4–4: The couple Ty (in units of a3η̃0G) on a Janus drop with η1 = η2.

single-phase drop. A qualitative picture of the velocity fields inside and outside

the Janus drop are shown in Figure 4–5. Note that the exterior flows exhibit no

appreciable differences when compared to those about a single-phase drop shown in

figure 2–13; the influence of the internal interface is evident by comparing againts

the circulation flows of a single-phase drop. One may infer that the couple exerted

by v⊥ is greater than its counterpart v‖ because the internal interface prohibits, to

a greater extent, the circulation flows of a single-phase drop (figure 4–5b). Note that

the differences of the couples shown in figure 4–4 indicates that the resultant couple

on the drop unfolds from both the straining and rotating components of the flow.

(Otherwise, v‖ and v⊥ would generate the same curve.) Perhaps, it is more relevant

to point out that even a Janus drop with η1 = η2 displays anisotropic properties,

solely because of the presence of the internal interface.

The influence of ∆η/2η on Ty in v‖ and v⊥ is seen in figure 4–6 for selected

values of the mean viscosity. It is noteworthy that the dependence of Ty with ∆η/2η

is analogous to the dependence of the force in a streaming flow [119], in the sense

that the qualitative features are retained. (For small ∆η/2η the couple is O(1),
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Figure 4–5: The velocity fields of a Janus drop subject to v‖ (a) and v⊥ (b).
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Figure 4–6: Variation of the couple Ty (in units of a3η̃0G) with the viscosity contrast at
constant values of the mean viscosity for v‖ (a) and v⊥ (b).

constant, and equal to the η1 = η2 case.) Further increase of ∆η/2η induces a decay

of Ty at a quadratic rate of the order of (∆η/2η)2. This marked decrease of Ty is in

agreement with the observation that the less viscous fluid sets up the magnitude of

the couple.

4.5.4 Cross-streaming velocity of a Janus drop in a uniform flow

A closed-form expression for the cross-stream velocity of a Janus drop is obtain-

able when the drop moves with a relative velocity (uz − uz,∞) along the streamlines

of a uniform flow. The external force required to sustain drop motion must pass

through the center of reaction xcr to prevent rotation. The sought result is obtained

by finding the migration velocity ux,m that cancels out the forces lateral to the

undisturbed flow (this is analogous to the settling of anisotropic bodies presented
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by Happel & Brenner [20]). It is found that ux,m depends on the angle α from the

scalar product d·u∞, the resistance functions to translation, XA and Y A (tabulated

in the Section 4.6), and the drop relative velocity:

ux,m =

(

XA − Y A
)

cosα sinα

XA − (XA − Y A) cos2 α
(uz − uz,∞) . (4.11)

Note that ux,m does not depend on the drop size due to its spherical shape, and

that lateral migration does not occur when the axis of symmetry of the Janus drop

is aligned or normal to the streamlines of the undisturbed flow. This behaviour is

akin of a symmetric spheroid of revolution (the reader is referred to Chapter 4 of

Happel & Brenner [20].) The drop orientation α∗ that maximizes the migration

velocity is readily found in terms of the resistance functions to translation: α∗ =

cos−1
(

XA/(XA + Y A)
)

, where α∗ is found to be approximately equal to 45◦ because

XA and Y A are close in magnitude. Therefore, the maximum migration velocity

occurs when the internal interface is nearly at a diagonal with the direction of the

uniform flow. Equation (4.11) may be used to estimate the instantaneous cross-

streaming velocity of a Janus drop in a linear shear flow provided that ∆η/2η is

small. It is important to note that the Janus drop will also be subject to rotation on

account of the net hydrodynamic torque on the drop such that the cross-streaming

velocity will fluctuate in time. A thorough analysis of the cross-streaming velocity

of a Janus drop in a linear shear flow is performed in the next chapter.

4.6 Grand resistance matrix of a Janus drop

In this section the grand resistance matrix for a Janus drop is reported at the

hydrodynamic center of reaction xcr. The determination proceeds by assuming that

the form of the resistance tensors for symmetric bodies of revolution apply to a Janus

drop based on its spherical shape. In general, the values of the resistance tensors that

comprise the grand resistance matrix change from one location to another on the

body; however, some values of the resistance tensors can be zero at the hydrodynamic
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center of reaction xcr. This simplification is exploited here to reduce the number

of quantities to report at the expense of carrying out fundamental analyses on the

resistance tensors. The grand resistance matrix relates the force F , torque T and

stresslet S on the Janus drop in a general ambient flow (the followed notation is

that of Kim & Karrila [31]):













F

T

S













= η̃0













A B̃ G̃

B C H̃

G H M

























U∞ − u

Ω∞ − ω

E∞













, (4.12)

where (U∞ − u) and (Ω∞ − ω) are the solid-body motions of translation and ro-

tation, respectively, of the ambient flow in a reference frame where the Janus drop

is stationary, A is the translation tensor (second-rank), B is the coupling tensor

(second-rank), C is the rotation tensor (second-rank), G is the shear-force tensor

(third-rank), H is the shear-torque tensor (third-rank), and M is a fourth-rank

tensor that relates the stresslet to the undisturbed rate-of-strain tensor E∞. Here

the tilde on top of a tensor quantity denotes its transpose. On account of the sym-

metry of the Janus drop, the resistance tensors can be expressed with respect to

the unit vector d that defines the drop orientation due to the inherent analogy with

solid bodies of revolution (tensors and vectors are shown here in indicial notation

for convenience [18]):

Aij =X
A didj + Y A (δij − didj) , (4.13a)

Bij =Y
Bǫijkdk, (4.13b)

Cij =X
C didj + Y C (δij − didj) , (4.13c)

Gijk =X
G

(

didj −
1

3
δij

)

dk + Y G (diδjk + djδik − 2didjdk) , (4.13d)

Hijk =H̃kij = Y H (ǫikldj + ǫjkldi) dl, (4.13e)

Mijkl =X
Md

(0)
ijkl + Y Md

(1)
ijkl + ZMd

(2)
ijkl, (4.13f)
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where X , Y and Z are scalar functions for the specified tensor quantity, the super-

script n of d
(n)
ijkl is not to be confused with the fluid phase index j; these are tensor

quantities related to the five elemental basis tensors that generate the universal

rate-of-strain tensor given here:

E∞ =













1
2
(Exx − Eyy − Ezz) Exy Exz

Eyx
1
2
(−Exx + Eyy − Ezz) Eyz

Ezx Ezy Ezz













. (4.14)

Note that the rate-of-strain tensor above is symmetric and traceless (the sum of the

diagonal elements is zero). The rate-of-strain tensor E∞ can be broken down into

its elemental components in the following manner:

E∞
ij = d

(0)
ijklE

∞
lk + d

(1)
ijklE

∞
lk + d

(2)
ijklE

∞
lk , (4.15)

where

d
(0)
ijkl =

3

2

(

didj −
1

3
δij

)(

dkdl −
1

3
δkl

)

, (4.16a)

d
(1)
ijkl =

1

2
(diδjldk + djδildk + djδjkdl + djδikdl − 4didjdkdl) , (4.16b)

d
(2)
ijkl =

1

2

(

δikδjl + δjkδil − δijδkl + didjδkl + δijdkdl − diδjldk − djδildk (4.16c)

−diδjkdl − djδikdl + didjdkdl
)

.

By adopting the convenient choice for the orientation vector d = ez, followed by

some routinary operations, one can determine the sought relationships with respect

to the basis tensors:

d(0) : E∞ =
Ezz

2
E(1), d(1) : E∞ = ExzE

(4) + EyzE
(5), (4.17a)

d(2) : E∞ =
1

2
(Exx − Eyy) + ExyE

(3), (4.17b)
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where the basis tensors are shown below:

E(1) =













−1 0 0

0 −1 0

0 0 2













, E(2) =













1 0 0

0 −1 0

0 0 0













, (4.18a)

E(3) =













0 1 0

1 0 0

0 0 0













, E(4) =













0 0 1

0 0 0

1 0 0













, (4.18b)

E(5) =













0 0 0

0 0 1

0 1 0













. (4.18c)

Due to the symmetry of the Janus drop all hydrodynamic information is contained

in the scalar functions X , Y and Z; X is a function that describes flows of axisym-

metric character, and the remaining two functions correspond to flows transversal

to the drop orientation (axis of symmetry) d. For example, the drag force F on a

Janus drop in a uniform flow parallel to the drop axis of symmetry (U∞ − u)d is

proportional to the scalar function XA: F = η̃0X
A (U∞ − u). On the other hand,

if the uniform flow is normal to the drop orientation the drag force is given in terms

of the other scalar function: F = η̃0 Y
A (U∞ − u). Evidently, for an arbitrary flow

direction the drag force depends on both XA and Y A; the dominating function (if

any) will depend on the direction of the flow relative to the drop orientation d. For

a solid sphere the scalar functions are identical to each other: XA = Y A = 6πa, as it

should, because the particle has an isotropic hydrodynamic resistance to a uniform

flow. As one may suspect, the determination of the scalar functions XA and Y A

can be realized by choosing advantageous directions of the flow such that a unique

scalar function contributes to the drag force. For straining flows, it is convenient to



163

0

2

4

6

8

10

10−3 10−2 10−1 100 101 102 103 104

[X
,Y
,Z

]

η = (η1 + η2)/2

XA/πa

Y A/πa

Y C/πa3

−Y H/πa3

3XM/2πa3

3Y M/2πa3
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assume that the undisturbed flow consists of one of the basis rate-of-strain tensors

E(n) above to determine the corresponding scalar functions.

Without additional introductory remarks, the non-vanishing resistance func-

tions for a Janus drop with equal internal viscosities (η1 = η2) are shown in fig-

ure 4–7. It is evident that the hydrodynamic center of reaction is located at the

geometrical center of the Janus drop (xcr = 0) and that the shear-force tensor is zero
(

XG = Y G = 0
)

because of the combined effect of the drop spherical shape and equal

internal viscosities. (These results are expected to apply even when for a curved in-

ternal interface.) The resistances functions due to translation XA and Y A exhibit

the appropriate limits for a low viscosity drop (η ≪ 1) and a solid sphere (η ≫ 1).

The relation XA ≥ Y A holds for any value of the mean drop viscosity η because of

the additional resistance imposed by the internal interface to the external uniform

flow in the axisymmetric case, in agreement with the results presented in Chapter 3.

An exact expression has been found for Y A/2πa = (2 + 3η) / (1 + η) because in this

case the resistance of the Janus drop to the external uniform flow is equal to that of
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a single-phase drop. The circulation flows of Hadamard–Rybczynski [51, 52] satisfy

the pertaining boundary conditions for the Stokes equations for a Janus drop with

equal internal viscosities.

The resistance function due to rotation Y C varies from zero (no resistance) to

that of a solid sphere (8πa3) in the corresponding limits. It is important to point out

that the zero resistance to rotation found in the limit of a low viscosity Janus drop

(η ≪ 1) does not means that the Janus drop exhibits the behavior of a simple fluid

drop. A simple fluid drop cannot resist the rotational motion of the surrounding

fluid regardless of the drop viscosity η. This is the case because a simple drop can

only undergo a solid-body rotation with the ambient fluid as dictated by the no-slip

tangent condition at the surface of the drop. (This goes in contrast to a solid body,

which can rotate relative to the ambient by means of an external torque.) Hence,

the resistance to rotation for a single-phase drop is an undefined quantity because

there are no means of specifying a relative angular velocity for the single-phase drop

without violating continuity of either the tangential velocity or stress. For a Janus

drop the situation is rather different. One can easily envision a Janus drop rotating

relative to an ambient flow because of the rate of change of the orientation of the

internal interface in time. From a mathematical point of view, the presence of the

internal interface provides the necessary degrees of freedom for the Janus drop to

satisfy continuity of both the tangential velocity and stress at the outer surface of

the drop. Following the mentioned arguments, the resistance to rotation about the

axis of symmetry of the Janus drop XC is undefined in this special case because the

drop exhibits the behavior of a single-phase drop (Section 4.5.1).

The resistance function associated with the shear-torque Y H is seen to vanish

at low values of mean viscosity and in the solid sphere limit. The former situation is

evident because the viscous stresses are accountable for the shear-torque and in this

case these are negligible. In the latter case the rate-of-strain field does not produce a
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shear-torque because in this limit the Janus drop essentially behaves as an isotropic

rigid-body; a formal demonstration of this result for a solid sphere is performed in

Section 2.3.4. The negative sign of Y H implies that the resistance of the Janus drop

to a rate-of-strain field is analogous to that of an oblate spheroid, which corroborate

the results given in Section 4.5.3 that show that the net torque in a shear flow is

greater when the direction of the flow is parallel to the axis of symmetry of the

Janus drop. (One may reproduce the plots presented in that section by appropriate

combinations of the torques due to rotation and straining motion of the ambient

fluid.)

The theoretical results demonstrate that the stresslet of a Janus drop with

equal internal viscosities (η1 = η2) in a pure elongational flow is identical to that of

a single-phase drop: XM = 2π/3a3 (4 + 10η) /(1 + η); it turns out that the interior

and exterior flows of a single-phase drop satisfy the Stokes equations with corre-

sponding boundary conditions for a Janus drop in this special limit. This finding

has been corroborated against the numerically obtained results. (It is a straight-

forward task to show that the the velocity fields of a single-phase drop derived in

Section 2.2.4 satisfy the boundary value problem for a Janus drop with equal inter-

nal viscosities.) In the context of the physics at fluid–fluid interfaces, the internal

interface has no influence on the flows that develop inside the Janus drop because of

the inherent symmetry of the imposed elongational flow. It follows that the absence

of the flow-disturbances caused by the presence of the internal interface ensures

that the exterior flows match those of a single-phase drop. It is noteworthy that

the resistance function Y M is of greater magnitude than XM for most values of

the mean drop viscosity, presumably due to the flow disturbances caused by the

internal interface to the internal circulation flows. This is supported by the results

in the limit of a Janus drop with a low mean viscosity (η ≪ 1); otherwise no dif-

ferences would be observed between the two resistance functions in this limit. On
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the other hand, there are no differences in stresslet at the extreme scenario of a

Janus drop with high mean viscosity (η ≫ 1), where it is seen that both resistance

functions saturate to that of a solid sphere 20π/3a3, which agrees with the expected

result because the flow disturbances caused by the no-penetrability of the internal

interface are negligible O(η−1) to those that arise by the solid-like behavior of the

internal fluid phases. Lastly, the stresslet function of a Janus drop in a rate-of-strain

field of the form given by the basis E(3) is identical to that of a single-phase drop:

ZM = XM = 2π/3a3 (4 + 10η) /(1+η), which is obvious in view of the arrangement

of the principal axes of the rate-of-strain field. The principal axes of strain and com-

pression act along the flat, internal interface such that the flows that develop both

inside and outside the Janus drop match those of a single-phase drop. (Precisely, the

principal axes of the rate-of-strain field act in the x–y plane with respect to the set

of coordinates centered on the Janus drop; if necessary, refer to figure 4–1 for further

clarification). As in the case of a pure elongational flow, the presence of the internal

interface does not perturb the natural circulation of the internal fluids, and there-

fore, the velocity fields of a Janus drop match those of a single-phase drop in this

rate-of-strain field E(3). It is relevant to point out that differences in the resistance

functions (XM and Y M) has important implication on the rheological properties of

a dilute dispersion of Janus drops in linear shear flow. It will be demonstrated in

the subsequent chapter that this leads to a difference in the normal components of

the bulk stress, as opposed to Newtonian fluids that exhibit no differences in the

normal components of the fluid stress in a linear shear flow. This completes the

discussion of the resistance functions for a Janus drop of equal internal viscosities.

From this point onward, the effect of the viscosity contrast on the resistance tensors

is considered.

Following Happel and Brenner [20], the hydrodynamic center of reaction corre-

spond to the position that the coupling tensor is symmetric. By making use of the
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transformation law for the coupling tensor, followed by some elementary operations

it is straightforward to show that the hydrodynamic center of reaction xcr is located

along the axis of symmetry of the Janus drop d; it will be shown later that this

has important implications on the dynamical behavior of a Janus drop in a general

ambient flow.

The transformation law of the coupling tensor for a body of any shape is the

following (in indicial notation) [20, 31]:

Bij = BO
ij − xcrk ǫkliAlj , (4.19)

where B is the coupling tensor at the center of reaction, and BO is the coupling

tensor at any other point of reference; the translation tensor A stays constant re-

gardless of the location in the body, in the same manner the translational velocity

is unchanged from one point to another. For the coupling tensor to be symmetric at

the center of reaction, the antisymmetric parts of the right hand side of the above

equation must vanish identically. The above tensors are broken down here into sym-

metric and antisymmetric parts, respectively, for completeness of the presentation:

Bij =
1

2
(Bij +Bji) +

1

2
(Bij −Bji) , (4.20)

xcrk ǫkliAlj =
1

2
(xcrk ǫkliAlj − xcrk ǫkljAli) +

1

2
(xcrk ǫkliAlj + xcrk ǫkljAli) . (4.21)

The requirement that Bij = Bji implies that the antisymmetric components of BO

and xcr
×A must vanish identically:

(

BO
ij − BO

ji

)

− (xcrk ǫkliAlj + xcrk ǫkljAli) = 0. (4.22)

By rewriting the above resistance tensors in terms of d, followed by the multiplication

of the inverse of the translation tensor
(

A−1
ni =

(

XA
)−1

dndi +
(

Y A
)−1

(δni − dndi)
)

on both sides of the above equation, and some elementary operations one can demon-

strate that the center of reaction is located along the axis of symmetry of the Janus
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Figure 4–8: Variation of the hydrodynamic center of reaction xcr = xcrd with the viscosity
contrast ∆η/2η at constant values of the mean drop viscosity η.

drop: xcrk = −
(

Y B
O /Y

A
)

dk, where Y
B
O is taken to be the coupling tensor at the

center of the Janus drop, and its value can be readily determined from the results of

Chapter 3. (To arrive at this result it is convenient to assume that d = ez without

incurring in a loss of generality.) Figure 4–8 shows the location of the center of re-

action xcr with increasing values of the viscosity contrast ∆η/2η while maintaining

constant the mean drop viscosity η. In order to improve visualization of the plots,

xcr has been scaled with ∆η/2η; nonetheless, for zero viscosity contrast (η1 = η2)

the center of reaction is located at the geometrical center of the Janus drop. The

quadratic dependence of xcr for small values of viscosity contrast (∆η/2η ≪ 1) indi-

cates that the center of reaction grows linearly with ∆η/2η (which may be the case

for most Janus drops in experimental conditions since the internal viscosities are not

too different in general [8, 114, 129]). The negative sign implies that the center of

reaction is displaced towards the most viscous fluid that comprises the Janus drop,

which is analogous to what one would expect for a solid of revolution that consists of

an aggregate of spheres of unequal radii. For the aggregate of spheres, the center of
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reaction approaches the larger sphere as the relative size of the pair increases [76]. In

the case of a Janus ‘slip–stick’ sphere the hydrodynamic center of reaction coincides

with the geometrical center of the particle and the coupling tensor is also zero [44].

It immediately follows from the finding that xcr = −Y B
O /Y

A d that the coupling

tensor vanishes identically at the hydrodynamic center of reaction (B = 0), as shown

below:

Bij = BO
ij − xcrk ǫkliAlj ,

= Y B
O ǫijkdk −

[

xcrk ǫkli
(

XAdldj + Y A (δlj − dldj)
])

,

= Y B
O ǫijkdk −

[

−Y
B
O

Y A
dkǫkli

(

XAdldj + Y A (δlj − dldj)
)

]

,

= Y B
O ǫijkdk −

(

−Y B
O dkǫkliδlj

)

,

= Y B
O (ǫijk + ǫkji) dk,

= Y B
O (ǫijkdk − ǫijk) dk = 0,

where it has been noted that terms that involve dkdlǫkli = 0 to arrive at the final

result. Note that this finding holds regardless of the viscosity contrast ∆η/2η of the

Janus drop because the analysis has been carried out without any reference to this

quantity. A zero coupling tensor means there is no coupling of the force (torque)

with the angular motions (translational motions) at the center of reaction xcr. The

relevant implication of having a zero coupling tensor is that the hydrodynamic center

of reaction and the ‘free’ center of rotation coincide with each other [31], and there-

fore, the study of the dynamics of a Janus drop can be carried out without the aid of

the mobility tensors. (The grand mobility matrix is useful to determine the trans-

lational, rotational velocities, and the rate-of-strain field of the particle by knowing

the applied force, torque, and stresslet; this is the exact opposite information to that

conveyed by the grand resistance matrix.)
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It is appropriate to show now that the shear-force tensor vanishes at the hydro-

dynamic center of reaction since the relevant information to achieve this has been

presented. The objective is to demonstrate that XG = Y G = 0 when the flow stag-

nation point of the straining flow u∞ = E∞
· x coincides with xcr. This simply

means that translation of the stagnation point of the undisturbed flow to xcr results

in two elemental contributions:

u∞ = E∞
· x+U∞, (4.23)

whereU∞ = E∞
·xcr; the undisturbed flow now consists of the original rate-of-strain

field plus and a uniform flow component due to the translation of the stagnation

point. The net force F on the Janus drop is simply the sum of the two contributions:

Fi = η̃0G
O
ijkE

∞
kj + η̃0AijE

∞
jkx

cr
k , (4.24)

where GO
ijk is the shear-force tensor at the center of the Janus drop. By following an

analogous procedure to that used to show that the coupling tensor vanishes at xcr,

one can find the following expression for the overall force in this special situation.

The net force transversal to the axis of symmetry of the Janus drop is considered

first for reasons that will become apparent soon:

Fi = η̃0
[

Y G
O

(

E∞
ik dk − 2didjdkE

∞
kj

)

− Y B
O

(

E∞
ik dk − didjdkE∞

kj

)]

, (4.25)

where for the rate-of-strain field E∞ = G/2 (e1e3 + e3e1), it is easy to see that

didjdkE
∞
kj = G (d1d3) di = 0 because d1 = d2 = 0, d3 = 1, and therefore, the net

force on the Janus drop reduces to Fi = η̃0
(

Y G
O − Y B

O

)

E∞
ik dk. To proceed further it

is useful to recall that the net force on a Janus drop subject to the shear flow v⊥ is

zero; from this finding the link between Y G
O and Y B

O can be established:

F O = η̃0Y
G
O E

∞
ik dk + Y B

O ǫijkdk =
1

2
Gη̃0

(

Y G
O − Y B

O

)

e1, (4.26)
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where F O is the force found at the center of the Janus drop for the shear flow v⊥

problem; the following equivalencies have been used to derive the final expression

above E∞
ik dk = G/2 and ǫijkdkΩ

∞
j = −G/2. It is obvious that for the force on the

Janus drop to vanish in the shear flow Y G
O = Y B

O . Otherwise, this would result

in a contradiction to the evident symmetry arguments: that there can be no net

force on a spherical Janus drop when the principal direction of the shear flow is

normal to the internal interface regardless of the values of the viscosity contrast

∆η/2η. This analysis demonstrates that there can be no forces transversal to the

axis of symmetry of the Janus drop when the flow stagnation-point of a straining

flow coincides with xcr. The equality Y G
O = Y B

O implies that Y G = 0, which is the

resistance function that corresponds to the shear-force tensor at the hydrodynamic

center of reaction. This result is in opposition to other bodies of revolution with

broken fore and aft symmetry [75, 76], in which the shear-force tensor does not

vanish at the hydrodynamic center of reaction. It is important to point out that

even though the resistance tensors reported for the aggregate of spheres system have

the analogous form to those presented here, the resistance tensors for that system

exclusively adopt those forms at the hydrodynamic center of reaction. On the other

hand, a symmetric body of revolution retains the same forms for the resistance

tensors from point to point.

Here it is shown that the component of the net shear-force parallel to the axis

of symmetry of the Janus drop also vanishes at xcr. The net force component of

this force is given by:

Fi = η̃0X
G
O

(

didjdkE
∞
kj −

1

3
E∞

ik dk

)

− η̃0Y B
O

XA

Y A
didjdkE

∞
jk , (4.27)

where the quantities didjdkE
∞
kj = −G and E∞

ik dk = −G in a rate-of-strain fieldE∞ =

G (e1e1 − e3e3). Substitution of these values into the above equation and requiring

the Janus drop to be force–free (i.e. XG = 0) reveals the following constraint for
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the resistance functions: XG
O = 3Y B

O /2
(

XA/Y A
)

. This relation has been verified by

comparison of the values returned by the formula against those obtained numerically

from Lamb’s solution with reasonable agreement, provided that the precise location

of the hydrodynamic center of reaction is in general a taxing calculation (comparison

not shown in this dissertation). This concludes the demonstration that the shear-

force vanishes identically at the hydrodynamic center of reaction. The underlying

implication is that a ‘freely’ suspended Janus drop in a linear shear flow does not

undergo the so-called “drift” velocity that bodies of revolution with broken fore and

aft symmetry exhibit (e.g. the spherical cap and dumb-bell shaped solids). Perhaps,

it is even more relevant to point out that this theoretical result is in qualitative

agreement with the experimental observations of Torza & Mason [8], which reveal no

indication of a Janus drop to undergo a “drift” velocity in a linear shear flow despite

the deviations in the drop shape with respect to this simplified model. Although

there is no strictly one-to-one correspondence with a Janus ‘slip–stick’ sphere, it is

important to point out that the shear-force tensor also vanishes at the hydrodynamic

center of reaction [44]. Note that ‘slip–stick’ sphere also categorizes as a body of

revolution with geometrical symmetry that can exhibit hydrodynamic properties

of solids that lack fore and aft symmetry; Therefore, it is natural to compare the

behavior of a Janus drop against the ‘slip–stick’ sphere in a general ambient flow.

Another implication of a zero shear-force tensor
(

XG = Y G = 0
)

is that the

torque imposed by a rate-of-strain field remains constant regardless of the point

chosen to calculate the first moment of the surface tractions. This follows by con-

sidering the translation of the shear-torque from one reference location to another:

T (xcr)− T (xO) =
(

xO − xcr
)

×

∮

Sp

n · σ dSp, (4.28)
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Figure 4–9: Dependence of the resistance to rotation transversal to the axis of symmetry
of the Janus drop with the viscosity contrast ∆η/2η at constant values of the drop mean
viscosity η.

where the surface integral of the stresses vanish identically because of the zero shear-

force tensor to obtain T (xcr) = T (xO). Therefore, there is no need for a transfor-

mation law for the shear-torque in this case because the torque at xcr is identical

to the torque imparted by the rate-of-strain field at the geometrical center of the

Janus drop. In fact, one can arrive at an analogous result for the stresslet, as above,

to find that the stresslet remains constant regardless of the calculation reference

(i.e. S(xcr) = S(xO)). The only quantity that requires a transformation law is the

rotation tensor in this problem (Happel & Brenner [20] provides the transformation

law for this quantity): C = CO − xcr
× A × xcr. This finalizes the analysis of

the resistance tensors of the Janus drop. The reminder of this section is dedicated

to the presentation of the effects of the viscosity contrast ∆η/2η on the resistance

tensors.

The decreasing effect of the viscosity contrast on the rotation tensor is presented

in figure 4–9. (The rotation tensor is reported with respect to the hydrodynamic

center of resistance via the corresponding transformation law.) The plots partly
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explain the decrease of the torque with increasing ∆η/2η found in a linear shear

flow presented in Section 4.5.3. The observed trends are consistent with simple

intuition; the overall resistance to rotation decreases as the difference in the internal

viscosities grows. The possible explanation to this result is that there is a reduction

of the surface tractions accountable to the generation of a couple on the Janus drop;

note that the upper bound of the couple magnitude is determined by the less viscous

hemisphere. The influence of the mean drop viscosity η is to increase the rotation

tensor until the solid sphere plateau is reached
(

Y C = 8πa3
)

.

Figure 4–10 illustrates the variation of the shear-torque with increasing viscos-

ity contrast ∆η/2η at constant values of the mean drop viscosity. Again, the minus

sign of the shear-torque indicates that the Janus drop offers a resistance to a lin-

ear shear flow analogous to that of an oblate spheroid of revolution. (The torque

is greater when the principal direction of the shear flow is parallel to the axis of

symmetry d.) In contrast to other quantities considered so far, the shear-torque is

seen to increase with the viscosity contrast. At first it may seem as a contradictory
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result because the overall torque on a Janus drop in a linear shear flow decreases

with the viscosity contrast ∆η/2η; however, the main contributor to the observed

torque in a linear shear flow is the solid-body motion of the ambient flow. The

straining motion of the surrounding fluid produces a torque but at a lesser extent

because the rate-of-strain is intrinsically an irrotational field. The phenomenon held

accountable for the generation of a torque in a rate-of-strain field is expected to

be quite different from its rotational counterpart. Presumably the shear-torque is

a consequence of the velocity gradients that develop from the obstruction imposed

by the no-penetrability property of the internal interface. Another interpretation

that supports this argument is that disturbances associated by the presence of the

internal interface give rise to a stresslet when the Janus drop rotates in a quiescent

fluid. It is worth pointing out that the solid-body rotation of symmetric spheroidal

particles also produce a stresslet under ‘freely’ suspended conditions in a linear am-

bient flow [31]. On the other hand, the solid-body rotation of an isotropic particle

under ‘freely’ suspended conditions does not produce a stresslet in a linear ambient

flow on account of the zero shear-torque tensor
(

Y H = 0
)

.

The dependence of the stresslet resistance functions of axisymmetric XM and

transversal Y M rate-of-strain fields with ∆η/2η are illustrated in figure 4–11. Note

that the basis tensor E(1) corresponds to an axisymmetric rate-of-strain field, and

the basis tensors E(4) and E(5) define a rate-of-strain field transversal to the axis

of symmetry d of the Janus drop. For the latter case the axis of strain is at a

diagonal with respect to the internal interface of the Janus drop. In this case, it

is clear that the circulation flows are completely different to those that develop

in a single-phase drop on account of the no-penetrability property of the internal

interface. In the limit of small viscosity contrast (∆η/2η) the stresslet remains

nearly constant to that found in a Janus drop with equal internal viscosities with

a leading term of the order of (∆η/2η)2; this explains the quadratic curvature of
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Figure 4–11: Variation of the stresslet resistance functions with the viscosity contrast
∆η/2η for selected values of the mean drop viscosity η. The resistance function XM is
related to (axisymmetric) elongational flows, and YM is associated to straining flow with
principal axes at a diagonal with the axis of symmetry d of the Janus drop.

the stresslet functions as the viscosity contrast is increased. The reason why there

is no linear dependence of the stresslet with the viscosity contrast is because the

disturbance field uD(x) in the small viscosity contrast limit (∆η/2η ≪ 1) consists

of a series of odd spherical harmonics; since the stresslet is a symmetric quantity

the contribution of this disturbance field to the stresslet is zero. The observed

reduction of the stresslet at greater values of ∆η/2η is attributable to the further

loss of symmetry of the disturbance flows produced by the difference in the internal

viscosities. Note that continuity of the fluid stresses at the internal interface dictates

that the velocity gradients on the less viscous fluid must be greater than its more

viscous counterpart ∇u(1) > ∇u(2) such that there is an ‘imbalance’ in the overall

stress at the outer surface of the Janus drop leading to the observed reduction in

the stresslet since, once more, this is a symmetric quantity. This effect is, of course,

less pronounce as the mean drop viscosity is decreased since this parameter imposes

a restriction to how great the difference in the internal viscosities can be.

Table 4–1 provides numerical values of the resistance functions in the limit of a

Janus drop of ∆η/2η ≪ 1, in view of the possibility to compare against experimental

measurements of these quantities.
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Table 4–1: Variation of the non-zero scalar resistance functions with the mean viscosity
of the Janus drop (note that ZM = XM ).

η XA/2πa Y A/2πa Y C/πa2 −Y H/πa3 3XM/2πa3 3Y M/2πa3

0 2.000 2.000 0.000 0.000 4.000 8.000
0.01 2.068 2.010 0.359 0.280 4.059 8.085
0.1 2.339 2.091 1.786 1.059 4.545 8.419
1.0 2.758 2.500 4.957 0.957 7.000 9.225
2.0 2.852 2.667 5.997 0.663 8.000 9.493
3.0 2.893 2.750 6.504 0.504 8.500 9.623
4.0 2.917 2.800 6.806 0.406 8.800 9.697
5.0 2.931 2.833 7.006 0.340 9.000 9.750
10.0 2.963 2.909 7.460 0.187 9.455 9.865
100.0 2.996 2.990 7.941 0.021 9.941 9.985
∞ 3.000 3.000 8.000 0.000 10.000 10.000

4.7 Conclusions

The response (forces and couples) of a Janus drop to the shearing motion of

the suspending fluid is investigated in the limit of small Reynolds number and cap-

illary number (non-deformable interfaces). It is found that for an arbitrary drop

orientation the shear flow can be broken down into flows with a velocity gradient

parallel and normal to the internal interface, which greatly reduces the analysis to

four elemental problems. Although an exact solution is found via Lamb’s general-

ized solution, numerical evaluation of the series coefficients is needed to calculate

the forces and couples.

Only when the velocity gradient of the shear flow is parallel to the internal

interface the Janus drop behaves as a single-phase drop. For transversal shear flows

the no-penetration condition at the internal interface prohibits the circulation flows

of a single-phase drop, and therefore novel phenomena is found. The resultant cou-

ple on the Janus drop arises from both the straining and rotating motions of the

external flow, in analogy with a spheroid of revolution. In this case the Janus drop

exhibits an anisotropic resistance to the shear flow because of the variation of the

the couple with the drop orientation.
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The resistance matrix formulation reveals that the coupling tensor is identically

zero at the center of hydrodynamic reaction xcr, and that the net force in a general

straining flow is zero when the flow stagnation point coincides with xcr. One may

deduce from the results of this investigation that a ‘freely’ suspended Janus drop

in a shear flow undergoes a rigid body motion with a variable rotating speed while

moving along the streamlines of the undisturbed flow.

It is interesting to note that Janus drops can exhibit cross-flow migration in a

shear flow by means of an external force (e.g. gravity) in the streamwise direction

that moves the drops with a speed that differs to the undisturbed velocity. Depend-

ing on the magnitude of the applied force and shearing rate, the Janus drop may

exhibit a net migration or a periodic cross-streaming velocity in time. Net migra-

tion is expected to occur at small shearing rates with the migration velocity given by

Equation (4.11). In the latter case the imposed force is not large enough to induce

the net migration of the Janus drop in a shear flow such that its position transver-

sal to the streamlines of the undisturbed flow is periodic in time. (This is further

investigated in the next chapter.) The key observation is that cross-flow migration

of a Janus drop can occur without the influence of walls and non-uniform velocity

gradients, which are required to produce the cross-flow migration of a simple fluid

drop. This final observation has relevant implications on the effective viscosity of

a dispersion of Janus drops flowing in microfluidic settings by Poiseuille (pressure-

driven) flows. If the drops are buoyant, the action of gravity forces parallel to the

axis of the tube will tend to induce the lateral migration of the drops away from

the centerline of the flow; this is plausible because this region is characterized by

lower shear rates (gradients) than those near the wall. This, in turn, promotes the

non-uniform distribution of drops lateral to the walls of the tube, in which most of

them are expected to be concentrated midway between the tube axis and the wall.
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Implying that the effective viscosity of the dispersion also depends on the spatial

distribution of the Janus drops.



CHAPTER 5

DYNAMICS AND RHEOLOGY OF JANUS

DROPS IN A STEADY SHEAR FLOW

5.1 Abstract

The behavior and rheological properties of a dispersion of Janus drops (or Janus

emulsion) under a steady shear flow are explored in the infinite dilution limit. To

achieve analytical progress, the Janus drops are assumed to consist of a pair of fluids

bounded to hemispherical domains of equal radii. At ‘freely’ suspended conditions

the Janus drops undergo periodic orbits in a shear flow that are intermediate to

that of a solid sphere and a disk that depend on the viscosities of the internal flu-

ids. Non-Newtonian behavior is found for this system on account of the anisotropic

hydrodynamics of the Janus drops. The viscosity of the Janus emulsion that corre-

sponds to the minimum energy of dissipation is analogous to that derived by Taylor

(1932) Proc. R. Soc. A 138, 41–48 for a dispersion of simple drops. It is also found

that an external force can induce the Janus drops to adopt a preferential orientation

in a shear flow. Interestingly, a neutrally buoyant Janus drop with a displaced center

of gravity can migrate lateral to the undisturbed shear flow; it is inferred that this

phenomenon can lead to spatial-dependent rheology in pressure-driven flows.

5.2 Introduction

An understanding of the rheological properties of heterogeneous systems (e.g. col-

loids, emulsions, gels, foams) is of central relevance to emerging technologies, indus-

trial and engineering applications. A classic example is the implementation of high

performance damping mechanisms for racing cars by taking advantage of the rapid

180
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increase of the viscous properties of magneto-rheological fluids upon application of

a magnetic field [137]. It is also well-known that a myriad of consumer products,

which are typically made up by colloidal dispersions and emulsions [1], have been

generated as a result of the numerous experimental and theoretical studies that have

elucidated their rich rheological properties.

For compound multiphase drops it is surprising that rheological studies appear

to be lacking from both experimental and theoretical grounds despite their diverse

number of applications. The high selectivity to mass transport of compound mul-

tiphase drops make them attractive for the micro-encapsulation of cells [2], drug-

delivery and food processing applications [3], purification of water resources [4],

micro-reactors [5], and single-cell analysis [6] to mention a few examples. Compound

multiphase drops have also found important applications in the fabrication of par-

ticles with precisely engineered features [138], materials processing [120, 139, 140],

self-propulsion at the microscopic scale [141], have served as a useful model to study

the dynamics and rheological properties of blood cells [142, 143], among several

other applications of engineering interest [7]. From both fundamental and techno-

logical viewpoints, it is of crucial interest to evaluate the impact on the rheological

properties of the host fluid by the presence of the compound multiphase drops, since

it is the rheology of the complex fluid that ultimately determines if it is suitable for

its intended application.

Besides the theoretical studies conducted by Davis & Brenner [9] and Stone

& Leal [10] that have considered the rheology of double emulsions—also known as

globules or encapsulated drops—in linear flows, it seems that the rheological proper-

ties of compound multiphase drops with partial engulfment have not been addressed

previously; possibly because of the added complexity of the drop shape to the cal-

culation of the flow. Thus, the principal purpose of this study is to close the gap

towards the determination of the rheology of partly engulfed multiphase drops in a
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steady shear flow via the analysis of a simpler, yet representative member of this

class—the Janus drop. The term Janus, which takes after the mythological god of

two faces present in ancient Roman literature, highlights that the drop consists of

two parts of equal geometry but of different properties.

Microfluidic techniques are quite popular for the fabrication of Janus drops be-

cause of the precise control one can attain over the size of the drops such that it is

a feasible task to produce a dispersion of Janus drops (also known as a Janus emul-

sion) with a nearly uniform size distribution [103, 114, 144, 145]. Recently, Zarzar

et al. [146] generated Janus drops with a diverse number of interesting features

such as magnetic, light and pH-sensitive properties with the aid of reconfigurable

emulsification techniques and microfluidics. The collection of these recent accom-

plishments open venues of opportunities to the use of Janus drops in multidiciplinary

research and to the development of emulsions with adaptive rheological properties.

Therefore, the study of the rheology of Janus drops is not limited to the description

of the rheological properties of compound multiphase drops; there is also an inher-

ent motivation to do so because of the promising applications of Janus drops. The

creation of Janus drops with specialized properties is a rapidly growing field, and

therefore it is of interest to attain an understanding on how these attributes can

affect the rheology of Janus drops. This study aims to shed some light on how the

geometry and fluid properties of Janus drops determine their behavior and rheology

in a steady shear flow.

In general, it is insightful to have some knowledge of the flow at the micro-

scopic level (individual particles or network structure) of complex fluids (colloidal

dispersions, gels, emulsions, etc) to interpret the observed rheological behavior at

the macroscopic scale. For compound multiphase drops, there has been consid-

erable progress on the analytical treatment of axisymmetric flows in the limit of

low-Reynolds-number flows [7, 113, 120–123, 142, 147]. Numerical studies have
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principally addressed the problem of simulating large changes in shape and breakup

of compound multiphase drops subject to external flows in confinement and open

domains [148–152]. Typically changes in drop shape are considered as deviations

from the initial equilibrium configuration in the absence of fluid motion. The theory

to determine the drop shape at such static conditions was first introduced by Torza

& Mason [8] that is founded on the minimization of the interfacial energy of the

compound multiphase drop. The analysis of the formation of compound multiphase

drops in microfluidic settings can be found in [153].

Particularly for Janus drops, Shardt et al. [124] performed numerical simula-

tions to study the dynamics of 2D Janus drops in a linear shear flow. Analytical

progress on the determination of the hydrodynamics of Janus drops in an ambient

flow has been achieved recently in a series of articles. In the first part of the series

[119], the dynamics of a Janus drop in a uniform flow was analyzed as a function of

the drop orientation and viscosity, where it is found that the Janus drop displays an

anisotropic hydrodynamic resistance to the flow similar to that of a solid-spheroid of

revolution. The second part [154] addresses the problem of a Janus drop subject to

an ambient fluid that undergoes a linear shear flow. In that study the description of

the hydrodynamics of the Janus drop is completed via the calculation of the grand

resistance matrix developed by Brenner [68]. Thus, these two studies provide the

essential information to analyze, from a theoretical point of view, the rheological

properties (zero-shear viscosity and differences in the normal stresses) of a Janus

emulsion in the special limit the drops do not “see” each other. In other words, the

macroscopic behavior of the Janus emulsion is determined by the dynamics of the

individual drops—in spirit this is analogous to the behavior of an ideal gas.

In this investigation the rheology of Janus drops are probed under a steady shear

flow and at infinite dilution conditions. The analysis is realized within the limit of

no deflections to fluid–fluid interfaces because it is aniticipated that such effects will
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only bring small departures (of the order of the capillary number) from Newtonian

behavior, as in the case of single-phase drops [46]. For this system, nonetheless,

the anisotropic hydrodynamics of the Janus drops are found to produce significant

non-Newtonian effects via differences in the normal stresses. Additionally, since the

typical length scales of Janus drops in experiments are well above the sub-micron

scale, stochastic effects associated to Brownian motion are entirely neglected in this

study. The article is organized as follows. A model description is presented in Sec-

tion 5.3. The preferential orientation of a Janus drop ‘trapped’ in a linear shear flow

is studied in Section 5.3. The dynamics of a ‘freely’ suspended Janus drop is con-

sidered in Section 5.4, in which it is found that the Janus drop exhibits Jeffery-like

orbits intermediate to that of a solid-sphere and a disk. The analysis of the cross-

flow migration of a Janus drop in a linear shear flow is carried out in Section 5.5.

From the results of this phenomenon it is inferred that a dispersion of multiphase

drops in a Poiseuille flow (pressure-driven flow) can exhibit a non-uniform spatial

distribution, and thus, spatially-dependent rheology. The article concludes in Sec-

tion 5.6 with the calculation of the zero-shear viscosity of a dilute Janus emulsion

subject to a linear shear flow. Interestingly, it is found that the zero-shear viscosity

that corresponds to the minimum energy of viscous dissipation has an analogous

form to that derived by Taylor [11] for a dispersion single-phase drops, but with

the difference that the drop viscosity is equal to the mean viscosity of the pair of

fluids that comprise the Janus drop. In contrast to the rheology of double emulsions

[10], non-Newtonian behavior is found in the non-deformable limit on account of the

anisotropic hydrodynamics of the Janus drops.

5.3 Model description

The simple model presented here for Janus drops is expected to be useful to

attain some understanding on the dynamics and rheology of multiphase drops sub-

jected to simple shear flows. A generalized schematic that depicts the principal
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Figure 5–1: Unidirectional shear flow ũ∞1 (ũ∞2 = ũ∞3 = 0) past a ‘perfect’ Janus drop of
radius a. The fluids that constitute the Janus drop are confined to equally sized hemi-
spheres. The symbol (j) denotes the corresponding fluid phase of dynamic viscosity η̃j
(j = 0, 1, 2). The unit vector d denotes the direction of the axis of symmetry of the Janus
drop, and it is defined with respect to a set of right-handed Cartesian axes fixed in space
(x1, x2, x3). The components of this vector are related to the azimuthal ϑ and polar φ
angles of a spherical coordinate system in the traditional manner.

features shared in common by the problems considered in this study is provided

in figure 5–1. The sketch shows a ‘perfect’ Janus drop of radius a immersed in a

viscous ambient fluid ‘0’ that executes a simple shear flow of non-zero mean velocity

(uniform shear plus a streaming flow). The undisturbed velocity ũ∞ is expressed in

dimensional quantities and presented in index notation:

ũ∞1 = Gx̃2 + U∞, (5.1)

where G is the applied shear rate, U∞ is the mean velocity of the undisturbed flow,

and x̃ is the position vector. The notation to use a tilde on top of field variables

(i.e. position, velocity, stress, etc) and fluid properties (density and viscosity) is

followed throughout this document to distinguish between their dimensional and

non-dimensional form. The orientation of the Janus drop is given by the unit vector

d (defined with respect to the space-fixed axes) that is conventionally assumed to

point towards the less viscous internal fluid (η̃1 ≤ η̃2); this axis of symmetry is con-

veniently used to characterize the drop orientation relative to the direction of the

undisturbed flow.
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The following assumptions pertain to this work: (i) The pair of fluids ‘1’ and ‘2’

that comprise the Janus drop are bounded to equal hemispherical domains such that

a flat interface separates them. (ii) All fluids phases (j = 0, 1, 2) are immiscible,

incompressible, and Newtonian (shear independent viscosity). (iii) The fluid–fluid

interfaces are considered non-deformable and clean of surfactant agents. (iv) Fluid

motion occurs without the influence of inertia effects. It suffices to point out that

for the Janus drop to approach the ‘perfect’ shape (spherical with a flat internal

interface), the interfacial tension of the each internal fluid with the ambient has to

be much larger than the interfacial tension with its counterpart (i.e. γ̃10, γ̃20 ≫ γ̃12).

