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UNIVERSITY OF PUERTO RICO
Abstract
Electrical and Computer Engineering Department

Master of Science

by Abigail Fuentes

This work presents a computational framework for the analysis, design, and development of
discrete Fourier transform (DFT) beamforming techniques for bioacoustics signal processing
applications. DFT beamforming techniques are a form of hierarchical beamforming algorithm
methods which deal with the processing of signals arriving at large aperture array systems.
The processing of the sensored signals is conducted hierarchically in the frequency domain.The
DFT beamforming algoritms consist of determining the direction of arrival (DOA) of plane
waves impinging on a linear sensor array. One of the applications of the sensors is as signal
instrumentation resources for monitoring and surveillance of neo-tropical anurans in the island
of Puerto Rico, in a near real time manner. A plane wave complex signal model is being
utilized to model the incoming signals which are spatially sampled by the array elements and
temporally sampled by the sensor signal acquisition system. The DFT beamforming algorithms
are being formulated using Kronecker products algebra to provide general expressions for the
beamforming operations. The development effort is being conducted using the MATLAB
numeric computation and software visualization package. A parallel programming modeling
environment, named pMATLAB, is being utilized to study the computational performance of
parallel implementation techniques. Preliminary implementation efforts have being conducted
using C language on the TMS320C6713 Digital Signal Processing (DSP) unit from Texas

Instruments.

A wireless sensor array processing (SAP) system has also been designed at the Automated
Information Processing (AIP) Laboratory, at the University of Puerto Rico, Mayaguez Campus,
with the purpose of providing further testing of the beamforming techniques developed. Such
SAP testbed uses Linux-based embedded small computers , called Gumstix, as sensor signal
processing nodes (SSP), with the capacity to acquire, store, and process acoustic data. A
principal node, called the Master Sensor Node (MSN) receives the processed data from the
SSP nodes, making the data available via wireless connection to the Internet. This type of
network system will serve as an ideal tool for biologists to monitor, locate, and track species
of interests in the surrounding environments, without interfering with the ecological system,

and avoiding frequent field visits.
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UNIVERSIDAD DE PUERTO RICO
Resumen
Departamento de Ingenieria Eléctrica y Computadoras

Maestria en Ciencias

por Abigail Fuentes

Técnicas de DFT beamforming o formacién de haces, constituyen una forma jerarquica de
los métodos de los algoritmos de beamforming, los cuales trabajan con el procesamiento de
sefales recibidas por sistemas de arreglo linear de sensores, a grandes abertura. Una de las ap-
plicaciones de los sensores es ser usados como recursos para la instrumentacién de senales con
el propdsito de monitorear y vigilar anuros neo-trépicos en la isla de Puerto Rico, en tiempo
casi real. Un plano de onda compleja de sefales ha sido utilizado para modelar las sefales
incidentes a un arreglo linear de sensores, las cuales han sido muestradas espacialmente por los
elementos del arreglo, y temporalmente muestradas por el sistema de adquisicién de sefales
acusticas. Los algoritmos de DFT beamforming han sido formulados usando algebra de los
productos Kronecker, con el propdsito de proveer expresiones generales para las operaciones de
beamforming. El esfuerzo de desarrollo ha sido realizado usando un software de visualizacidn
y computaciéon nimerica, llamado MATLAB. Un ambiente de modelo en paralelo, llamado
PMATLAB, ha sido utilizado para estudiar el rendimiento computacional de técnicas de im-
plementacién en paralelo. Trabajos preliminares de implementacién han sido realizado, usando
lenguaje C en la tarjeta de procesamiento de sefiales digitales (DSP) TMS320C6713 de Texas

Instruments.

Un sistema de procesamiento de arreglo de sensores (SAP), inaldmbrico ha sido disefiado en
el laboratorio de Procesamiento de Informacién Automatizada (AIP), en la Universidad de
Puerto Rico, Recinto de Mayaguez, con el propdsito de proveer mds pruebas de las técnicas
desarrolladas de beamforming. Pequenas computadoras, llamadas Gumstix, basadas en el
sistema operativo de Linux, son utilizadas como nodos de sensores para el procesamiento de
sefiales (SSP), con la capacidad de adquirir, almacenar, y procesar data acustica. Un nodo
principal, llamado el Master Sensor Node(MSN) recibe data procesada de los nodos SSP,
haciendo que la misma esté disponible mediante conexion inalambrica al Internet. Este tipo de
sistema de red servira como una herramienta ideal para bidlogos, con el propdsito de monitorear,
localizar, y registrar las especies de interés, en el ambiente cercano, sin tener que interferir con

el sistema ecoldgico, y asi también evitar visitas frecuentes al campo.
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Chapter 1

Introduction

Monitoring anurans and their associated environment has become vital in a world of declining
biodiversity and ecological uncertainty. The mystery of declining amphibian populations is
particularly worrisome. Scientists agree that biodiversity in general worldwide is declining, with
amphibians far more threatened than any other taxa (32.5%) of amphibians are threatened as
compared to 23% of mammals and 12% of birds). Alarms were first raised in 1989 at the First
World Congress in Herpetology when scientists started piecing together studies of declining
populations. Further studies corroborate data with land use change, overharvesting, and the
introduction of exotic species most often singled out as the main issues affecting amphibian loss.
However, more recently the spread of infectious disease, toxins, and climate change, have been
the key discussions at scientific meetings. Amphibians are indicators of environmental health
and their declining populations are indicative of unhealthy ecosystems that ultimately affect
human interests. To measure changes in biodiversity and their environmental contributions
we must be able to monitor these changes and their effects. Traditionally, little baseline
information was available from which to determine population declines in anurans. Wildlife
monitoring was challenged by issues such as access to remote sites, methods to detect difficult
species, and limited human resources to deal with labor intensive tasks. Improved monitoring
and data collection systems have expanded the library of data available to compare population
changes and processes. Thus, concrete advances in environmental surveillance monitoring

become essential in our continued understanding of these processes.

Ideal monitoring programs collect and analyze audio data, couple this information with collected
environmental parameters, and transfer the complete package to the relevant decision making
agencies. Monitoring a federally threatened endemic bufonid (Peltophryne lemur) on the island
of Puerto Rico has been challenged by the occurrence of its explosive but infrequent breeding
activity during extreme rain events [1](see Figure 1.1). Further challenging its survival is

breeding competition from the infamous marine toad, Bufo marinus.
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Wireless sensor network systems have shown to be an effective method for monitoring, collect-
ing, and analyzing data, without interfering or causing a negative impact to the surrounding
environments. Much research has been conducted in determining the ideal characteristics that

such a system should possess in order to deliver a good performance.

Figure 1.1: Puerto Rican Crested Toad Bufo lemur, courtesy of Gail Susana Ross

1.1 Problem Formulation

The WALSAIP (Wide Area Large Scale Automated Information Processing) project, a program
sponsored by the National Science Foundation of the United States and coordinated by the
Institute for Computing and Informatics Studies of the University of Puerto Rico at Mayaguez,
has been developing and field testing an array processing system (SAP) framework to contin-
uously monitor bio-acoustic signals indicative of breeding activity of endemic and introduced
anurans at key points in Puerto Rico. The SAP framework allows for the use of signal pro-
cessing techniques such as acoustic beamforming for source location and adaptive direction of
arrival (DOA) determination as well as novel time-frequency signal analysis techniques such
as the cyclic short-time Fourier transform, the modified ambiguity function, and the modified
Wigner distribution for bio-acoustics sound characterization. The SAP framework infrastruc-
ture is being developed to foster the study of advanced signal-based information processing

tasks to enhance anuran bio-acoustics understanding.

There is a need to design and implement a network sensor system, which serves as a tool
for biologists to locate, trace, and monitor different species, in a non-intrusive way, without

changing the surrounding environment. Important issues, regarding network sensor systems,
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include communication capacity, sensor spacing, number of sensors, time synchronization,
and array geometry. Much research has also been conducted for determining an effective
acoustics beamforming technique for obtaining accurate estimates of source location through

the computation of direction of arrival (DOA).

Current acoustic algorithms are designed for single source location estimation. Such algorithms
reveal degradation in robustness and performance for estimating DOA when multiple sources
are present in the environment. Also, such algorithms commonly assume that the source signals
are located near the sensory, and are characterized to be narrowband signals. This represents a
challenge for acoustics analysis, since such signals are characterized to be wideband signals, and
may originate far from the sensor array. Also important factors such as noise and reverberance

can further more affect the performance of such algorithms [2].

An important consideration of this work is the mapping problem of the computational methods
to distributed computational structures, such as a parallel computational structure. Previously
developed work presented in [3] consider the use of Discrete Fourier Transform (DFT) compu-
tational methods that center on the use of the computational properties of such transform and
some properties of the Kronecker products algebra (KPA) to formulate desired beamforming
operations, when the number of sensors in a linear array is equal to the number of incidence
angles that can be detected. Hence there is a further need to extend this work in order to apply
DFT Kronecker Multi-beamforming in a parallel computational environment and evaluate its

performance.

1.2 Proposed Solution

A sensor array processing (SAP) testbed has been developed at the AIP Laboratory that is
utilized to test these computational methods in the field since bioacoustics signal analysis deals,
in general, with the study of sound signals emitted by animals and humans. The framework
behind the SAP testbed consists of a novel solar-powered, wireless-based, distributed signal
processing system infrastructure which may be deployed in the field and accessed through
cyberspace with relative ease. The system proposed is stand alone,and allows for a setup
in remote settings, operation in inclement weather conditions, and data transfers over the

internet, without the need for frequent field visits.

The basic SAP system infrastructure has three essential elements for determining the DOA of

incoming signals (see Figure 1.2):

e Set of sensor signal processing (SSP) nodes
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e Wireless routing mechanism

e Linux-based high-performance embedded computing unit

Internet

Storage device
=

Basic Interface
Module

Master
Sensor
Node

7. (7. (7

Basic and/or Advanced Sensor Nodes

Figure 1.2: SAP System Infrastructure

Acoustic signals are collected and processed by sensor signal processing nodes (SSP). Once the
acoustic data is acquired, sampled, and processed by the SSP nodes, such data and associated
metadata are sent to the principal node, known as the master sensor node (MSN), via a wireless
routing mechanism. The MSN stores information in a database, which can then be transferred

to a server to be accessed by interested parties.

Small low-cost embedded Linux-based computers, known as Gumstix Verdex, are used as the
SSP, due to the following capacities that they possess: wireless communication, data acquire-
ment and storage, data processing, and low power consumption. The equipment specifications
and operating system used for the SAP system developed at the AIP are presented as follows

(see Figure 1.3:

e MSN Intel Core 2 Duo T7200 Merom 2.0GHz 4M shared L2 Cache Socket M 34W

Dual-Core Processor
e Gumstix Verdex as the SSP nodes

— Number of SSP nodes - 5
— Sampling Frequency of each SSP node - 44 KHz
— Speed 600MHz
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— Memory: 128MB RAM, 32MB Flash

e Operating System - Linux Fedora 8

Sensor Array
Processing System

&

I."
| Interned

) .
= USB wirgless
- adapler

M5H Fal
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#
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Pl " v s “u
g §m y £ mi & m \ 5 o,
gumslixs

Figure 1.3: SAP System developed at AIP

DFT beamforming techniques are further extended, through the usage of Kronecker products
algebra (KPA) in order to address the mapping of such techniques onto parallel structures. The
DFT beamforming algorithms are initially implemented, using the MATLAB numeric compu-
tation and software visualization package, as an ideal tool for developing, testing, and opti-
mizing signal processing applications. Once the DFT beamforming algorithms are tested and
optimized using MATLAB, the DFT beamforming techniques are implemented on the high
performance, floating-point TMS320C6713 digital signal processing(DSP) board, from Texas
Instruments. These algorithms are also designed to be executed by a Gumstix. Parallel im-
plementation and performance analysis is conducted, using a parallel programming modeling
environment, named pMATLAB. Such tool is used to further address the mapping problem of
computational methods to distributed parallel computational structures. The DFT beaforming

operation performance is compared among three platforms: DSP, Gumstix, and pMATLAB.
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1.3 Thesis Research Contributions

The main contributions of this research are presented as follows:

e The first and principal contribution made by this work is the development of computa-
tional methods for performing bioacoustics beamforming algorithms with the objective
of estimating direction of arrival (DOA) from signals arriving at a set of acoustic sen-
sors. The computational methods center on the use of the discrete Fourier transform
and Kronecker products to formulate the desired beamforming operations on a parallel

computational structure.

e A SAP testbed has been developed at the AIP Laboratory with the purpose of testing
these computational methods in the field and serving as an ideal tool for biologist to
monitor, collect, and analyze data in a passive way, and retrieve processed data via

wireless communication, thus avoiding the necessity of frequent visits to the field.

1.4 Thesis Organization

The remaining of this work is presented as follows: Chapter 2 describes the background work
and previous research conducted, related to the following: design, implementation, and ideal
characteristics for distributed sensor array networks, the advantages and disadvantages of cur-
rent beamforming algorithms developed for obtaining source location estimates, and the novel
approach of applying DFT Kronecker beamforming operations, suitable for parallel computa-
tional structures. Chapter 3 provides a descriptive theoretical background, defining important
concepts such as acoustics signal characterization, basic beamforming operation, and DFT
multi-beamforming operation. Chapter 4 is completely dedicated to describing in detail the
Kronecker products algebra, and how it can be integrated into the DFT beamforming tech-
niques, in order to further reduce the computational hardware complexity involved for sensor
array systems consisting of a large number of sensors. Chapter 5 presents the parallel pro-
gramming modeling environment, named pMATLAB, which has been utilized to study the
computational performance of parallel implementation techniques. Chapter 6 describes the
implementation of the DFT beamforming algorithms on the DSP unit TMS320C6713, from
Texas Instruments. Experimental results are presented and explained in details in chapter 7,

culminating with conclusions and future work in chapter 8.



Chapter 2

Background and Related Work

This chapters survey previous work related to the area of acoustic beamforming and the types of
algorithms developed with the main goal of obtaining accurate source localization estimations.

Beamforming by means of wireless distributed acoustic array networks is also discussed.

2.1 Bioacoustics Signal Analysis

Bioacoustics signal analysis works with extracting important information, such as source loca-
tion and propagation medium, from sound signals emitted by animals, including humans. We
are interested in using bioacoustics signal analysis for monitoring the anuran family. Such family
includes species of frogs and toads. The study of amphibians has gained a great importance for
distinct biological groups and research, where monitoring and tracking changes in population,

especially endangered species, has become a top main concern.

2.2 Acoustics Signal Analysis

Acoustics can be defined as the science of sound, which studies its production, transmission,
and effects. Such analysis deals with the properties of a sound waveform, such as the amplitude

So, fundamental frequency f. , its duration t, and other properties of its frequency spectrum.

2.3 Signal and Sensor Array Model

A signal model has been formulated in [4]. Through this formulation, the signal detected at

each sensor is modeled in terms of the relative time delay between the p;, sensor and the

7
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array centroid ro. In this case, the centroid of each array is used as reference point, in order

to model a signal that is received at each sensor p in the array:

M
soln] = > SMn—t8P]+ wyln], (2.1)

m=1

where x,[n] denotes the signal detected at sensor p, S(™ the mt" source signal, w,[n] the white
Gaussian noise, té’,f) the relative time delay between the pt sensor and the array centroid r,
and tém), t[()m) the propagation time from source S(M) to the centroid and sensor p respectively,

at time instance n. The relative time delay is defined as:
£ = ™ (™), (2.2)

This signal model assumes that each of the M sources is located in the far-field. In the far-
field case as the distance between the source and array becomes larger, the signal detected
at the sensors becomes planar and parallel (see Figure 2.1). Effective microphone spacing
and acoustic orientation calibration must be determined in order to make the beamforming of
wideband acoustic signals more robust. Using effective microphone spacing helps take into
consideration unavoidable ambient factors such as noise, interference, and multipath effects.

A sensor Ao

source s o ’-‘-'n.-.f"o |

\

..*" ?51 Y H_u I'i {fbp:'

5\, "I Centroid
/ T, |'\‘c 2 Ve |
sensor Ap .

= lrg

£

?> Reference direction

Figure 2.1: Far Field Geometry and Notation

A second model has also been proposed in [5] to include reverberant effects (signal reflections).
In order to accomplish this, the impulse response function of each sensor must be blindly
identified. The impulse responses model the reverberant effects. The disadvantage is that for
a small number of microphones, this model can fail, due to the probability that the transfer
functions can share common zeros. The number of sensors would need to be increased in order

to have a better model of the reverberant effects.

For the model presented in Figure 2.1, microphone spacing has been seen to affect the
beamforming performance. As found in literature, effective microphone spacing and acous-

tic orientation calibration must be determined in order to make the beamforming of wideband
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acoustic signals more robust. Using effective microphone spacing helps take into consideration
unavoidable ambient factors such as noise, interference, and multipath effects. It has been
demonstrated that large microphone spacing results in beam patterns with side lobes. When
exposed to noise, interference, and multipath effects, the side lobs can become taller than
the main lobe. Hence this can cause a significant error in estimating DOAs. The microphone

spacing guide line d < X/2 has been shown to provide better DOA estimates.

Array shape and number of sensors in each array was one of the main features discussed, for
the array model proposed [6]. By incrementing the number of sensors from one to four in each
array, it was determined that arranging four square arrays, each with four sensors, provided

better results in localizing multiple sources.

Traditional, centralized systems, have found to possess the disadvantage of having a small
coverage of region under observation, since a small number of sensors are placed near the
central processing node. It has been demonstrated that distributed local processing, instead
of central processing, is more energy efficient in the sense that subarrays conduct the local

processing of DOA estimation, source identification, and detection [7].

2.4 Sophisticated Algorithms

The need for source detection, location, and tracking has become a great interest for a variety
of applications: military, industrial, speech analysis, bioacoustics analysis, etc. Such appli-
cations share a common objective: to design low-cost microsensor arrays which can form a
distributed network, and provide the direction of arrival (DOA) estimates for source location.
It has become revelant the interest of designing and implementing low-cost microsensor ar-
rays, composed of sensor signal processing nodes (SSP) with the following capacities: wireless
communication, signal acquisition, storage, and processing operations. In addition, extensive
search for obtaining accurate source localization estimates has led to the development of two
classes of algorithms: i) TDE (Time Delay Estimation) algorithms, which provide a closed-
form solution and ii) AML (Approximate Maximum Likelihood) based method for parametric
DOA estimations.

It has been proposed that AML, despite its complexity, provides better estimation accuracy
[2]. In addition, when considering multiple-source wideband signals, AML has been found to
be a more attractive method, by processing the data in frequency domain [8]. This is due
to the fact that in the frequency domain, a wideband signal's spectrum can be taken as a
series of narrowband spectrums for each frequency bin. In addition, more reliable noise model

is provided in the frequency-domain than in the time domain model. The main disadvantage
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of the TDE-based algorithms found in literature is that, even though they work well for both

narrowband and wideband signals, these algorithms usually consider a single source case.

Algorithms have also been developed in order to estimate adaptable filter coefficients or weights
of a blind beamformer. Blind beamforming operation is applied when information regarding the
sensors is unknown and the steering directions and beamforming weights need to be estimated.
A General Eigenvalue (GEV) based using a stochastic gradient ascent approach has been
proposed in order to estimate and adapt the filter coefficients or weights of a blind beamformer
[9], for each frequency bin. In order to do this, the power spectral densities of the signal
detected at the microphones and the power spectral density of the noise in speech pauses
are estimated. It has been found that GEV converges faster than other Stochastic Gradient
(SG) algorithms and produces less variation in the SNR gain [9]. GEV converges slower than
Recursive Least Squares (R-LS), focusing more computational load during the presence of

desired signal, making it more robust [9] .

Adaptive array processing has also been implemented with the constraint that the desired
spatial output response remains approximately constant for each frequency bin [10]. All primary
filters can be derived from a single set of reference coefficient filters that produce the desired
frequency response obtained at a certain reference location and sampling period T [11]. There
are two methods for achieving this: multirate and single rate methods. It was shown that the

multirate rate, at a higher sample frequency, resulted in fewer filter coefficients [12].

In ideal condition scenario in which information regarding to the sensor array is known, it has
been shown in [3], that the Discrete Fourier Transform (DFT) can be applied in the beamform-
ing operation. Using DFT beamforming has the advantage of representing the beamforming
operation as a set of M Discrete Fourier Transforms DFT modules, where N is the size of each

segment and L denotes the number of sensors, and should be a power of 2:
L = M=xN. (2.3)
In this way, the beamforming operation can be adapted and scaled, according to the hardware

architecture, by dividing the operation in M modules. Such operation is known as the DFT

Kronecker products.

2.5 Structural Beamforming Mapping and Architecture

It has been seen in literature that the preferred AML algorithm for estimating source location
generally maps to the blind beamforming situation. Such case represents a non-ideal condi-

tion, since information regarding to the sensor array is unknown. On the other hand, when
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information of the sensor array is known, such as the microphone spacing and sensor position,
the problem no longer maps to a blind beamforming operation. Instead, this situation maps to
an ideal condition, where the information related to the sensor array can be used in order to

obtain source location estimates. In this case, DFT beamforming algorithm can be applied.

Such hardware architectures in which the beamforming operation (AML and DFT) can be
implemented include multicore. In the case of DFT, the Kronecker products can be easily used
in order to divide the beamforming operation among M processors present in the multicore
system. For example, it is shown how Kronecker formulations can help to formulate fast
Fourier transform algorithms, and other DSP operations, providing efficient implementation
on parallel and vector processing architectures [13]. In addition, it is demonstrated how the
DFT computation of a L-point discrete signal x(n) can be expressed in a Kronecker product
form, through sparse matrices of the same dimension, when L is a composite number of the

form L = RS, by rearranging the input discrete signal as a two-dimensional array [14].

Hence the DFT beamforming can be carried out for each module in parallel form, especially
when the number of sensors is large, and Kronecker products can help provide an efficient

implementation, according to the appropiate computer architecture.



Chapter 3

Theoretical Framework

3.1 Signal Characterization

A model for a plane wave signal [3] which arrives at a linear sensor array has the following form:

s(t,r) = spet/@rfet=tkr)) (3.1)
In the above model, s(t, r) is a continuous signal, where sg denotes the amplitude of the signal,
fc represents the carrier frequency, t is the time instances, k denotes the wave vector, and r

is known as the spatial vector. The spatial vector r is defined by the following coordinates, in

a three-dimensional coordinate system:
r = (rc ry.rz) (3.2)

In the same manner, the wave vector k is defined by the following coordinates, in a three-

dimensional coordinate system:
k = (kg ky, kz) (3.3)

The term (k, r) denotes the dot product between the wave vector k and the spatial vector r,

which is defined as follows:
(k,r) = ke -re+ky-r,+ ks -1y (3.4)

Substituting the dot product expressed in the above equation, into the signal model expressed

in (3.1), the following signal model, in terms of the coordinates of the spatial vector r, is

12
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derived:
S(t, 1y, 1y, rz) = sgeICmet=lhencthyrythzrz)) (3.5)

The following figure presents a linear array of N sensors, where d represents the distance
between each pair of sensors, Dy is the total distance of the linear array, measuring from the

first sensor denoted Ag to the last sensor in the linear array Ay_1. As shown in Figure 3.1, ry

Linear Sensor Array Layout

<Y

A
Nd = )0”

Figure 3.1: Linear Sensor Array Model

denotes the horizontal direction with respect to each sensor in the linear array, also known as
x. The vertical direction, perpendicular to each sensor in the linear array, is represented by ry,
which can also be denoted as y. In a three-dimensional Euclidean space, with a right-handed
coordinate system, the operation ry X r, denotes a cross-product operation, which defines the
vector rz, also known as z, perpendicular to the plane formed by ry and and r,. The direction of
r, given by the right-hand rule, corresponds to the vector pointing away from the intersection
of ry and r,, as shown in Figure 3.2, as r, closes towards the vector r,. By observing Figure
3.1 and Figure 3.2, the only spatial coordinate of the r that changes is ry, with respect to
each sensor, as the wave plane moves from one sensor to the next, maintaining r, and r;
constant. Since the signal model (t,r) is a function of the changes in the spatial vector r,
besides the time instance t, such model can be reduced to considering only the coordinate ry
of the spatial vector r. Hence the dot product (k, r) is reduced to ky - ry, and the signal model

may be re-expressed as follows:

S(t,rx) — Soe+j(27rfct_(kxvrx)), (36)
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Figure 3.2: Spatial Vector Coordinates

The value ky-ry of the dot product can be simplified to k-x, resulting in the following expression

for the signal model s(t,x), now in terms of the time instance t and the spatial coordinate x:

s(t,x) = Soe+j(27rfct—k-x)_ (3.7)

The term 27 in the signal mode s(t,x) can be factored out as follows:

s(t,x) = speti2m(fet=57), (3.8)

The factor % may also be expressed as % where A corresponds to the wavelength of the

incoming source signal, with the velocity of light being ¢ = f. - X\. Therefore the signal model

may be reformulated as follows:

s(t,x) = Soe+j27r(fctf§)_ (3.9)

It is assumed that the plane wave s(t,x) arrives at the linear sensor array at an incidence
angle 6y with respect to the boresight. The boresight is defined as the vertical axis,which
is normal to each sensor positioned in the linear array along the horizontal axis (see Figure
3.3). In order to incorporate the incidence angle 6y into the signal model, s(t,x) needs to be
reformulated to take into consideration this important factor. Figure 3.4 presents a detailed
diagram concerning how the incidence angle is integrated into the signal model. According
to Figure 3.4, the angle of interest is 8y, which is measured between the boresight axis and
the wave vector k originating from the plane wave. It can be shown that a relationship exists

between the incidence angle 8y and the angle «y, presented in Figure 3.4. Since the boresight
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Figure 3.3: Basic Linear Beamforming Operation

Incident Angle Relationship
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Figure 3.4: Incident Angle Relationship

axis forms a 90° angle, which corresponds to % in radians, with respect to each sensor in the
array, the angle v may be expressed as follows:

7= (5-) (3.10)

By observing carefully Figure 3.4, a right triangle is formed between the wave vector k, the
plane wave, and the distance d between a pair of sensors. The right triangle (5 in radians)

is formed between the wave vector k and the plane wave. The distance |k| = x denotes the
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delay it takes the plane wave to reach each sensor in the linear array. Hence, it is desired to
determine this value, using the relationship established in the previous expression of y in terms
of the incidence angle 6y. Using trigonometry properties and taking the distance d as the

hypotenuse of the right triangle, the following relationship is established:

cos(y) = —. (3.11)

Q[ X

By substituting v = (g — 90) in the above expression, the following is obtained:
cos (g — 00) = —. (3.12)
By applying trigonometry properties, the following expression is derived:
cos (g — 90> = sin(6y) = % (3.13)

Since it is desired to determine the distance |k| = x, representing the propagation delay, the
above expression is solved for x, arriving at d - sin(6g). By substituting x in the signal model
expressed in equation 3.8, the subsequent signal model formulation is obtained, where the

incidence angle 6y is incorporated to the signal model:
S(t,X) — 506+J2w(ﬂt—%shﬂ9w), (3_14)

recalling that d represents the spacing between each pair of sensors in the linear array.

The position of a sensor A, in the linear array may be specified in the signal model, in terms
of its distance from the first sensor Ag. This is achieved by substituting d with —nd, where
n=0,1..N—1, N being the total number of sensors in the linear array. Hence the new signal
may be spatially sampled in terms of each sensor A, in the array, where —nd represents the
distance of the sensor A, with respect to the first sensor Ag. The new signal model s(t, x) is

presented as follows:
s(t,x) = soet2m(fet+500) — g eri2mfet | oti2m(6o) (3.15)
where By corresponds to the steering direction of the input signal, and is defined as follows:

Bo = sin(B). —- <6< . (3.16)

2mfct

The term spet’ may be represented as a function vo(t) = soe™27t, thus s(t,x) =

; nd . . . . . .
vo(t)e+f2”(7ﬁ°). Considering a single time instance t = tg, the following formulation for the
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signal model is derived:
s(to, nd) = vo(to)e™2m(580)|,_, (3.17)

The signal model s(tg, nd) now represents the signal captured at the nt" sensor. In addition,
this new signal model now integrates the propagation delay ndsin(6p), which represents the
time it takes for the source signal to propagate from the first sensor Agp, which is considered
as a reference sensor or point in the linear array, to the nt” sensor A, in the array. Hence, it
can be observed from the previous signal model, that it is now a changing function of n, and
remains constant for each time instance t. Also, the carrier frequency f., does not change
within the same wave plane from which the signal originates. The term e/27(fct) therefore
does not represent an important contribution when modeling the input signal in terms of the
position of each sensor in the linear array. Eliminating this term from the signal model, we

arrive at the final derivation of a discrete signal model formulation:
$n(Bo) = do- 2™ (XB) ne 7y, (3.18)

where Zy represents the set of natural numbers 0,1,2...N—1, and ¢g represents the amplitude
of the new discrete signal model ¢,(Bo). Spatial samples from all of linear array sensors can

be expressed as an input column vector as follows:

® (Bo) = [¢0(Bo). ¢1(Bo). -... dn—1(Bo)]” . (3.19)

where ® (Bp) is the spatially sample arriving plane wave coming from the steering direction Gp.

As expected for a linearly arranged sensor grid, input signals can be detected at incident angles
between —90° and and 90°, corresponding to _7” <6y < g in radians. Hence the resulting

steering direction lies in range between -1 and 1.

3.2 Basic Beamforming Operation

In the time domain, a beamforming operation is performed using the time delay operation in
order to obtain the coherent sum N - ¢g from all sensor signals. In this work, beamforming
is treated from the point of view of a linear transformation over a finite discrete input signal.
Figure 3.5 carefully illustrates with explicit details the basic components of a general, adaptive

beamformer processor, as described in [15]:

As explained in the previous section, the first component s(t,r) represents the incoming signal,

originating from a plane wave, arriving at each sensor of the array, at an incidence angle 6,



Chapter 3. Theoretical Framework 18

Plane wave front.

14 g e.j[zq,r,.- k7))
Dy

=== ==

Narrowband signal
(v -I)dsm(ﬂ.,'} 2dsin(g,) dsin(g,) /"
v At . s s : ; Az :; A1 : Ao
d | d
Signal Signal Signal i
Conditioning Conditioning Conditioning it
SM1 S2 2 >

— 2 ng} . Q4 Q7
)

y=xs

Figure 3.5. Basic Adaptive Beamformer Processor

with respect to the boresight. As it can be observed from the diagram presented in Figure
3.5.ndsin(6y) represents, for n=0,1, ..., N—1, the propagation delay or the time it takes for

the source signal s to propagate from the first sensor Ag to the nth sensor A,,.

The second component of the beamformer processor is the linear sensor array itself, composed
of N sensors, ranging from the first sensor Ag to the last sensor Ay_1, where the sensors are
equally spaced by a distance d. A signal conditioning module is added in order to optimize the

signal received at each sensor for the beamforming operation.

The third component x,, forn =0, 1, ..., N—1, represents the weighting factor, associated with
each receiving channel of the array, in which for this case, each receiving channel corresponds
to a sensor. In this stage of the beamformer processor, the signal captured at each sensor is

multiplied by the corresponding weight x,.

The fourth and final component of the beamformer processor is represented by the sum >,
where the multiplied signal component obtained from each sensor are added together, resulting

in the beam pattern output:
y =X-s (3.20)

where s is a column vector representing the values of the incoming source signal, and x is a

row vector that contains all of the weighting factors, as defined as folllows:

x = [xo, X1, XN-1] (3.21)
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In this work, a beamforming vector is defined as the following row vector:
. . p (N-1)d
B(Bo) = |1, el-2mi6o} of-ion¥ioo} el 2560} | (3.22)

The purpose is to obtain the coherent sum N - ¢g from the following beamforming transfor-
mation operation:

B (Bo) - @ (Bo) = N - ¢o. (3.23)

In general, the beamforming vector is used to steer an input vector ® (By) toward the steering
direction Bp, obtaining as result a beam pattern of a linear array steered to a specific direction.

The product L - ¢g can also be represented as:

L1
B(Bo)- ®(Bo) = D n- et 2™}, (3.24)
n=1

where v = (d/)\)Bp is called the spatial spectrum variable. Hence, when an input signal is
coming from a source, at a steered direction Bp, the beamforming transformation results in

multiplying the signal amplitude ¢g by the number of L sensors in the linear array.

3.3 DFT Multi-Beamforming Technique

When an incoming signal is received by a linear array of sensors, the steering direction, and
thus the DOA of the signal, is unknown. This leads to considering a set of M possible steering
angles from the range _7” < gy < g are considered,resulting in the definition of the multi-

beamforming matrix as follows:

[ B(Bo) | (1 e 2miBe ... g2n5E ]
B(B1) 1 e*ﬂﬂ%ﬁl L e,jQW(L—Al)dﬁl
B(Bm-1) 1 e 2m$Bua ... e 2n529Bn

Such matrix consists of M rows, where M corresponds to the number of steering direction that
the linear array is capable of detecting. Each row corresponds to a beamforming transformation
operation defined for a specific steering direction, and contains L values, L being the number of
sensors in the linear array. This multi-beamforming matrix is then applied to the input signal.
When multiple sources are present, the multi-beamforming matrix is applied to an input matrix,
where each column denotes a single spatially sampled input signal, arriving at a predetermined
steering direction. An example of a single beam pattern formation obtained from a linear

array of 64 sensors can be depicted in Figure 7.3. The main lobe of such pattern formation
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Figure 3.6: Single Beam Pattern Formation

represents the magnitude of the dominant signal, at a maximum value of 64, assuming the
amplitude of the signal to be equal to one. The steering direction associated with the main

lobe is used to determine the corresponding DOA or incidence angle.

The multi-beamforming matrix B becomes the DFT transform matrix when the number of
steering angles M is equal to the number of sensors L in the linear array. A single beamforming

transformation can be redefined as:

(L=1)n

B(B,) = 1,el=2mt} el-jor? ,--e{iﬂw t } ln=01.1-1- (3.26)

Thus, for the multi-beamforming operation, the matrix B can be expressed as follows:

B(0) 101 . 1
B(X 1 W, wk—1
B = (_L) - Tt L . (3.27)
B(LL) 1wkt o e

—j2m . . . . .
where W[ = e(=77)*1 is known as the twiddle factor. Hence the resulting beamforming matrix

becomes the L x L DFT matrix, also known as the F; matrix.



Chapter 4

DFT Kronecker Algorithms

4.1 Introduction to Kronecker Products ande Fast Fourier Trans-

forms

The Kronecker product is a very useful operation, based on the algebra of Kronecker products,
which serves as a mathematical language for modeling, designing, analyzing, implementing,
and modifyinfg the computation of the DFT [14]. This operation can be used to formulate
the fast Fourier transform (FFT) algorithms. Such algorithms have been shown to be efficient
for computing the DFT. As shown previously, in chapter 3, when the number of sensors L is
equal to the number of steering angles, the beamforming matrix B results to be the L x L DFT
matrix, also known as the F; matrix. The FFT, on the otherhand, represents a factorization
of this DFT matrix, into M factors or modules, which can be applied to a discrete input
vector, dividing it into M modules as well. For the beamforming operation, the input vector
corresponds to the spatially sampled input vector, with respect to the sensors in the linear array.

This will be explained in further details throughout the remaining sections of this chapter.

An important issue or concern arises as the number of points (for the beamforming operation,
this would be the number of sensors) L or length defined for the DFT increases significantly,
causing the computational effort and procedure to become tedious, causing a large usage
of computational resources. However, this can be solved by using Kronecker products in
combination with the FFT algorithms. The advantage of this is that by factorizing the DFT
(beamforming) matrix into M factors or modules, each of length ﬁ the computational process
and effort is simplified. This in turn, simplifies in a more concise and clear manner, the analysis

and implementation of the DFT matrix.

21
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4.2 The Fast Fourier Transform

As stated in the previous section, the FFT has been shown to be an effective algorithm for
computing the DFT matrix, in a factorized form [14]. Here, the factorization of the DFT

matrix using FFT is carefully illustrated in detail.

For an arbitrary discrete signal x(n), of finite-length L, the DFT is defined as follows:

L—-1 .
X(k) = Y x(melZT) k= 0,1, L~ 1j=v~-1, (4.1)

n=0

In order to arrive at the definition for the DFT of an arbitrary discrete signal x(n), such
formulation is derived from the discrete-time Fourier transform (DTFT), or simply known as
the Fourier transform of a discrete signal x(n). The DTFT of a discrete signal x(n) is denoted

as X(e¥) or X(w), where w represents the real frequency variable, and is defined as follows:

oo

X(e”) = X(w) = Y x(n)e". (4.2)
n=—00

As demonstrated by the DTFT formulation, the discrete signal x(n) is considered to be of
infinite length. However, for the beamforming operation, finite-length sampled input signals of
length L are considered. For this case, only L values of X(w), which are also called frequency
samples, can be used to determine or define x(n) and X(w). This is done by uniformingly
sampling X(w) at L points w = wx, k = 0,1,...,L — 1. Hence, the DFT is derived from the
DTFT, as follows:

L—1 L—1 _
X(K) = X(@h)y =z = D x(m)es” = 37 x(me ) (4.3)
n=0 n=0

In addition to the formulation defined for the DFT of a discrete signal x(n), this transform
can also be expressed in matrix form. This is achieved by expanding the summation operation
given in (4.1) as X = F; x, where F; isa L x L DFT matrix, defined as:

—j2r
Fo = [WLkn] lkn=0,1...-1, WL = e(717), (4.4)

and the vectors X and x are defined as:

X(0) x(0)

X(1) x(1) (4.5)

| X(L-1) | | x(L—1) |
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The signals x(n) and X(k) are written in column vector form, as x and X, respectively, where
the values or entries are in natural order. The indexation for both x(n) and X(k) begins at
the vlaue 0 and ends at L — 1, for both n and k variables. Thus, the matrix F; is formulated

by defining each row in terms of k, and defining each column in terms of n.

There is a property which can be applied in the formulation for the DFT matrix, known as the

additive modulo L (p),, which represents the remainder of p after being divided by L:

_r(P
) = R(7). (4.6)
where R denotes the remainder of the division 7. If p is less than L, then (p), is equal to
p. Also if p is equal to L, then (p), is equal to 0. For g defined as any integer in the set

Zt=0,1,2..., the following equation can also be established:

(4.7)

(p+qL), = R(p—i—qL).

L

The remainder R of the fraction % can be further expressed as:

R<p+LqL> - R(’Z)+R<C’LL>. (4.8)

Careful observation in the above expression shows that the second term in the right-hand

expression R(%) results in a remainder of 0, since the numerator gL is a multiple of the
denominator L; that is, gL is divisible by L, resulting in a remainder of 0. Hence, the following

is obtained:

(p+aL), = (p).- (4.9)
For example, (—1), and (9),can be respectively expressed as follows:

(~1)7 = (~1+7); = (6); = 6. (4.10)

(9), = 1. (4.11)

The matrix F; can be further simplified when applying the additive modulo L property to each

element of the matrix:

FL = [WL(ML} lk.n=0,1..L.—1- (4.12)
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4.2.1 Example Formulation of DFT operation, for length L

The DFT operation for L = 4 can be expressed through the following summation operation,
in terms of the variable n:
3
X(k) =) x(mWE" = x(0) + x(L)W + x(2QWZ* + x(3)W;*. (4.13)
n=0
By further evaluating the expression defined for X (k) for each value of kK = 0,1,2,3, the

following formulations are derived:

X(0) = x(nWF" = x(0) 4+ x(1) + x(2) + x(3); (4.14)
X(1) = x(0) + x(1)W} + x(2QJW2 + x(3)W,; (4.15)
X(2) = x(0) + x(1)W2 + x(2)W,} + x(3)Wy; (4.16)
X(3) = x(0) + x(1)W3 4+ x(2)W? + x(3)W,; (4.17)

Hence, the DFT operation can be expressed in the matrix-vector form, X = F4x,as follows:

xo] [1 1 1 1 ][ x0]

X(1) | |1 We W@ owp x(1) (4.18)

X(2) 1 w2 wg owg x(2) '

X(3) 1w wg wp x(3)

where the DFT matrix F4 is defined as:
(101 1 1]
1 W, w2 wd
Fr = o (4.19)

1LoWE wWe WP

By applying the additive modulo L property for L = 4, the matrix F4 can be further simplified.
For example, considering the element W2*3 = W{ in row k = 2 and column n = 3, when

applying the additive modulo 4 property, we obtain W ®* = W2. Hence the DFT matrix F4
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may be finally expressed as:

(101 1 1]
1 W, W2 W3

Fs = oo (4.20)
1 W2 W2 W

The DFT operation can be finally expressed in the simplified matrix-vector form, X = F4x,as

follows:
xo)] 1 1 1 1 ][x0]
X(1 T W, Wz wg 1
(1) _ 4 4 4 x(1) (4.21)
X(2) 1T w2 1 owp? x(2)
X(3) 1T W2 W2 W, x(3)

4.3 Kronecker Product Algebra Definition

As mentioned previously, the Kronecker product is a very useful operation, and it is commonly
used as a tool to model unitary and linear transforms, in particular, the DFT. In this section, the
basic Kronecker product of two matrices is defined. In addition, some basic properties of the
Kronecker product operation are described, such as for vector processing and parallel processing
operations. The DFT matrix is further described as a composition of sparse matrices, where
the Kronecker product is used to express some of them. The advantage of having these sparse
matrices as factors which decompose the DFT matrix F;, is that efficient implementations

can be obtained on various computational architectures.

The Kronecker product operation uses the notation ®. Considering a matrix A, of size R X

R,and a matrix B, of size S x S, the Kronecker product operation A® B is defined as follows:
C =A®B = [ayBl—01,.r 1 (4.22)

producing a new matrix C of size RS x RS. It is important to highlight that the definition of

the Kronecker product can be generally applied to matrices of any dimensions.

Let A and B be square matrices of size 3 x 3, which are defined as follows:

oo do1 Ao boo  bo1r b2
A= ap au a2 |.B=| b b1 bio |- (4.23)

axp a1 an boo  bo1 b2
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When applying the Kronecker product operation A ® B, the matrix C of size 9x9 is produced

as follows:

aB ap1B amnB
C =A®B = [aBlk—01,.,r~1 = | a0B anB anB |. (4.24)

a0B axnB a»B

The matrix C can also be expressed as:

C=A®B = [akBlxj—01..r 1 (4.25)

aooboo  A@cobo1 A@cobo2 Ao1boo Ao1boi  do1bo2  do2boo  Aoz2boi  do2bo2
agobio acobi1 agobi2 aoibio a@oibii  aoibi2  ao2bio ap2bir  ag2bi2
agob2o apob21  aAgobz2  Aoiboo  @o1b21  Ao1b22  aApaboo  aAp2bor  Ag2bo2
aioboo aiobor awoboz aiiboo a@iibor  aiibo2  ai2boo  aizbor  ai2bo2
C = | awbio aiwobi1 awbix aiibio aiihir awbiz awbio awxbiy  aebio
aiobao aiob21 awobzz aiiboo a@ii1bor aiibax  a1abog aizbor aizboo
axoboo a20bo1  axoboz  aziboo  a@21bor  a@21bo2  ax2boo  ax2bor  a22bo2

asobio  axobi1 axobiz aribig aribi1 aribio  axnbip axbir  axbio

axbao axb21  aobaa axibxo axiba1 @b axebao  a@xbri axb |
(4.26)

4.3.1 Special Properties of Kronecker Products

In this section a series of basic Kronecker properties that are often encountered in the formu-
lation and implementation of a variety of operations, are defined. Let A, B, and C be defined
as arbitrary matrices. First, the Kronecker product operation is associative, as demonstrated

as follows:
AR(B®C) = (A®B)®C. (4.27)
The Kronecker product operation is also distributive, as presented:

A®(B-C) = (A®B) (A®C). (4.28)
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The following special property also holds for the Kronecker product operation:
(A®B)-(C®D) = AC® BD. (4.29)

A property of the Kronecker product operation, involving transposition operation denoted as

T is presented as follows:
(Ao B) =AT @ BT. (4.30)

Note that the Kronecker product operation is not commutative; that is, (A® B) # (B ® A).

4.4 Using Kronecker Product for Parallel Operation

In this section, the usage of Kronecker product formulation for implementing parallel operations
is demonstrated in details. Let the matrix A be equal to the 4 x 4 identity matrix /4, which is

defined as:

1 0 0 O
01 00
A=l = (4.31)
0 010
0 001
and let B be defined as the 2 x 2 DFT matrix of order 2, defined as follows:
1 0
B =F = ) (4.32)
0 W,
The term W5 can be expressed as:
Wo = e = cos (m) —jsin(m). (4.33)
Since sin(m) = 0, the above formulation reduces to:
Wo = e = cos (m) =—1. (4.34)

B:ngll 0]_ (4.35)
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By computing the Kronecker product C = A® B = 14 ® F, the following 8 x 8 matrix is

obtained:
(100 0]
0100 11
C=1LF = ® ; (4.36)
0010 1 -1
000 1
(F, 0 0 0]
0 F, 0 0
C=1,0F = 2 ; (4.37)
0 0 F 0
0 0 0 R
[1 1 0 0 0 0 0 |
1 -1 0 0 0 0 0 O
0 0 1 1 0 0 0 0
0 01 -1 0 0 0 0
C = (4.38)
000 0 1 1 0 0
0 0 0 0 1 —-10 0
000 0 0 0 1 1
0 0 0 0 0 1 -1 |

In general, the expression /g ® Fs can be seen as a parallel operation since the submatrices
Fs are the nonzero elements that appear along the diagonal of the resulting matrix, which is a
sparse matrix. A matrix-vector multiplication operation can be defined, in terms of the sparse

matrix Ir ® Fgs as follows:
b= (lr®Fs)a, (4.39)

where b and a are column vectors, each of length or order R-S. As an example, let R = 4 and

S = 2. Considering a column vector b and a, each of length 8, the matrix-vector multiplication
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po : Po + P+
P ><: po- p1

Figure 4.1: Scalar Butterfly Operation

operation b = (I4 ® F») a is formulated as follows:

elements. Let af, a, a5, and a3 be the 4 subvectors, that are defined as:

[ b(0) a(0)
b(1) a(1)
b(2) F 0 0 O a(2)
bB) | _ | 0 R 0 0 a(3) (4.40)
b(4) 0 0 F O a(4)
b(5) 0 0 0 F a(5)
b(6) a(6)
| b(7) L a(7) |

The column vector a can be divided into 4 sections, or subvectors, each consisting of two

a0 a(2 a(4
= ©) a) = ) Ay = ) a3 = (4.41)
a(1) a(3) a(5)
The matrix-vector multiplication operation b = (/4 ® F;) a can then be expressed as:
'K o0 0 o |[al]l [R-a]
0 F/ 0 O ay F> - a3
? = (4.42)
0 0 F~ 0 a; F> - a3
0 0 0 A as F> - a3

The operation F»-p, where p is a vector of length 2, is known as the scalar butterfly operation,

and is described as follows:

wo=[1 4] [2]-

Figure 4.1 presents a more conceptual view of how the scalar butterfly operation works: Hence

po + p1
Po — P1

(4.43)
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b= (I4 ® Fy) a becomes:

[ 5(0) | 1 1. 0 0 0 0 0 0 ][ a0 ] [ a(0) + a(1) |
b(1) 1 -10 0 0 0 0 O a(1) a(0) — a(1)
b(2) 00 1 1 0 0 0 0 a(2) a(2) + a(3)
b3 | [0 0 1 -10 0 0 0 a3) | _ | a(2)-a@3)  (aa)
b(4) 00 00 1 1 0 0 a(4) a(4) + a(5)
b(5) 00 0 0 1 —-10 0 a(5) a(4) — a(5)
b(6) 00 0 0 0 0 1 1 a(6) a(6) + a(7)
| b(7) | |0 0 0 0 0 0 1 -1 ][ a(7) | | a(6) —a(7) |

This clearly demonstrates that the operation b = (/4 ® F2) a can be performed by computing
4 simultaneous FFTs, each of length 2. In general, the matrix-vector multiplication operation
b = (Ig ® Fs) a can be computed on a computer architecture with R processors, in which
each processor is loaded with a subvector of the input vector a, consisting of S elements, and
computes the FFT of length S.

4.5 Using Kronecker Product for Vector Processing

The Kronecker product is characterized to be a non-commutative operation; hence Ir ® Fs #
Fs ® Ir. However, the Kronecker product Fs ® Ir introduces additional special properties,
in which this expression favors an architecture capable of conducting vector processing com-

putations. Let S = 2 and R = 4. The sparse matrix C = F» ® I4 can thus be defined as

follows:
(100 0]
1 1 0100
C=F®l= ® (4.45)
1 -1 0010
000 1

/ /
C=Fol,=| " ™| (4.46)
la —l4
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(1000 1 0 0 0 |
01 00 O 1 0 0
0 01 0 O 0 1 0
c - 0 001 O 0 0 1 (4.47)
1000 -1 O 0 0
0100 0 -1 0 0
0 01 0 O 0O -1 0
0001 0 0 0 -1

In this case, the operation b = (Fs ® Ir) a can be computed at a vector level, instead of at

a scalar level. The following example of the operation b = (F, ® I4) a is considered, which can

be defined as follows:

b(0)
b(1)
b(2)
b(3)
b(4)
b(5)
b(6)
b(7) |

I4

I4

I4
—I,

a(0)
a(1)
a(2)
a(3)
a(4)
a(5)
a(6)
a(7) |

(4.48)

The above matrix-vector multiplication operation divides the column vector a into the following

two subvectors:

a(0) |

a(1)
a(2)

a(3) |

a(4)
a(5)
a(6)
a(7)

(4.49)
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The matrix-vector multiplication operation can be viewed as the following submatrix-vector

segment multiplication:

b(0) a(0) | a(4) |

b(1) RECHIRED

b(2) a(2) a(6)

b(3) _ I a(3) ] I a(7) ] (4.50)
b(4) a(0) a(4)

b(5) a(1) a(5)

I 1
b(6) a(2) a(6)
o] | la® ] |am | |

According to the above formulation, the vector segments are multiplied by the identity matrix
4. This introduces the following special property regarding identity matrices: let /5 be the
matrix of size N x N, where the only non-zero elements equal to 1, lie along the diagonal of the
matrix. Let d be a column vector, consisting of N elements. The matrix-vector multiplication
operation [y - d can be defined as Iy - d = d. Letting N = 4, matrix-vector multiplication

operation /4 - d is demonstrated as follows:

1 000]| [do)] [ad)]

hgo |01 00 d(1) | _ | @) | (51)
0010 d(2) d(2)
0001 [d3) | |dO |

Hence,in general, /y-d = d, revealing the following final result with respect to the matrix-vector

multiplication operation b = (Fs ® Ig) a:

b(0) a0 | [ as ]
b(1) a1) |, | a)
b(2) a(2) a(6)
b@3) || [ 2G3) | | am) | w5
b(4) 2(0) a(4)
b(5) a(1) a(5)
b(6) a2) | | a(6)
| b7) ]| | a3) a(7)

Generalizing, the matrix-vector multiplication operation b = (Fs ® Ig) a can be computed on
a computer architecture, capable of vector processing operations. The input vector a is divided

into S vector segments, each consisting of R elements.

As demonstrated in this section, the sparse matrices, resulting from the expressions Tg ® Fg
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and Fs ® Ir are very common in the Kronecker product formulationsw of FFT algorithms.
This section showcased how these expressions serve as instruments in designing and obtaining

efficient FFT implementations, which will be shown in the next section.

4.6 Formulating FFTs Using Kronecker Product

In this section, the Kronecker product is used in order to obtain efficient mathematical formu-
lations of FFT algorithms. It will be shown how the DFT matrix can actually be decomposed
into a sequence of sparse matrices, all of the same dimension or order. Initially, the order of
the DFT matrix was set to L. It is desirable that L be a highly composite number, and of
the form L = 2™ for the Kronecker formulation. A composite number is characterized to be

divisible by another positive integer, other than itself or one.

Let L = RS, where R and S may, or may not be composite numbers. As defined previously,
in order to compute the DFT of a L-point discrete signal x(n), the following operation needs
to be performed:

L—1

X(k) = Y x(melZF) k= 0,1,...,L —1;j = V1. (4.53)

n=0

In addition, it was found that the DFT operation could also be expressed in the matrix-vector
form X = F; x. Now, the essence in deriving a Kronecker formulation for this operation is to
determine how the DFT matrix F; can be decomposed, when L is a composite number of the
form RS. Furthermore, if either R or S is also a composite number, further decomposition
of the DFT matrix can be achieved. As presented in [14], when L is a composite number of
the form RS, and by rearranging the one-dimensional input vector x(n) as a two-dimensional
array, the DFT computation of a L-point discrete signal x(n) can be expressed in Kronecker

product form, as follows:
X = Fix=(Fs®Ig) Tis (Is ® Fr) P sx (4.54)

Here, T, s is a diagonal matrix of order L, called twiddle or phase factor, which is defined as

follows:

Ir 0 0 O

0 Dbg 0O 0 O
T,s=10 0 D?g O (4.55)
0
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where D; g is a diagonal submatrix element of T; s, where each of its non-zero elements is

defined as follows:
—j27
Dir = [Wf] k=01, 1; WL = (567, (4.56)

Note that the factor R should be greater than two, to form a minimum submatrix of size 2 x 2
The matrix Py s is a permutation matrix, also of order L, called the stride by S permutation
matrix. This matrix induces a permutation operation, which is present in all Kronecker product
formulation. Such matrix reorganizes the input data following a decimation procedure. For

any integer L and S, the permutation matrix may be formulated as follows:

1 ifi=j=L-1
Pis(ij)=% 1 ifj=(ixS),_;;0<i<L—1 (4.57)

0 otherwise

It is important to note that the Kronecker formulation for the DFT operation can be used in
an iterative manner; that is, if S or R is also a composite of the form DP, the process can be

repeated, inserting the new formulation in (4.50).

To illustrate the equivalence of the DFT computation for L = RS, the case for L = 4 is
considered. Let L =4 =2-2 , where R=2and S = 2. Then the DFT matrix expressed in

Kronecker product form for L = 4 is defined as follows:
Fa=(F2®02)Taz(l2® F2) Pao (4.58)

The matrix T4, is expressed as follows:

/ 0
Tao=| ° , (4.59)
0 Dasp
where the submatrix element D4 o can be expressed as:
1 0
Dso = [WE] k=01 = : 4.60
4 (Wi k=01 [ 0 W ] (4.60)
The permutation matrix Py o, derived from the formulation in (4.53), becomes:
(100 0]
0 010
Pio = (4.61)
01 00
0 001
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By formulating the sparse matrices (F2 ® I2), T42, and (/> ® F,), the DFT matrix is decom-

posed as follows:

lo 1 / 0 R0
A e T 7 Py, (4.62)
/2 —/2 0 D4,2 0 FQ
When performing the matrix multiplication of the matrices (F» ® I5) and T4, in (4.58), the
following is obtained:
lo D 0
Fa= | 2 "% . - Pyo. (4.63)
lo —Da4p 0 R
Additional matrix multiplication leads to the following formulation:
Fo  Dy4sF
Fa = : i <Py, (4.64)
Fo —Da4oF2
The submatrices D4 2Fs and —Dy 5 Fo are expressed as follows:
1 0 1 1 1 1
D4oFr = ' | = ; (4.65)
0 Wy 1 -1 Wy —Way
-1 0 1 1 -1 -1
0 W 1 -1 —Was Wy

Expressing the remaining two matrices in order of 4, the following is obtained:

(101 1 1 | [100 0]
1 -1 W. -W, 0010
F, = 4 4 (4.67)
11 1 -1 0100
1 -1 -W, W, 000 1

The permutation matrix Py » reorders the columns of the other matrix in the above formulation,
such that the new and final matrix is formed by placing the columns 0, 2, 1, and 3 in this order.

. . —jem___ . . . . . .
By substituting W, = e r =4, the following matrix is obtained, resulting in the DFT matrix

of order 4:
(101 1 1]
1 —j —1 +j
£ = J J (4.68)
1 -1 1 -1
1 4 -1 —j
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Hence,in general form, the Kronecker formulations are shown to provide an efficient decom-
position of the DFT matrix into sparse matrices, when the order L is a composite number of
the form RS In addition, the DFT matrix F; is symmetric; that is, F; = FLT, where T denotes
the transposition operation. Hence, by applying the transposition operations on both sides of

the DFT matrix F; in equation (4.50), the formulation becomes:

Fi=P t(s®Fr)Tis(Fs®Ig). (4.69)

4.7 Parallel Computational Architectures for DFT Multi-beamforming

There are basic computational architectures, for which the Kronecker product operations has
shown to be very effective. In this subsection, a parallel computational architecture for FFT is

discussed.

For a variety of applications that require data anaylisis, such as bioacoustics signal analysis,
data is usually analyzed in the frequency domain, by applying fast fourier transform to the data
in the time-domain. Extensive computational effort and significant amount of processing time
is inevitable when the amount of data to be processed is large. For a considerable large data
size of L points, L be a power of two,a large DFT matrix of size L x L would be needed in order
to transform the data in the frequency domain. This, in turn, leads to increase in processing
time. On the otherhand, by using Kronecker product, the large data may be divided into M
modules, each of size N, such that the matrix Fp is applied to each module, and L = M x N.
The multi-beamforming matrix B becomes the DFT transform matrix F; when the number
of steering angles M is equal to the number of sensors L in the linear array. However, the
DFT multi-beamforming matrix may also be formulated using Kronecker product operation.
The Kronecker product operation A® B, as defined in (4.3) considering a matrix A, of size

R x R,and a matrix B, of is defined as follows:
C=A®B = [akBlx 101, . r 1 (4.70)

producing a new matrix C of size RS x RS. Using the Kronecker product definition, the

multi-beamforming matrix may be defined as follows, according to [1]

MB = (Ufy @ In) (In ® Fn), (4.71)
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where Uy, is a column vector of M ones, defined as follows:

1

1
Uv=1.1- (4.72)

The operation T denotes the transpose of the column vector Uy, resulting in the new row
vector Uj,:
UAT,,:[l 1 - 1] (4.73)

Through this formulation the data is divided into M modules, each of size N, such that the
matrix Fp is applied to each module, and L = M x N. The parallel Fourier factor uses the
Kronecker product operation in order apply the Fy matrix, to each of the M modules, as

defined as follows:

Fy O 0
0 Fy -~ 0
(Im®@Fn)=1| . | (4.74)
i 0 0 Fn |

where /p; is the M x M identity matrix. The term (U,\Tﬂ ® IN) can be expressed as:

UL @ Iy) = [/N Iy e Iy } (4.75)

This operation simply sums the M transformed modules, each of size N. In addition, if the
number of sensors N in each module can be expressed as a composite number of the form
N = RS, where R is greater than 2, then the DFT matrix Fp for each of the M modules can
be expressed as ([2]):

Fn = (Fs®1r) Tns (Is ® Fr) Pu,s. (4.76)

where Ty s is the twiddle or phase matrix, and Py s is the permutation matrix that reorders

the data. Hence the multi-beamforming matrix may be reformulated, as follows:

MB = (Uy ® In) (Im @ ((Fs ® Ir) Tn,s (Is ® Fr) Pn.s)) - (4.77)
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Now, let matrix A = (Fs ® Ir) Tn,s, and matrix B = (Is ® Fr) Py s, obtaining the following

expression:
MB = (U@ In) (Im® (A-B)). (4.78)

By applying the distributive property to the term (I ® (A - B)), the following formulation is

derived:
MB = (Ul ®In) (In®A) (In® B); (4.79)

MB = (Ul ® In) (Im @ ((Fs ® Ir) Tn,s)) (Im ® ((Is ® Fr) Pus)) . (4.80)



Chapter 5

Parallel Programming with pMATLAB

In chapter 3, it was shown how DFT beamforming algorithms are developed in order to process
signals arriving from sensor arrays consisting of uniform linear configurations, when the number
of sensors is equal to the number of steering. It was then shown in chapter 4 how the DFT
beamforming algorithms can be efficiently implemented by using kronecker product formula-
tions, in order to provide general expressions for the beamforming operations. Here, a new
parallel programming modeling environment, named pMATLAB [16], is presented, which has
been utilized to study the computational performance of parallel implementation techniques,

in a multi-core environment.

5.1 Parallel Programming Concept

The term codes is often used to refer to complete programs with data, that are used to
implement a desired computational operation or function. The design of each code follows a
certain program and data structure, which can determine the appropriate architecture that is
suitable for its execution. If the program structure of a code permits it to be totally or partially
divided into M modules or segments, which can be executed simultaneously and independently,
then parallel programming can be achieved. Each of the M modules or segments can be
assigned to a processor, thus establishing a multi-core environment, where Np = M processors

can perform computational operations at the same time.

5.1.1 Characteristics of a Parallel System Architecture

The basic, common model for a serial system can be depicted in Figure 5.1, where Py rep-

resents the single serial processor with its own local memory My. However, the dependency

39
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on computation of increasing amount of data is becoming more pronounced and evident for a
wide variety of applications. This has lead to extensive research on exploiting parallelism, and
developing parallel architecture systems, in order to obtain more speed and simplify complex,
intensive computation. A basic, general parallel system architecture is shown in Figure 5.2,
where Np independent processors, each with its local own memory Mg, are within the same
architecture, which can perform computations simultaneously. This type of performance is also
known as parallel computation. Two types of acceptable parallel computation as mentioned
in [17] are defined as follows: fast-memory parallel computation and slow-memory parallel
computation. Fast-memory parallel computation is one, in which the memory demands of
each processor are met on time, and each processor is not affected by significant degradation
of its individual uniprocessor performance. Slow-memory parallel computation occurs when
memory delays are present in each individual processor. However, if high parallelism is present,

then acceptable, overall performance can be achieved, relative to the number of processors in

B 28

the architecture.

Figure 5.1: Single Serial Processor, courtesy of Kuck, MIT Lincoln Lab.

Figure 5.2: Serial Processors in Parallel, courtesy of Kuck, MIT Lincoln Lab.

5.2 Parallel Speedup Process and Amdahl’s Law

In order to evaluate the parallel structure of a complete program, the total computational

speedup serves as a parallel performance metric. Such metric is computed in a linear fashion,
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in terms of the number of processors Np:

Teomp(l) (5.1)

Scomp(NP) = m =

where Scomp(Np) represents the computational speed, Tcomp(1) the execution time of the
program running on one processor, and Tcomp(Np) the execution time with Np processors. It
is important to note that the number of processors is assumed to be in powers of two. As
highlighted in [16], the speedup acquired by a parallel application is essential in measuring how
effectively an application can take advantage of a computer system that possesses parallel
capability. Figure 5.3 presents the different types of linearity that are commonly encountered,

resulting from the speedup obtained, in terms of the number of processors: As mentioned
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Figure 5.3: Parallel Speedup, courtesy of Kepner, MIT Lab.

in [16] and [17], the types of speedup linearity may be defined as follows: linear, superlinear,
sublinear, and saturated speedup linearities. Linear speedup is the ideal type of speedup, where
Scomp(Np) = Np. This type of speedup occurs when there is little or no communication

between the processors.

The sublinear speedup shown in Figure 5.3 is more typical than the ideal linear speedup,
and is obtained when Scomp(Np) = aNp, for 0 < a < 1. The value a represents a constant
overhead due to communication delays, whose proportion remains constant as more processors
are added. Thus the constant overhead is what prevents the application from achieving an ideal
linear speedup. As mentioned in [16], if an application is highly parallel, then o can indicate

that there may be unnecessary overhead that can be avoided.

On the other hand, saturated speedup is highly common, especially in the intial development of

parallel programs. For this type of speedup curve, as shown in Figure 5.3, the speedup begins
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to increase, as the number of processors increases, starting with a single processor. However,
as the number of processors begin to increase even further, the curve begins to saturate at
some low number of processors, being 16 a typical number, as shown in Figure 5.3 . This
point of the speedup curve is known as the point of diminishing return, which is an indicator

that from this point on, the speedup will begin to degrade.

The superlinear speedup is the rarest case, where Scomp(Np) > alNp. This type of speedup
occurs in highly parallel programs, with fixed problem sizes. This means that the problem sizes
do not grow, as the number of processors Np increases. A superlinear speedup indicates that

the program’s performance is improving as Np increases [16].

5.2.1 Amdahl’s Law

The saturated speedup is related to Amdahl’s law, which is used in parallel computing to
predict the theoretical maximum speedup using multiple processors, before reaching the point
of diminishing return. This law takes into consideration the time limit or communication
overhead induced by the sequential or serial portion of the program; in other words, not every
fraction of the parallel application or program is 100% parallel. Having this in mind, Amdahl’s

law is formulated as follows [16].

Assuming that the program application is not completely parallel, let the total amount of work
Wiot that needs to be carried, be divided into two parts: one that can be done in parallel W,

and a part Wseq that can only be accomplished by using a single, serial processor:
Wiot = Wpar + Wseq; (5-2)

The execution time T¢omp(Np) is thus proportional to:

Using the relationship between the executionh time of a single processor Tcomp(1) and Teomp(Np)
for multiple processors, the speedup expressed in (5.1) becomes:
Wtot

Scomp(NP) = w_.. .- (5-4)
M//\fsr + Wieq

Normalizing with respect to Wiot, Scomp(Np) becomes

1 W, 4%
S Np) = 77— = _Par. = >4 5.5
comp( P) wl\?;, T Wseq Wpar Wtot Wseqg ( )
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Now, when the number of processors Np becomes very large, that is Np approximates oc, the

term "’NL;’ approaches 0, reducing (5.5) to the following:

1 _
Scomp(Np) = —— = wgey. (5.6)

Wseq

According to the above equation, as the number of processors Np increases, the maximum
speedup that can be achieved is w|’1. In other words, if the fraction of the work needed to be
done sequentially, that is, on a single serial processor, is made very small, then a linear speedup
can be approached. Hence, this reveals the fundamental of Amdahl’'s Law: it is important to
make very part of the code parallel. For instance, if wseq is large, indicating that more aspects
of the code is sequential than parallel, then the speedup is not optimized. This also includes

overheads encountered in communication, which can further degrade the speedup.

5.3 Description

Parallel programming with pMATLAB provides a series of advantages, which help overcome
important issues, such as communication overhead among the processors. First, pMATLAB of-
fers high level parallel data structures and functions as part of its tools for creating a simulated,
multicore environment, in a Pure MATLAB implementation manner. Figure 5.4 demonstrates
the MATLAB environment in which the parallel program applications are developed in pMAT-
LAB.

This permits parallel functionality to be added to serial programs already implemented in pure
MATLAB, without requiring mayor modifications. Distributed matrices/vectors are created by
using maps that help distribute the data among the Np simulated processors, which is described
in more details in the next section. In addition, pMATLAB uses MatlabMPI to perform message
passing among the processors. MatlabMPI offers point-to-point communication , in which a
I/O file is provided through the common load and save functions of MATLAB. This helps take
care of complicated buffer packing/unpacking problem and communication delays caused by
such. In addition, the point-to-point communication that provides pMATLAB, as shown in
[18] has achieved the typical superlinear speedup on fixed problem, as shown in Figure 5.5,

and the typical linear scenario for scaled problems.

Hence pMATLAB is a powerful tool that not only exploits the level of parallelism in pro-
gramming codes, but can easily add parallel functions to existing serial programs, avoiding

bottlenecks which can lead to early saturation.
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Figure 5.4: Programming Environment for pMATLAB
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Figure 5.5. Speedup achieved with pMATLAB, courtesy of Kepner, MIT Lincoln Lab.

5.3.1 Data Mapping and Distribution

Programming in pMATLAB allows the data to be constructed as distributed arrays or matrices,

called dmat which permits the data to be allocated among the Np processors . This is achieved,

by using the function map in the program application, which is defined in the following general

format, as presented in [19]:

p=map(GRID_SPEC,DIST _SPEC, PROC_LIST).

(5.7)
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This function creates a map object, which is used as input for the dmat constructor. The
parameter GRID_SPEC specifies how the dimensions of the data will be distributed among
the Np processors. DIST_SPEC specifies the type of data distribution, which can be: block,
cyclic, or block-cyclic. The parameter PROC_LIST is an array of processors, in terms of ranks,

on which the data will be distributed. The processor ranks are noted as 0,1, ..Np — 1.

Below, the following example notations or formats of the map are commonly used for the
programs created in pMATLAB [16]. The second input parameter of the function map {}
indicates that the data is distributed among the Np processors, defined in terms of ranks
from the first processor 0 to the processor Np — 1, in terms of blocks. The concept of block

distribution among the processors is illustrated as follows.

For the first format shown below, a one-dimensional map is constructed, which maps an array

or matrix along the first dimension:
map([Np 1].{}.0: Np — 1) (5.8)

That is, the block distribution of the matrix consists of dividing the rows into Np blocks.
Assuming that Np = 4, and the data is defined to be a 12 x 12 matrix, the rows of the data

is distributed in 4 blocks, each block containing 3 rows. Figure 5.6 illustrates this example.

[41] —

Figure 5.6: Block Distribution Example for First Dimension

The second format commonly used constructs a one-dimensional map, which maps an array

or matrix along the second dimension, shown as follows:
map([1 Np].{}.0: Np —1). (5.9)

Using this format, the block distribution of the matrix consists of dividing the columns into Np
blocks. Assuming that Np = 4, and the data is defined to be a 12 x 12 matrix, the columns
of the data is distributed in 4 blocks, each block containing 3 columns. Figure 5.7 illustrates

this example.
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[14]
A

Figure 5.7: Block Distribution Example for Second Dimension

The third format commonly used constructs a two-dimensional map, which maps an array or

matrix along the first and second dimensions, shown as follows:
map([N1No], {},0: Np — 1), (5.10)

Using this format, the block distribution of the matrix consists of breaking up the first and
second dimensions (rows and columns) between the processors, into N; blocks along the first
dimension, and N> blocks along the second dimension. Hence, a total of Ny - Ny distributed
blocks are created. A total of Nj - Ny processors would then be needed in order to distribute
each of the blocks. Letting Ny = 4 and N, = 4, the assumed 12 x 12 data matrix, becomes a
4 x 4 distributed block matrix; that is, each row and column is composed of 4 blocks, leading
to a total of 16 blocks. Hence the number of processors Np would need to be 16, in order to

process each block. Figure 5.8 illustrates this example. The form in which distributed arrays

[4 4]
I

Figure 5.8: 2-D Block Distribution Example

or matrices are created in a typical pMATLAB code developed in a MATLAB environment,

is shown in Figure 5.9. The basic steps in creating distributed arrays simply consists of first
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defining the type of mapping, or the manner in which the data is to be distributed. As shown
previously, this includes specifying the number of distributing blocks and to which processors
the data will be distributed. In Figure 5.9, mapA and mapB are the two maps defined for
the program application. MapA decomposes or divides the columns of the data in two blocks,
distributing each block to the processors identified with ranks 0 and 1. MapB decomposes
or divides the columns of the data in two blocks, distributing each block to the processors
identified with ranks 2 and 3. A and B are simply the data matrices that will be processed or
manipulated in the program. Matrix A and Matrix B are created, using the typical MATLAB
functions rand and zeros. rand creates an arbitrary m x n matrix, and the latter a matrix of

the same dimension whose elements are all 0.

mapi = map([1 2], ... % Specifies that cols be dist. over 2 procs
{4, ... % Specifies distribution: defaults to block
[0:1]): % Specifies processors for distribution

mapB = map([1 2], (), [2:3]);:

A = rand(m,n, mapd) ;s % Create random distributed matrix

B = zeros(m,n, mapB); % Create empty distributed matrix

B(:,:) = &A; % Copy and redistribute data from A to B.

Figure 5.9: Data Mapping Example in pMATLAB

As observed in Figure 5.9, pMATLAB introduces the concept of mapping, by adding as an
additional input parameter to these functions, MapA and MapB for creating the distributed
matrices A and B, respectively. In other words, the contents of the matrix A is distributed
among the processors 0 and 1, while the contents of B is distributed among the processors 2
and 3 (see Figure 5.10). The command line B(:, :) = A simply redistributes the matrix A onto
the processors 2 and 3, defined in the mapping for the distributed matrix B.

[Proc HProc 1]
I I
[Proc %—[Proc 3]

Figure 5.10: Data Distribution Example Among Processors, courtesy of Kepner, MIT Lab.

—))

5.3.2 Parallel Execution in pMATLAB

In the previous section, it was shown how distributed array objects dmats can be created
and distributed among Np processors, by simply defining the type of mapping. Here, an
example of executing the DFT Multi-beamforming algorithm implemented using pMATLAB,

is demonstrated.
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The pMATLAB tool provides parallel execution for the program applications by providing a
utility program file, called RUN.m. In such file, the number of processors and the name of
the program application to be executed are specified. The number of processors is specified
in the parameter Ncpus, and the program to be executed in the parameter mFile, as shown

in Figure 5.11. Once the number of processors Ncpus is specified in the utility program

&4 Edito 5
Eile Edit Text Go Cell Tools Debug Deskiop  Window Help
NAE $RR9c || Aesfio|B-20880E 8| s5uxw

"%E%JE‘ =10 +|-:- 1! x|%9§%9§|0.

1 % RUN s a generic script for running pMatlab scripts.
2

3 % Define nunber of processors to use.

4 % A11 the examples should work with 1, 2, 4 and § CPUs.
i Nopus =23

&

7 % Uncomnent the name of the script wou want to run.
8- nFile = 'AIP_DFTpMatlab_beamforming'; % Trivially parallel fft.
iz %nFile = 'AIP_Newkronecker_pMatlab';

10

11

12

13 % Define cpus.

14 % Empty dnplies run on host.

15 - cpus = {};

1e

17

18 % Abort left over johs.

19 - MPI_Abort;

20 - pause(2.0);

21

22 % Delete left over MPI directory

R MatMPI_Delete_all;

24 - pause(2.0);

25

26 % Define global wariahles

27 - global pMATLAE;

28

29

30 % Run the script.

31 - ['Running: ' wFile ' on ' num2str{Ncpus) ' cpus']
32 - eval (MPI_Run(nFile, Ncpus, cpus));

Figure 5.11: Parallel Utility Program File

RUN.m, the program application can be developed in a MATLAB-like environment. As shown
in Figure 5.12, the parameter Ncpus can be directly used to define the mapping for the
distributed matrices. For the beamforming implementation, the data is decomposed along
the second order, by distributing the columns among the Ncpus processors. The distributed
matrix sample_input_matrix_1 is allocated as a N x M matrix, where N defines the number
of sensors in the linear array, and M is the number of steering angles to be detected by the
array. This corresponds to the input matrix of M spatially sampled signals, indicating that
each of the N sensors will receive or detect M different values or data points. The distributed
matrix Beam_pattern_1 is allocated as a N x M matrix, where N defines the number of sensors
in the linear array, and M is the number of steering angles to be detected by the array; this
corresponds to the output matrix, after applying the FFT to each column of the input matrix,

as shown in Figure 5.13.
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&

% Create Maps.
mapX = 1; map¥ = 1;
if [(PARALLEL)

% Break up channels.
mapX = wap([1 Nepus], {1, O0:Necpus-1 );
map¥ = map([1 Ncpus], {}, O0:Nepus-1 ):
YmapZ = map | [Nepus 1], {3, O:Nepus-1 ) :

end

close all;

k- =l g e B D
NumberCQfPoints = 256!
E=-1:2/ (lumberJfPoints-1) :1;

Sawple input matrix 1 = zerosi(N, length(B), mapX):
Beam pattern 1 = zeros (I, length(B) ,map¥);

Figure 5.12: Parallel Utility Program File
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Figure 5.13: DFT Beamforming Implementation



Chapter 6

Beamforming Techniques
Implemented on the DSP C6713

6.1 TMS3020C6713 DSP Kit

The digital signal processors (DSP) are highly used for a variety of applications, such as image
formation processing, speech recognition, communications, and much more. Advantages in
using DSPs is that they are processors specially designed to efficiently implement program
applications which involve working with, analysing, and processing signals in order to extract
information of interest, according to the objective of the application at hand. The principal
tool used in order to design program applications on the DSP is the "Digital Starter Kit"
(DSK) from Texas Instruments (TI), Inc., which is composed of the TMS320C6713 (C6713)

DSK board, shown in Figure 6.1, and the program application environment Code Composer

Figure 6.1: TMS320C6713 DSK board

Studio v3.3. Code Composer Studio v3.3 was used to implement the DFT and Kronecker

50
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DFT Beamforming algorithms to be executed on the DSP board, which is further described

with more details.

6.2 TMS3020C6713 DSP Basic Characteristics

The TMS320C6713 DSP unit is based on the VLIW ( Very Large Instruction Word) architec-
ture, which is well-matched for intensive, computational algorithms. Such architecture permits
a total of eight instructions to be fetched every cycle. This DSP unit is characterized by the

following basic features, as presented in [20]:

e Clock Frequency of 225 MHz

32-bit Instructions

1.35 giga-floating operations per second (GFLOPS)

16 MB of Synchronous Dynamic Random Memory (SDRAM)

264 kB of internal memory

— 8 kB as L1P (program) and L1D (data)Cache

— 256 kB as L2 memory for program and data

256 MB Flash Memory

Host Port Int

Figure 6.2: TMS320C6713 Architectural Diagram, courtesy of Chassaing

6.3 DFT and Kronecker Beamforming Algorithm Implementation
Procedures on DSP C6713

The DFT and Kronecker beamforming techniques were implemented on the C6713, since it

is considered to be one of Tl's most powerful signal processor. As part of this work, a user’s
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Figure 6.3. Locating the Folder DSP_BeamformingFiles

guide on implementing DFT and Kronecker Beamforming algorithms has been designed for
the TMS320C6713 board. The guide follows a step by step process from creating a new
project, to finally obtaining a Beamforming application developed for the DSP board, in which
the user has the option of executing either DFT or Kronecker Beamforming within the same
project. This guide is based on the usage of Code Composer Studio V3.3 for designing the
Beam forming imaging program application. It is assumed that a series of files implemented
as part of this work are located in the directory C:\CCStudio_v3.3\MyProjects\.

In designing the user’s guide, these key measurable procedures are carefully defined: initializa-
tion and compilation, simulation, and program execution procedure on the DSP board. In

the following subsections, each of these procedures is explained in detail.

6.3.1 |Initialization and Compilation Procedures

The first stage of the Beamforming algorithms implementation procedures consists of locat-
ing in the directory C:\CCStudio_v3.3\MyProjects\ the folder DSP_BeamformingFiles, as

shown in Figure 6.3.

Inside the folder DSP_BeamformingFiles, the user will find the following subfolders and

files(see Figure 6.4):

e 32 _sensors_input_files_1 - This subfolder contains the following two sets of input files

(see Figure 6.5):

— sample_input_real_without_noise.h, sample_input_imag_without_noise.h

— sample_input_real_with_noise.h, sample_input_imag_with_noise.h
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Figure 6.4: Files located in DSP_BeamformingFiles

The first set of input files sample_input_real_without_noise.h and

sample_input_imag_without_noise.h correspond to the real and imaginary parts of the com-
plex input matrix of size 32 x 201; that is, each sensor receives 201 spatially sampled values
or data points. These two files assume the absence of noise in the surrounding environment

(see Figure 6.5).

The second first set of input files sample_input_real_with_noise.h and
sample_input_imag_with_noise.h correspond to the real and imaginary parts of the complex
input matrix of size 32 x 201; that is, each sensor receives 201 spatially sampled values or
data points. These two files assume the presence of noise in the surrounding environment (see
Figure 6.5).
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Figure 6.5: Input Files in 32_sensors_input_files_1

e 064 _sensors_input_files_1 - This subfolder contains the following two sets of input files

(see Figure 6.6):

— sample_input_real_without_noise.h, sample_input_imag_without_noise.h
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Figure 6.6: Input Files in 64_sensors_input_files_1

— sample_input_real_with_noise.h, sample_input_imag_with_noise.h

The first set of input files sample_input_real_without_noise.h and

sample_input_imag_without_noise.h correspond to the real and imaginary parts of the com-
plex input matrix of size 64 x 201; that is, each sensor receives 201 spatially sampled values
or data points. These two files assume the absence of noise in the surrounding environment

(see Figure 6.6).

The second first set of input files sample_input_real_with_noise.h and
sample_input_imag_with_noise.h correspond to the real and imaginary parts of the complex
input matrix of size 64 x 201; that is, each sensor receives 201 spatially sampled values or
data points. These two files assume the presence of noise in the surrounding environment (see
Figure 6.6).

In summary, for purposes of simplicity, this guide was designed for implementing DFT and
Kronecker Beamforming Techniques, for two scenarios: a linear array configuration for 32 and
64 sensors, in which each sensor receive 201 data points or values. The corresponding input

files were generated in Matlab. In addition, the following files are also needed:

e Source files needed for initialization - These source files are necessary for configuring
the programming environment, based on the TMS320C6713 DSP board characteristics
(see Figure 6.4):

c6713dskinit.c
C6713dskinit.h

dsk6713.h

dsk6713_aic23.h



Chapter 6. Beamforming Techniques Implementation on the DSP C6713 55

e Libraries - The following libraries must be included in the program application project,
in order to use the TMS320C6713 board features:

— ¢csl6713.1ib
— rts6700.lib
— dsk6713bsl.lib

e C6713dsk.cmd - This is the linker command file used for the target architecture, in
which the types of memory, memory length, memory address, and memory sections of

the target board are declared and defined.

e Main source files needed for program application - The DFT and Kronecker Beam-

forming program applications are implemented using the following source files:

— DFT_Beamforming.c - This is the application program that implements the DFT
Beamforming algorithm. Figure 6.7 shows the function: Beam_pattern_generation(),
which performs the DFT beamforming operation by applying the FFT of N points
(N being the number of sensors) to each column of the complex input matrix in-

put_vectors.

roid Beam pattern generationi)
{ dint col_input_matrix, i, 3j:

COMPLEX x_col[MN]:
for (col_input _matrix = 0; col_input matrix < B; col_input_matrix++) !

for (i=0;i<N:i++){
¥ _col[i] = input wvectors[i] [col input matrix];
}
FFT(x_col, N
for (3=0;3<N:Jj++) 4
Besm pattern[j] [col input matrix].real = x col[]j].real;

Beam pattern[i][ecol_input matrix].imag = x_coll[3j].imag;
3

Figure 6.7: DFT Beamforming Function

— KroneckerBeamforming.c - This is the application program that implements the
Kronecker DFT Beamforming algorithm. Figure 6.8 demonstrates the function
DFT_M_Modules_generation(), which divides each column of the complex input ma-
trix input_vectors into M modules, each consisting of N elements. For each module,
the FFT of N points is applied. The function Linear_Combination_DF T_Modules()

is used to add the corresponding M modules (see Figure 6.9).

