Loading...
Sistemas dinámicos booleanos y operaciones de puente
Pérez-Baéz, Luis O.
Pérez-Baéz, Luis O.
Citations
Altmetric:
Abstract
Definiremos la noción de puente entre dos grafos fuertemente conexo. El grafo que se origina, Xf, define el sistema dinámico f : Z_(2)^(n) → Z_(2)^(n), no-lineal, mas simple sobre el cuerpo con dos elementos Z2. Usaremos un invariante llamado “Loop Number” que aplicado a Xf nos ayuda a proveer condiciones necesarias y suficientes para que f sea un sistema de punto fijo.
We define the concept of wedge between two strongly connected graphs. The resulting graph, Xf , defines the simplest nonlinear dynamical system f : Z_(2)^(n) → Z_(2)^(n) over the field of 2 elements Z2. We use an invariant, called the loop number, that when applied to Xf will help us provide necessary and sufficient conditions for f to be a fixed point system.
We define the concept of wedge between two strongly connected graphs. The resulting graph, Xf , defines the simplest nonlinear dynamical system f : Z_(2)^(n) → Z_(2)^(n) over the field of 2 elements Z2. We use an invariant, called the loop number, that when applied to Xf will help us provide necessary and sufficient conditions for f to be a fixed point system.
Description
Date
2008
Journal Title
Journal ISSN
Volume Title
Publisher
Collections
Keywords
Sistemas booleanos