Publication:
Sistemas dinámicos booleanos y operaciones de puente
Sistemas dinámicos booleanos y operaciones de puente
Authors
Pérez-Baéz, Luis O.
Embargoed Until
Advisor
Colón-Reyes, Omar
College
College of Arts and Sciences - Sciences
Department
Department of Mathematics
Degree Level
M.S.
Publisher
Date
2008
Abstract
Definiremos la noción de puente entre dos grafos fuertemente conexo. El grafo que se origina, Xf, define el sistema dinámico f : Z_(2)^(n) → Z_(2)^(n), no-lineal, mas simple sobre el cuerpo con dos elementos Z2. Usaremos un invariante llamado “Loop Number” que aplicado a Xf nos ayuda a proveer condiciones necesarias y suficientes para que f sea un sistema de punto fijo.
We define the concept of wedge between two strongly connected graphs. The resulting graph, Xf , defines the simplest nonlinear dynamical system f : Z_(2)^(n) → Z_(2)^(n) over the field of 2 elements Z2. We use an invariant, called the loop number, that when applied to Xf will help us provide necessary and sufficient conditions for f to be a fixed point system.
We define the concept of wedge between two strongly connected graphs. The resulting graph, Xf , defines the simplest nonlinear dynamical system f : Z_(2)^(n) → Z_(2)^(n) over the field of 2 elements Z2. We use an invariant, called the loop number, that when applied to Xf will help us provide necessary and sufficient conditions for f to be a fixed point system.
Keywords
Sistemas booleanos
Usage Rights
Persistent URL
Cite
Pérez-Baéz, L. O. (2008). Sistemas dinámicos booleanos y operaciones de puente [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/1972