Publication:
A novel framework of structured measurement matrix for compressed sensing in wireless sensor networks
A novel framework of structured measurement matrix for compressed sensing in wireless sensor networks
dc.contributor.advisor | Lu, Kejie | |
dc.contributor.author | Flórez Gómez, Edwin | |
dc.contributor.college | College of Engineering | en_US |
dc.contributor.committee | Ierkic, Henrick Mario | |
dc.contributor.committee | Arzuaga, Emmanuel | |
dc.contributor.committee | Portnoy, Arturo | |
dc.contributor.committee | Seguel, Jaime | |
dc.contributor.department | Department of Electrical and Computer Engineering | en_US |
dc.contributor.representative | Rullán, Agustín | |
dc.date.accessioned | 2019-03-29T14:01:52Z | |
dc.date.available | 2019-03-29T14:01:52Z | |
dc.date.issued | 2018-05 | |
dc.description.abstract | Wireless Sensor Network (WSN) is a wireless networking technology that can facilitate many important applications in our real life, from environmental monitoring to smart grid, and thus is a key component in the emerging Internet of Things (IoT). To design e cient WSNs, two major issues are (1) the throughput capacity that is the maximal data rate at which a WSN can collect data from a eld, and (2) the delay that is the duration from the time a signal is sensed to the time that is a received by the gateway of a WSN, known as the sink. To address these two issues, there are many solutions in the literature and Compressed Sensing (CS) is one of the most promising solutions because it can combine data collection and compression at the same time. By using CS, sensor nodes can collaboratively generate measurements by using a measurement matrix to linearly combine the original signals. In theory, if the original signals are sparse, then they can be reconstructed by well-known convex optimization, using a much smaller number of measurements, which leads to much higher throughput and smaller delay. In the literature, several CS based data collection schemes for WSNs have been investigated. However, the impact of the measurement matrix has not been fully investigated. On one hand, many researchers focused on the performance of WSN by simply assuming there exists a measurement matrix. On the other hand, some researchers focused on the design of measurement matrix, particularly the structured measurement matrix, without considering the feature of WSN. Therefore, there is still a signi cant gap between CS and WSN. In this dissertation, we aim at tackling this challenging issue and we propose a novel framework for structured measurement matrix to improve the performance of data collection in WSN. Speci cally, the proposed structured measurement matrix consists of rectangular blocks with non-zero elements. Each of the blocks is used to produce measurements by linearly combining original signals collected from a subset of sensors. Moreover, if two bands are adjacent in the matrix, then the corresponding subset can have intersections, and all such intersections have the same cardinality. In this manner, the measurement matrix is a circular overlapping block diagonal (COB) matrix. To evaluate the performance of the proposed COB matrix, we rst investigate a particular COB case, in which the cardinality of the intersection is one half of the cardinality of a subset of sensors. For this type of matrix, we conduct theoretical analysis to prove that it satis es the Restricted Isometric Property (RIP), which is widely used to determine the minimal number of measurements that can guarantee the reconstruction of the original signals. The theoretical analysis reveals the impacts of several important factors, including the number of blocks, the sparsity of original signals, and the total number of signals. We also conduct extensive simulation and the numerical results validate the theoretical analysis and demonstrate that the proposed COB matrix outperform existing block diagonal matrix. Based on the understandings from the speci c COB case, we generalize the COB in a way such that the size of overlapping can be an arbitrary number. For the generalized COB, we rst prove that it also satis es the RIP with a certain bound for the number of measurement. In addition to the aforementioned factors, we investigate the impact of the size of overlapping. Extensive numerical results show that our analysis again is very accurate. Finally, we conduct theoretical analysis to evaluate the throughput and delay performance of CS-based WSN with the proposed measurement matrix. In the analysis, we rst derive schemes to partition a unit area into equal-sized region, we then develop feasible time division multiple access (TDMA) schemes to facilitate two sensing scenarios in WSN. Using the theoretical analysis, we further analyze the performance of WSN using practical settings, such as the transmission range, data rate, etc. The numerical results con rm that the proposed COB scheme can improve throughout and delay performance. | en_US |
