Publication:
Utilizing high-performance computing to improve performance and investigate sensitivity of an inversion model for hyperspectral remote sensing of shallow coral ecosystems

dc.contributor.advisor Rivera-Gallego, Wilson
dc.contributor.author Gerardino-Neira, Carolina
dc.contributor.college College of Engineering en_US
dc.contributor.committee Velez-Reyes, Miguel
dc.contributor.committee Goodman, James
dc.contributor.department Department of Electrical and Computer Engineering en_US
dc.contributor.representative Colón-Reyes, Omar
dc.date.accessioned 2019-05-15T17:59:33Z
dc.date.available 2019-05-15T17:59:33Z
dc.date.issued 2007
dc.description.abstract This research presents a sensitivity analysis of a semi-analytical inversion model for hyperspectral remote sensing of shallow coral ecosystems. Using this inversion model, five parameters describing water column bioptical properties, bathymetry and magnitude of bottom reflectance are retrieved. In addition to the parameters of interest, the model contains 12 nuisance parameters that are traditionally assigned a fixed set of values. A sensitivity analysis of estimates retrieved to these nuisance parameters is accomplished using SimLab software to study their impact on model output. The computationally intensive analysis was enabled implementing the inver- sion model within a parallel processing framework using GENCAN. The sensitivity analysis was used to identify which nuisance parameters are most influential on the parameters of interest. The nuisance parameters found to be most relevant are: S, the spectral slope of the absorption coefficient for gelbstoff, Y, the spectral power coefficient for calculating the backscattering coefficient, and Dop, a constant in the equation for the distribution function for scattered photons from the bottom. en_US
dc.description.abstract Esta investigación presenta un análisis de sensibilidad aplicado a un modelo semi-analítico inverso, para imágenes hiperespectrales de ecosistemas de aguas poco profundas. El modelo de inversión encuentra cinco parámetros de interés los cuales describen propiedades bio-ópticas de la columna de agua, profundidad y reflectancia del fondo marino. Adicionalmente, el modelo tiene 12 parámetros nuisance, cuyos valores son tradicionalmente fijados. Se utilizó el software SimLab para un análisis de sensibilidad de los estimados de los parámetros nuisance y ver su impacto en la salida del modelo. El complejo análisis computacional fue posible implementando el modelo de inversión en una infraestructura para procesamiento en paralelo utilizando el método GENCAN. El análisis de sensibilidad permitió encontrar los parámetros nuisance más influyentes en los parámetros de interés. Los parámetros nuisance más importantes son: S, la pendiente espectral del coeficiente de absorción para gelbstoff, Y, la potencia espectral del coeficiente de retrodispersión, y Dop, constante en la función de distribución por fotones dispersos desde el fondo. en_US
dc.description.graduationYear 2007 en_US
dc.description.sponsorship Supported in part by CenSSIS, the Center for Subsurface Sens- ing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (Award Number ECE-986821). This work was also supported by NASA Training Grant NNG05GG78H (PR Space Grant) and NASA Cooperative Agreement NNX07AO30A (PR NASA EPSCoR). en_US
dc.identifier.uri https://hdl.handle.net/20.500.11801/2363
dc.language.iso English en_US
dc.rights.holder (c) 2007 Carolina Gerardino-Neira en_US
dc.rights.license All rights reserved en_US
dc.title Utilizing high-performance computing to improve performance and investigate sensitivity of an inversion model for hyperspectral remote sensing of shallow coral ecosystems en_US
dc.type Thesis en_US
dspace.entity.type Publication
thesis.degree.discipline Electrical Engineering en_US
thesis.degree.level M.S. en_US
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
INEL_GerardinoNeiraC_2007.pdf
Size:
813.95 KB
Format:
Adobe Portable Document Format
Description: