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A novel variational method using level sets that incorporate spectral angle distance in the 

model for automatic target detection is presented. Algorithms are presented for detecting 

both spatial and pixel targets.  The new method is tested in tasks of unsupervised target 

detection in hyperspectral images with more than 100 bands, and the results are compared 

with a widely used region-based level sets algorithm. In addition Texture and spectral 

information are incorporated into level set equation for extracting large targets placed on 

images The proposed method is also adapted for supervised target detection and its 

performance is compared with traditional orthogonal subspace projection and constrained 
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signal detector for the detection of pixel targets.  The method is evaluated with different 

complexity such as noise levels and target sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv 

Resumen de disertación a la Escuela Graduada 
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IMAGES USING LEVEL SETS 

Por 

Andres Alarcon Ramirez 

Julio 2009 

 

Consejero: Vidya Manian 

Departamento: Ingeniería Eléctrica y de Computadores 

 

Un novedoso método que utiliza Level set y que incorpora distancia espectral angular en la 

detección automática de objetivos es presentado. Distintos algoritmos fueron desarrollados 

para la detección de objetivos que tienen tamaño de pocos pixeles y otros de mayor tamaño. 

El nuevo método es probado en tareas de detección de objetivos no-supervisados en 

imágenes hiperespectrales con más de 100  bandas, y los resultados son comparados con 

otras técnicas de level set basadas en regiones que han sido ampliamente utilizadas. 

Adicionalmente información espectral y de textura es incorporada en la ecuación de level set 

para la extracción de objetos grandes situados en una imagen. El método propuesto es 

también adaptado para la detección supervisada de objetivos, y su rendimiento es comparado 
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con algoritmos de proyección del sub-espacio ortogonal y detección de señales restringidas 

para la detección de objetivos de pocos pixeles. El método es evaluado con diferentes niveles 

de ruido y tamaño de objetos.  
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1 INTRODUCTION 

 

 

Hyperspectral images are characterized by hundreds of narrow and contiguous spectral bands; they 

have been successfully used for tasks of material identification, material mapping and target 

detection, mainly because they provide information necessary for more detailed image analysis. 

Automatic Target Detection/Recognition (ATR/D) algorithms try to locate both known and un-

known objects in an image. Generally the sizes of the targets are considerably less than the 

background.  ATR/D methods are applied in the areas of defense, security, sensing, biomedical and 

surveillance. 

Three different approaches for target detection are defined in [20].  In the first, the spectral 

composition of the observed pixels (full pixels or mixed pixels) is taken into account; the second 

approach involves mainly adaptive matched filters which locate spectral targets by modeling scene 

background as either structured (geometric) with a set of end members (basis vectors) or as 

unstructured (stochastic) with a covariance or correlation matrix;  the algorithms that belong to the 

last approach uses the available a priori information about target or background classes. Some of 

them are based on projection pursuit methodologies [19] to determine automatically the low-

dimensional projections of such data sets that best highlight the interested target in an image.  

 

Level set is a relatively new technique used widely for segmentation of both gray scale and color 

images. In [1] level set is used together with best band analysis (BBA) to classify hyperspectral 
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images of urban and rural nature.  In [2] a semi-automated supervised hyperspectral image 

segmentation algorithm using level set is presented. However, this method has not been applied for 

target detection.  

The classic models for level sets have been focused on either region-based approaches or edge-based 

approaches. This work explores both spatial and spectral information for target detection in 

hyperspectral images.  

The proposed algorithm for target detection could have a wide use in defense due it can be applied 

for detecting military targets remotely. Additionally the proposed algorithm can be easily adapted 

for anomalies detection in biomedical images, which is very useful in an early diagnosis of several 

types of cancer.     

1.1 Objectives 
 

The main objectives of this work are as follows: 

 

 Adapt the technique of level set for detection of both small and large targets. 

 Detection of multiple targets in an image. 

 Incorporate spectral angel distance (SAD) to the level set evolution equation to couple 

the spectral information presents in hyperspectral images. Use other spatial information 

such as texture for eliminating false alarms and increasing detection rate. 

 Validate the algorithm in both synthetic and remote sensing images.  

 Compare the performance of the proposed algorithm with other techniques used for target 

detection. 
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1.2 Contributions of this work 
 

 

The main contribution of this work can be viewed as the following: 

 A modified level set model which can be used in hyperspectral images by using both spectral 

and texture information for target detection task. 

 A supervised and unsupervised method for target detection in hyperspectral image which 

incorporates level set. 

 An evaluation of the proposed algorithm with different target/background image scenarios. 

 

1.3 Thesis Overview 
 

 

This Thesis is organized as follow, Chapter II presents the state of the art of target detection 

algorithms and a level sets approach, Chapter III describes both the algorithm for large target 

detection using spectral and texture information and the algorithm for small target detection. In 

addition an unsupervised target detection methodology for detecting multiple targets by using level 

sets and texture features is presented, Chapter IV presents results and their discussion, finally 

Chapter V presents conclusions and future work. 
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2 LITERATURE REVIEW 
 

 

 

2.1  Hyperspectral Images 
 

 

In recent years the capability of generating hyperspectral images with several spectral bands has 

increased. In addition hyperspectral imagers offer high spectral resolution that allows recovering 

important characteristics of distinct objects placed on the scene of interest. The basic principle is that 

objects reflect, absorb, and emit electromagnetic radiation in ways characteristic of their molecular 

composition and shape. The spatially and spectrally sampled information is typically visualized as a 

cube, whose face is a function of the spatial coordinates and whose depth is a function of spectral 

band (See Fig. 2.1).   

 

 

 

Figure 2.1 Characteristics of Hyperspectral Image. Image Courtesy [20]. 
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In the wavelength dimension, each image pixel is a vector that provides a spectrum characterizing 

the materials within the pixel. Conversely, the data in each band corresponds to a narrow band image 

of the surface covered by the field of view of the sensor. This has lead to numerous applications, 

especially in the recognition of materials spread out over the Earth‟s surface and target detection. 

 

2.2 Target Detection 
 

Target detection can be studied from two different ways:  unsupervised and supervised target 

detection, the first one is known as well as anomaly detection and it refers to extract pixels in the 

image that are different from all other pixels. Supervised target detection attempts to locate pixels 

containing a material of known spectral composition. Target detection has many applications, 

including military reconnaissance and environmental studies. Searching for the presence of a 

specific material over a large area poses many practical difficulties. The prospect of using remotely 

sensed HSI to perform this task in an accurate and timely manner has driven the research community 

to generate many different types of target detection algorithms. 

  

2.3 Target detection algorithms 
 

In [3] Shao-Shan and Chein have proposed an unsupervised method using Projection Pursuit, in 

which the original data is projected to another space conserving its most important characteristics.  

The target is viewed as an “outlier” of the background distribution due to the fact that small objects 

in a background can be regarded as anomalies in an image.  The third and fourth moments 

(Skewness and Kurtosis) are used for the projection due to their ability to measure outliers. Similar 
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approximation was done by Robila and Varshney [4], using Independent Component Analysis (ICA) 

instead of Projection Pursuit. It transforms the mixed signals into components that are mutually 

independent that allow to recover a target from the background.  A Faster algorithm (FastICA) was 

proposed in [27], which results in better results in terms of accuracy and computational complexity. 

 

Traditional supervised subspace projection methods use the concept of mixed pixels in hyperspectral 

images, where the spectral signature of materials that constitute both the target and the background 

are defined beforehand. Orthogonal Subspace Projection (OSP) is one of the first techniques that 

could separate the desired target signature from the undesired background signature by a linear 

model [5] that define a pixel r according to the following equation, 

 

r=dαp+Uγ+n     (2.1) 

 

where d is the target material spectrum of L dimensions, U is a matrix of size LxP which represents 

the background spectrum of P materials present in it, n is the stochastic noise vector; αp is the 

proportion of the target material that is present in the pixel r, in the same way γ is a vector which 

have the contributions of different materials that constitute the background. The terms αp are 

determined by the following equation, 

 

dPd

rPd

U

T

U

T

p
**

**






    (2.2)

 

Where 

UP is defined as, 
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  TT

U UUUUIP
1 

   (2.3)
 

 

 A threshold is used to determine the amount of material in a pixel (abundance), based on which the 

target class is assigned to that pixel.  Another method called Constrained Signal Detector (CSD) has 

been used in target detection and abundance estimation, mainly when there is a background with 

only one type of material.  Gaussian noise is assumed here as in OSP, but CSD is derived using CLS 

(Constrained Least Squares) or constrained maximum-likelihood estimates of the target abundance 

[6] in the generalized likelihood ratio test. The factor αp that determine the abundance of a material 

is defined by the following equation, 

 

   
 2*1****

*1**1*****

dCudPdCuCu

rCudCurPdCuCu

T

U

TT

TT

U

TT

p












                  (2.4)

 

 

Where the term PU is determined by the Equation (2.3) and CU is given by, 

 

1)( 1 UUUC T

U    (2.5) 

 

In [25] constrained kurtosis maximization (CMK) is used for automatic target detection in 

hyperspectral images. The background is modeled as Gaussian distribution and targets correspond to 

the deviation of the distribution by using an optimization technique based in the fourth central 

moment that measures the flatness of a distribution and modeling the targets as anomalies that 
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commonly have a small size and occupies only a few pixels. The CMK is compared with 

unconstrained kurtosis maximization algorithm and the first one result in a higher detection rate and 

can recover smaller targets. 

 

In [28] a hybrid method for target detection is used, when the target size is smaller than a pixel; the 

authors present a technique that is based on spectral information using statistical and physics-based 

approaches.  

 

Spectral Matched filters are introduced in [31] for target detection in hyperspectral imagery by using 

target signature and background clutter covariance matrix. The goal is to design a linear filter with 

coefficients that minimizes the filter output energy subject to constraints.  

 

The idea of kernel-based learning and matched subspace detection filters are combined in [13][30] to 

develop a new nonlinear subpixel target detection method for hyperspectral imagery . They use the 

fact that performing matched filtering in a non-linear feature space of high dimensionality increases 

the probability of getting better results.  

 

The idea of regularization is incorporated in matched filters for target detection in hyperspectral 

imagery in [29]. The regularization smoothes the coefficient of the filter and forces it to become 

more stable and have better performance than non-regularized adaptive spectral matched filters. 
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2.4 Variational Level Set methods 
 

 

Level set was used in images for first time by Malladi [10] to solve the problem of shape recovery; it 

places a closed, hypersurface inside (or outside) of the object of interest. The hypersurface is defined 

as. 

 
 

   

    























2

1

,,,

,,,

,0

,

RyxSyxD

RyxSyxD

Syx

yx
                               (2.6)

 

Where D((x, y), S) computes the minimum Euclidean distance between the grid pixel (x, y) and the 

shape contour S,  R1 and R2  are  the region inside and outside of the shape contour respectively. The 

shape contour S is represented generally by circles; however other geometric shapes can be used 

(rectangles, triangles, etc). The graphical representation of  (x, y) is showed in the following Figure. 

 

 

 

Figure 2.2 Level Set Surface 
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The surface  (x, y) follows an equation of difference that is defined as. 

 

 
         yxyxIgyxk

t

yx
,*,*,

,








                       (2.7) 

 

Where  is a constant used to accelerate the evolution speed, g is a unique parameter that depends on 

the image itself, in addition it denotes a stopping function, i.e. a positive and decreasing function of 

the image gradient and is given by the following equation. 

 

 d
yxIG

yxIg
,*1

1
),)((


                                             (2.8) 

 

The term 
 

 yxIG ,*  is the gradient applied to the smoothed image with a Gaussian filter of 

standard deviation σ.  K (·) denotes the mean curvature of the level set function  yx,  and is given 

by,  

  
 
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
















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yx
divyxK

,

,
,




               (2.9) 

 

The curvature term k (·) maintains the regularity of the contours, while the constant term v 

accelerates and keeps the contour evolution by minimizing the enclosed area.  The hypersurface is 

updated according to the following equation, 
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t
t







 *          (2.10) 

 

The procedure described above is repeated many times until an object is encircled.   The boundary at 

any time is located at  (x, y) =0.  

 

This hypersurface flows along its gradient field with a speed F (K), where K is the curvature of the 

hypersurface. Unknown shapes are recovered by making the front adhere to the object boundaries. 

 

The use of Level Set in multi-spectral images has been investigated by Sarpio [9], where the 

function g(I (x,y)) is replaced for the following one: 
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  and   are the matrixes with the maximum and minimum eigenvalues respectively, calculated 

by the following expression: 
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where Ib denotes the b-th band of the multispectral image I(x, y). In the case of gray scale images,  

λ+=| I | and λ- =0, so the stopping function shown in Equation (2.11) become identical to Equation 

(2.8). 

 

Other modifications to the original evolution equation were presented by Chunming [10] as follows. 
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Where ∆ is the Laplacian operator , and µ, λ, v; are constants.    Is the Dirac function given by 

the following equation. 
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In Equation (2.13) the second and third terms are responsible for bringing the level set surface 

towards the object‟s borders whereas the first one determines the shape the surface takes.  

 

Aiming to use image texture information, Chan and Vese [14] proposed a piecewise-constant 

technique that moves deformable contours presented in the level set surface by minimizing the 

energy function instead of searching for edges. The energy function measures the difference between 
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the piecewise-constant and the actual image intensity at every image pixel. The level set evolution 

equation is given by, 
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where μ0 and μ1 respectively denote the mean of the image intensity within the two subsets, 

i.e. the outside and inside of contours. 

 

In [15] a level set model minimizing an energy criterion involving both region and boundary 

functional is proposed. These functionals are derived through a shape derivative approach instead of 

classical calculus of variation. 

 

Other techniques use probability in the evolution function of level set [16][17],  as the following 

equation shows, 
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where p1(u(x,y)|{µ1,Σ1}) and p2(u(x,y)|{µ2,Σ2}) are the probability density function that a pixel placed 

location (x,y) is inside or outside the border respectively.   
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The probability density function is a multidimensional Gaussian normal density with mean u and 

covariance σ.  To apply this technique to multiband images, we assume independence between every 

band such that. 
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where B represents the number of bands that constitute  the image. 

 

Applying logarithm to the probabilities in Equation (2.16) gives, 
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(2.18) 

 

This represents the Mahalanobis distance, which can be replaced in Equation (2.16) as shown below, 
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Level set has been used successful in both de-noising and segmentation of gray and color images 

[7][8][9], there are a few works that have been made use of it in hyperspectral images. [33] Presents 

a supervised hyperspectral classification procedure that applies Distance-Based Segmentation along 

with Best-Band Analysis (BBA) to subsequently use level set in order to smooth a surface of 
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classification and make it more homogenous. Two hyperspecteral images of urban and rural 

environments are used for classification.  

 

In [23] both Level Set and Gabor filter are used for textures segmentation, the Gabor filter is applied 

to the image to transform it into a new space and then level set is applied to extract object placed 

into images. In addition several scales and orientations are used for Gabor filter; the results show 

that combining boundary and region information yields more robust and accurate texture 

segmentation results. 

 

Level Set have been used with others techniques for image classification task [32]. For instance 

Wavelet transform and level set are used for supervised classification of grayscale images. The 

Wavelet transform is used to characterize texture. Then the level set uses this information to encircle 

the object to be classified.  

 

The Kullback-Leibler divergence which is a similarity measure between distributions was used 

instead of Euclidean distance in the level set equation [24]. This approximation was applied for 

unsupervised texture segmentation in gray scale images. 

 

This work involves modification of Equation (2.19) and adapting it for unsupervised and supervised 

target detection in hyperspectral images incorporating spatial and spectral information. 
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3 Automatic Target Detection Methods 
 

3.1 Hyperspectral Data  
 

The problem of target detection is treated from two perspectives: supervised and unsupervised target 

detection.  In the first case a set of images captured by SOC700-VS camera with a spectral 

resolution of 2nm for a wavelength range from 400 nm to 1000 nm is used.  The sizes of the images 

are of 97 by 183 pixels and 120 bands. The image is composed of background and target, the target 

pixel is mixed with the background according to the following equation [18]. 

