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Abstract of Thesis Presented to the Graduate School

of the University of Puerto Rico in Partial Fulfillment of the

Requirements for the Degree of Master of Science in Computer Engineering

Classifying Disease-related Tweets in the Twitter Health

Surveillance System

Public health officials, hospital directors, and other professionals related with health

disciplines have to track and report disease outbreaks that affect populations around the

world. Often, the data comes in reports and Comma Separated Values (CSV) files from

hospitals, and private doctor’s offices. Typically, these reports are generated manually,

increasing the risk of human error contained in transcript, analysis, charts, and different

indicators that are used by professional organizations such as the United States (US)

Center for Disease Control (CDC), World Health Organization (WHO) or US Health &

Human Services (HHS). The processing and understanding of all these data might take

weeks and the official warnings to a population could arrive too late. Poor and undeserved

communities normally are highly affected since limited access to medical services often

means that medical care attends the outbreaks when the major part of the community is

already affected.

In this research we present the Twitter Health Surveillance (THS) application frame-

work. THS is designed as an integrated platform to help health officials collect tweets,

determine if they are related with a medical condition, extract metadata out of them, and

create a big data warehouse that can be used to further analyze the data. THS is built

atop open source tools and provides the following value added services: Data Acquisition,

Tweet Classification, and Big Data Warehousing.

In order to validate THS, we have created a collection of roughly twelve thousands

labelled tweets. These tweets contain one or more target medical terms, and the labels

indicate if the tweet is related or not to a medical condition. We used this collection to test
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various machine learning models based on Recurrent and Convolutional Neural Networks.

Our experiments show that we can classify tweets with 96% precision, 91% recall, and

86% F1 score. These results compare favorably with recent research on this area, and

show the promise of our THS system.
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Resumen de tesis presentada a la Escuela Graduada

de la Universidad de Puerto Rico como requisito parcial de los

requerimientos para el grado de Maestŕıa en Ciencia de Ingenieŕıa de Computadoras

Clasificación de tweets relacionados con enfermedades en

Twitter Health Surveillance

Oficiales de salud pública, directores de hospitales, y otros profesionales relacionados con

disciplinas del área de salud, tienen que proveer seguimiento y reportar brotes de enfer-

medades, que afectan a las poblaciones alrededor del mundo. T́ıpicamente, estos reportes

son generados manualmente, incrementando el riesgo del error humano en la transcripción,

análisis, ilustración y diferentes indicadores que son usados por organizaciones profesionales

como el Centro de Control de Enfermedades de los Estados Unidos de Norteamérica (CDC),

la Organización Mundial de la Salud (WHO) o por el Departamento de Salud y Servicios

Humanos de los Estados Unidos de Norteamérica (HHS). El procesamiento y entendimiento

de toda esta data puede tardar unas semanas y las alertas de oficiales pueden llegar muy

tarde a la población. Las comunidades más pobres y desamparadas normalmente están

altamente afectadas debido a las limitaciones para acceder a los servicios médicos, y muchas

veces esto significa que el personal médico atiende los brotes muy tarde, cuando la mayor

parte de la comunidad ya está afectada.

En esta investigación presentamos Twitter Health Surveillance (THS) como una

aplicación de referencia. THS está diseñada como una plataforma integrada para ayudar a

los oficiales de salud en la recolección de tweets, determinando si estos están relacionados

con una condición médica, extraer los metadatos y crear la bodega de grandes datos,

que pueden ser usados para un futuro análisis de los mismos. THS está construido con

herramientas de acceso libre y provee los siguientes servicios de valor agregado: adquisición

de los datos, clasificación de los tweets y almacenamiento de grandes datos.

Con el fin de validar THS, nosotros creamos una colección de aproximadamente doce mil
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tweets etiquetados en base a términos médicos. Estos tweets contienen uno o más términos

médicos espećıficos y las etiquetas indicando si el tweet está relacionado con una condición

médica o no. Nosotros usamos esta colección para probar varios modelos de aprendizaje

automático, modelos basados en redes neuronales recurrentes y convolucionales. Nuestros

experimentos muestran que nosotros podemos clasificar tweets con 96% de precisión,

91 % de recall y 86% de F1 Score. Estos resultados comparan favorablemente con las

investigaciones recientes en esta área y muestran la promesa de nuestro sistema THS para

identificar que mensajes están realmente relacionados con condiciones médicas.
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Chapter 1

Introduction

1.1 Motivation

Public health officials, hospital directors, and other professionals related with health

disciplines have to track and report disease outbreaks that affect populations around the

world. Typically, the data comes in reports and CSV files from hospitals, and private

doctor’s offices. Typically, these reports are generated manually, increasing the risk of

human error contained in transcript, analysis, charts, and different indicators that are used

by professional organizations such as the United States (US) Center for Disease Control

(CDC), World Health Organization (WHO), or the US Health Human Services (HHS).

The processing and understanding of all these data might take weeks and the official

warnings to a population could arrive too late. Poor and undeserved communities normally

are highly affected since limited access to medical services often means that medical care

attend the outbreaks when the major part of the community is already affected.

Social networks like Twitter, Facebook and Instagram provide a wealth of information

about a lot of topics being discussed by all type of persons. Mining these conversations

provides insights on topics such as sports, political activities, diseases, etc. These social

networks are generating different type of interactions like replies, re-tweets, likes, comments,

re-posts, etc. According to [1], here are some statistics of the activities in these networks:
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• Twitter users post 656 million tweets per day

• Facebook users like 5.75 billion posts per day

• Instagram users post 67 million posts per day

All of this information is stored in databases and the amount of information is so large

that it is difficult to inspect each message manually to review the content. A percentage

of this information is public. Therefore, developers need to access these data via an

Application Program Interface (API) of each social network.

At the University of Puerto Rico, Mayagez Campus we developed the Twitter Health

Surveillance System THS for monitoring the Twitter social network in search for clues

about the diseases mentioned. For THS it is important to collect and store the data in

our own big data infrastructure. This makes it possible to process all information easily

and fast, getting the data ready to be analyzed with Machine Learning (ML) algorithms.

These algorithms can provide: a) information as to whether a message is about a disease

or not, b) trending topics, and c) statistics about user engagements in a given geographical

region.

In this project, we developed the infrastructure necessary to feed the tweets into a

machine learning pipeline that can efficiently learn to classify the tweets as being related

or not with diseases, and then uses those models in a production environment. All of this

information can be provided to public health officials through a web-based dashboard.

For the ML classification process, it is necessary to have a specific infrastructure to help

researchers mine and identify the specific data necessary to the algorithm. The input of the

ML algorithm is a training set that contains data examples with a label for each one, thus

allowing for the algorithm to learn about what are the type of inputs that it will receive

and what should be the output to predict. The ML algorithm ran on a Graphic Processing

Unit (GPU), which runs instructions in parallel for better performance. However, our

algorithms can also be run on regular CPUs. Our project provides the software tools
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to help train the models, using neural networks, and then use these in a program that

captures live tweets from the Twitter API.

1.2 Objectives

• To investigate and implement an infrastructure to capture a live stream

of tweets: The streaming process includes operations to get, filter, and clean the

data from the Twitter Streaming API, and store the processed tweets into the THS

warehouse. For THS, it is important to save the record and all the tracking of the

tweets, which will ensure the correct management, integrity and veracity of the

tweets.

• To investigate and implement machine learning algorithms for classifica-

tion in THS: The input necessary to the ML algorithm are the statuses collected

from Twitter API streaming. For THS, we used a supervised algorithm to train,

therefore the training set of tweets is labeled by hand. Thus, a group of people

was required to complete this task by reading each tweet in a training set, and

then classifying each tweet into a specific classification class. The output of the ML

algorithm is a label classifying the input tweet in one of the three classes: a) the

tweet talks about a disease, b) the tweets do not talk about a disease, or c) the tweet

is ambiguous.

• To test the infrastructure and the algorithms with big data tools: Big

data collecting and ML infrastructure need to be tested. Data collecting components

were deployed, and tested at the THS’s cluster that is located in the Electrical and

Computer Department of the University of Puerto Rico Mayagüez Campus (UPRM).

ML infrastructure was implemented, configured, and tested in a physical computer

in the ADM laboratory at UPRM. Some tests for this part also were run in the

NSF Chameleon cloud environment with better GPU resources than the physical
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machine.

1.3 Contributions

This thesis represents original contributions by this author to the problem of mining social

network data to detect conversations related with medical conditions, and help build

decision support systems for medical applications. In particular, our contributions are as

follows:

• Describe how the problem of searching and mining for diseases on social

media can be formulated as classification problem: Several social media APIs

are available to interact with the developers interested in using the public data that

each API has to offer. For the THS project the public data comes from the Twitter

Streaming API. In THS, we use several logic filters to select tweets that are related

with the diseases of interest. These filters are applied during the data capturing

process, and they check for the occurrence of certain keywords (e.g., flu). This

facilitates the classification and cleaning by eliminating tedious manual work.

• Present THS as a reference architecture for applications that need to

process stream data with non-trivial methods: THS is built with open source

tools that implement streaming, deep learning, and data warehousing. By using

open source tools, we can minimize the cost and increase the size of the developer

pool for this type of solutions. This can make this type of solution more affordable

to small and medium companies. This is important since the cost in the Information

Technology (IT) area for medical informatics companies is a decisive factor to

accomplish their goals.

• Present a series of deep learning models that can be used to determine

if a tweet is related with a disease or not: We used deep learning methods,

specifically RNN and CNN to create models that can classify the tweets into three
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clases: class 0 - not related with a disease, class 1 - related with a disease, and class

2 - cannot be determined.

• Describe an evaluation of these models on a real data set extracted from

the Twitter Streaming API and identify best models for specific metrics:

For RNN and CNN, we tested a set of hyperparameters to evaluate different models.

We tested, all of these models, and took several measurements to evaluate which are

the best. The best model has the highest value for these three metrics: a) Precision,

b) Recall, and c) F1 score.

1.4 Outline

The outline of this thesis is as follows. Chapter 2 contains the survey of literature related

with the machine learning, some techniques to use and a brief contextualization to facilitates

the understanding of the THS solution. The problem desciption and the proposed solution

is presented in Chapter 3. In Chapter 4, the system architecture for the big data and

machine learning framework are shown in detail. It also describes the hyperparameters

tunning, the embedding layer used in the machine learning architecture, the metrics used

to measure our models, and the different models evaluated for RNN and CNN. Chapter

5 contains the performance evaluation of the system, as well as the description of the

hardware and software environments used. Finally, the conclusions and future work is

presented in Chapter 6.



Chapter 2

Survey of the Literature

2.1 Introduction

The analysis and processing of texts has captivated the attention of a large range of

computing fields, especially Artificial Intelligence (AI), where it has been consolidated as a

discipline known as Natural Language Processing (NLP). The work in [2] defines NLP as

“theoretically motivated range of computational techniques for analyzing and representing

naturally occurring texts at one or more levels of linguistic analysis for the purpose of

achieving human-like language processing for a range of tasks or applications”. Thus,

NLP can be defined the ability to infer, gain insight and act accordingly from the core

representation of knowledge of the humankind. This makes this field of study a continuous

source of achievements and opportunities yet to be discovered.

Several algorithmic techniques have been applied and enhanced iteratively to achieve a

better understanding of natural language and texts. These include decision trees, hidden

Markov models, supervised machine learning approaches, statistical processing, and deep

learning techniques, most of which have turned out to be very successful.

2.2 Neural Networks

A neural network is a collection of neuron-like computational units. These are connected

and organized under a user-defined network topology. Their goal is to perform distributed

computations aimed to achieve a certain goal (e.g., classify an image as being that of a

cat). Neural networks are modeled to resemble the inner workings of human brain.

6
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x2 w2 Σ f

Activate

function

y

Output

x1 w1

x3 w3

Weights

Sum

Inputs

Fig 2.1: Basic neural network architecture.

Figure 2.1 shows a basic, one-neuron neural network, where the inputs comprise the left-

side layer and output comprise right-side layer. The neuron takes the inputs {x1, x2, x3},
and combines them with a summation operation. Each term xi gets multiplied by a weight

wi to specify its importance. The summation is then passed to an activation function f ,

that outputs the class to which the input represented by {x1, x2, x3} belongs. Weights are

specific and selected for each neural network independently. These weights are necessary

to minimize the cost of activation function generating the output value, which is the

prediction from the algorithm. The work in [3] provides a mathematical model of a neuron

as a system composed of an input function, an activation function and an output. The

following equation represents the output activation:

aj = g

(
n∑

i=0

wij ai

)
, (2.1)

where ai is the output activation of unit i, wij is the weight from link i and g is the

activation function that determines the output. Typically, g is a sigmoid function [4],

although other alternatives are the Hyperbolic Tangent function better known as TanH

[5], Rectified Linear Unit (ReLU) function [6], or Normalized Exponential Function better

known as Softmax Function [7]. Table 2.1 shows the graphical plot and formula for each

of the activation functions mentioned before.
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Name Plot Equation

Sigmoid

−4 −2 0 2 4

0.5

1

x

y

f(x) =
1

1 + e−x

TanH −4 −2 2 4

−1

−0.5

0.5

1

x

y

f(x) =
2

1 + e−2x
− 1

ReLU

−1 −0.5 0.5 1

0.5

1

x

y

f(x) =

0 for x < 0

x for x ≥ 0

Softmax

0 1 2 3 4 5

2

4

6

8

10

x

y

f(x) =
exj∑K
k=1 e

xk

Table 2.1: Activation functions used in the ML.

Figure 2.2 shows a multilayer forward network where the hidden layer receives inputs

from the previous layer. In this type of neural networks the outputs of nodes in one layer

are the inputs to the nodes in the next layer. All of these inputs are combined using

a weighted linear combination [8]. The result is calculated with an activation function,

and depending on the problem to be solved, the function could use linear or nonlinear

activation to produce final output.

Within the NLP context, neural networks have been used widely as part of the

connectionist approach to NLP [2], where models are networks of simple units connected

through links between layers. Two kinds of models are differentiated in this approach: 1)

localist - where each unit represents a word concept, and 2) distributed - where multiple

activation of units represent a concept.



9

Input 1

Input 2

Input 3

Input 4

Output

Hidden

layer

Input

layer

Output

layer

Fig 2.2: Complex neural network architecture.

2.3 Deep Learning

Deep learning has gained traction given its impressive results in several fields of artificial

intelligence previously dominated by other AI techniques [9]. In simple terms, [10] defines

deep learning as “machine learning that enables computers to learn from experience

and understand the world in terms of a hierarchy of concepts”. There have been several

applications of deep learning techniques in the recognition and processing of texts, including:

1. The use of CNN to recognize words in images with unconstrained characteristics like

words with unknown length, using multi-task learning and training with generated

data an achieving state-of-the-art accuracy [11].

2. Integration with computing vision approaches to read digits from photographies

using unsupervised feature learning methods [12] and deep CNN. These methods are

used to localize, segment, and recognize patterns. These latter methods stabilize the

model performance as the number of layers in the model is increased [13]. In some

cases, the training data is generated artificially. This reduces the data acquisition

cost and the deep neural network model take advantage over the others used for text

recognition in images as a whole [14].

3. Speech recognition systems built for end-to-end deep learning that do not require

intermediate data representations, and handle noisy environments better than other

systems [15].
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The examples in the previous paragraph denoted NLP tasks under unimodal scenarios,

in the sense that a single form of data representation was considered. The work in [16]

introduced a novel approach for multimodal learning of features over multiple data repre-

sentations like video, audio and text, using deep networks. This approach demonstrated

the use of cross modality feature learning to enhance the learning over one modality if

there is data available of other data modalities.

2.4 Sentiment Analysis

Sentiment analysis is the field of study that analyses the opinions, sentiments, appreciations,

attitudes, and emotion of the persons who write a given text, message, review, tweet, or

post on a website or social network. The term sentiment analysis first appeared in [17],

this technique consists in identifying how the sentiments are expressed by the writer in

texts where the words express an evaluation, or emotional state about the given topic.

Mostly, these elements are related with products, services, organizations, political persons,

and diseases. Although, in industry the term sentiment analysis is used more frequently,

in academic forums it is known as opinion mining. According to [18] this term could be

referenced by other names like opinion extraction, sentiment mining, subjectivity analysis,

affect analysis, emotion analysis, and review mining.

When sentiment analysis is performed on a set tweets related with one or more diseases,

many emotional states can be found. These include happiness, sadness, irony, sarcasm,

revenge, among others. The data set used to train models that detect sentiment analysis

must contain a diverse set of examples that cover many of opinions that encode these

emotional states. Often, opinions are subjective, and everybody uses the language in

different forms and expresses their thoughts in different ways. Hence the true meaning of

sentence or phrase contained in a text depend heavily on the other sentences and phrases

that form the context of the written text.

Example 1 Comparison between two movie reviews.

‘‘ Yeah, the movie was pretty good... :D ’’

‘‘ Yeah, the movie was pretty good... ( o_o) ’’

The movie reviews cited before use the same words, but a particular component change, the

emoji. Hence, the sentiment/opinion of both texts changes completely by just changing this

symbol. The first line means that the client was happy watching the movie. In contrast, the

second line means that the client was unsatisfied and was expecting more from the movie.
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Applying sentiment analysis to tweets has been explored in [17, 18, 19] as a method to

detect the mood of people toward some disease, or to detect if there is a unusual rate of

chat about a given disease. According to [18], the tweet’s text is a component relatively

easy to analyze, because the length is composed by only 280 characters. Therefore, the

authors are going straight to the point of the topic.

In some cases the emojis are used to help in the prediction process [20, 21, 22, 23].

One common method to extract the meaning of an emoji is to convert it to words. For

example, the emoji ”:)” is converted to: “happy face”. Hence, this emoji is used to convey

happiness or comfort with a given situation. In some scenarios, might also denote sarcasm.

Thus, this conversion process makes it easier for the algorithm to analyze the text and find

the sentiment/opinion in a fast and efficient manner. An example of this scenario follows:

Example 2 Tweet related to a health condition.

‘‘ I couldn’t go to work, because I got diarrhea this morning :( ’’

In this instance, the message is clearly related with the diarrhea medical condition. This

tweet conveys a feeling of sadness because the effects of the diarrhea will prevent this person

to show up to work.

In contrast, the following tweet uses the same words to express disappointment, and it

is not truly related to a medical condition affecting the person.

Example 3 Tweet not related to a medical condition.

‘‘ My husband’s verbal diarrhea against the neighborhood shows

that he is not happy. ’’

In this case the term diarrhea is being used to discredit the husband attitude, implying that

the conversation of the person’s husband is improper, rude, and disrespectful towards the

neighborhood.

Sentiment analysis is being used in many fields. For example, the work in [19] describes

an application to predict the sentiment of the tweets written by people in the U.S. during

the 2012 presidential campaign. Their goal was to gauge opinions on the leading candidates

to several elective offices. The developers of the application had to expand their dictionary

with words that captures idiosyncrasies particular to the U.S. because the language

normally used in tweets is informal and vernacular. This was a critical element since the

use of these informal (“slang”) words adds a lot of noise to the tweet’s text and hinders
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the sentiment classification process. Specifically, in political and health topics people tends

to write sarcastic messages, and this adds a significant challenge to the algorithms. The

sentiment analysis is used in THS to determine if the tweet is related with a medical

condition or not. Is important to note that the mere occurrence of a filtered word in the

tweet text does not guarantee that the tweet is related with the disease.

In fact, recent research work has focused on using Twitter as a tool to help uncover

health trends i.e. in this previous work [24] they extracted the tweets from a large

comprehensive corpus of tweets. Then, their methods found the frequent word sets and

start to filter the Wikipedia’s articles by queries. They started to note that the changes in

the frequent term sets from Twitter and in the medically-related articles were affected by

the public health conditions which was affecting some populations around the world. In

this research [25] they used 5,000 hand-labeled tweets to train their ML model. Those

tweets contained the word ”influenza“. They tested the Support Vector Machine (SVM)

model obtaining 97% of correlation ratio between the onset of flu outbreak and the increase

of news related with the flu. They predicted the first season on time, but for the second

season was predicted 2 peaks out of time, because there were a lot of news in Twitter

related with the swine flu. Those all non-related tweets added noise to the SVM model.

There have been numerous other works that have attempted to use Twitter to detect

diseases from social interactions [26, 27, 28, 29, 30]. However, many of these approaches

use keyword searches to collect social messages, and assign them to a particular disease

class, and then begin the analysis. For example, a previously collected data set is processed

in search for tweets that contain the word flu. Those messages can be further analyzed to

predict the sentiment (“mood”) of the message. Unfortunately, keyword-based methods

can produce inaccurate results since the mere occurrence of a keyword does not necessarily

means that the message is indeed related with a medical condition. Thus, an analysis based

of this approach can mislead public officials into thinking that some medical condition is

affecting a community because the keyword is trending in the social network for a given

region. Keyword search can be used to find candidate tweets, but there must be a another

step to determine if the tweet is relevant or not.



Chapter 3

Problem Statement

3.1 Description

The fundamental problem that we want to tackle is the ability to capture tweets from the

live Twitter data stream, search each tweet looking for target medical keyword(s), and

then determine if the tweet is actually related with an actual medical condition. As we

mentioned before in Section 2.4, the mere occurrence of a keyword does not make the

tweet related with an actual medical condition. The following tweets, contained in the

labelled dataset captured with THS, show why this problem is not trivial.

Example 4 Tweet related to a health condition.

My weekend is ruined because of my flu :(

In this instance, the message is clearly related with the flu medical condition. This tweet

conveys a feeling of sadness and disappointment because the effects of the disease will

prevent this person from participating in planned activities for the weekend.

In contrast, the following tweet is not related to a medical condition at all, but rather

uses a disease to emphasize the rejection of a view.

Example 5 Tweet not related to a medical condition.

That reporter’s verbal diarrhea against the president shows she ain’t fair.

In this case the term diarrhea is being used to discredit a news report from a journalist,

implying that the views expressed in her reporting are excessive, lengthy, and biased against

the President. This type of tweets can be observed more frequently in the live Twitter stream

13
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when some controversy surrounding the president erupts. Thus, it would be a mistake to

conclude that some stomach virus, or other medical condition associated with diarrhea is

on the rise.

Sometimes, the content of a tweet is ambiguous, and it is hard to classify it as been

related to a medical condition.

Example 6 Tweet that is hard to classify.

Well, well the flu can help me skip the family reunion. #sad #happy.

This example conveys a contradictory message. On one hand, it can be interpreted as

a sign of relief by the author, feeling good that she/he will not need to attend a family

reunion because of the flu. On the other hand, the person is actually telling us the she/he

has the flu, or is hoping to get it. Given the miserable symptoms of the flu, it is hard to

image how can anyone celebrate getting sick in order to avoid a family reunion.

3.2 Formalization

Our goal is collect a stream of tweets T = {t1, t2, ..., tn} and classify each tweet into one of

three classes:

• 0 - does not pertains to a medical condition

• 1 - does pertains to a medical condition

• 2 - is ambiguous

This is a supervised classification problem with three target classes. To solve it, we must

first select the target keywords that might be associated with the medical conditions of

interest. Otherwise, we would need to test any tweet whatsoever, and that makes the

classification problem very hard.

Let M = {m1,m2, ...,mk} be a collection of k medical terms. These medical terms

represent some medical topic or condition of interest. For example, we might use terms

like flu, runny nose, or influenza, all of which can be associated with the topic of flu. We

want to filter the stream T , discarding tweets that do not contain keywords in M . Let us

call the output of this filtering process T ′.

We can now apply a classifier ŷ to each tweet t′ ∈ T ′ to classify each one into one of

our three classes. The classifier ŷ must first be trained on a sample of T ′, and then it can
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be used from that point on, as long the input tweets come from the same distribution.

Thus, we must always pass tweets to ŷ that have been filtered with M . If we change M ,

we must retrain ŷ with a new training set that contains examples with the keywords now

present in M .

In practice, the distribution of classes for our problem is not uniform, with class 1

being the majority, then class 0 comes next, and class 2 is a distant third. Hence, our

classifier must deal with the class imbalance problem [31, 32]. We tackled this issue by

using the penalty technique whereby, during training time, a large penalty is given to the

classifier whenever it misclassifies an example that belongs to one of the minority classes.

This prevents the classifier from always assigning examples to the majority class since the

cost would not be minimized.

3.3 Data Processing Pipeline

Fig 3.1: Tweet processing pipeline.

Conceptually, the tweets are processed using a pipeline as shown in Figure 3.1. As

tweets are generated, they are captured and then filtered based on keywords so they

can be assigned to a given topic. This capturing process can occur in two ways. One

option is to subscribe to a sample of live tweets from the Twitter Streaming API. In

this case, keyword search must be done after acquisition. The other option is to sub-

scribe to a filtered stream, where a set of keywords, users, and locations can be specified
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to narrow down the tweets of interest. Further filtering can be applied after data acquisition.

Next, tweets are routed for processing at additional stages. One stage performs clas-

sification as described in the preceding section. More stages can be added to perform

custom-processing such as additional keyword filtering, emoji analysis, sentiment analysis,

or computing target keyword frequency. The output from all these stages can be configured

to go into dashboards, databases, HDFS, etc. In our case, raw tweets are always stored

into HDFS to enable further analysis in the future. Notice that it is possible to re-ingest

some of the output back into the classification or custom processing stages, perhaps to fine

tune the results as models get re-calibrated. This can be used to continuously improve

and adapt the model as new examples arrive over time.



Chapter 4

System Architecture

THS is a collection of daemons and web services that work together to collect, index,

analyze, support queries on the tweets, and help to make predictions.THS is built atop:

a) the Hadoop ecosystem of big data tools, and b) Keras, Google’s Tensorflow, and

Scikit-learn as ML tools. In this section we describe the various components in the system

and their interactions.

4.1 Software Building Blocks

To design and develop THS, we used use different software tools that implement big data

and machine learning capabilities. The following list describes these tools:

• Python: A programming language that provides support with all the tools we

used: Twitter Streaming API, Kakfa, Spark, Hive, Hadoop Distributed File System

(HDFS), Yarn, Tensorflow, and Keras. All the code for this research was written in

this language.

• Twitter Streaming API: An interface to get access in near realtime to public

statuses which contain data such as: tweet text, user id, tweet id, language, etc.

from random set of all the tweets.

• Kafka: A distributed streaming framework [33] which permits publish and subscribe

to a queue where the records from the tweet stream are stored. These record are

kept in Kafka for a while, for THS project this time is 3 hours.