— FFT.c-Thisis the FFT function provided from Chassaing for obtaining the Fourier

transforms.
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void DFT U Nodules generation|
{ short 1,3k p,b,c,n index;

for(i=0;1<B: 144 |

b=0; // Marks the current position in each imput vector

/f Processing each Imput vector teken as @ coluwn of the matrix
for (j=0;3<L; J++14
% L{3] = input vertora[][1];
1
/1 Divide esch Input vector into M modules
for (k=0; k<l ke {
Lor [p=0;p<l; pt+)
¥ todule Wp] =x Lh];
bt

i
FFT(x module N.H);
o index=h-N: // To place each DFT module currently in the cutput matriz
for (c=0;c<ll;ct4){
DFT modules matrix(n index] [i]= x module N[e];
L index++;

Figure 6.8: DFT_M_Modules_generation()

void Linear_Cumbinatiun_DFT_Hodules (11
short 1,7,k

JfLangar combination of the ¥ IFT Nodules
for (1=0; 10 i+4) {
for (3=0; 1<B; j+4/{
for (k=0; k=L-N; k=k+l] |
=1tk
Beam pattern[i] [3].real = Beam pattern[i][3].realt DFT nodules watrin[w] [3].resl;
Bean pattern(i][3]. inay = Beam pattern[i][]].inegt DFT mocules matrix(n] (1] . inag:
}

Figure 6.9: Linear_Combination_DFT_Modules()
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e reading_results_beamforming_Code_Composer.m -This is the Matlab m.file that will

be used to plot the beamforming results obtained on the DSP.

Once the user has located each of the files shown in Figure 6.4, he or she should proceed to
find the Setup CCStudio v3.3 icon (see Figure 6.10). Here, the programming environment
must be selected: simulation or emulation. Simulation implies that the application program
developed can be compiled and executed, without physically connecting the target board to
the computer. On the other hand, emulation implies that the target must be connected to the
computer in order to compile and execute the application program. If this icon does not appear
at the desktop, the user should go to All Programs— Texas Instruments— Code Composer
Studio 3.3— Setup CCStudio v3.3 (see Figure 6.11).

Next, the CCStudio v3.3 icon is located, which is used to launch Code Composer Studio, where
the program application project for imaging formation is created (see Figure 6.10). Again, if
this icon does not appear at the desktop, then the user should go to All Programs— Texas

Instruments—Code Composer Studio 3.3—Code Composer Studio (see Figure 6.11).

CCStudio w3.3

Setup CCStudio v3.3

Figure 6.10: Locating Setup CCStudio v3.3 and CCStudio v3.3 icons

6.3.2 Simulation Procedure

As mentioned previously, simulation implies that the program application developed can be
compiled and executed, without physically connecting the target board to the computer. To
conduct a simulation analysis (see Figure 6.12), the user must access the Setup Code Com-

poser Studio v3.3 tool, and follow these subsequent steps:
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ﬁ' Teikas Instruments J ﬁ Code Composer tudn 3.3 |fj (1 DK Ll )
B it 0 (Cufo St )
I; Remate Agsistance @ Documertation )
(9) Windows Med Py uj Harduare Resets ]
0 ML b (7] RIDH ExanpeDisleys >
ﬂ POFCreator 3 .rj THXS2INCER10 Protatype Bard Host Liities  »
Jj Symante Client Secury 3 @ {Code Composer Studo

LonTERT } 3 Companent Manager

@ lsem4.5.7 b D Sefup Code Composer Shudiov3.3

Figure 6.11: Path to Code Composer Studio and Setup Tools

e Next to Available Factory Boards, under Family, select the option C67xx.
e Under Platform, select simulator.
e Under Endianness, select little.

e Under Available Factory Boards, a list of possible simulators should appear. Here,
C6713 Device Cycle Accurate Simulator should be selected, by a single click, then
pressing the Add button, locating at the middle bottom. The simulator can also be

selected by double clicking on the simulator board.

e Next, press Save & Quit. Note: if there are any other boards under System Configu-
ration, proceed to remove them. This is done by selecting each board and hitting the

delete key. Only the C6713 Device Cycle Accurate Simulator must be selected.

e A prompt window will appear, asking the user if he/she wishes to save the changes made

to system configuration. The button Yes should be selected.

e A second prompt window will appear, asking the user if Code Composer Studio should

start on exit. The user should press Yes.

Once Code Composer is launched and opened, the user must go to Project, located at the
upper menu, and select the option New. This opens the Project Creation window. Next, in
Project Name, the user should type DSP_Beamforming as the name for this project. It should
be verified that the location where the project will be created is:

C:\CCStudio_v3.3\ MyProjects\DSP_Beamforming. Also, in textbfProject Type, the option
Executable (.out) must be selected, and the Target selected should be TMS320C67XX (see
Figure 6.13). The user should verify that the project DSP_Beamforming.pjt was successfully
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& Coda Composer Studio Setup

Fle Edt View Help
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]Sys\em Configuration
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Figure 6.12: C6713 Device Cycle Accurate Simulator Environment Selection

Project Creation

Praject N

Location:

Project Type: | Evecutable [.oul

Target

ame: ]D SP_Beamforming

1C:\CCStudio_\.-'3.3\MyPr0iects\DSF’_B __]
=
=

| TM5 3200874

Finizh |

Cancel ]

Help ‘

Figure 6.13: Creating DSP Beamforming Project
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® DSP_Beamforming
© Fle Edb View Favortes Took Help

@Back ) lﬁ' /j}Search | Falders '

! fiddress |l]j CACCStudio_v3.3\MyProjects\DSP_Bearforming
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File and Folder Tasks ass| | PITFe
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DSP_Beamfarming,sbl
5L File
2K

_3 Make & niew Folder

@ Publish this folder t the
ihieh

G Share this Folder

b

Other Places

Figure 6.14: Locating DSP Project

created in the directory: C:\CCStudio_v3.3\MyProjects\DSP_Beamforming (see Figure
6.14).

All of the initialization files located in C:\CCStudio_v3.3\MyProjects\DSP_BeamformingFiles
must be copied and placed in the same directory where the project was created:
C:\CCStudio_v3.3\ MyProjects\ DSP_Beamforming.

After making sure that the project was successfully created, Project should be once again
selected, located at the upper menu. Under Project, the option Add Files to Project should
be selected (see Figure 6.15). This procedure is used to add each of the following files located
in the directory C:\CCStudio_v3.3\MyProjects\DSP_Beamforming:

e c6713dskinit.c

e C6713dsk - Linker Command file

Libraries
csl6713.1ib
rts6700.lib

dsk6713bsl.lib
e DFT_Beamforming.c or KroneckerBeamforming.c

e FFT.C

It is important to note that either the file DFT_Beamforming.c or KroneckerBeamforming.c

should be added to the project, since they are different types of beamforming techniques. If the
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' fC6713 Device Simulator/CPU_1 - C671

Fil=e Edit “iewe BaEsi(-tsed Debug  Profiler GEL O
=1 b“* e, ..

Cpen. ..
m Add Files ko Praject. ..

Save

Q 3= [5 Close

Use Exkernal Makefils. ..
Expork ko Makefile. ..

Source Conkrol >

Ewild
Rebuwild all

Figure 6.15: Adding Files to DSP Beamforming Project

user wishes to execute the DFT Beamforming technique, then the first file should be added.
If, on the other hand, the user wishes to execute the Kronecker Beamforming technique,
then the latter should be added. The user should open the file DFT_Beamforming.c or
KroneckerBeamforming.c and specify in the function fopen the following possible input files
(see Figure 6.16):

If the complex input vector is simulated without noise:

e fopen("sample_input_real_without_noise.h”,”r" )-real component

e fopen("sample_input_imag_without_noise.h” " r" )-imaginary component

If the complex input vector is simulated with noise:

e fopen("sample_input_real_with_noise.h”,"r")

e fopen("sample_input_imag_with_noise.h”,"r")
Then the user should again go to Project and select Build Options, as indicated in Figure
6.17. This option is used to properly set up the compiler and linker, based on the characteristics
of the TMS320C6713 DSP board. The following settings should to be chosen or written, and
the option OK is selected after all settings are verified (see Figure 6.18).

e Under Compiler— Category—Basic

— The target version: C671x (-mv6710) should be highlighted.

e Under Compiler— Preprocessor:
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indez=fopen("sample_input_real_without_noise.h","r");

if ((index)==NULL} {
puts({"File could not be opsn');
exit(-1):
'

forim = 0: m < N; m++){

for(k = 0; k < B: k++){
fscanf (index, "Xf".&input_vectors[m][k].real):

¥

fclose(index);

index=fopen("sample input imag without noise","r");

if ( (index)==MULL) {
puts("File could not he opsn');
exiti-1);

for(m = 0; m < N; m++){
for(k = 0; k < B; k++){
facanf (index, "XE".&input_vectors[m][k].imag):

Figure 6.16: Specifying Input Files

' # /C6713 Device Simulator/CPU_1 - C671

File Edit Wiew NsnEWe Debug  Praofiler GEL

2 O | | Mew..
| Qpen...
m &dd Files ta Praject. ..
- Save

B & [ﬁ Close

- \ Use External Makefile. ..
=3 o Export bo Makefile. ..
- = P; Source Contral 3
L ] ol E
“1 | _ampilie Flie
{} Build
L Febuild al
- Build Clean
Configurations, ..
. Build Cptions. ..
A o | File Specific Opkions

Figure 6.17: Selecting Build Options
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Build Options for DSP_Beamforming. pjt (Debug)

General  Compiler ] Linker] DspBiosBuiIder] Link. Drder]

-a-fr"${ProL_disDebug” -d"_DEBUG" -mwE¥10

Basic
Target Wersion: N~
Advanced -
Fapibnrl Generate Debug Info:]FuII Symbolic Debug [-g] «
;Ils?e - Opt Speed vs Size: | 5peed Mast Ciitical [n -ms) = |
Parser Opt Level: Mone ot
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Diagnostics Program Level Opt.: | Naone L]

] | Cancel ‘ Help |

Figure 6.18: Building Options for Compiler— Category— Basic

Build Options for DSP_Beamforming. pjt (Debug)

General Compiler l Linker 1 DspBiosBuiIder] Link Drder]

-g -fi"$(Prol_dirhDebug” -d"_DEBUG" -mvE710

Cateqgory: Prepracesszor
Bazic Include Search Path [-i]:l
Advanced .
Feedback Pre-Define Symbol (-dj; |CHIP_E713
;Ilsesfamhly Undefine Symbal [-u): I
Preprocessing: INone j
Dignostics [~ Continue with Compilation [-ppa]

QK. | Cancel J Help ‘

Figure 6.19: Building Options for Compiler—Preprocessor—Pre-Define Symbol



Chapter 6. Beamforming Techniques Implementation on the DSP C6713 64

Build Options for DSP_Beamforming. pjt {Debug) E

General Compiler ] Linker ] DspBiosBuiIder] Link Drder]
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Categony: Advanced

B asic RTS5 Modifications: |Defns Mo RTS Funcs j

Feedback Auta Inline Threshold [-oi):
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[™ Tum Off Software Pipelining (-mu)
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[ Historic: C Painter to Const &lias Dizambiguation [-ox)

(] | Cancel | Help |

Figure 6.20: Building Options for Compiler—Advanced

— In Pre-Define Symbol, the following should be written: CHIP_6713. This specifies
the DSP chip that the target board utilizes (see Figure 6.19).

e Under Compiler—Advanced (see Figure 6.20):

— In Memory Models, Far (—mem_model: data=far)should be chosen.

— The Endianness type should be Little Endian.

e Under Linker— Libraries:

— In Included Libraries (-1), these libraries must be specified (see Figure 6.21):
rts6700.1ib; dsk6713bsl.lib; csl6713.1ib:

Now the user may click OK once all the previous building option settings have been established.

The next step is to compile the project DSP_Beamforming.pjt by selecting the option Re-
build All, as shown in the Figure 6.22: If compiled correctly, there should be zero errors,
at the output window, under Build, which is located at the bottom of the workspace (see
Figure 6.23). Once the project has compiled correctly, the user needs to select how many
sensors to use for the linear array: 32 or 64 for this example. In addition, the user has the

option of selected the input matrix with or without noise, as indicated previously. The user
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Build Options for DSP_Beamforming. pjt (Debug) E’@

General] Compiler  Linker DspBiosBuiIder] Link, Drder]
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R

Category: i~ Libraries
B asic v Exhaustively Read Libraries [-x]
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Figure 6.21: Building Options for Linker—Libraries:

e —

Rebuild all

Figure 6.22: Compiling DSP Beamforming Project in Simulation Environment

[Linking...] "C:“NCC3tudic_w3.3nC6000Ncgtoolssbin™clbx" -@"Debuy.lkf"

<Linking>

»» warning: creating .stack section with default size of 400 (hex) words.
Use

-stack option to change the default size.
>» warning: creating .sysmem section with default size of 400 (hex) words.

Use -heap option to change the default size.

Euild Complete,
0 Errors, 3 Warnings., 0 Remarks.

Figure 6.23: Successful Compilation of the DSP Beamforming Project

must copy the desired files (real and imaginary files of the desired input format) from either
the directory C:\CCStudio_v3.3\MyProjects\DSP_Beamforming\32 sensors_input _files_1
or C:\CCStudio_v3.3\MyProjects\DSP_Beamforming\64 sensors_input_files_1 and placed
in the directory C:\CCStudio_v3.3\MyProjects\DSP_Beamforming\Debug, as shown in
Figure 6.24. The folder Debug is created when the program compiles correctly for the first
time. Once this is done, the simulation application program is ready to be loaded and executed

on the simulated target, by following these subsequent steps:

e File—Load Program should be selected, as shown in Figure 6.25:
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Figure 6.25: Loading DSP Beamforming Program Application

e In order to load the program application to the simulated target, which is the C6713 De-
vice Simulator, the output file DSP_Beamforming.out, should be opened, as presented
in Figure 6.26. This file is located in the following directory:
C:\CCStudio_v3.3\MyProjects\DSP_Beamforming\Debug.

e Once the executable output file is loaded to the simulated target, the application program
can then be executed by clicking on the Run button, located on the left side of the

workspace, in the project window, shown in Figure 6.27:

After the beamforming application program has finished execution, the following .dat files are
created in the following directory:

C:\CCStudio_v3.3\MyProjects\DSP_Beamforming\Debug: Beam_pattern_image.dat and
Beam_pattern_real.dat, which correspond to the real and imaginary parts of the matrix con-

taining the beam pattern formations.
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Figure 6.27: Executing Program Application on Simulated Target
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6.3.3 Program Execution Procedure on Target Architecture

After completing the simulation analysis on the C6713 Device Cycle Accurate Simulator,
the program execution procedure is then carried out on the actual target architecture; that
is, the program application is compiled, loaded, and executed on the physical TMS320C6713
DSP board. In order to conduct this emulation analysis, the target board must be connected
to its power supply, and a USB connection is required to communicate the board with the

computer. This is shown in Figure 6.28

Fewar Supply usa

Figure 6.28: TMS320C6713 Target Board Connection,courtesy of Chassaing

To conduct the Emulation Analysis (see Figure 6.29), the user should close the existing
Code Composer Session of the Simulation Analysis, and access once again the Setup Code

Composer Studio v3.3 tool, following these subsequent steps:

Next to Available Factory Boards, under Family, select the option C67xx.

Under Platform, select dsk.

Under Endianness, select little.

Under Available Factory Boards, the option C6713 DSK-USB should appear. Here,
C6713 DSK-USB should be selected, by a single click, then pressing the Add button,
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Figure 6.29: C6713 DSK-USB Emulator Environment Selection

locating at the middle bottom. The emulator can also be selected by double clicking on

the emulator board.

e Next, press Save & Quit. Note: if there are any other boards under System Configu-
ration, proceed to remove them. This is done by selecting each board and hitting the
delete key. Only the C6713 DSK-USB must be selected.

e A prompt window will appear, asking the user if he/she wishes to save the changes made

to system configuration. The button Yes should be selected.

e A second prompt window will appear, asking the user if Code Composer Studio should

start on exit. The user should press Yes.

Once the target board is connected, the project DSP_Beamforming.pjt, created previously in
the simulation analysis, should be opened, which is located in the following directory:
C:\CCStudio_v3.3\ MyProjects\DSP_Beamforming. This is done by going to Project, and
under this option, selecting Open and the project file DSP_Beamforming.pjt.

Next, the same settings in Build Options should be verified, just as in the simulation procedure.
This is done by going to Project and selecting Build Options. The option Finish should not

be selected until all settings have been configured and verified. For the emulation analysis
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Figure 6.30: Compiling DSP Beamforming Project in Emulation Environment

procedure, the project is compiled in the same way as for the simulation procedure (see Figure
28).

6.3.4 Obtaining Beamforming Results using Matlab

The beamforming results for the simulation and emulation procedures can be viewed in Matlab,
executing the Matlab file reading_results_beamforming_Code_Composer.m. This file should
be previously placed in C:\CCStudio_v3.3\MyProjects\DSP_Beamforming\Debug. The
user should open this file and verify that the parameters L (number of senors), B (the number
of data points that each sensor will receive), M (number of modules) and N (the number of
sensors in each module) are the same as specified in the program application for the DSP
(see Figure 6.31). To obtain the beam pattern formations, Matlab must be launched, which

B Editor - C:\CCStudio_v3.3\MyProjects\DSP_ Beamforming\Debuglreading results_beamforming (]
File Edt Text Go Cell Tools Debug Desktop Window Help

DSH| {aRo e S deas F| Q8] BRE BB | s

@ [*BiB i8] - [0 |+ | [t |x | &0
1
2 %This program reads in the results obtained in Code Composer Studio
3 for Multi-Linear beamforming implementation
4 - clear all;
5= close all:
[
7 - L=64;
- M=3:
9 — N=8;
10 — B=-1:10"(-2):1;
11 — =xreal = load('Beamw pattern real.dat'):
o= ximag = load('EBesam pattern image.dat'):

Figure 6.31: Matlab Code for Reading DSP Results

is located at Start Menu—AIll Programs. For the majority of cases, a desktop icon of this
program exists, through which Matlab can also be opened by double clicking on this icon. In

the Matlab command window, the following two lines must be typed:

e cd C:\CCStudio_v3.3\MyProjects\DSP_Beamforming\ Debug

e reading_results_beamforming_Code_Composer
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Figure 6.32 presents an example of multiple beam pattern formations obtained from the DSP,

for 64 sensors.
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Figure 6.32: Beam Pattern Formations from DSP

6.4 A DSP Multicore Environment Architecture

In the search of an ideal hardware multicore architecture that is capable of deliverying high per-
formance, at a reasonable low power consumption, the TMS320C6474 multicore DSP from
Texas Instruments showcases as an ideal hardware environment for running the DFT beam-
forming techniques. As presented in [21], such multicore architecture possess the following

favorable features:

e 32-bit Instructions
e 3 TMS320C64x+"MDSP Cores, each at 1 GHz
e 32 kB L1P and L1D per core

e 3 MB of total L2 memory in two configurations

The TMS320C6474 multicore DSP presents the advantage of integrating three of TI's C64x+
cores, each core running at 1 GHz; this contributes to a delivery performance of 3 GHz. Ac-
cording to [21], TMS320C6474 multicore architectures are the highest-performance multicore
DSP generation in the TMS320C6000™™ DSP platform. Hence, the combination of three
potential DSP cores in a multicore architecture, can be ideally used to implement the DFT

beamforming techniques in parallel computational environment.
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Figure 6.33: TMS320C6474 Block Diagram, courtesy of Texas Instruments, Inc.



Chapter 7

Experimental Results

In this chapter, the essence of the DFT and Kronecker Beamforming Algoritm implementations,
the design-level approach used in implementing these algorithms, and the experimental results

obtained are presented and discussed in details.

7.1 DFT and Kronecker Beamforming Algorithm Design

In this section,the essence of developing the DFT and Kronecker Beamforming algorithms is
carefully described. Figure 7.1 illustrates the procedure followed in developing the beamforming
algorithms for the implementation platforms described in the subsequent section.  First, it
is assumed that an L x B input matrix is provided as input for these algorithms which is
characterized as follows. B distinct steering angles defined within the interval =% < 69 < 7,
are considered. Hence, B input vectors of the form & (B,) are defined, for each steering
direction By = sin(0p), for b =0,1..B — 1. These input vectors constitutes the columns of

the input matrix, as shown in Figure 7.2

According to Figure 7.1, the DFT beamforming technique consists of applying the FFT of
length L (provided that L sensors compose the linear array) to each column of the input
matrix, and replacing each column by its corresponding transform in the frequency domain.
After applying the FFT to all of the columns, the resulting new matrix consists of the beam
pattern formations, arranged as an L X B matrix. It is important to note that the beam
pattern formations are read by each row of the final matrix. More specifically, the beam
pattern contained in each row revails the maximum value, corresponding to the dominating
signal, with respect to a particular steering direction. As an example, Figure 7.3 represents a
beam pattern, for a linear array consisting of 64 sensors. The main lobe in the beam pattern

shown in Figure 7.3 indicates which of the B input signal vectors dominated, arriving at a
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Figure 7.3: Beam Pattern Formation Example for 64 Sensors

certain steering direction By = sin(6g). For this particular beam pattern, the main lobe is
detected at a steering direction of approximately 8 = .5, corresponding to an incidence angle
of 8 = 30°. In general, the main lobe of a particular beam pattern will indicate the steering

direction or angle at which the dominant signal is detected.

For the Kronecker Beamforming technique, according to Figure 7.1, the concept of modularity
and linear combination is applied. Having in mind that each of the B columns of the input
matrix is an input signal vector ¢ of length L, where L corresponds to the total number of
sensors in the linear array, the essence of this beamforming technique is described as follows
(see Figure 7.4). Kronecker beamforming operation considers the case when L, the number

of sensors can be expressed as L = MN. This beamforming technique consists of dividing

(1, ®F,)
1 . . . B
1 [
FFT of length N
2 [l ' : >

(LxB) (¥ xB)

Figure 7.4: Essence of Kronecker Beamforming Technique
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each input vector defined in terms of a specific steering direction (each column of the input
matrix shown in Figure 7.2), into M subvectors, each of length N; that is, the entire linear
array of L sensors are divided into M modules, where each module has N sensors Ag, ..An—_1
(see Figure 7.4). For each column of the input matrix divided into M subvectors, an FFTof
length N is applied to each subvector, through the kronecker operation (/p; ® Fp). Next, the
M transformed subvectors are linearly combined through addition, via the Kronecker operation

(U, ® Iy), to form a new transformed column vector of size N.

This same procedure is done for each column of the input matrix, and each new transformed
column vector of size N constitutes a column of the final output beam pattern matrix; in
other words, through the application of modularity and linear combination of M modules,
an equivalent, reduced beam pattern matrix of size N x B is obtained, in place of having a
larger beam pattern matrix of size L x B (see Figure 7.4). This demonstrates that through
modularity, a large linear array of size L = MN can be reduced to an equivalent linear array of
N sensors, where the N sensors of each module are linearly combined. For this technique, the
final beam pattern formations are also read by rows, in which the resulting beam patterns are

arranged as an N x B matrix, N being the number of sensors in each of the M modules.

7.2 DFT Beamforming Implementation Procedure

The implementations of the DFT and Kronecker Beamforming Algorithms are based on a linear
array configuration, consisting of L sensors, in order to take advantage of the FFT algorithms
for obtaining the beam pattern formations. Afterwards,Kronecker products formulations are
integrated to the DFT Beamforming technique, with the purpose of introducing the concept
of mapping the beamforming algorithm to a parallel architectural configuration through the

usage of modularity and linear combination.

The approach of designing the beamforming techniques consisted in first using MATLAB as
the principal tool for modeling the beamforming algorithms, in an ideal simulated environment
for signal processing applications. A series of tests were conducted in order to determine how
the spacing between sensors and the wavelength of the incoming signal can affect the beam
pattern formations, especially in the presence of noise; these tests are discussed with further

details in the next section.

Next, the DFT and Kronecker Beamforming techniques were implemented, using C language,
for execution on the DSP TMS320C6713, from Texas Instruments, Inc., applying the simula-
tion and emulation analysis procedures, defined in chapter 6. These beamforming techniques
were also implemented using C language for execution on the Gumstix Verdex. Further re-

search on using Kronecker product formulations for the mapping of the beamforming operation
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onto a parallel architecture, led to using the tool pMATLAB, as an ideal parallel simulation

environment, which was described in chapter 5 (see Figure 7.5).

DFT Beamforming Developing
Platforms
I
[ T
' MATLAB > ' DSP CG6713 ﬁ

Fs 44KHz
B C ARACY Tiricm J 225 MMz Intel Xeon Computer

Processor
1.90 GHz
LOED A RAN

Figure 7.5: Beamforming Techniques Implementation Platforms

7.2.1 Signal Analysis and Metrics

In this section, the general model for the beamformer is provided and an analysis is performed
on this model acting on an input signal when white Gaussian noise is assumed as background
noise. Let the steering direction By = 2Tm m € Z;. Then the generalized beamformer model

used in this work is expressed as follows [22]:

L[—1
xn(t) = 3 6, (t, %) e 28 CE) 4 n () mone Z,. (7.1)
n=0

The function randn(N,B) was used to generate the background noise. This function produces
pseudo-random values characterized from a normal distribution with mean zero and standard
deviation o one, of dimension N x B. Such background noise was added to the original input
matrix. Such noise was varied, by changing the amplitude. For example, the command in
MATLAB A x (0.5 * randn(N, B)), varies the amplitude of noise matrix by multiplying the
function randn(N,B) by a factor of A, where A is assumed to be an integer. The signal-
to-noise (SNR) ratio was used to compare the amount of an input signal to the amount of

background noise, defined as follows in dB:

E (I])°
E (Inl)?

E(¢l).

SNF\’:10/0910 E(|n|)'

= 20/0910 (7.2)
where E (|¢|) and E (|n]) denote the expected value or mean of an input vector and noise
vector, respectively. The higher the SNR is, the less impact the noise has over the desired

signal.
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Figure 7.6: SNR Analysis

Figure 7.6 presents a beam pattern formation in MATLAB, without noise (top graph) and
with noise (bottom graph), for A = 1 and 64 sensors. In this example a SNR between an

input vector and noise vector was -8.8528 dB.

Figure 7.7 presents a beam pattern formation in MATLAB, without noise (top graph) and
with noise (bottom graph), for A = 6 and 64 sensors. In this example a SNR between an

input vector and noise vector was -35.5705 dB.

The beam pattern formations obtained in the developing platforms MATLAB, DSP 6713,
Gumstix, and pMATLAB, were statistically compared, in order to determine the difference
among the data. A single beam pattern formation obtained in MATLAB was defined as a row
vector signal S;, [n], for n € Zg, B being the total number of steering directions detected
by the linear array. This signal is considered to be the original, ideal beam pattern formation,
since MATLAB is considered as the ideal tool by excellence for algorithm development. A
single beam pattern formation obtained from the DSP,Gumstix, and pMATLAB, was defined

as Siq [n], Sig[n], and Sj, [n], respectively.

Afterwards, the signals Siq [n], Sig [n], and S;, [n] were statistically compared to the ideal signal

Sjo [n] obtained in MATLAB. This was done by first calculating the following differences, with
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Figure 7.7: SNR Analysis (cont.)

respect to Sj, [n]:

Sio [n] = Sig [n] = x4 [n]
Sio [n] = Sio [n] = iz [n]
Sio [n] = Sig [n] = xg [n]
Sio[n] = Sip [n] = xp [n]

(7.3)

The difference between the beam pattern formation in MATLAB S;, [n] and the one obtained
by the DSP is represented by the signal x4 [n]. The difference between the ideal signal S;, [n]
and itself should result in the row vector of B zeroes, denoted as x4 [n]. The signal x4 [n]
denotes the difference between the beam pattern formation obtained in MATLAB and by the
Gumstix. The difference between the beam pattern formation in MATLAB Sj, [n] and the one

obtained in pMATLAB is represented by the signal x, [n].

The mean, variance, standard deviation, energy, and power are the signal metrics computed for
the different signals representing the beam pattern formations and the differences with respect
to the beam pattern formation obtained in MATLAB [23]. The mean of a signal is defined as

the signal average value of its samples, and represents the expected value:
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1\ &1
w=(g) Txb (7.9
The variance of a signal is defined as:

B—1
o2 = (;) > elol (7.5)

The variance is a measure of the signal value x [n] and the expected value or mean uy.The

standard deviation, denoted as ¢ is computed as the square root of the variance.

The total energy of a signal x [n] may be defined as:

B-1
e =Y X[ (7.6)
n=0

The average power of a signal x [n] is defined as the energy per sample:
€ 1\ 21
_ & _ 2
=% (3) > . (77)

Table 7.1 presents the signal metrics computed for the signals S;o, Sig. Sig. Sip and the
signals representing the difference with respect to the signal S;,. For this case, the number
of sensors L was 64, assuming that the linear array of sensors received a total of 256 steering
directions (B = 256).

Table 7.1: Signal Statistical Metrics

Mean Std Var Power Energy

Xg 2.3216e7741.1591e" 7/ 4.1810e76 1.748le”11 1.7480e711 4.4748e™9
Xg 2.3216e 7+1.1591e 7/ 4.1810e 6 1.748le 11 1.7480e 11 4.4748e 9

Xo 0 0 0 0 0
Xiz 0 0 0 0 0
Sio 0.9961 — 0i 7.9375 63.0039 63.7500  1.6320e"4
Sid 0.9961 — 0i 7.9375 63.0039 63.7500  1.6320e"4
Sig 0.9961 — 0i 7.9375 63.0039 63.7500  1.6320e"4
Sip 0.9961 — 0i 7.9375 63.0039 63.7500  1.6320e"4

From Table 7.1, it can be observed that the mean, variance (var), and standard deviation

(std)of the signals x4,xg, and X, resulted to be nearly zero values, as well as the power and
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for wm=1:1:1length(B):

Bki(l1,i) = Bim):%3teering Direction
$Bk = B2
for k=1:1:N

sample input matrix 1(k,m) = phi 0% (exp(J*2*%pi*{(k-1)]*Bk(l,1) *d/lawhda) )% Origins
zample input meatrix 2 (k,m) = phi 0¥ (exp(j*2*pi*{(k-1))*Bk(l,1) *d/ lawbda) |+
exp (2*pi*j*k* (d/ (lambda) ) * (random (' Mormal' ,0,sqre(0.1),1,1)) ) :%8ignal with noise
end
i = i+1;

end

Beam pattern 1
Beam pattern 2

fft(sample_input matrix_1);
fft(sample_input_matrix Z2);

Figure 7.8: DFT Beamforming MATLAB Code

energy. This indicates a very small or nearly no difference among the beam patteron formation

obtained from each of the developing platforms.

7.2.2 DFT and Kronecker Beamforming Implementation Results in MATLAB

Acoustic beamforming has been simulated in MATLAB. A variety of tests were conducted
in order to determine how the relationship between sensor spacing d and wavelength X, the
number of sensors L, and noise can affect the beamforming operation. Based on the results
obtained, it has been found that using a microphone spacing of d = % , where X\ corresponds
to the wavelength of the input signal, and incrementing the number of sensors, provided a
better beam pattern formation, especially in the presence of noise. Multi-beamforming was
first developed in MATLAB, in the AIP laboratory at the University of Puerto Rico, Mayaguez,
making use of the Discrete Fourier Transform (DFT) matrix. Afterwards, a DFT Kronecker

formulation was designed for the multi-beamforming operation.

Figure 7.8 and Figure 7.9 presents the core or essence of the beamforming techniques, imple-
mented IMATLABab, using DFT and Kronecker product formulations, respectively. Figure
7.10 represents a single beam pattern obtain, using DFT Beamforming technique for 32 sen-
sors. The relationship between sensor spacing d and wavelength X, denoted as the ratio % in
the signal model ¢(Bo) = do-e2"(5%0) derived in chapter 3 was analyzed in more details. As
part of the initial experiments conducted, it was desired to study how this relationship between
the sensor spacing and wavelength of the incoming signal can actually affect the detection and

quality of the beam patterns obtained from the linear array of L sensors.

Noise was simulated in MATLAB, by using the function randn(N,M), as previously defined, in
order to further test the beamforming operation of the linear array. In order to generate the
noise signal, arbitrary scalar values were generated with the function randn, which were then
added the original input signals. The noise was varied by changing the amplitude of the noise

signal.
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tPermutation Matrix
P N % = perm matrix(MN,3):
%Phase or Twiddle Matrix

DN ER=Dmacrix (N, R)

TN % = blkdiag({I_R, D N Rj:
(Identity Matrices

IR =eye(RR);

I3 = eye(s3,3);

IN = eye(M,N);

I M= eye(lM:;

t*Fourier Transform Matrices

F_ R = dftmtx(R):
F 3 = dftmex ()
T M= onesiM, 1):

3Besm pattern fomation Matrix

Besm pattern 1= kron(U M', I N | *kron(I_M, (kron(F_35,I_R)*T N 3)) *kron(I_M, (kron(I_S,F_R)*F N 5])

Fsample input _matrix 1:

4Beaw pattern of signals from the Same plane without noise

Figure 7.9: DFT Kronecker Beamforming MATLAB Code

DFT Beam Pattern Formations Results in MATLAB
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Figure 7.10: DFT Beamforming Pattern Example

In addition, multiple beam pattern formations were considered. Hence, for these initial tests,

the ratio % was varied in the range of % < % and % > % Figure 7.11 summarizes the results

obtained, considering the case of 32 sensors and Kronecker product formulations, where the

32 sensors were divided in 4 modules, each consisting of 8 sensors, and a total of 201 steering

directions were considered. Thus, for this case, as explained in section 7.1, 8 beam pattern

formations were obtained of length 201 values, resulting from the linear combination of the 4

modules of 8 sensor each: As it can be shown in Figure 7.11, for a ratio % > % indicating

the sensor spacing is larger than the wavelength, and taking as example % = 2%, each of the

8 beam patterns obtained resulted to have more than one main lobe in its respective beam
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Figure 7.11: Analyzing relationshipsensor spacing d and wavelength X\

pattern, making it difficult to detect the angle of incidence of the dominant incoming signal
at each of the 8 linearly combined beam atterns, especially in the presence of noise, as shown

at the bottom of Figure 7.11.

On the other hand, for case of% = % indicating that sensor spacing d is half of the wavelength
A, each of the 8 beam patterns were clearly formed, each resulting to have a single main lobe,
making it easy to identify the steering direction and hence, the angle of incidence of the
dominant incoming signal, from each beam pattern obtained. Even in the presence of noise,
the main lobe of each pattern formation suffered little distortion, making it possible to still

identify the steering direction and incidence angle of the dominant signal.

For the case of % > % indicating that the wavelength A is much larger than the sensor spacing
d, and taking as an example the case for % > % the following was observed; not all of the
beam patterns were detected, and the three main lobes that were detected resulted to be
wider. Hence for the case % > % the main lobes of some the the beam patterns are not

detected by some of the sensors, making the linear array seem blind at certain angles.

From these intial tests, it was shown that using the relationship % = % provided the best
beam pattern formations, in the sense that the single main lobe of each pattern can easily be

detected, so as to determine the direction of the dominant signal.

The next experiments conducted, having determined previously that % = % is the best guidline
to use for the design of the linear array, consisted in determining how the number of sensors can
further affect the beamforming operation, also considering the presence of noise. Subsequent

tests consisted of anaylzing single beam pattern, using Kronecker product formulations, for



Chapter 7. Experimental Results 84

32, 64, 128, and 256 sensors, assuming that all signals originate from the same wave plane
characterized by A. For each number of sensors, the total number of sensors was divided into
M modules, such that N, the number of sensors in each module resulted to be 4, for the

purpose of simplicity.

For these set of tests, the following notation is reviewed:

L denotes the number of sensors.

M denotes the number of modules

N denotes the length of the FFT applied to each module (N = 4)

= % denotes the senor spacing-wavelength ratio

>l

The range of steering angles was divided into intervals of size .01, for a total of 201

intervals between —* and 7.

The following sets of four beam pattern formations were obtained for 32, 64, 128, and 256
sensors, where the top plots represents the beam patterns without noise, and the bottom plots
are the beam patterns with noise added. Based on these results, it could be observed that,
as the number of sensors in the array incremented, a beam pattern with a more defined single
main lobe could be perceived, even in the presence of noise, with less distortion in the lobe
(see Figures 7.12,7.13,7.14, and 7.15).

After conducting the single beam pattern analysis, the number of sensors was once again
varied, in powers of two, for 32,64,128, and 256 sensors, considering for this case, multiple
beam pattern formations, as depicted in emphFigures 7.16,7.17,7.18, and 7.19). For these
tests, Kronecker product formulations were used, such that the number of sensors N for each

module was 8, resulting in 8 linearly combined beam pattern formations.

Once again, these tests showcase that as the number of sensors increments, the main lobe
of each beam pattern is made more distinguished and pronounced, even when there is noise

present in the input signals.

In summary, the implementations of the DFT and Kronecker beamforming algorithms initially
in MATLAB, served as an ideal tool and model by excelence for analyzing and determining how
the relationship between the sensor spacing and wavelength, and how the number of sensors
affect the beamforming operation of a linear sensor array. As the results have shown, using
a sensor spacing of d = % and incrementing the number of sensots help obtain better beam
pattern formations, including for the situation when there is noise or interference present in

the incoming signals to the linear array.
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Figure 7.13: Single Beam Pattern Formations for 64 sensors
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Figure 7.19: Multiple Beam Pattern Formations for 256 sensors

7.2.3 DFT and Kronecker Beamforming Implementation Results on DSP 6713

After implementing the DFT and Kronecker Beamforming algorithms in MATLAB, both beam-

forming operation techniques were developed in C language, for the implementation of such
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algorithms for the DSP 6713. The ideal sensor spacing guideline d = % obtained from the
series of experimental tests that were conducted in MATLAB was incorporated into implement-
ing these algorithms on the DSP. Here the Kronecker product formulation results obtained on
the DSP are presented.

The L x B complex input matrix was simulated in MATLAB, creating two .dat files, corre-
sponding to the real and imaginary parts of the input matrix. Such files served as the input
files for the DSP program application, developed in Code Composer Studio. Figure 7.20 de-

picts the implementation procedure. The output .dat files of the real and imaginary parts

Program Application Developed in Code
Composer Studio v3.3

Input Files generated in Matlab

Output Files generated by DSP

Figure 7.20: Beamforming Algorithm Implementations on the DSP

of the beam patterns generated by the DSP were read in MATLAB in order to obtain the
corresponding graph of the beam patterns. Figure 7.21 and Figure 7.22 presents the multiple
beam pattern formations for 32 and 64 sensors. As can be shown from Figures 7.21 and
7.22, simular results were obtained on the DSP, as in MATLAB.

7.2.4 Kronecker DFT Beamforming Implementation Results on Gumstix Verdex

After implementing the DFT and Kronecker Beamforming algorithms in MATLAB, and for the
DSP 6713, DFT Kronecker beamforming operation developed in C language, was executed on
the Gumstix Verdex. Here the Kronecker product formulation results obtained on the Gumstix

are presented.

The L x B complex input matrix was again simulated in MATLAB, creating two .dat files,

corresponding to the real and imaginary parts of the input matrix. Such files served as the input
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Figure 7.21: DSP Multiple Beam Pattern Formations for 32 sensors
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Figure 7.22: DSP Multiple Beam Pattern Formations for 64 sensors

files for the beamforming program application project, which was compiled on the MSN. Once
the project was compiled, the executable output file, along with the input files, were sent to the
Gumstix, via wireless communication. The tests conducted on the Gumstix also involved fixing
the number of points received by each sensor, while varying the number of sensors, from 32
to 8192, as powers of two. Figures 7.23 and 7.24 presents multiple beam pattern formations
obtained by using a fixed number 0f 256 points received at each sensor, for 32 and 64 sensors,

respectively.

EBeam-Forming on Gumstix
5 T : : T ; T

Magnitude

-1 -0.g -0.6 -0.4 -0.2 u] 0.2 0.4 06 0.8 1
Steering Direction

Figure 7.23: Gumstix Multiple Beam Pattern Formations for 32 sensors
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Figure 7.24: Gumstix Multiple Beam Pattern Formations for 64 sensors

7.2.5 DFT and Kronecker Beamforming Implementation Results in pMATLAB

Previous results obtained in MATLAB, on the DSP, and Gumstix have shown the effectiveness
of using Kronecker product formulations as a method for mapping the beamforming operation
onto a parallel computing architecture environment. In order to integrate further the concept
of multicore architecture to the beamforming operation, DFT and Kronecker beamforming
techniques were also implemented using the pMATLAB as an ideal tool for parallel simulation
environment. Figure 7.25 depicts the multicore simulation environment which pMATLAB

provides for parallel program applications. The implementation of the DFT and Kronecker

Application | mput é? Analysis Output

VectorMatrix  / User

Parallel Library Laver (pMatlab Interface
lerary Kernel Layer Hardware

‘ Messaging (MatizbMPI) H Math (Watiab) | Interface
ety TEEITLEL
Hardware LR, B

Figure 7.25: pMATLAB Multicore Simulation Environment, courtesy of Kepner, MIT Lincoln
Lab.

beamforming algorithms in pMATLAB produced similar results, as acquired in MATLAB and
from the DSP 6713. Figure 7.26 presents a single beam pattern formation, for 64 sensors,
when executing the program application in a multicore environment. Figure 7.27 presents
multiple beam pattern formations when executing the Kronecker beamforming application in
PMATLAB, also for 64 sensors. For both cases, 256 steering directions were considered; that

is, each sensor received 256 points of input data.
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Figure 7.26: DFT Beam Pattern Formation in pMATLAB for 64 sensors
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Figure 7.27: Kronecker Beam Pattern Formation in pMATLAB for 64

In addition to implementing the beamforming techniques in pMATLAB, a speedup analysis was
also conducted. In general, this analysis consisted of fixing the number of steering directions,
or the number of data points that each sensor in the linear array receives. The number of
sensors was varied as powers of two, from 16 to 8192 sensors. For each number of sensors,
the beamforming parallel application program was executed on 1,2,4,8,16,32, and 64 parallel
simulated processors. Figure 7.28 demonstrates the speedup obtained, considering the case

of the linear sensor array being capable of detecting 256 steering directions.
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Figure 7.28: Speedup Analysis in pMATLAB for 256 Steering Directions

As can be observed from Figure 7.28, the beamforming program application does indeed
exhibit a high parallel, linear characteristic in its structure. Also, it was observed throughout
this analysis that, as the number of sensors and the number of steering directions that the
linear array is capable of detecting incremented, the parallel nature of the program application
was conserved for up to more than 16 processors, without suffering early degration, as in other

applications.

7.2.6 DFT Beamforming Platforms Comparison

The Kronecker DFT beamforming technique was implemented and evaluated on the following

platforms:

e DSP C6713

e Gumstix Verdex
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e pMATLAB

In addition, the DFT beamforming technique was also evaluated in pMATLAB. The function
kron used in pMATLAB resulted to be implemented not so efficiently for a parallel environment,
from observing the large execution times obtained, especially as the number of procesors incre-
mented. On the other hand, the DFT beamforming technique provided much better execution
times, also in comparison with the Gumstix and DSP.The reason for this is that the function
fft is implemented in pMATLAB to permit the mapping and distribution of the columns of the
input matrix among the processors executing in parallel.Hence, as the number of processors

increased from 1,2,4,8,16,32, up to 64, better execution times were obtained.

Kronecker Kronecker Kronecker DFT
DSPC6713 | GumstixVerdex | pMATLAB | pMATLAB
Number of sensors | Execution Time (ms) | Execution Time (ms}) | Execution Time (ms) | Execution Time (ms)
32 70.4 29.76 7.18,413.44 0.16,0.3
64 140.45 62.75 1.6,46.76 02,04
128 281.36 125.59 8.72, 50.3 01,11
256 562.45 315.06 11.54,163 012,23
512 1124.54 673.28 28.92,97.48 0.2,4.86
1024 2221.55 1436.65 88.275, 166.66 0.3,9.94
2048 4442815 2711 296.7,486.3 0.5,20.88
4096 = 553161 1219.44,1469.4 039,62.76
8192 — 2223499 5138.05,531.45 1.86,135.98

Figure 7.29: DFT Beamforming Platforms Comparison
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Conclusions and Future Work

Discrete Fourier Transform (DFT) beamforming algorithms have been demonstrated to ef-
fectively obtain efficient beamforming operation results for linear sensor array configurations.
The DFT beamforming algorithms formulated using Kronecker products algebra have beem
proven to derive expressions for the beamforming operations, for the purpose of mapping these

operations onto a parallel architecture.

The development effort used the MATLAB numeric computation and software visualization
package, as an ideal simulated environment for signal processing applications. By initially
implementatng the DFT and Kronecker beamforming algorithms in MATLAB, this served as
an ideal tool and model by excelence for studying how the sensor spacing and wavelength
and the number of sensors could affect the beamforming operation of a linear sensor array.
By using a sensor spacing of d = % and incrementing the number of sensor, optimal beam

pattern formations were obtained, even in the presence of noise.

The DFT Beamforming algorithms were sucessfulling implemented on the DSP 6713 from
Texas Instruments, obtaining similar results as in MATLAB. Using pMATLAB as an ideal paral-
lel programming modeling environment, named pMATLAB, the computational performance of
parallel implementation techniques for beamforming operation demonstrated the high linearity
that the DFT beamforming algorithmas may possess in a multicore architectural environment.
It was shown that these DFT Beamforming techniques can exhibit high parallel speedup for
more than 16 processors, as the number of sensors in the array, and the number of steering

directions that can be detected are incremented.

As future work, the TMS320C6474 multicore DSP from Texas Instruments will be consid-
ered as the actual multicore architectural platform for implementing the DFT beamforming
algorithms, due to potential characteristics that this architecture exhibits, such as high perfor-

mance delivery at 3 GHz, through the integration of three DSP cores. The parallel program

94
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pMATLAB should be continued to be utilized as the ideal parallel simulation environment for

further testing and implementation work.



Appendix A

MATLAB DFT Beamforming Code

%Multi- Linear beamforming implementation in MATLAB, using DFT

% The number of steering angles considered is the number of Sensors in the
% system

clc;

clear all;

close all;

M=2"6;%Number of input sampled vectors and number of steering angles

N =276; %Number of sensors in linear array

d= 2;
lambda =2%d;
phi_0= 1;%Initial Amplitude of signal
A = 5; YAmplitude of noise signal
%B=-1:10"(-2):1; % —1<(B=SIN(THETA))<1
NumberOfPoints = 256;
B=-1:2/(Number0fPoints-1) :1
i=1;
for m=1:1:1length(B);
Bk(1,i) = B(m);%Steering Direction
for k=1:1:N
sample_input_matrix_1(k,m) = phi_O*(exp(j*2*pi*((k-1))*Bk(1,i)*d/lambda));% Original Sig
end
i = i+1;
end
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noise_signal = A#*(0.5*randn(N,NumberOfPoints));

sample_input_matrix_2 = sample_input_matrix_1+ noise_signal;%Signal with noise

Beam_pattern_1 = fft(sample_input_matrix_1);

Beam_pattern_2 = fft(sample_input_matrix_2);

%Steering angles in radians

%Plotting the beam pattern formed for some of the input vectors, where
%each column of the matrix Beam_pattern is a beam pattern of the

%hcorresponding input vector

channel = 8;

plot(B,abs(Beam_pattern_1(channel,:)), ’g’)
title (’DFT Beam Pattern Formations Results in MATLAB’);
xlabel (’Steering Direction’);
ylabel (’Magnitude’) ;
grid

figure

plot(B,abs(Beam_pattern_2(channel,:)), ’g’)
title (’DFT Beam Pattern Formations Results in MATLAB with Noise’);
xlabel(’Steering Direction’);
ylabel(’Magnitude’);
grid



Appendix B

MATLAB DFT Kronecker

Beamforming Code

%Multi- Linear beamforming implementation in MATLAB, based on the concepts

%using kroneckers

% The number of steering angles considered is the number of Sensors in the
% system

%clc;

clear all;

close all;

L = 64 % Number of sensors

M= 8JNumber of Modules

N =8; YNumber of sensors in linear array
d= 1;% distance between sensors
lambda =2%*d;% wavelength

phi_0= 1;%Initial Amplitude of signal
A =5; %Amplitude of noise signal
NumberOfPoints = 256;

B=-1:2/ (Number0fPoints-1):1

%B = -1:10"(-2):1;

i=1;

for m=1:1:1length(B);

Bk(1,i) = B(m);%Steering Direction
for k=1:1:L
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sample_input_matrix_1(k,m) = phi_O*(exp(j*2*pi*((k-1))*Bk(1,i)*d/lambda));% Original Sij

end

end

noise_signal =

A*(0.5*randn (L. ,NumberOfPoints)) ;

sample_input_matrix_2 = sample_input_matrix_1+ noise_signal;%Signal with noise

%Beam_pattern =

U_M = ones(M,1);
I_N = eye(N,N);
I_M = eye(M,M);

Beam_pattern_1=

Beam_pattern_2=

%Beam_pattern_1

%Beam_pattern_2

(B_DOA*sample_input_matrix) ;

kron(U_M’, I_N )xkron(I_M,dftmtx(N) )*sample_input_matrix_1; %Beam patt
kron(U_M’, I_N )xkron(I_M,dftmtx(N) )*sample_input_matrix_2; %Beam patt

(1/L) *Beam_pattern_1;

(1/maxNoise)*Beam_pattern_2;

%Plotting the beam pattern formed for some of the input vectors, where

%each column of the matrix Beam_pattern is a beam pattern of the

%corresponding
figure

channel=1:1:N

plot (B, abs (Beam_

input vector

pattern_1(channel,:)))

title(’Kronecker DFT Beam Pattern Formations in MATLAB’);

xlabel(’Steering Direction’);

ylabel(’Normalized Magnitude’);

grid

figure;

plot(B,abs(Beam_pattern_2(channel,:)))

title (’Kronecker DFT Beam Pattern Formations in MATLAB with Noise’);

xlabel(’Steering Direction’);

ylabel(’Normalized Magnitude’);

grid

realIn=real (Beam_pattern_1);

imagIn=imag(Beam_pattern_1);

save Beam_pattern_real.dat realln -ascii
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save Beam_pattern_image.dat imagln -ascii



Appendix C

DSP DFT Beamforming Code

#include "dsk6713_aic23.h"
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#include <stdio.h>
#include <limits.h>
#include <math.h>

#include <stdlib.h>
#include <ctype.h>

#define B 256 /*Number of points or steering directions received at each sensorx/
#define N 32 // Number of sensors

#define D 2 // Distance between sensors

#define L 2*D //1lambda

#define d_L 1/L_d
#tdefine PI 3.14159265358979
#define DELTA (2%PI)

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX *Y);

//void FFT(COMPLEX *Y, int n); //FFT prototype
COMPLEX input_vectors[N] [B];

COMPLEX Beam_pattern[N] [B];
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COMPLEX w[N];
COMPLEX x[N];

short iTwid[N/2];

float beta,a,b;
FILE *index;

void input_vector_generation(){

short m,k;

index=fopen("sample_input_real_without_noise.h","r");

if ((index)==NULL) {

puts("File could not be open");
exit(-1);

}

for(m = 0; m < N; m++){

for(k = 0; k < B; k++){

fscanf (index, "%f",&input_vectors[m] [k].real);

fclose(index) ;

index=fopen("sample_input_imag_without_noise","r");

if ((index)==NULL) {
puts("File could not be open");
exit(-1);
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for(m = 0; m < N; m++){
for(k = 0; k < B; k++){

fscanf (index, "%f",&input_vectors[m] [k].imag) ;

}

fclose(index) ;
//exit(-1);
}

void Beam_pattern_generation()

{ int col_input_matrix,i,j;

COMPLEX x_col[N];

for(col_input_matrix = 0; col_input_matrix < B; col_input_matrix++){

for (i=0;i<N;i++){
x_col[i] = input_vectors[i] [col_input_matrix];

+
FFT(x_col,N);

for (j=0;j<N;j++){
Beam_pattern[j] [col_input_matrix].real = x_col[j].real;

Beam_pattern[j] [col_input_matrix].imag = x_col[j].imag;

}

void main(){

int m,k,doblepts;
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//set up array of twiddle factors

input_vector_generation();

doblepts=2xN;

for(k = 0;k<N;k=k+1){
wlk] .real = cos((DELTAxk)/(doblepts));
//printf ("%.5f" ,Beam_matrix[m-1] [k-1].real );
wlk] .imag =-sin((DELTA*k)/(doblepts));
//printf ("%.5f\n" ,Beam_matrix[m-1] [k-1] .imag );

Beam_pattern_generation();

index = fopen("Beam_pattern_real.dat","w");

for (k = 0;k<M;k++){
for(m = 0;m<B;m++){

fprintf(index,"%.2f\n" ,Beam_pattern[k] [m] .real);

}
}

fclose(index);

index = fopen("Beam_pattern_image.dat","w");

for (k = 0;k<M;k++){

for(m = 0;m<B;m++){

fprintf (index,"%.2f\n" ,Beam_pattern[k] [m] . imag) ;

}
}
fclose(index);

puts("done") ;
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//FFT.c C callable FFT function in C

#define PTS 8 //# of points for FFT
#define D 5

#define Lambda (2xD)

typedef struct {float real,imag;} COMPLEX;

extern COMPLEX w[PTS]; //twiddle constants stored in w

void FFT(COMPLEX *Y, int N) //input sample array, # of points

{

COMPLEX templ,temp2; //temporary storage variables
int i,j,k; //loop counter variables
int upper_leg, lower_leg; //index of upper/lower butterfly leg
int leg_diff; //difference between upper/lower leg
int num_stages = 0; //number of FFT stages (iterations)

int index, step;

int doblepts = 2%PTS;
//index/step through twiddle constant
i=1; //log(base2) of N points= # of stages

num_stages +=1;
i= i%2;
Ywhile (i!=N);
leg_diff = N/2; //difference between upper&lower legs

step =doblepts/N; //step between values in twiddle.h
for (i = 0;i < num_stages; i++) //for N-point FFT
{
index = 0;
for (j = 0; j < leg_diff; j++)
{
for (upper_leg = j; upper_leg < N; upper_leg += (2xleg_diff))
{
lower_leg = upper_leg+leg_diff;
templ.real = (Y[upper_legl) .real + (Y[lower_leg]) .real;
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templ.imag = (Y[upper_legl) .imag + (Y[lower_leg]) .imag;

temp2.real = (Y[upper_legl) .real - (Y[lower_leg]) .real;

temp2.imag = (Y[upper_legl) .imag - (Y[lower_leg]) .imag;
(Y[lower_leg]) .real = temp2.realx*(w[index]) .real
-temp2.imag* (w[index]) . imag;
(Y[lower_leg]) .imag = temp2.realx(w[index]) .imag
+temp2.imag* (w[index]) .real;
(Y[upper_leg]) .real = templ.real;
(Y[upper_leg]l) .imag = templ.imag;
}
index += step;
}
leg_diff = leg_diff/2;
step *= 2;
}
i=0;
for (i = 1; i < (N-1); i++) //bit reversal for resequencing data
{
k = N/2;
while (k <= j)
{
i=3-k
k = k/2;

j=itk

if (i<j)

{
templ.real

(Y[31) .real;

(Y[31) .imag;
(Y[i]) .real;
(Y[i]) .imag;

templ.real;

templ.imag

(Y[31) .real
(Y[j1) .imag
(Y[i]) .real
(Y[i]) .imag

templ.imag;

}

return;
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DSP Kronecker DFT Beamforming

Cod

#include
Uint32 f

#include
#include
#include
#include

#include

#define
#define
#define
#define
#define
#define

typedef

€

"dsk6713_aic23.h"
s=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

<stdio.h>
<limits.h>
<math.h>
<stdlib.h>
<ctype.h>

L 64

M 8 //Number of FFT modules to compute

N 8// Length of each FFT module

B 201// Total number of input vectors defined for -1<sin(theta)<l
PI 3.14159265358979

DELTA (2*PI)

struct {float real,imag;} COMPLEX;

void FFT(COMPLEX* , int );
//void FFT(COMPLEX *Y, int n); //FFT prototype
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COMPLEX input_vectors[L] [B];
COMPLEX DFT_modules_matrix[L] [B];
COMPLEX Beam_pattern[N][B];
COMPLEX x_LI[L];

COMPLEX x_module_N[NJ;

COMPLEX w[N];
FILE *index;
void input_vector_generation(){
int m,k;
/*¥for (k = 0;k<N;k++){
for(m = 0;m<B;m++){
input_vectors[k] [m] .real=input_matrix[k] [m];

input_vectors[k] [m] . imag=input_matrix_imag[k] [m] ;

}

*/

index=fopen("sample_input_real_without_noise.h","r");

if ((index)==NULL) {

puts("File could not be open");
exit(-1);

}

for(m = 0; m < L; m++){
for(k = 0; k < B; k++){

fscanf (index, "%f",&input_vectors[m] [k].real);
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fclose(index) ;

index=fopen("sample_input_imag_without_noise.h","r");

if ((index)==NULL) {

puts("File could not be open");
exit(-1);

}

for(m = 0; m < L; m++){
for(k = 0; k < B; k++){

fscanf (index, "%f",&input_vectors[m] [k].imag) ;

}
fclose(index) ;
//exit(-1);

}

void Twiddle_factors_generation(){
int k, doblepts;
doblepts=2*N;

for(k = 0;k<N;k=k+1){
wlk] .real = cos((DELTAx*k)/(doblepts));

//printf ("Y,.5f" ,Beam_matrix[m-1] [k-1].real );
wlk] .imag =-sin((DELTA*k)/(doblepts));
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//printf ("% .5f\n" ,Beam_matrix [m-1] [k-1] .imag ) ;
}

}
void Beam_Pattern_Init(){

int 1i,j;

for(i=0;i<N;i++){
for(j=0;j<B;j++){
Beam_pattern[i] [j].real=0;
Beam_pattern[i] [j].imag=0;
}

}
void DFT_M_Modules_generation()
{ short i,j,k,p,b,c,n_index;

for(i=0;i<B;i++) {

b=0; // Marks the current position in each input vector

// Processing each input vector taken as a column of the matrix
for(j=0;j<L;j++){
x_L[j] = input_vectors[j][i];
}
// Divide each input vector into M modules
for (k=0;k<M;k++){
for (p=0;p<N;p++){
x_module_N[p] =x_L[b];
b++;
FFT (x_module_N,N);
n_index=b-N; // To place each DFT module currently in the output matrix
for(c=0;c<N;c++){
DFT_modules_matrix[n_index] [i]= x_module_N[c];

n_index++;
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void Linear_Combination_DFT_Modules(){

short i,j,k,m;

//Linear combination of the M DFT Modules
for(i=0;i<N;i++){
for(j=0;j<B;j++){
for (k=0;k<=L-N;k=k+N){

m =i+k;

Beam_pattern[i] [j].real = Beam_pattern[i] [j].real+ DFT_modules_matrix[m][j].real;

Beam_pattern[i] [j].imag = Beam_pattern[i] [j].imag+ DFT_modules_matrix[m] [j].imag;
}

void main(){

int m,k;

//set up array of twiddle factors
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112

input_vector_generation();

puts("Input vector Matrix generated");
Twiddle_factors_generation();
puts("Twiddle Factors generated");
DFT_M_Modules_generation() ;

puts("DFT Modules generated");
Beam_Pattern_Init();
Linear_Combination_DFT_Modules() ;

puts("Linear Combination of DFT Modules generated");

index = fopen("Beam_pattern_real.dat","w");

for (k = 0;k<N;k++){

for(m = 0;m<B;m++){

fprintf (index,"%.5f\n",Beam_pattern[k] [m].real);

}
}

fclose(index) ;

index = fopen("Beam_pattern_image.dat","w");

for (k = 0;k<N;k++){

for(m = 0;m<B;m++){

fprintf (index,"%.5f\n" ,Beam_pattern[k] [m].imag) ;

}
}
fclose(index) ;

puts("done") ;}
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Appendix E

Gumstix Verdex DFT Beamforming

Cod

€

//#include "dsk6713_aic23.h"

//Uint32

#include
#include
#include
#include

#include

#include

#include

/*Numbe
#define
#define
#define
#define
#define
#define
#define

/ KKk kkk

£s=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

<stdio.h>
<limits.h>
<math.h>
<stdlib.h>
<ctype.h>

<time.h>

<sys/time.h>

r of points or steering directions received at each sensor*/

B 256

N 32 // Number of sensors

D 2 // Distance between sensors
L 2*D //lambda

d_L 1/L_d

PTI 3.14159265358979

DELTA (2%PI)

%k k ok Constants defined for the FFT Fokok ook ok ok ook ok ok ok ok ok kokok /
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//#define PTS 64 //# of points for FFT
#define D 5
#define Lambda (2xD)

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX *Y);

//void FFT(COMPLEX *Y, int n); //FFT prototype
COMPLEX input_vectors[N] [B];

COMPLEX Beam_pattern[N][B];

COMPLEX w[NJ;

COMPLEX x[NJ;

short iTwid[N/2];

float beta,a,b;

//FILE *index;

/* Function that returns "a - b" in seconds */

double timeval_diff(struct timeval *a, struct timeval *b)

return
(double) (a->tv_sec + (double)a->tv_usec/1000000) -
(double) (b->tv_sec + (double)b—>tv_usec/1000000) ;

void input_vector_generation()

{
FILE *index;

short m,k;
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/*for (k = 0;k<N;k++)
{
for(m = 0;m<B;m++)

{

input_vectors[k] [m] .real=input_matrix[k] [m];
input_vectors[k] [m] .imag=input_matrix_imag[k] [m] ;
}

}

*/

printf ("Opening Sample input real without noise file\n");

/*********************** fopen *********************/

index=fopen("sample_input_real_without_noise.h","r");

if ((index)==NULL)

{
puts("File could not be open");

exit(-1);

for(m = 0; m < N; m++)
{
for(k = 0; k < B; k++)
{

fscanf (index, "%f",&input_vectors[m] [k].real);

fclose(index) ;

printf ("Closing Sample input real without noise file\n");

index=fopen("sample_input_imag_without_noise.h","r");

printf ("Opening Sample input imag without noise file\n");
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if ((index)==NULL)
{

puts("File could not be open");
exit(-1);

for(m = 0; m < N; m++)

{
for(k = 0; k < B; k++)
{
fscanf (index, "%f",&input_vectors[m] [k].imag) ;
}
}
fclose(index) ;

printf("Closing Sample input imag without noise file\n");
//exit(-1);
}

void Beam_pattern_generation()
{

int col_input_matrix,i,j;

COMPLEX x_col[N];

for(col_input_matrix = 0; col_input_matrix < B; col_input_matrix++)

{
for (i=0;i<N;i++)
{

x_col[i] = input_vectors[i] [col_input_matrix];

FFT(x_col);

for (j=0;j<N;j++)
{

Beam_pattern[j] [col_input_matrix].real = x_col[j].real;

Beam_pattern[j] [col_input_matrix].imag = x_col[j].imag;
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void main()
{
struct timeval t_ini, t_fin;
double secs;
int m,k,doblepts;
FILE *index;
//set up array of twiddle factors

input_vector_generation() ;

doblepts=2*N;

for(k = 0;k<N;k=k+1)

