Loading...
Modelos no lineales mixtos con variables de respuesta con distribuciĆ³n beta
GarcĆa-Saavedra, Yuri M.
GarcĆa-Saavedra, Yuri M.
Citations
Altmetric:
Abstract
There are many situations in which random variables involving some kind of percentage, ratio, or fraction. Many studies have shown that linear regression models are not appropriate to model this type of data. However, the beta distribution is very useful for modeling data that are continuous and restricted to the interval (0,1), and also can be explained by other variables through a regression structure. Due to this, Ferrari and Cribari-Neto (2004) proposed a beta linear regression model in which the response variable is distributed as a beta using a different parameterization of its density function, thus obtaining a regression structure for the mean of the response with a constant precision parameter. In this study we extend this theory, proposing a beta nonlinear mixed regression model, where the conditional distribution of observations is assumed beta and the distribution of the random effects is assumed normal. We study the induced marginal distribution and the properties of the model proposed by means of simulation, which are compared with those obtained by a nonlinear mixed regression model assuming normal distribution. The estimates are obtained using the maximum likelihood, until quasi-Newton technique for the optimization and Gaussian quadrature for the integration. Standard errors of the model parameters were estimated using the Hessian matrix. Finally, we apply these results to studies of disease severity (relative amount of affected tissue in a given time) in plantain crops in Puerto Rico (2006-2007), which usually estimates the percentage of leaf area affected. Nonlinear models yield a better fit of the disease progress. Furthermore, since the parameters of the nonlinear curve vary, this variability is reflected with the inclusion of one or two random effects plant. This generates a correlation between observations from the same plant, so implicitly the correlation between repeated measures are incorporated into modeled.
Existen muchas situaciones en las que se involucran variables aleatorias con algĆŗn tipo de porcentaje, proporciones o fracciones. Muchos estudios han demostrado que los modelos de regresiĆ³n lineal no son apropiados para modelar este tipo de datos. Sin embargo, la distribuciĆ³n beta es muy Ćŗtil para modelar datos que se encuentran restringidos continuamente en el intervalo (0,1) y que ademĆ”s pueden ser explicados por otras variables a travĆ©s de una estructura de regresiĆ³n. Debido a esto, Ferrari y Cribari-Neto (2004) propusieron un modelo de regresiĆ³n beta lineal en el que la variable respuesta estĆ” distribuida como una beta usando una parametrizaciĆ³n diferente de su funciĆ³n de densidad, obteniendo asĆ, una estructura de regresiĆ³n para la media de la respuesta con un parĆ”metro de precisiĆ³n constante. En este trabajo extendemos esta teorĆa, proponiendo un modelo de regresiĆ³n beta no lineal mixto, donde la distribuciĆ³n condicional de las observaciones es asumida beta y la distribuciĆ³n de los efectos aleatorios se asume normal. Estudiamos la distribuciĆ³n marginal inducida y las propiedades del modelo propuesto mediante simulaciĆ³n, que se comparan con las obtenidas por un modelo de regresiĆ³n no lineal mixto asumiendo distribuciĆ³n normal. Las estimaciones se realizan mediante mĆ”xima verosimilitud usando la tĆ©cnica quasi-Newton para la optimizaciĆ³n y la cuadratura Gaussiana para la integraciĆ³n. Los errores estĆ”ndar de los parĆ”metros del modelo fueron estimados mediante la matriz Hessiana. Finalmente, aplicamos estos resultados a estudios de severidad (cantidad relativa de tejido afectado en un momento dado) de enfermedades en cultivos de guineo en Puerto Rico (2006-2007), donde se estima usualmente el porcentaje del Ć”rea de la hoja afectada. Los modelos no lineales permitieron obtener un mejor ajuste de las curvas de progreso de la enfermedad. AdemĆ”s, como los parĆ”metros de la curva no lineal varĆan, se reflejĆ³ esta variabilidad mediante la inclusiĆ³n de uno y dos efectos aleatorios. Esto nos generarĆ” una correlaciĆ³n entre las observaciones provenientes de la misma planta, por lo que implĆcitamente se incorporan las correlaciones por mediciones repetidas en el modelo.
Existen muchas situaciones en las que se involucran variables aleatorias con algĆŗn tipo de porcentaje, proporciones o fracciones. Muchos estudios han demostrado que los modelos de regresiĆ³n lineal no son apropiados para modelar este tipo de datos. Sin embargo, la distribuciĆ³n beta es muy Ćŗtil para modelar datos que se encuentran restringidos continuamente en el intervalo (0,1) y que ademĆ”s pueden ser explicados por otras variables a travĆ©s de una estructura de regresiĆ³n. Debido a esto, Ferrari y Cribari-Neto (2004) propusieron un modelo de regresiĆ³n beta lineal en el que la variable respuesta estĆ” distribuida como una beta usando una parametrizaciĆ³n diferente de su funciĆ³n de densidad, obteniendo asĆ, una estructura de regresiĆ³n para la media de la respuesta con un parĆ”metro de precisiĆ³n constante. En este trabajo extendemos esta teorĆa, proponiendo un modelo de regresiĆ³n beta no lineal mixto, donde la distribuciĆ³n condicional de las observaciones es asumida beta y la distribuciĆ³n de los efectos aleatorios se asume normal. Estudiamos la distribuciĆ³n marginal inducida y las propiedades del modelo propuesto mediante simulaciĆ³n, que se comparan con las obtenidas por un modelo de regresiĆ³n no lineal mixto asumiendo distribuciĆ³n normal. Las estimaciones se realizan mediante mĆ”xima verosimilitud usando la tĆ©cnica quasi-Newton para la optimizaciĆ³n y la cuadratura Gaussiana para la integraciĆ³n. Los errores estĆ”ndar de los parĆ”metros del modelo fueron estimados mediante la matriz Hessiana. Finalmente, aplicamos estos resultados a estudios de severidad (cantidad relativa de tejido afectado en un momento dado) de enfermedades en cultivos de guineo en Puerto Rico (2006-2007), donde se estima usualmente el porcentaje del Ć”rea de la hoja afectada. Los modelos no lineales permitieron obtener un mejor ajuste de las curvas de progreso de la enfermedad. AdemĆ”s, como los parĆ”metros de la curva no lineal varĆan, se reflejĆ³ esta variabilidad mediante la inclusiĆ³n de uno y dos efectos aleatorios. Esto nos generarĆ” una correlaciĆ³n entre las observaciones provenientes de la misma planta, por lo que implĆcitamente se incorporan las correlaciones por mediciones repetidas en el modelo.
Description
Date
2012-06
Journal Title
Journal ISSN
Volume Title
Publisher
Collections
Research Projects
Organizational Units
Journal Issue
Keywords
Variables, Linear regression model, Beta nonlinear mixed regression model