• Spark: A unified analytics engine framework [34] which enables us to process, clean,

group, and store all the tweets collected and read from the Kafka queue. Spark relies

17
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on the Resilient Distributed Dataset (RDD) [35] abstraction to keep the tweets in

the memory of the nodes in a computer cluster. RDD’s run in-memory execution

environment in parallel mode across the different nodes in the cluster.

• Hive: A data warehousing framework to enable reading, writing, and managing

large datasets residing in distributed storage [36] using its own dialect of Structured

Query Language (SQL) called Hive Query Language (HQL). All tweets are saved in

structured tables that realize the hive database. HQL simplifies aggregation tasks,

and permits us to communicate with Spark RDDs to extract huge amounts of data.

• HDFS: A distributed file system designed to run on commodity hardware [37].

HDFS runs in THS’s cluster and provides high-throughput access to Hive tables

data. HDFS is a highly fault-tolerant system. Hive tables are serialized and stored

in HDFS [38], each table has a directory in HDFS.

• YARN: A resource management and job scheduling framework [39], which dis-

tributes and deploys the computational jobs into separate daemons across the nodes

in the THS cluster. The master node of the cluster is identified in the network by the

host named masternode.ece.uprm.edu. The master node is the ultimate authority

that arbitrates resources among all the applications in the system.

• Tensorflow: A machine learning library which helps training the models, serving

predictions, and refining the final results [40]. Tensorflow comes with built-in

functionality to develop neural networks, clustering model, and other learning

algorithms. It uses the python language, greatly simplifying its use to implement

deep learning models. TensorFlow can be run in GPU and CPU, but it was designed

to get the best performance in GPUs.

• Keras: A high-level machine learning API [41] which is written in python language,

and capable of running atop Tensorflow. For the THS project, Keras will help

with designing, training, testing, predicting, and refining the neural network models.

Keras supports convolutional and recurrent networks.

4.2 Big Data Framework

The process necessary to collect, filter, and store the data from the Twitter API in the THS

project is implemented with big data tools, mostly using Apache [42] open source projects.

Figure 4.1 shows the tools used and the process detailed for the big data component.
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Fig 4.1: Detailed process in THS big data architecture.

The entire process, detailed in a step by step manner is as follows:

Step 1: A Python script called “Producer.py” is executed from the host node of the THS

software system. In our case, we ran this script from a host in the UPRM Lockheed

Martin Cloud, identified as node05.ece.uprm.edu. The script establishes a connection

to the Twitter API through developer credentials, and starts collecting the tweets

(known in the API as “statuses”). These statuses include original tweets, re-tweets,

replies, likes, mentions, deletions, etc. Once captured, it is necessary to apply two

filters to those statuses. Both of these filters are applied to the tweet’s text field.

The first one is the language filter, which checks that the text is written in English.

The second one is applied to the text, hashtags or mentions fields. This second filter

looks for the words related with the diseases that are the interest to the user. If the

text status contains one of the these words, the status (“tweet”) is automatically

added to the warehouse. In our work, we used the following keywords for the diseases:
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(i) Zika

(ii) Flu

(iii) Ebola

(iv) Measles

(v) Diarrhea

It is important to note that the Twitter API just provides you with access to a

random sample of about 1% of all the statuses being submitted[43].

Step 2: The python script puts the statuses collected in step 1 into a Kafka queue, from

which they could be fetched for processing when ready. Thus, the queue act as a

buffer pool that provides storage in RAM for the data. In any event, the statuses are

buffered in the queue for 3 hours before Kafka automatically cleans the queue.

Step 3: In parallel, another python script, called “Consumer.py”, is running on the same

node. This second script takes the statuses out of the Kafka queue, and feeds them

into the Spark streaming system.

Step 4: Spark streaming starts to filter the data. In the THS project the important statuses

are the original tweets, not the ones that are replies or re-tweets.

Step 5: Once the data has been filtered, a Spark data frame is created to manage the data

and establish connection with the database in Hive. The data frame is a data

structure used in Spark to group a collection (“batch”) of related tuples. In this

part of the process for THS it is necessary to save the raw tweets into a table, as

are received from the Twitter API. Another table is used to save some metadata

information from the tweet, specifically, fields like: tweet ID, user ID and full text.

The database schema is explained in the Section 4.3.

Step 6: The processed tweets are saved in the Hive data warehouse. This process is repeated

in a loop in order to consume all tweets contained in a data frame. In our experiments,

we collected and processed 56,013 tweets.

Step 7: Once the tweets are collected, it is necessary to define a sample of the data set to be

used for training the neural network models that classify the tweets. For this, we

another Python script. The first job of this script is to remove duplicate tweets, if

they exist. Next, the script iterated over the text of all tweets and cleans each one
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by removing special characters which are noisy to the machine learning algorithm,

such as: ””, ””, ”-”, ”—”, etc.

Step 8: The final step is to export the tweet ID and the tweet text into CSV file. This file

will be the input for the machine learning subsystem. The tweet id and the text are

the only fields necessary for the machine learning algorithm.

4.3 Data Storage

As explained in the step 5 of the previous section, each tweet is mapped to records that are

stored into tables of a database in the Hive data warehouse. Figure 4.2 shows the schema

of this database. The tweet and raw tweet tables are filled up by the “Consumer.py” script

as the automated data acquisition process. The other tables are filled up by manually

running another script. The descriptions of these tables are as follows:

Fig 4.2: THS database schema.
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• Tweet: Each time a tweet is captured, a new record is created in the tweet table

that contains the following attributes: a) twitter id is the id assigned by Twitter

to the tweet, b) user twitter id is the foreign key id that comes from the relation

with author table, it contains the id of the author of the status, c) raw tweet id is

the foreign key id that comes from the relation with raw tweet table, d) text is the

tweet’s full text (up to 280 characters) written by the author, e) published date is

the date when the tweet was published, and f) collected date is the date when the

tweet was collected on THS.

• Raw tweet: a record in this table contains a) status id assigned by Twitter b) the

status as received from Twitter in the form of a JSON string.

• Author: if the author of a tweet is not already stored in the system, then we add a

new author record. This record contains: a) the id of the author given by Twitter, b)

the author’s full name, c) the author’s Twitter user name, d) the author’s language

of preference, and e) the location (if is provided) by the author (e.g., city, state, or

country).

• Hashtag: a record for a hashtag entity is created, linking the tweet with each of

the hashtags that is contains in the tweet text.

• Keyword: a record for a Keyword entity is created, linking the tweet with each of

the target keywords that are contained in the tweet text.

• Location: a record to save the latitude, longitude, and name for the status (if is

provided). Most users do not publish the location from where they wrote the tweet.

Therefore, any search by location will try first to use this field, or by default use to

the location of the author, which is the country where the account was opened.

4.4 Machine Learning Framework

The machine learning framework provides the tools to classify tweets into one of the target

classes for disease relevance. The input to the machine learning framework is a CSV file

that contains 2 columns, the first one is the tweet text, and the second one is the class

label set manually during the labelling process. This file is genereted form the data in the

Hive warehouse. In our work, we created a training set composed of 12,500 tweets. This

file was labelled manually by five members of the THS project team. The label class are:



23

• 0 - the tweets is not related with a disase.

• 1 - the tweets is related with a disase.

• 2 - ambigous.

This file is then processed to transform the text into the tensor form expected by the

Keras/Tensorflow tandem. The result can be presented in a dashboard, app, exported as

a csv file, or stored back to some table in Hive.

Figure 4.3 shows the process and the tools used in each step. The entire process is

detailed in a step by step manner as follows:

Fig 4.3: THS machine learning system.
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Step 1: A Python script called “Cleaner.py” is executed on a workstation. In our case, we

used a workstation in either the ADM Lab or in a Chameleon cloud’s node. This

script takes each line of the input file and removes the punctuation, emojis, web

site links, and user mentions. In addition, it removes the “#” character from the

hashtags. We do not use word stemming, since While developing the models and

making initial training runs, no much difference was notice between using word

stemming or not. The same applies to removing stop words or not. The script’s

output is a CSV file with the tweet text for all the lines cleaned.

Step 2: The machine learning script is executed in host node configured previously with Keras,

and Tensorflow. We also run this script on a host that provides GPU capabilities.

This script receives two files: 1) The cleaned csv file obtained from the previous

step, and 2) A text file containing word embeddings. In our case, we used Stanford’s

Glove word embedding, stored in a file called“Glove File.txt”, that contains a vector

representation [44] for 400,000 words, called a word embedding. In particular, we used

the embedding that contains vectors of fifty (50) dimensions trained on Wikipedia

data. This is further discussed in step (4) below. The main class creates an instance

of the process class, and passes the input name files as parameters.

Step 3: A hyper-parameter matrix is defined with different values for some elements that

will be part of the neural network. This matrix will permit the evaluation of different

neural network models. The parameters to change could be number of epochs,

learning rate, batch size, dropout, and some values that are part of the different

layers. More details are presented in Section 4.4.1.

