Publication:
Un algoritmo para clasificación no supervisada de datos funcionales
Un algoritmo para clasificación no supervisada de datos funcionales
Authors
Barreto-González, César A.
Embargoed Until
Advisor
Acuña-Fernández, Edgar
College
College of Arts and Sciences - Sciences
Department
Department of Mathematics
Degree Level
M.S.
Publisher
Date
2011-12
Abstract
La estadística multivariada ofrece diversas herramientas que permiten realizar un análisis para ciertos conjuntos de datos. Sin embargo surge una rama de la estadística en la cual se dejan de observar conjuntos de datos de forma puntual y se empieza a pensar en conjuntos de datos que consistan en funciones como tal. Es decir, se deja de pensar en un conjunto de puntos que representan cierta característica y se empieza a pensar en una función que representa una característica en el transcurso de un continuo. Por tal razón, es u ́til investigar la extensión de las herramientas del campo multivariado al de los datos funcionales. En este trabajo se realiza una propuesta para la clasificación no supervisada para datos funcionales. Esta propuesta consta de dos etapas, una de suavización, en la cual se busca obtener una función que describa a un conjunto de puntos discretos tomados sobre un continuo, el cual en la mayoría de los casos es el tiempo. En la segunda etapa, se lleva a cabo la clasificación, en la cual a partir de los coeficientes obtenidos en la suavización que describen la función, se realiza la clasificación usando un método no supervisado. Los resultados obtenidos son comparables y hasta mejoran los tradicionales, de acuerdo a las medidas de validación usada.
Multivariate Statistics offers several tools to perform analysis for certain data sets. How- ever, there is a branch of Statistics which does not look at observation point by point but thinks about observation as functions. One does not think of a set of points representing a feature, but thinks of a function representing that feature along a continuum. For this reason, it is useful to investigate the extension of the multivariate tools to functional data. This work proposes unsupervised classification for functional data. This proposal consists of two stages. The first one is smoothing, in which one seeks to obtain a function that describes a set of discrete points taken along a continuum (which in most cases is time). In the second stage the classification takes place from the coefficients obtained in the smoothing, which describe the function. The classification is performed using an unsupervised method. The results are comparable, and in some cases improve upon the traditional methods according to common validation measures.
Multivariate Statistics offers several tools to perform analysis for certain data sets. How- ever, there is a branch of Statistics which does not look at observation point by point but thinks about observation as functions. One does not think of a set of points representing a feature, but thinks of a function representing that feature along a continuum. For this reason, it is useful to investigate the extension of the multivariate tools to functional data. This work proposes unsupervised classification for functional data. This proposal consists of two stages. The first one is smoothing, in which one seeks to obtain a function that describes a set of discrete points taken along a continuum (which in most cases is time). In the second stage the classification takes place from the coefficients obtained in the smoothing, which describe the function. The classification is performed using an unsupervised method. The results are comparable, and in some cases improve upon the traditional methods according to common validation measures.
Keywords
Multivariate statistics
Usage Rights
Persistent URL
Cite
Barreto-González, C. A. (2011). Un algoritmo para clasificación no supervisada de datos funcionales [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/1097