The conditions to have nearly ‘perfect’ Janus drops have been reported in great de-

tail by others [114, 119, 129] and therefore, it is not necessary to reproduce that

information here. A complete theory for the determination of the shape and config-

uration of compound multiphase drops in the absence of fluid flows is provided by

Torza & Mason [8]. For the remaining kinematical assumptions to hold valid, one

only requires the capillary, Ca = η̃0aG/γ̃12, and Reynolds number, Re = ρ̃0a
2G/η̃0,

to be small, η̃0 is the dynamic viscosity and ρ̃0 is the density of the ambient fluid,

and γ̃12 is the interfacial tension of the internal fluids. This can be realized effort-

lessly in practice by application of a sufficiently small shear rate. Particularly, Torza

& Mason [8] carried out experimental observations of the dynamics of a Janus-like

compound drop in a shear flow at reasonably small shear rates (around 0.1 s−1) to

produce a low-Reynolds-number flow (Re ∼ 10−6) constrained to a small capillary

number in the order of magnitude of 10−1.

The characteristic scales for length, fluid velocity and stresses are taken to be:

a, Ga, η̃0G, respectively. The viscosity of the internal fluids is non-dimensionalized

by the ambient viscosity η1,2 = η̃1,2/η̃0. Parameterization of the viscous properties of

the Janus drop is conveniently realized via the mean drop viscosity η = (η1 + η2) /2



187

and viscosity contrast ∆η/2η = (η2 − η1) / (η2 + η1). It is clear that when the viscos-

ity contrast is zero the Janus drop comprises fluids of equal viscosities (η1 = η2 = η)

such that the viscous properties are solely determined by the single parameter η. For

non-zero ∆η/2η some interesting features of the Janus drop are found. One of such

traits is considered in the next section, in which the conditions a Janus drop can

adopt a preferential orientation in a simple shear flow are explored. An important

application of this behavior is proposed in Section 5.6 to investigate the rheological

properties of a dispersion of Janus drops. Since the dynamics of the Janus drops

must be known to study the rheology of this system, the analysis is incorporated

in this work for completeness (Section 5.4). In this section the steady orientation

of a Janus drop (deterministic behavior) in a simple shear flow is investigated. For

the Janus drop to adopt a preferential orientation a hydrodynamic coupling must

exist; to this end, an external force F e must act at any location other than the

hydrodynamic center of reaction xcr. For calculation purposes, it is assumed that

the force passes through the geometrical center of the Janus drop. In general, this

ensures that the center of reaction does not coincide with the geometrical center

when the Janus drop is made up by fluids of different viscosities. It is also assumed

that the force maintains the geometrical center of the Janus drop at a coincident

arrangement to the centerline of the shear flow. The source of the external force

is left unspecified since it is immaterial for the purposes of carrying out the analy-

sis; however, this may be achieved in practice by means of gravity or optical traps.

(There is a fair number of studies that have relied on optical trapping to maintain

drops fixed in space in the presence of external flows; the interested reader is referred

to Summers et al. [155] and the references therein.) Note that the sole purpose of

F e is to fix the location of the Janus drop in space; it only has an indirect influence

over the preferential orientation adopted by the Janus drop in a simple shear flow.

Depending on the shear to mean velocity Ga/U∞, the mean drop viscosity η and
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contrast ∆η/2η, the Janus drop can exhibit a preferential orientation in a simple

shear flow due to its lack of fore and aft symmetry (which is purely hydrodynamic

in nature because the drop conforms to a spherical shape). The relevant point here

is that the Janus drop experiences a torque from both the shearing and streaming

motions of the ambient fluid that can balance each other at an appropriate shear to

mean velocity ratio Ga/U∞. Note that even in the limit of small values of viscosity

contrast (∆η/2η ≪ 1), there is a shear to mean velocity ratio Ga/U∞ that can be

found such that the net torque on the Janus drop vanishes at some orientation d.

In practice one would observe that the Janus drop rotates until the drop adopts a

preferential orientation, which is nothing more than a consequence of the balance

of the torques. Nevertheless, it is important to note that d must initially lie in

the plane of the shear gradient of the undisturbed flow x1–x2 plane (or equivalently

ϑ = π/2) for this to occur; otherwise, there are additional torques along the x1 and

x2–axes that cannot be balanced by the streaming velocity for evident reasons such

that a preferential orientation cannot occur. A simple approach to overcome this

arrangement issue is to fabricate a neutrally buoyant Janus drop with an eccentric

center of gravity; the Janus drop will tend to position d in the plane of shear if

gravity is also in the plane of shear. (However, one would need to account for the

gravitational torque on the final orientation of the Janus drop.) An advantage of

this setup is that the drop orientation can be characterized exclusively by the polar

angle φ.

The analysis presented here entirely neglects the dynamics of rotation of the

Janus drop prior to reaching its steady orientation, since it is obvious that the

preferential orientation is independent of such initial conditions, as in the case of

spheroidal particles in an extensional flow, which consistently become aligned with

one of the principal axes regardless of the initial positioning [84]. This allows for a

simple analysis to the problem by seeking an orientation d that is torque–free. The



189

procedure to determine the torque and force on the Janus drop follows the classic

direct approach of integrating the fluid stress at the outer surface of the drop. The

constitutive equation of a Newtonian fluid is used to calculate the stress from the

velocity field of the ambient fluid, which is coupled to the motion of the internal

fluid phases of the Janus drop via the so-called Stokes equations. Variation of the

undisturbed flow with the drop orientation d is taken into account by projecting the

laboratory frame-based flow into a set of axes affixed to the Janus drop via a trans-

formation matrix. Without further preliminary remarks, the Stokes equations are

presented (in non-dimensional form) for each fluid phase with respect to a spherical

coordinate system (r, ϑ, φ) that takes advantage of the geometry of the Janus drop:

∇ · u(j) = 0, −∇p(j) + ηj∇2u(j) = 0, (5.2a)

n · u(j) = 0, [u] = [n ·σ] = 0, at r = 1, (5.2b)

n · u(1,2) = 0, [u] = [n ·σ] = 0, at ϑ = π/2, (5.2c)

u(0) = u∞ as r →∞, (5.2d)

where n is the unit normal vector at fluid–fluid interfaces, where at the outer drop

surface it is directed outward, and at the internal interface it points from fluid ‘2’ to

fluid ‘1’. The quantities u(j) and p(j) designate the respective velocity and pressure

fields of the jth fluid phase. The stress tensor is that of a Newtonian fluid (in index

notation): σ
(j)
lk = −p(j) δlk + ηj

(

∇l u
(j)
k +∇k u

(j)
l

)

, where δlk is the identity tensor.

At interfaces the normal component of the fluid velocity is zero (un = 0) because

of the immiscibility of the fluids (no mixing of the fluid phases). The brackets

designate a jump of the enclosed quantity at interfaces. At the outer surface (r = 1)

the jump is directed from the internal to the ambient fluid, and at the internal

interface (ϑ = π/2) it is directed from the inner fluid ‘2’ to fluid ‘1’. At distances

far from the Janus drop (r →∞) the flow reduces to the undisturbed velocity u∞

projected to the set of axes of local to the Janus drop.
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Integration of the surface tractions at the outer drop surface (r = 1) yields the

hydrodynamic force F on the Janus drop:

F =

∮

Sd

n · σ dSd, (5.3)

where Sd is the area of the outer drop surface. The torque T is given by the first

moment of the surface tractions:

T =

∮

Sd

x× (n · σ) dSd. (5.4)

Prior to the presentation of results, it is instructive to consider the preferential

orientation of the Janus drop in the absence of the shearing motion of the ambient

fluid. In such a situation the imposed flow reduces to a uniform flow along the

direction of the x1–axis: ũ
∞ = U∞ e1. It is important to recall that there is an ex-

ternal force F e that prevents the Janus drop from undergoing translational motion,

and that there are no restrictions on its rotation. For the purposes of providing

physical arguments it is sufficient to bring to the discussion the main findings of the

behavior of the Janus drop with different internal viscosities in a uniform streaming

flow; the technicalities of this problem has been reported by Shklyaev et al. [119].

Now consider the symmetry axis of the Janus drop d to lie in the x1–x2 plane at

an arbitrary direction with respect to the undisturbed flow given by the polar angle

φ. From the perspective of an observer the Janus drop rotates (due to the coupling

of U∞ with the torque) until d becomes aligned with the x1–axis. This turns out

to be a configuration where the flow is axisymmetric everywhere, and consequently,

torque–free regardless of the internal viscosities of the Janus drop. Note that this

is true for any body of revolution with broken fore and aft symmetry; classic ex-

amples are the spherical cap [75] and the aggregate of unequally sized spheres [76].

Therefore, it is expected that the axis of symmetry of the Janus drop will be nearly
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aligned with the x1–axis in the limiting case of small shear to mean velocity ratio

(Ga/U∞ ≪ 1). It is important to point out that these arguments only apply to a

Janus drop of unequal internal viscosities; in the ideal situation of η1 = η2, the Janus

drop behaves as a symmetric spheroid of revolution with no tendency to rotate in

a streaming flow U∞ such that there is no preferential orientation; the Janus drop

will retain its initial arrangement with respect to the streaming flow. It follows from

this observation that there must be a hydrodynamic coupling of the torque T with

the streaming velocity U∞ for the Janus drop to adopt a steady orientation in a

simple shear flow.

Figure 5–2a shows the preferential orientation of a Janus drop of mean viscosity

η = 1 via the polar angle φ with increasing Ga/U∞ while keeping constant the vis-

cosity contrast ∆η/2η. For small ratios of the shear to mean velocity (Ga/U∞ ≪ 1)

the preferential orientation φ grows linearly with Ga/U∞, in agreement with the

above arguments for vanishing shearing rates. It is seen that the Janus drop tends

to align its axis of symmetry in the direction of the velocity gradient of the undis-

turbed flow (x2–axis) for all values of the viscosity contrast ∆η/2η as Ga/U∞ is

increased. In this arrangement the torque imparted by the streaming flow (which

opposes that of the shear) reaches a maximum value. This becomes apparent by

noting that the uniform flow can be broken down into transversal and axisymmetric

components about d, and that only the transversal component opposes the torque

exerted by the shearing motion of the ambient fluid. Beyond this point, further

increase of Ga/U∞ results in a situation where the torque exerted by the shear is

greater than that of the uniform flow, such that a preferential orientation cannot

occur; the Janus drop simply rotates indefinitely with a periodic speed.

The dependence of the preferential orientation of the Janus drop with Ga/U∞

and the mean drop viscosity η at a fixed viscosity contrast ∆η/2η = 0.4 is presented

in figure 5–2b. It is readily seen that there is a non-monotonic dependence of the
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Figure 5–2: (Colors online) Influence of the shear to mean velocity ratio Ga/U∞ on the
preferential orientation of a Janus drop of (a) constant mean viscosity η = 1 with selected
values of ∆η/2η, and (b) constant ∆η/2η = 0.4 with selected values of η.

preferential orientation with the mean drop viscosity. Interestingly, a Janus drop

of relatively low mean viscosity (η = 0.1) reaches a transversal arrangement of d

relative to the direction of the undisturbed flow (φ = π/2) at higher shearing rates

Ga/U∞ in comparison with more viscous drops. An explanation to this behavior is

that the shear flow becomes less effective on generating a torque than the stream-

ing flow in the low viscosity limit. For Janus drops of greater viscosity the torque

exerted by the shearing motion of the ambient is substantial in comparison to that

imparted by the streaming counterpart, and therefore, the shear to mean velocity

Ga/U∞ required to arrange the Janus drop into a particular orientation is less.

It is important to point out that without some trapping mechanism it may prove

to be difficult to maintain fixed the position of the Janus drop in space. Note that

in general the net hydrodynamic force on the Janus drop is not necessarily parallel

to the flow because of the anisotropic resistance of the drop [119]. Nonetheless, if

the axis of symmetry of the Janus drop d is aligned with the x2–axis the net hydro-

dynamic force on the Janus drop acts parallel to the direction of the flow (x1–axis),

and therefore, a simple body force (such as gravity) may be used to balance the

hydrodynamic forces on the Janus drop. The results that follow correspond to this

particular situation.
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Figure 5–3: (Colors online) The effect of increasing viscosity contrast ∆η/2η at fixed values
of the mean drop viscosity η on (a) the shear to mean velocity Ga/U∞ and (b) the net
hydrodynamic force F1 (in units of η̃0aU

∞).

Figure 5–3a illustrates the dependence of Ga/U∞ on ∆η/2η for constant values

of the mean drop viscosity η. In order to improve the presentation of results Ga/U∞

is scaled with ∆η/2η. Note that the flat curvature for small ∆η/2η suggests a linear

dependence of the shear to mean velocity Ga/U∞ with the viscosity contrast. The

apparent monotonic dependence of Ga/U∞ with the mean drop viscosity is a conse-

quence of the shear-torque decreasing more rapidly with η than the torque imposed

by the uniform flow.

The influence of ∆η/2η on the net hydrodynamic force F1 (in units of η̃0aU
∞)

is shown in figure 5–3b for selected values of the mean drop viscosity η. It is seen

that the net force is nearly independent of the viscosity contrast in the limit of

small viscosity contrast (∆η/2η ≪ 1); in fact, the force on the Janus drop is equal

to that on a single-phase drop F̃1 = 2π (2 + 3η) /(1 + η) η̃0aU
∞. This can be under-

stood from a unification of the results found in [119] and [154]; basically, the force

imparted by the shearing motion of the ambient is O(∆η/2η); whereas, the force

contribution by the streaming motion of the ambient flow predominates because it

is O(1). A marked decrease on the force is not seen until both ∆η/2η → 1 and

η ≫ 1; however, its application may be limited to exceptional situations in prac-

tice, as in [145] because one of the internal phases is significantly more viscous than
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its counterpart. Note that in general the viscosities of the internal fluid phases are

quite similar (for instance see [129, 146]); therefore, it is anticipated that most of the

behavior of Janus drops in experiments can be understood from the theory at small

viscosity contrast (∆η/2η ≪ 1). The predicted reduction of the net hydrodynamic

force arises because the shear-force acts opposite to the direction of the imposed

shear flow.

5.4 Dynamics of a ‘freely’ suspended Janus drop in a linear shear flow

The dynamics (position and orientation in space-time) of a ‘freely’ suspended

Janus drop in a linear shear flow of a Newtonian fluid is investigated with respect to

the fixed reference frame (x1, x2, x3). The main steps to arrive at the equations that

govern the dynamics of the Janus drop are presented here since these will prove to

be useful when studying the cross-streaming velocity of the Janus drop in the next

section. On account of the linearity property of Stokes flow, the dynamics of a Janus

drop in a general ambient flow are determined by an exact balance of the net hydro-

dynamic force and torque on a stationary Janus drop in the imposed flow with those

on a Janus drop undergoing solid-body motions in a quiescent fluid. It is important

to point out that the torque and rotational motion of the Janus drop vary from one

reference point to another, as for any other body of revolution; nevertheless, it is ob-

vious that the dynamical behavior must be independent of the reference point taken.

For convenience, the free center of rotation xcr is chosen to carry out the present

analysis since it turns out that drop translation and rotation are decoupled due to

the zero coupling tensor at that location [154]. (Implying that the hydrodynamic

center of reaction and free center of rotation are identical). Therefore, it follows

that the dynamics of the Janus drop in a linear shear flow is analogous to that of a

symmetric spheroid of revolution with an apparent aspect ratio rh that depends on

the internal viscosities of the Janus drop. In similarity with a symmetric spheroid

of revolution, the Janus drop translates with the velocity of the undisturbed flow
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at the center of free rotation. The equation that describes the rotational dynamics

of the Janus drop can be readily derived from the resultant torque T on the Janus

drop (presented in non-dimensional form and in index notation):

Tk =
[

XCdkdl + Y C (δkl − dkdl)
]

(Ω∞
l − ωl) (5.5)

−Y Hǫkln dndmE
∞
ml = 0,

where Ω∞
l is the rotational velocity of the ambient fluid, ωl is the rotational velocity

of the Janus drop, E∞
ml is the undisturbed rate-of-strain tensor, ǫkln is the permuta-

tion tensor, XC is the resistance of the Janus drop to undergo rotation about its axis

of symmetry, Y C is the resistance of the Janus drop to rotation transversal to its axis

of symmetry, and Y H defines the shear-torque imposed by the rate-of-strain field.

Notably, XC is inherently zero in contrast to other bodies of revolution because

the Janus drop behaves as a single-phase drop in this case [154]. The values of the

resistance functions can be found in the cited article. The transcendental equation

for the orientation dynamics of the Janus drop can be derived by operating the cross

product on both sides of the above equation with the unit vector dj , followed by the

use of the well-known identity ǫklnǫkji = (δljδni − δliδnj) [13] to arrive at the sought

expression, which is identical to that of a spheroidal particle [31]:

ḋi = ωldjǫlji = Ω∞
l djǫlji +B

[

E∞
imdm −E∞

jmdmdj di

]

, (5.6)

where here the dot symbol on top of a variable denotes its differentiation with re-

spect to time, and B = Y H/Y C is commonly referred to as the Bretherton constant

of the equivalent spheroid [156]. It is important to point out that this result is

in accordance with the experimental observations of Torza & Mason [8] of a freely

rotating Janus-like compound drop in a linear shear flow. The time evolution of the

axis of symmetry d of the partly engulfed drop closely follows the rotation dynamics

of a ‘freely’ suspended spheroid of revolution in a linear shear flow. Another aspect
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of their observations relevant to this work is that the compound drop behaves as

a symmetric spheroid of revolution despite being comprised by fluids of different

viscosities, which supports the theory that dictates that the Janus drop rotates at

the free center of rotation xcr in a decoupled manner. A final remark that deserves

attention is that interfacial deflections only brought small quantitative changes to

the dynamics of the compound drop; this establishes experimental confirmation that

the essence of the dynamics of compound drops can be understood without consid-

eration of interfacial deflections at low capillary numbers.

Following Kim & Karrila [31], one can express the components of d with respect

to the azimuthal ϑ and polar φ angles (which are related to the set of space-fixed

axes (x1, x2, x3) in the traditional manner); then, after some elementary operations

one obtains the following system of differential equations that characterize the ori-

entation vector d in space-time (shown in non-dimensional form):

ϑ̇ =
1

4

(

r2h − 1

r2h + 1

)

sin 2ϑ sin 2φ, (5.7)

φ̇ =− 1

r2h + 1

(

r2h sin
2 φ+ cos2 φ

)

. (5.8)

For convenience the Bretherton constant has been expressed with respect to the ap-

parent hydrodynamic aspect ratio rh via the archetypal relationB = (r2h − 1) / (r2h + 1).

The solution to the system of differential equations was first presented by Jeffery [89]

for a spheroidal particle with its axis of revolution initially placed in the x1–x3 plane

(φ(t = 0) = 0):

tanϑ =
C

(

r2h sin
2 φ+ cos2 φ

)
1

2

, (5.9)

tanφ = r−1
h tan

(

Gt

rh + r−1
h

)

, (5.10)
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Figure 5–4: (Colors online) (a) Dependence of period orbits with the mean drop viscosity
of a Janus drop with equal internal viscosities η1 = η2. (b) The effect of the viscosity
contrast ∆η/2η on the periodic orbits for a constant mean drop viscosity η = 1.

which describes closed orbits in space-time of period τ̃ = 2πG−1
(

rh + r−1
h

)

. The

constant C is known as the orbital constant [31] that parametrizes the initial ori-

entation of the axis of revolution in the azimuthal axis of the spherical coordinate

system. When C = 0 the Janus drop traces an equatorial orbit in an imaginary

unit sphere, and as C → ∞ the Janus drop orientation approaches a degenerate

orbit with d aligned with the vorticity axis of the undisturbed shear flow (x3–axis).

The periodic orbits of a Janus drop of equal internal viscosities (η1 = η2 = η) are

shown in figure 5–4a for an initial drop orientation with respect to the Euler angles

ϑ (t = 0) = π/3, and φ (t = 0) = π/2. As one may anticipate, the Janus drop under-

goes changes in orientation in a linear shear flow of an effective spheroidal (or top)

particle [89, 157]. It is readily seen that as the mean drop viscosity η increases, the

periodic orbits of the Janus drop approach those of a solid sphere (in which the axis

of revolution d describes a cone about the x3–axis). In this limit the torque imposed

by the straining flow vanishes to zero such that the drop orientation is determined

by the angular motion of the ambient fluid (i.e. ḋ = Ω∞
×d and rh = 1 as η →∞).

The influence of the viscosity contrast on the periodic orbits of a Janus drop with

a constant mean viscosity of η = 1 is presented in figure 5–4b. (The same initial
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Figure 5–5: (Colors online) Apparent eccentricity factor as a function of the viscosity
contrast ∆η/2η for constant values of the mean drop viscosity η.

conditions are used to generate the curves.) The observed shift (or increase in ec-

centricity) of the periodic orbits as d swepts out of the plane of shear (x1–x2 plane)

with increasing values of ∆η/2η arises because of the reduction of the torque due

to the rotational motion of the ambient fluid in comparison to its straining coun-

terpart. This shift represents a change in the dynamical behavior of the Janus drop

from a nearly isotropic body (sphere-like) to a slender oblate spheroid (disk-like);

particularly, rh = 0.75 for ∆η/2η = 0.8. Note that the degree of the shift depends

greatly on the viscous properties of the Janus drop, such that it is expected to be

less pronounced for more viscous Janus drops of relatively similar internal viscosities.

The changes in the dynamical behavior of the Janus drop are best characterized by

the eccentricity factor ε =
√

1− r−2
h , which is zero for a sphere (ε = 0) and tends to

unity (ε → 1) for a disk-like spheroid. A plot of the eccentricity factor for a Janus

drop with constant values of the mean viscosity η and increasing viscosity contrast

is presented in figure 5–5. From the figure, it follows that the dynamical behavior

of a Janus drop lies between the extremes of a solid sphere and a disk.
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5.5 Cross-streaming velocity of a Janus drop in a shear flow

The objective of this section is to study the cross-streaming velocity of a Janus

drop in a shear flow induced by the action of an external force F e parallel to the

streamlines of the undisturbed flow. In principle, it is the anisotropic resistance of

the Janus drop to the streaming flow (U∞ − v) that furnishes the cross-streaming

phenomena, where v denotes here the translational velocity of the Janus drop. A

closely related situation is that of a spheroidal particle that sediments in a quiescent,

viscous Newtonian fluid [20]. The analysis presented here follows an analogous

treatment to that used in Section 5.4, in which the translational and rotational

motions of the Janus drop are derived from overall force and torque balances. It is

assumed that the external force acts in such a manner that does not impose a torque

on the Janus drop that permits Equation (5.6) to describe the rotational dynamics.

The time evolution of the position x of the Janus drop with respect to space-fixed

coordinates reads:

ẋk = vk = u∞k +
[

(

XA
)−1

dkdl +
(

Y A
)−1

(δkl − dkdl)
]

F e
l , (5.11)

where XA and Y A are the scalar functions that describe the resistance of the Janus

drop to streaming flows parallel and perpendicular to the axis of revolution d, respec-

tively [154]. Although not shown explicitly, the undisturbed velocity is evaluated at

the center of free rotation xcr. Note that the external force F
e exclusively acts in the

positive direction of the x1–axis, and that the velocity components v2,3 correspond

to the cross-streaming velocity of the Janus drop. (Naturally, v1 is the velocity of

the Janus drop along the streamlines of the undisturbed flow.) Perhaps it is even

more relevant to note that the cross-streaming velocity is intrinsically coupled to

both the orientation and position of the Janus drop because there is a consequential

streaming velocity that arises from the displacement of the drop from the centerline

of the shear flow (x1–axis). As a result, the complexity of this problem limits the
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analytical progress, which leaves one to rely on a numerical technique in order to

provide a solution to the problem. The results presented in this section are obtained

by solving the system of differential equations with a fourth-order Runge-Kutta

method. Other methods of comparable accuracy were used to validate the results;

this is not shown here for the sake of brevity.

By bearing in mind that the results may be of some use to practitioners, the

cross-streaming velocity is reported when the axis of revolution of the Janus drop

lies in the plane of shear of the undisturbed flow (x1–x2 plane). The justification for

choosing this particular configuration is that this corresponds to one of the simplest

experimental setups that can be devised to investigate the cross-streaming velocity

of the Janus drop for two principal reasons: (i) the axis of revolution d stays in the

plane of shear such that its angular motion can be measured with more ease (as for

any other symmetric spheroid of revolution), and (ii) there is only one component

of the cross-streaming velocity (v3 = 0). Without incurring in a loss of generality, in

this case study the mean velocity of the shear flow is set to zero (U∞ = 0) such that

the ambient flow corresponds to a pure shearing flow. It is assumed that at initial

conditions (t = 0) the free center of rotation of the Janus drop is located at the

origin of the set of space-fixed axes (x1 = 0, x2 = 0, x3 = 0) with d aligned with the

x2–axis (i.e. a vertical alignment with ϑ = π/2, φ = π/2). For calculation purposes

only, the external force is defined to be equivalent to the drag force on a solid sphere

of radius a subject to a uniform flow of velocity Ga: F̃ e
1 = 6πη̃0Ga

2. The qualitative

behavior of the cross-streaming velocity is unchanged with the chosen magnitude of

the force nonetheless.

The orientation of the axis of revolution d is plotted alongside the ratio

of the cross-streaming velocity to the external force (v2/F
e
1 ) in figure 5–6a as a

function of the dimensionless time for a Janus drop with equal internal viscosities

η1 = η2 = η = 1. The plots show that the cross-streaming velocity is periodic in
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Figure 5–6: (Colors online) (a) The solid-line (red) depicts the dynamics of orientation
and the dashed-line (blue) shows the non-dimensional ratio of the cross-streaming velocity
with the external force. (b) Cross-streaming velocity as a function of the arrangement of
the axis of revolution of the Janus drop for constant values of η.

time and that it reaches peak values when the axis of revolution is at a diagonal with

respect to the principal direction of the undisturbed shear flow (cosφ = ±
√
2/2),

and that it vanishes when it is aligned with any of the principal axes x1 and x2 due

to the evident symmetry arguments. Note that at low shear rates, the limit of a

Janus drop undergoing cross-flow migration in a streaming flow is recovered. For

larger shearing rates, on the other hand, the cross-streaming velocity is quite small.

This effect has interesting implications on a dispersion of Janus drops subjected to

pressure-driven flows, in which it is inferred from the results of this study that the

dispersion exhibits a non-uniform spatial distribution with a higher concentration

of Janus drops near the duct boundary. In turn, this effect can lead to rheological

properties that depend on the spatial distribution of the Janus drops. It is fitting

to point out that spatially-dependent rheological properties of dispersions has been

identified to be a problem of central importance of materials processing applications

in industry [130].

The non-monotonic dependence of the cross-streaming velocity v2 with the mean

drop viscosity is evidently shown in figure 5–6b, where v2 decays to zero as η →∞, as

it should, since this corresponds to the limit of a solid sphere that has an isotropic
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resistance to the external flow. One interesting feature of the results is that the

cross-streaming velocity consistently reaches peak values, regardless of the mean

drop viscosity η, when the axis of revolution is at a diagonal with the direction

of the undisturbed flow. The effect of the viscosity contrast ∆η/2η on the cross-

streaming velocity has been found to be quite small under the range of viscous

properties that Janus drop have in practice, and for this reason these results have

been omitted.

5.6 Constitutive equation of a dilute Janus emulsion in a steady shear
flow

It is anticipated that the results of this section can be useful to practitioners

interested in comparing the theory presented here to rheological measurements of a

dispersion of Janus drops in another fluid—also known as Janus emulsions. In order

to make analytical progress, calculations are performed at infinite dilution condi-

tions such that there are no interactions among the dispersed particles. Here, the

term ‘particles’ has a general scope that encompasses both fluid and solid bodies.

Additionally, due to the various experimental studies [8, 114, 129, 144, 146] that have

fabricated Janus drops with radii beyond the micron-size (& 10µm), the stochastic

effects associated to thermal fluctuations of the suspending fluid (Brownian motion)

are entirely neglected in this study. (It is well known that particles above one mi-

cron in size are unaffected by Brownian motion [21].) As one may expect, only at

sub-micron length scales have Janus drops been observed to be subject to Brownian

motion [145]. Therefore, for the purposes of gaining leading and relevant information

of the rheology of Janus emulsions, it is appropriate to consider the problem under

the simplest scenario of a dilute dispersion of Janus drops subject to a steady shear

flow of a Newtonian fluid in the total absence of both inertia effects and Brownian

motion.
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For a dispersion of bodies of revolution, as in this case, the orientation distribu-

tion of the particles in suspension intrinsically determines the rheological properties

observed at the macroscopic scale. This is the case because it is the disturbance-flow

caused by the particles that lead to an apparent increase in the viscosity of the host

fluid. As one may suspect, for certain orientations the particles produce greater

disturbances to the flow than others such that it follows, from this simple argument,

that the effective rheological properties of the dispersion must depend on the orien-

tation distribution of the particles. The effect of the orientation distribution on the

rheology of dispersions comprising bodies of revolution has been the subject of ac-

tive research right after the publication of Jeffery [89]. For dispersions of sub-micron

particles it is the relative importance of Brownian motion to the applied flow that

determines the rheology of the dispersion, regardless of the the initial orientation

distribution of the particles [92, 94]. On the other hand, in the complete absence of

Brownian motion, particle-particle interactions and inertia effects, as in the present

study, the orientation distribution is solely determined by the initial orientation of

the particles via the so-called Jeffery-orbits. This is in fact, a consequence of the

inability of the shear flow to set bodies of revolution into a preferential orientation

at zero Reynolds number, as first noted by Jeffery in his study of the dynamics

of spheroids of revolution [89]. One can take advantage of this instrinsic behavior

of the flow to study the rheology under conditions in which the initial orientation

distribution can be controlled. The most straightforward situation to realize this

in practice is to have a dispersion with a uniform orientation distribution. Thus, it

is in our interest to shed some light on the rheology of a dispersion of Janus drops

with a uniform orientation distribution at infinite dilution.

In principle, there are simple strategies that can be used to obtain a dispersion

of Janus drops with a uniform orientation distribution; two are proposed here mo-

tivated by the findings of Section 5.3 and by application of the latest achievements



204

on the synthesis of Janus drops with designed properties [146]. The application of

a shear flow parallel to the direction of Earth’s gravitational field to a dispersion

of neutrally buoyant Janus drops with an eccentric gravitational center is a simple

method to obtain a dispersion of uniformly aligned Janus drops. To fabricate a neu-

trally buoyant drop with a center of gravity displaced from the geometrical center

the internal fluids must be of differing densities but with a mean density ρ̃ that

matches the density of the ambient fluid (i.e. ρ̃ = (ρ̃1 + ρ̃2) /2 = ρ̃0 and ρ̃1 6= ρ̃2).

The applied shear rate can be increased systematically until the gravitational torque

balances that exerted by the shear flow such that the Janus drops adopt a uniform

orientation distribution. The Janus drops will tend to align d with the velocity-

gradient of the undisturbed shear flow as the shear rate is increased. (At higher

shear rates there is no preferential orientation because the gravitational torque can-

not balance that done by the shear flow, in analogy to the problem considered in

Section 5.3.) The second method is to apply a magnetic field to a dispersion of

magneto-responsive Janus drops; the preparation of such magnetic Janus drops has

been reported in [146]. This latter method also offers the possibility of studying the

rheological properties at fixed orientations for large magnetic fields; however, the

corresponding analysis lies outside the scope of this study. From this point onward

the constitutive equation for a dilute Janus emulsion is derived analytically under

the mentioned conditions.

Following Batchelor [97], the calculation of the bulk stress 〈Σij〉 of a dispersion

of ‘freely’ suspended particles in a linear shear flow involves a volume average of the

contributions to the stress of the continuous fluid phase and the dispersed particles.

The constitutive equation for the bulk stress of the dispersion of particles in a fluid

is defined in an analogous form to that of an ordinary Newtonian fluid but with

an additional contribution that arises from the presence of the particles (shown in
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non-dimensional form):

〈Σij〉 = −〈p〉 δij + 2 η0 〈Eij〉+ 〈Sp
ij〉, (5.12)

where the angle brackets 〈 〉 denotes a volume average of the enclosed quantity,

and 〈Sp
ij〉 represents the particle contribution to the bulk stress and it is implicit

that it involves a sum over all the particles in the dispersion. For a single particle,

Sp
ij is the hydrodynamic dipole plus an additional contribution that arises from the

distribution of the rate-of-strain field at the surface of the particle [31]:

Sp
ij =

∮

Sp

nk σki xj dSp − η0
∮

Sp

(niuj + njui) dSp, (5.13)

where ni is the unit normal vector directed outward at each point over the surface

of the particle, and Sp is the outer surface of the particle. For force and torque–

free particles in suspension the hydrodynamic dipole reduces to the stresslet: a

symmetric tensor that captures the shape and long-range disturbances caused by the

particle [13, 31]. Note that the latter surface integral above vanishes identically for

a solid particle because the fluid velocity at the surface of the particle solely consists

of solid-body motions as dictated by the no-slip tangent condition. Although the

superficial velocity of a fluid drop in a linear shear flow develops from the local

rate-of-strain in addition to solid-body motions, the surface integral also vanishes

on account of the symmetry of the rate-of-strain field. For Janus drops of identical

internal viscosities (η1 = η2) the surface integral vanishes as well, based on the same

symmetry arguments used for a single-phase drop. This finding holds well, even

so, for Janus drops of different viscosities provided that η adopts finite to moderate

values, which is generally the case in practical situations. Therefore, the effect of

the superficial distribution of the rate-of-strain field can be safely neglected. For

a single Janus drop, the stresslet at an arbitrary drop orientation is given by the
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Figure 5–7: (Colors online) Variation of the stresslet functions cn (n = 0, 1, 2) with the
mean drop viscosity η for a Janus drop with equal internal viscosities.

following expression:

S̃p
ij

2
3
πη̃0Ga3

= c0E
∞
ij + c1

[ (

diE
∞
jk + djE

∞
ik

)

dk − 2didjdkdlE
∞
lk

]

(5.14)

+ c2 (ǫikldj + ǫjkldi) dl (Ω
∞
k − ωk) ,

where the above equation guarantees the stresslet to be a symmetric and traceless

tensor, as it should be. The first term at the right-hand side of the equation corre-

sponds to the stresslet of a simple fluid drop in a linear shear flow determined by

Taylor [11]: S̃p
ij = 2π/3 c0η̃0a

3Ẽ∞
ij = 2π/3 η̃0a

3 (4 + 10η) / (1 + η) Ẽ∞
ij . However, in

the context of this problem the drop has an equivalent viscosity η = (η1 + η2) /2.

The additional terms are periodic contributions to the stresslet that depend on the

orientation of the Janus drop d relative to the direction of the undisturbed shear

flow. Plots of c0, c1 and c2 for a Janus drop that satisfies η1 = η2 = η are provided

in figure 5–7. It is notable that the stresslet functions c1,2 = 0 as η →∞ such that

the periodicity of the stresslet vanishes identically. Therefore, one can expect right

away that the viscosity of a dispersion of hard spheres is recovered in this limit, in
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analogy with dispersions of single-phase drops [11, 158]. Note that the applicability

of Equation (5.14) is expected to hold beyond the limit of equal internal viscosi-

ties on account of the weak dependence of the stresslet functions with the viscosity

contrast ∆η/2η in the range η . 10. Figure 5–8 presents plots (that support this

claim) of the stresslet functions against ∆η/2η while keeping constant the mean

drop viscosity η. In the low mean drop viscosity limit the stresslet functions retain

nearly constant values regardless of the increase in ∆η/2η. An analogous plot for c2

is shown in figure 5–9 that depicts comparable features. In general, the magnitude

of this parameter with respect to its counterparts is smaller.

For a dispersion of Janus drops with identical orientations it is obvious that

〈Sp
ij〉 = nd S

p
ij , where nd is the number density of the drops. Thus, the constitutive

equation for a dilute Janus emulsion becomes:

〈Σij〉 = −〈p〉 δij + 2 η0

(

1 +
1 + 5

2
η

1 + η
Φ

)

E∞
ij +

1

2
η0c1Φ

[ (

diE
∞
jk + djE

∞
ik

)

dk (5.15)

− 2didjdkdlE
∞
lk

]

+
1

2
η0c2Φ (ǫikldj + ǫjkldi) dl (Ω

∞
k − ωk) ,

where Φ is the volume fraction occupied by the Janus drops. The orientation-

independent contribution to the bulk stress (second term) is the zero-shear vis-

cosity of a dilute dispersion of single-phase drops [11] with an equivalent viscosity
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η = (η1 + η2) /2. It is interesting to note that this term corresponds to the minimum

rate of viscous dissipation for a dilute Janus emulsion. (The choice of denoting the

viscosity of the Janus emulsion as the zero-shear viscosity is that it is foreseen that

the emulsion will exhibit shear-thinning at higher shearing rates due to the defor-

mation of the drops.) Figure 5–10 presents the variation of the reduced zero-shear

viscosity ηr =
(

〈Σ̃12〉 −Gη̃0
)

/Gη̃0Φ of the dispersion with the drop viscosity η and

orientation when d is in the plane of shear. From this figure it is evident that the

zero-shear viscosity of a Janus emulsion is intermediate to that of a dispersion of low

viscosity drops and hard spheres at infinite dilution conditions. The dependence of

the orientation of the Janus drops on the zero-shear viscosity becomes unimportant

as η → ∞, in agreement with the expectations. The somewhat surprising result

is that there is a stronger dependence of the zero-shear viscosity on the drop ori-

entation d for Janus drops of low viscosity (η ≪ 1). In contrast to a single-phase

drop, a Janus drop that rotates produces a disturbance-field that originates from

the hindrance of the internal interface to the flow that is present even in the low
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viscosity limit.

It is pertinent to compare the obtained zero-shear viscosity against that of

double emulsions, a dispersion of concentric drops, in attempt to obtain a broader

picture of the rheology of compound multiphase drops. On account of the concentric

configuration of double emulsions the zero-shear viscosity is, in general, more sensi-

tive to the separation of the interfaces than the viscous properties of the constituent

fluids [10]. For example, the viscosity of a dispersion of hard spheres is recovered

for small interfacial separations of the concentric drops with a lesser dependence

on the viscosity of the internal fluids (for moderate values). Only when the inner

drop size is negligible compared to the outer one, Taylor’s viscosity is recovered,

as pointed out by Stone & Leal [10]. Therefore the consolidation of these results

with the present ones indicate that the lower and upper bounds to the viscosity

of a dispersion of compound multiphase drops, in general, correspond to those of

single-phase drops and hard spheres, respectively.
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The remarkable difference of the rheological properties of Janus emulsions to

double emulsions is the appearance of non-Newtonian effects associated to the

anisotropic hydrodynamics of Janus drops. Whereas, double emulsions exhibit New-

tonian behavior (isotropic bulk stress) in the limit of zero interfacial distortions [10].

The difference in the normal stresses N1 = 〈Σ11〉 − 〈Σ22〉 and N2 = 〈Σ22〉 − 〈Σ33〉 of

a dilute Janus emulsion in a linear shear flow are readily determined from the bulk

stress:

N1 = η0c1Φ
(

d22 − d21
)

d1d2E
∞
12 , (5.16)

N2 = η0c1Φ

[

1

2
+
(

d23 − d22
)

]

d1d2E
∞
12 . (5.17)

As one may expect, from the intrinsic analogy of spheroids of revolution, there is no

direct contribution to the difference in normal stresses from the rotational motions

of the Janus drops; the influence of rotation to the normal stresses is as an indirect

contribution via changes in orientation d. The difference in the first normal stresses

N1 vanishes identically when the axis of symmetry of the Janus drop is either parallel

to the direction of the undisturbed flow or velocity-gradient (i.e. d1,2 = 1), and when

the axis of symmetry is parallel to any of the principal axes of the rate-of-strain field

(d1 = ±d2). This is quite the expected result for any spheroidal particle on account

of the rotational symmetry about its axis of symmetry. In fact, dilute dispersions of

other related bodies of revolution of spherical shape but with anisotropic hydrody-

namic properties (e.g. ‘slip–stick’ spheres) also exhibit the analogous behavior of N1

in a linear shear flow [44]. For other arrangements of d, the Janus drop experiences

an uneven distribution of the normal stresses over its outer surface. The transition

of N1 from compression to tensile normal stresses is consistent to that of an oblate

spheroidal particle, in agreement with the expectations for a body that exhibits hy-

drodynamic properties analogous to that of an oblate spheroid (Section 5.4). The

second difference in the normal stresses N2 vanishes wherever d is aligned with any
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of the principal axes of the undisturbed flow (velocity and velocity-gradient) or rate-

of-strain field (extension and compression axes). It is notable that when d3 = 1 the

dispersion behaves as an emulsion with Newtonian properties (N1,2 = 0) because in

this case the Janus drop behaves as a single-phase drop.

It is relevant to point out that differences in the normal stresses can also arise

in dispersions of single-phase drops; however, within the limit of small deflections

these are of the order of the capillary number Ca ≪ 1 [46]. From this result, it

ensues that the effects of the deflection of the interfaces may not be easily differ-

entiated in experimental settings from those tied to the anisotropic properties of

the Janus drops as the capillary number is increased. The obtained results indicate

that the anisotropic properties of the Janus drop provide the leading term for the

differences in the normal stresses, which establishes a reasonable justification for

the neglect interface distortions in this study. It is also important to point out that

Torza & Mason [8] did not observed qualitative changes on the dynamical behavior

of a near Janus drops with increasing shear rate despite the notable deformation

to the interfaces. The analysis of shape distortions is expected to be more mean-

ingful when there are hydrodynamic interactions with other drops or walls and in

time-dependent shear flows, as it has been for simple fluid drops [47, 54, 159].

5.7 Conclusions

The dynamics and rheology of Janus drops in a linear shear flow of a Newtonian

fluid is studied in the limit of low-Reynolds-number flows. Under ‘freely’ suspended

conditions the Janus drops undergo Jeffery-like orbits analogous to that of an oblate

spheroidal particle with an effective aspect ratio determined by the viscosities of the

three fluid phases. Surprisingly, low viscous Janus drops formed by distinct fluids

tend to exhibit disk-like Jeffery orbits, and as one may anticipate, high viscous drops

behave as solid spheres (isotropic).

When a Janus drop is ‘trapped’ at a fixed location by the action of an external
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force it can exhibit a preferential orientation depending on the viscous properties

of the fluids, velocity, and velocity-gradient of the undisturbed flow. This property

may be particularly useful to estimate the local velocity to velocity-gradient in an

unknown ambient flow, and to obtain a dispersion of Janus drops with a uniform

orientation distribution. The latter is of practical importance to the study of the

changes in the rheology of Janus emulsions with respect to the orientation of the

drops.

This investigation shows that an external force parallel to the streamlines of

the undisturbed shear flow can induce a cross-streaming velocity on the Janus drop.

This has interesting implications in a dispersion of Janus drops subject to a pressure-

driven flow. When the dispersion is forced to flow in a tube by a pressure head (con-

fined Poiseuille flow), the drops are expected to migrate away from the center to the

walls of the tube by means of an external force (e.g. gravity) parallel to the axis of

the tube. Near the center of the tube the shear-to-force ratio is small such that the

drops undergo cross-flow migration until a zone of higher shear is reached, in which

the drops rotation is fast enough to prevent further migration. It is likely that the

hydrodynamic interactions with the wall will also affect the location of drops relative

to the axis of the tube in this case. This establishes a pure hydrodynamic approach

to the separation of multiphase emulsions with potential applications in environmen-

tal remediation processes. Additionally, the tendency of Janus drops to approach

the boundaries of a tube in a pressure-driven flow can have medical applications.

For example, Janus drops can be made selective for the capture of hazardous lipids

that accumulate near the walls of blood vessels as a method to reduce cholesterol

levels, which is one of the related factors that lead to cardiovascular diseases in the

United States [160].

The rheological behavior of Janus drops has been found to share properties

with dispersions of single-phase drops and spheroidal particles. Interestingly, the
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expression of the zero-shear viscosity is analogous to that derived by Taylor [11] for

a dispersion of single-phase drops, but with a drop viscosity equivalent to the mean

of the viscosities of the pair of fluids that comprise the Janus drop, η = (η1 + η2) /2.

This corresponds to the minimum rate of viscous dissipation for this system, which

occurs when the axis of symmetry of the Janus drop is either parallel to the vorticity

axis or any of the principal axes of the rate-of-strain field. The effect of the viscosity

contrast of the internal fluids is in general small such that it can be safely neglected

in most experimental settings that have been reported in the scientific literature.

In comparison to a double emulsion (concentric drops), a dispersion of Janus drops

displays non-Newtonian behavior that derives from the anisotropic properties im-

parted by the internal fluid–fluid interface. Although this study has only considered

the rheological properties under ‘freely’ suspended conditions, it is not difficult to

apply the results to conditions in which the orientation of the Janus drops is con-

trolled by external means (e.g. magnetic field). Additionally, there would be an

anti-symmetric contribution to the bulk stress intrinsically related to the applied

torque; the fundamental relation can be found in the well-known book of Kim &

Karrila [31], such that in principle, one can still determine the zero-shear viscosity

by accounting for the contribution of the torque to the bulk stress of the dispersion.

Nevertheless, it would be interesting to compare the theory presented here to rhe-

ological measurements from experiments to advance the understanding of the rich

dynamics of multiphase emulsions.

The results of this investigation can also be useful to estimate and understand

the dynamics and rheology of other partly engulfed multiphase drops. This expec-

tation is partially supported by the experimental observations carried out by Torza

& Mason [8], where it is demonstrated that the dynamics of such drops is similar

to that of a spheroid of revolution. It follows from the findings of this study that

the zero-shear viscosity of a dispersion of partly engulfed compound drops may be
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comparable to Taylor’s result under certain circumstances. If the fluids that consti-

tute the partly engulfed drop occupy similar volumes, as for the particular case of

a Janus drop, it is likely that Taylor’s expression can be used to predict the zero-

shear viscosity. For other volume ratios the extrema of a single-phase drop and a

solid sphere are expected with a lesser influence of the internal viscosities for short

separations of the fluid–fluid interfaces.



CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

The hydrodynamic properties, dynamics and rheology of Janus drops subject

to linear ambient flows in the total absence of inertia and interfacial deformations

is analyzed in this dissertation. By bearing in mind that the typical length scales of

Janus drops in experiments are in the range 10− 500µm, it is considered a reason-

able assumption to neglect at first the effects of inertia and interfacial distortions.

Particularly, shape distortions are expected to only bring small quantitative devia-

tions to the results considered in this dissertation; thus the essence of the dynamics

and rheology of multiphase drops at low-Reynolds-number flows is well captured by

the findings of this investigation. The conditions in which inertia and interfacial

distortions are of fundamental relevance are discussed later in this chapter for com-

pleteness. Nonetheless, under these assumptions important information is derived

regarding the general properties and dynamics of multiphase compound drops in a

linear flow, which is one of the most common and simpler types of flow to generate

in practice.

In Chapter 3 the hydrodynamic behavior of a Janus drop subject to a uni-

form ambient flow has been considered under conditions where the drop remains

stationary in the laboratory reference frame. Interestingly, it is found that the drop

exhibits an anisotropic (orientation-dependent) resistance to the imposed flow is in

general independent of the viscosities of the fluids that comprise the drop; except in

the extreme cases of a Janus drop of very low (negligible viscosity drop) and high

mean viscosity (solid sphere limit) in which the behavior is evidently isotropic. This

215
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is best understood by considering the results of the drag force on the Janus drop,

which arise due to the stresses imparted by the surrounding fluid. The drag force

is found to be of greater magnitude when the undisturbed flow is parallel to the

drop axis of symmetry d in comparison to a flow in the transversal direction. This

is the first finding that demonstrates that a partially engulfed multiphase drop can

exhibit anisotropic hydrodynamic properties. The reason for this observation is that

the internal interface that bounds the pair of fluids that comprise the multiphase

drop imposes an additional resistance to the flow on account of the no-penetrability

property of the interface. The role of the internal interface on the drag force on a

multiphase drop was previously considered for double emulsions (a large drop en-

capsulating a smaller one), in which it is shown that the drag force falls between

that of a single-phase drop for a vanishingly small encapsulated drop, and a solid

sphere when there is a small separation between the interfaces of the inner and

outer drops. Due to the spherical symmetry of the double emulsion, the drag force

is always parallel to the direction of the undisturbed flow. On the other hand, the

presence of the internal interface of the Janus drop displaces the direction of the

drag force relative to the direction of the flow; this behavior is akin of a spheroid

of revolution. Particularly, a Janus drop exhibits a hydrodynamic resistance to the

uniform flow analogous to that of an oblate spheroidal particle on account of the

resistance imparted by its internal interface.

Interestingly, in Chapter 4 the analogy of the Janus drop with an oblate spheroidal

particle is observed, again, in a linear shear flow, where the torque on the drop is

of greater magnitude when the direction of the shear flow is parallel to the axis of

symmetry d. Note that for a spheroidal particle, the ability of the shear flow to

impose a torque is greater when the flow is parallel to d because in this case the

spheroid obstructs the external flow to a greater extent. (For a prolate spheroidal

particle the situation is clearly opposite because the fluid flows along the long axis.)
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From the hydrodynamic characterization studies realized in Chapters 3 and 4,

it follows that the dynamical behavior of a Janus drop is also analogous to an oblate

spheroid of revolution under ‘freely’ suspended conditions in linear shear flow. Chap-

ter 5 joins the results obtained in the mentioned chapters to analyze the behavior

of a Janus drop in a general shear flow: a combination of uniform, extensional, and

rotational flows. It is found that the Janus drop translates with the velocity of

the undisturbed flow at the free center of reaction and undergoes rotation with a

variable speed that depends on the local rate-of-strain field. Interestingly, the dy-

namical behavior of a Janus drop lies in between a slender oblate spheroid (disk-like)

for a low viscosity drop and a solid sphere for drop with a high viscosity, where the

latter extreme is the expected behavior for a spherical shaped body. In contrast to

other solids of revolution, the results of this investigation reveal no tendency of the

Janus drop to undergo a “drift” velocity due to the local rate-of-strain field as for

dumb-bell shaped bodies and the spherical cap.

The shear viscosity of a force and torque–free dispersion Janus drops in a lin-

ear shear flow is found to be given by an expression analogous to that derived by

Taylor for a dispersion of single-phase drops but with a drop viscosity equal to the

mean viscosity of the Janus drop. Interestingly, it turns out that the difference in

viscosities results in a negligible contribution to the shear viscosity. This is partly

due to the fact that the stresslet is a symmetric quantity and the viscosity contrast

produces an anti-symmetric contribution to the disturbance velocity field; evidently,

due to to this trivial argument the stresslet remains constant for small values of

the viscosity contrast. Hence the negligible contribution of the viscosity contrast

because the stresslet is the sole contributor to the bulk mechanical properties in the

infinite dilution limit and ‘freely’ suspended conditions. Deviation from Newtonian

behavior is discovered for this system and it is presumed to be associated to the

relative orientation of the drop with respect to the undisturbed velocity field, as
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for other solids of revolution. Nevertheless, this needs to be analyzed further under

more general conditions such as inertia and interparticle interactions; it is outside

of the scope of this dissertation to include those effects into the analysis. However,

the contribution is a first step towards the understanding of the mechanical proper-

ties of compound multiphase drops. The results of this investigation will be useful

when analyzing the macroscopic properties of compound multiphase drops in the

limit of vanishing inertia effects, Brownian motion, interparticle interactions, and

other influential effects. For the first time it has been shown that non-Newtonian

behavior can arise in a system consisting of non-deformable drops, which is quite

an interesting result in view of the Newtonian properties of the fluids phases in the

system. From this point onward, a number of problems of relevance to the field are

proposed based on the findings of this dissertation.

There are a number of pure hydrodynamic and multi-disciplinary problems of

relevance that can be proposed based on the findings of this dissertation. Beyond

the limits of zero Reynolds-number-flows and interfacial distortions considered in

this dissertation there is a plethora of problems that merit attention. The total ab-

sence of inertia and interfacial distortions is considered in the hydrodynamic field as

standard conditions to analyze the dynamics and mechanical properties of dispersed

fluid phases. The principal justification of the neglect of interfacial distortions at

zero Reynolds number is that the deflection of the interfaces in unbounded linear

flows (as considered in this work) are point-symmetric such that these are expected

to only bring small quantitative departures relative to the undeformed case. It is

interesting to mention that even weak inertia effects can generate new dynamics into

the picture, as it has been found for solid particles and single-phase drops; such that

it is worth a while to incorporate the effects of inertia in subsequent studies in order

to gain a broader view of the dynamics and rheology of disperse multiphase systems.

Note that this problem is not only of interest to industrial applications but also for
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the development of new technologies at the colloidal scale, in which weak inertia

effects are expected to become prominent as the field evolves further. One of the

most interesting findings is that weak inertia can induce cross-flow migration even

for solid spheres (which are isotropic in virtue) [126]. Inertia effects can cause an

inhomogeneous spatial-distribution of the particles in the dispersion that, in turn,

is reflected on the mechanical properties of the bulk. A solid starting point to make

analytical progress is to implement strategies that track the kinematical evolution

of interfaces in an analogous fashion to those used by Taylor & Acrivos [53], and

Frankel & Acrivos [53]. Leal [84] also proposes useful strategies to account for weak

inertia effects. Note that those strategies are limited to small departures in shape; to

account for greater changes in shape one needs to rely on numerical methods, such

as the boundary element method [58] and the immersed boundary method [152] to

mention a few among the various methods developed so far.

An important aspect to investigate is if weak inertia effects can lead to deter-

ministic behavior of a Janus drop under ‘freely’ suspended conditions in a linear

shear flow at low Reynolds number. This is a subject of broad implications and

of interest to colloidal physicists; the interested reader is referred to the review of

Leal [84]. Note that in the total absence of inertia there are infinitely many possi-

ble Jeffery-like orbits that the drop orientation can follow based solely on its initial

orientation in space. That is, there is no tendency of the Janus drop to consis-

tently reach the same orbit regardless of its initial orientation in the total absence

of inertia—this type of motion is categorized as indeterministic behavior. A classic

example of deterministic behavior is that of a prolate spheroid in a pure extensional

flow; for any initial orientation the spheroid tends to align its axis of symmetry with

the axis of extension of the undisturbed flow. The question of interest here is if

inertia effects, even if small, can lead to deterministic behavior such that the Janus

drop adopts a preferential orbit regardless of its initial orientation in space. This
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behavior has important implications on the rheological properties of a dispersion of

multiphase systems because there is a certain level of dissipation of energy associ-

ated to the preferential orbit. For example, dumb-bell shaped bodies under certain

circumstances have a tendency to adopt an orbit that corresponds to the maximum

energy of dissipation [90]. For disperse multiphase drops the analysis is expected to

be more involved due to changes in the drop shape induced by inertia effects. In

this case, one can anticipate that departures from the dynamical behavior exhibited

by a body of revolution (e.g. spheroid) arises due to the so-called inertial “drift”

and because of the lack of fore and aft symmetry of the flow around the drop that

tends to deform it into an asymmetrical shape.

Another problem of interest is the study of the stability of a dispersion of com-

pound multiphase drops. One of the important factors to consider is the ability of

the dispersed phase to resist coalescence [48, 135]. For example, coalescence occurs

when a pair of homologous fluid drops suspended in another fluid join to form a

larger drop, or when a drop becomes ‘absorbed’ by its bulk homologous fluid phase.

In the latter case the drop is suspended in another fluid that is in direct contact

with the bulk homologous phase of the drop via a fluid–fluid interface. As the drop

rises by buoyancy, it deforms and may ultimately rupture the interface between the

ambient fluid and the bulk homologous phase above to undergo coalescence. For a

Janus emulsion it would be interesting to study how the anisotropic properties of the

drop can affect coalescence. It is possible that under certain conditions the Janus

drop can approach the bulk fluid phase above with the non-homologous phase, and

this can potentially reduce the probability of coalescence to occur. Such a situation

is possible if the bulk fluid phase above is more viscous than the other internal fluid

phase of the Janus drop, and if the viscosity of the internal fluid phases control the

orientation of the drop as it rises by buoyancy. Since the Janus drop approaches

the fluid–fluid interface with the less viscous fluid phase it is possible that it is more
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difficult for the drop to break the interface, which may result in an increase in the

stability of the emulsion. (Note that this study is a direct implication of the dynam-

ical behavior of Janus drops in a uniform flow presented in Section 3.3.2.) There are

several parameters to consider, such as the viscosities of the three fluid phases, the

interfacial tensions, but most importantly the history of the flow from a distance far

away from the fluid–fluid interface above the Janus drop.

The problem of coalescence of a pair of Janus drops rising in a quiescent fluid is

perhaps more interesting and possibly of greater complexity due to the influence of

hydrodynamic interactions between the drops. One important parameter to consider

is the off-center distance between the drops since under certain circumstances the

hydrodynamic interactions may deform the drops in such a manner that the drops

eventually become aligned with each other; thus, increasing the chances of coales-

cence to occur, as in the case of a pair of single-phase drops [45]. It may be worth a

while to explore the interplay of viscous to buoyant effects on the orientation of the

Janus drops since it is likely to affect the dynamics of the drops; that is, whether

the Janus drops become aligned or migrate away from each other.

A pure hydrodynamic problem with several implications to coalescence phenom-

ena, particle dynamics and rheology is the problem of hydrodynamic interactions of

a pair of Janus drops in a general ambient flow. The principal factors to consider

are the interparticle distance between the geometrical centers and the relative orien-

tations of the drops. In order to reduce the number of scenarios to consider, one has

to identify fundamental problems as realized in Chapter 3 to take advantage of the

linearity property of Stokes flow to derive results for any arbitrary particle-positions

and orientations under constant flow conditions. Then, the problem can be gener-

alized to any direction of the ambient flow. It is instructive to start with a uniform

ambient flow, and then extend the analysis to simple-shear flows (Chapter 5). In

this problem it is crucial to account for deflection of the fluid–fluid interfaces on
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account of the non-uniform velocity-gradients that arise from the hydrodynamic in-

teractions. It is anticipated that the drops will exhibit richer dynamics with some

features that fall intermediate between a solid and a single-phase drop. The use of

bispherical coordinates may prove to be useful in the study of this problem. The

results of this study are expected to provide new insights on the dynamics of Janus

drops in a general ambient flow beyond the infinite dilution limit considered in this

dissertation. Ultimately, the effective viscosity for a Janus emulsion can be extended

to the order of φ2 (volume fraction) in similarity to the methodology followed by

Batchelor [95]. However, one needs to take into account as well shape distortions

absent in the cited study because it concerns rigid particles.

An important problem related to the above is that of hydrodynamic interac-

tions of a Janus drop with a solid boundary, such as a plane wall or another particle

of different size. Hydrodynamic interactions are of particular relevance to microflu-

idic applications in which confinement effects are prominent on account of the small

gap between the drop surface and the walls. The problem of a Janus drop moving

between parallel plates or in a tube is quite challenging and may not have ana-

lytical solution. The interested reader may refer to the classic book of Happel &

Brenner [20] for further reference on problems of this type that have been solved.

Nevertheless, it is more fruitful to consider the problem of a Janus drop interacting

with a single plane wall to shed some light on how it affects drop dynamics. The

use of bispherical coordinates and the method of reflections to account for short

and long-range hydrodynamic interactions, respectively, are feasible candidates to

carry out the corresponding analyses [20, 31]. Note, however, that bispherical co-

ordinates tend to have poor convergence to the solution of the flow for very short

distances between the particle and the wall. In such cases, one should rely on the

lubrication approximation [13]. A problem of relevance is that of a Janus drop trans-

lating parallel to the wall. It would be interesting to investigate if the Janus drop
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adopts a steady orientation as it translates parallel to the wall, in analogy with a

spheroidal particle [161], or if it migrates away from the wall due to the shape dis-

tortions induced by the hydrodynamic interactions, as in the case of a single-phase

drop [159]. It is probable that multiphase drops will exhibit migration lateral to

the wall but it is not so obvious under what conditions, if possible, the drop can

adopt a steady orientation. The results of such a study are of fundamental impor-

tance in several fields of current interest such as targeted-delivery, lab-on-a-chip and

related microfluidic applications [162], dynamics of swimmers and active particles

near surfaces [163–166], and can also be useful to attain a greater understanding of

the spreading dynamics of cancer cells [143].

There is a rapidly growing interest in achieving autonomous motion of parti-

cles in a viscous fluid at colloidal length scales to perform complicated tasks such

as targeted-delivery, reparation of damaged tissue, neutralization of pathogens and

cancerous tissue, etc [167]. In the scientific literature, these active particles are

commonly denoted as nanomotors. Some of the major challenges currently faced

in the field is the efficient design of nanomotors that can overcome the reversibil-

ity property of Stokes flow that makes futile reciprocal-based propulsion methods

commonly encountered in everyday experience, such as the propellers used in boats

and airplanes. To some extent, autonomous motion has been achieved by artificial

devices that mimic the swimming of microorganisms [14, 168, 169], which have been

able to realize, slowly but steadily with the passing of time, efficient propulsion in an

inertialess world. Another of the major challenges is the ability to produce directed

(unbiased) motion at the colloidal scale. For nanomotors of about 1 µm in size the

thermal fluctuations of the surrounding fluid (Brownian motion) incur in a random-

ization of the direction of motion. To overcome this issue, the nanomotor has been

embedded with a magneto-responsive material to attain motion control in a non-

invasive manner (which is particularly important in biological applications) [170];
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however, its implementation in applications that require a high degree of control

to navigate through may be limited (e.g. microfluidic networks and lab-on-a-chip).

