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UNIVERSITY OF PUERTO RICO
Abstract

Electrical and Computer Engineering Department
Master of Science
by Abigail Fuentes

This work presents a computational framework for the analysis, design, and development of
discrete Fourier transform (DFT) beamforming techniques for bioacoustics signal processing
applications. DFT beamforming techniques are a form of hierarchical beamforming algorithm
methods which deal with the processing of signals arriving at large aperture array systems.
The processing of the sensored signals is conducted hierarchically in the frequency domain.The
DFT beamforming algoritms consist of determining the direction of arrival (DOA) of plane
waves impinging on a linear sensor array. One of the applications of the sensors is as signal
instrumentation resources for monitoring and surveillance of neo-tropical anurans in the island
of Puerto Rico, in a near real time manner. A plane wave complex signal model is being
utilized to model the incoming signals which are spatially sampled by the array elements and
temporally sampled by the sensor signal acquisition system. The DFT beamforming algorithms
are being formulated using Kronecker products algebra to provide general expressions for the
beamforming operations. The development e�ort is being conducted using the MATLAB
numeric computation and software visualization package. A parallel programming modeling
environment, named pMATLAB, is being utilized to study the computational performance of
parallel implementation techniques. Preliminary implementation e�orts have being conducted
using C language on the TMS320C6713 Digital Signal Processing (DSP) unit from Texas
Instruments.
A wireless sensor array processing (SAP) system has also been designed at the Automated
Information Processing (AIP) Laboratory, at the University of Puerto Rico, Mayaguez Campus,
with the purpose of providing further testing of the beamforming techniques developed. Such
SAP testbed uses Linux-based embedded small computers , called Gumstix, as sensor signal
processing nodes (SSP), with the capacity to acquire, store, and process acoustic data. A
principal node, called the Master Sensor Node (MSN) receives the processed data from the
SSP nodes, making the data available via wireless connection to the Internet. This type of
network system will serve as an ideal tool for biologists to monitor, locate, and track species
of interests in the surrounding environments, without interfering with the ecological system,
and avoiding frequent �eld visits.
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UNIVERSIDAD DE PUERTO RICO
Resumen

Departamento de Ingenier��a El�ectrica y Computadoras
Maestr��a en Ciencias
por Abigail Fuentes

T�ecnicas de DFT beamforming o formaci�on de haces, constituyen una forma jer�arquica de
los m�etodos de los algoritmos de beamforming, los cuales trabajan con el procesamiento de
se~nales recibidas por sistemas de arreglo linear de sensores, a grandes abertura. Una de las ap-
plicaciones de los sensores es ser usados como recursos para la instrumentaci�on de se~nales con
el prop�osito de monitorear y vigilar anuros neo-tr�opicos en la isla de Puerto Rico, en tiempo
casi real. Un plano de onda compleja de se~nales ha sido utilizado para modelar las se~nales
incidentes a un arreglo linear de sensores, las cuales han sido muestradas espacialmente por los
elementos del arreglo, y temporalmente muestradas por el sistema de adquisici�on de se~nales
ac�usticas. Los algoritmos de DFT beamforming han sido formulados usando algebra de los
productos Kronecker, con el prop�osito de proveer expresiones generales para las operaciones de
beamforming. El esfuerzo de desarrollo ha sido realizado usando un software de visualizaci�on
y computaci�on n�umerica, llamado MATLAB. Un ambiente de modelo en paralelo, llamado
pMATLAB, ha sido utilizado para estudiar el rendimiento computacional de t�ecnicas de im-
plementaci�on en paralelo. Trabajos preliminares de implementaci�on han sido realizado, usando
lenguaje C en la tarjeta de procesamiento de se~nales digitales (DSP) TMS320C6713 de Texas
Instruments.
Un sistema de procesamiento de arreglo de sensores (SAP), inal�ambrico ha sido dise~nado en
el laboratorio de Procesamiento de Informaci�on Automatizada (AIP), en la Universidad de
Puerto Rico, Recinto de Mayaguez, con el prop�osito de proveer m�as pruebas de las t�ecnicas
desarrolladas de beamforming. Peque~nas computadoras, llamadas Gumstix, basadas en el
sistema operativo de Linux, son utilizadas como nodos de sensores para el procesamiento de
se~nales (SSP), con la capacidad de adquirir, almacenar, y procesar data ac�ustica. Un nodo
principal, llamado el Master Sensor Node(MSN) recibe data procesada de los nodos SSP,
haciendo que la misma est�e disponible mediante conexi�on inal�ambrica al Internet. Este tipo de
sistema de red servir�a como una herramienta ideal para bi�ologos, con el prop�osito de monitorear,
localizar, y registrar las especies de inter�es, en el ambiente cercano, sin tener que interferir con
el sistema ecol�ogico, y as�� tambi�en evitar visitas frecuentes al campo.
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Chapter 1

Introduction

Monitoring anurans and their associated environment has become vital in a world of declining
biodiversity and ecological uncertainty. The mystery of declining amphibian populations is
particularly worrisome. Scientists agree that biodiversity in general worldwide is declining, with
amphibians far more threatened than any other taxa (32.5%) of amphibians are threatened as
compared to 23% of mammals and 12% of birds). Alarms were �rst raised in 1989 at the First
World Congress in Herpetology when scientists started piecing together studies of declining
populations. Further studies corroborate data with land use change, overharvesting, and the
introduction of exotic species most often singled out as the main issues a�ecting amphibian loss.
However, more recently the spread of infectious disease, toxins, and climate change, have been
the key discussions at scienti�c meetings. Amphibians are indicators of environmental health
and their declining populations are indicative of unhealthy ecosystems that ultimately a�ect
human interests. To measure changes in biodiversity and their environmental contributions
we must be able to monitor these changes and their e�ects. Traditionally, little baseline
information was available from which to determine population declines in anurans. Wildlife
monitoring was challenged by issues such as access to remote sites, methods to detect di�cult
species, and limited human resources to deal with labor intensive tasks. Improved monitoring
and data collection systems have expanded the library of data available to compare population
changes and processes. Thus, concrete advances in environmental surveillance monitoring
become essential in our continued understanding of these processes.
Ideal monitoring programs collect and analyze audio data, couple this information with collected
environmental parameters, and transfer the complete package to the relevant decision making
agencies. Monitoring a federally threatened endemic bufonid (Peltophryne lemur) on the island
of Puerto Rico has been challenged by the occurrence of its explosive but infrequent breeding
activity during extreme rain events [1](see Figure 1.1). Further challenging its survival is
breeding competition from the infamous marine toad, Bufo marinus.

1



Chapter 1. Introduction 2
Wireless sensor network systems have shown to be an e�ective method for monitoring, collect-
ing, and analyzing data, without interfering or causing a negative impact to the surrounding
environments. Much research has been conducted in determining the ideal characteristics that
such a system should possess in order to deliver a good performance.

Figure 1.1: Puerto Rican Crested Toad Bufo lemur, courtesy of Gail Susana Ross

1.1 Problem Formulation

The WALSAIP (Wide Area Large Scale Automated Information Processing) project, a program
sponsored by the National Science Foundation of the United States and coordinated by the
Institute for Computing and Informatics Studies of the University of Puerto Rico at Mayaguez,
has been developing and �eld testing an array processing system (SAP) framework to contin-
uously monitor bio-acoustic signals indicative of breeding activity of endemic and introduced
anurans at key points in Puerto Rico. The SAP framework allows for the use of signal pro-
cessing techniques such as acoustic beamforming for source location and adaptive direction of
arrival (DOA) determination as well as novel time-frequency signal analysis techniques such
as the cyclic short-time Fourier transform, the modi�ed ambiguity function, and the modi�ed
Wigner distribution for bio-acoustics sound characterization. The SAP framework infrastruc-
ture is being developed to foster the study of advanced signal-based information processing
tasks to enhance anuran bio-acoustics understanding.
There is a need to design and implement a network sensor system, which serves as a tool
for biologists to locate, trace, and monitor di�erent species, in a non-intrusive way, without
changing the surrounding environment. Important issues, regarding network sensor systems,
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include communication capacity, sensor spacing, number of sensors, time synchronization,
and array geometry. Much research has also been conducted for determining an e�ective
acoustics beamforming technique for obtaining accurate estimates of source location through
the computation of direction of arrival (DOA).
Current acoustic algorithms are designed for single source location estimation. Such algorithms
reveal degradation in robustness and performance for estimating DOA when multiple sources
are present in the environment. Also, such algorithms commonly assume that the source signals
are located near the sensory, and are characterized to be narrowband signals. This represents a
challenge for acoustics analysis, since such signals are characterized to be wideband signals, and
may originate far from the sensor array. Also important factors such as noise and reverberance
can further more a�ect the performance of such algorithms [2].
An important consideration of this work is the mapping problem of the computational methods
to distributed computational structures, such as a parallel computational structure. Previously
developed work presented in [3] consider the use of Discrete Fourier Transform (DFT) compu-
tational methods that center on the use of the computational properties of such transform and
some properties of the Kronecker products algebra (KPA) to formulate desired beamforming
operations, when the number of sensors in a linear array is equal to the number of incidence
angles that can be detected. Hence there is a further need to extend this work in order to apply
DFT Kronecker Multi-beamforming in a parallel computational environment and evaluate its
performance.

1.2 Proposed Solution

A sensor array processing (SAP) testbed has been developed at the AIP Laboratory that is
utilized to test these computational methods in the �eld since bioacoustics signal analysis deals,
in general, with the study of sound signals emitted by animals and humans. The framework
behind the SAP testbed consists of a novel solar-powered, wireless-based, distributed signal
processing system infrastructure which may be deployed in the �eld and accessed through
cyberspace with relative ease. The system proposed is stand alone,and allows for a setup
in remote settings, operation in inclement weather conditions, and data transfers over the
internet, without the need for frequent �eld visits.
The basic SAP system infrastructure has three essential elements for determining the DOA of
incoming signals (see Figure 1.2):

� Set of sensor signal processing (SSP) nodes
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� Wireless routing mechanism
� Linux-based high-performance embedded computing unit

Figure 1.2: SAP System Infrastructure

Acoustic signals are collected and processed by sensor signal processing nodes (SSP). Once the
acoustic data is acquired, sampled, and processed by the SSP nodes, such data and associated
metadata are sent to the principal node, known as the master sensor node (MSN), via a wireless
routing mechanism. The MSN stores information in a database, which can then be transferred
to a server to be accessed by interested parties.
Small low-cost embedded Linux-based computers, known as Gumstix Verdex, are used as the
SSP, due to the following capacities that they possess: wireless communication, data acquire-
ment and storage, data processing, and low power consumption. The equipment speci�cations
and operating system used for the SAP system developed at the AIP are presented as follows
(see Figure 1.3:

� MSN Intel Core 2 Duo T7200 Merom 2.0GHz 4M shared L2 Cache Socket M 34W
Dual-Core Processor

� Gumstix Verdex as the SSP nodes
{ Number of SSP nodes - 5
{ Sampling Frequency of each SSP node - 44 KHz
{ Speed 600MHz
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{ Memory: 128MB RAM, 32MB Flash

� Operating System - Linux Fedora 8

Figure 1.3: SAP System developed at AIP

DFT beamforming techniques are further extended, through the usage of Kronecker products
algebra (KPA) in order to address the mapping of such techniques onto parallel structures. The
DFT beamforming algorithms are initially implemented, using the MATLAB numeric compu-
tation and software visualization package, as an ideal tool for developing, testing, and opti-
mizing signal processing applications. Once the DFT beamforming algorithms are tested and
optimized using MATLAB, the DFT beamforming techniques are implemented on the high
performance, oating-point TMS320C6713 digital signal processing(DSP) board, from Texas
Instruments. These algorithms are also designed to be executed by a Gumstix. Parallel im-
plementation and performance analysis is conducted, using a parallel programming modeling
environment, named pMATLAB. Such tool is used to further address the mapping problem of
computational methods to distributed parallel computational structures. The DFT beaforming
operation performance is compared among three platforms: DSP, Gumstix, and pMATLAB.
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1.3 Thesis Research Contributions

The main contributions of this research are presented as follows:

� The �rst and principal contribution made by this work is the development of computa-
tional methods for performing bioacoustics beamforming algorithms with the objective
of estimating direction of arrival (DOA) from signals arriving at a set of acoustic sen-
sors. The computational methods center on the use of the discrete Fourier transform
and Kronecker products to formulate the desired beamforming operations on a parallel
computational structure.

� A SAP testbed has been developed at the AIP Laboratory with the purpose of testing
these computational methods in the �eld and serving as an ideal tool for biologist to
monitor, collect, and analyze data in a passive way, and retrieve processed data via
wireless communication, thus avoiding the necessity of frequent visits to the �eld.

1.4 Thesis Organization

The remaining of this work is presented as follows: Chapter 2 describes the background work
and previous research conducted, related to the following: design, implementation, and ideal
characteristics for distributed sensor array networks, the advantages and disadvantages of cur-
rent beamforming algorithms developed for obtaining source location estimates, and the novel
approach of applying DFT Kronecker beamforming operations, suitable for parallel computa-
tional structures. Chapter 3 provides a descriptive theoretical background, de�ning important
concepts such as acoustics signal characterization, basic beamforming operation, and DFT
multi-beamforming operation. Chapter 4 is completely dedicated to describing in detail the
Kronecker products algebra, and how it can be integrated into the DFT beamforming tech-
niques, in order to further reduce the computational hardware complexity involved for sensor
array systems consisting of a large number of sensors. Chapter 5 presents the parallel pro-
gramming modeling environment, named pMATLAB, which has been utilized to study the
computational performance of parallel implementation techniques. Chapter 6 describes the
implementation of the DFT beamforming algorithms on the DSP unit TMS320C6713, from
Texas Instruments. Experimental results are presented and explained in details in chapter 7,
culminating with conclusions and future work in chapter 8.



Chapter 2

Background and Related Work

This chapters survey previous work related to the area of acoustic beamforming and the types of
algorithms developed with the main goal of obtaining accurate source localization estimations.
Beamforming by means of wireless distributed acoustic array networks is also discussed.

2.1 Bioacoustics Signal Analysis

Bioacoustics signal analysis works with extracting important information, such as source loca-
tion and propagation medium, from sound signals emitted by animals, including humans. We
are interested in using bioacoustics signal analysis for monitoring the anuran family. Such family
includes species of frogs and toads. The study of amphibians has gained a great importance for
distinct biological groups and research, where monitoring and tracking changes in population,
especially endangered species, has become a top main concern.

2.2 Acoustics Signal Analysis

Acoustics can be de�ned as the science of sound, which studies its production, transmission,
and e�ects. Such analysis deals with the properties of a sound waveform, such as the amplitude
S0, fundamental frequency fc , its duration t, and other properties of its frequency spectrum.

2.3 Signal and Sensor Array Model

A signal model has been formulated in [4]. Through this formulation, the signal detected at
each sensor is modeled in terms of the relative time delay between the pth sensor and the

7
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array centroid rc . In this case, the centroid of each array is used as reference point, in order
to model a signal that is received at each sensor p in the array:

xp[n] =
M∑

m=1
S(m)[n � t(m)

cp ] + wp[n]; (2.1)

where xp[n] denotes the signal detected at sensor p, S(m) themth source signal, wp[n] the white
Gaussian noise, t(m)

cp the relative time delay between the pth sensor and the array centroid rc ,
and t(m)

c , t(m)
p the propagation time from source S(m) to the centroid and sensor p respectively,

at time instance n. The relative time delay is de�ned as:
t(m)
cp = t(m)

c � t(m)
p : (2.2)

This signal model assumes that each of the M sources is located in the far-�eld. In the far-
�eld case as the distance between the source and array becomes larger, the signal detected
at the sensors becomes planar and parallel (see Figure 2.1). E�ective microphone spacing
and acoustic orientation calibration must be determined in order to make the beamforming of
wideband acoustic signals more robust. Using e�ective microphone spacing helps take into
consideration unavoidable ambient factors such as noise, interference, and multipath e�ects.

Figure 2.1: Far Field Geometry and Notation

A second model has also been proposed in [5] to include reverberant e�ects (signal reections).
In order to accomplish this, the impulse response function of each sensor must be blindly
identi�ed. The impulse responses model the reverberant e�ects. The disadvantage is that for
a small number of microphones, this model can fail, due to the probability that the transfer
functions can share common zeros. The number of sensors would need to be increased in order
to have a better model of the reverberant e�ects.
For the model presented in Figure 2.1, microphone spacing has been seen to a�ect the
beamforming performance. As found in literature, e�ective microphone spacing and acous-
tic orientation calibration must be determined in order to make the beamforming of wideband
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acoustic signals more robust. Using e�ective microphone spacing helps take into consideration
unavoidable ambient factors such as noise, interference, and multipath e�ects. It has been
demonstrated that large microphone spacing results in beam patterns with side lobes. When
exposed to noise, interference, and multipath e�ects, the side lobs can become taller than
the main lobe. Hence this can cause a signi�cant error in estimating DOAs. The microphone
spacing guide line d � �=2 has been shown to provide better DOA estimates.
Array shape and number of sensors in each array was one of the main features discussed, for
the array model proposed [6]. By incrementing the number of sensors from one to four in each
array, it was determined that arranging four square arrays, each with four sensors, provided
better results in localizing multiple sources.
Traditional, centralized systems, have found to possess the disadvantage of having a small
coverage of region under observation, since a small number of sensors are placed near the
central processing node. It has been demonstrated that distributed local processing, instead
of central processing, is more energy e�cient in the sense that subarrays conduct the local
processing of DOA estimation, source identi�cation, and detection [7].

2.4 Sophisticated Algorithms

The need for source detection, location, and tracking has become a great interest for a variety
of applications: military, industrial, speech analysis, bioacoustics analysis, etc. Such appli-
cations share a common objective: to design low-cost microsensor arrays which can form a
distributed network, and provide the direction of arrival (DOA) estimates for source location.
It has become revelant the interest of designing and implementing low-cost microsensor ar-
rays, composed of sensor signal processing nodes (SSP) with the following capacities: wireless
communication, signal acquisition, storage, and processing operations. In addition, extensive
search for obtaining accurate source localization estimates has led to the development of two
classes of algorithms: i) TDE (Time Delay Estimation) algorithms, which provide a closed-
form solution and ii) AML (Approximate Maximum Likelihood) based method for parametric
DOA estimations.
It has been proposed that AML, despite its complexity, provides better estimation accuracy
[2]. In addition, when considering multiple-source wideband signals, AML has been found to
be a more attractive method, by processing the data in frequency domain [8]. This is due
to the fact that in the frequency domain, a wideband signal's spectrum can be taken as a
series of narrowband spectrums for each frequency bin. In addition, more reliable noise model
is provided in the frequency-domain than in the time domain model. The main disadvantage
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of the TDE-based algorithms found in literature is that, even though they work well for both
narrowband and wideband signals, these algorithms usually consider a single source case.
Algorithms have also been developed in order to estimate adaptable �lter coe�cients or weights
of a blind beamformer. Blind beamforming operation is applied when information regarding the
sensors is unknown and the steering directions and beamforming weights need to be estimated.
A General Eigenvalue (GEV) based using a stochastic gradient ascent approach has been
proposed in order to estimate and adapt the �lter coe�cients or weights of a blind beamformer
[9], for each frequency bin. In order to do this, the power spectral densities of the signal
detected at the microphones and the power spectral density of the noise in speech pauses
are estimated. It has been found that GEV converges faster than other Stochastic Gradient
(SG) algorithms and produces less variation in the SNR gain [9]. GEV converges slower than
Recursive Least Squares (R-LS), focusing more computational load during the presence of
desired signal, making it more robust [9] .
Adaptive array processing has also been implemented with the constraint that the desired
spatial output response remains approximately constant for each frequency bin [10]. All primary
�lters can be derived from a single set of reference coe�cient �lters that produce the desired
frequency response obtained at a certain reference location and sampling period T [11]. There
are two methods for achieving this: multirate and single rate methods. It was shown that the
multirate rate, at a higher sample frequency, resulted in fewer �lter coe�cients [12].
In ideal condition scenario in which information regarding to the sensor array is known, it has
been shown in [3], that the Discrete Fourier Transform (DFT) can be applied in the beamform-
ing operation. Using DFT beamforming has the advantage of representing the beamforming
operation as a set of M Discrete Fourier Transforms DFT modules, where N is the size of each
segment and L denotes the number of sensors, and should be a power of 2:

L = M � N: (2.3)

In this way, the beamforming operation can be adapted and scaled, according to the hardware
architecture, by dividing the operation in M modules. Such operation is known as the DFT
Kronecker products.

