Publication:
Cuñas en sistemas dinámicos
Cuñas en sistemas dinámicos
dc.contributor.advisor | Colón Reyes, Omar | |
dc.contributor.author | Tomaiconza Ataulluco, Oscar | |
dc.contributor.college | College of Arts and Sciences - Sciences | en_US |
dc.contributor.committee | Bollman, Dorothy | |
dc.contributor.committee | Castellini, Gabriele | |
dc.contributor.department | Department of Mathematics | en_US |
dc.contributor.representative | Couvertier, Isidoro | |
dc.date.accessioned | 2018-09-14T19:52:21Z | |
dc.date.available | 2018-09-14T19:52:21Z | |
dc.date.issued | 2010-12 | |
dc.description.abstract | Para ciertos sistemas dinámicos no lineales de punto fijo, computamos el tiempo que toma dicho sistema en alcanzar un estado de quietud. En este trabajo introducimos la operación de cuña entre dos grafos dirigidos. Cuando estos grafos son un m-ágono y un n-ágono entonces la cuña de estos sistemas induce un sistema no lineal. Más aun, si m y n son co-primos entonces nuestro sistema es uno de punto fijo. Para este sistema entonces computamos su tiempo de transición, es decir lo que tarda en llegar a un estado de quietud. | |
dc.description.abstract | For certain non linear discrete dynamical systems that are fixed point systems, we compute the time that it takes to reach a steady state. In this work we introduce the operation of wedge among directed graphs. When these graphs are m-gons and n-gons then the wedge of them induces a non lineals dynamical system. More over, if m and n are co-prime then our system is a fixed point system. For this system we compute its transition time, that is, how long it takes for the system to stabilize. | |
dc.description.graduationSemester | Fall | en_US |
dc.description.graduationYear | 2010 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.11801/906 | |
dc.language.iso | es | en_US |
dc.rights.holder | (c)2010 Oscar Tomaiconza Ataulluco | en_US |
dc.rights.license | All rights reserved | en_US |
dc.subject | Non linear discrete dynamical systems | en_US |
dc.subject | Wedge | en_US |
dc.subject | Graphs | en_US |
dc.subject | Fixed point systems | en_US |
dc.subject.lcsh | Dynamics | en_US |
dc.subject.lcsh | Fixed point theory | en_US |
dc.subject.lcsh | Graph theory | en_US |
dc.subject.lcsh | Wedges | en_US |
dc.subject.lcsh | Nonlinear theories | en_US |
dc.title | Cuñas en sistemas dinámicos | en_US |
dc.type | Thesis | en_US |
dspace.entity.type | Publication | |
thesis.degree.discipline | Pure Mathematics | en_US |
thesis.degree.level | M.S. | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- MATE_TomaiconzaAtaullucoO_2010.pdf
- Size:
- 2.19 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.64 KB
- Format:
- Item-specific license agreed upon to submission
- Description: