Otaño-Gracia, Carlo

Loading...
Profile Picture

Publication Search Results

Now showing 1 - 1 of 1
  • Publication
    Electrospun polymer electrolyte membranes for fuel cell applications
    (2012) Otaño-Gracia, Carlo; Valentín, Ricky; College of Engineering; Quintero, Pedro; Jia, Yi; Department of Mechanical Engineering; Ortíz, Juan
    Low temperature fuel cells have attracted a lot of attention for use as small portable power sources. The performance of the fuel cells is largely dependent on the cathode, anode and the Polymer Electrolyte Membrane (PEM). For the PEM in particular, many important characteristics are determined by the membrane morphology which is dependent on the fabrication method. Extrusion and casting are two of the most popular ones. Meanwhile, electrospinning is becoming a very popular fabrication method because it can create a wovenlike membrane composed of many nano-sized fibers with very interesting morphological properties such as high surface area to volume ratio, pinhole resistance and low fuel crossover. A Nafion-Poly (Acrylic Acid) (PAA) blend was electrospun to create polymer electrolyte membranes for fuel cell applications. The membranes were pressed, heat treated, cleaned and activated. Optical and scanning electron microscopy was performed on the membranes to characterize the surface morphology, fiber orientation and fiber diameter. Different parameters were tested as a function of the compacting pressure and the annealing temperature. Water uptake and ion exchange capacity were used to characterize the water content of the membranes. The solubility and mechanical properties of the membranes were also determined. The electrospun membranes were compared to commercially available membranes. The electrospun membranes were found to have higher water content with an increase of 1,017% when compared with the commercial membranes when the water uptake and the ion exchange capacity were evaluated. The water uptake, ion exchange capacity and water content were found to be dependent on the Nafion-PAA concentration and the processing order but not on the annealing temperature and compressing pressure. The electrospun membrane’s solubility was found to be dependent on the annealing temperature and the mechanical strength was found to be a function of the Nafion-PAA concentrations. The fiber diameter distribution was found to change as function of Nafion content with higher content resulting in smaller diameters and the fiber orientation was only dependant on the oscillating drum collector used in the electrospinning process.