2.5 Structural Beamforming Mapping and Architecture

It has been seen in literature that the preferred AML algorithm for estimating source location
generally maps to the blind beamforming situation. Such case represents a non-ideal condi-
tion, since information regarding to the sensor array is unknown. On the other hand, when



Chapter 2. Background and Related Work 11
information of the sensor array is known, such as the microphone spacing and sensor position,
the problem no longer maps to a blind beamforming operation. Instead, this situation maps to
an ideal condition, where the information related to the sensor array can be used in order to
obtain source location estimates. In this case, DFT beamforming algorithm can be applied.
Such hardware architectures in which the beamforming operation (AML and DFT) can be
implemented include multicore. In the case of DFT, the Kronecker products can be easily used
in order to divide the beamforming operation among M processors present in the multicore
system. For example, it is shown how Kronecker formulations can help to formulate fast
Fourier transform algorithms, and other DSP operations, providing e�cient implementation
on parallel and vector processing architectures [13]. In addition, it is demonstrated how the
DFT computation of a L-point discrete signal x(n) can be expressed in a Kronecker product
form, through sparse matrices of the same dimension, when L is a composite number of the
form L = RS, by rearranging the input discrete signal as a two-dimensional array [14].
Hence the DFT beamforming can be carried out for each module in parallel form, especially
when the number of sensors is large, and Kronecker products can help provide an e�cient
implementation, according to the appropiate computer architecture.



Chapter 3

Theoretical Framework

3.1 Signal Characterization

A model for a plane wave signal [3] which arrives at a linear sensor array has the following form:
s(t; r) = s0e+j(2�fc t�hk;ri): (3.1)

In the above model, s(t; r) is a continuous signal, where s0 denotes the amplitude of the signal,
fc represents the carrier frequency, t is the time instances, k denotes the wave vector, and r

is known as the spatial vector. The spatial vector r is de�ned by the following coordinates, in
a three-dimensional coordinate system:

r = (rx ; ry ; rz) (3.2)
In the same manner, the wave vector k is de�ned by the following coordinates, in a three-
dimensional coordinate system:

k = (kx ; ky ; kz) (3.3)
The term hk; ri denotes the dot product between the wave vector k and the spatial vector r ,
which is de�ned as follows:

hk; ri = kx � rx + ky � ry + kz � rz : (3.4)
Substituting the dot product expressed in the above equation, into the signal model expressed
in (3.1), the following signal model, in terms of the coordinates of the spatial vector r , is

12
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derived:

s(t; rx ; ry ; rz) = s0e+j(2�fc t�(kx �rx+ky �ry+kz �rz )); (3.5)
The following �gure presents a linear array of N sensors, where d represents the distance
between each pair of sensors,DN is the total distance of the linear array, measuring from the
�rst sensor denoted A0 to the last sensor in the linear array AN�1. As shown in Figure 3.1, rx

Figure 3.1: Linear Sensor Array Model

denotes the horizontal direction with respect to each sensor in the linear array, also known as
x . The vertical direction, perpendicular to each sensor in the linear array, is represented by ry ,
which can also be denoted as y . In a three-dimensional Euclidean space, with a right-handed
coordinate system, the operation rx � ry denotes a cross-product operation, which de�nes the
vector rz , also known as z , perpendicular to the plane formed by rx and and ry . The direction of
rz , given by the right-hand rule, corresponds to the vector pointing away from the intersection
of rx and ry , as shown in Figure 3.2, as rx closes towards the vector ry . By observing Figure
3.1 and Figure 3.2, the only spatial coordinate of the r that changes is rx , with respect to
each sensor, as the wave plane moves from one sensor to the next, maintaining ry and rz
constant. Since the signal model ( t,r) is a function of the changes in the spatial vector r ,
besides the time instance t, such model can be reduced to considering only the coordinate rx
of the spatial vector r . Hence the dot product hk; ri is reduced to kx � rx , and the signal model
may be re-expressed as follows:

s(t; rx) = s0e+j(2�fc t�(kx ;rx )); (3.6)
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Figure 3.2: Spatial Vector Coordinates

The value kx �rx of the dot product can be simpli�ed to k �x , resulting in the following expression
for the signal model s(t,x), now in terms of the time instance t and the spatial coordinate x :

s(t; x) = s0e+j(2�fc t�k�x): (3.7)

The term 2� in the signal mode s(t,x) can be factored out as follows:
s(t; x) = s0e+j2�(fc t� k�x

2� ): (3.8)
The factor k

2� may also be expressed as 1
� , where � corresponds to the wavelength of the

incoming source signal, with the velocity of light being c = fc � �. Therefore the signal model
may be reformulated as follows:

s(t; x) = s0e+j2�(fc t� x
�): (3.9)

It is assumed that the plane wave s(t,x) arrives at the linear sensor array at an incidence
angle �0 with respect to the boresight. The boresight is de�ned as the vertical axis,which
is normal to each sensor positioned in the linear array along the horizontal axis (see Figure
3.3). In order to incorporate the incidence angle �0 into the signal model, s(t,x) needs to be
reformulated to take into consideration this important factor. Figure 3.4 presents a detailed
diagram concerning how the incidence angle is integrated into the signal model. According
to Figure 3.4, the angle of interest is �0, which is measured between the boresight axis and
the wave vector k originating from the plane wave. It can be shown that a relationship exists
between the incidence angle �0 and the angle , presented in Figure 3.4. Since the boresight
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Figure 3.3: Basic Linear Beamforming Operation

Figure 3.4: Incident Angle Relationship

axis forms a 900 angle, which corresponds to �
2 in radians, with respect to each sensor in the

array, the angle  may be expressed as follows:
 = (�

2 � �0
) (3.10)

By observing carefully Figure 3.4, a right triangle is formed between the wave vector k , the
plane wave, and the distance d between a pair of sensors. The right triangle (�2 in radians)
is formed between the wave vector k and the plane wave. The distance jk j = x denotes the
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delay it takes the plane wave to reach each sensor in the linear array. Hence, it is desired to
determine this value, using the relationship established in the previous expression of  in terms
of the incidence angle �0. Using trigonometry properties and taking the distance d as the
hypotenuse of the right triangle, the following relationship is established:

cos () = x
d
: (3.11)

By substituting  = (�
2 � �0

) in the above expression, the following is obtained:
cos

(�
2 � �0

) = x
d
: (3.12)

By applying trigonometry properties, the following expression is derived:
cos

(�
2 � �0

) = sin (�0) = x
d
: (3.13)

Since it is desired to determine the distance jk j = x , representing the propagation delay, the
above expression is solved for x , arriving at d � sin (�0). By substituting x in the signal model
expressed in equation 3.8, the subsequent signal model formulation is obtained, where the
incidence angle �0 is incorporated to the signal model:

s(t; x) = s0e+j2�(fc t� d
� sin(�0)); (3.14)

recalling that d represents the spacing between each pair of sensors in the linear array.
The position of a sensor An in the linear array may be speci�ed in the signal model, in terms
of its distance from the �rst sensor A0. This is achieved by substituting d with �nd , where
n = 0; 1:::N � 1, N being the total number of sensors in the linear array. Hence the new signal
may be spatially sampled in terms of each sensor An in the array, where �nd represents the
distance of the sensor An with respect to the �rst sensor A0. The new signal model s(t; x) is
presented as follows:

s(t; x) = s0e+j2�(fc t+ nd
� �0) = s0e+j2�fc t � e+j2�( nd� �0); (3.15)

where �0 corresponds to the steering direction of the input signal, and is de�ned as follows:
�0 = sin(�0); ��

2 � �0 � �
2 : (3.16)

The term s0e+j2�fc t may be represented as a function v0(t) = s0e+j2�fc t , thus s(t; x) =
v0(t)e+j2�( nd� �0). Considering a single time instance t = t0, the following formulation for the
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signal model is derived:

s(t0; nd) = v0(t0)e+j2�( nd� �0)jt=t0 (3.17)
The signal model s(t0; nd) now represents the signal captured at the nth sensor. In addition,
this new signal model now integrates the propagation delay ndsin(�0), which represents the
time it takes for the source signal to propagate from the �rst sensor A0, which is considered
as a reference sensor or point in the linear array, to the nth sensor An in the array. Hence, it
can be observed from the previous signal model, that it is now a changing function of n, and
remains constant for each time instance t. Also, the carrier frequency fc , does not change
within the same wave plane from which the signal originates. The term e+j2�(fc t) therefore
does not represent an important contribution when modeling the input signal in terms of the
position of each sensor in the linear array. Eliminating this term from the signal model, we
arrive at the �nal derivation of a discrete signal model formulation:

�n(�0) = �0 � e+j2�( nd� �0); n 2 ZN ; (3.18)
where ZN represents the set of natural numbers 0; 1; 2:::N�1, and �0 represents the amplitude
of the new discrete signal model �n(�0). Spatial samples from all of linear array sensors can
be expressed as an input column vector as follows:

� (�0) = [�0(�0); �1(�0); :::; �N�1(�0)]T ; (3.19)
where � (�0) is the spatially sample arriving plane wave coming from the steering direction �0.
As expected for a linearly arranged sensor grid, input signals can be detected at incident angles
between �900 and and 900, corresponding to ��

2 � �0 � �
2 in radians. Hence the resulting

steering direction lies in range between -1 and 1.

3.2 Basic Beamforming Operation

In the time domain, a beamforming operation is performed using the time delay operation in
order to obtain the coherent sum N � �0 from all sensor signals. In this work, beamforming
is treated from the point of view of a linear transformation over a �nite discrete input signal.
Figure 3.5 carefully illustrates with explicit details the basic components of a general, adaptive
beamformer processor, as described in [15]:
As explained in the previous section, the �rst component s(t,r) represents the incoming signal,
originating from a plane wave, arriving at each sensor of the array, at an incidence angle �0,
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Figure 3.5: Basic Adaptive Beamformer Processor

with respect to the boresight. As it can be observed from the diagram presented in Figure
3.5,ndsin(�0) represents, for n = 0; 1; :::; N � 1, the propagation delay or the time it takes for
the source signal s to propagate from the �rst sensor A0 to the nth sensor An.
The second component of the beamformer processor is the linear sensor array itself, composed
of N sensors, ranging from the �rst sensor A0 to the last sensor AN�1, where the sensors are
equally spaced by a distance d . A signal conditioning module is added in order to optimize the
signal received at each sensor for the beamforming operation.
The third component �n, for n = 0; 1; :::; N�1, represents the weighting factor, associated with
each receiving channel of the array, in which for this case, each receiving channel corresponds
to a sensor. In this stage of the beamformer processor, the signal captured at each sensor is
multiplied by the corresponding weight �n.
The fourth and �nal component of the beamformer processor is represented by the sum ∑,
where the multiplied signal component obtained from each sensor are added together, resulting
in the beam pattern output:

y = � � s; (3.20)
where s is a column vector representing the values of the incoming source signal, and � is a
row vector that contains all of the weighting factors, as de�ned as folllows:

� = [�0; �1; :::; �N�1] (3.21)
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In this work, a beamforming vector is de�ned as the following row vector:

B (�0) =
[
1; ef�j2� d

��0g; ef�j2� 2d
� �0g; :; e

{
�j2� (N�1)d

� �0
}]

: (3.22)
The purpose is to obtain the coherent sum N � �0 from the following beamforming transfor-
mation operation:

B (�0) ��(�0) = N � �0: (3.23)
In general, the beamforming vector is used to steer an input vector � (�0) toward the steering
direction �0, obtaining as result a beam pattern of a linear array steered to a speci�c direction.
The product L � �0 can also be represented as:

B (�0) ��(�0) = L�1∑
n=1

�n � ef�j2�n�g: (3.24)

where � = (d=�)�0 is called the spatial spectrum variable. Hence, when an input signal is
coming from a source, at a steered direction �0, the beamforming transformation results in
multiplying the signal amplitude �0 by the number of L sensors in the linear array.

3.3 DFT Multi-Beamforming Technique

When an incoming signal is received by a linear array of sensors, the steering direction, and
thus the DOA of the signal, is unknown. This leads to considering a set of M possible steering
angles from the range ��

2 � �0 � �
2 are considered,resulting in the de�nition of the multi-

beamforming matrix as follows:

B =


B(�0)
B(�1)...

B(�M�1)

 =


1 e�j2�

d
��0 � � � e�j2�

(L�1)d
� �0

1 e�j2�
d
��1 � � � e�j2�

(L�1)d
� �1

... ... . . . ...
1 e�j2�

d
��M�1 � � � e�j2�

(L�1)d
� �M�1

 : (3.25)

Such matrix consists of M rows, where M corresponds to the number of steering direction that
the linear array is capable of detecting. Each row corresponds to a beamforming transformation
operation de�ned for a speci�c steering direction, and contains L values, L being the number of
sensors in the linear array. This multi-beamforming matrix is then applied to the input signal.
When multiple sources are present, the multi-beamforming matrix is applied to an input matrix,
where each column denotes a single spatially sampled input signal, arriving at a predetermined
steering direction. An example of a single beam pattern formation obtained from a linear
array of 64 sensors can be depicted in Figure 7.3. The main lobe of such pattern formation
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Figure 3.6: Single Beam Pattern Formation

represents the magnitude of the dominant signal, at a maximum value of 64, assuming the
amplitude of the signal to be equal to one. The steering direction associated with the main
lobe is used to determine the corresponding DOA or incidence angle.
The multi-beamforming matrix B becomes the DFT transform matrix when the number of
steering angles M is equal to the number of sensors L in the linear array. A single beamforming
transformation can be rede�ned as:

B (�n) =
[
1; ef�j2� n

Lg; ef�j2� 2n
L g; :; e

{
�j2� (L�1)n

L
}]
jn=0;1:::L�1: (3.26)

Thus, for the multi-beamforming operation, the matrix B can be expressed as follows:

B =


B(0)
B( 1L)...
B(L�1L )

 =


1 1 � � � 1
1 WL � � � WL�1

L... ... . . . ...
1 WL�1

L � � � W (L�1)(L�1)
L

 : (3.27)

where W n
L = e(�j2�L )�n is known as the twiddle factor. Hence the resulting beamforming matrix

becomes the L� L DFT matrix, also known as the FL matrix.
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DFT Kronecker Algorithms

4.1 Introduction to Kronecker Products ande Fast Fourier Trans-

forms

The Kronecker product is a very useful operation, based on the algebra of Kronecker products,
which serves as a mathematical language for modeling, designing, analyzing, implementing,
and modifyinfg the computation of the DFT [14]. This operation can be used to formulate
the fast Fourier transform (FFT) algorithms. Such algorithms have been shown to be e�cient
for computing the DFT. As shown previously, in chapter 3, when the number of sensors L is
equal to the number of steering angles, the beamforming matrix B results to be the L�L DFT
matrix, also known as the FL matrix. The FFT, on the otherhand, represents a factorization
of this DFT matrix, into M factors or modules, which can be applied to a discrete input
vector, dividing it into M modules as well. For the beamforming operation, the input vector
corresponds to the spatially sampled input vector, with respect to the sensors in the linear array.
This will be explained in further details throughout the remaining sections of this chapter.
An important issue or concern arises as the number of points (for the beamforming operation,
this would be the number of sensors) L or length de�ned for the DFT increases signi�cantly,
causing the computational e�ort and procedure to become tedious, causing a large usage
of computational resources. However, this can be solved by using Kronecker products in
combination with the FFT algorithms. The advantage of this is that by factorizing the DFT
(beamforming) matrix intoM factors or modules, each of length L

M , the computational process
and e�ort is simpli�ed. This in turn, simpli�es in a more concise and clear manner, the analysis
and implementation of the DFT matrix.

21
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4.2 The Fast Fourier Transform

As stated in the previous section, the FFT has been shown to be an e�ective algorithm for
computing the DFT matrix, in a factorized form [14]. Here, the factorization of the DFT
matrix using FFT is carefully illustrated in detail.
For an arbitrary discrete signal x(n), of �nite-length L, the DFT is de�ned as follows:

X(k) = L�1∑
n=0

x(n)e(�j2�nkL ); k = 0; 1; :::; L� 1; j = p�1: (4.1)

In order to arrive at the de�nition for the DFT of an arbitrary discrete signal x(n), such
formulation is derived from the discrete-time Fourier transform (DTFT), or simply known as
the Fourier transform of a discrete signal x(n). The DTFT of a discrete signal x(n) is denoted
as X(e!) or X(!), where ! represents the real frequency variable, and is de�ned as follows:

X(e!) = X(!) = 1∑
n=�1

x(n)e!n: (4.2)

As demonstrated by the DTFT formulation, the discrete signal x(n) is considered to be of
in�nite length. However, for the beamforming operation, �nite-length sampled input signals of
length L are considered. For this case, only L values of X(!), which are also called frequency
samples, can be used to determine or de�ne x(n) and X(!). This is done by uniformingly
sampling X(!) at L points ! = !k ; k = 0; 1; :::; L � 1: Hence, the DFT is derived from the
DTFT, as follows:

X(k) = X(!k)j!k = �j2�k
L

= L�1∑
n=0

x(n)e!kn = L�1∑
n=0

x(n)e(�j2�kL )n: (4.3)

In addition to the formulation de�ned for the DFT of a discrete signal x(n), this transform
can also be expressed in matrix form. This is achieved by expanding the summation operation
given in (4.1) as X = FLx , where FL is a L� L DFT matrix, de�ned as:

FL = [
W kn

L
] jk;n=0;1:::L�1;WL = e(�j2�L ); (4.4)

and the vectors X and x are de�ned as:

X =


X(0)
X(1)...

X(L� 1)

 ; x =


x(0)
x(1)...

x(L� 1)

 (4.5)
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The signals x(n) and X(k) are written in column vector form, as x and X, respectively, where
the values or entries are in natural order. The indexation for both x(n) and X(k) begins at
the vlaue 0 and ends at L� 1, for both n and k variables. Thus, the matrix FL is formulated
by de�ning each row in terms of k , and de�ning each column in terms of n.
There is a property which can be applied in the formulation for the DFT matrix, known as the
additive modulo L hpiL, which represents the remainder of p after being divided by L:

hpiL = R
(p
L

)
; (4.6)

where R denotes the remainder of the division p
L . If p is less than L, then hpiL is equal to

p. Also if p is equal to L, then hpiL is equal to 0. For q de�ned as any integer in the set
Z+ = 0; 1; 2:::, the following equation can also be established:

hp + qLiL = R
(
p + qL

L

)
: (4.7)

The remainder R of the fraction p+qL
L can be further expressed as:

R
(
p + qL

L

)
= R

(p
L

) + R
(
qL
L

)
: (4.8)

Careful observation in the above expression shows that the second term in the right-hand
expression R

( q
L
) results in a remainder of 0, since the numerator qL is a multiple of the

denominator L; that is, qL is divisible by L, resulting in a remainder of 0. Hence, the following
is obtained:

hp + qLiL = hpiL : (4.9)
For example, h�1i7 and h9i4can be respectively expressed as follows:

h�1i7 = h�1 + 7i7 = h6i7 = 6: (4.10)

h9i4 = 1: (4.11)

The matrix FL can be further simpli�ed when applying the additive modulo L property to each
element of the matrix:

FL = [
W hkniL

L
]
jk;n=0;1:::L�1: (4.12)
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4.2.1 Example Formulation of DFT operation, for length L

The DFT operation for L = 4 can be expressed through the following summation operation,
in terms of the variable n:

X(k) = 3∑
n=0

x(n)W kn
4 = x(0) + x(1)W k

4 + x(2)W 2k
4 + x(3)W 3k

4 : (4.13)

By further evaluating the expression de�ned for X(k) for each value of k = 0; 1; 2; 3, the
following formulations are derived:

X(0) = x(n)W kn
4 = x(0) + x(1) + x(2) + x(3); (4.14)

X(1) = x(0) + x(1)W 1
4 + x(2)W 2

4 + x(3)W 3
4 ; (4.15)

X(2) = x(0) + x(1)W 2
4 + x(2)W 4

4 + x(3)W 6
4 ; (4.16)

X(3) = x(0) + x(1)W 3
4 + x(2)W 6

4 + x(3)W 9
4 ; (4.17)

Hence, the DFT operation can be expressed in the matrix-vector form, X = F4x ,as follows:
X(0)
X(1)
X(2)
X(3)

 =


1 1 1 1
1 W4 W 2

4 W 3
4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4




x(0)
x(1)
x(2)
x(3)

 (4.18)

where the DFT matrix F4 is de�ned as:

F4 =


1 1 1 1
1 W4 W 2

4 W 3
4

1 W 2
4 W 4

4 W 6
4

1 W 3
4 W 6

4 W 9
4

 : (4.19)

By applying the additive modulo L property for L = 4, the matrix F4 can be further simpli�ed.
For example, considering the element W 2�3

4 = W 6
4 in row k = 2 and column n = 3, when

applying the additive modulo 4 property, we obtain W h6i4
4 = W 2

4 . Hence the DFT matrix F4
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may be �nally expressed as:

F4 =


1 1 1 1
1 W4 W 2

4 W 3
4

1 W 2
4 1 W 2

4
1 W 3

4 W 2
4 W4

 : (4.20)

The DFT operation can be �nally expressed in the simpli�ed matrix-vector form, X = F4x ,as
follows: 

X(0)
X(1)
X(2)
X(3)

 =


1 1 1 1
1 W4 W 2

4 W 3
4

1 W 2
4 1 W 2

4
1 W 3

4 W 2
4 W4




x(0)
x(1)
x(2)
x(3)

 : (4.21)

4.3 Kronecker Product Algebra De�nition

As mentioned previously, the Kronecker product is a very useful operation, and it is commonly
used as a tool to model unitary and linear transforms, in particular, the DFT. In this section, the
basic Kronecker product of two matrices is de�ned. In addition, some basic properties of the
Kronecker product operation are described, such as for vector processing and parallel processing
operations. The DFT matrix is further described as a composition of sparse matrices, where
the Kronecker product is used to express some of them. The advantage of having these sparse
matrices as factors which decompose the DFT matrix FL, is that e�cient implementations
can be obtained on various computational architectures.
The Kronecker product operation uses the notation 
. Considering a matrix A, of size R �
R,and a matrix B, of size S�S, the Kronecker product operation A
B is de�ned as follows:

C = A
 B = [aklB]k;l=0;1;::;R�1 ; (4.22)
producing a new matrix C of size RS �RS. It is important to highlight that the de�nition of
the Kronecker product can be generally applied to matrices of any dimensions.
Let A and B be square matrices of size 3� 3, which are de�ned as follows:

A =

a00 a01 a02
a10 a11 a12
a20 a21 a22

 ; B =

b00 b01 b02
b10 b11 b12
b20 b21 b22

 : (4.23)
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When applying the Kronecker product operation A
 B, the matrix C of size 9x9 is produced
as follows:

C = A
 B = [aklB]k;l=0;1;::;R�1 =

a00B a01B a02B

a10B a11B a12B

a20B a21B a22B

 : (4.24)

The matrix C can also be expressed as:
C = A
 B = [aklB]k;l=0;1;::;R�1 (4.25)

C =



a00b00 a00b01 a00b02 a01b00 a01b01 a01b02 a02b00 a02b01 a02b02
a00b10 a00b11 a00b12 a01b10 a01b11 a01b12 a02b10 a02b11 a02b12
a00b20 a00b21 a00b22 a01b20 a01b21 a01b22 a02b20 a02b21 a02b22
a10b00 a10b01 a10b02 a11b00 a11b01 a11b02 a12b00 a12b01 a12b02
a10b10 a10b11 a10b12 a11b10 a11b11 a11b12 a12b10 a12b11 a12b12
a10b20 a10b21 a10b22 a11b20 a11b21 a11b22 a12b20 a12b21 a12b22
a20b00 a20b01 a20b02 a21b00 a21b01 a21b02 a22b00 a22b01 a22b02
a20b10 a20b11 a20b12 a21b10 a21b11 a21b12 a22b10 a22b11 a22b12
a20b20 a20b21 a20b22 a21b20 a21b21 a21b22 a22b20 a22b21 a22b22


(4.26)

4.3.1 Special Properties of Kronecker Products

In this section a series of basic Kronecker properties that are often encountered in the formu-
lation and implementation of a variety of operations, are de�ned. Let A, B, and C be de�ned
as arbitrary matrices. First, the Kronecker product operation is associative, as demonstrated
as follows:

A
 (B 
 C) = (A
 B)
 C: (4.27)
The Kronecker product operation is also distributive, as presented:

A
 (B � C) = (A
 B) � (A
 C) : (4.28)
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The following special property also holds for the Kronecker product operation:

(A
 B) � (C 
D) = AC 
 BD: (4.29)
A property of the Kronecker product operation, involving transposition operation denoted as
T is presented as follows:

(A
 B)T = AT 
 BT : (4.30)
Note that the Kronecker product operation is not commutative; that is, (A
 B) 6= (B 
 A).

4.4 Using Kronecker Product for Parallel Operation

In this section, the usage of Kronecker product formulation for implementing parallel operations
is demonstrated in details. Let the matrix A be equal to the 4� 4 identity matrix I4, which is
de�ned as:

A = I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ; (4.31)

and let B be de�ned as the 2� 2 DFT matrix of order 2, de�ned as follows:

B = F2 =
[ 1 0
0 W2

]
: (4.32)

The term W2 can be expressed as:
W2 = e

�j2�
2 = cos (�)� js in (�) : (4.33)

Since sin (�) = 0, the above formulation reduces to:
W2 = e

�j2�
2 = cos (�) = �1: (4.34)

Thus the matrix B = F2 may be reformulated as follows:

B = F2 =
[ 1 0
0 �1

]
: (4.35)
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By computing the Kronecker product C = A 
 B = I4 
 F2 the following 8 � 8 matrix is
obtained:

C = I4 
 F2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



[ 1 1
1 �1

]
; (4.36)

C = I4 
 F2 =


F2 0 0 0
0 F2 0 0
0 0 F2 0
0 0 0 F2

 ; (4.37)

C =



1 1 0 0 0 0 0 0
1 �1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 �1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 �1


: (4.38)

In general, the expression IR 
 FS can be seen as a parallel operation since the submatrices
FS are the nonzero elements that appear along the diagonal of the resulting matrix, which is a
sparse matrix. A matrix-vector multiplication operation can be de�ned, in terms of the sparse
matrix IR 
 FS as follows:

b = (IR 
 FS) a; (4.39)
where b and a are column vectors, each of length or order R �S. As an example, let R = 4 and
S = 2. Considering a column vector b and a, each of length 8, the matrix-vector multiplication
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Figure 4.1: Scalar Buttery Operation

operation b = (I4 
 F2) a is formulated as follows:

b(0)
b(1)
b(2)
b(3)
b(4)
b(5)
b(6)
b(7)


=


F2 0 0 0
0 F2 0 0
0 0 F2 0
0 0 0 F2





a(0)
a(1)
a(2)
a(3)
a(4)
a(5)
a(6)
a(7)


: (4.40)

The column vector a can be divided into 4 sections, or subvectors, each consisting of two
elements. Let a�0, a�1, a�2, and a�3 be the 4 subvectors, that are de�ned as:

a�0 =
[
a(0)
a(1)

]
; a�1 =

[
a(2)
a(3)

]
; a�2 =

[
a(4)
a(5)

]
; a�3 =

[
a(6)
a(7)

]
: (4.41)

The matrix-vector multiplication operation b = (I4 
 F2) a can then be expressed as:
F2 0 0 0
0 F2 0 0
0 0 F2 0
0 0 0 F2




a�0
a�1
a�2
a�3

 =


F2 � a�0
F2 � a�1
F2 � a�2
F2 � a�3

 (4.42)

The operation F2 �p, where p is a vector of length 2, is known as the scalar buttery operation,
and is described as follows:

F2 � p =
[ 1 1
1 �1

] [
p0
p1

]
=

[
p0 + p1
p0 � p1

]
: (4.43)

Figure 4.1 presents a more conceptual view of how the scalar buttery operation works: Hence
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b = (I4 
 F2) a becomes:

b(0)
b(1)
b(2)
b(3)
b(4)
b(5)
b(6)
b(7)


=



1 1 0 0 0 0 0 0
1 �1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 �1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 �1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 �1





a(0)
a(1)
a(2)
a(3)
a(4)
a(5)
a(6)
a(7)


=



a(0) + a(1)
a(0)� a(1)
a(2) + a(3)
a(2)� a(3)
a(4) + a(5)
a(4)� a(5)
a(6) + a(7)
a(6)� a(7)


: (4.44)

This clearly demonstrates that the operation b = (I4 
 F2) a can be performed by computing
4 simultaneous FFTs, each of length 2. In general, the matrix-vector multiplication operation
b = (IR 
 FS) a can be computed on a computer architecture with R processors, in which
each processor is loaded with a subvector of the input vector a, consisting of S elements, and
computes the FFT of length S.

4.5 Using Kronecker Product for Vector Processing

The Kronecker product is characterized to be a non-commutative operation; hence IR 
 FS 6=
FS 
 IR. However, the Kronecker product FS 
 IR introduces additional special properties,
in which this expression favors an architecture capable of conducting vector processing com-
putations. Let S = 2 and R = 4. The sparse matrix C = F2 
 I4 can thus be de�ned as
follows:

C = F2 
 I4 =
[ 1 1
1 �1

]




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ; (4.45)

C = F2 
 I4 =
[
I4 I4
I4 �I4

]
; (4.46)
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C =



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 �1 0 0 0
0 1 0 0 0 �1 0 0
0 0 1 0 0 0 �1 0
0 0 0 1 0 0 0 �1


: (4.47)

In this case, the operation b = (FS 
 IR) a can be computed at a vector level, instead of at
a scalar level.The following example of the operation b = (F2 
 I4) a is considered, which can
be de�ned as follows: 

b(0)
b(1)
b(2)
b(3)
b(4)
b(5)
b(6)
b(7)


=

[
I4 I4
I4 �I4

]



a(0)
a(1)
a(2)
a(3)
a(4)
a(5)
a(6)
a(7)


: (4.48)

The above matrix-vector multiplication operation divides the column vector a into the following
two subvectors: 

a(0)
a(1)
a(2)
a(3)

 ;


a(4)
a(5)
a(6)
a(7)

 : (4.49)
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The matrix-vector multiplication operation can be viewed as the following submatrix-vector
segment multiplication:



b(0)
b(1)
b(2)
b(3)
b(4)
b(5)
b(6)
b(7)


=



I4


a(0)
a(1)
a(2)
a(3)

 + I4


a(4)
a(5)
a(6)
a(7)



I4


a(0)
a(1)
a(2)
a(3)

� I4


a(4)
a(5)
a(6)
a(7)




(4.50)

According to the above formulation, the vector segments are multiplied by the identity matrix
I4. This introduces the following special property regarding identity matrices: let IN be the
matrix of size N�N, where the only non-zero elements equal to 1, lie along the diagonal of the
matrix. Let d be a column vector, consisting of N elements. The matrix-vector multiplication
operation IN � d can be de�ned as IN � d = d . Letting N = 4, matrix-vector multiplication
operation I4 � d is demonstrated as follows:

I4 � d =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 �


d(0)
d(1)
d(2)
d(3)

 =


d(0)
d(1)
d(2)
d(3)

 : (4.51)

Hence,in general, IN �d = d , revealing the following �nal result with respect to the matrix-vector
multiplication operation b = (FS 
 IR) a:

b(0)
b(1)
b(2)
b(3)
b(4)
b(5)
b(6)
b(7)






a(0)
a(1)
a(2)
a(3)

 +


a(4)
a(5)
a(6)
a(7)


a(0)
a(1)
a(2)
a(3)

�


a(4)
a(5)
a(6)
a(7)




: (4.52)

Generalizing, the matrix-vector multiplication operation b = (FS 
 IR) a can be computed on
a computer architecture, capable of vector processing operations. The input vector a is divided
into S vector segments, each consisting of R elements.
As demonstrated in this section, the sparse matrices, resulting from the expressions TR 
 FS
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and FS 
 IR are very common in the Kronecker product formulationsw of FFT algorithms.
This section showcased how these expressions serve as instruments in designing and obtaining
e�cient FFT implementations, which will be shown in the next section.

4.6 Formulating FFTs Using Kronecker Product

In this section, the Kronecker product is used in order to obtain e�cient mathematical formu-
lations of FFT algorithms. It will be shown how the DFT matrix can actually be decomposed
into a sequence of sparse matrices, all of the same dimension or order. Initially, the order of
the DFT matrix was set to L. It is desirable that L be a highly composite number, and of
the form L = 2m for the Kronecker formulation. A composite number is characterized to be
divisible by another positive integer, other than itself or one.
Let L = RS, where R and S may, or may not be composite numbers. As de�ned previously,
in order to compute the DFT of a L-point discrete signal x(n), the following operation needs
to be performed:

X(k) = L�1∑
n=0

x(n)e(�j2�nkL ); k = 0; 1; :::; L� 1; j = p�1: (4.53)

In addition, it was found that the DFT operation could also be expressed in the matrix-vector
form X = FLx . Now, the essence in deriving a Kronecker formulation for this operation is to
determine how the DFT matrix FL can be decomposed, when L is a composite number of the
form RS. Furthermore, if either R or S is also a composite number, further decomposition
of the DFT matrix can be achieved. As presented in [14], when L is a composite number of
the form RS, and by rearranging the one-dimensional input vector x(n) as a two-dimensional
array, the DFT computation of a L-point discrete signal x(n) can be expressed in Kronecker
product form, as follows:

X = FLx = (FS 
 IR)TL;S (IS 
 FR)PL;Sx (4.54)
Here, TL;S is a diagonal matrix of order L, called twiddle or phase factor, which is de�ned as
follows:

TL;S =



IR 0 0 0 0
0 DL;R 0 0 0
0 0 D2

L;R 0 0... ... 0 ... ...
0 0 � � � 0 DS�1

L;R


; (4.55)
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where DL;R is a diagonal submatrix element of TL;S, where each of its non-zero elements is
de�ned as follows:

DL;R = [
W k

L
] jk=0;1;::R�1;WL = e(�j2�L ): (4.56)

Note that the factor R should be greater than two, to form a minimum submatrix of size 2�2
The matrix PL;S is a permutation matrix, also of order L, called the stride by S permutation
matrix. This matrix induces a permutation operation, which is present in all Kronecker product
formulation. Such matrix reorganizes the input data following a decimation procedure. For
any integer L and S, the permutation matrix may be formulated as follows:

PL;S (i ; j) =


1 if i = j = L� 1
1 if j = hi � SiL�1 ; 0 � i < L� 1
0 otherwise

(4.57)

It is important to note that the Kronecker formulation for the DFT operation can be used in
an iterative manner; that is, if S or R is also a composite of the form DP , the process can be
repeated, inserting the new formulation in (4.50).
To illustrate the equivalence of the DFT computation for L = RS, the case for L = 4 is
considered. Let L = 4 = 2 � 2 , where R = 2 and S = 2. Then the DFT matrix expressed in
Kronecker product form for L = 4 is de�ned as follows:

F4 = (F2 
 I2)T4;2 (I2 
 F2)P4;2 (4.58)
The matrix T4;2 is expressed as follows:

T4;2 =
[
I2 0
0 D4;2

]
; (4.59)

where the submatrix element D4;2 can be expressed as:

D4;2 = [
W k

4
] jk=0;1 =

[ 1 0
0 W4

]
: (4.60)

The permutation matrix P4;2, derived from the formulation in (4.53), becomes:

P4;2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 : (4.61)
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By formulating the sparse matrices (F2 
 I2), T4;2, and (I2 
 F2), the DFT matrix is decom-
posed as follows:

F4 =
[
I2 I2
I2 �I2

]
�
[
I2 0
0 D4;2

]
�
[
F2 0
0 F2

]
� P4;2: (4.62)

When performing the matrix multiplication of the matrices (F2 
 I2) and T4;2 in (4.58), the
following is obtained:

F4 =
[
I2 D4;2
I2 �D4;2

]
�
[
F2 0
0 F2

]
� P4;2: (4.63)

Additional matrix multiplication leads to the following formulation:

F4 =
[
F2 D4;2F2
F2 �D4;2F2

]
� P4;2; (4.64)

The submatrices D4;2F2 and �D4;2F2 are expressed as follows:

D4;2F2 =
[ 1 0
0 W4

]
�
[ 1 1
1 �1

]
] =

[ 1 1
W4 �W4

]
; (4.65)

�D4;2F2 =
[
�1 0
0 �W4

]
�
[ 1 1
1 �1

]
] =

[
�1 �1
�W4 W4

]
; (4.66)

Expressing the remaining two matrices in order of 4, the following is obtained:

F4 =


1 1 1 1
1 �1 W4 �W4
1 1 1 �1
1 �1 �W4 W4

 �


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 : (4.67)

The permutation matrix P4;2 reorders the columns of the other matrix in the above formulation,
such that the new and �nal matrix is formed by placing the columns 0, 2, 1, and 3 in this order.
By substituting W4 = e

�j2�
4 =�j , the following matrix is obtained, resulting in the DFT matrix

of order 4:

F4 =


1 1 1 1
1 �j �1 +j
1 �1 1 �1
1 +j �1 �j

 (4.68)
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Hence,in general form, the Kronecker formulations are shown to provide an e�cient decom-
position of the DFT matrix into sparse matrices, when the order L is a composite number of
the form RS In addition, the DFT matrix FL is symmetric; that is, FL = F T

L , where T denotes
the transposition operation. Hence, by applying the transposition operations on both sides of
the DFT matrix FL in equation (4.50), the formulation becomes:

FL = P�1
L;S (IS 
 FR)TL;S (FS 
 IR) : (4.69)

4.7 Parallel Computational Architectures for DFTMulti-beamforming

There are basic computational architectures, for which the Kronecker product operations has
shown to be very e�ective. In this subsection, a parallel computational architecture for FFT is
discussed.
For a variety of applications that require data anaylisis, such as bioacoustics signal analysis,
data is usually analyzed in the frequency domain, by applying fast fourier transform to the data
in the time-domain. Extensive computational e�ort and signi�cant amount of processing time
is inevitable when the amount of data to be processed is large. For a considerable large data
size of L points, L be a power of two,a large DFT matrix of size L�L would be needed in order
to transform the data in the frequency domain. This, in turn, leads to increase in processing
time. On the otherhand, by using Kronecker product, the large data may be divided into M
modules, each of size N, such that the matrix FN is applied to each module, and L = M �N.
The multi-beamforming matrix B becomes the DFT transform matrix FL when the number
of steering angles M is equal to the number of sensors L in the linear array. However, the
DFT multi-beamforming matrix may also be formulated using Kronecker product operation.
The Kronecker product operation A 
 B, as de�ned in (4.3) considering a matrix A, of size
R � R,and a matrix B, of is de�ned as follows:

C = A
 B = [aklB]k;l=0;1;::;R�1 ; (4.70)
producing a new matrix C of size RS � RS. Using the Kronecker product de�nition, the
multi-beamforming matrix may be de�ned as follows, according to [1]

MB = (
UT
M 
 IN

) (IM 
 FN) ; (4.71)
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where UM is a column vector of M ones, de�ned as follows:

UM =


1
1...
1

 : (4.72)

The operation T denotes the transpose of the column vector UM , resulting in the new row
vector UT

M :
UT
M = [ 1 1 � � � 1 ]

: (4.73)

Through this formulation the data is divided into M modules, each of size N, such that the
matrix FN is applied to each module, and L = M � N. The parallel Fourier factor uses the
Kronecker product operation in order apply the FN matrix, to each of the M modules, as
de�ned as follows:

(IM 
 FN) =


FN 0 � � � 0
0 FN � � � 0... . . . . . . ...
0 0 � � � FN

 ; (4.74)

where IM is the M �M identity matrix. The term (
UT
M 
 IN

) can be expressed as:
(
UT
M 
 IN

) = [
IN IN � � � IN

]
: (4.75)

This operation simply sums the M transformed modules, each of size N. In addition, if the
number of sensors N in each module can be expressed as a composite number of the form
N = RS, where R is greater than 2, then the DFT matrix FN for each of the M modules can
be expressed as ([2]):

FN = (FS 
 IR)TN;S (IS 
 FR)PN;S; (4.76)

where TN;S is the twiddle or phase matrix, and PN;S is the permutation matrix that reorders
the data. Hence the multi-beamforming matrix may be reformulated, as follows:

MB = (
UT
M 
 IN

) (IM 
 ((FS 
 IR)TN;S (IS 
 FR)PN;S)) : (4.77)
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Now, let matrix A = (FS 
 IR)TN;S, and matrix B = (IS 
 FR)PN;S, obtaining the following
expression:

MB = (
UT
M 
 IN

) (IM 
 (A � B)) : (4.78)

By applying the distributive property to the term (IM 
 (A � B)), the following formulation is
derived:

MB = (
UT
M 
 IN

) (IM 
 A) (IM 
 B) ; (4.79)

MB = (
UT
M 
 IN

) (IM 
 ((FS 
 IR)TN;S)) (IM 
 ((IS 
 FR)PN;S)) : (4.80)



Chapter 5

Parallel Programming with pMATLAB

In chapter 3, it was shown how DFT beamforming algorithms are developed in order to process
signals arriving from sensor arrays consisting of uniform linear con�gurations, when the number
of sensors is equal to the number of steering. It was then shown in chapter 4 how the DFT
beamforming algorithms can be e�ciently implemented by using kronecker product formula-
tions, in order to provide general expressions for the beamforming operations. Here, a new
parallel programming modeling environment, named pMATLAB [16], is presented, which has
been utilized to study the computational performance of parallel implementation techniques,
in a multi-core environment.

5.1 Parallel Programming Concept

The term codes is often used to refer to complete programs with data, that are used to
implement a desired computational operation or function. The design of each code follows a
certain program and data structure, which can determine the appropriate architecture that is
suitable for its execution. If the program structure of a code permits it to be totally or partially
divided into M modules or segments, which can be executed simultaneously and independently,
then parallel programming can be achieved. Each of the M modules or segments can be
assigned to a processor, thus establishing a multi-core environment, where NP = M processors
can perform computational operations at the same time.

5.1.1 Characteristics of a Parallel System Architecture

The basic, common model for a serial system can be depicted in Figure 5.1, where P0 rep-
resents the single serial processor with its own local memory M0. However, the dependency

39
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on computation of increasing amount of data is becoming more pronounced and evident for a
wide variety of applications. This has lead to extensive research on exploiting parallelism, and
developing parallel architecture systems, in order to obtain more speed and simplify complex,
intensive computation. A basic, general parallel system architecture is shown in Figure 5.2,
where NP independent processors, each with its local own memory M0, are within the same
architecture, which can perform computations simultaneously. This type of performance is also
known as parallel computation. Two types of acceptable parallel computation as mentioned
in [17] are de�ned as follows: fast-memory parallel computation and slow-memory parallel
computation. Fast-memory parallel computation is one, in which the memory demands of
each processor are met on time, and each processor is not a�ected by signi�cant degradation
of its individual uniprocessor performance. Slow-memory parallel computation occurs when
memory delays are present in each individual processor. However, if high parallelism is present,
then acceptable, overall performance can be achieved, relative to the number of processors in
the architecture.

Figure 5.1: Single Serial Processor, courtesy of Kuck, MIT Lincoln Lab.

Figure 5.2: Serial Processors in Parallel, courtesy of Kuck, MIT Lincoln Lab.

5.2 Parallel Speedup Process and Amdahl's Law

In order to evaluate the parallel structure of a complete program, the total computational
speedup serves as a parallel performance metric. Such metric is computed in a linear fashion,
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in terms of the number of processors NP :

Scomp(NP ) = Tcomp(1)
Tcomp(NP ) = NP ; (5.1)

where Scomp(NP ) represents the computational speed, Tcomp(1) the execution time of the
program running on one processor, and Tcomp(NP ) the execution time with NP processors. It
is important to note that the number of processors is assumed to be in powers of two. As
highlighted in [16], the speedup acquired by a parallel application is essential in measuring how
e�ectively an application can take advantage of a computer system that possesses parallel
capability. Figure 5.3 presents the di�erent types of linearity that are commonly encountered,
resulting from the speedup obtained, in terms of the number of processors: As mentioned

Figure 5.3: Parallel Speedup, courtesy of Kepner, MIT Lab.

in [16] and [17], the types of speedup linearity may be de�ned as follows: linear, superlinear,
sublinear, and saturated speedup linearities. Linear speedup is the ideal type of speedup, where
Scomp(NP ) = NP . This type of speedup occurs when there is little or no communication
between the processors.
The sublinear speedup shown in Figure 5.3 is more typical than the ideal linear speedup,
and is obtained when Scomp(NP ) = �NP , for 0 < � < 1. The value � represents a constant
overhead due to communication delays, whose proportion remains constant as more processors
are added. Thus the constant overhead is what prevents the application from achieving an ideal
linear speedup. As mentioned in [16], if an application is highly parallel, then � can indicate
that there may be unnecessary overhead that can be avoided.
On the other hand, saturated speedup is highly common, especially in the intial development of
parallel programs. For this type of speedup curve, as shown in Figure 5.3, the speedup begins
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to increase, as the number of processors increases, starting with a single processor. However,
as the number of processors begin to increase even further, the curve begins to saturate at
some low number of processors, being 16 a typical number, as shown in Figure 5.3 . This
point of the speedup curve is known as the point of diminishing return, which is an indicator
that from this point on, the speedup will begin to degrade.
The superlinear speedup is the rarest case, where Scomp(NP ) > �NP . This type of speedup
occurs in highly parallel programs, with �xed problem sizes. This means that the problem sizes
do not grow, as the number of processors NP increases. A superlinear speedup indicates that
the program's performance is improving as NP increases [16].

5.2.1 Amdahl's Law

The saturated speedup is related to Amdahl's law, which is used in parallel computing to
predict the theoretical maximum speedup using multiple processors, before reaching the point
of diminishing return. This law takes into consideration the time limit or communication
overhead induced by the sequential or serial portion of the program; in other words, not every
fraction of the parallel application or program is 100% parallel. Having this in mind, Amdahl's
law is formulated as follows [16].
Assuming that the program application is not completely parallel, let the total amount of work
Wtot that needs to be carried, be divided into two parts: one that can be done in parallel Wpar ,
and a part Wseq that can only be accomplished by using a single, serial processor:

Wtot = Wpar +Wseq; (5.2)
The execution time Tcomp(NP ) is thus proportional to:

Tcomp(NP ) / Wpar
NP

+Wseq (5.3)
Using the relationship between the executionh time of a single processor Tcomp(1) and Tcomp(NP )
for multiple processors, the speedup expressed in (5.1) becomes:

Scomp(NP ) = Wtot
Wpar
NP +Wseq

: (5.4)

Normalizing with respect to Wtot , Scomp(NP ) becomes
Scomp(NP ) = 1

!par
NP + !seq

;!par = Wpar
Wtot

;!seq = Wseq
Wtot

: (5.5)
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Now, when the number of processors NP becomes very large, that is NP approximates 1, the
term !par

NP approaches 0, reducing (5.5) to the following:
Scomp(NP ) = 1

!seq
= !�1

seq: (5.6)
According to the above equation, as the number of processors NP increases, the maximum
speedup that can be achieved is !�1

j . In other words, if the fraction of the work needed to be
done sequentially, that is, on a single serial processor, is made very small, then a linear speedup
can be approached. Hence, this reveals the fundamental of Amdahl's Law: it is important to
make very part of the code parallel. For instance, if !seq is large, indicating that more aspects
of the code is sequential than parallel, then the speedup is not optimized. This also includes
overheads encountered in communication, which can further degrade the speedup.

5.3 Description

Parallel programming with pMATLAB provides a series of advantages, which help overcome
important issues, such as communication overhead among the processors. First, pMATLAB of-
fers high level parallel data structures and functions as part of its tools for creating a simulated,
multicore environment, in a Pure MATLAB implementation manner. Figure 5.4 demonstrates
the MATLAB environment in which the parallel program applications are developed in pMAT-
LAB.
This permits parallel functionality to be added to serial programs already implemented in pure
MATLAB, without requiring mayor modi�cations. Distributed matrices/vectors are created by
using maps that help distribute the data among the NP simulated processors, which is described
in more details in the next section. In addition, pMATLAB uses MatlabMPI to perform message
passing among the processors. MatlabMPI o�ers point-to-point communication , in which a
I/O �le is provided through the common load and save functions of MATLAB. This helps take
care of complicated bu�er packing/unpacking problem and communication delays caused by
such. In addition, the point-to-point communication that provides pMATLAB, as shown in
[18] has achieved the typical superlinear speedup on �xed problem, as shown in Figure 5.5,
and the typical linear scenario for scaled problems.
Hence pMATLAB is a powerful tool that not only exploits the level of parallelism in pro-
gramming codes, but can easily add parallel functions to existing serial programs, avoiding
bottlenecks which can lead to early saturation.
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Figure 5.4: Programming Environment for pMATLAB

Figure 5.5: Speedup achieved with pMATLAB, courtesy of Kepner, MIT Lincoln Lab.

5.3.1 Data Mapping and Distribution

Programming in pMATLAB allows the data to be constructed as distributed arrays or matrices,
called dmat which permits the data to be allocated among the NP processors . This is achieved,
by using the function map in the program application, which is de�ned in the following general
format, as presented in [19]:

p = map(GRID SPEC;DIST SPEC; PROC LIST ): (5.7)
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This function creates a map object, which is used as input for the dmat constructor. The
parameter GRID SPEC speci�es how the dimensions of the data will be distributed among
the NP processors. DIST SPEC speci�es the type of data distribution, which can be: block,
cyclic, or block-cyclic. The parameter PROC LIST is an array of processors, in terms of ranks,
on which the data will be distributed. The processor ranks are noted as 0; 1; ::NP � 1.
Below, the following example notations or formats of the map are commonly used for the
programs created in pMATLAB [16]. The second input parameter of the function map fg
indicates that the data is distributed among the NP processors, de�ned in terms of ranks
from the �rst processor 0 to the processor NP � 1, in terms of blocks. The concept of block
distribution among the processors is illustrated as follows.
For the �rst format shown below, a one-dimensional map is constructed, which maps an array
or matrix along the �rst dimension:

map([NP 1]; fg; 0 : NP � 1) (5.8)
That is, the block distribution of the matrix consists of dividing the rows into NP blocks.
Assuming that NP = 4, and the data is de�ned to be a 12� 12 matrix, the rows of the data
is distributed in 4 blocks, each block containing 3 rows. Figure 5.6 illustrates this example.

Figure 5.6: Block Distribution Example for First Dimension

The second format commonly used constructs a one-dimensional map, which maps an array
or matrix along the second dimension, shown as follows:

map([1 NP ]; fg; 0 : NP � 1): (5.9)
Using this format, the block distribution of the matrix consists of dividing the columns into NP
blocks. Assuming that NP = 4, and the data is de�ned to be a 12 � 12 matrix, the columns
of the data is distributed in 4 blocks, each block containing 3 columns. Figure 5.7 illustrates
this example.
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Figure 5.7: Block Distribution Example for Second Dimension

The third format commonly used constructs a two-dimensional map, which maps an array or
matrix along the �rst and second dimensions, shown as follows:

map([N1N2]; fg; 0 : NP � 1); (5.10)
Using this format, the block distribution of the matrix consists of breaking up the �rst and
second dimensions (rows and columns) between the processors, into N1 blocks along the �rst
dimension, and N2 blocks along the second dimension. Hence, a total of N1 � N2 distributed
blocks are created. A total of N1 � N2 processors would then be needed in order to distribute
each of the blocks. Letting N1 = 4 and N2 = 4, the assumed 12� 12 data matrix, becomes a
4� 4 distributed block matrix; that is, each row and column is composed of 4 blocks, leading
to a total of 16 blocks. Hence the number of processors NP would need to be 16, in order to
process each block. Figure 5.8 illustrates this example. The form in which distributed arrays

Figure 5.8: 2-D Block Distribution Example

or matrices are created in a typical pMATLAB code developed in a MATLAB environment,
is shown in Figure 5.9. The basic steps in creating distributed arrays simply consists of �rst
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de�ning the type of mapping, or the manner in which the data is to be distributed. As shown
previously, this includes specifying the number of distributing blocks and to which processors
the data will be distributed. In Figure 5.9, mapA and mapB are the two maps de�ned for
the program application. MapA decomposes or divides the columns of the data in two blocks,
distributing each block to the processors identi�ed with ranks 0 and 1. MapB decomposes
or divides the columns of the data in two blocks, distributing each block to the processors
identi�ed with ranks 2 and 3. A and B are simply the data matrices that will be processed or
manipulated in the program. Matrix A and Matrix B are created, using the typical MATLAB
functions rand and zeros. rand creates an arbitrary m � n matrix, and the latter a matrix of
the same dimension whose elements are all 0.

Figure 5.9: Data Mapping Example in pMATLAB

As observed in Figure 5.9, pMATLAB introduces the concept of mapping, by adding as an
additional input parameter to these functions, MapA and MapB for creating the distributed
matrices A and B, respectively. In other words, the contents of the matrix A is distributed
among the processors 0 and 1, while the contents of B is distributed among the processors 2
and 3 (see Figure 5.10).The command line B(:; :) = A simply redistributes the matrix A onto
the processors 2 and 3, de�ned in the mapping for the distributed matrix B.

Figure 5.10: Data Distribution Example Among Processors, courtesy of Kepner, MIT Lab.

5.3.2 Parallel Execution in pMATLAB

In the previous section, it was shown how distributed array objects dmats can be created
and distributed among NP processors, by simply de�ning the type of mapping. Here, an
example of executing the DFT Multi-beamforming algorithm implemented using pMATLAB,
is demonstrated.
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The pMATLAB tool provides parallel execution for the program applications by providing a
utility program �le, called RUN.m. In such �le, the number of processors and the name of
the program application to be executed are speci�ed. The number of processors is speci�ed
in the parameter Ncpus, and the program to be executed in the parameter mFile, as shown
in Figure 5.11. Once the number of processors Ncpus is speci�ed in the utility program

Figure 5.11: Parallel Utility Program File

RUN.m, the program application can be developed in a MATLAB-like environment. As shown
in Figure 5.12, the parameter Ncpus can be directly used to de�ne the mapping for the
distributed matrices. For the beamforming implementation, the data is decomposed along
the second order, by distributing the columns among the Ncpus processors. The distributed
matrix sample input matrix 1 is allocated as a N � M matrix, where N de�nes the number
of sensors in the linear array, and M is the number of steering angles to be detected by the
array. This corresponds to the input matrix of M spatially sampled signals, indicating that
each of the N sensors will receive or detect M di�erent values or data points. The distributed
matrix Beam pattern 1 is allocated as a N�M matrix, where N de�nes the number of sensors
in the linear array, and M is the number of steering angles to be detected by the array; this
corresponds to the output matrix, after applying the FFT to each column of the input matrix,
as shown in Figure 5.13.
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Figure 5.12: Parallel Utility Program File

Figure 5.13: DFT Beamforming Implementation



Chapter 6

Beamforming Techniques

Implemented on the DSP C6713

6.1 TMS3020C6713 DSP Kit

The digital signal processors (DSP) are highly used for a variety of applications, such as image
formation processing, speech recognition, communications, and much more. Advantages in
using DSPs is that they are processors specially designed to e�ciently implement program
applications which involve working with, analysing, and processing signals in order to extract
information of interest, according to the objective of the application at hand. The principal
tool used in order to design program applications on the DSP is the "Digital Starter Kit"
(DSK) from Texas Instruments (TI), Inc., which is composed of the TMS320C6713 (C6713)
DSK board, shown in Figure 6.1, and the program application environment Code Composer

Figure 6.1: TMS320C6713 DSK board

Studio v3.3. Code Composer Studio v3.3 was used to implement the DFT and Kronecker
50
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DFT Beamforming algorithms to be executed on the DSP board, which is further described
with more details.

6.2 TMS3020C6713 DSP Basic Characteristics

The TMS320C6713 DSP unit is based on the VLIW ( Very Large Instruction Word) architec-
ture, which is well-matched for intensive, computational algorithms. Such architecture permits
a total of eight instructions to be fetched every cycle. This DSP unit is characterized by the
following basic features, as presented in [20]:

� Clock Frequency of 225 MHz
� 32-bit Instructions
� 1.35 giga-oating operations per second (GFL0PS)
� 16 MB of Synchronous Dynamic Random Memory (SDRAM)
� 264 kB of internal memory

{ 8 kB as L1P (program) and L1D (data)Cache
{ 256 kB as L2 memory for program and data

� 256 MB Flash Memory

Figure 6.2: TMS320C6713 Architectural Diagram, courtesy of Chassaing

6.3 DFT and Kronecker Beamforming Algorithm Implementation

Procedures on DSP C6713

The DFT and Kronecker beamforming techniques were implemented on the C6713, since it
is considered to be one of TI's most powerful signal processor. As part of this work, a user's
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Figure 6.3: Locating the Folder DSP BeamformingFiles

guide on implementing DFT and Kronecker Beamforming algorithms has been designed for
the TMS320C6713 board. The guide follows a step by step process from creating a new
project, to �nally obtaining a Beamforming application developed for the DSP board, in which
the user has the option of executing either DFT or Kronecker Beamforming within the same
project. This guide is based on the usage of Code Composer Studio V3.3 for designing the
Beam forming imaging program application. It is assumed that a series of �les implemented
as part of this work are located in the directory C:nCCStudio v3.3nMyProjectsn.
In designing the user's guide, these key measurable procedures are carefully de�ned: initializa-
tion and compilation, simulation, and program execution procedure on the DSP board. In
the following subsections, each of these procedures is explained in detail.