Step 4: A glove embedding file enables a mapping of words to a vector in a n-dimensional

space of real numbers. In our case the number of dimensions is 50. These vectors

are used to convert each word of the tweet text in a numerical vector representation.

This scheme has been shown to provide a better way to find features in the target

text [45, 46]. More details are presented in Section 4.4.2.

Step 5: The input CSV file contains all the text for the tweets with their respective labels.

The data is split in three subsets: training, validation, and test. The first one is the

training set that is created out of 60% of the total tweets. This set is used to train

the neural network models. The second one is the validation set with 20% of all

tweets. This second set is used to chose the combination of hyperparameters that

provides the best performance with respect to a given metric (e.g., accuracy). The
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last data subset is the test set containing the remaining 20% of the tweets. This last

one is used to measure and report the final performance of the model.

Step 6: As we can see from the Figure 4.3, the Process class create the Tweets class

that contains the different neural network models to be trained and gives it the

hyperparameters necessary for the model. Next, the computation becomes a loop

(steps 6-9) with 1,120 or 1,080 iterations to evaluate RNN or CNN respectively. The

entire process is explained in Section 4.4.1.

Step 7: In each iteration, the Tweets class receives a different combination of hyperparameters,

and based on these, creates and return a neural network model to the Process class.

Step 8: Once the model is created and configured, the Process class starts to execute

the fit function to train the model. For each record in the training dataset, the

keras/Tensorflow algorithm starts to learn the label from the tweet text. This step

is finished when the model is trained with all the records. In THS case are 7,500 the

tweets to train the different models. This process is repeated n epochs. In our case,

this was a hyperparameter.

Step 9: Using the validation dataset and the model trained in the last step, the algorithm

starts to read the tweet text and predict the label, comparing the prediction label

with the real label value presents in the record. With this comparison, we calculate

some metrics like precision, recall and F-1 Score. More detail is presented in Section

4.4.3.

Step 10: In each iteration, the algorithm calculates the 5 best models and saves them in a

Python dictionary. When the loop finishes the best models are tested with the test

dataset to pick the best one.

Step 11: The best model is used to start to predict more tweets related with diseases acquired

from Twitter Streaming API.

4.4.1 Hyperparameters Matrix

A hyperparameter is a parameter which cannot be directly learned or estimated from

the training process. It is a predefined value set by the practitioner before the fitting

and training process starts. It defines high-level properties of the model such as the

learning rate, number of epochs to train, complexity, etc. Finding the best value for each



26

hyperparameter is not a trivial process. Initially, we used hyperparmater values based

on results from previous researchers. Once, we had an idea about which were the most

important values, we estimated additiona values, and created a hyperparameter matrix

to discover the combination that results in the best predictions. In this hyperparameter

matrix, a row represents a different combination of parameters.

The training process is executed in a for loop which iterates through all the hyperpa-

rameters matrix’s combinations. For each iteration a different row from the matrix was

evaluated, and several performance metrics were calculated in the final steps to define the

best five (5) and the worst three (3) models. The total number of combinations is given

by the formula:

Total combinations =
n∏

i=1

Vi

where n is the number of hyperparameters options to define values, and V is the number

of values assigned for each hyperparameter option.

RNN Hyperparameters

The hyperparameters matrix defined to test the RNN model is shown in table 4.1.

RNN use Hyperparameter Values

Fit process
Learning rate 0.001 0.003 0.01 0.03 0.1 0.3 1

Epochs 5 10 20 40 60
Batch size 32

Compile process Optimizer RMSprop
LSTM 1 Layer units 50

Dropout 1 Rate 0 0.1 0.3 0.5
LSTM 2 Layer units 50

Dropout 2 Rate 0 0.1 0.3 0.5
Dense Layer 1 Layer units 32 64

Table 4.1: RNN hyperparameters.

The total number of combinations for RNN is 1120, this number was calculated from

the formula:

Total combinations =
9∏

i=1

Vi = 7 ∗ 5 ∗ 1 ∗ 1 ∗ 1 ∗ 4 ∗ 1 ∗ 4 ∗ 2 = 1120
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CNN Hyperparameters

The hyperparameters matrix defined to test the CNN model is showed in table 4.2.

CNN use Hyperparameter Values

Fit process
Learning rate 0.001 0.003 0.006 0.008 0.1

Epochs 10 20 40
Batch size 32

Compile process Optimizer Adam Adadelta RMSprop
Conv2D Filters 64 128
Dropout Rate 0 0.1 0.3 0.5

Dense Layer Layer units 128 256 512

Table 4.2: CNN hyperparameters.

The total number of combinations for CNN is 1080, this number was calculated from

the formula:

Total combinations =
7∏

i=1

Vi = 5 ∗ 3 ∗ 1 ∗ 3 ∗ 2 ∗ 4 ∗ 3 = 1080

4.4.2 Embedding Layer

Once the tweets have been pre-processed, we need to convert from text to a tensor

representation. One option is to create a dictionary of words, with each word wi having a

position i in the dictionary. Then, a tweet can be represented with a one-hot encoding

vector representation. In this scheme, a vector v representing a tweet t will have position

v[i] = 1, if word i is present in the tweet, or 0 otherwise. However, this approach has two

main drawbacks. First, since the dictionary can have thousands of words, the vector v

can be very long and mostly contain 0s. Secondly, with one-hot representation the order

of words within the tweet is lost and can yield inaccurate results. In THS, we use the

well-known word embedding methodology [47], in which there is an embedding function

that maps each word wi in a tweet t into a vector vi in an n-dimensional vector space

Rn. A Tweet t then becomes represented as a m× n matrix M, where m is the longest

tweet length and n is the dimension of the vector space. Conceptually, each row i in M
is a vector vi representing word wi. Since not all tweets have the same length, padding

with one or more instances of a zero vector is need to make all tweets in a batch have the

same length. In practice, the tweet t must first be mapped into a list of word indices L.

Entry L[i] contains the position of word i in the dictionary used by the embedding. The
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embedding takes this index L[i] and maps it to a vector vi word embeddings provide a

better representation of the data, and it has been shown that related words in the target

language tend to be mapped to close vectors in the vector space [47]. Moreover, word

embedding are amicable for processing by deep learning models based on RNN and CNN.

4.4.3 Metrics

Since the data set of labelled tweets is class imbalanced, we do not use accuracy as the

evaluation metric. Instead we use precision, recall, and F1-score to evaluate each option.

To calculate the metrics we used the following confusing matrix:

Predicted: 1 Predicted: 0

Actual Value: 1
True Positive

TP
False Positive

FP

Actual Value: 0
False Negative

FN
True Negative

TN

Table 4.3: Confusion matrix to calculate the metrics.

Precision

The precision metric measures the exactness of a classifier, in terms of how many examples

of a class i it correctly classifies. Given a class i, the precision on class i, Pi is defined as:

Pi =
TPi

TPi + FPi

Here TPi is the number of correctly classified examples (true positive examples), while

FPi is the number of examples incorrectly labeled as belonging to class i (false positives).

Thus, the precision on class i is a ratio between the number of correctly classified examples

TPi, and the sum of TPi and FPi . The closer Pi is to 1, the more exact the classifier is

on class i.

Recall

The recall metric provides a measure of how complete is the classifier in correctly labeling

the examples of a class i. Given a class i, the recall on class i, Ri is defined as:

Ri =
TPi

TPi + FNi
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As before, TPi is the number of true positive examples for class i, whereas FNi is the

number of examples from class i that were missed by the classifier (false negatives). Recall

is a ratio between TPi, and the sum of TPi and FNi . In other words, recall tells what

percentage of the examples of class i the classifier correctly detects and labels.

F1 Score

Whether precision or recall is the right metric is a matter of debate (often a bitter debate).

For some applications, recall is more important. The F1 score is a metric that seeks to

balance precision and recall, proving a method to determine how balanced a classifier is.

The F1 score for class i is defined as follow:

F1i = 2
PiRi

Pi + Ri

The calculation of this metric is based on the precision and recall metrics. Pi is the

precision metric for class i and Ri is the recall metric for class i. Notice that a classifier

that is balanced will have an F1 score close to 1 since both the numerator and denominator

will trend to 1. In contrast, a classifier biased toward either precision or recall will have a

numerator that trends towards 0.

4.5 Deep Learning Models

THS uses RNN and CNN as the main ML building block for classification operations.

RNN are designed for problems related with sequential data such as NLP. We used Long

Short-Term Memory (LSTM), and Gated Recurrent Units (GRU) for RNN, and inception

architecture for CNN.

4.5.1 Recurrent Neural Networks

Figure 4.4 show the general architecture of the RNN that we used. This network is a

classic encoder-decoder network. On the left, we have the batches of tweets to be fed into

the network.

The first stage of the network is the embedding layer, which takes care of mapping

each tweet t into a embedding M. The embedding is then feed into the first recurrent

layer, which can be configured to use either LSTM or GRU. This layer works as an encoder

unit. Unless otherwise specified, the LSTM and GRU layers used as input a shape of 72
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Fig 4.4: General RNN architecture.

units. This number comes from the maximum tweet length that our testing data sets

had. The next layer is a dropout layer used to prevent overfitting on the first recurrent

layer. An optional attention layer [48] is added next depending the model. This layer is

used to help focus the RNN into sections of the tweets that might be more important

than others. If the attention layer is used, then the RNN must output all intermediate

sequence outputs. The next layer in the network is another recurrent layer that acts as

the decoder component. Its output is passed to another dropout layer, and then to a

dense layer containing 32 or 64 hidden units. The output of this layer is passed to a final

softmax layer with 3 hidden unit which outputs a vector with the probabilities for each of

the three classes.

For the following example, the Figure 4.5 shows the RNN architecture, and the structure

to predict the label of this tweet. In this example we did not use the Attention Layer.

The LSTM or GRU layers are connected between them. These connections between units

enable the network to share the weights, and pass information on the important words

read so far. This is the method by which memory is realized in the neural network.

Example 7 Tweet example for RNN Architecture.

‘‘ The flu is so dangerous, fatal and bad ’’
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Fig 4.5: Real example processed by RNN architecture.

In our implementation, we provided the following concrete models based on this RNN

architecture:
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Abbreviation Description

2 LSTM Attention 50 Units
2 LSTM layers with 50 hidden units each,

and attention layer.

2 LSTM No Attention 50 Units
2 LSTM layers with 50 hidden units each,

and attention layer.

2 LSTM Attention 100 Units
2 LSTM layers with 100 hidden units each,

and attention layer.

2 LSTM No Attention 100 Units
2 LSTM layers with 100 hidden units each,

and no attention layer.

2 GRU Attention 2 GRU layers with attention layer.

2 GRU No Attention 2 GRU layers without attention layer.

LSTM GRU Attention
LSTM layer followed by GRU layer with

attention layer.

LSTM GRU No Attention
LSTM layer followed by GRU layer without

attention layer.

GRU LSTM Attention
GRU layer followed by LSTM layer with

attention layer.

GRU LSTM No Attention
GRU layer followed by LSTM layer without

attention layer.

Table 4.4: Scenario cases to experiment in RNN architecture.

4.5.2 Convolutional Neural Network

Figure 4.6 shows the general architecture of the CNN that we used. On the left, we have

the batches of tweets to be fed into the network.

The first stage of the network is the embedding layer, which takes care of mapping

each tweet t into a embedding M. The embedding is then feed into the first inception

layer, where the kernel size dimension can be configured by a parameter n. We try n with

values of 3 and 5. Additional optional inception layers could be added next depending the

model to test. The inception technique was proposed by Google in [49, 50]. In our case we

tried two scenarios, one with a single inception layer varying the kernel n value, and other

scenario using the optional part which provides a complex model with four layers varying

the kernel n value. The next layer is a flatten layer used to convert the convolutional

matrix resulting from the inception layers to a one-dimensional vector. Next, we have a

dropout layer used to prevent overfitting on the flattened vector. The last layer is a dense
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Fig 4.6: General CNN architecture.

layer containing 128, 256, or 512 hidden units. The output of this layer is passed to a final

softmax layer with 3 hidden unit which outputs a vector with the probabilities for each of

the three classes.

A problem with CNN is that by creating deep networks, in the hope of better per-

formance, computational time became prohibitively large. In addition, problems like

exploding gradients hurt the accuracy of the network. The main idea of the inception

architecture is maximize the accuracy, and minimize the complexity, which enable savings

in terms of training time. Is important to note that this model of inception was an

evolution of other models previous tested. The work presented in [50] explains that one

way to increment the performance in the neural networks is not modify the dimensions

of the input drastically. A reduction in the input layers may cause loss of information,

an issue known as representational bottleneck. A factorization in the convolutional kernel

size was proposed, the n x n convolutions could be represented in two convolutional layer

one of n x 1 and the another of 1 x n. For example, a 3 x 3 convolution is equivalent to

perform a 1 x 3 convolution, and then perform a 3 x 1 convolution on its output. This

factorization method is 33% more cheaper than the single 3 x 3 convolution. The inception

layer elements and architecture used for THS are shown in the Figure 4.7, where n was 3

or 5 respectively.
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Fig 4.7: Inception CNN architecture.

In our implementation, we provide the following concrete models based on this CNN

architecture:

Abbreviation Description

Single inception 3 x 3 1 inception layer with kernel size of 3 X 3

Single inception 5 x 5 1 inception layer with kernel size of 5 X 5

4 inceptions 3 x 3 4 interconnected inception layers with kernel size of 3 X 3

4 inceptions 5 x 5 4 interconnected inception layers with kernel size of 5 X 5

Table 4.5: Scenario cases to experiment in CNN architecture.
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Performance Evaluation

5.1 Hardware

To complete this research it was necessary to use different physical equipment. Figure 4.1

shows the first key hardware component which is a cluster composed of 12 physical hosts.

It was installed and configured with the software presented in Section 5.2 to cover the big

data architecture and requirements. These nodes ran Ubuntu 14.05 LTS on bare metal.

Each host of this cluster has these specifications:

Element Description
Hard disk 297 GB

RAM Memory 8 GB

Processor
Intel(R) Xeon(R)
E3120 @ 3.16GHz

GPU None

Table 5.1: Hardware desciption by each component used in THS cluster.

Fig 5.1: THS cluster architecture.

35
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The second key resource, is a physical desktop computer located in ADM laboratory

with the environment configured to code and test all the different models and developments

needed to THS. The machine ran the Ubuntu 16.04 LTS OS. The hardware specifications

of this computer are:

Element Description
Hard Disk 1.2 TB

RAM Memory 8 GB
Processor AMD FX-8350

GPU GeForce GTX 960
GPU Memory 2 GB

Table 5.2: ADM laboratory workstation hardware description.

The last important resource is the Chameleon Cloud, which is a configurable experimen-

tal online environment for large-scale cloud research. Chameleon has different hardware

options available for many different uses. Specifically for THS, the nodes used were called

“GPU-100”, and had the software tools presented in Section 5.2. The machines ran the

Ubuntu 16.04 LTS OS on bare metal. We trained several models independently of different

nodes with the same configuration. For this purpose, we created an custom image in the

Chameleon image repository. The hardware specifications of those nodes are:

Element Description
Hard Disk 207 GB

RAM Memory 128 GB

Processor X 2
Intel(R) Xeon(R)

CPU E5-2670 v3 @
2.30 GHz

GPU Tesla P100
GPU Memory 32 GB

Table 5.3: Chameleon cloud nodes hardware description.

5.2 Software

We implemented THS using open source software: Hadoop, Yarn, Spark, Hive, Kafka,

TensorFlow, Keras, and Scikit-learn. A brief explanation of each one was in Section 4.1.

Table 5.4 depicts the specific version of the components.
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Software Package Version
Hadoop & Yarn 2.7

Spark 2.1
Hive 2.2

Kafka 0.10.1
TensorFlow 1.10

Keras 2.1.6
Scikit-learn 0.19.2

Table 5.4: Version for software packages used in THS.

5.3 Experimental Results

We collected a total of 56,013 tweets from the Twitter streaming API between March 7th

and 28th, 2018. The tweets contain at least one of the following medical keywords:

• Zika

• Flu

• Ebola

• Measles

• Diarrhea

We then extracted a random sample of 12,500 tweets for labelling purposes. The

labeling process was done in twenty nine days (29) by four members of our team. As

mentioned before, we used three class labels: a) 0 - tweet is not about diseases, b) 1 - tweet

is related with diseases, and c) 2 - tweet is ambiguous. Table 5.5 shows a distribution

of the label classes in our labelled data set. As we can see, the data is unbalanced. In

Section 5.3.1 we describe how we handled this situation.

Class Label Tweet Count
0 3,850
1 7,917
2 733

Table 5.5: Distribution of tweets per class label.

5.3.1 Experimental Methods

To train our ML models, our training program read the entire data set into memory,

randomly shuffled all tweets, and then randomly assigned each tweet into one of three

sub-sets:



38

• Training set (60% of the data) - this data set was used to train each ML model.

• Development set (20% of the data) - this second data set was used to fit the

hyperparameters in the model, and determine which where the best performing

candidates.

• Test set (20% of the data) - this third data set was used to give an unbiased

evaluation of the candidate models and pick the best performing one for the metric

at hand.

We used the shuffle functionality in Keras to shuffle training and development data. We

also used the scikit-learn built-in support for K-fold cross-validation, but found very little

difference between the two approaches.

Since most ML models assume a uniform distribution of examples among the classes

present in the data, we had to find a way to adjust our models for the fact that we were

working with imbalanced classes. We decided on two approaches to handle this situation.

First, we ditched accuracy as our performance metric and instead use precision, recall,

and F1 score, explained before in Section 4.4.3. Notice that with an imbalanced class,

a classifier might simply always predict in favor of the majority class. Hence, accuracy

might not be the most adequate metric. For the validation and test phases, we compute a

confusion matrix to collect the performance metrics on each model.

Class Penalty Weight
0 1.08
1 0.53
2 5.68

Table 5.6: Class weight penalties.

The second decision was to used a penalized model approach. Under this scheme, an

additional penalty is added to the cost function whenever a model misclassifies, during

training, an example that belongs to one of the minority classes. We used the built-in

functionality in scikit-learn to estimate class weights penalties for imbalanced datasets.

Table 5.6 shows the class weights used for our experiments. As we can see form the figure,

the penalty for misclassifying an example in the minority class is substantially larger than

that for the majority class. We considered using other approaches for class imbalance,

such as oversampling the minority classes, or creating synthetic examples. However, we

felt that weight penalization provided the most natural and straightforward method.
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5.3.2 Finding the Best Models

A total of 1,120 and 1,080 combinations of different hyperparameters were evaluated for

RNN and CNN respectively. Each model was trained with the training set composed by

60% of the total data. The algorithm saves a vector array with 8 elements: five slots for

the five best, and three slots for the worst three. The validation set, composed by 20% of

total data, was used to obtain the metrics explained in Section 4.4.3. For each combination

of hyperparameter, the model was trained with the training set, and evaluated with the

validation data set. The results obtained from this step were compared with the values

in the array, and the best and worst models were updated. When the algorithm ends a

text file is generated with the summary of the 8 models. Also, for each model M , we

generated .h5, .json and, .txt files. The h5 file contains the model architecture, weights,

the training configuration (e.g. loss, optimizer), the state of the optimizer. The json file

contains the model configuration and specification. The txt file contains the execution

time, the combination of hyperparameters evaluated, the confusion matrix, and the details

metrics for each class label {0,1,2}.
To run the RNN algorithm we used a model composed by two LSTM layers of 50

hidden units and an attention layer between them. On the other hand, to run the CNN

algorithm we used a model composed by an inception layer that contains a 4 convolutional

layers, as explained in 4.7. More details of the evaluated architecture are presented in the

next sections. Once the top 5 best combinations are obtained for each architecture, other

models composed with different elements were trained and evaluated with the test set

(holdout set). These different elements were explained in Tables 4.4 and 4.5 respectively.

Hence, each different model architecture evaluated has the files and metrics calculated for

the 5 best combinations. To find the final best combination for RNN and CNN, there a

comparison of the performance metrics in the test set was made.

5.3.3 Final Results on RNN

All the RNN models tested were run with this set of hyperparameters: a learning rate

of 0.0001, 5 epochs of training, a batch size of 32, RMSprop was the optimizer, 0.3 rate

for the first dropout layer, 0.1 rate for the second dropout layer, and one 32-units dense

layer after the second LSTM/GRU layer, and before the softmax output layer. These

hyperparameters were found with the procedure described in the previous section.

Table 5.7 shows the results for the precision metrics for class 1 - tweets related with

a disease. For the sake of clarity, we only present this class. In addition, it is the most
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relevant class for the purpose of using Twitter Streaming API to detect conversations

about diseases. Notice that the best performing model, 2 LSTM Attention 100 Units has

a precision of 96%.

Abbreviation Precision

2 LSTM Attention 50 Units 0.87

2 LSTM No Attention 50 Units 0.83

2 LSTM Attention 100 Units 0.96

2 LSTM No Attention 100 Units 0.88

2 GRU Attention 0.64

2 GRU No Attention 0.63

LSTM GRU Attention 0.64

LSTM GRU No Attention 0.83

GRU LSTM Attention 0.60

GRU LSTM No Attention 0.60

Table 5.7: Precision results per RNN model.

Table 5.8 shows the results for the recall metrics for class 1. Notice that the best

performing model, LSTM GRU No Attention has a recall of 89%. Also, notice that various

entries have recall of 0. This means that the model did not converge.

Abbreviation Recall

2 LSTM Attention 50 Units 0.78

2 LSTM No Attention 50 Units 0.79

2 LSTM Attention 100 Units 0.34

2 LSTM No Attention 100 Units 0.69

2 GRU Attention 0.54

2 GRU No Attention 0.26

LSTM GRU Attention 0.0

LSTM GRU No Attention 0.89

GRU LSTM Attention 0.0

GRU LSTM No Attention 0.0

Table 5.8: Recall results per RNN model.

Table 5.9 shows the results for the F1 Score metrics for class 1. Notice that the best
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performing model, LSTM GRU No Attention, has a F1 Score of 86%.

Abbreviation F1 Score

2 LSTM Attention 50 Units 0.82

2 LSTM No Attention 50 Units 0.81

2 LSTM Attention 100 Units 0.50

2 LSTM No Attention 100 Units 0.78

2 GRU Attention 0.59

2 GRU No Attention 0.37

LSTM GRU Attention 0.78

LSTM GRU No Attention 0.86

GRU LSTM Attention 0.75

GRU LSTM No Attention 0.75

Table 5.9: F1 Score results per RNN model.

Table 5.10 shows the running time for training and validation for each RNN model.

Notice that the fastest model, 2 GRU Attention, ran in 4.44 minutes on the node with

GPU located in the Chameleon Cloud.

Abbreviation Execution time (mins)

2 LSTM Attention 50 Units 4.62

2 LSTM No Attention 50 Units 4.77

2 LSTM Attention 100 Units 4.70

2 LSTM No Attention 100 Units 4.86

2 GRU Attention 4.44

2 GRU No Attention 5.17

LSTM GRU Attention 4.48

LSTM GRU No Attention 4.45

GRU LSTM Attention 5.49

GRU LSTM No Attention 5.81

Table 5.10: Execution time per RNN model.
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5.3.4 Final Results on CNN

All the RNN models tested were run with this set of hyperparameters: a learning rate of

0.0001, 40 epochs of training, a batch size of 32, RMSprop was the optimizer, 64 filters

were used in each convolution, 0.1 rate for the dropout layer, and a 128-units dense layer

after the inception layer(s) and before the softmax output layer.

Table 5.11 shows the results for the precision metrics for class 1. For the sake of clarity,

we only present this class. In addition, it is the most relevant class for the purpose of using

Twitter Streaming to detect conversations about diseases. Notice that the best performing

model, 4 inception 3x3, has a precision of 79%.

Abbreviation Precision

1 inception 3x3 0.77

1 inception 5x5 0.78

4 inception 3x3 0.79

4 inception 5x5 0.76

Table 5.11: Precision results per CNN model.

Table 5.12 shows the results for the recall metrics for class 1. Notice that the best

performing model, A inception 3x3, has a recall of 91%.

Abbreviation Recall

1 inception 3x3 0.91

1 inception 5x5 0.85

4 inception 3x3 0.82

4 inception 5x5 0.90

Table 5.12: Recall results per CNN model.

Table 5.13 shows the results for the F1 Score metrics for class 1. Notice that the best

performing model, 1 inception 3x3 has a F1 Score of 83%.
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Abbreviation F1 Score

1 inception 3x3 0.83

1 inception 5x5 0.82

4 inception 3x3 0.81

4 inception 5x5 0.82

Table 5.13: F1 Score results per CNN model.

Table 5.14 shows the running time for training and validation for each CNN model.

Notice that the fastest model, 1 inception 3x3, runs in 4.65 minutes.

Abbreviation Execution time (mins)

1 inception 3x3 4.65

1 inception 5x5 5.33

4 inception 3x3 31.19

4 inception 5x5 37.44

Table 5.14: Execution time per CNN model.

5.3.5 Discussion of Results

In the results of the RNN model we concluded that the best performing model has a

precision of 96%, this models contains two LSTM layers with an attention layer between

them. Each LSTM layer contains one hundred of hidden units to process and modify the

weights. Notice that the worst precision rate was 60% with a combination of GRU layer

followed by LSTM layer tested with attention layer and without it. For the recall metric

the best rate reached was 89%, the model which give this metric has a LSTM layer follow

by GRU layer without attention layer. The worst model for this metric is conformed by

two GRU layers without attention layer too and gives a 26%. The best model for the F1

Score metric consist of a LSTM followed by a GRU layer with a 86%. The worst model

for the F1 score metric has a value of 37%, and consists of two GRU layers without an

attention layer. The fastest model was trained and evaluated with the metrics in 4.45

minutes , this was a LSTM layer followed by GRU layer without attention. The slowest

model took 5.81 minutes, and was a GRU layer followed by LSTM without attention layer.

All the CNN models’ metrics are close among them, and not very distant like the RNN

models. The best precision obtained was 79%, this model is shaped by four inception

layers with a batch size of three by three. The model which provides the worst precision
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has four inception layers with batch size of five by five, giving a precision of 76%. In the

recall metric the best model gives a 91%, this model contains one inception layer with

batch size of three by three. Notice that the worst recall rate was 82% with a model

formed by four inception layers with batch size of three by three. The best F1 score is

given by a model with one inception layer with batch size of three by three, performing a

rate of 83%. The worst model has four inception layers with batch size of three by three

and giving 80%. The fastest model was trained and evaluated with the metrics in 4.65

minutes, the model contained one inception layer and a batch size of three by three. The

slowest model took 37.43 minutes, this model has 4 inception layers with batch size of five

by five.