 

  nBTxxf  *)1(*, 21                           (3.1) 

 

where α is the fractional mixing level, T is the target signature, B is the background signature and n 

is the zero mean Gaussian noise. Images with targets of 1 pixel, 9 and 16 pixels are generated with 

several values of α. The same procedure will be developed with hyperspectral images capture for a 

remote sensor.   

 

In the same way for unsupervised target detection is constituted a set of synthetic image captured by  

SOC700-VS camera, with distinct geometric figures on a background. The image size is 276 by 155 

pixels with 120 bands.  In addition some available hyperspectral images with target of several pixels 

will be taking into account for evaluating the performance of the proposed algorithms.  The targets 
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compose of pure pixels are named as large targets, whereas the targets mixed with background 

information are named as small targets or subpixels [39], therefore different methodologies are 

developed for resolving these issues. 

3.2 Unsupervised target detection methodology 

 
 

The unsupervised target detection algorithm is presented as a block diagram in Figure 3.1. 

  

Figure 3.1  Block diagram for unsupervised target detection algorithm 

 

The algorithm for automatic target detection is composed of three steps. In the first one the 

dimensionality of the input hyperspectral image is reduced by a technique of band subset selection 

like principal component analysis which transforms the original data to other subspace of less 

dimensionality, where the data is more uncorrelated.  

In the second step, the level set technique is applied to the reduced data with the idea of encircling 

the target of interest. The spectral angle distance (SAD) is used instead of the Mahalanobis distance 
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in the level set evolution equation (2.19). The SAD between two vectors (ri, rj) is defined by the 

following equation, 
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where N represents the size of the vector.  Introducing Equation (3.2) into Equation (2.19), we get 

the following equation, 
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where, u2 represents the mean vector of the pixels inside of the region defined by   (t, x, y) is 0,  u1 

represents the mean vector of the pixels outside of the region defined by   (t, x, y) is 0, β is a 

constant that defined the speed of convergence of the surface   (t, x, y).  The new differential 

equation avoids calculating the inverse matrix that is necessary in Equation (2.19) and also allows 

the coupling of the information present in the different bands more efficiently.   

 

3.2.1 Unsupervised target detection using texture and 

spectral information. 
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Texture features are calculated from the hyperspectral image with the purpose of improving the 

performance of the algorithm, and then replacing in the Equation (3.3) every pixel of the image I(x,y) 

by the set of features calculated for every pixel. The SAD can be calculated directly on the image 

using its spectral information; however a set of features which are extracted from the original image 

are used in Equation (3.3) with the purpose of recovering not only spectral but also texture 

information, in that way the original image is replaced by feature images.  

 

Several texture features are widely used in segmentation and classification task [35] [36], in this 

work 15 features are selected, 3 of which are of edges detection, and the remainder of texture. The 

features selected are the followings: 

Entropy:  It measures the information content in a probability distribution. The data is modeled as a 

Gaussian distribution such that it is normalized with a mean of 0 and a standard deviation of 1. 
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where M(i,j) represents the norm of the pixel in (x,y) coordinates. 

Inverse Difference Moment: IDM is the measure of local homogeneity. 
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Skewness: It measures the asymmetry of a probability distribution.   
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Where 


X represents the mean vector, N is the number of pixels in the windows to be considered.  

The former equation was modified to be used in Hyperspectral image: 
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where SAD represents the spectral angle distance between two vectors, and   SAD  is given by: 
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Kurtosis:  It is the normalized fourth order moment and is a measure of the heaviness of the tails in a 

distribution. 
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The SAD was incorporated in Equation (3.9) to be used in Hyperspectral Images, as shown in the 

following equation: 
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Eighth moments is given by: 
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Where 20  p and 20  q , M(i,j) represents the norm of the pixel in (x,y) coordinates. 

The features used for edge detection are listed in the following table. 

 

 

Table 3.1 Edge feature calculated in Hyperspectral images. 

 
Feature for edge detection Features to be used in Hyperspectral Images 

Average deviation of gradient magnitude: 
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Average deviation of gradient magnitude for HSI: 
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Average deviation of the vertical directional Average deviation of the vertical directional residual 



 

 36 

residual: 
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for HSI: 
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Average deviation of the horizontal 

directional residual: 
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Average deviation of the horizontal directional 

residual for HSI: 
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The spectral information of every pixel is replaced by 15 features which are calculated by masks of 

sizes 3x3 that are moved through the image, the block diagram can be seen in the following image. 
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Figure 3.2  Block diagram for unsupervised target detection algorithm using texture 

information 

 

 

 

Level Set is applied to the new images to generate a binary image where the target is extracted from 

the background, firstly a threshold to zero is applied to the matrix defined by    (t, x, y), where the 

negative values determine the background and the positive ones the target, the zero positions define 

the borders between the target and the background.  

Additionally, morphological operations are used to eliminate small regions that are wrongly detected 

by the level set technique.  There are two basic morphological operators: dilation and erosion. A 
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function  f represents the image; N  is the structuring element, and Nz the translation of the set N by 

a point z.  The morphological erosion of f by N and dilation is defined by the following equation, 

 

  y
Ny

z ffNzErosion 

 :

 

   y
Ny

z ffNzDilatation 

 :

                                                            

(3.12) 

The combination of erosion and dilation constitute opening (erosion followed by dilatation) and 

closing (dilation followed by erosion) which are applied for eliminating false detections.    

The proposed algorithm can be summarized by the followings steps: 

Step 1) Calculate the texture and spatial features on HSI. A set of Masks of 3x3 are move through 

the image for calculating texture information. The hyperspectral information is transformed to a new 

data set where the bands of the image are replaced by 15 texture features. 

Step 2) Applying SAD-Level set to the image of features. The level set surface encircles the objects 

present in the new data set; it evolves through time by using the equation 3.3.  

Step 3) Creating a binary image for extracting the positions in level set surface with negative values. 

The positions where the matrix that represents the level set surface are negative will be set zero, 

whereas the positions with positive values will be set one. 

Step 4) applying morphological operator to the binary image generated in the former step. Apply 

the erosion operator followed by a dilation operation in the binary image to eliminate small artifacts. 

 

 

3.2.2 Algorithm for anomalies detection 
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Automatic target detection can be seen as anomalies detection in some applications where the targets 

occupy a few pixels in an image, in this work a new methodology which incorporate Level Set and 

others techniques to extract automatically small targets in an image is proposed. This methodology 

can be seen in the following image. 

       

 

 

Figure 3.3 Block diagram for unsupervised algorithm of small targets 

 

Kurtosis has been used widely in target detection [3][25], mainly because of its properties to 

enhance pixels whose values are far from the mean value of all pixels belonging to the image. 
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Kurtosis is calculated on HSI to generate a new image of the same size as the original image but 

with the characteristics previously mentioned.  

 

SAD-Level Set is used to extract the targets in the new image that is produced by applying the 

Kurtosis operator. Then the pixels whose positions on the Level set surface   (t, x, y) have negative 

values are labeled as background whereas the pixels with positive values are recovered in a new 

binary image as possible targets. The extracted pixels are grouped with all possible pixels recovered 

that are connected by their nearest eight-neighbors. 

  

In the groups of pixels recovered not only are the targets but also some objects of small and large 

size that belong to the background (false positives), that is presented mainly in images whose 

background is not uniform and where there are distinct materials. Therefore a post-processing step is 

necessary to eliminate false positives. The objects of large size are eliminated by thresholding the 

number of pixels that constitute the distinct groups recovered, due to the fact that the size of targets 

generally are of a few pixels.  

 

The small objects that are not targets are eliminated by using level set in its supervised manner. The 

average spectral signature of all the pixels that constitute a specific group is passed to level set. For 

each group level set on the image is applied to recover the pixels that are spectrally closer to the 

spectral signature of a particular group. Then a binary image with the objects extracted is generated. 

Only the groups whose binary images have objects of small size are recovered and labeled as targets.  

The proposed algorithm can be summarized by the followings steps: 
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Step 1) Set ε and β. The parameter ε is an integer that represents the larger target (number of pixels) 

that can be detected by proposed algorithm, in the same way the parameter β is an estimation of the 

amount of pixels that belong to a particular type of target.       