{
wlk] .real = cos((DELTAxk)/(doblepts));
//printf ("7 .5f" ,Beam_matrix[m-1] [k-1].real );
wlk] .imag =-sin((DELTAx*k)/(doblepts));
//printf ("%.5f\n" ,Beam_matrix[m-1] [k-1] .imag );
}

gettimeofday (&t_ini, NULL);

Beam_pattern_generation() ;

gettimeofday (&t_fin, NULL);

secs = timeval_diff(&t_fin,&t_ini);

printf("%.16g milliseconds\n", secs *1000.0);

index = fopen('"Beam_pattern_real.dat","w");

printf ("Writing Beam pattern realln");

for (k = 0;k<N;k++)



Appendix E. Gumstix Verdex DF T Beamforming Code 119

for(m = 0;m<B;m++)
{
fprintf (index,"?%.2f\n" ,Beam_pattern[k] [m] .real);

fclose(index) ;
printf("Closing Beam pattern realln");
index = fopen("Beam_pattern_image.dat","w");
printf ("Writing Beam pattern imag\n");
for (k = 0;k<N;k++)
{
for(m = 0;m<B;m++)
{

fprintf (index,"%.2f\n" ,Beam_pattern[k] [m] .imag) ;

}

fclose(index) ;

printf("Closing Beam pattern imag\n");

puts("done") ;

\******************* FFT *************************/

//FFT.c C callable FFT function in C

//#define PTS 64 //# of points for FFT
//#define D 5

//#define Lambda (2xD)

//typedef struct {float real,imag;} COMPLEX;
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//extern COMPLEX w[PTS];

//twiddle constants stored in w

void FFT(COMPLEX *Y) //input sample array, # of points

{
COMPLEX templ,temp2; //temporary storage variables
int 1i,j,k; //loop counter variables
int upper_leg, lower_leg; //index of upper/lower butterfly leg
int leg_diff; //difference between upper/lower leg
int num_stages = 0; //number of FFT stages (iteratioms)
int index, step;

int

doblepts = 2x*N;
//index/step through twiddle constant
1; //log(base2) of N points= # of stages

num_stages +=1;

1 = 1%2;

}while (i!=N);

leg_diff = N/2; //difference between upper&lower legs

step =doblepts/N; //step between values in twiddle.h

for (i = 0;i1 < num_stages; it++) //for N-point FFT

{

index = 0;
for (j = 0; j < leg_diff; j++)
{
for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))
{
lower_leg = upper_leg+leg_diff;

templ.real = (Y[upper_leg]l) .real + (Y[lower_leg]) .real;

templ.imag = (Y[upper_legl) .imag + (Y[lower_leg]) .imag;

temp2.real = (Y[upper_legl).real - (Y[lower_legl) .real;

temp2.imag = (Y[upper_legl) .imag - (Y[lower_legl) .imag;

(Y[lower_leg]) .real = temp2.realx*(w[index]) .real
-temp2.imag* (w[index]) . imag;

(Y[lower_leg]) .imag = temp2.realx*(w[index]) .imag

+temp2.imag* (w[index]) .real;



Appendix E. Gumstix Verdex DF T Beamforming Code 121

(Y[upper_leg]) .real = templ.real;

(Y[upper_leg]) .imag = templ.imag;
}
index += step;
}
leg_diff = leg diff/2;
step *= 2;
}
j=0;

for (i = 1; i < (N-1); i++) //bit reversal for resequencing data

k = N/2;
while (k <= j)
{
ik
k = k/2;

.
Il

b
J=3tk
if (i<j)
{
templ.real

(Y[31) .real;

templ.imag
(Y[31) .real
(Y[J1) .imag
(Y[il) .real

(Y[3]1) . imag;
(Y[i]) .real;
(Y[i]) . imag;
templ.real;

(Y[i]) .imag = templ.imag;

return;
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Gumstix Verdex DFT Kronecker

Beamforming Code

//#include "dsk6713_aic23.h"
//Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#include <stdio.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>

#include <sys/time.h>

#define L 8192 //Number of sensors

#define M 1024 //Number of FFT modules to compute

#define N 8// Length of each FFT module

#define B 256// Total number of input vectors defined for -1<sin(theta)<l1
#define PI 3.14159265358979

#define DELTA (2*PI)

#define PTS 8 //# of points for FFT

#define D 5
#define Lambda (2xD)
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typedef struct {float real,imag;}COMPLEX ;
void FFT(COMPLEX *Y, COMPLEX *w);

//void FFT(COMPLEX *, int , COMPLEX);
//void FFT(COMPLEX* , int );

//void FFT(COMPLEX %Y, int n); //FFT prototype
COMPLEX input_vectors[L] [B];

COMPLEX DFT_modules_matrix[L] [B];

COMPLEX Beam_pattern[N] [B];

COMPLEX x_L[L];

COMPLEX x_module_N[N];

COMPLEX w([N];

//FILE *index;

/* retorna "a - b" en segundos */

double timeval_diff(struct timeval *a, struct timeval *b)

{
return
(double) (a->tv_sec + (double)a->tv_usec/1000000) -
(double) (b—>tv_sec + (double)b->tv_usec/1000000) ;
}

void input_vector_generation()

{

FILE *index;

int m,k;

/xfor (k = 0;k<N;k++)
{
for(m = 0;m<B;m++)

{

input_vectors[k] [m] .real=input_matrix[k] [m];

input_vectors[k] [m] . imag=input_matrix_imag[k] [m];
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*/
printf ("Opening sample input real without noise file\n");
[ Fokskkskodok ok skoskokskok koo skt ok sk f O P @TLK sk kksk ko sk sk ke sk ks ok s sk sk ke sk ok sk ke ok /
index=fopen("sample_input_real_without_noise.h","r");
if ((index)==NULL)

{

puts("File could not be open");
exit(-1);
}

for(m = 0; m < L; m++)

{
for(k = 0; k < B; k++)
{
fscanf (index, "%f",&input_vectors[m] [k].real);
}
}

fclose(index) ;

printf("Closing sample input real without noise file\n");

/*********************fopen*****************************/

index=fopen("sample_input_imag_without_noise.h","r");

printf ("Opening sample input imag without noise file\n");

if ((index)==NULL)
{
puts("File could not be open");
exit(-1);

for(m = 0; m < L; m++)
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{
for(k = 0; k < B; k++)
{
fscanf (index, "%f",&input_vectors[m] [k].imag);
}
}

fclose(index) ;
printf("Closing sample input imag without noise file\n");

//exit (1) ;

void Twiddle_factors_generation()
{

int k, doblepts;

doblepts=2*N;

for(k = 0;k<N;k=k+1)

{
wlk] .real = cos((DELTAxk)/(doblepts));
//printf ("Y,.5f" ,Beam_matrix[m-1] [k-1].real );
wlk] .imag =-sin((DELTAx*k)/(doblepts));
//printf ("%.5f\n" ,Beam_matrix[m-1] [k-1].imag );
}

void Beam_Pattern_Init()
{
int 1i,j;
for(i=0;i<N;i++)
{
for(j=0;j<B;j++)
{
Beam_pattern[i] [j].real=0;
Beam_pattern[i] [j].imag=0;
}
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b
b
void DFT_M_Modules_generation() //Comienza operacion de Beamforming
{

short i,j,k,p,b,c,n_index;
for(i=0;i<B;i++)
{
b=0; // Marks the current position in each input vector

// Processing each input vector taken as a column of the matrix

for(j=0;j<L;j++)
{
x_L[j] = input_vectors[j]l[i];
}

// Divide each input vector into M modules

for (k=0;k<M;k++)
{
for (p=0;p<N;p++)
{
x_module_N[p] =x_L[b];
b++;
}
FFT(x_module_N, w);
n_index=b-N; // To place each DFT module currently in the output matrix
for(c=0;c<N;c++)
{
DFT_modules_matrix[n_index] [i]= x_module_N[c];

n_index++;

void Linear_Combination_DFT_Modules()
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{
short 1i,j.,k,m;
//Linear combination of the M DFT Modules
for(i=0;i<N;i++)
{
for(j=0;j<B;j++)
{
for (k=0 ; k<=L-N; k=k+N)
{
m =i+k;
Beam_pattern[i] [j].real = Beam_pattern[i] [j].real+ DFT_modules_matrix[m] [
Beam_pattern[i] [j].imag = Beam_pattern[i] [j].imag+ DFT_modules_matrix[m] [
}
}
}
}

/*********************************main*********************************/

void main()

{
struct timeval t_ini, t_fin;
double secs;
int m,k;

FILE *index;

//set up array of twiddle factors

input_vector_generation() ;

puts("Input vector Matrix generated\n");
Twiddle_factors_generation();

Beam_Pattern_Init(); /*Inicializa en Beamformingx*/

puts("Twiddle Factors generated\n");

gettimeofday (&t_ini, NULL);
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DFT_M_Modules_generation() ;
puts ("DFT Modules generated\n");

Linear_Combination_DFT_Modules() ;

gettimeofday (&t_fin, NULL);
puts("Linear Combination of DFT Modules generated\n");

secs = timeval_diff(&t_fin, &t_ini);
printf("%.16g milliseconds\n", secs * 1000.0);

index = fopen("Beam_pattern_real.dat","w");
printf ("Opening Beam pattern real\n");
for (k = 0;k<N;k++)
{
for(m = 0;m<B;m++)
{
fprintf (index,"%.5f\n" ,Beam_pattern[k] [m].real);

¥
fclose(index) ;

printf("Closing Beam pattern realln");

printf ("Opening Beam pattern image\n");

index = fopen("Beam_pattern_image.dat","w");
for (k = 0;k<N;k++)
{
for(m = 0;m<B;m++)
{
fprintf (index,"%.5f\n" ,Beam_pattern[k] [m] .imag) ;

fclose(index) ;

printf("Closing Beam pattern realln");
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printf ("Opening Beam pattern image\n");

index = fopen('"Beam_pattern_image.dat","w");
for (k = O;k<N;k++)
{
for(m = 0;m<B;m++)
{
fprintf(index,"%.5f\n" ,Beam_pattern[k] [m] .imag) ;

}
fclose(index) ;
printf ("Closing Beam pattern image\n");
puts('"done") ;
}

//FFT.c C callable FFT function in C

//#define PTS 8

//#define D 5

//#define Lambda (2xD)

//typedef struct {float real,imag;} COMPLEX;
//extern COMPLEX w[PTS];

void FFT(COMPLEX *Y, COMPLEX *w) //input sample array, # number of points

{

COMPLEX templ;

COMPLEX temp2; //temporary storage variables
int 1i,j,k; //loop counter variables

int upper_leg, lower_leg; //index of upper/lower butterfly leg
int leg_diff; //difference between upper/lower leg

int num_stages = 0; //number of FFT stages (iterations)
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int index, step;
int doblepts = 2x*N;
//index/step through twiddle constant

i=1; //log(base2) of N points= # of stages

num_stages +=1;

i= i%2;

Ywhile (i!=N);

leg_diff = N/2; //difference between upper&lower legs

step = doblepts/N; //step between values in twiddle.h

for (i = //for N-point FFT

{

index = 0;

0;i < num_stages; i++)

for (j = 0; j < leg_diff; j++)
{
for (upper_leg = j; upper_leg < N; upper_leg += (2xleg_diff))
{
lower_leg = upper_leg+leg_diff;
templ.real = (Y[upper_legl) .real + (Y[lower_leg]) .real;

templ.imag = (Y[upper_legl) .imag + (Y[lower_legl) .imag;

temp2.real = (Y[upper_legl).

temp2.imag = (Y[upper_legl).

(Y[lower_leg]) .real = temp2.

(Y[lower_leg]) .imag = temp?2.

(Y[upper_leg]) .real = templ.
(Y[upper_leg]) .imag = templ.
}

index += step;

leg_diff = leg_diff/2;
step *= 2;
}
j=0;
for (i = 1; 1 < (N-1); i++) //bit

real - (Y[lower_leg]) .real;
imag - (Y[lower_legl) .imag;

real*(w[index]) .real-temp2.imag* (w[index]) .imag;

real*(w[index]) .imag+temp2.imag* (w[index]) .real;

real;

imag;

reversal for resequencing data
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{
k = N/2;
while (k <= j)
{
i=3-k
k = k/2;
}
J=3+k
if (i<j)
{
templ.real = (Y[j]) .real;
templ.imag = (Y[jl).imag;
(Y[31) .real = (Y[i]) .real;
(Y[j]) .imag = (Y[i]).imag;
(Y[i]) .real = templ.real;
(Y[i]) .imag = templ.imag;
}
}
return,;



Appendix G

pPMATLAB DFT Beamforming Code

%Multi- Linear beamforming implementation in MATLAB, using DFT

% The number of steering angles considered is the number of Sensors in the

% system
N = 2°6; % NxB Matrix size.

% Turn parallelism on or off.

PARALLEL = 0; % Can be 1 or 0. 0K to change.

% Initialize pMatlab.

% Initialize pMatlab.
pMatlab_Init;

Ncpus = pMATLAB.comm_size;
my_rank = pMATLAB.my_rank;

% Create Maps.
mapX = 1; mapY = 1;
if (PARALLEL)
% Break up channels.
map([1 Ncpus], {}, 0:Ncpus-1 );
map([1 Ncpus], {}, 0:Ncpus-1 );

mapX

mapY
%mapZ = map([Ncpus 11, {}, 0:Ncpus-1 );
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end

close all;

%B=-1:10"(-2):1;
NumberOfPoints = 256;
B=-1:2/(Number0fPoints-1):1;

sample_input_matrix_1 = zeros(N,length(B), mapX);
Beam_pattern_1 = zeros(N,length(B) ,mapY);

d= 2;
lambda =2%*d;
phi_0= 1;%Initial Amplitude of signal
i=1;
% —1<(B=SIN(THETA))<1 201 points
for m=1:1:length(B);

Bk(1,i) = B(m);%Steering Direction
for k=1:1:N
% Original Signal
sample_input_matrix_1(k,m) = phi_O*(exp(j*2*pi*((k-1))*Bk(1,i)*d/lambda)) ;

end
i = i+1;

end

tic;
Beam_pattern_1 = fft(sample_input_matrix_1);

elapsedTime = toc;

disp([’Elapsed time = ’ ,num2str(elapsedTime,’%0.4f’),’ sec.’]);

%Plotting the beam pattern formed for some of the input vectors, where

%each column of the matrix Beam_pattern is a beam pattern of the

%corresponding input vector
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y = local(Beam_pattern_1);

figure;
channel=6;
plot (B, abs(y(channel,:)));

title(’pMatlab DFT Beam Pattern Formations’);
xlabel(’Steering Direction’);
ylabel(’Magnitude’);

grid

disp(’SUCCESS’) ;
pMatlab_Finalize;
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pPMATLAB DFT Kronecker

Beamforming Code

%Multi- Linear beamforming implementation in MATLAB, based on the concepts

%using kroneckers

% The number of steering angles considered is the number of Sensors in the

% system

% Turn parallelism on or off.

PARALLEL =0; % Can be 1 or 0. OK to change.

% Initialize pMatlab.
pMatlab_Init;

Ncpus = pMATLAB.comm_size;
my_rank = pMATLAB.my_rank;

% Create Maps.

mapX = 1; mapY = 1; mapf=1;

if (PARALLEL)
% Break up channels.
mapX = map([ 1 Ncpus]l, {}, 0:Ncpus-1 );
mapY = map([ 1 Ncpus], {}, 0:Ncpus-1 );

135
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end

close all;

L = 64 % Number of sensors

M= 8JNumber of Modules

N =8 %Number of sensors in linear array
d= 1;% distance between sensors

lambda =2%*d;% wavelength

phi_0= 1;%Initial Amplitude of signal

NumberOfPoints = 256;

B=-1:2/(NumberO0fPoints-1):1;

sample_input_matrix_1 = zeros(L,length(B), mapX);
Beam_pattern_1 = zeros(L,length(B) ,mapY);

U_M = ones(M,1);
I_N = eye(N,N);
I_M = eye(M,M);
i=1;

for m=1:1:1length(B);
Bk(1,i) = B(m);%Steering Direction
for k=1:1:L
%Signals from the same Monochromatic plane
sample_input_matrix_1(k,m) = phi_O*(exp(j*2*pi*((k-1))*Bk(1,i)*d/lambda));
end
1= 1i+1;

end

tic;
Beam_pattern_1= kron(U_M’, I_N )*kron(I_M,dftmtx(N) )*sample_input_matrix_1; %Beam patt

elapsedTime = toc;
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disp([’Elapsed time = ’ ,num2str(elapsedTime,’%0.4f’),’ sec.’]);

%Plotting the beam pattern formed for some of the input vectors, where
%each column of the matrix Beam_pattern is a beam pattern of the

%corresponding input vector

figure

channel=1:1:N;

plot(B,abs(Beam_pattern_1(channel,:)))
title (’Kronecker DFT Beam Pattern Formations in pMATLAB’);
xlabel (’Steering Direction’);
ylabel(’Magnitude’) ;
grid

pMatlab_Finalize;

realQut=real (Beam_pattern_1);

imagOut=imag(Beam_pattern_1);

save Beam_pattern_real.dat realOut -ascii

save Beam_pattern_image.dat imagOut -ascii

}
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Signal Analysis and Metrics in
MATLAB

%This program conducts a signal analysis between the beamforming data obtained in MATLAB
%The third row will be analyzed from each data
clear all;

close all;

L=64;
M=8;
N=8;
B = 256; % Number of points or plane waves received at each sensor

%0btaining original signal Sio from MATLAB

xreal = load(’Beam_pattern_realMATLAB.dat’);

ximag = load(’Beam_pattern_imageMATLAB.dat’);
Sio = xreal+ j*ximag;

Sio = Sio(3,:);

%0btaining original signal Sid from DSP

xreal = load(’Beam_pattern_realDSP.dat’);

ximag = load(’Beam_pattern_imageDSP.dat’);
Sid = xreal+ j*ximag;

Sid = Sid(3,:);
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%0btaining original signal Sig from Gumstix

xreal = load(’Beam_pattern_realGumstix.dat’);

ximag = load(’Beam_pattern_imageGumstix.dat’);
Sig = xreal+ j*ximag;

Sig = Sig(3,:);

%0btaining original signal Sip from pMATLAB

xreal = load(’Beam_pattern_real pMATLAB.dat’);

ximag = load(’Beam_pattern_image_pMATLAB.dat’);
Sip = xreal+ j*ximag;

Sip = Sip(3,:);

%Calculating difference between the original, ideal signal obtained in

%MATLAB, with the other platforms

xiz = Sio - Sio;

xd = Sio - Sid;
xg = Sio - Sig;
xp = Sio - Sip;

%Calculating the mean of each signal Sio, Sid, Sig, Sip, and xiz, xd, xg, xp

u_Sio = mean(Sio);
u_Sid = mean(Sid);
u_Sig = mean(Sig);
u_Sip = mean(Sip);

u_xiz = mean(xiz);

u_xd = mean(xd);
u_xg = mean(xg);
u_xp = mean(xp);

%Calculating the variance of each signal Sio, Sid, Sig, Sip, and xiz, xd, xg,

%hxp
var_Sio = var(Sio);
var_Sid = var(Sid);
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var_Sig = var(Sig);

var_Sip = var(8ip);

var_xiz = var(xiz);

var_xd = var(xd);
var_xg = var(xg);
var_xp = var(xp);

%Calculating the standard variance of each signal Sio, Sid, Sig, Sip, and xiz, xd,

hXg, Xp

std_Sio = std(Sio);
std_Sid = std(Sid);
std_Sig = std(Sig);
std_Sip = std(Sip);
std_xiz = std(xiz);
std_xd = std(xd);
std_xg = std(xg);
std_xp = std(xp);

%Calculating the Energy of Sio, Sid, Sig, Sip, and xiz, xd,
hxg, xp

for b = 1:1:B

En_Sio(1,b) = abs(Sio(1,b))"2;
En_Sid(1,b) = abs(Sid(1,b))"2;
En_Sig(1,b) = abs(Sig(1,b))"2;
En_Sip(1,b) = abs(Sip(1,b))"2;
En_xiz(1,b) = abs(xiz(1,b))"2;
En_xd(1,b) = abs(xd(1,b))"2;

En_xg(1,b) = abs(xg(l,b))"2;
En_xp(1,b) abs(xp(1,b))"2;

end

En_Sio = sum(En_Sio);
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En_Sid = sum(En_Sid);
En_Sig = sum(En_Sig);
En_Sip = sum(En_Sip);
En_xiz = sum(En_xiz);
En_xd = sum(En_xd);
En_xg = sum(En_xg);
En_xp = sum(En_xp);

%Calculating the Power of Sio, Sid, Sig, Sip, and xiz, xd,

hxg, xp
P_Sio = (1/B)*En_Sio;
P_Sid = (1/B)*En_Sid;
P_Sig = (1/B)*En_Sig;
P_Sip = (1/B)*En_Sip;
P_xiz = (1/B)*En_xiz;
P_xd = (1/B)*En_xd;
P_xg = (1/B)*En_xg;

P_xp = (1/B)*En_xp;
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