In the comparison between RNN and CNN model, we can see that the RNN model

metrics are better in Precision, F1 Score, and execution time versus the CNN models.

Nonetheless, the CNN model is better just in the Recall metric. Another important factor

to note is the variation between the results in each table. For example the Recall Table

5.8 for RNN varied between 26% and 89%. Instead, the CNN models Table 5.12 varied

between 82% and 91%. Thus CNN tend to provide less variable models versus RNN

architectures. The execution time for the CNN model is longer than RNN, it was almost 6

times more than the worst RNN execution time model. The worst time for CNN model

was expect by due of the number of epochs, inception layers, and the size of the kernel

size.
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Conclusion and Future Work

In this work, we have presented the Twitter Health Surveillance (THS) application

framework. THS is designed as an integrated platform to help health officials collect

tweets, determine if they are related with a medical condition, extract metadata out of

them, and create a warehouse that can be used to further analyze the data. THS is built

atop open source tools and provides the following value added services: Data Acquisition,

Tweet Classification, and Big Data Warehousing. We presented the infrastructure necessary

to feed the tweets into a machine learning pipeline that can efficiently learn to classify the

tweets as being related or not with diseases, and then use those models in a production

environment. This infrastructure was built atop the Hadoop big data tool set, Google’s

Tensorflow and Keras. All of this information can be provided to public health officials

through a web-based dashboard.

We used neural networks, both recurrent and convolutional, for the classification

process. The input to these the ML algorithms is a training set that contains tweets with

various medical terms and a label for each tweet. The label indicates if the tweet is related

or not to a medical condition.

In order to validate THS, we have created a collection of 12,500 labelled tweets. These

tweets contain one or more target medical terms, and the labels indicate if the tweet is

related or not to a medical condition. Specifically, each tweet is labelled into one of three

classes: a) class 0 - does not talk about medical condition, b) class 1 - talks about a

medical condition, and c) class 2 - ambiguous. We used this collection to test various

models based on LSTM and GRU for RNN, and on inception modules for CNN. Our

experiments show that we can classify tweets with 96% precision, 91% recall, and 86%

F1 score. These results compare favorably with recent research on this area, and show

the promise of our THS system as a tool to help detect real disease chat on Twitter. Our

45
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experiments show that the RNN model performed better with Precision, F1 Score, and

execution time versus the CNN models. Nonetheless, the CNN model is better with the

Recall metric. We also found that CNN tend to provide less variable models, in terms of

Precision and Recall, versus RNN architectures. The execution time for the CNN model is

longer than RNN, it was almost 6 times more than the worst RNN execution time model.

The worst time for CNN model was expect due of the number of epochs, inception layers,

and the kernel size.

Future work will be focused on training the machine learning models with more data

which enable us to obtain new results, and compare with the previous models. Also,

we will explore how to continuously update the models as new data is captured. In

addition, we shall design larger architectures for RNN and CNN to determine if these

improve the performance of the system. Furthermore, models with unsupervised or

semi-supervised algorithms of machine learning could be tested. Example algorithms are

k-means, DBSCAN, anomaly detection, among others.
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Appendix A

Experimental Results for Classes 0

and 2

A.1 RNN Results for Class 0

Table A.1 shows the results for the precision metrics for class 0 - tweets non related with

a disease.

Abbreviation Precision

2 LSTM Attention 50 Units 0.95

2 LSTM No Attention 50 Units 0.90

2 LSTM Attention 100 Units 0.91

2 LSTM No Attention 100 Units 0.94

2 GRU Attention 0.00

2 GRU No Attention 0.39

LSTM GRU Attention 0.00

LSTM GRU No Attention 0.00

GRU LSTM Attention 0.00

GRU LSTM No Attention 0.00

Table A.1: Precision results per RNN model for class 0.

Table A.2 shows the results for the recall metrics for class 0 - tweets non related with

a disease.
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Abbreviation Recall

2 LSTM Attention 50 Units 0.24

2 LSTM No Attention 50 Units 0.40

2 LSTM Attention 100 Units 0.40

2 LSTM No Attention 100 Units 0.28

2 GRU Attention 0.00

2 GRU No Attention 0.03

LSTM GRU Attention 0.00

LSTM GRU No Attention 0.00

GRU LSTM Attention 0.00

GRU LSTM No Attention 0.00

Table A.2: Recall results per RNN model for class 0.

Table A.3 shows the results for the recall metrics for class 0 - tweets non related with

a disease.

Abbreviation F1 Score

2 LSTM Attention 50 Units 0.39

2 LSTM No Attention 50 Units 0.56

2 LSTM Attention 100 Units 0.55

2 LSTM No Attention 100 Units 0.44

2 GRU Attention 0.00

2 GRU No Attention 0.05

LSTM GRU Attention 0.00

LSTM GRU No Attention 0.00

GRU LSTM Attention 0.00

GRU LSTM No Attention 0.00

Table A.3: F1 Score results per RNN model for class 0.

A.2 RNN Results for Class 2

Table A.4 shows the results for the precision metrics for class 2 - tweets which are

ambiguous.
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Abbreviation Precision

2 LSTM Attention 50 Units 0.05

2 LSTM No Attention 50 Units 0.04

2 LSTM Attention 100 Units 0.04

2 LSTM No Attention 100 Units 0.04

2 GRU Attention 0.03

2 GRU No Attention 0.06

LSTM GRU Attention 0.00

LSTM GRU No Attention 0.03

GRU LSTM Attention 0.00

GRU LSTM No Attention 0.00

Table A.4: Precision results per RNN model for class 2.

Table A.5 shows the results for the recall metrics for class 2 - tweets which are

ambiguous.

Abbreviation Recall

2 LSTM Attention 50 Units 0.52

2 LSTM No Attention 50 Units 0.30

2 LSTM Attention 100 Units 0.88

2 LSTM No Attention 100 Units 0.49

2 GRU Attention 0.47

2 GRU No Attention 0.83

LSTM GRU Attention 0.00

LSTM GRU No Attention 0.47

GRU LSTM Attention 0.00

GRU LSTM No Attention 0.00

Table A.5: Recall results per RNN model for class 2.

Table A.6 shows the results for the recall metrics for class 2 - tweets which are

ambiguous.
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Abbreviation F1 Score

2 LSTM Attention 50 Units 0.09

2 LSTM No Attention 50 Units 0.07

2 LSTM Attention 100 Units 0.08

2 LSTM No Attention 100 Units 0.07

2 GRU Attention 0.06

2 GRU No Attention 0.11

LSTM GRU Attention 0.00

LSTM GRU No Attention 0.06

GRU LSTM Attention 0.00

GRU LSTM No Attention 0.00

Table A.6: F1 Score results per RNN model for class 2.

A.3 CNN Results for Class 0

Table A.7 shows the results for the precision metrics for class 0 - tweets non related with

a disease.

Abbreviation Precision

1 inception 3x3 0.76

1 inception 5x5 0.71

4 inception 3x3 0.67

4 inception 5x5 0.71

Table A.7: Precision results per CNN model for class 0.

Table A.8 shows the results for the recall metrics for class 0 - tweets non related with

a disease.

Abbreviation Recall

1 inception 3x3 0.47

1 inception 5x5 0.55

4 inception 3x3 0.55

4 inception 5x5 0.51

Table A.8: Recall results per CNN model for class 0.
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Table A.9 shows the results for the F1 Score metrics for class 0 - tweets non related

with a disease.

Abbreviation F1 Score

1 inception 3x3 0.58

1 inception 5x5 0.62

4 inception 3x3 0.60

4 inception 5x5 0.59

Table A.9: F1 Score results per CNN model for class 0.

A.4 CNN Results for Class 2

Table A.10 shows the results for the precision metrics for class 2 - tweets which are

ambiguous.

Abbreviation Precision

1 inception 3x3 0.07

1 inception 5x5 0.08

4 inception 3x3 0.04

4 inception 5x5 0.07

Table A.10: Precision results per CNN model for class 2.

Table A.11 shows the results for the recall metrics for class 2 - tweets which are

ambiguous.

Abbreviation Recall

1 inception 3x3 0.10

1 inception 5x5 0.13

4 inception 3x3 0.09

4 inception 5x5 0.03

Table A.11: Recall results per CNN model for class 2.

Table A.12 shows the results for the F1 Score metrics for class 2 - tweets which are

ambiguous.
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Abbreviation F1 Score

1 inception 3x3 0.09

1 inception 5x5 0.10

4 inception 3x3 0.06

4 inception 5x5 0.04

Table A.12: F1 Score results per CNN model for class 2.



Appendix B

GitHub Repositories

The GitHub repositories of the big data and machine learning deamon are avaliable upon

request at cristian.garzon@upr.edu. The following sections contain the links.

B.1 Big Data Platform

https://github.com/THSUPRM/bigdata/tree/master/python

B.1.1 Machine Learning Platform

https://github.com/THSUPRM/bigdata/tree/master/DetectDiseaseTHS/ths
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