Step 2) Calculate Kurtosis on HSI using (16). The hyperspectral information is transformed to a new 

data set where the targets are highlighted. Kurtosis is a feature used widely for enhancing the 

outliers in a data set.  

Step 3) Applying SAD-Level set to the image generated after applying kurtosis operator. The level 

set surface encircles the targets present in the new data set; it evolves through time by using the 

equation 3.3.  

Step 4) Generating a binary image by extracting the position in level set surface with negative 

values. The positions where the matrix that represents the level set surface are negative will be set 

zero, whereas the positions with positive values will be set one. 

Step 5) Grouping pixels in the binary image by using their nearest eight-neighbors. The positions in 

the binary image with values of zero are discarded; whereas the pixels with values of one are 

grouped with those pixels that are especially connected in the binary image.  

Step 6) for each group do, if the size of group> ε, discard group, otherwise recover it in another 

binary image. The groups that fulfill the former condition are recovered in a binary image, whereas 

the others are discarded. 

Step 7) For each group recovered in the former step, calculate its average spectral signature, and 

passing it to level set to be applied on HIS  in a supervised manner. The supervised level set 
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algorithm is applied to the whole hyperspectral image for generating a binary image, in that way for 

each groups of pixels previously extracted a binary image is generated.        

Step 8) if the number of pixels extracted in the former step is larger than β, discard pixels, otherwise 

label them as targets. 

 

3.3  Supervised target detection methodology 
 

The supervised target detection algorithm is presented as a block diagram in Figure 3.4. 

 

Figure 3.4  Block diagram for supervised target detection algorithm 

 

The algorithm is composed by two steps, in the first step the level set technique is applied to the 

hyperspectral image constitutes by a background and a target which generally has a few pixels. The 

level set evolution equation almost follows the same structure used in unsupervised target detection 

with the difference that additional information of the target is required. 
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According to [14] the tasks of extracting an object placed in an image can be seen as the 

minimization of the following “fitting” energy functional with a length regularization term: 
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            (3.13)

 

 

where   represents the level set surface given by Equation (2.6), µ is a constant and  u is the image 

to be processed.  H( ) is the regularized function defined as: 

 

  




















z
zH arctan

2
1

2

1
                  

(3.14)

 

 

The term ε is a constant, and when ε→0, the regularized version of Heaviside converge to its 

standard form. On another hand the Heaviside function allows to separate the pixels which are 

placed inside and outside the zeros loop defined by the level set surface.  The graphical 

representation of Heaviside function is shown in the following image. 
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Figure 3.5  Graphical representation of the Heavise function 

 

The first term in Equation (2.16) allows that the pixels inside the region where 0 conserve a 

homogeneity, in the same way the second term guarantee this property for the pixel where 0 . 

The last parameter in (2.16) smoothes the level set function and avoids abrupt change around the 

objects detected in the image.   Using the fundamental lemma of calculus of variations, E is 

minimized with respect to ø, getting the corresponding Euler-Lagrange equation: 
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where    is the Dirac function given by Equation (2.14) and it is got by deriving the Heaviside 

function with respect to ø.   
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Figure 3.6  Graphical representation of the Delta Dirac function 

 

Next using the steepest descent method, we get the evolution equation as follows: 
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In the same way the derivative of the energy with respect to C1 is taken: 
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Working out the value of C1 we get: 
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In the same way the derivative of the energy with respect to C2 is taken: 
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Working out the value of C2 we get: 
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The term C1 is calculated continually during the evolution of the level set equation as the mean value 

of the pixels of the region where   (t, x, y) is positive, whereas C2 is with respect to the pixels where 

  (t, x, y) is negative. 

Supervised target detection knows beforehand some characteristics of the target of interest, generally 

the spectral signature of the targets is available and it is used to ease their detection.  In this work a 

new energy functional is proposed whose main idea is to minimize the difference between pixel 

value of the target and mean value of the pixels which belong to the region where   (t, x, y) is 

positive. The proposed functional is as follows: 
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        (3.19) 

 

where C3 corresponds to the pixel value of the target or anomaly of interest. This new term allows 

that the level set surface encircle pixels whose values are very close to the value of the target. 

Minimizing E with respect to ø, getting the corresponding Euler-Lagrange equation: 
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Next using the steepest descent method, we get the evolution equation as follows: 
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The variables C1 and C2 are updated in every iteration and their values are given by (3.17) and (3.18) 

respectively.  On another hand these equations are useful in gray scale images and it is necessary to 

do some modifications to be implemented for hyperspectral images. SAD is incorporated into (3.17), 

(3.18) and (3.19) generating the following equation. 
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where SAD(x1,x2) is the spectral angle distance and is given by Equation (3.2). 

 

In the same way for unsupervised target detection a post-processing step is necessary to extract the 

target from the background, for which a threshold to zero is used to determine the presence or 

absence of the target. 

 The proposed supervised algorithm receives as input parameters the hyperspectral signature of the 

target to be detected and the hyperspectral image to be processed. The proposed algorithm can be 

summarized by the followings steps: 

 

Step 1) Applying the supervised Level set to the HSI. The level set surface encircles the targets 

present in hyperspectral image; it evolves through time by using the equation 3.22.  

Step 2) Generating a binary image. The positions of the matrix that represents the level set surface 

that take negative values are set to zero whereas the remainder are set to one. In that way a binary 

image is generated with the extracted targets. 

  

3.4 Practical considerations in the implementation 

of the proposed algorithms. 
 

The proposed algorithms were implemented as a computer program in Matlab 7.0; the level set 

surface is represented as a matrix with the same number of rows and columns of the image to be 

processed.  The matrix of level set is initialized by using Equation (1.2). The surface S (see Equation 

(1.3)) is defined as a set of circles with radius 1 and separated by 1 position in the level set matrix; 
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for instance, if the number of columns and rows of an image are 10, the level set surface is 

initialized as follow: 

   

0.5000   -0.5000    0.5000    0.9142    0.5000   -0.5000    0.5000    0.9142    1.7361    2.6623 

-0.5000   -0.9142   -0.5000    0.5000   -0.5000   -0.9142   -0.5000    0.5000   1.5000    2.500 

0.5000   -0.5000    0.5000    0.9142    0.5000   -0.5000    0.5000    0.9142    1.7361    2.6623 

0.9142    0.5000    0.9142    1.7361    0.9142    0.5000    0.9142    1.7361     2.3284    3.1056 

0.5000   -0.5000    0.5000    0.9142    0.5000   -0.5000    0.5000    0.9142    1.7361    2.6623 

-0.5000   -0.9142   -0.5000    0.5000   -0.5000   -0.9142   -0.5000   0.5000   1.5000    2.5000 

0.5000   -0.5000    0.5000    0.9142    0.5000   -0.5000    0.5000    0.9142    1.7361    2.6623 

0.9142    0.5000    0.9142    1.7361    0.9142    0.5000    0.9142    1.7361     2.3284    3.1056 

1.7361    1.5000    1.7361    2.3284    1.7361    1.5000    1.7361    2.3284    3.1056    3.7426 

2.6623    2.5000    2.6623    3.1056    2.6623    2.5000    2.6623    3.1056    3.7426    4.5000 

 

The level set matrix is updated 30 times (the number of iterations was found experimentally) by 

using Equation (2.10), the term t  is defined as a constant of value 0.3, the term t / corresponds 

to a matrix that is updated at each iteration by using either Equation (3.3) or (3.22) depending on 

case (supervised or unsupervised target detection). In the case of supervised target detection, the 

spectral signature of the target that corresponds to a vector of real values is used as input parameter 

by Equation (3.22).  

 

The term t /  depends mainly on three parameters (see either Equation (3.3) or (3.22)), the first 

one is the curvature [9], it corresponds to a matrix defined by Equation (2.9). The second term 

(SAD(u,ci)) is represented as a matrix of real values obtained for calculating the Spectral Angel 

Distance (see Equation (3.2)) between each of the pixels of  an image „u’  and the vector „ci‟. The 

term c1 is calculated as the mean pixel of all pixels of image corresponding to the position where 
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level set matrix takes negative values; in the same way c2 is the mean vector of all the pixels in the 

image where the level set matrix takes positive values. The last term is the delta Dirac function 

„  x ‟ that is updated by using Equation (2.14).  