Another strategy to overcome the stochastic effects of Brownian motion is to use

particles with an asymmetric distribution of mass such that there is a gravitational

torque on the particle that opposes that imparted by Brownian motion. This is anal-

ogous to the tumbling behavior of a Janus drop under the action of gravity considered

in Chapter 3. An advantage of using a Janus drop for achieving self-propulsion is

that the drop can be readily synthesized to be neutrally buoyant in the ambient

fluid even when the densities of the fluid phases are different. In principle, this is

simpler to realize in practice than establishing a density gradient in a solid particle.

Note that the use of a gravitational torque to resist Brownian motion implies that

the particle rises in the fluid against the gravitational field. Since this may not

always be the desired direction of motion, other strategies are needed. Nevertheless,

the inherent hydrodynamic behavior of the Janus drop makes it an ideal nanomotor

that can resist the effects of rotary Brownian motion without the aid of a gravita-

tional field. (As shown in Chapter 3, in which a Janus drop with different internal

viscosities experiences a torque that tends to align the axis of symmetry of the drop

with the direction of motion, or equivalently, with the direction of the undisturbed

streaming flow.) It is then of interest to investigate the conditions in which a Janus

drop that moves autonomously can resist the orientational fluctuations imparted by

the surrounding fluid. The conditions to achieve self-propulsion on a Janus drop

has been considered recently by Shklyaev [141], in which self-induced gradients in

interfacial tension have been shown to be sufficient to induce autonomous motion.

It is left to evaluate how efficient is the Janus drop in overcoming the stochastic

fluctuations of the surrounding fluid to maintain its direction of motion unchanged,

and how fluid-advection can affect the velocity of self-propulsion. Córdova-Figueroa

and Brady [171, 172] have established a systematical method to realize this kind of
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analysis for the so-called osmotic motor suspended in a dispersion of hard spheres,

and the implementation to the problem of interest follows from fundamental princi-

ples of conservation of species and heat transfer.



APPENDICES



APPENDIX A

A.1 Spherical cap subject to a uniform pressure field

The objective of this section is to show that the net net force imparted by a

uniform pressure field on a spherical cap, which belongs to a class of bodies that

lack fore and aft symmetry, is zero. Figure A–1 shows a spherical cap of radius

a completely submerged in a fluid with a uniform pressure distribution p∞. By

performing a force balance on the control volume (depicted by the dashed-line) that

encloses the spherical cap, one finds that the sum of the normal stresses at the

surfaces S0 and S1 must be equal to zero (there are no body forces on the spherical

cap):
∮

S0

n · σ dS +

∮

S1

n · σ dS = 0, (A.1)

where n is the corresponding unit normal vector at each surface, the fluid stress

solely arises by the uniform pressure field σ = −p∞δ (quiescent fluid), and δ is the

identity tensor.

From evident symmetry arguments the forces transversal to the z-axis on S1

are identically zero Fx = Fy = 0; thus, only the z-component of the force needs to

be calculated on S1, as shown below:

Fz =ez ·

[

∮

S1

n · σ dS

]

, (A.2)
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Figure A–1: Spherical cap subject to a uniform pressure field. The surfaces S0 and S1
denote the planar and curved surfaces of the spherical cap, respectively.

where n = er on S1, and therefore, the fluid stresses normal to S1 are readily

calculated by the following elementary steps:

∮

S1

n · σ dS =

∮

S1

er · (−p∞ erer) dS =

∮

S1

−p∞ er dS. (A.3)

Consider that ez is a constant unit vector such that it can be readily introduced

into the above surface integral to determine the z-component of the force on S1:

Fz =

∮

S1

ez · (−p∞er) dS =

∮

S1

−p∞ cos ϑ dS, (A.4)

where the scalar product has been carried out (ez · er = cosϑ) in the latter step.

By noting that dS = a2 sin ϑ dϑ dφ on S1, the surface integral now becomes:

Fz =

∫ 2π

0

∫ α

0

(−p∞ cosϑ) a2 sinϑ dϑ dφ, (A.5)

=− 2πa2p∞

∫ α

0

sinϑ cosϑ dϑ, (A.6)

=− π(a sinα)2p∞. (A.7)

It is easy to see that the factor π(a sinα)2 corresponds to the area of the circular

region S0, and that the z-component of the force on S0 is equal in magnitude but
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opposite in direction to that of S1. Thus it is shown that the net force imparted by

a uniform pressure field about a body that lacks fore and aft symmetry is zero.

The result may be generalized to a body of arbitrary shape by choosing a

convenient control volume (for example a box) that encloses both the body and

part of the fluid that surrounds it. A force balance on the control volume yields

the following relation between the forces at the outer S2 and inner surfaces S1 (the

outer surface is exposed to the surrounding fluid and the inner surface is adjacent

to the surface of the body):

∮

S1

n · σ dS +

∮

S2

n · σ dS = 0. (A.8)

As in the problem of the spherical cap, the sum of the normal stresses at the outer

surface of the control volume S2 result in a zero net force, and therefore, the sum of

the stresses at the surface of the body S1 must also be zero, as a consequence the

above relation.

In connection with the problem of Stokes flow past a solid body, from the

present results one can conclude that the magnitude of the pressure far away does

not affect the net drag force.

A.2 Stokes flow past a solid sphere - transformation of the boundary
value problem

It is convenient to start by transforming the undisturbed flow far away from

the solid sphere in terms of the stream function ψ(r, ϑ). From the ur,∞ and uϑ,∞

components it is found that

∂ψ

∂ϑ
= −u∞ r2 sinϑ cosϑ,

∂ψ

∂r
= −u∞ r sinϑ, as r →∞, (A.9)
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respectively. By carrying out the integrations with respect to the corresponding

dimension one finds that:

ψ(r →∞, ϑ) =− 1

2
u∞ r2 sin2 ϑ+ A(r), (A.10)

ψ(r →∞, ϑ) =− 1

2
u∞ r2 sin2 ϑ+B(ϑ). (A.11)

Note that both expressions are consistent if the constants of integration are equal to

some constant value (A(r) = B(ϑ) = 0) that may conveniently be set equal to zero.

Therefore, the far field condition expressed with respect to the stream function now

reads:

ψ(r, ϑ) = −1
2
u∞ r2 sin2 ϑ, as r →∞. (A.12)

Before transforming the remaining boundary conditions, it is useful to propose

that the appropriate form of the stream function in this problem is:

ψ(r, ϑ) = f(r) sin2 ϑ. (A.13)

Transformation of the no-penetration condition (ur = 0) dictates that:

∂ψ

∂ϑ
= 0, at r = a. (A.14)

Imposing this condition on the general form of the stream function results in the

following expression:

∂ψ

∂ϑ
= f(r) (2 sinϑ cos ϑ) . (A.15)

For the above expression to be zero, the stream function must satisfy:

ψ(r = a, ϑ) = 0, (A.16)

because 2 sinϑ cosϑ is an ‘arbitrary’ function of ϑ. (Note that the condition must

be met at every angle, which in general has an arbitrary value).



231

Transformation of the no-slip condition uϑ = 0 at the surface of the sphere

yields directly the following expression for the stream function:

∂ψ

∂r
(r = a, ϑ) = 0. (A.17)

This concludes transformation of the boundary conditions for the problem of

Stokes flow past a stationary solid-sphere.



APPENDIX B

B.1 Representation of three-dimensional velocity fields for β = π/2

For β = π/2, we represent the harmonic functions χ, p, and Φ in the surround-

ing fluid as follows:

χ(0) =

∞
∑

n=1

Hnr
−n−1P (1)

n (θ) sinφ, (B.1a)

p̄(0) =

∞
∑

n=1

2(2n− 1)

n + 1
Enr

−n−1P (1)
n (θ) cosφ, (B.1b)

Φ(0) =
∞
∑

n=1

En

n+ 1
r−n−1P (1)

n (θ) cosφ. (B.1c)

This leads to the following expression for the velocity of this fluid:

v(0)r =
∞
∑

n=1

EnP
(1)
n (θ)(r2 − 1)r−n−2 cosφ− L(r) sinϑ cosφ, (B.2a)

v
(0)
ϑ =

∞
∑

n=1

{

EnQn(θ)

n+ 1

(

n− 2

n
r2 − 1

)

+HnP
′
n(θ)r

}

r−n−2 cosφ (B.2b)

−M(r)θ cosφ,

v
(0)
φ =

∞
∑

n=1

{

EnP
′
n(θ)

n+ 1

(

n− 2

n
r2 − 1

)

+HnQn(θ)r

}

r−n−2 sinφ (B.2c)

+M(r) sinφ.
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Inside the drop the Lamb functions are the following

χ(1,2) =

{

∞
∑

n=1

A(1,2)
n r2nP

(1)
2n (θ) + η2,1

∞
∑

n=0

Gnr
2n+1P

(1)
2n+1(θ)

P ′
2n+1(0)

}

sin φ, (B.3a)

p̄(1,2) =
∞
∑

n=0

B(1,2)
n

2(4n+ 5)

2n+ 1
r2n+1P

(1)
2n+1(θ)

P
(1)
2n+1(0)

cosφ

+η2,1

∞
∑

n=1

Dn
2(2n+ 1)(4n+ 3)

2n+ 3
r2n

P
(1)
2n (θ)

Q2n(0)
cosφ, (B.3b)

Φ(1,2) = −
{

∞
∑

n=0

B
(1,2)
n

2n+ 3
r2n+3P

(1)
2n+3(θ)

P
(1)
2n+3(0)

+ η2,1

∞
∑

n=1

Dnr
2n+2 P

(1)
2n+2(θ)

Q2n+2(0)

}

cosφ

+

{

∞
∑

n=0

Fnr
2n+1P

(1)
2n + η2,1

∞
∑

n=0

Gnr
2n+2 P

(1)
2n+2

Q2n+2(0)

}

cosφ. (B.3c)

Therefore the velocity fields can be written as

v(1,2)r =

∞
∑

n=0

(

B(1,2)
n

{

P
(1)
2n+1(θ)

P
(1)
2n+1(0)

− P
(1)
2n+3(θ)

P
(1)
2n+3(0)

}

r2 + (2n+ 1)FnP
(1)
2n+1(θ)

+η2,1(2n+ 2)Gn

P
(1)
2n+2(θ)

Q2n+2(0)
r

)

r2n cosφ

+η2,1

∞
∑

n=1

Dn

{

2n(2n+ 1)

2n + 3

P
(1)
2n (θ)

Q2n(0)
− (2n+ 2)

P
(1)
2n+2(θ)

Q2n+2(0)

}

r2n+1 cosφ, (B.4a)

v
(1,2)
ϑ = −

∞
∑

n=0

(

B(1,2)
n

{

n + 2

(2n+ 1)(n+ 1)

Q2n+1(θ)

P
(1)
2n+1(0)

− 1

2n+ 3

Q2n+3(θ)

P
(1)
2n+3(0)

}

r2 + FnQ2n+1(θ)

−η2,1Gn

{

P ′
2n+1(θ)

P ′
2n+1(0)

− Q2n+2(θ)

Q2n+2(0)

}

r

)

r2n cosφ

+
∞
∑

n=1

(

A(1,2)
n P ′

2n(θ)− η2,1Dn

{

Q2n(θ)

Q2n(0)
− Q2n+2(θ)

Q2n+2(0)

}

r

)

r2n cosφ, (B.4b)

v
(1,2)
φ = −

∞
∑

n=0

(

B(1,2)
n

{

n + 2

(2n+ 1)(n+ 1)

P ′
2n+1(θ)

P
(1)
2n+1(0)

− 1

2n+ 3

P ′
2n+3(θ)

P
(1)
2n+3(0)

}

r2 + FnP
′
2n+1(θ)

−η2,1Gn

{

Q2n+1(θ)

P ′
2n+1(0)

− P ′
2n+2(θ)

Q2n+2(0)

}

r

)

r2n sinφ

+

∞
∑

n=1

(

A(1,2)
n Q2n(θ)− η2,1Dn

{

P ′
2n(θ)

Q2n(0)
− P ′

2n+2(θ)

Q2n+2(0)

}

r

)

r2n sinφ, (B.4c)

Here again Qn = θP ′
n − n(n+ 1)Pn.
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These representations of velocity fields automatically satisfy the Stokes equation

and boundary conditions at the internal interface, if

[Bn] =
(n + 1)(2n+ 1)2(2n + 3)2

4n+ 5
P2n(0)[An+1],

where, again, [f ] = f2 − f1. In addition, v
(0)
r vanishes at r = 1.

Substituting this ansatz into remaining boundary conditions at r = 1 and pro-

jecting these conditions on P
(1)
n , one obtains the set of linear equations for the

coefficients A
(1,2)
n , B

(1,2)
n , Dn, En, Fn, Gn, and Hn. This set of equations is solved

numerically.

It should be emphasized that the convergence of the series is rather slow because

of the presence of jump in the viscosities at ϑ = π/2. In order to improve the

convergence and to suppress the oscillations of the coefficients for large n, these

harmonics have to be considered separately. Such an analysis results in the following

asymptotics valid at large n:

A(1,2)
n ∼ (−1)nn−7/2, [A(1)

n ] ∼ (−1)nn−13/2, B(1,2)
n ∼ n−2, (B.5a)

[B(1)
n ] ∼ n−3, Dn ∼ n−2, Fn ∼ (−1)nn−9/2, Gn ∼ n−3, (B.5b)

(E2n, E2n+1) ∼ (−1)nn−5/2, (H2n, H2n+1) ∼ (−1)nn−5/2, (B.5c)

where according to notations accepted in the paper [An] = A
(2)
n − A(1)

n and [Bn] =

B
(2)
n −B(1)

n . These asymptotics must be taken into account when the series are cut;

for instance, one can set H2N+1 ≈ −H2N−1 instead of simple vanishing H2n+1 at

n ≥ N . This procedure improves the convergence to a great extent.

The total force exerted on the drop (in the same units, η̃0aU) can be expressed

as follows:

Fx = 2π(3− E1), Fz = 0, (B.6)
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whereas for the y-component of the torque one obtains

Ty = −8πH1. (B.7)

B.2 Simplification of the velocity fields for β = π/2 at small [η]/η

Let us briefly discuss the simplification of the general solutions given in Ap-

pendix B.1 at small [η]/η. At the zeroth order with respect to this ratio the solution

is given by Eq. (3.17), which corresponds to F0 = −E1 = ∓B(1,2)
0 = µ, F1 = 2µ/9

in Equations (B.2) and (B.4), whereas the rest of coefficients vanishes.

The solution u(j) at the first order is provided by the same formulas, Equa-

tions (B.2) and (B.4), with the symmetry properties following from Eq. (3.19):

Fn = E2n+1 = H2n = 0, A(1)
n = −A(2)

n = An, B
(1)
n = −B(2)

n = Bn.

In particular, from E1 = 0 and Eq. (B.6) one can conclude that the first correction

to the velocity field u(j) does not provide a correction to the force imposed onto the

drop.

As one can see, the representation of the velocity corrections u(j) contains half of

the coefficients appearing in the general case. Indeed, one can satisfy the boundary

conditions at r = 1 only for ϑ ≤ π/2, the boundary conditions for ϑ > π/2 are met

automatically due to the symmetry condition, Eq. (3.19).

Again, at large n the problem has to be analyzed separately in order to improve

the convergence of the series. This provides

An ∼ n−13/2, Bn ∼ n−3, Dn ∼ n−2, Gn ∼ n−3, E2n ∼ (−1)nn−5/2, H2n+1 ∼ (−1)nn−7/2,

which is closely related to Eq. (B.5).
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