6.3.1 Initialization and Compilation Procedures

The �rst stage of the Beamforming algorithms implementation procedures consists of locat-
ing in the directory C:nCCStudio v3.3nMyProjectsn the folder DSP BeamformingFiles, as
shown in Figure 6.3.

Inside the folder DSP BeamformingFiles, the user will �nd the following subfolders and
�les(see Figure 6.4):

� 32 sensors input �les 1 - This subfolder contains the following two sets of input �les
(see Figure 6.5):
{ sample input real without noise.h, sample input imag without noise.h
{ sample input real with noise.h, sample input imag with noise.h
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Figure 6.4: Files located in DSP BeamformingFiles

The �rst set of input �les sample input real without noise.h and
sample input imag without noise.h correspond to the real and imaginary parts of the com-
plex input matrix of size 32 � 201; that is, each sensor receives 201 spatially sampled values
or data points. These two �les assume the absence of noise in the surrounding environment
(see Figure 6.5).
The second �rst set of input �les sample input real with noise.h and
sample input imag with noise.h correspond to the real and imaginary parts of the complex
input matrix of size 32 � 201; that is, each sensor receives 201 spatially sampled values or
data points. These two �les assume the presence of noise in the surrounding environment (see
Figure 6.5).

Figure 6.5: Input Files in 32 sensors input �les 1

� 64 sensors input �les 1 - This subfolder contains the following two sets of input �les
(see Figure 6.6):
{ sample input real without noise.h, sample input imag without noise.h
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Figure 6.6: Input Files in 64 sensors input �les 1

{ sample input real with noise.h, sample input imag with noise.h

The �rst set of input �les sample input real without noise.h and
sample input imag without noise.h correspond to the real and imaginary parts of the com-
plex input matrix of size 64 � 201; that is, each sensor receives 201 spatially sampled values
or data points. These two �les assume the absence of noise in the surrounding environment
(see Figure 6.6).
The second �rst set of input �les sample input real with noise.h and
sample input imag with noise.h correspond to the real and imaginary parts of the complex
input matrix of size 64 � 201; that is, each sensor receives 201 spatially sampled values or
data points. These two �les assume the presence of noise in the surrounding environment (see
Figure 6.6).
In summary, for purposes of simplicity, this guide was designed for implementing DFT and
Kronecker Beamforming Techniques, for two scenarios: a linear array con�guration for 32 and
64 sensors, in which each sensor receive 201 data points or values. The corresponding input
�les were generated in Matlab. In addition, the following �les are also needed:

� Source �les needed for initialization - These source �les are necessary for con�guring
the programming environment, based on the TMS320C6713 DSP board characteristics
(see Figure 6.4):
{ c6713dskinit.c
{ C6713dskinit.h
{ dsk6713.h
{ dsk6713 aic23.h
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� Libraries - The following libraries must be included in the program application project,
in order to use the TMS320C6713 board features:
{ csl6713.lib
{ rts6700.lib
{ dsk6713bsl.lib

� C6713dsk.cmd - This is the linker command �le used for the target architecture, in
which the types of memory, memory length, memory address, and memory sections of
the target board are declared and de�ned.

� Main source �les needed for program application - The DFT and Kronecker Beam-
forming program applications are implemented using the following source �les:
{ DFT Beamforming.c - This is the application program that implements the DFT
Beamforming algorithm. Figure 6.7 shows the function: Beam pattern generation(),
which performs the DFT beamforming operation by applying the FFT of N points
(N being the number of sensors) to each column of the complex input matrix in-
put vectors.

Figure 6.7: DFT Beamforming Function

{ KroneckerBeamforming.c - This is the application program that implements the
Kronecker DFT Beamforming algorithm. Figure 6.8 demonstrates the function
DFT M Modules generation(), which divides each column of the complex input ma-
trix input vectors intoM modules, each consisting of N elements. For each module,
the FFT of N points is applied. The function Linear Combination DFT Modules()
is used to add the corresponding M modules (see Figure 6.9).

{ FFT.c - This is the FFT function provided from Chassaing for obtaining the Fourier
transforms.
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Figure 6.8: DFT M Modules generation()

Figure 6.9: Linear Combination DFT Modules()
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� reading results beamforming Code Composer.m -This is the Matlab m.�le that will
be used to plot the beamforming results obtained on the DSP.

Once the user has located each of the �les shown in Figure 6.4, he or she should proceed to
�nd the Setup CCStudio v3.3 icon (see Figure 6.10). Here, the programming environment
must be selected: simulation or emulation. Simulation implies that the application program
developed can be compiled and executed, without physically connecting the target board to
the computer. On the other hand, emulation implies that the target must be connected to the
computer in order to compile and execute the application program. If this icon does not appear
at the desktop, the user should go to All Programs!Texas Instruments! Code Composer
Studio 3.3! Setup CCStudio v3.3 (see Figure 6.11).
Next, the CCStudio v3.3 icon is located, which is used to launch Code Composer Studio, where
the program application project for imaging formation is created (see Figure 6.10). Again, if
this icon does not appear at the desktop, then the user should go to All Programs!Texas
Instruments!Code Composer Studio 3.3!Code Composer Studio (see Figure 6.11).

Figure 6.10: Locating Setup CCStudio v3.3 and CCStudio v3.3 icons

6.3.2 Simulation Procedure

As mentioned previously, simulation implies that the program application developed can be
compiled and executed, without physically connecting the target board to the computer. To
conduct a simulation analysis (see Figure 6.12), the user must access the Setup Code Com-
poser Studio v3.3 tool, and follow these subsequent steps:
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Figure 6.11: Path to Code Composer Studio and Setup Tools

� Next to Available Factory Boards, under Family, select the option C67xx.
� Under Platform, select simulator.
� Under Endianness, select little.
� Under Available Factory Boards, a list of possible simulators should appear. Here,
C6713 Device Cycle Accurate Simulator should be selected, by a single click, then
pressing the Add button, locating at the middle bottom. The simulator can also be
selected by double clicking on the simulator board.

� Next, press Save & Quit. Note: if there are any other boards under System Con�gu-
ration, proceed to remove them. This is done by selecting each board and hitting the
delete key. Only the C6713 Device Cycle Accurate Simulator must be selected.

� A prompt window will appear, asking the user if he/she wishes to save the changes made
to system con�guration. The button Yes should be selected.

� A second prompt window will appear, asking the user if Code Composer Studio should
start on exit. The user should press Yes.

Once Code Composer is launched and opened, the user must go to Project, located at the
upper menu, and select the option New. This opens the Project Creation window. Next, in
Project Name, the user should type DSP Beamforming as the name for this project. It should
be veri�ed that the location where the project will be created is:
C:nCCStudio v3.3nMyProjectsnDSP Beamforming. Also, in textbfProject Type, the option
Executable (.out) must be selected, and the Target selected should be TMS320C67XX (see
Figure 6.13). The user should verify that the projectDSP Beamforming.pjt was successfully



Chapter 6. Beamforming Techniques Implementation on the DSP C6713 59

Figure 6.12: C6713 Device Cycle Accurate Simulator Environment Selection

Figure 6.13: Creating DSP Beamforming Project
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Figure 6.14: Locating DSP Project

created in the directory: C:nCCStudio v3.3nMyProjectsnDSP Beamforming (see Figure
6.14).
All of the initialization �les located in C:nCCStudio v3.3nMyProjectsnDSP BeamformingFiles
must be copied and placed in the same directory where the project was created:
C:nCCStudio v3.3nMyProjectsnDSP Beamforming.
After making sure that the project was successfully created, Project should be once again
selected, located at the upper menu. Under Project, the option Add Files to Project should
be selected (see Figure 6.15). This procedure is used to add each of the following �les located
in the directory C:nCCStudio v3.3nMyProjectsnDSP Beamforming:

� c6713dskinit.c
� C6713dsk - Linker Command �le

{ Libraries
{ csl6713.lib
{ rts6700.lib
{ dsk6713bsl.lib

� DFT Beamforming.c or KroneckerBeamforming.c
� FFT.c

It is important to note that either the �le DFT Beamforming.c or KroneckerBeamforming.c
should be added to the project, since they are di�erent types of beamforming techniques. If the
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Figure 6.15: Adding Files to DSP Beamforming Project

user wishes to execute the DFT Beamforming technique, then the �rst �le should be added.
If, on the other hand, the user wishes to execute the Kronecker Beamforming technique,
then the latter should be added. The user should open the �le DFT Beamforming.c or
KroneckerBeamforming.c and specify in the function fopen the following possible input �les
(see Figure 6.16):
If the complex input vector is simulated without noise:

� fopen("sample input real without noise.h","r")-real component
� fopen("sample input imag without noise.h","r")-imaginary component

If the complex input vector is simulated with noise:

� fopen("sample input real with noise.h","r")
� fopen("sample input imag with noise.h","r")

Then the user should again go to Project and select Build Options, as indicated in Figure
6.17. This option is used to properly set up the compiler and linker, based on the characteristics
of the TMS320C6713 DSP board. The following settings should to be chosen or written, and
the option OK is selected after all settings are veri�ed (see Figure 6.18).

� Under Compiler!Category!Basic

{ The target version: C671x (-mv6710) should be highlighted.

� Under Compiler!Preprocessor:
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Figure 6.16: Specifying Input Files

Figure 6.17: Selecting Build Options
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Figure 6.18: Building Options for Compiler!Category!Basic

Figure 6.19: Building Options for Compiler!Preprocessor!Pre-De�ne Symbol



Chapter 6. Beamforming Techniques Implementation on the DSP C6713 64

Figure 6.20: Building Options for Compiler!Advanced

{ In Pre-De�ne Symbol, the following should be written: CHIP 6713. This speci�es
the DSP chip that the target board utilizes (see Figure 6.19).

� Under Compiler!Advanced (see Figure 6.20):

{ In Memory Models, Far ({mem model: data=far)should be chosen.
{ The Endianness type should be Little Endian.

� Under Linker!Libraries:

{ In Included Libraries (-l), these libraries must be speci�ed (see Figure 6.21):
rts6700.lib; dsk6713bsl.lib; csl6713.lib:

Now the user may click OK once all the previous building option settings have been established.
The next step is to compile the project DSP Beamforming.pjt by selecting the option Re-
build All, as shown in the Figure 6.22: If compiled correctly, there should be zero errors,
at the output window, under Build, which is located at the bottom of the workspace (see
Figure 6.23). Once the project has compiled correctly, the user needs to select how many
sensors to use for the linear array: 32 or 64 for this example. In addition, the user has the
option of selected the input matrix with or without noise, as indicated previously. The user
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Figure 6.21: Building Options for Linker!Libraries:

Figure 6.22: Compiling DSP Beamforming Project in Simulation Environment

Figure 6.23: Successful Compilation of the DSP Beamforming Project

must copy the desired �les (real and imaginary �les of the desired input format) from either
the directory C:nCCStudio v3.3nMyProjectsnDSP Beamformingn32 sensors input �les 1
or C:nCCStudio v3.3nMyProjectsnDSP Beamformingn64 sensors input �les 1 and placed
in the directory C:nCCStudio v3.3nMyProjectsnDSP BeamformingnDebug, as shown in
Figure 6.24. The folder Debug is created when the program compiles correctly for the �rst
time. Once this is done, the simulation application program is ready to be loaded and executed
on the simulated target, by following these subsequent steps:

� File!Load Program should be selected, as shown in Figure 6.25:
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Figure 6.24: Placing Input Files in Debug Directory

Figure 6.25: Loading DSP Beamforming Program Application

� In order to load the program application to the simulated target, which is the C6713 De-
vice Simulator, the output �le DSP Beamforming.out, should be opened, as presented
in Figure 6.26. This �le is located in the following directory:
C:nCCStudio v3.3nMyProjectsnDSP BeamformingnDebug.

� Once the executable output �le is loaded to the simulated target, the application program
can then be executed by clicking on the Run button, located on the left side of the
workspace, in the project window, shown in Figure 6.27:

After the beamforming application program has �nished execution, the following .dat �les are
created in the following directory:
C:nCCStudio v3.3nMyProjectsnDSP BeamformingnDebug: Beam pattern image.dat and
Beam pattern real.dat, which correspond to the real and imaginary parts of the matrix con-
taining the beam pattern formations.
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Figure 6.26: Selecting and Loading Executable File onto Simulated Target

Figure 6.27: Executing Program Application on Simulated Target
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6.3.3 Program Execution Procedure on Target Architecture

After completing the simulation analysis on the C6713 Device Cycle Accurate Simulator,
the program execution procedure is then carried out on the actual target architecture; that
is, the program application is compiled, loaded, and executed on the physical TMS320C6713
DSP board. In order to conduct this emulation analysis, the target board must be connected
to its power supply, and a USB connection is required to communicate the board with the
computer. This is shown in Figure 6.28

Figure 6.28: TMS320C6713 Target Board Connection,courtesy of Chassaing

To conduct the Emulation Analysis (see Figure 6.29), the user should close the existing
Code Composer Session of the Simulation Analysis, and access once again the Setup Code
Composer Studio v3.3 tool, following these subsequent steps:

� Next to Available Factory Boards, under Family, select the option C67xx.
� Under Platform, select dsk.
� Under Endianness, select little.
� Under Available Factory Boards, the option C6713 DSK-USB should appear. Here,
C6713 DSK-USB should be selected, by a single click, then pressing the Add button,
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Figure 6.29: C6713 DSK-USB Emulator Environment Selection

locating at the middle bottom. The emulator can also be selected by double clicking on
the emulator board.

� Next, press Save & Quit. Note: if there are any other boards under System Con�gu-
ration, proceed to remove them. This is done by selecting each board and hitting the
delete key. Only the C6713 DSK-USB must be selected.

� A prompt window will appear, asking the user if he/she wishes to save the changes made
to system con�guration. The button Yes should be selected.

� A second prompt window will appear, asking the user if Code Composer Studio should
start on exit. The user should press Yes.

Once the target board is connected, the project DSP Beamforming.pjt, created previously in
the simulation analysis, should be opened, which is located in the following directory:
C:nCCStudio v3.3nMyProjectsnDSP Beamforming. This is done by going to Project, and
under this option, selecting Open and the project �le DSP Beamforming.pjt.
Next, the same settings in Build Options should be veri�ed, just as in the simulation procedure.
This is done by going to Project and selecting Build Options. The option Finish should not
be selected until all settings have been con�gured and veri�ed. For the emulation analysis
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Figure 6.30: Compiling DSP Beamforming Project in Emulation Environment

procedure, the project is compiled in the same way as for the simulation procedure (see Figure
28).

6.3.4 Obtaining Beamforming Results using Matlab

The beamforming results for the simulation and emulation procedures can be viewed in Matlab,
executing the Matlab �le reading results beamforming Code Composer.m. This �le should
be previously placed in C:nCCStudio v3.3nMyProjectsnDSP BeamformingnDebug. The
user should open this �le and verify that the parameters L (number of senors), B (the number
of data points that each sensor will receive), M (number of modules) and N (the number of
sensors in each module) are the same as speci�ed in the program application for the DSP
(see Figure 6.31). To obtain the beam pattern formations, Matlab must be launched, which

Figure 6.31: Matlab Code for Reading DSP Results

is located at Start Menu!All Programs. For the majority of cases, a desktop icon of this
program exists, through which Matlab can also be opened by double clicking on this icon. In
the Matlab command window, the following two lines must be typed:

� cd C:nCCStudio v3.3nMyProjectsnDSP BeamformingnDebug
� reading results beamforming Code Composer
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Figure 6.32 presents an example of multiple beam pattern formations obtained from the DSP,
for 64 sensors.

Figure 6.32: Beam Pattern Formations from DSP

6.4 A DSP Multicore Environment Architecture

In the search of an ideal hardware multicore architecture that is capable of deliverying high per-
formance, at a reasonable low power consumption, the TMS320C6474 multicore DSP from
Texas Instruments showcases as an ideal hardware environment for running the DFT beam-
forming techniques. As presented in [21], such multicore architecture possess the following
favorable features:

� 32-bit Instructions
� 3 TMS320C64x+TMDSP Cores, each at 1 GHz
� 32 kB L1P and L1D per core
� 3 MB of total L2 memory in two con�gurations

The TMS320C6474 multicore DSP presents the advantage of integrating three of TI's C64x+
cores, each core running at 1 GHz; this contributes to a delivery performance of 3 GHz. Ac-
cording to [21], TMS320C6474 multicore architectures are the highest-performance multicore
DSP generation in the TMS320C6000TM DSP platform. Hence, the combination of three
potential DSP cores in a multicore architecture, can be ideally used to implement the DFT
beamforming techniques in parallel computational environment.
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Figure 6.33: TMS320C6474 Block Diagram, courtesy of Texas Instruments, Inc.



Chapter 7

Experimental Results

In this chapter, the essence of the DFT and Kronecker Beamforming Algoritm implementations,
the design-level approach used in implementing these algorithms, and the experimental results
obtained are presented and discussed in details.

7.1 DFT and Kronecker Beamforming Algorithm Design

In this section,the essence of developing the DFT and Kronecker Beamforming algorithms is
carefully described. Figure 7.1 illustrates the procedure followed in developing the beamforming
algorithms for the implementation platforms described in the subsequent section. First, it
is assumed that an L � B input matrix is provided as input for these algorithms which is
characterized as follows. B distinct steering angles de�ned within the interval ��

2 � �0 � �
2 ,

are considered. Hence, B input vectors of the form � (�b) are de�ned, for each steering
direction �b = sin (�b), for b = 0; 1::B � 1. These input vectors constitutes the columns of
the input matrix, as shown in Figure 7.2
According to Figure 7.1, the DFT beamforming technique consists of applying the FFT of
length L (provided that L sensors compose the linear array) to each column of the input
matrix, and replacing each column by its corresponding transform in the frequency domain.
After applying the FFT to all of the columns, the resulting new matrix consists of the beam
pattern formations, arranged as an L � B matrix. It is important to note that the beam
pattern formations are read by each row of the �nal matrix. More speci�cally, the beam
pattern contained in each row revails the maximum value, corresponding to the dominating
signal, with respect to a particular steering direction. As an example, Figure 7.3 represents a
beam pattern, for a linear array consisting of 64 sensors. The main lobe in the beam pattern
shown in Figure 7.3 indicates which of the B input signal vectors dominated, arriving at a

73
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Figure 7.1: Beamforming Algorithms Design

Figure 7.2: Input Matrix Format
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Figure 7.3: Beam Pattern Formation Example for 64 Sensors

certain steering direction �0 = sin (�0). For this particular beam pattern, the main lobe is
detected at a steering direction of approximately � = :5, corresponding to an incidence angle
of � = 300. In general, the main lobe of a particular beam pattern will indicate the steering
direction or angle at which the dominant signal is detected.
For the Kronecker Beamforming technique, according to Figure 7.1, the concept of modularity
and linear combination is applied. Having in mind that each of the B columns of the input
matrix is an input signal vector � of length L, where L corresponds to the total number of
sensors in the linear array, the essence of this beamforming technique is described as follows
(see Figure 7.4). Kronecker beamforming operation considers the case when L, the number
of sensors can be expressed as L = MN. This beamforming technique consists of dividing

Figure 7.4: Essence of Kronecker Beamforming Technique
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each input vector de�ned in terms of a speci�c steering direction (each column of the input
matrix shown in Figure 7.2), into M subvectors, each of length N; that is, the entire linear
array of L sensors are divided into M modules, where each module has N sensors A0; ::AN�1
(see Figure 7.4). For each column of the input matrix divided into M subvectors, an FFTof
length N is applied to each subvector, through the kronecker operation (IM 
 FN). Next, the
M transformed subvectors are linearly combined through addition, via the Kronecker operation(
UT
M 
 IN

), to form a new transformed column vector of size N.
This same procedure is done for each column of the input matrix, and each new transformed
column vector of size N constitutes a column of the �nal output beam pattern matrix; in
other words, through the application of modularity and linear combination of M modules,
an equivalent, reduced beam pattern matrix of size N � B is obtained, in place of having a
larger beam pattern matrix of size L � B (see Figure 7.4). This demonstrates that through
modularity, a large linear array of size L = MN can be reduced to an equivalent linear array of
N sensors, where the N sensors of each module are linearly combined. For this technique, the
�nal beam pattern formations are also read by rows, in which the resulting beam patterns are
arranged as an N � B matrix, N being the number of sensors in each of the M modules.