 

The output level set matrix contains the positions of the targets detected, the elements of the matrix 

that take negative values correspond to the positions in the image where the targets are placed, the 

reminder elements (positive values) are associated to the background of image. 

 

The experiments were carried out on a PC DELL INSPIRON 640m with a processor Intel Centrino 

Duo of 2GHz and 2GB of RAM. 
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4 ALGORITHMS VALIDATION AND 

PERFORMANCE EVALUATION 
 

 

In this section, the results obtained with the proposed target detection algorithms are presented. The 

testing of the distinct proposed algorithms was done using synthetic and real remote sensing images 

and their performance were evaluated using ROC diagrams.      

 

4.1 Unsupervised detection results for large 

targets 
 

The proposed target detection algorithm is tested with real and synthetic images; the SOC-700 

hyperspectral camera is used for capturing texture images of distinct materials. This camera acquires 

a 640 pixel by 640 pixel image with a spectral resolution of 4 nm which ranges from 400 to 900 nm, 

for a total of about 120 bands. It is available at the Laboratory for Applied Remote Sensing and 

Image Processing (LARSIP). The different textures captured from the camera are showed in the 

following images. 
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Figure 4.1 Different texture images for testing the proposed algorithm. (a) mango leaves 

texture, (b) concrete texture, (c) iron texture 

 

 
Two images are generated with textures of concrete, iron and mango leaves. These images have 

dimensions of 120x120x120 and they are characterized by a circular-shaped target in a background.  

The targets are constituted by iron whereas the background corresponds to mango leaves in the first 

image and both concrete and mango leave in the second one. 

 
 

  

Figure 4.2  Synthetic images generated for testing the proposed algorithm 

(a) (b) (c) 
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Another synthetic image was created with two targets of concrete placed in a background of asphalt. 

The image is constituted by 640 lines, 640 samples and 120 bands. The synthetic image is showed in 

the following Figure. 

 

 

Figure 4.3 Regions selected from Fake leaves hyperspectral image. 

 

Three synthetic hyperspectral images are generated with a subset of the fake leaves image, this one 

was also captured by SOC-700 and it is available in [36]. The regions used as targets and 

background are showed in the following Figure. 
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Figure 4.4  Regions selected from Fake leaves hyperspectral image. 

 

The new images have targets with distinct shapes embedded in a background; they have 246 lines, 

145 columns and 120 bands. They are show in the Figure 4.5.  

 

Figure 4.5  Synthetic images generated for testing the proposed algorithm 

Target 1 

Target 2 
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4.1.1 Unsupervised target detection results for SOC-

700 camera data sets using spectral information 

 

The method proposed by Chan and Vese [11] was implemented and tested in a set of synthetic 

images with distinct geometric figures on a background. The image has a dimension of 276 by 155 

pixels with 120 bands. The method was combined with band subset selection algorithms such as 

Bhattacharya distance and information divergence to determine a set of bands with highest 

information.  The PCA has the advantage of reducing the data dimensionality without having prior 

knowledge of the objects present in the image.  The results with Chan algorithm are show in Figure 

4.6. 

 

 

   

Figure 4.6 Segmentation with Chan algorithm . 

 

Chan Algorithm Chan Algorithm with 

Bhattacharya Distance for BSS 
Chan Algorithm with 

Divergence for BSS 
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The segmentation with all bands caused the surface of level sets to shrink and disappear.  There is a 

lot of redundant information in the original set of bands; hence the desired targets are not detected 

by direct extension of Chan‟s algorithm to hyperspectral images.  The incorporation of Bhattacharya 

distance and information divergence improved the performance of the algorithm.  Bhattacharya 

distance and information divergence used 250 and 1600 iterations respectively, however the time 

required to select the 10 best bands is very high and needs computational recourse.  

 

Comparison results of the proposed algorithm with the algorithm proposed by Chan [11] are given 

below.  Chan‟s algorithm is applied to 10 bands selected by Bhattacharya distance. The proposed 

algorithm using Spectral Angle Distance (SAD level set) using only spectral information is applied 

with all 120 bands and bands obtained with PCA. Additionally Morphological operators are used to 

improve the results obtained with level set and SAD. These results are showed in Figure 4.7. 

 

 

 

               

Image 1 

Chan Algorithm  

Applied to 10 bands 

Proposed Algorithm  

Applied to 120 bands  
Proposed Algorithm  

with ACP  
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Image 2 

Image 3 
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Figure 4.7  Results got with Level Set + SAD algorithm 

Image 6 

Incorporation of Morphological 

operators  

Image 4 

Image 5 



 

 

The Figure 4.7 shows that the proposed method results in better detection and lesser number 

of iterations and time of convergence.  The Table 4.1 summarizes the results. 

 

Table 4.1 Comparison of time of convergence and number iterations. 

 

 

Method 

Time of convergence 

(seconds) 
Number of iterations 

Image 

1 

Image 

2 

Image 

3 

Image 

1 

Image 

2 

Image 

3 

Chan Algorithm  249.76 42.68 83.21 1140 160 320 

Proposed Algorithm applied to 120 

bands 

400.78 621.77 623.95 240 240 400 

Proposed Algorithm with ACP 60.41 52.21 76.61 220 220 240 

 

 

The timing required for Chan‟s algorithm [11] using 10 bands is close to the timing of the 

proposed algorithm using 120 bands.  This shows that the proposed methodology contributes 

considerably to the time of convergence and at the same time efficiently couples the 

information in all bands.  

4.1.2 Unsupervised target detection results for 

SOC-700 camera data sets using texture 

information 
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The method proposed for large target detection using texture information was tested in the set 

of synthetic images with distinct geometric figures on a background. The results are shown in 

the following Figure. 

 

  
 

 

     
 

Image 1 

Image 2 
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Figure 4.8  Results for large target detection using texture information.  

 

The results show that all objects placed in the images were successfully extracted. The level 

set technique encircles the objects while the post-processing step generates a binary image 

which discards the background and recovers the objects in the images.   

 

The results were also compared with the algorithms proposed by Chan [11] and SAD-level 

set using only spectral information [21]. The time of execution, number of iterations and 

number of targets recovered are shown in Table 4.2. 

Image 3 

Image 4 
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Table 4.2 Comparison of time of convergence and number iterations. 

 

 

Method 

Time of convergence 

(seconds) 

Number of iterations Number of Targets 

Recovery 

Image 

1 

Image 

2 

Image 

3 

Image 

4 

Image 

1 

Image 

2 

Image 

3 

Image 

4 

Image 

1 

Image 

2 

Image 

3 

Image 

4 

Chan 

Algorithm 

249.76 42.68 83.21 92.14 1140 160 320 240 0 0 1 2 

SAD-Level Set 

(Hyperspectral 

 information) 

60.41 52.21 76.61 67.2 220 220 240 182 1 0 1 2 

SAD-Level Set 

(Texture 

information)  

124.62 71.13 83.4 76.4 245 238 320 195 1 1 1 4 

 

 

The experiments were carried out on a PC DELL INSPIRON 640m with a processor Intel 

Centrino Duo of  2GHz and 2GB of RAM. The results in the Table 3 shows that the time of 

execution of SAD-Level Set using hyperspectral information is lesser than the time of 

execution of others algorithms, however only the proposed algorithm (level set using texture 

information) recovered all targets in images. 

 

Other results obtained with the proposed algorithm for large target detection are shown in the 

following Figure. 
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Figure 4.9  Results for large target detection using texture information. (a) Ground 

truth, (b) Targets extracted, (c) Targets encircled by Level Set. 

 

 

 

 

(a) (b) 

(c) 
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The results obtained show that the two targets were recovered successfully, additionally 

97.4% of the pixels that belong to the targets were extracted properly and 0.43% of the pixels 

of the background were erroneously identified as targets. 

