Publication:
A connection between algebraic structures and propositional logic
A connection between algebraic structures and propositional logic
Authors
Ortiz-Hernández, Wanda
Embargoed Until
Advisor
Cáceres, Luis F.
College
College of Arts and Sciences - Sciences
Department
Department of Mathematics
Degree Level
M.S.
Publisher
Date
2006
Abstract
In this project, the relationship between propositional logic using theories and models, and algebraic structures, such as groups, rings, lattices, R-modules and algebras, including Boolean Algebras, has been studied. From Caceres [1], we have that given a ring R, a one to one correspondence exists between the ideals of R and the models associated with the sentential theory T(R). A similar approach was followed to show that given a group G, and the associated sentential theory T (G), a one to one correspondence exists between the subgroup of G and the models associated with the theory T(G). Several results were presented for lattice structures, L, and Boolean Algebras, B. Their associated sentential the- ories, T(L) and T(B), were also established. Concrete examples to support these results were presented and explained. For some structures, the cardinality of its corresponding propositional theory was studied and a formula for its calculation was established.
En este proyecto se estudió la relación entre la lógica proposicional utilizando teorías y modelos, y estructuras algebraicas como: grupos, anillos, retículos, R-módulos y álgebras, incluyendo álgebras de Boole. De Cáceres [1] tenemos que dado un anillo R, existe una correspondencia uno a uno entre los ideales de R y los modelos asociados a la teoría sentencial T(R). Utilizando un procedimiento similar se demostró que dado un grupo G y la teoría sentencial asociada, T(G), existe una correspondencia uno a uno entre los subgrupos de G y los modelos asociados con la teoría, T(G). Para los retículos, L, y las álgebras de Boole, B, se presentaron varios resultados y propiedades. Además, se establecieron sus teorías sentenciales, T(L) y T(B), respectivamente. Varios ejemplos y contra ejemplos concretos se presentaron para reforzar los resultados establecidos. Para algunas estructuras se estudió la cardinalidad de sus teorías proposicionales correspondientes y se estableció una fórmula para su computación.
En este proyecto se estudió la relación entre la lógica proposicional utilizando teorías y modelos, y estructuras algebraicas como: grupos, anillos, retículos, R-módulos y álgebras, incluyendo álgebras de Boole. De Cáceres [1] tenemos que dado un anillo R, existe una correspondencia uno a uno entre los ideales de R y los modelos asociados a la teoría sentencial T(R). Utilizando un procedimiento similar se demostró que dado un grupo G y la teoría sentencial asociada, T(G), existe una correspondencia uno a uno entre los subgrupos de G y los modelos asociados con la teoría, T(G). Para los retículos, L, y las álgebras de Boole, B, se presentaron varios resultados y propiedades. Además, se establecieron sus teorías sentenciales, T(L) y T(B), respectivamente. Varios ejemplos y contra ejemplos concretos se presentaron para reforzar los resultados establecidos. Para algunas estructuras se estudió la cardinalidad de sus teorías proposicionales correspondientes y se estableció una fórmula para su computación.
Keywords
Algebraic structures,
Propositional logic
Propositional logic
Usage Rights
Persistent URL
Cite
Ortiz-Hernández, W. (2006). A connection between algebraic structures and propositional logic [Thesis]. Retrieved from https://hdl.handle.net/20.500.11801/1989