7.2 DFT Beamforming Implementation Procedure

The implementations of the DFT and Kronecker Beamforming Algorithms are based on a linear
array con�guration, consisting of L sensors, in order to take advantage of the FFT algorithms
for obtaining the beam pattern formations. Afterwards,Kronecker products formulations are
integrated to the DFT Beamforming technique, with the purpose of introducing the concept
of mapping the beamforming algorithm to a parallel architectural con�guration through the
usage of modularity and linear combination.
The approach of designing the beamforming techniques consisted in �rst using MATLAB as
the principal tool for modeling the beamforming algorithms, in an ideal simulated environment
for signal processing applications. A series of tests were conducted in order to determine how
the spacing between sensors and the wavelength of the incoming signal can a�ect the beam
pattern formations, especially in the presence of noise; these tests are discussed with further
details in the next section.
Next, the DFT and Kronecker Beamforming techniques were implemented, using C language,
for execution on the DSP TMS320C6713, from Texas Instruments, Inc., applying the simula-
tion and emulation analysis procedures, de�ned in chapter 6. These beamforming techniques
were also implemented using C language for execution on the Gumstix Verdex. Further re-
search on using Kronecker product formulations for the mapping of the beamforming operation
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onto a parallel architecture, led to using the tool pMATLAB, as an ideal parallel simulation
environment, which was described in chapter 5 (see Figure 7.5).

Figure 7.5: Beamforming Techniques Implementation Platforms

7.2.1 Signal Analysis and Metrics

In this section, the general model for the beamformer is provided and an analysis is performed
on this model acting on an input signal when white Gaussian noise is assumed as background
noise. Let the steering direction �0 = 2m

L , m 2 ZL. Then the generalized beamformer model
used in this work is expressed as follows [22]:

xm(t) = L�1∑
n=0

�n
(
t;
m
L

)
e�j2�

nd
� ( 2m

L ) + nm (t) ; m; n 2 ZL: (7.1)

The function randn(N,B) was used to generate the background noise. This function produces
pseudo-random values characterized from a normal distribution with mean zero and standard
deviation � one, of dimension N � B. Such background noise was added to the original input
matrix. Such noise was varied, by changing the amplitude. For example, the command in
MATLAB A � (0:5 � randn(N;B)), varies the amplitude of noise matrix by multiplying the
function randn(N,B) by a factor of A, where A is assumed to be an integer. The signal-
to-noise (SNR) ratio was used to compare the amount of an input signal to the amount of
background noise, de�ned as follows in dB:

SNR = 10log10E (j�j)2
E (jnj)2 = 20log10E (j�j)

E (jnj) ; (7.2)
where E (j�j) and E (jnj) denote the expected value or mean of an input vector and noise
vector, respectively. The higher the SNR is, the less impact the noise has over the desired
signal.
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Figure 7.6: SNR Analysis

Figure 7.6 presents a beam pattern formation in MATLAB, without noise (top graph) and
with noise (bottom graph), for A = 1 and 64 sensors. In this example a SNR between an
input vector and noise vector was -8.8528 dB.
Figure 7.7 presents a beam pattern formation in MATLAB, without noise (top graph) and
with noise (bottom graph), for A = 6 and 64 sensors. In this example a SNR between an
input vector and noise vector was -35.5705 dB.
The beam pattern formations obtained in the developing platforms MATLAB, DSP 6713,
Gumstix, and pMATLAB, were statistically compared, in order to determine the di�erence
among the data. A single beam pattern formation obtained in MATLAB was de�ned as a row
vector signal Sio [n], for n 2 ZB, B being the total number of steering directions detected
by the linear array. This signal is considered to be the original, ideal beam pattern formation,
since MATLAB is considered as the ideal tool by excellence for algorithm development. A
single beam pattern formation obtained from the DSP,Gumstix, and pMATLAB, was de�ned
as Sid [n], Sig [n], and Sip [n], respectively.
Afterwards, the signals Sid [n], Sig [n], and Sip [n] were statistically compared to the ideal signal
Sio [n] obtained in MATLAB. This was done by �rst calculating the following di�erences, with
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Figure 7.7: SNR Analysis (cont.)

respect to Sio [n]:
Sio [n]� Sid [n] = xd [n]
Sio [n]� Sio [n] = xiz [n]
Sio [n]� Sig [n] = xg [n]
Sio [n]� Sip [n] = xp [n]

: (7.3)

The di�erence between the beam pattern formation in MATLAB Sio [n] and the one obtained
by the DSP is represented by the signal xd [n]. The di�erence between the ideal signal Sio [n]
and itself should result in the row vector of B zeroes, denoted as xd [n]. The signal xg [n]
denotes the di�erence between the beam pattern formation obtained in MATLAB and by the
Gumstix. The di�erence between the beam pattern formation in MATLAB Sio [n] and the one
obtained in pMATLAB is represented by the signal xp [n].
The mean, variance, standard deviation, energy, and power are the signal metrics computed for
the di�erent signals representing the beam pattern formations and the di�erences with respect
to the beam pattern formation obtained in MATLAB [23]. The mean of a signal is de�ned as
the signal average value of its samples, and represents the expected value:
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�x =
( 1
B

)B�1∑
n=0

x [n] : (7.4)

The variance of a signal is de�ned as:

�2x =
( 1
B

)B�1∑
n=0

jx [n]� �x j2 : (7.5)

The variance is a measure of the signal value x [n] and the expected value or mean �x .The
standard deviation, denoted as � is computed as the square root of the variance.
The total energy of a signal x [n] may be de�ned as:

�x =
B�1∑
n=0

jx [n]j2 : (7.6)

The average power of a signal x [n] is de�ned as the energy per sample:

Px = �x
B

=
( 1
B

)B�1∑
n=0

jx [n]j2 : (7.7)

Table 7.1 presents the signal metrics computed for the signals Sio , Sid , Sig, Sip and the
signals representing the di�erence with respect to the signal Sio . For this case, the number
of sensors L was 64, assuming that the linear array of sensors received a total of 256 steering
directions (B = 256).

Table 7.1: Signal Statistical Metrics

Mean Std Var Power Energy
xd 2:3216e�7 + 1:1591e�7i 4:1810e�6 1:7481e�11 1:7480e�11 4:4748e�9
xg 2:3216e�7 + 1:1591e�7i 4:1810e�6 1:7481e�11 1:7480e�11 4:4748e�9
xp 0 0 0 0 0
xiz 0 0 0 0 0
Sio 0:9961� 0i 7.9375 63.0039 63.7500 1:6320e+4
Sid 0:9961� 0i 7.9375 63.0039 63.7500 1:6320e+4
Sig 0:9961� 0i 7.9375 63.0039 63.7500 1:6320e+4
Sip 0:9961� 0i 7.9375 63.0039 63.7500 1:6320e+4

From Table 7.1, it can be observed that the mean, variance (var), and standard deviation
(std)of the signals xd ,xg, and xp resulted to be nearly zero values, as well as the power and
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Figure 7.8: DFT Beamforming MATLAB Code

energy. This indicates a very small or nearly no di�erence among the beam patteron formation
obtained from each of the developing platforms.

7.2.2 DFT and Kronecker Beamforming Implementation Results in MATLAB

Acoustic beamforming has been simulated in MATLAB. A variety of tests were conducted
in order to determine how the relationship between sensor spacing d and wavelength �, the
number of sensors L, and noise can a�ect the beamforming operation. Based on the results
obtained, it has been found that using a microphone spacing of d = �

2 , where � corresponds
to the wavelength of the input signal, and incrementing the number of sensors, provided a
better beam pattern formation, especially in the presence of noise. Multi-beamforming was
�rst developed in MATLAB, in the AIP laboratory at the University of Puerto Rico, Mayaguez,
making use of the Discrete Fourier Transform (DFT) matrix. Afterwards, a DFT Kronecker
formulation was designed for the multi-beamforming operation.
Figure 7.8 and Figure 7.9 presents the core or essence of the beamforming techniques, imple-
mented iMATLABab, using DFT and Kronecker product formulations, respectively. Figure
7.10 represents a single beam pattern obtain, using DFT Beamforming technique for 32 sen-
sors. The relationship between sensor spacing d and wavelength �, denoted as the ratio d

� in
the signal model �n(�0) = �0 �e j2�( nd� �0) derived in chapter 3 was analyzed in more details. As
part of the initial experiments conducted, it was desired to study how this relationship between
the sensor spacing and wavelength of the incoming signal can actually a�ect the detection and
quality of the beam patterns obtained from the linear array of L sensors.
Noise was simulated in MATLAB, by using the function randn(N,M), as previously de�ned, in
order to further test the beamforming operation of the linear array. In order to generate the
noise signal, arbitrary scalar values were generated with the function randn, which were then
added the original input signals. The noise was varied by changing the amplitude of the noise
signal.
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Figure 7.9: DFT Kronecker Beamforming MATLAB Code

Figure 7.10: DFT Beamforming Pattern Example

In addition, multiple beam pattern formations were considered. Hence, for these initial tests,
the ratio d

� was varied in the range of d
� � 1

2 and d
� � 1

2 Figure 7.11 summarizes the results
obtained, considering the case of 32 sensors and Kronecker product formulations, where the
32 sensors were divided in 4 modules, each consisting of 8 sensors, and a total of 201 steering
directions were considered. Thus, for this case, as explained in section 7.1, 8 beam pattern
formations were obtained of length 201 values, resulting from the linear combination of the 4
modules of 8 sensor each: As it can be shown in Figure 7.11, for a ratio d

� > 1
2 , indicating

the sensor spacing is larger than the wavelength, and taking as example d
� = 212 , each of the

8 beam patterns obtained resulted to have more than one main lobe in its respective beam
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Figure 7.11: Analyzing relationshipsensor spacing d and wavelength �

pattern, making it di�cult to detect the angle of incidence of the dominant incoming signal
at each of the 8 linearly combined beam atterns, especially in the presence of noise, as shown
at the bottom of Figure 7.11.
On the other hand, for case of d

� = 1
2 , indicating that sensor spacing d is half of the wavelength

�, each of the 8 beam patterns were clearly formed, each resulting to have a single main lobe,
making it easy to identify the steering direction and hence, the angle of incidence of the
dominant incoming signal, from each beam pattern obtained. Even in the presence of noise,
the main lobe of each pattern formation su�ered little distortion, making it possible to still
identify the steering direction and incidence angle of the dominant signal.
For the case of d

� > 1
2 , indicating that the wavelength � is much larger than the sensor spacing

d , and taking as an example the case for d
� > 1

7 the following was observed; not all of the
beam patterns were detected, and the three main lobes that were detected resulted to be
wider. Hence for the case d

� > 1
2 , the main lobes of some the the beam patterns are not

detected by some of the sensors, making the linear array seem blind at certain angles.
From these intial tests, it was shown that using the relationship d

� = 1
2 provided the best

beam pattern formations, in the sense that the single main lobe of each pattern can easily be
detected, so as to determine the direction of the dominant signal.
The next experiments conducted, having determined previously that d

� = 1
2 is the best guidline

to use for the design of the linear array, consisted in determining how the number of sensors can
further a�ect the beamforming operation, also considering the presence of noise. Subsequent
tests consisted of anaylzing single beam pattern, using Kronecker product formulations, for
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32, 64, 128, and 256 sensors, assuming that all signals originate from the same wave plane
characterized by �. For each number of sensors, the total number of sensors was divided into
M modules, such that N, the number of sensors in each module resulted to be 4, for the
purpose of simplicity.
For these set of tests, the following notation is reviewed:

� L denotes the number of sensors.
� M denotes the number of modules
� N denotes the length of the FFT applied to each module (N = 4)
� d

� = 1
2 denotes the senor spacing-wavelength ratio

� The range of steering angles was divided into intervals of size .01, for a total of 201
intervals between ��

2 and �
2 .

The following sets of four beam pattern formations were obtained for 32, 64, 128, and 256
sensors, where the top plots represents the beam patterns without noise, and the bottom plots
are the beam patterns with noise added. Based on these results, it could be observed that,
as the number of sensors in the array incremented, a beam pattern with a more de�ned single
main lobe could be perceived, even in the presence of noise, with less distortion in the lobe
(see Figures 7.12,7.13,7.14, and 7.15).
After conducting the single beam pattern analysis, the number of sensors was once again
varied, in powers of two, for 32,64,128, and 256 sensors, considering for this case, multiple
beam pattern formations, as depicted in emphFigures 7.16,7.17,7.18, and 7.19). For these
tests, Kronecker product formulations were used, such that the number of sensors N for each
module was 8, resulting in 8 linearly combined beam pattern formations.
Once again, these tests showcase that as the number of sensors increments, the main lobe
of each beam pattern is made more distinguished and pronounced, even when there is noise
present in the input signals.
In summary, the implementations of the DFT and Kronecker beamforming algorithms initially
in MATLAB, served as an ideal tool and model by excelence for analyzing and determining how
the relationship between the sensor spacing and wavelength, and how the number of sensors
a�ect the beamforming operation of a linear sensor array. As the results have shown, using
a sensor spacing of d = �

2 and incrementing the number of sensots help obtain better beam
pattern formations, including for the situation when there is noise or interference present in
the incoming signals to the linear array.
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Figure 7.12: Single Beam Pattern Formations for 32 sensors

Figure 7.13: Single Beam Pattern Formations for 64 sensors
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Figure 7.14: Single Beam Pattern Formations for 128 sensors

Figure 7.15: Single Beam Pattern Formations for 256 sensors
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Figure 7.16: Multiple Beam Pattern Formations for 32 sensors

Figure 7.17: Multiple Beam Pattern Formations for 64 sensors

Figure 7.18: Multiple Beam Pattern Formations for 128 sensors

Figure 7.19: Multiple Beam Pattern Formations for 256 sensors

7.2.3 DFT and Kronecker Beamforming Implementation Results on DSP 6713

After implementing the DFT and Kronecker Beamforming algorithms in MATLAB, both beam-
forming operation techniques were developed in C language, for the implementation of such
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algorithms for the DSP 6713. The ideal sensor spacing guideline d = �

2 obtained from the
series of experimental tests that were conducted in MATLAB was incorporated into implement-
ing these algorithms on the DSP. Here the Kronecker product formulation results obtained on
the DSP are presented.
The L � B complex input matrix was simulated in MATLAB, creating two .dat �les, corre-
sponding to the real and imaginary parts of the input matrix. Such �les served as the input
�les for the DSP program application, developed in Code Composer Studio. Figure 7.20 de-
picts the implementation procedure. The output .dat �les of the real and imaginary parts

Figure 7.20: Beamforming Algorithm Implementations on the DSP

of the beam patterns generated by the DSP were read in MATLAB in order to obtain the
corresponding graph of the beam patterns. Figure 7.21 and Figure 7.22 presents the multiple
beam pattern formations for 32 and 64 sensors. As can be shown from Figures 7.21 and
7.22, simular results were obtained on the DSP, as in MATLAB.

7.2.4 Kronecker DFT Beamforming Implementation Results on Gumstix Verdex

After implementing the DFT and Kronecker Beamforming algorithms in MATLAB, and for the
DSP 6713, DFT Kronecker beamforming operation developed in C language, was executed on
the Gumstix Verdex. Here the Kronecker product formulation results obtained on the Gumstix
are presented.
The L � B complex input matrix was again simulated in MATLAB, creating two .dat �les,
corresponding to the real and imaginary parts of the input matrix. Such �les served as the input
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Figure 7.21: DSP Multiple Beam Pattern Formations for 32 sensors

Figure 7.22: DSP Multiple Beam Pattern Formations for 64 sensors

�les for the beamforming program application project, which was compiled on the MSN. Once
the project was compiled, the executable output �le, along with the input �les, were sent to the
Gumstix, via wireless communication. The tests conducted on the Gumstix also involved �xing
the number of points received by each sensor, while varying the number of sensors, from 32
to 8192, as powers of two. Figures 7.23 and 7.24 presents multiple beam pattern formations
obtained by using a �xed number 0f 256 points received at each sensor, for 32 and 64 sensors,
respectively.

Figure 7.23: Gumstix Multiple Beam Pattern Formations for 32 sensors
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Figure 7.24: Gumstix Multiple Beam Pattern Formations for 64 sensors

7.2.5 DFT and Kronecker Beamforming Implementation Results in pMATLAB

Previous results obtained in MATLAB, on the DSP, and Gumstix have shown the e�ectiveness
of using Kronecker product formulations as a method for mapping the beamforming operation
onto a parallel computing architecture environment. In order to integrate further the concept
of multicore architecture to the beamforming operation, DFT and Kronecker beamforming
techniques were also implemented using the pMATLAB as an ideal tool for parallel simulation
environment. Figure 7.25 depicts the multicore simulation environment which pMATLAB
provides for parallel program applications. The implementation of the DFT and Kronecker

Figure 7.25: pMATLAB Multicore Simulation Environment, courtesy of Kepner, MIT Lincoln
Lab.

beamforming algorithms in pMATLAB produced similar results, as acquired in MATLAB and
from the DSP 6713. Figure 7.26 presents a single beam pattern formation, for 64 sensors,
when executing the program application in a multicore environment. Figure 7.27 presents
multiple beam pattern formations when executing the Kronecker beamforming application in
pMATLAB, also for 64 sensors. For both cases, 256 steering directions were considered; that
is, each sensor received 256 points of input data.
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Figure 7.26: DFT Beam Pattern Formation in pMATLAB for 64 sensors

Figure 7.27: Kronecker Beam Pattern Formation in pMATLAB for 64

In addition to implementing the beamforming techniques in pMATLAB, a speedup analysis was
also conducted. In general, this analysis consisted of �xing the number of steering directions,
or the number of data points that each sensor in the linear array receives. The number of
sensors was varied as powers of two, from 16 to 8192 sensors. For each number of sensors,
the beamforming parallel application program was executed on 1,2,4,8,16,32, and 64 parallel
simulated processors. Figure 7.28 demonstrates the speedup obtained, considering the case
of the linear sensor array being capable of detecting 256 steering directions.



Chapter 7. Experimental Results 92

Figure 7.28: Speedup Analysis in pMATLAB for 256 Steering Directions

As can be observed from Figure 7.28, the beamforming program application does indeed
exhibit a high parallel, linear characteristic in its structure. Also, it was observed throughout
this analysis that, as the number of sensors and the number of steering directions that the
linear array is capable of detecting incremented, the parallel nature of the program application
was conserved for up to more than 16 processors, without su�ering early degration, as in other
applications.