 

4.1.3 Unsupervised target detection results 

for Hydice Desert Image using texture 

information 

 

The HYDICE Desert image was used for testing the proposed algorithm in supervised target 

detection tasks. It was collected in Arizona in 1995 at altitude of 20,000 feet. It is constituted 

by 3000 rows, 120 columns, 210 bands and a spectral resolution that ranges from 0.35 μm to 

2.5 μm.  
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Figure 4.10 Scenes selected from HYDICE desert image. 

 

Three scenes were extracted from the Hydice desert image; the first scene has dimensions of 

45x43 pixels and 210 bands, it is constituted by two targets, the first target is an ULCANS 

desert camo net, whereas the second target is an US ULCANS woodland camo net. The 

ULCANS desert 

camo net 

Chinese camo net 

US ULCANS woodland 

camo net 

 

CSU-50019 

 

CSU-50013 
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second scene has a size of 70x51 pixels and 210 bands and it is composed of two targets, the 

last scene has a target of ULCANS desert camo net, and the image has a size of 51x36 pixels 

and 210 bands. The results obtained are shown in the following image. 

 

   

 

   

 

(a) (b) (c) 

Scene 1 

Scene 2 
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Scene 3 

 

Figure 4.11  Reults for Automatic target detection algorithm. (a) Ground truth, (b) 

Targets encircled by Level Set, (c) Targets extracted. 

 

 

The results show that the proposed algorithm for large target detection extracted successfully 

the objects in the images.  For the first image the algorithm recovered 98.5% of the pixels 

that belong to the targets, similarly 97.5% and 95.2% of the pixels that constitute the targets 

were extracted successfully, in the second and third scene, respectively. 
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4.1.4 Unsupervised target detection results for 

Indian pine data sets using texture information 

 
In the second experiment the Indian Pine image acquired by the AVIRIS sensor is used. The 

Indian Pine image has 145 lines, 145 samples and 220 bands; it also has a spectral resolution 

of 10nm from 400nm to 2500nm.  Only 185 bands are used as the remaining corresponds to 

the water adsorption bands and band 220 which is noisy.  Also, the bands with strong 

artifacts were eliminated. 

 

 

Figure 4.12  Indian Pine ground truth for 16 classes. Image Courtesy of [38]. 

 

 The whole image of Indian Pine was used for testing.  In addition, 2 new images with targets 

are synthesized from it.  The first image has 71 lines, 128 samples and 185 bands; it was 

generated from a region of grass/trees, soybean min-till, corn-notill, corn-min and corn. The 

1 
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second one corresponds to a region of 28x35 pixels of soybean min-till in which an artificial 

object constituted by wood was embedded. The regions selected are shown in the following 

image. 

 

 

 

Figure 4.13  Regions selected for target detection experiments 

 

The results obtained with the proposed algorithm are shown in Figure 4.14. 

     

 

 

 

1 

2 
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Figure 4.14  Results got with Level Set + SAD algorithm 
 

The results show that the algorithm detected successfully the object in the first image.  In the 

second image, the fields of grass/trees, soybean min-till, corn-notill, corn-min and corn were 

extracted from the background. For the whole image the number of iterations is 2000. While 

the sub-images in (a) and (b) converged in 10 and 220 iterations, respectively. 

 

(a) 10 iterations (b) 220 iterations 

(C) 2000 iterations 
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4.2 Unsupervised target detection results 

for small targets 
 

The testing of the proposed target detection algorithm for small targets is done with synthetic 

and real hyperspectral images. The synthetic images are composed of background and 

distinct targets, the pixels that constitute the targets are mixed with the background according 

to the following equation [15]: 

 

  nBTxxf  *)1(*, 21                           (4.1) 

 

where α is the fractional mixing level, T is the target signature, B is the background signature 

and n is the zero mean Gaussian noise.  

 

4.2.1 Unsupervised target detection results for 

HYDICE sensor data sets 
 

A set of images with targets of 9 and 16 pixels are generated with several values of α. The 

background and the targets are extracted from the Washington D.C. mall hyperspectral image.  

This image contains 307 lines, 282 samples and 191 bands collected from 0.4 to 2.4 µm of 

the visible and infrared spectrum. A water region marked with „1‟ (see Fig. 4.15) is selected 

to constitute the background. 
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Figure 4.15  Washington D.C. mall image  

 

 The algorithm is tested with a grass target of 24 pixels, an asphalt target of 9 pixels and a 

concrete target of 16 pixels. The results of the proposed algorithm are shown in Figure 4.16.  

 

 
 

 

1 

(a) 
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Figure 4.16   (a)Targets extracted with   α=0.6, (b)Targets extracted  with 

α=0.5,(c)Targets extracted for   α=0.4 

 

 

 

 

The results show that the targets with a fractional mixing level of 0.6 were all extracted by 

the proposed algorithm, for α=0.5 the asphalt and concrete targets were extracted 

successfully, whereas for α=0.4 only the concrete target was recovered. 

 

The HYDICE Forest image is also used for testing the proposed algorithm,  it was collected 

in Maryland in 1995 from a flight altitude of 10,000 ft, contains 1228 lines, 320 samples and 

210 bands. It has about 1.5-m spatial resolution and 0.4–2.5 μm spectral coverage. Two 

scenes of the original images are selected for testing the proposed algorithm; the first scene 

has 249 x 128 pixels and 120 bands, additionally it has 30 panels organizes in three columns 

(b) 

(c) 
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of ten panels, the panels in the same row were made from the same material of sizes 3 × 3 m, 

2 × 2 m, and 1 × 1 m, respectively, and are considered as one class.   

 

 
 

Figure 4.17  The HYDICE Forest image together with the scenes used for testing the 

algorithm. 

 

Scene 2 

Scene 1 
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The second scene has 428 x 71 pixels and 120 bands; it is constituted by 14 objects aligned 

vertically. The objects have a size of about 5 x 5 m. The two scenes and the original image 

are shown in Figure 4.17.  

 

The ROC diagram is used for measuring the performance of the proposed algorithm [20], for 

calculating the ROC diagram the fact that the level set surface defined by Equation (2.6) 

evolves until encircling the pixels that belong to the targets is used. The final level set surface 

can be seen as an image that enhances the pixels marked as targets from the pixels identified 

as background. The proposed algorithm recovers sequentially the targets of the same class; in 

consequence as many level set surface are generated as types of targets present in the image. 

The images generated by the proposed algorithm and their corresponding ground truth are 

shown below. 
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Figure 4.18 Targets enhanced and ground truth ,(a)Targets of Green fabric-

untagged over asphalt, (b) Targets of dark olive parachute, (c) Targets of light 

olive parachute , (d) Nomex/Kevlar woodland fabric, (e)Targets of Green tenting 

fabric, (f) Targets of  Woodland cotton/nylon fabric, (g)Targets of Woodland 

poncho , (h) Targets of green cotton fabric, (i) Targets of khaki/tan fabric 

 

 

(g) (h) 
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The results show that the pixels that belong to the target are enhanced from the pixels of the 

background, however in some cases where the mixture between the targets and background 

are more appreciable, for instance the cases of targets of light olive parachute and 

Nomex/Kevlar woodland fabric the target is not enhanced. For each of the generated images 

the histograms that plots the pixels of targets (red color) and background (blue color) is 

created, they are shown in the following image. 

 

 

 

(d) (c) 

(e) (f) 

(a) (b) 
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Figure 4.19 Histogram of Background and targets, (a) Targets of Green fabric-

untagged over asphalt, (b) Targets of dark olive parachute, (c) Targets of light 

olive parachute, (d) Nomex/Kevlar woodland fabric, (e)Targets of Green tenting 

fabric, (f) Targets of  Woodland cotton/nylon fabric, (g)Targets of Woodland 

poncho , (h) Targets of green cotton fabric, (i) Targets of khaki/tan fabric 
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The ROC diagrams are generated for each of the histograms obtained as results of the 

proposed algorithm. The threshold that separates the pixels of the targets and background is 

moved for all possible values through the histogram and then the pixels successfully 

identified as targets (true positive) versus the pixels of background identified as targets (false 

alarm) are plotted, then all ROC diagrams are averaged for generating a final ROC diagram.     

The binary image generated by the proposed algorithm for the scene 1 is shown in Figure 

4.20. 

  
 
 

 

 

Figure 4.20 (a) Ground truth, (b) Targets recovered by the proposed algorithm 
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The results show that the algorithm recovered 7 of the 10 kind of targets placed in the image 

with zero false positive. The binary image generated by the proposed algorithm for the scene 

2 is shown in Figure 4.21. 

 

 

 

 

 

 

Figure 4.21 (a) Band 110 of  the HYDICE Forest image, (b) Ground truth, (c) Targets 

recovered by proposed algorithm.   
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The results show that the algorithm recovered 11 of the 14 targets placed in the image with 

only one false positive. In addition the proposed algorithm has the property of distinguishing 

the different kind of targets recovered due that all targets of a specific type are extracted at 

time.    

The ROC diagram that plots the probability of target detection versus the probability of false 

alarm is generated with the images available for testing the proposed algorithm, the diagram 

is shown in the following image. 

 

 
 

Figure 4.22  ROC Diagram for proposed algorithm.   
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The ROC diagram shows that the proposed algorithm obtained a target detection probability 

of 76.5% with only a 5% for false alarms. Additionally for a false alarm of 10%, the 

algorithm obtained an 84.6% for target detection probability. For false positive probabilities 

higher than 15.1%, the proposed algorithm obtained target detection probabilities over 90%. 

  

 

4.3 Supervised target detection results 
 

For testing the supervised version of the proposed algorithm, both synthetic and real 

hyperspectral images were used.  

 

The synthetic images were generated with backgrounds of real hyperspectral images and 

some pixels of different material in the scene as targets, the background and the targets are 

mixed according with [15]. The parameter α is the fractional mixing level and represents the 

percentage of mixing between the targets and the background. The algorithm is applied to the 

group of images generated, and the results are compared with both OSP and CSD methods. 

 

4.3.1 Supervised target detection results for 

SOC-700 camera data sets using spectral 

information 
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The Fake Leaves image is used for testing the supervised target detection algorithm, the 

image was collected by the Surface Optics Company using the SOC-700 hyperspectral 

camera. Three synthetic images were created selecting a subset of the Fake Leaves image, 

additionally targets of 1, 9 and 16 pixels, were inserted into them; the new scenes have 

dimensions of 35x xand they are shown in the following Figure.     

 

Figure 4.23 Scene extracted from Fake leaves hyperspectral image. 

 

Several values of α was used in Equation (4.1) for mixing the spectral signal of background 

and the targets. The results are shown in Figure 4.24. 
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α=0.8 

 

Image with 16 pixels 

α=0.8 
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Figure 4.24  Results applying supervised level set,  OSP and CSD methods. 

 

The results obtained with level set shows that targets of 1 pixel are detected for values of α> 

0.66,  for   targets of 9 pixels α > 0.62, whereas  for targets of 16 pixels, α>0.61 to detect it.  

OSP and CSD detect the targets but have a high false alarm rate, detecting background pixels 

as targets, as well.   The variation of α does not affect the results obtained with OSP and CSD.   

 

4.3.2 Supervised target detection results for 

Indian pine data sets using spectral information 

 

A second experiment is done with some regions of the Indian Pine image. This image has 16 

land cover classes of which corn no-till, grass/pasture, woods, hay windrowed, corn min and 

soybean min-till are selected to simulate a set of images with targets constituted by 1, 9 and 

16 pixels, respectively. The value of the target is determined by Equation (4.1). The regions 

selected are shown in Figure 4.25.   

Target of 16 pixels, α=0.61 
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Figure 4.25 Regions selected for target detection experiments 

 

Region 1 is constituted by Corn no-till, Soybean min-till and Grass/Trees whereas the target 

corresponds to a crop of Hay. Region 2 image presents a crop of Woods and has a target 

constituted by Soybean min-till. The results obtained with the proposed algorithm and with 

OSP and  CSD are shown in Figure 4.26. 

 

  

 

1 

2 

Target of 1 pixel detected by Level Set Target detected by Level Set , α=0.7 

Target 1 

Target 2 



 

 

 

 

 88 

  

 

  

 

  

 

 

  

 

   

 

Figure 4.26  Results obtained with the region 1 of Indian Pine Image 

Target detected by OSP, α=0.7 Target detected by CSD, α=0.7 

Target of 9 pixels detected by Level Set Target detected by Level Set , α=0.6 

Target detected by OSP, α=0.6 Target detected by CSD, α=0.6 

Target of 16 pixel detected by Level Set Target detected by Level Set , α=0.6 

Target detected by OSP, α=0.6 Target detected by CSD, α=0.6 
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Figure 4.26 shows the results of applying the techniques of level set, OSP and CSD to detect 

targets of 1, 9 and 16 pixels, respectively. For targets of 1 pixel, the minimum value of α 

(fractional mixing level) with level set method is 0.6, for targets of 9 and 16 pixels the value 

of α is 0.6 in both cases. Both OSP and CSD have high false detection rates.   The same 

experiment is done for the second region; these results are shown in Figure 4.27. 

 

   

 

 

 

 

Target of 1 pixel detected 
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Target of 9 pixels detected 

by Level Set 

Target of 16 pixels detected 

by Level Set 

Target detected by OSP, 
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Target detected by OSP, 
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Target detected by OSP, 
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Figure 4.27  Results obtained with image simulated from Indian Pine data. 

 

Figure 4.27 shows the results for the region 2 image of Indian pine image. The minimum 

value for α for detecting the target of 1 pixel with the technique of level set is 0.6. For targets 

of 9 and 16 pixels the value is 0.5. Again both OSP and CSD methods detect many 

background pixels as targets.  In general the results with Supervised Level Set give better 

results in target detection than OSP or CSD methods. 

 

 

4.3.3 Supervised target detection results for 

HYDICE sensor data sets 
 

 

Another experiment is conducted with Washington D.C. mall hyperspectral image.  A water 

region marked with „1‟ (see Fig. 4.28) is selected to constitute the background of a new scene, 

additionally pixels of concrete, asphalt, grass and roof are used for targets in the new image. 

Target detected by 

CSD, α=0.6 

 

Target detected by 

CSD, α=0.5 

 

Target detected by 

CSD, α=0.5 
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Figure 4.28 Background and targets selected from Washington D.C. Mall hyperspectral image 
 

The proposed algorithm is tested with concrete targets of 1,9,16 pixels, Grass Targets of 1 

pixel, Roof targets of 9 pixels and Asphalt targets of 16 pixels. The results of the detection 

are shown in Figure 4.29. 

 

 

Target detected by Level Set , α=0.6 
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Target detected by Level Set , α=0.6 

Target detected by Level Set , α=0.5 

Target detected by Level Set , α=0.4 

Target detected by Level Set , α=0.6 
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Figure 4.29 Results obtained with image simulated from Washington data. 

 

The minimum value of α (Fractional Mixing Level) for detecting concrete targets of 16 

pixels using level sets is 0.4, whereas for targets of 1 and 9 pixels the value of α is 0.6 in both 

cases. For grass targets the minimum value of α is 0.4, whereas for roof and asphalt targets 

the value of α is 0.6. The results show that the algorithm is capable of detecting different 

types and sizes of targets in a scene. 

 

A subset of the HYDICE Forest image was used for testing the proposed algorithm, the new 

image has 249 lines, 128 samples and 120 bands were used after bad bands were removed. In 

addition there are ten panel classes that have close spectral signatures and are difficult to 

discriminate. 

 

Target detected by Level Set , α=0.6 

Target detected by Level Set , α=0.7 
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The HYDICE Forest image in Fig. 4.30 shows the precise locations of pure panel pixels 

(pink centers); a subset image that was selected from the original image for testing is shown.  

 

 

 

Figure 4.30  Image extracted from HYDICE Forest image 

 

Image Subset 
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For testing 7 distinct types of targets: green fabric-untagged over asphalt, dark olive parature, 

Green tenting fabric, Woodland cotton/nylon fabric, woodland poncho, green cotton fabric and 

khaki/tan fabric were included. The results are shown in Figure 4.31. 

 

  

   

Targets of Green fabric-untagged over asphalt.  

(a) (b) (c) 
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Targets of dark olive parachute.  