dc.description.abstract | Las redes de sensores inal ambricos (WSN, siglas en ingl es) es una tecnolog a que facilita muchas tareas importantes en nuestra vida real, desde el monitoreo del medio ambiente hasta las redes inteligentes, componentes claves en el emergente campo del Internet de las Cosas (IoT, siglas en ingl es). Para dise~nar WSN e cientes, se deben considerar dos problemas principales (1) la capacidad de rendimiento, que es la velocidad m axima a la que un WSN puede recopilar datos, y (2) el retraso, que es el tiempo desde el momento en que se detecta una se~nal hasta que es recibida por la puerta de enlace de la WSN, conocido como el sumidero. Existen muchas soluciones en la literatura para abordar estos dos problemas, pero es el muestreo con compresi on (CS, siglas en ing es) una de las soluciones m as prometedoras, ya que permite combinar la recopilaci on de datos y la compresi on al mismo tiempo. Al usar CS, cada sensor colabora en el sensado mediante el uso de una matriz para combinar linealmente las se~nales originales. En teor a, si las se~nales originales tienen muy pocas entradas no cero, entonces pueden ser reconstruidas usando el m etodo conocido como optimizaci on convexa, utilizando un n umero de mediciones muy peque~no. Esto conduce a un rendimiento mucho mayor y un retraso menor en la WSN. En la literatura, se han investigado varios esquemas de recopilaci on de datos basados en CS para WSN. Sin embargo, el impacto de la matriz de medici on no se ha investigado por completo. Por un lado, muchos investigadores se centran en el rendimiento de WSN simplemente asumiendo que existe una matriz de medici on. Por otro lado, otros investigadores se centraron en el dise~no de la matriz de medici on, particularmente la matriz de medici on estructurada, sin considerar la caracter stica de WSN. Por lo tanto, todav a hay una brecha signi cativa entre CS y WSN. En esta disertaci on, nuestro objetivo es abordar este desaf o y proponemos un nuevo modelo para la matriz de medici on estructurada, que mejora el rendimiento de la recopilaci on de datos en WSN. Espec camente, la matriz estructurada propuesta consiste en bloques rectangulares que contienen elementos distintos de cero. Cada uno de los bloques se usa para producir mediciones que combinan linealmente las se~nales originales sensadas de un subconjunto de sensores. Adem as, si dos bandas son adyacentes en la matriz, su subconjunto correspondiente tendr a intersecciones de igual cardinalidad. De esta manera, la matriz de medici on propuesta ser a diagonal circular con bloques solapados (COB, siglas en ingl es). Para evaluar el rendimiento de COB, primero investigamos un caso particular, en la que el tama~no de la intersecci on es la mitad del tama~no de un subconjunto de sensores. Para este tipo de matriz, se llev o a cabo un an alisis te orico para demostrar que satisface la Propiedad Isom etrica Restringida (RIP, sigles en ingl es), que se usa ampliamente para determinar el n umero m nimo de mediciones que se necesitan para garantizar la reconstrucci on de las se~nales originales. El an alisis te orico revela el impacto de varios factores importantes, tales como, el n umero de bloques, la esparsidad de las se~nales originales y el n umero total de se~nales. Tambi en llevamos a cabo una simulaci on exhaustiva y los resultados num ericos validan el an alisis te orico y demuestran que la matriz COB propuesta, supera a la matriz diagonal de bloques existente. De lo observado en el caso espec co de COB, hemos hecho una generalizaci on, de tal manera que el tama~no de la superposici on puede ser elegido. Para COB generalizada, primero demostramos que tambi en satisface RIP con una cierta cuota para el n umero de medidas. Adem as de los factores antes mencionados, investigamos el impacto del tama~no de la superposici on. Los extensos resultados num ericos muestran que nuestro an alisis nuevamente es muy preciso. Finalmente, realizamos un an alisis te orico para evaluar la capacidad de rendimiento y el retraso en WSN basado en CS con la matriz de medici on propuesta. En el an alisis, primero derivamos esquemas para dividir un area espec ca en regiones de igual tama~no, luego desarrollamos esquemas de acceso m ultiple por divisi on de tiempo (TDMA, siglas en ingl es) para facilitar dos escenarios de muestreo en WSN. Utilizando el an alisis te orico, analizamos con mas detalle el rendimiento de WSN utilizando valores en la red, tales como, el rango de transmisi on, la velocidad de datos, etc. Los resultados num ericos con rman que el esquema de COB propuesto puede mejorar la capacidad de rendimiento y los retrasos en la red. vii | en_US |
dc.description.graduationSemester | Spring | en_US |
dc.description.graduationYear | 2018 | en_US |
dc.description.sponsorship | National Science Foundation (NSF) under grants CNS-0922996 and CNS-1730325 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/1899 | |
dc.language.iso | en | en_US |
dc.rights.holder | (c) 2018 Edwin Flórez Gómez | en_US |
dc.rights.license | All rights reserved | en_US |
dc.subject | Wireless sensor networks - Data collection performance | en_US |
dc.subject | Wireless sensor networks - Structural analysis (Engineering) - Matrix methods | en_US |
dc.subject.lcsh | Compressed sensing (Telecommunication) | en_US |
dc.subject.lcsh | Wireless sensor networks | en_US |
dc.title | A novel framework of structured measurement matrix for compressed sensing in wireless sensor networks | en_US |
dc.type | Dissertation | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Computing and Information Sciences and Engineering | en_US |
thesis.degree.level | Ph.D. | en_US |