7.2.6 DFT Beamforming Platforms Comparison

The Kronecker DFT beamforming technique was implemented and evaluated on the following
platforms:

� DSP C6713
� Gumstix Verdex
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� pMATLAB

In addition, the DFT beamforming technique was also evaluated in pMATLAB. The function
kron used in pMATLAB resulted to be implemented not so e�ciently for a parallel environment,
from observing the large execution times obtained, especially as the number of procesors incre-
mented. On the other hand, the DFT beamforming technique provided much better execution
times, also in comparison with the Gumstix and DSP.The reason for this is that the function
�t is implemented in pMATLAB to permit the mapping and distribution of the columns of the
input matrix among the processors executing in parallel.Hence, as the number of processors
increased from 1,2,4,8,16,32, up to 64, better execution times were obtained.

Figure 7.29: DFT Beamforming Platforms Comparison
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Conclusions and Future Work

Discrete Fourier Transform (DFT) beamforming algorithms have been demonstrated to ef-
fectively obtain e�cient beamforming operation results for linear sensor array con�gurations.
The DFT beamforming algorithms formulated using Kronecker products algebra have beem
proven to derive expressions for the beamforming operations, for the purpose of mapping these
operations onto a parallel architecture.
The development e�ort used the MATLAB numeric computation and software visualization
package, as an ideal simulated environment for signal processing applications. By initially
implementatng the DFT and Kronecker beamforming algorithms in MATLAB, this served as
an ideal tool and model by excelence for studying how the sensor spacing and wavelength
and the number of sensors could a�ect the beamforming operation of a linear sensor array.
By using a sensor spacing of d = �

2 and incrementing the number of sensor, optimal beam
pattern formations were obtained, even in the presence of noise.
The DFT Beamforming algorithms were sucessfulling implemented on the DSP 6713 from
Texas Instruments, obtaining similar results as in MATLAB. Using pMATLAB as an ideal paral-
lel programming modeling environment, named pMATLAB, the computational performance of
parallel implementation techniques for beamforming operation demonstrated the high linearity
that the DFT beamforming algorithmas may possess in a multicore architectural environment.
It was shown that these DFT Beamforming techniques can exhibit high parallel speedup for
more than 16 processors, as the number of sensors in the array, and the number of steering
directions that can be detected are incremented.
As future work, the TMS320C6474 multicore DSP from Texas Instruments will be consid-
ered as the actual multicore architectural platform for implementing the DFT beamforming
algorithms, due to potential characteristics that this architecture exhibits, such as high perfor-
mance delivery at 3 GHz, through the integration of three DSP cores. The parallel program

94
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pMATLAB should be continued to be utilized as the ideal parallel simulation environment for
further testing and implementation work.



Appendix A

MATLAB DFT Beamforming Code

%Multi- Linear beamforming implementation in MATLAB, using DFT

% The number of steering angles considered is the number of Sensors in the

% system

clc;

clear all;

close all;

M=2^6;%Number of input sampled vectors and number of steering angles

N =2^6; %Number of sensors in linear array

d= 2;

lambda =2*d;

phi_0= 1;%Initial Amplitude of signal

A = 5; %Amplitude of noise signal

%B=-1:10^(-2):1; % -1<(B=SIN(THETA))<1

NumberOfPoints = 256;

B=-1:2/(NumberOfPoints-1):1

i=1;

for m=1:1:length(B);

Bk(1,i) = B(m);%Steering Direction

for k=1:1:N

sample_input_matrix_1(k,m) = phi_0*(exp(j*2*pi*((k-1))*Bk(1,i)*d/lambda));% Original Signal

end

i = i+1;

end
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noise_signal = A*(0.5*randn(N,NumberOfPoints));

sample_input_matrix_2 = sample_input_matrix_1+ noise_signal;%Signal with noise

Beam_pattern_1 = fft(sample_input_matrix_1);

Beam_pattern_2 = fft(sample_input_matrix_2);

%Steering angles in radians

%Plotting the beam pattern formed for some of the input vectors, where

%each column of the matrix Beam_pattern is a beam pattern of the

%corresponding input vector

channel = 8;

plot(B,abs(Beam_pattern_1(channel,:)), 'g')

title('DFT Beam Pattern Formations Results in MATLAB');

xlabel('Steering Direction');

ylabel('Magnitude');

grid

figure

plot(B,abs(Beam_pattern_2(channel,:)), 'g')

title('DFT Beam Pattern Formations Results in MATLAB with Noise');

xlabel('Steering Direction');

ylabel('Magnitude');

grid



Appendix B

MATLAB DFT Kronecker

Beamforming Code

%Multi- Linear beamforming implementation in MATLAB, based on the concepts

%using kroneckers

% The number of steering angles considered is the number of Sensors in the

% system

%clc;

clear all;

close all;

L = 64 % Number of sensors

M= 8%Number of Modules

N =8; %Number of sensors in linear array

d= 1;% distance between sensors

lambda =2*d;% wavelength

phi_0= 1;%Initial Amplitude of signal

A = 5; %Amplitude of noise signal

NumberOfPoints = 256;

B=-1:2/(NumberOfPoints-1):1

%B = -1:10^(-2):1;

i=1;

for m=1:1:length(B);

Bk(1,i) = B(m);%Steering Direction

for k=1:1:L
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sample_input_matrix_1(k,m) = phi_0*(exp(j*2*pi*((k-1))*Bk(1,i)*d/lambda));% Original Signal

end

end

noise_signal = A*(0.5*randn(L,NumberOfPoints));

sample_input_matrix_2 = sample_input_matrix_1+ noise_signal;%Signal with noise

%Beam_pattern = (B_DOA*sample_input_matrix);

U_M = ones(M,1);

I_N = eye(N,N);

I_M = eye(M,M);

Beam_pattern_1= kron(U_M', I_N )*kron(I_M,dftmtx(N) )*sample_input_matrix_1; %Beam pattern of signals from the same plane without noise

Beam_pattern_2= kron(U_M', I_N )*kron(I_M,dftmtx(N) )*sample_input_matrix_2; %Beam pattern of signal from the same plane without noise

%Beam_pattern_1 = (1/L)*Beam_pattern_1;

%Beam_pattern_2 = (1/maxNoise)*Beam_pattern_2;

%Plotting the beam pattern formed for some of the input vectors, where

%each column of the matrix Beam_pattern is a beam pattern of the

%corresponding input vector

figure

channel=1:1:N

plot(B,abs(Beam_pattern_1(channel,:)))

title('Kronecker DFT Beam Pattern Formations in MATLAB');

xlabel('Steering Direction');

ylabel('Normalized Magnitude');

grid

figure;

plot(B,abs(Beam_pattern_2(channel,:)))

title('Kronecker DFT Beam Pattern Formations in MATLAB with Noise');

xlabel('Steering Direction');

ylabel('Normalized Magnitude');

grid

realIn=real(Beam_pattern_1);

imagIn=imag(Beam_pattern_1);

save Beam_pattern_real.dat realIn -ascii
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save Beam_pattern_image.dat imagIn -ascii



Appendix C

DSP DFT Beamforming Code

#include "dsk6713_aic23.h"

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#include <stdio.h>

#include <limits.h>

#include <math.h>

#include <stdlib.h>

#include <ctype.h>

#define B 256 /*Number of points or steering directions received at each sensor*/

#define N 32 // Number of sensors

#define D 2 // Distance between sensors

#define L 2*D //lambda

#define d_L 1/L_d

#define PI 3.14159265358979

#define DELTA (2*PI)

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX *Y);

//void FFT(COMPLEX *Y, int n); //FFT prototype

COMPLEX input_vectors[N][B];

COMPLEX Beam_pattern[N][B];
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COMPLEX w[N];

COMPLEX x[N];

short iTwid[N/2];

float beta,a,b;

FILE *index;

void input_vector_generation(){

short m,k;

index=fopen("sample_input_real_without_noise.h","r");

if((index)==NULL) {

puts("File could not be open");

exit(-1);

}

for(m = 0; m < N; m++){

for(k = 0; k < B; k++){

fscanf(index, "%f",&input_vectors[m][k].real);

}

}

fclose(index);

index=fopen("sample_input_imag_without_noise","r");

if((index)==NULL) {

puts("File could not be open");

exit(-1);



Appendix C. DSP DFT Beamforming Code 103
}

for(m = 0; m < N; m++){

for(k = 0; k < B; k++){

fscanf(index, "%f",&input_vectors[m][k].imag);

}

}

fclose(index);

//exit(-1);

}

void Beam_pattern_generation()

{ int col_input_matrix,i,j;

COMPLEX x_col[N];

for(col_input_matrix = 0; col_input_matrix < B; col_input_matrix++){

for (i=0;i<N;i++){

x_col[i] = input_vectors[i][col_input_matrix];

}

FFT(x_col,N);

for (j=0;j<N;j++){

Beam_pattern[j][col_input_matrix].real = x_col[j].real;

Beam_pattern[j][col_input_matrix].imag = x_col[j].imag;

}

}

}

void main(){

int m,k,doblepts;
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//set up array of twiddle factors

input_vector_generation();

doblepts=2*N;

for(k = 0;k<N;k=k+1){

w[k].real = cos((DELTA*k)/(doblepts));

//printf("%.5f",Beam_matrix[m-1][k-1].real );

w[k].imag =-sin((DELTA*k)/(doblepts));

//printf("%.5f\n",Beam_matrix[m-1][k-1].imag );

Beam_pattern_generation();

index = fopen("Beam_pattern_real.dat","w");

for (k = 0;k<M;k++){

for(m = 0;m<B;m++){

fprintf(index,"%.2f\n",Beam_pattern[k][m].real);

}

}

fclose(index);

index = fopen("Beam_pattern_image.dat","w");

for (k = 0;k<M;k++){

for(m = 0;m<B;m++){

fprintf(index,"%.2f\n",Beam_pattern[k][m].imag);

}

}

fclose(index);

puts("done");

}
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//FFT.c C callable FFT function in C

#define PTS 8 //# of points for FFT

#define D 5

#define Lambda (2*D)

typedef struct {float real,imag;} COMPLEX;

extern COMPLEX w[PTS]; //twiddle constants stored in w

void FFT(COMPLEX *Y, int N) //input sample array, # of points

{

COMPLEX temp1,temp2; //temporary storage variables

int i,j,k; //loop counter variables

int upper_leg, lower_leg; //index of upper/lower butterfly leg

int leg_diff; //difference between upper/lower leg

int num_stages = 0; //number of FFT stages (iterations)

int index, step;

int doblepts = 2*PTS;

//index/step through twiddle constant

i = 1; //log(base2) of N points= # of stages

do

{

num_stages +=1;

i = i*2;

}while (i!=N);

leg_diff = N/2; //difference between upper&lower legs

step =doblepts/N; //step between values in twiddle.h

for (i = 0;i < num_stages; i++) //for N-point FFT

{

index = 0;

for (j = 0; j < leg_diff; j++)

{

for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))

{

lower_leg = upper_leg+leg_diff;

temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real;
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temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag;

temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real;

temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag;

(Y[lower_leg]).real = temp2.real*(w[index]).real

-temp2.imag*(w[index]).imag;

(Y[lower_leg]).imag = temp2.real*(w[index]).imag

+temp2.imag*(w[index]).real;

(Y[upper_leg]).real = temp1.real;

(Y[upper_leg]).imag = temp1.imag;

}

index += step;

}

leg_diff = leg_diff/2;

step *= 2;

}

j = 0;

for (i = 1; i < (N-1); i++) //bit reversal for resequencing data

{

k = N/2;

while (k <= j)

{

j = j - k;

k = k/2;

}

j = j + k;

if (i<j)

{

temp1.real = (Y[j]).real;

temp1.imag = (Y[j]).imag;

(Y[j]).real = (Y[i]).real;

(Y[j]).imag = (Y[i]).imag;

(Y[i]).real = temp1.real;

(Y[i]).imag = temp1.imag;

}

}

return;

}

}
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DSP Kronecker DFT Beamforming

Code

#include "dsk6713_aic23.h"

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#include <stdio.h>

#include <limits.h>

#include <math.h>

#include <stdlib.h>

#include <ctype.h>

#define L 64

#define M 8 //Number of FFT modules to compute

#define N 8// Length of each FFT module

#define B 201// Total number of input vectors defined for -1<sin(theta)<1

#define PI 3.14159265358979

#define DELTA (2*PI)

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX* , int );

//void FFT(COMPLEX *Y, int n); //FFT prototype
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COMPLEX input_vectors[L][B];

COMPLEX DFT_modules_matrix[L][B];

COMPLEX Beam_pattern[N][B];

COMPLEX x_L[L];

COMPLEX x_module_N[N];

COMPLEX w[N];

FILE *index;

void input_vector_generation(){

int m,k;

/*for (k = 0;k<N;k++){

for(m = 0;m<B;m++){

input_vectors[k][m].real=input_matrix[k][m];

input_vectors[k][m].imag=input_matrix_imag[k][m];

}

}

*/

index=fopen("sample_input_real_without_noise.h","r");

if((index)==NULL) {

puts("File could not be open");

exit(-1);

}

for(m = 0; m < L; m++){

for(k = 0; k < B; k++){

fscanf(index, "%f",&input_vectors[m][k].real);
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}

}

fclose(index);

index=fopen("sample_input_imag_without_noise.h","r");

if((index)==NULL) {

puts("File could not be open");

exit(-1);

}

for(m = 0; m < L; m++){

for(k = 0; k < B; k++){

fscanf(index, "%f",&input_vectors[m][k].imag);

}

}

fclose(index);

//exit(-1);

}

void Twiddle_factors_generation(){

int k, doblepts;

doblepts=2*N;

for(k = 0;k<N;k=k+1){

w[k].real = cos((DELTA*k)/(doblepts));

//printf("%.5f",Beam_matrix[m-1][k-1].real );

w[k].imag =-sin((DELTA*k)/(doblepts));
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//printf("%.5f\n",Beam_matrix[m-1][k-1].imag );

}

}

void Beam_Pattern_Init(){

int i,j;

for(i=0;i<N;i++){

for(j=0;j<B;j++){

Beam_pattern[i][j].real=0;

Beam_pattern[i][j].imag=0;

}

}

}

void DFT_M_Modules_generation()

{ short i,j,k,p,b,c,n_index;

for(i=0;i<B;i++) {

b=0; // Marks the current position in each input vector

// Processing each input vector taken as a column of the matrix

for(j=0;j<L;j++){

x_L[j] = input_vectors[j][i];

}

// Divide each input vector into M modules

for(k=0;k<M;k++){

for(p=0;p<N;p++){

x_module_N[p] =x_L[b];

b++;

}

FFT(x_module_N,N);

n_index=b-N; // To place each DFT module currently in the output matrix

for(c=0;c<N;c++){

DFT_modules_matrix[n_index][i]= x_module_N[c];

n_index++;
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}

}

}

}

void Linear_Combination_DFT_Modules(){

short i,j,k,m;

//Linear combination of the M DFT Modules

for(i=0;i<N;i++){

for(j=0;j<B;j++){

for(k=0;k<=L-N;k=k+N){

m =i+k;

Beam_pattern[i][j].real = Beam_pattern[i][j].real+ DFT_modules_matrix[m][j].real;

Beam_pattern[i][j].imag = Beam_pattern[i][j].imag+ DFT_modules_matrix[m][j].imag;

}

}

}

}

void main(){

int m,k;

//set up array of twiddle factors
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input_vector_generation();

puts("Input vector Matrix generated");

Twiddle_factors_generation();

puts("Twiddle Factors generated");

DFT_M_Modules_generation();

puts("DFT Modules generated");

Beam_Pattern_Init();

Linear_Combination_DFT_Modules();

puts("Linear Combination of DFT Modules generated");

index = fopen("Beam_pattern_real.dat","w");

for (k = 0;k<N;k++){

for(m = 0;m<B;m++){

fprintf(index,"%.5f\n",Beam_pattern[k][m].real);

}

}

fclose(index);

index = fopen("Beam_pattern_image.dat","w");

for (k = 0;k<N;k++){

for(m = 0;m<B;m++){

fprintf(index,"%.5f\n",Beam_pattern[k][m].imag);

}

}

fclose(index);

puts("done");}
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}



Appendix E

Gumstix Verdex DFT Beamforming

Code

//#include "dsk6713_aic23.h"

//Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#include <stdio.h>

#include <limits.h>

#include <math.h>

#include <stdlib.h>

#include <ctype.h>

#include <time.h>

#include <sys/time.h>

/*Number of points or steering directions received at each sensor*/

#define B 256

#define N 32 // Number of sensors

#define D 2 // Distance between sensors

#define L 2*D //lambda

#define d_L 1/L_d

#define PI 3.14159265358979

#define DELTA (2*PI)

/*********** Constants defined for the FFT ********************/
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//#define PTS 64 //# of points for FFT

#define D 5

#define Lambda (2*D)

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX *Y);

//void FFT(COMPLEX *Y, int n); //FFT prototype

COMPLEX input_vectors[N][B];

COMPLEX Beam_pattern[N][B];

COMPLEX w[N];

COMPLEX x[N];

short iTwid[N/2];

float beta,a,b;

//FILE *index;

/* Function that returns "a - b" in seconds */

double timeval_diff(struct timeval *a, struct timeval *b)

{

return

(double)(a->tv_sec + (double)a->tv_usec/1000000) -

(double)(b->tv_sec + (double)b->tv_usec/1000000);

}

void input_vector_generation()

{

FILE *index;

short m,k;
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/*for (k = 0;k<N;k++)

{

for(m = 0;m<B;m++)

{

input_vectors[k][m].real=input_matrix[k][m];

input_vectors[k][m].imag=input_matrix_imag[k][m];

}

}

*/

printf("Opening Sample input real without noise file\n");

/*********************** fopen *********************/

index=fopen("sample_input_real_without_noise.h","r");

if((index)==NULL)

{

puts("File could not be open");

exit(-1);

}

for(m = 0; m < N; m++)

{

for(k = 0; k < B; k++)

{

fscanf(index, "%f",&input_vectors[m][k].real);

}

}

fclose(index);

printf("Closing Sample input real without noise file\n");

index=fopen("sample_input_imag_without_noise.h","r");

printf("Opening Sample input imag without noise file\n");
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if((index)==NULL)

{

puts("File could not be open");

exit(-1);

}

for(m = 0; m < N; m++)

{

for(k = 0; k < B; k++)

{

fscanf(index, "%f",&input_vectors[m][k].imag);

}

}

fclose(index);

printf("Closing Sample input imag without noise file\n");

//exit(-1);

}

void Beam_pattern_generation()

{

int col_input_matrix,i,j;

COMPLEX x_col[N];

for(col_input_matrix = 0; col_input_matrix < B; col_input_matrix++)

{

for (i=0;i<N;i++)

{

x_col[i] = input_vectors[i][col_input_matrix];

}

FFT(x_col);

for (j=0;j<N;j++)

{

Beam_pattern[j][col_input_matrix].real = x_col[j].real;

Beam_pattern[j][col_input_matrix].imag = x_col[j].imag;
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}

}

}

void main()

{

struct timeval t_ini, t_fin;

double secs;

int m,k,doblepts;

FILE *index;

//set up array of twiddle factors

input_vector_generation();

doblepts=2*N;

for(k = 0;k<N;k=k+1)

{

w[k].real = cos((DELTA*k)/(doblepts));

//printf("%.5f",Beam_matrix[m-1][k-1].real );

w[k].imag =-sin((DELTA*k)/(doblepts));

//printf("%.5f\n",Beam_matrix[m-1][k-1].imag );

}

gettimeofday(&t_ini, NULL);

Beam_pattern_generation();

gettimeofday(&t_fin, NULL);

secs = timeval_diff(&t_fin,&t_ini);

printf("%.16g milliseconds\n", secs *1000.0);

index = fopen("Beam_pattern_real.dat","w");

printf("Writing Beam pattern real\n");

for (k = 0;k<N;k++)
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{

for(m = 0;m<B;m++)