     
Green tenting fabric 
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Woodland cotton/nylon fabric 

  

Woodland poncho target 
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Targets of green cotton fabric. 

   
Targets of khaki/tan fabric. 
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Figure 4.31  Target detection results for HYDICE image. ; (a) Ground truth, (b) 

Targets encircled by Level Set, (c) Targets extracted.   

 

 

The experiments were carried out on a PC DELL INSPIRON 640m with 2GB of RAM, 

processor Intel Centrino Duo of 2GHz. The time of convergence, number of iterations, 

targets recovered and the number of false positive got by the proposed algorithm are shown 

in Table 3. 

 

Table 4.3 Quantitative Target detection results for HYDICE image. (1) green fabric-

untagged over asphalt, (2) dark olive parature, (3) Green tenting fabric, (4) Woodland 

cotton/nylon fabric, (5) woodland poncho, (6) green cotton fabric, (7) khaki/tan fabric. 

 

Target Time of convergence 

(seconds) 

Iterations Targets  

Available 

Targets  

Recovered 

False Positive 

1 47.74 10 6 5 0 

2 47.12 9 3 2 0 

3 60.91 16 3 2 0 

4 47.46 10 3 3 0 

5 109.04 40 3 2 0 

6 196.21 96 3 2 2 

7 134.72 50 3 3 3 
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The proposed algorithm could recover an 85.71% of targets of 16 pixels, 100% of targets of 9 

pixels, and a 57.14% of targets of 1 pixel. In addition 100% of different types of targets were 

recovered successfully, on the another hand for 5 of the 7 types of targets the algorithm got 

zero false positive, for detecting woodland targets  the algorithm recovered erroneously 2 

objects, and for detecting the green tenting fabric 3 false positives was obtained.  

 

In the same way three scenes were selected from the HYDICE desert image for testing the 

proposed algorithm, the first image has 291 lines, 171 samples and 210 bands; it is 

constituted by 4 targets placed in a road. The second scene has a size of 287x181 pixels and 

210 bands and it is constituted by an array of 27 targets that corresponds to panels of distinct 

classes and sizes, they are organized in three columns of nine targets, additionally the targets 

in the same row were made from the same material. The last scene consists of 6 targets 

aligned vertically; the image has a size of 310x186 pixels and 210 bands. The three images 

generated from HYDICE desert image are shown in the following Figure. 
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Figure 4.32 Images extracted from HYDICE Desert 

 

The results obtained in the first scene are shown in the following figure. 

Scene 1 

Scene 2 

Scene 3 
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Figure 4.33  Results for first scene of HYDICE Desert image. ; (a) Ground truth, (b) 

Targets encircled by Level Set, (c) Targets extracted.   

(a) (b) (c) 



 

 

 

 

 103 

The results obtained with the second scene are shown in the following image. 

 

 

 

Targets of unpainted wood. 

 

(a) (b) (c) 
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Targets of heavily and lightly painted tan wood. 

 

 

Targets of nylon/cotton light-weight desert BDU 

 

Targets of cotton, desert BDU 
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Targets of Cotton, green oxford 

 

 

Targets of nylon, woodland camo poncho 
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Targets of cotton/nylon woodland BDU 

 

 

Targets of tan painted plywood with taggant 

Figure 4.34  Results for second scene of HYDICE Desert image. ; (a) Ground truth, (b) 

Targets encircled by Level Set, (c) Targets extracted.   
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The results obtained with the last scene extracted from HYDICE desert image is shown in the 

following Figure. 

 

 

Figure 4.35  Results for scene three of HYDICE desert image; (a) Ground truth, (b) 

Targets encircled by Level Set, (c) Targets extracted.   

 

 

The results obtained for the first scene show that 100% of different types of targets were 

recovered successfully, additionally 91.3% of the pixels that belong to the targets were 

classified properly and 100% of the pixels of the background were identified as background. 

For the second scene, 81% of different types of targets were extracted successfully, whereas 

76.5% of pixels that belong to the targets were recognized as targets, and a 0.16% of pixels 

that belong to the background were recovered erroneously as targets. The results for the last 
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scene show that all targets were recovered successfully; moreover 94.2% of the pixels that 

belong to the targets were recovered properly and only a 0.09% of pixels that belong to the 

background were assigned as targets. 

 

The performance of the proposed algorithm for supervised target detection, OSP and CSD 

were compared over the set of images available, as result show in the ROC diagram that plots 

the probability of target detection versus probability of false alarm for the three methods used. 

 

Figure 4.36    ROC Diagram, (blue) proposed algorithm, (green) CSD, (red) OSP.   

  

The ROC diagram shows that the probability of target detection for the proposed algorithm is 

much higher than that obtained for OSP and CSD for a specific false alarm rate, in the same 
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way the results obtained with CSD were better than the ones for OSP. For a false alarm rate 

of 0.1, the proposed algorithm obtained a target detection rate of 0.902 whereas OSP and 

CSD obtained only 0.572 and 0.820 respectively. 
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5 CONCLUSIONS AND FUTURE 

WORK 

 
 

The conclusions obtained from experimental results are presented in this chapter, additionally 

some recommendations for future work are mentioned. 

 

5.1 Conclusions 
 

 

In this work we developed a new methodology for unsupervised and supervised target 

detection using level set. The new methodology can be applied to hyperspectral image by 

incorporating spectral angle distance into the partial differential equation that determines the 

evolution of the level set function. The proposed algorithm for unsupervised target detection 

was used in the detection of large and small targets, in the first case spectral and texture 

information was used, and for small targets only spectral information was used. On another 

hand the supervised target detection algorithm were implemented for detecting target of 

small size (a few pixels) in hyperspectral images by incorporating the spectral signature of 

the target into the partial differential equation of level set. 

  

The unsupervised target detection algorithm that only uses spectral information in level set 

technique obtained good results in images where the targets and background have a uniform 

texture. The incorporation of PCA as a technique for decorrelating and reducing the data 
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dimensionality were included in a pre-processing step, it allows to reduce the time of 

execution of the algorithm, in the same way morphological operations like dilation and 

erosion were used in a post-processing step and it helped considerably to eliminate objects 

erroneously extracted by the algorithm. These results were compared with the ones obtained 

with another level set technique developed by Chan [11], and they showed that the 

performance of the proposed algorithm recovered the targets faster.  

 

The unsupervised target detection algorithm that incorporates texture information in the level 

set function obtained better result in tasks of extracting objects of images where the 

background was not uniform, different size of windows were used for calculating texture 

information (3x3, 5x5, 7x7, 9x9, 12x12), however the results obtained with different size of 

windows were similar with exception that the time of convergence increased with the raising 

of the size of window. The  unsupervised target detection algorithm that uses only spectral 

information, the algorithm developed by Chan and the proposed algorithm that uses texture 

information were compared, the results shows that only the algorithm that take into account 

texture information could recover all the targets placed in four synthetic images. 

 

 Incorporation of texture information for detecting targets of size less than the mask size used 

for extracting texture features is not recommended due to the fact that the mixing between 

target and background is more predominant.    
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The results for supervised target detection were much better than the ones obtained with 

techniques widely used for target detection as OSP and CSD. The ROC diagram shows that 

the proposed algorithm obtained higher targets detection probabilities with smaller false 

alarm probabilities than OSP and CSD.  In addition the algorithm was tested with distinct 

scenarios that prove its functionality. 

PCA was applied as a preprocessing step to reduce the number of bands for detection of large 

targets.  It was not applied for detection of target less than a pixel in size or when the pixel is 

a mixing between the spectral signature of the target and background because it tends to 

eliminate the information of target.  

 

5.2 Future Work 
 

 Shape information have been incorporated lately in level set for recovery objects with 

an specific geometric shape, as a future work this information can be incorporated to 

help the algorithm to extract targets with a specific shape. 

 Implementing the proposed algorithms in C++ for easing the portability of code to 

others platform like linux, UNIX and macintosh. That would allow integration of the 

proposed algorithm with others existing packages developed for target detection and 

hyperspectral image processing. 

 Implementation in GPU architectures using jackets and other software available to 

port codes from Matlab environment to parallel and distributed systems. 
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