Maldonado Ortiz, Yolanda Ivette

Loading...
Profile Picture

Publication Search Results

Now showing 1 - 1 of 1
  • Publication
    Extreme environments promote cancerous behavior in healthy cells
    (2022-12-13) Maldonado Ortiz, Yolanda Ivette; Diffoot Carlo, Nanette; College of Arts and Sciences - Sciences; Sundaram, Paul A.; Montalvo Rodríguez, Rafael R.; Department of Biology; Perez Pinedo, Yakaira
    Cancerous cells are well adapted to acidic environments, promoting cancer cell survival and spreading into other organs. These cells can adapt and overcome existing extracellular obstacles that prevent cancer progression. Cancerous cells can circumvent the extracellular signals that instruct the cell to stop replication, evade recognition by the immune system, and re-program their metabolism to survive. They also adapt to acidic environments which promote cells to reorganize their cytoskeleton to migrate and invade. The processes of migration and invasion, led by the cytoskeleton, are complex and dynamic and capable of responding to the environment by assembly or disassembly of its proteins. It is hypothesized that healthy cells, that are constantly exposed to hostile environments, can emulate, and behave like cancerous cells. To study this phenomenon, two epithelial breast cell lines, the healthy cell line MCF-12A and the cancerous cell line MDA-MB-231, were exposed to three different pH levels of 5, 7, and 9 for 24 hours. After the desired incubation conditions of the MCF-12A and MDA-MB-231 cells were completed, two cytoskeletal proteins related to cell migration and invasion, actin, and vinculin, were studied by immunoassays and confocal microscopy. After 24 hours both cells line MCF12-A and MDA-MB-231 at all three pH levels, develop diverse types of projections around the cell membranes, and exhibit changes in fluorescence intensity of Vinculin and Actin, and the distribution of these two proteins around the intracellular environment. These results suggest that pH has an important role in cytoskeletal assembly and orientation and that a hostile environment such as changing pH can disturb cell physiology, making the cells alter their cytoskeletal assemble in response to the changing environment. This disturbance was detected by the changes in the intensity of the fluorescence of Vinculin and Actin, and the development of projection around the membrane.