{

fprintf(index,"%.2f\n",Beam_pattern[k][m].real);

}

}

fclose(index);

printf("Closing Beam pattern real\n");

index = fopen("Beam_pattern_image.dat","w");

printf("Writing Beam pattern imag\n");

for (k = 0;k<N;k++)

{

for(m = 0;m<B;m++)

{

fprintf(index,"%.2f\n",Beam_pattern[k][m].imag);

}

}

fclose(index);

printf("Closing Beam pattern imag\n");

puts("done");

}

\******************* FFT *************************/

//FFT.c C callable FFT function in C

//#define PTS 64 //# of points for FFT

//#define D 5

//#define Lambda (2*D)

//typedef struct {float real,imag;} COMPLEX;
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//extern COMPLEX w[PTS]; //twiddle constants stored in w

void FFT(COMPLEX *Y) //input sample array, # of points

{

COMPLEX temp1,temp2; //temporary storage variables

int i,j,k; //loop counter variables

int upper_leg, lower_leg; //index of upper/lower butterfly leg

int leg_diff; //difference between upper/lower leg

int num_stages = 0; //number of FFT stages (iterations)

int index, step;

int doblepts = 2*N;

//index/step through twiddle constant

i = 1; //log(base2) of N points= # of stages

do

{

num_stages +=1;

i = i*2;

}while (i!=N);

leg_diff = N/2; //difference between upper&lower legs

step =doblepts/N; //step between values in twiddle.h

for (i = 0;i < num_stages; i++) //for N-point FFT

{

index = 0;

for (j = 0; j < leg_diff; j++)

{

for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))

{

lower_leg = upper_leg+leg_diff;

temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real;

temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag;

temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real;

temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag;

(Y[lower_leg]).real = temp2.real*(w[index]).real

-temp2.imag*(w[index]).imag;

(Y[lower_leg]).imag = temp2.real*(w[index]).imag

+temp2.imag*(w[index]).real;
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(Y[upper_leg]).real = temp1.real;

(Y[upper_leg]).imag = temp1.imag;

}

index += step;

}

leg_diff = leg_diff/2;

step *= 2;

}

j = 0;

for (i = 1; i < (N-1); i++) //bit reversal for resequencing data

{

k = N/2;

while (k <= j)

{

j = j - k;

k = k/2;

}

j = j + k;

if (i<j)

{

temp1.real = (Y[j]).real;

temp1.imag = (Y[j]).imag;

(Y[j]).real = (Y[i]).real;

(Y[j]).imag = (Y[i]).imag;

(Y[i]).real = temp1.real;

(Y[i]).imag = temp1.imag;

}

}

return;

}



Appendix F

Gumstix Verdex DFT Kronecker

Beamforming Code

//#include "dsk6713_aic23.h"

//Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#include <stdio.h>

#include <limits.h>

#include <math.h>

#include <stdlib.h>

#include <ctype.h>

#include <time.h>

#include <sys/time.h>

#define L 8192 //Number of sensors

#define M 1024 //Number of FFT modules to compute

#define N 8// Length of each FFT module

#define B 256// Total number of input vectors defined for -1<sin(theta)<1

#define PI 3.14159265358979

#define DELTA (2*PI)

#define PTS 8 //# of points for FFT

#define D 5

#define Lambda (2*D)
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typedef struct {float real,imag;}COMPLEX ;

void FFT(COMPLEX *Y, COMPLEX *w);

//void FFT(COMPLEX *, int , COMPLEX);

//void FFT(COMPLEX* , int );

//void FFT(COMPLEX *Y, int n); //FFT prototype

COMPLEX input_vectors[L][B];

COMPLEX DFT_modules_matrix[L][B];

COMPLEX Beam_pattern[N][B];

COMPLEX x_L[L];

COMPLEX x_module_N[N];

COMPLEX w[N];

//FILE *index;

/* retorna "a - b" en segundos */

double timeval_diff(struct timeval *a, struct timeval *b)

{

return

(double)(a->tv_sec + (double)a->tv_usec/1000000) -

(double)(b->tv_sec + (double)b->tv_usec/1000000);

}

void input_vector_generation()

{

FILE *index;

int m,k;

/*for (k = 0;k<N;k++)

{

for(m = 0;m<B;m++)

{

input_vectors[k][m].real=input_matrix[k][m];

input_vectors[k][m].imag=input_matrix_imag[k][m];
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}

}

*/

printf("Opening sample input real without noise file\n");

/************************fopen****************************/

index=fopen("sample_input_real_without_noise.h","r");

if((index)==NULL)

{

puts("File could not be open");

exit(-1);

}

for(m = 0; m < L; m++)

{

for(k = 0; k < B; k++)

{

fscanf(index, "%f",&input_vectors[m][k].real);

}

}

fclose(index);

printf("Closing sample input real without noise file\n");

/*********************fopen*****************************/

index=fopen("sample_input_imag_without_noise.h","r");

printf("Opening sample input imag without noise file\n");

if((index)==NULL)

{

puts("File could not be open");

exit(-1);

}

for(m = 0; m < L; m++)
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{

for(k = 0; k < B; k++)

{

fscanf(index, "%f",&input_vectors[m][k].imag);

}

}

fclose(index);

printf("Closing sample input imag without noise file\n");

//exit(-1);

}

void Twiddle_factors_generation()

{

int k, doblepts;

doblepts=2*N;

for(k = 0;k<N;k=k+1)

{

w[k].real = cos((DELTA*k)/(doblepts));

//printf("%.5f",Beam_matrix[m-1][k-1].real );

w[k].imag =-sin((DELTA*k)/(doblepts));

//printf("%.5f\n",Beam_matrix[m-1][k-1].imag );

}

}

void Beam_Pattern_Init()

{

int i,j;

for(i=0;i<N;i++)

{

for(j=0;j<B;j++)

{

Beam_pattern[i][j].real=0;

Beam_pattern[i][j].imag=0;

}
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}

}

void DFT_M_Modules_generation() //Comienza operacion de Beamforming

{

short i,j,k,p,b,c,n_index;

for(i=0;i<B;i++)

{

b=0; // Marks the current position in each input vector

// Processing each input vector taken as a column of the matrix

for(j=0;j<L;j++)

{

x_L[j] = input_vectors[j][i];

}

// Divide each input vector into M modules

for(k=0;k<M;k++)

{

for(p=0;p<N;p++)

{

x_module_N[p] =x_L[b];

b++;

}

FFT(x_module_N, w);

n_index=b-N; // To place each DFT module currently in the output matrix

for(c=0;c<N;c++)

{

DFT_modules_matrix[n_index][i]= x_module_N[c];

n_index++;

}

}

}

}

void Linear_Combination_DFT_Modules()
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{

short i,j,k,m;

//Linear combination of the M DFT Modules

for(i=0;i<N;i++)

{

for(j=0;j<B;j++)

{

for(k=0;k<=L-N;k=k+N)

{

m =i+k;

Beam_pattern[i][j].real = Beam_pattern[i][j].real+ DFT_modules_matrix[m][j].real;

Beam_pattern[i][j].imag = Beam_pattern[i][j].imag+ DFT_modules_matrix[m][j].imag;

}

}

}

}

/*********************************main*********************************/

void main()

{

struct timeval t_ini, t_fin;

double secs;

int m,k;

FILE *index;

//set up array of twiddle factors

input_vector_generation();

puts("Input vector Matrix generated\n");

Twiddle_factors_generation();

Beam_Pattern_Init(); /*Inicializa en Beamforming*/

puts("Twiddle Factors generated\n");

gettimeofday(&t_ini, NULL);
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DFT_M_Modules_generation();

puts("DFT Modules generated\n");

Linear_Combination_DFT_Modules();

gettimeofday(&t_fin, NULL);

puts("Linear Combination of DFT Modules generated\n");

secs = timeval_diff(&t_fin, &t_ini);

printf("%.16g milliseconds\n", secs * 1000.0);

index = fopen("Beam_pattern_real.dat","w");

printf("Opening Beam pattern real\n");

for (k = 0;k<N;k++)

{

for(m = 0;m<B;m++)

{

fprintf(index,"%.5f\n",Beam_pattern[k][m].real);

}

}

fclose(index);

printf("Closing Beam pattern real\n");

printf("Opening Beam pattern image\n");

index = fopen("Beam_pattern_image.dat","w");

for (k = 0;k<N;k++)

{

for(m = 0;m<B;m++)

{

fprintf(index,"%.5f\n",Beam_pattern[k][m].imag);

}

}

fclose(index);

printf("Closing Beam pattern real\n");
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printf("Opening Beam pattern image\n");

index = fopen("Beam_pattern_image.dat","w");

for (k = 0;k<N;k++)

{

for(m = 0;m<B;m++)

{

fprintf(index,"%.5f\n",Beam_pattern[k][m].imag);

}

}

fclose(index);

printf("Closing Beam pattern image\n");

puts("done");

}

/***********************FFT*********************************/

//FFT.c C callable FFT function in C

//#define PTS 8

//#define D 5

//#define Lambda (2*D)

//typedef struct {float real,imag;} COMPLEX;

//extern COMPLEX w[PTS];

void FFT(COMPLEX *Y, COMPLEX *w) //input sample array, # number of points

{

COMPLEX temp1;

COMPLEX temp2; //temporary storage variables

int i,j,k; //loop counter variables

int upper_leg, lower_leg; //index of upper/lower butterfly leg

int leg_diff; //difference between upper/lower leg

int num_stages = 0; //number of FFT stages (iterations)
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int index, step;

int doblepts = 2*N;

//index/step through twiddle constant

i = 1; //log(base2) of N points= # of stages

do

{

num_stages +=1;

i = i*2;

}while (i!=N);

leg_diff = N/2; //difference between upper&lower legs

step = doblepts/N; //step between values in twiddle.h

for (i = 0;i < num_stages; i++) //for N-point FFT

{

index = 0;

for (j = 0; j < leg_diff; j++)

{

for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))

{

lower_leg = upper_leg+leg_diff;

temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real;

temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag;

temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real;

temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag;

(Y[lower_leg]).real = temp2.real*(w[index]).real-temp2.imag*(w[index]).imag;

(Y[lower_leg]).imag = temp2.real*(w[index]).imag+temp2.imag*(w[index]).real;

(Y[upper_leg]).real = temp1.real;

(Y[upper_leg]).imag = temp1.imag;

}

index += step;

}

leg_diff = leg_diff/2;

step *= 2;

}

j = 0;

for (i = 1; i < (N-1); i++) //bit reversal for resequencing data
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{

k = N/2;

while (k <= j)

{

j = j - k;

k = k/2;

}

j = j + k;

if (i<j)

{

temp1.real = (Y[j]).real;

temp1.imag = (Y[j]).imag;

(Y[j]).real = (Y[i]).real;

(Y[j]).imag = (Y[i]).imag;

(Y[i]).real = temp1.real;

(Y[i]).imag = temp1.imag;

}

}

return;

}
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pMATLAB DFT Beamforming Code

%Multi- Linear beamforming implementation in MATLAB, using DFT

% The number of steering angles considered is the number of Sensors in the

% system

N = 2^6; % NxB Matrix size.

% Turn parallelism on or off.

PARALLEL = 0; % Can be 1 or 0. OK to change.

% Initialize pMatlab.

% Initialize pMatlab.

pMatlab_Init;

Ncpus = pMATLAB.comm_size;

my_rank = pMATLAB.my_rank;

% Create Maps.

mapX = 1; mapY = 1;

if (PARALLEL)

% Break up channels.

mapX = map([1 Ncpus], {}, 0:Ncpus-1 );

mapY = map([1 Ncpus], {}, 0:Ncpus-1 );

%mapZ = map([Ncpus 1], {}, 0:Ncpus-1 );
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end

close all;

%B=-1:10^(-2):1;

NumberOfPoints = 256;

B=-1:2/(NumberOfPoints-1):1;

sample_input_matrix_1 = zeros(N,length(B), mapX);

Beam_pattern_1 = zeros(N,length(B),mapY);

d= 2;

lambda =2*d;

phi_0= 1;%Initial Amplitude of signal

i=1;

% -1<(B=SIN(THETA))<1 201 points

for m=1:1:length(B);

Bk(1,i) = B(m);%Steering Direction

for k=1:1:N

% Original Signal

sample_input_matrix_1(k,m) = phi_0*(exp(j*2*pi*((k-1))*Bk(1,i)*d/lambda));

end

i = i+1;

end

tic;

Beam_pattern_1 = fft(sample_input_matrix_1);

elapsedTime = toc;

disp(['Elapsed time = ',num2str(elapsedTime,'%0.4f'),' sec.']);

%Plotting the beam pattern formed for some of the input vectors, where

%each column of the matrix Beam_pattern is a beam pattern of the

%corresponding input vector
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y = local(Beam_pattern_1);

figure;

channel=6;

plot(B, abs(y(channel,:)));

title('pMatlab DFT Beam Pattern Formations');

xlabel('Steering Direction');

ylabel('Magnitude');

grid

disp('SUCCESS');

pMatlab_Finalize;

}
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pMATLAB DFT Kronecker

Beamforming Code

%Multi- Linear beamforming implementation in MATLAB, based on the concepts

%using kroneckers

% The number of steering angles considered is the number of Sensors in the

% system

% Turn parallelism on or off.

PARALLEL =0; % Can be 1 or 0. OK to change.

% Initialize pMatlab.

pMatlab_Init;

Ncpus = pMATLAB.comm_size;

my_rank = pMATLAB.my_rank;

% Create Maps.

mapX = 1; mapY = 1; mapf=1;

if (PARALLEL)

% Break up channels.

mapX = map([ 1 Ncpus], {}, 0:Ncpus-1 );

mapY = map([ 1 Ncpus], {}, 0:Ncpus-1 );
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end

close all;

L = 64 % Number of sensors

M= 8%Number of Modules

N =8 %Number of sensors in linear array

d= 1;% distance between sensors

lambda =2*d;% wavelength

phi_0= 1;%Initial Amplitude of signal

NumberOfPoints = 256;

B=-1:2/(NumberOfPoints-1):1;

sample_input_matrix_1 = zeros(L,length(B), mapX);

Beam_pattern_1 = zeros(L,length(B),mapY);

U_M = ones(M,1);

I_N = eye(N,N);

I_M = eye(M,M);

i=1;

for m=1:1:length(B);

Bk(1,i) = B(m);%Steering Direction

for k=1:1:L

%Signals from the same Monochromatic plane

sample_input_matrix_1(k,m) = phi_0*(exp(j*2*pi*((k-1))*Bk(1,i)*d/lambda));

end

i = i+1;

end

tic;

Beam_pattern_1= kron(U_M', I_N )*kron(I_M,dftmtx(N) )*sample_input_matrix_1; %Beam pattern of signals from the same plane without noise

elapsedTime = toc;
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disp(['Elapsed time = ',num2str(elapsedTime,'%0.4f'),' sec.']);

%Plotting the beam pattern formed for some of the input vectors, where

%each column of the matrix Beam_pattern is a beam pattern of the

%corresponding input vector

figure

channel=1:1:N;

plot(B,abs(Beam_pattern_1(channel,:)))

title('Kronecker DFT Beam Pattern Formations in pMATLAB');

xlabel('Steering Direction');

ylabel('Magnitude');

grid

pMatlab_Finalize;

realOut=real(Beam_pattern_1);

imagOut=imag(Beam_pattern_1);

save Beam_pattern_real.dat realOut -ascii

save Beam_pattern_image.dat imagOut -ascii

}
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Signal Analysis and Metrics in

MATLAB

%This program conducts a signal analysis between the beamforming data obtained in MATLAB, DSP, Gumstix, pMATLAB

%The third row will be analyzed from each data

clear all;

close all;

L=64;

M=8;

N=8;

B = 256; % Number of points or plane waves received at each sensor

%Obtaining original signal Sio from MATLAB

xreal = load('Beam_pattern_realMATLAB.dat');

ximag = load('Beam_pattern_imageMATLAB.dat');

Sio = xreal+ j*ximag;

Sio = Sio(3,:);

%Obtaining original signal Sid from DSP

xreal = load('Beam_pattern_realDSP.dat');

ximag = load('Beam_pattern_imageDSP.dat');

Sid = xreal+ j*ximag;

Sid = Sid(3,:);

138



Appendix I. Signal Analysis and Metrics in MATLAB 139
%Obtaining original signal Sig from Gumstix

xreal = load('Beam_pattern_realGumstix.dat');

ximag = load('Beam_pattern_imageGumstix.dat');

Sig = xreal+ j*ximag;

Sig = Sig(3,:);

%Obtaining original signal Sip from pMATLAB

xreal = load('Beam_pattern_real_pMATLAB.dat');

ximag = load('Beam_pattern_image_pMATLAB.dat');

Sip = xreal+ j*ximag;

Sip = Sip(3,:);

%Calculating difference between the original, ideal signal obtained in

%MATLAB, with the other platforms

xiz = Sio - Sio;

xd = Sio - Sid;

xg = Sio - Sig;

xp = Sio - Sip;

%Calculating the mean of each signal Sio, Sid, Sig, Sip, and xiz, xd, xg, xp

u_Sio = mean(Sio);

u_Sid = mean(Sid);

u_Sig = mean(Sig);

u_Sip = mean(Sip);

u_xiz = mean(xiz);

u_xd = mean(xd);

u_xg = mean(xg);

u_xp = mean(xp);

%Calculating the variance of each signal Sio, Sid, Sig, Sip, and xiz, xd, xg,

%xp

var_Sio = var(Sio);

var_Sid = var(Sid);
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var_Sig = var(Sig);

var_Sip = var(Sip);

var_xiz = var(xiz);

var_xd = var(xd);

var_xg = var(xg);

var_xp = var(xp);

%Calculating the standard variance of each signal Sio, Sid, Sig, Sip, and xiz, xd,

%xg, xp

std_Sio = std(Sio);

std_Sid = std(Sid);

std_Sig = std(Sig);

std_Sip = std(Sip);

std_xiz = std(xiz);

std_xd = std(xd);

std_xg = std(xg);

std_xp = std(xp);

%Calculating the Energy of Sio, Sid, Sig, Sip, and xiz, xd,

%xg, xp

for b = 1:1:B

En_Sio(1,b) = abs(Sio(1,b))^2;

En_Sid(1,b) = abs(Sid(1,b))^2;

En_Sig(1,b) = abs(Sig(1,b))^2;

En_Sip(1,b) = abs(Sip(1,b))^2;

En_xiz(1,b) = abs(xiz(1,b))^2;

En_xd(1,b) = abs(xd(1,b))^2;

En_xg(1,b) = abs(xg(1,b))^2;

En_xp(1,b) = abs(xp(1,b))^2;

end

En_Sio = sum(En_Sio);
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En_Sid = sum(En_Sid);

En_Sig = sum(En_Sig);

En_Sip = sum(En_Sip);

En_xiz = sum(En_xiz);

En_xd = sum(En_xd);

En_xg = sum(En_xg);

En_xp = sum(En_xp);

%Calculating the Power of Sio, Sid, Sig, Sip, and xiz, xd,

%xg, xp

P_Sio = (1/B)*En_Sio;

P_Sid = (1/B)*En_Sid;

P_Sig = (1/B)*En_Sig;

P_Sip = (1/B)*En_Sip;

P_xiz = (1/B)*En_xiz;

P_xd = (1/B)*En_xd;

P_xg = (1/B)*En_xg;

P_xp = (1/B)*En_xp;
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